WorldWideScience

Sample records for protein concentration predicts

  1. An Improved Method of Predicting Extinction Coefficients for the Determination of Protein Concentration.

    Science.gov (United States)

    Hilario, Eric C; Stern, Alan; Wang, Charlie H; Vargas, Yenny W; Morgan, Charles J; Swartz, Trevor E; Patapoff, Thomas W

    2017-01-01

    Concentration determination is an important method of protein characterization required in the development of protein therapeutics. There are many known methods for determining the concentration of a protein solution, but the easiest to implement in a manufacturing setting is absorption spectroscopy in the ultraviolet region. For typical proteins composed of the standard amino acids, absorption at wavelengths near 280 nm is due to the three amino acid chromophores tryptophan, tyrosine, and phenylalanine in addition to a contribution from disulfide bonds. According to the Beer-Lambert law, absorbance is proportional to concentration and path length, with the proportionality constant being the extinction coefficient. Typically the extinction coefficient of proteins is experimentally determined by measuring a solution absorbance then experimentally determining the concentration, a measurement with some inherent variability depending on the method used. In this study, extinction coefficients were calculated based on the measured absorbance of model compounds of the four amino acid chromophores. These calculated values for an unfolded protein were then compared with an experimental concentration determination based on enzymatic digestion of proteins. The experimentally determined extinction coefficient for the native proteins was consistently found to be 1.05 times the calculated value for the unfolded proteins for a wide range of proteins with good accuracy and precision under well-controlled experimental conditions. The value of 1.05 times the calculated value was termed the predicted extinction coefficient. Statistical analysis shows that the differences between predicted and experimentally determined coefficients are scattered randomly, indicating no systematic bias between the values among the proteins measured. The predicted extinction coefficient was found to be accurate and not subject to the inherent variability of experimental methods. We propose the use of a

  2. Predicting the activity coefficients of free-solvent for concentrated globular protein solutions using independently determined physical parameters.

    Directory of Open Access Journals (Sweden)

    Devin W McBride

    Full Text Available The activity coefficient is largely considered an empirical parameter that was traditionally introduced to correct the non-ideality observed in thermodynamic systems such as osmotic pressure. Here, the activity coefficient of free-solvent is related to physically realistic parameters and a mathematical expression is developed to directly predict the activity coefficients of free-solvent, for aqueous protein solutions up to near-saturation concentrations. The model is based on the free-solvent model, which has previously been shown to provide excellent prediction of the osmotic pressure of concentrated and crowded globular proteins in aqueous solutions up to near-saturation concentrations. Thus, this model uses only the independently determined, physically realizable quantities: mole fraction, solvent accessible surface area, and ion binding, in its prediction. Predictions are presented for the activity coefficients of free-solvent for near-saturated protein solutions containing either bovine serum albumin or hemoglobin. As a verification step, the predictability of the model for the activity coefficient of sucrose solutions was evaluated. The predicted activity coefficients of free-solvent are compared to the calculated activity coefficients of free-solvent based on osmotic pressure data. It is observed that the predicted activity coefficients are increasingly dependent on the solute-solvent parameters as the protein concentration increases to near-saturation concentrations.

  3. Protein docking prediction using predicted protein-protein interface

    Directory of Open Access Journals (Sweden)

    Li Bin

    2012-01-01

    Full Text Available Abstract Background Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. Results We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm, is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. Conclusion We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  4. Protein docking prediction using predicted protein-protein interface.

    Science.gov (United States)

    Li, Bin; Kihara, Daisuke

    2012-01-10

    Many important cellular processes are carried out by protein complexes. To provide physical pictures of interacting proteins, many computational protein-protein prediction methods have been developed in the past. However, it is still difficult to identify the correct docking complex structure within top ranks among alternative conformations. We present a novel protein docking algorithm that utilizes imperfect protein-protein binding interface prediction for guiding protein docking. Since the accuracy of protein binding site prediction varies depending on cases, the challenge is to develop a method which does not deteriorate but improves docking results by using a binding site prediction which may not be 100% accurate. The algorithm, named PI-LZerD (using Predicted Interface with Local 3D Zernike descriptor-based Docking algorithm), is based on a pair wise protein docking prediction algorithm, LZerD, which we have developed earlier. PI-LZerD starts from performing docking prediction using the provided protein-protein binding interface prediction as constraints, which is followed by the second round of docking with updated docking interface information to further improve docking conformation. Benchmark results on bound and unbound cases show that PI-LZerD consistently improves the docking prediction accuracy as compared with docking without using binding site prediction or using the binding site prediction as post-filtering. We have developed PI-LZerD, a pairwise docking algorithm, which uses imperfect protein-protein binding interface prediction to improve docking accuracy. PI-LZerD consistently showed better prediction accuracy over alternative methods in the series of benchmark experiments including docking using actual docking interface site predictions as well as unbound docking cases.

  5. Low plasma adiponectin concentrations do not predict weight gain in humans

    DEFF Research Database (Denmark)

    Vozarova, Barbora; Stefan, Norbert; Lindsay, Robert S

    2002-01-01

    Low concentrations of plasma adiponectin, the most abundant adipose-specific protein, are observed in obese individuals and predict the development of type 2 diabetes. Administration of adiponectin to rodents prevented diet-induced weight gain, suggesting a potential etiologic role of hypoadipone......Low concentrations of plasma adiponectin, the most abundant adipose-specific protein, are observed in obese individuals and predict the development of type 2 diabetes. Administration of adiponectin to rodents prevented diet-induced weight gain, suggesting a potential etiologic role...... of hypoadiponectinemia in the development of obesity. Our aim was to prospectively examine whether low plasma adiponectin concentrations predict future weight gain in Pima Indians, explaining the predictive effect of adiponectin on the development of type 2 diabetes. We measured plasma adiponectin concentrations in 219...... nondiabetic Pima Indians (112 M/107 F, age 31 +/- 9 years, body weight 96 +/- 20 kg [mean +/- SD]) in whom body weight and height were measured and BMI calculated at baseline and follow-up. Cross-sectionally, plasma adiponectin concentrations were negatively associated with body weight (r = -0.28, P = 0...

  6. Evaluation of the use of serum C-reactive protein concentration to predict outcome in puppies infected with canine parvovirus

    DEFF Research Database (Denmark)

    McClure, Vanessa; van Schoor, Mirinda; Thompson, Peter N.

    2013-01-01

    Objective-To evaluate associations of serum C-reactive protein (CRP) concentration with duration of hospitalization and with outcome in puppies with canine parvoviral enteritis. Design-Prospective observational study. Animals-79 client-owned puppies with naturally acquired canine parvovirus...... infection. Procedures-All puppies received supportive care. Serum CRP concentration was measured at the time of admission, approximately every 10 to 12 hours for the first 48 hours, and then every 24 hours until discharge from the hospital or death. Associations between outcome and CRP concentration...... at various time points or changes in CRP concentration over time were assessed via multiple logistic regression. Associations of CRP concentration with survival time and duration of hospitalization among survivors were estimated with Cox proportional hazards regression. Use of CRP concentration to predict...

  7. Computational prediction of protein-protein interactions in Leishmania predicted proteomes.

    Directory of Open Access Journals (Sweden)

    Antonio M Rezende

    Full Text Available The Trypanosomatids parasites Leishmania braziliensis, Leishmania major and Leishmania infantum are important human pathogens. Despite of years of study and genome availability, effective vaccine has not been developed yet, and the chemotherapy is highly toxic. Therefore, it is clear just interdisciplinary integrated studies will have success in trying to search new targets for developing of vaccines and drugs. An essential part of this rationale is related to protein-protein interaction network (PPI study which can provide a better understanding of complex protein interactions in biological system. Thus, we modeled PPIs for Trypanosomatids through computational methods using sequence comparison against public database of protein or domain interaction for interaction prediction (Interolog Mapping and developed a dedicated combined system score to address the predictions robustness. The confidence evaluation of network prediction approach was addressed using gold standard positive and negative datasets and the AUC value obtained was 0.94. As result, 39,420, 43,531 and 45,235 interactions were predicted for L. braziliensis, L. major and L. infantum respectively. For each predicted network the top 20 proteins were ranked by MCC topological index. In addition, information related with immunological potential, degree of protein sequence conservation among orthologs and degree of identity compared to proteins of potential parasite hosts was integrated. This information integration provides a better understanding and usefulness of the predicted networks that can be valuable to select new potential biological targets for drug and vaccine development. Network modularity which is a key when one is interested in destabilizing the PPIs for drug or vaccine purposes along with multiple alignments of the predicted PPIs were performed revealing patterns associated with protein turnover. In addition, around 50% of hypothetical protein present in the networks

  8. The use of crude protein content to predict concentrations of lysine ...

    African Journals Online (AJOL)

    Correlations were determined between the crude protein (CP) and lysine or methionine concentrations of grain from wheat (cultivar: palmiet), barley (cultivar: clipper) and triticale (cultivar: usgen 19) grown in the Western Cape region of South Africa. Twenty samples of varying CP content were collected for each grain type ...

  9. Cloud prediction of protein structure and function with PredictProtein for Debian.

    Science.gov (United States)

    Kaján, László; Yachdav, Guy; Vicedo, Esmeralda; Steinegger, Martin; Mirdita, Milot; Angermüller, Christof; Böhm, Ariane; Domke, Simon; Ertl, Julia; Mertes, Christian; Reisinger, Eva; Staniewski, Cedric; Rost, Burkhard

    2013-01-01

    We report the release of PredictProtein for the Debian operating system and derivatives, such as Ubuntu, Bio-Linux, and Cloud BioLinux. The PredictProtein suite is available as a standard set of open source Debian packages. The release covers the most popular prediction methods from the Rost Lab, including methods for the prediction of secondary structure and solvent accessibility (profphd), nuclear localization signals (predictnls), and intrinsically disordered regions (norsnet). We also present two case studies that successfully utilize PredictProtein packages for high performance computing in the cloud: the first analyzes protein disorder for whole organisms, and the second analyzes the effect of all possible single sequence variants in protein coding regions of the human genome.

  10. Short-term effects of medetomidine on photosynthesis and protein synthesis in periphyton, epipsammon and plankton communities in relation to predicted environmental concentrations.

    Science.gov (United States)

    Ohlauson, Cecilia; Eriksson, Karl Martin; Blanck, Hans

    2012-01-01

    Medetomidine is a new antifouling substance, highly effective against barnacles. As part of a thorough ecotoxicological evaluation of medetomidine, its short-term effects on algal and bacterial communities were investigated and environmental concentrations were predicted with the MAMPEC model. Photosynthesis and bacterial protein synthesis for three marine communities, viz. periphyton, epipsammon and plankton were used as effect indicators, and compared with the predicted environmental concentrations (PECs). The plankton community showed a significant decrease in photosynthetic activity of 16% at 2 mg l⁻¹ of medetomidine, which was the only significant effect observed. PECs were estimated for a harbor, shipping lane and marina environment using three different model scenarios (MAMPEC default, Baltic and OECD scenarios). The highest PEC of 57 ng l⁻¹, generated for a marina with the Baltic scenario, was at least 10,000-fold lower than the concentration that significantly decreased photosynthetic activity. It is concluded that medetomidine does not cause any acute toxic effects on bacterial protein synthesis and only small acute effects on photosynthesis at high concentrations in marine microbial communities. It is also concluded that the hazard from medetomidine on these processes is low since the effect levels are much lower than the highest PEC.

  11. Diagnostic Accuracy of Urine Protein/Creatinine Ratio Is Influenced by Urine Concentration

    Science.gov (United States)

    Yang, Chih-Yu; Chen, Fu-An; Chen, Chun-Fan; Liu, Wen-Sheng; Shih, Chia-Jen; Ou, Shuo-Ming; Yang, Wu-Chang; Lin, Chih-Ching; Yang, An-Hang

    2015-01-01

    Background The usage of urine protein/creatinine ratio to estimate daily urine protein excretion is prevalent, but relatively little attention has been paid to the influence of urine concentration and its impact on test accuracy. We took advantage of 24-hour urine collection to examine both urine protein/creatinine ratio (UPCR) and daily urine protein excretion, with the latter as the reference standard. Specific gravity from a concomitant urinalysis of the same urine sample was used to indicate the urine concentration. Methods During 2010 to 2014, there were 540 adequately collected 24h urine samples with protein concentration, creatinine concentration, total volume, and a concomitant urinalysis of the same sample. Variables associated with an accurate UPCR estimation were determined by multivariate linear regression analysis. Receiver operating characteristic (ROC) curves were generated to determine the discriminant cut-off values of urine creatinine concentration for predicting an accurate UPCR estimation in either dilute or concentrated urine samples. Results Our findings indicated that for dilute urine, as indicated by a low urine specific gravity, UPCR is more likely to overestimate the actual daily urine protein excretion. On the contrary, UPCR of concentrated urine is more likely to result in an underestimation. By ROC curve analysis, the best cut-off value of urine creatinine concentration for predicting overestimation by UPCR of dilute urine (specific gravity ≦ 1.005) was ≦ 38.8 mg/dL, whereas the best cut-off values of urine creatinine for predicting underestimation by UPCR of thick urine were ≧ 63.6 mg/dL (specific gravity ≧ 1.015), ≧ 62.1 mg/dL (specific gravity ≧ 1.020), ≧ 61.5 mg/dL (specific gravity ≧ 1.025), respectively. We also compared distribution patterns of urine creatinine concentration of 24h urine cohort with a concurrent spot urine cohort and found that the underestimation might be more profound in single voided samples

  12. Diagnostic Accuracy of Urine Protein/Creatinine Ratio Is Influenced by Urine Concentration.

    Science.gov (United States)

    Yang, Chih-Yu; Chen, Fu-An; Chen, Chun-Fan; Liu, Wen-Sheng; Shih, Chia-Jen; Ou, Shuo-Ming; Yang, Wu-Chang; Lin, Chih-Ching; Yang, An-Hang

    2015-01-01

    The usage of urine protein/creatinine ratio to estimate daily urine protein excretion is prevalent, but relatively little attention has been paid to the influence of urine concentration and its impact on test accuracy. We took advantage of 24-hour urine collection to examine both urine protein/creatinine ratio (UPCR) and daily urine protein excretion, with the latter as the reference standard. Specific gravity from a concomitant urinalysis of the same urine sample was used to indicate the urine concentration. During 2010 to 2014, there were 540 adequately collected 24h urine samples with protein concentration, creatinine concentration, total volume, and a concomitant urinalysis of the same sample. Variables associated with an accurate UPCR estimation were determined by multivariate linear regression analysis. Receiver operating characteristic (ROC) curves were generated to determine the discriminant cut-off values of urine creatinine concentration for predicting an accurate UPCR estimation in either dilute or concentrated urine samples. Our findings indicated that for dilute urine, as indicated by a low urine specific gravity, UPCR is more likely to overestimate the actual daily urine protein excretion. On the contrary, UPCR of concentrated urine is more likely to result in an underestimation. By ROC curve analysis, the best cut-off value of urine creatinine concentration for predicting overestimation by UPCR of dilute urine (specific gravity ≦ 1.005) was ≦ 38.8 mg/dL, whereas the best cut-off values of urine creatinine for predicting underestimation by UPCR of thick urine were ≧ 63.6 mg/dL (specific gravity ≧ 1.015), ≧ 62.1 mg/dL (specific gravity ≧ 1.020), ≧ 61.5 mg/dL (specific gravity ≧ 1.025), respectively. We also compared distribution patterns of urine creatinine concentration of 24h urine cohort with a concurrent spot urine cohort and found that the underestimation might be more profound in single voided samples. The UPCR in samples with low

  13. Prediction of Protein-Protein Interactions Related to Protein Complexes Based on Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Peng Liu

    2015-01-01

    Full Text Available A method for predicting protein-protein interactions based on detected protein complexes is proposed to repair deficient interactions derived from high-throughput biological experiments. Protein complexes are pruned and decomposed into small parts based on the adaptive k-cores method to predict protein-protein interactions associated with the complexes. The proposed method is adaptive to protein complexes with different structure, number, and size of nodes in a protein-protein interaction network. Based on different complex sets detected by various algorithms, we can obtain different prediction sets of protein-protein interactions. The reliability of the predicted interaction sets is proved by using estimations with statistical tests and direct confirmation of the biological data. In comparison with the approaches which predict the interactions based on the cliques, the overlap of the predictions is small. Similarly, the overlaps among the predicted sets of interactions derived from various complex sets are also small. Thus, every predicted set of interactions may complement and improve the quality of the original network data. Meanwhile, the predictions from the proposed method replenish protein-protein interactions associated with protein complexes using only the network topology.

  14. Information assessment on predicting protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Gerstein Mark

    2004-10-01

    Full Text Available Abstract Background Identifying protein-protein interactions is fundamental for understanding the molecular machinery of the cell. Proteome-wide studies of protein-protein interactions are of significant value, but the high-throughput experimental technologies suffer from high rates of both false positive and false negative predictions. In addition to high-throughput experimental data, many diverse types of genomic data can help predict protein-protein interactions, such as mRNA expression, localization, essentiality, and functional annotation. Evaluations of the information contributions from different evidences help to establish more parsimonious models with comparable or better prediction accuracy, and to obtain biological insights of the relationships between protein-protein interactions and other genomic information. Results Our assessment is based on the genomic features used in a Bayesian network approach to predict protein-protein interactions genome-wide in yeast. In the special case, when one does not have any missing information about any of the features, our analysis shows that there is a larger information contribution from the functional-classification than from expression correlations or essentiality. We also show that in this case alternative models, such as logistic regression and random forest, may be more effective than Bayesian networks for predicting interactions. Conclusions In the restricted problem posed by the complete-information subset, we identified that the MIPS and Gene Ontology (GO functional similarity datasets as the dominating information contributors for predicting the protein-protein interactions under the framework proposed by Jansen et al. Random forests based on the MIPS and GO information alone can give highly accurate classifications. In this particular subset of complete information, adding other genomic data does little for improving predictions. We also found that the data discretizations used in the

  15. Continuous protein concentration via free-flow moving reaction boundary electrophoresis.

    Science.gov (United States)

    Kong, Fanzhi; Zhang, Min; Chen, Jingjing; Fan, Liuyin; Xiao, Hua; Liu, Shaorong; Cao, Chengxi

    2017-07-28

    In this work, we developed the model and theory of free-flow moving reaction boundary electrophoresis (FFMRB) for continuous protein concentration for the first time. The theoretical results indicated that (i) the moving reaction boundary (MRB) can be quantitatively designed in free-flow electrophoresis (FFE) system; (ii) charge-to-mass ratio (Z/M) analysis could provide guidance for protein concentration optimization; and (iii) the maximum processing capacity could be predicted. To demonstrate the model and theory, three model proteins of hemoglobin (Hb), cytochrome C (Cyt C) and C-phycocyanin (C-PC) were chosen for the experiments. The experimental results verified that (i) stable MRBs with different velocities could be established in FFE apparatus with weak acid/weak base neutralization reaction system; (ii) proteins of Hb, Cyt C and C-PC were well concentrated with FFMRB; and (iii) a maximum processing capacity and recovery ratio of Cyt C enrichment were 126mL/h and 95.5% respectively, and a maximum enrichment factor was achieved 12.6 times for Hb. All of the experiments demonstrated the protein concentration model and theory. In contrast to other methods, the continuous processing ability enables FFMRB to efficiently enrich diluted protein or peptide in large volume solution. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Prediction of milk, fat and protein yields in first lactation from serum ß-lactoglobulin concentrations during gestation in Italian Brown heifers

    Directory of Open Access Journals (Sweden)

    Paola Superchi

    2010-01-01

    Full Text Available The Authors report the results of a study carried out on 23 pregnant Italian Brown heifers, with the aim to determine the relationships between blood serum ß-lactoglobulin (ß-LG concentrations during first gestation and subsequent milk production and quality in first lactation, in order to obtain an improved selection method for replacement heifers. At weeks 20, 26 and 32 of gestation, ß-LG concentrations (±SE were 706±78, 753±66 and 772±63 ng/ml, respectively (P>0.05. High and significant (P≤0.05 correlation coefficients were observed only between ß-LG content at week 32 and total milk and protein yields in first lactation. Prediction equations of milk, fat and protein production in first lactation from log10 ß-LG content at week 32 of gestation, from parent average genetic indexes and from both were calculated by means of multiple regression analysis. When the contribution of both ß-LG content and predicted genetic indexes were considered, the regression equations gave generally a better estimate of the production parameters in first lactation (higher R2, lower SE of estimate than the above mentioned parameters alone. These results suggest that it is valuable to pre-estimate milk, fat and protein production in Italian Brown first lactating cows by means of the analysis of serum ß-LG content during gestation.

  17. Protein Structure Prediction by Protein Threading

    Science.gov (United States)

    Xu, Ying; Liu, Zhijie; Cai, Liming; Xu, Dong

    The seminal work of Bowie, Lüthy, and Eisenberg (Bowie et al., 1991) on "the inverse protein folding problem" laid the foundation of protein structure prediction by protein threading. By using simple measures for fitness of different amino acid types to local structural environments defined in terms of solvent accessibility and protein secondary structure, the authors derived a simple and yet profoundly novel approach to assessing if a protein sequence fits well with a given protein structural fold. Their follow-up work (Elofsson et al., 1996; Fischer and Eisenberg, 1996; Fischer et al., 1996a,b) and the work by Jones, Taylor, and Thornton (Jones et al., 1992) on protein fold recognition led to the development of a new brand of powerful tools for protein structure prediction, which we now term "protein threading." These computational tools have played a key role in extending the utility of all the experimentally solved structures by X-ray crystallography and nuclear magnetic resonance (NMR), providing structural models and functional predictions for many of the proteins encoded in the hundreds of genomes that have been sequenced up to now.

  18. A Physiologically Based Pharmacokinetic Model to Predict the Pharmacokinetics of Highly Protein-Bound Drugs and Impact of Errors in Plasma Protein Binding

    Science.gov (United States)

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2015-01-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data was often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding, and blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for terminal elimination half-life (t1/2, 100% of drugs), peak plasma concentration (Cmax, 100%), area under the plasma concentration-time curve (AUC0–t, 95.4%), clearance (CLh, 95.4%), mean retention time (MRT, 95.4%), and steady state volume (Vss, 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. PMID:26531057

  19. A physiologically based pharmacokinetic model to predict the pharmacokinetics of highly protein-bound drugs and the impact of errors in plasma protein binding.

    Science.gov (United States)

    Ye, Min; Nagar, Swati; Korzekwa, Ken

    2016-04-01

    Predicting the pharmacokinetics of highly protein-bound drugs is difficult. Also, since historical plasma protein binding data were often collected using unbuffered plasma, the resulting inaccurate binding data could contribute to incorrect predictions. This study uses a generic physiologically based pharmacokinetic (PBPK) model to predict human plasma concentration-time profiles for 22 highly protein-bound drugs. Tissue distribution was estimated from in vitro drug lipophilicity data, plasma protein binding and the blood: plasma ratio. Clearance was predicted with a well-stirred liver model. Underestimated hepatic clearance for acidic and neutral compounds was corrected by an empirical scaling factor. Predicted values (pharmacokinetic parameters, plasma concentration-time profile) were compared with observed data to evaluate the model accuracy. Of the 22 drugs, less than a 2-fold error was obtained for the terminal elimination half-life (t1/2 , 100% of drugs), peak plasma concentration (Cmax , 100%), area under the plasma concentration-time curve (AUC0-t , 95.4%), clearance (CLh , 95.4%), mean residence time (MRT, 95.4%) and steady state volume (Vss , 90.9%). The impact of fup errors on CLh and Vss prediction was evaluated. Errors in fup resulted in proportional errors in clearance prediction for low-clearance compounds, and in Vss prediction for high-volume neutral drugs. For high-volume basic drugs, errors in fup did not propagate to errors in Vss prediction. This is due to the cancellation of errors in the calculations for tissue partitioning of basic drugs. Overall, plasma profiles were well simulated with the present PBPK model. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  20. Protein complex prediction in large ontology attributed protein-protein interaction networks.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian; Li, Yanpeng; Xu, Bo

    2013-01-01

    Protein complexes are important for unraveling the secrets of cellular organization and function. Many computational approaches have been developed to predict protein complexes in protein-protein interaction (PPI) networks. However, most existing approaches focus mainly on the topological structure of PPI networks, and largely ignore the gene ontology (GO) annotation information. In this paper, we constructed ontology attributed PPI networks with PPI data and GO resource. After constructing ontology attributed networks, we proposed a novel approach called CSO (clustering based on network structure and ontology attribute similarity). Structural information and GO attribute information are complementary in ontology attributed networks. CSO can effectively take advantage of the correlation between frequent GO annotation sets and the dense subgraph for protein complex prediction. Our proposed CSO approach was applied to four different yeast PPI data sets and predicted many well-known protein complexes. The experimental results showed that CSO was valuable in predicting protein complexes and achieved state-of-the-art performance.

  1. Different protein-protein interface patterns predicted by different machine learning methods.

    Science.gov (United States)

    Wang, Wei; Yang, Yongxiao; Yin, Jianxin; Gong, Xinqi

    2017-11-22

    Different types of protein-protein interactions make different protein-protein interface patterns. Different machine learning methods are suitable to deal with different types of data. Then, is it the same situation that different interface patterns are preferred for prediction by different machine learning methods? Here, four different machine learning methods were employed to predict protein-protein interface residue pairs on different interface patterns. The performances of the methods for different types of proteins are different, which suggest that different machine learning methods tend to predict different protein-protein interface patterns. We made use of ANOVA and variable selection to prove our result. Our proposed methods taking advantages of different single methods also got a good prediction result compared to single methods. In addition to the prediction of protein-protein interactions, this idea can be extended to other research areas such as protein structure prediction and design.

  2. Prediction of Protein Configurational Entropy (Popcoen).

    Science.gov (United States)

    Goethe, Martin; Gleixner, Jan; Fita, Ignacio; Rubi, J Miguel

    2018-03-13

    A knowledge-based method for configurational entropy prediction of proteins is presented; this methodology is extremely fast, compared to previous approaches, because it does not involve any type of configurational sampling. Instead, the configurational entropy of a query fold is estimated by evaluating an artificial neural network, which was trained on molecular-dynamics simulations of ∼1000 proteins. The predicted entropy can be incorporated into a large class of protein software based on cost-function minimization/evaluation, in which configurational entropy is currently neglected for performance reasons. Software of this type is used for all major protein tasks such as structure predictions, proteins design, NMR and X-ray refinement, docking, and mutation effect predictions. Integrating the predicted entropy can yield a significant accuracy increase as we show exemplarily for native-state identification with the prominent protein software FoldX. The method has been termed Popcoen for Prediction of Protein Configurational Entropy. An implementation is freely available at http://fmc.ub.edu/popcoen/ .

  3. Molecular Effects of Concentrated Solutes on Protein Hydration, Dynamics, and Electrostatics.

    Science.gov (United States)

    Abriata, Luciano A; Spiga, Enrico; Peraro, Matteo Dal

    2016-08-23

    Most studies of protein structure and function are performed in dilute conditions, but proteins typically experience high solute concentrations in their physiological scenarios and biotechnological applications. High solute concentrations have well-known effects on coarse protein traits like stability, diffusion, and shape, but likely also perturb other traits through finer effects pertinent at the residue and atomic levels. Here, NMR and molecular dynamics investigations on ubiquitin disclose variable interactions with concentrated solutes that lead to localized perturbations of the protein's surface, hydration, electrostatics, and dynamics, all dependent on solute size and chemical properties. Most strikingly, small polar uncharged molecules are sticky on the protein surface, whereas charged small molecules are not, but the latter still perturb the internal protein electrostatics as they diffuse nearby. Meanwhile, interactions with macromolecular crowders are favored mainly through hydrophobic, but not through polar, surface patches. All the tested small solutes strongly slow down water exchange at the protein surface, whereas macromolecular crowders do not exert such strong perturbation. Finally, molecular dynamics simulations predict that unspecific interactions slow down microsecond- to millisecond-timescale protein dynamics despite having only mild effects on pico- to nanosecond fluctuations as corroborated by NMR. We discuss our results in the light of recent advances in understanding proteins inside living cells, focusing on the physical chemistry of quinary structure and cellular organization, and we reinforce the idea that proteins should be studied in native-like media to achieve a faithful description of their function. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  4. Refractometric total protein concentrations in icteric serum from dogs.

    Science.gov (United States)

    Gupta, Aradhana; Stockham, Steven L

    2014-01-01

    To determine whether high serum bilirubin concentrations interfere with the measurement of serum total protein concentration by refractometry and to assess potential biases among refractometer measurements. Evaluation study. Sera from 2 healthy Greyhounds. Bilirubin was dissolved in 0.1M NaOH, and the resulting solution was mixed with sera from 2 dogs from which food had been withheld to achieve various bilirubin concentrations up to 40 mg/dL. Refractometric total protein concentrations were estimated with 3 clinical refractometers. A biochemical analyzer was used to measure biuret assay-based total protein and bilirubin concentrations with spectrophotometric assays. No interference with refractometric measurement of total protein concentrations was detected with bilirubin concentrations up to 41.5 mg/dL. Biases in refractometric total protein concentrations were detected and were related to the conversion of refractive index values to total protein concentrations. Hyperbilirubinemia did not interfere with the refractometric estimation of serum total protein concentration. The agreement among total protein concentrations estimated by 3 refractometers was dependent on the method of conversion of refractive index to total protein concentration and was independent of hyperbilirubinemia.

  5. Neural Networks for protein Structure Prediction

    DEFF Research Database (Denmark)

    Bohr, Henrik

    1998-01-01

    This is a review about neural network applications in bioinformatics. Especially the applications to protein structure prediction, e.g. prediction of secondary structures, prediction of surface structure, fold class recognition and prediction of the 3-dimensional structure of protein backbones...

  6. Determination of protein concentration in raw milk by mid-infrared fourier transform infrared/attenuated total reflectance spectroscopy.

    Science.gov (United States)

    Etzion, Y; Linker, R; Cogan, U; Shmulevich, I

    2004-09-01

    This study investigates the potential use of attenuated total reflectance spectroscopy in the mid-infrared range for determining protein concentration in raw cow milk. The determination of protein concentration is based on the characteristic absorbance of milk proteins, which includes 2 absorbance bands in the 1500 to 1700 cm(-1) range, known as the amide I and amide II bands, and absorbance in the 1060 to 1100 cm(-1) range, which is associated with phosphate groups covalently bound to casein proteins. To minimize the influence of the strong water band (centered around 1640 cm(-1)) that overlaps with the amide I and amide II bands, an optimized automatic procedure for accurate water subtraction was applied. Following water subtraction, the spectra were analyzed by 3 methods, namely simple band integration, partial least squares (PLS) and neural networks. For the neural network models, the spectra were first decomposed by principal component analysis (PCA), and the neural network inputs were the spectra principal components scores. In addition, the concentrations of 2 constituents expected to interact with the protein (i.e., fat and lactose) were also used as inputs. These approaches were tested with 235 spectra of standardized raw milk samples, corresponding to 26 protein concentrations in the 2.47 to 3.90% (weight per volume) range. The simple integration method led to very poor results, whereas PLS resulted in prediction errors of about 0.22% protein. The neural network approach led to prediction errors of 0.20% protein when based on PCA scores only, and 0.08% protein when lactose and fat concentrations were also included in the model. These results indicate the potential usefulness of Fourier transform infrared/attenuated total reflectance spectroscopy for rapid, possibly online, determination of protein concentration in raw milk.

  7. Protein function prediction using neighbor relativity in protein-protein interaction network.

    Science.gov (United States)

    Moosavi, Sobhan; Rahgozar, Masoud; Rahimi, Amir

    2013-04-01

    There is a large gap between the number of discovered proteins and the number of functionally annotated ones. Due to the high cost of determining protein function by wet-lab research, function prediction has become a major task for computational biology and bioinformatics. Some researches utilize the proteins interaction information to predict function for un-annotated proteins. In this paper, we propose a novel approach called "Neighbor Relativity Coefficient" (NRC) based on interaction network topology which estimates the functional similarity between two proteins. NRC is calculated for each pair of proteins based on their graph-based features including distance, common neighbors and the number of paths between them. In order to ascribe function to an un-annotated protein, NRC estimates a weight for each neighbor to transfer its annotation to the unknown protein. Finally, the unknown protein will be annotated by the top score transferred functions. We also investigate the effect of using different coefficients for various types of functions. The proposed method has been evaluated on Saccharomyces cerevisiae and Homo sapiens interaction networks. The performance analysis demonstrates that NRC yields better results in comparison with previous protein function prediction approaches that utilize interaction network. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. Protein complex prediction based on k-connected subgraphs in protein interaction network

    Directory of Open Access Journals (Sweden)

    Habibi Mahnaz

    2010-09-01

    Full Text Available Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on connectivity number on subgraphs. We evaluate CFA using several protein interaction networks on reference protein complexes in two benchmark data sets (MIPS and Aloy, containing 1142 and 61 known complexes respectively. We compare CFA to some existing protein complex prediction methods (CMC, MCL, PCP and RNSC in terms of recall and precision. We show that CFA predicts more complexes correctly at a competitive level of precision. Conclusions Many real complexes with different connectivity level in protein interaction network can be predicted based on connectivity number. Our CFA program and results are freely available from http://www.bioinf.cs.ipm.ir/softwares/cfa/CFA.rar.

  9. Protein complex prediction based on k-connected subgraphs in protein interaction network

    OpenAIRE

    Habibi, Mahnaz; Eslahchi, Changiz; Wong, Limsoon

    2010-01-01

    Abstract Background Protein complexes play an important role in cellular mechanisms. Recently, several methods have been presented to predict protein complexes in a protein interaction network. In these methods, a protein complex is predicted as a dense subgraph of protein interactions. However, interactions data are incomplete and a protein complex does not have to be a complete or dense subgraph. Results We propose a more appropriate protein complex prediction method, CFA, that is based on ...

  10. Estimation of daily protein intake based on spot urine urea nitrogen concentration in chronic kidney disease patients.

    Science.gov (United States)

    Kanno, Hiroko; Kanda, Eiichiro; Sato, Asako; Sakamoto, Kaori; Kanno, Yoshihiko

    2016-04-01

    Determination of daily protein intake in the management of chronic kidney disease (CKD) requires precision. Inaccuracies in recording dietary intake occur, and estimation from total urea excretion presents hurdles owing to the difficulty of collecting whole urine for 24 h. Spot urine has been used for measuring daily sodium intake and urinary protein excretion. In this cross-sectional study, we investigated whether urea nitrogen (UN) concentration in spot urine can be used to predict daily protein intake instead of the 24-h urine collection in 193 Japanese CKD patients (Stages G1-G5). After patient randomization into 2 datasets for the development and validation of models, bootstrapping was used to develop protein intake estimation models. The parameters for the candidate multivariate regression models were male gender, age, body mass index (BMI), diabetes mellitus, dyslipidemia, proteinuria, estimated glomerular filtration rate, serum albumin level, spot urinary UN and creatinine level, and spot urinary UN/creatinine levels. The final model contained BMI and spot urinary UN level. The final model was selected because of the higher correlation between the predicted and measured protein intakes r = 0.558 (95 % confidence interval 0.400, 0.683), and the smaller distribution of the difference between the measured and predicted protein intakes than those of the other models. The results suggest that UN concentration in spot urine may be used to estimate daily protein intake and that a prediction formula would be useful for nutritional control in CKD patients.

  11. False positive reduction in protein-protein interaction predictions using gene ontology annotations

    Directory of Open Access Journals (Sweden)

    Lin Yen-Han

    2007-07-01

    Full Text Available Abstract Background Many crucial cellular operations such as metabolism, signalling, and regulations are based on protein-protein interactions. However, the lack of robust protein-protein interaction information is a challenge. One reason for the lack of solid protein-protein interaction information is poor agreement between experimental findings and computational sets that, in turn, comes from huge false positive predictions in computational approaches. Reduction of false positive predictions and enhancing true positive fraction of computationally predicted protein-protein interaction datasets based on highly confident experimental results has not been adequately investigated. Results Gene Ontology (GO annotations were used to reduce false positive protein-protein interactions (PPI pairs resulting from computational predictions. Using experimentally obtained PPI pairs as a training dataset, eight top-ranking keywords were extracted from GO molecular function annotations. The sensitivity of these keywords is 64.21% in the yeast experimental dataset and 80.83% in the worm experimental dataset. The specificities, a measure of recovery power, of these keywords applied to four predicted PPI datasets for each studied organisms, are 48.32% and 46.49% (by average of four datasets in yeast and worm, respectively. Based on eight top-ranking keywords and co-localization of interacting proteins a set of two knowledge rules were deduced and applied to remove false positive protein pairs. The 'strength', a measure of improvement provided by the rules was defined based on the signal-to-noise ratio and implemented to measure the applicability of knowledge rules applying to the predicted PPI datasets. Depending on the employed PPI-predicting methods, the strength varies between two and ten-fold of randomly removing protein pairs from the datasets. Conclusion Gene Ontology annotations along with the deduced knowledge rules could be implemented to partially

  12. RHEOLOGY OF CHICKPEA PROTEIN CONCENTRATE DISPERSIONS

    Directory of Open Access Journals (Sweden)

    Aurelia Ionescu

    2011-12-01

    Full Text Available Chickpea proteins are used as ingredients in comminuted sausage products and many oriental textured foods. Rheological behaviour of chickpea protein concentrate was studied using a controlled stress rheometer. The protein dispersion prepared with phosphate buffer at pH 7.0 presented non-Newtonian shear thinning behaviour and rheological data well fitted to the Sisko, Carreau and Cross models. The viscoelastic properties of the chickpea protein suspensions were estimated by measuring the storage and loss moduli in oscillatory frequency conditions (0.1-10 Hz at 20°C. Moreover, thermally induced gelation of the chickpea proteins (16, 24 and 36% was studied at pH 7.0 and 4.5 in the temperature range 50 to 100oC and salt concentration ranging from 0 to 1 M. Gelling behaviour was quantified by means of dynamic rheological measurements. Gels formation was preceded by the decrease of storage modulus and loss moduli, coupled with the increase of the phase angle (delta. The beginning of thermal gelation was influenced by protein concentration, pH and salt level. In all studied cases, storage modulus increased rapidly in the temperature range 70-90°C. All rheological parameters measured at 90°C were significantly higher at pH 4.5 compared to pH 7.0.

  13. Protein-Protein Interactions Prediction Based on Iterative Clique Extension with Gene Ontology Filtering

    Directory of Open Access Journals (Sweden)

    Lei Yang

    2014-01-01

    Full Text Available Cliques (maximal complete subnets in protein-protein interaction (PPI network are an important resource used to analyze protein complexes and functional modules. Clique-based methods of predicting PPI complement the data defection from biological experiments. However, clique-based predicting methods only depend on the topology of network. The false-positive and false-negative interactions in a network usually interfere with prediction. Therefore, we propose a method combining clique-based method of prediction and gene ontology (GO annotations to overcome the shortcoming and improve the accuracy of predictions. According to different GO correcting rules, we generate two predicted interaction sets which guarantee the quality and quantity of predicted protein interactions. The proposed method is applied to the PPI network from the Database of Interacting Proteins (DIP and most of the predicted interactions are verified by another biological database, BioGRID. The predicted protein interactions are appended to the original protein network, which leads to clique extension and shows the significance of biological meaning.

  14. CMAQ predicted concentration files

    Data.gov (United States)

    U.S. Environmental Protection Agency — model predicted concentrations. This dataset is associated with the following publication: Muñiz-Unamunzaga, M., R. Borge, G. Sarwar, B. Gantt, D. de la Paz, C....

  15. Application of Machine Learning Approaches for Protein-protein Interactions Prediction.

    Science.gov (United States)

    Zhang, Mengying; Su, Qiang; Lu, Yi; Zhao, Manman; Niu, Bing

    2017-01-01

    Proteomics endeavors to study the structures, functions and interactions of proteins. Information of the protein-protein interactions (PPIs) helps to improve our knowledge of the functions and the 3D structures of proteins. Thus determining the PPIs is essential for the study of the proteomics. In this review, in order to study the application of machine learning in predicting PPI, some machine learning approaches such as support vector machine (SVM), artificial neural networks (ANNs) and random forest (RF) were selected, and the examples of its applications in PPIs were listed. SVM and RF are two commonly used methods. Nowadays, more researchers predict PPIs by combining more than two methods. This review presents the application of machine learning approaches in predicting PPI. Many examples of success in identification and prediction in the area of PPI prediction have been discussed, and the PPIs research is still in progress. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. Viscosity of high concentration protein formulations of monoclonal antibodies of the IgG1 and IgG4 subclass - Prediction of viscosity through protein-protein interaction measurements

    DEFF Research Database (Denmark)

    Neergaard, Martin S; Kalonia, Devendra S; Parshad, Henrik

    2013-01-01

    The purpose of this work was to explore the relation between protein-protein interactions (PPIs) and solution viscosity at high protein concentration using three monoclonal antibodies (mAbs), two of the IgG4 subclass and one of the IgG1 subclass. A range of methods was used to quantify the PPI...... low or high protein concentration determined using DLS. The PPI measurements were correlated with solution viscosity (measured by DLS using polystyrene nanospheres and ultrasonic shear rheology) as a function of pH (4-9) and ionic strength (10, 50 and 150mM). Our measurements showed that the highest...... solution viscosity was observed under conditions with the most negative kD, the highest apparent radius and the lowest net charge. An increase in ionic strength resulted in a change in the nature of the PPI at low pH from repulsive to attractive. In the neutral to alkaline pH region the mAbs behaved...

  17. Influence of Bleaching on Flavor of 34% Whey Protein Concentrate and Residual Benzoic Acid Concentration in Dried Whey Proteins

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  18. HomPPI: a class of sequence homology based protein-protein interface prediction methods

    Directory of Open Access Journals (Sweden)

    Dobbs Drena

    2011-06-01

    Full Text Available Abstract Background Although homology-based methods are among the most widely used methods for predicting the structure and function of proteins, the question as to whether interface sequence conservation can be effectively exploited in predicting protein-protein interfaces has been a subject of debate. Results We studied more than 300,000 pair-wise alignments of protein sequences from structurally characterized protein complexes, including both obligate and transient complexes. We identified sequence similarity criteria required for accurate homology-based inference of interface residues in a query protein sequence. Based on these analyses, we developed HomPPI, a class of sequence homology-based methods for predicting protein-protein interface residues. We present two variants of HomPPI: (i NPS-HomPPI (Non partner-specific HomPPI, which can be used to predict interface residues of a query protein in the absence of knowledge of the interaction partner; and (ii PS-HomPPI (Partner-specific HomPPI, which can be used to predict the interface residues of a query protein with a specific target protein. Our experiments on a benchmark dataset of obligate homodimeric complexes show that NPS-HomPPI can reliably predict protein-protein interface residues in a given protein, with an average correlation coefficient (CC of 0.76, sensitivity of 0.83, and specificity of 0.78, when sequence homologs of the query protein can be reliably identified. NPS-HomPPI also reliably predicts the interface residues of intrinsically disordered proteins. Our experiments suggest that NPS-HomPPI is competitive with several state-of-the-art interface prediction servers including those that exploit the structure of the query proteins. The partner-specific classifier, PS-HomPPI can, on a large dataset of transient complexes, predict the interface residues of a query protein with a specific target, with a CC of 0.65, sensitivity of 0.69, and specificity of 0.70, when homologs of

  19. Protein Sorting Prediction

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2017-01-01

    and drawbacks of each of these approaches is described through many examples of methods that predict secretion, integration into membranes, or subcellular locations in general. The aim of this chapter is to provide a user-level introduction to the field with a minimum of computational theory.......Many computational methods are available for predicting protein sorting in bacteria. When comparing them, it is important to know that they can be grouped into three fundamentally different approaches: signal-based, global-property-based and homology-based prediction. In this chapter, the strengths...

  20. Semen quality and concentration of soluble proteins in the seminal plasma of Alpine bucks Semen quality and concentration of soluble proteins in the seminal plasma of Alpine bucks

    Directory of Open Access Journals (Sweden)

    Simone Eliza Facione Guimarães

    2010-06-01

    Full Text Available It was aimed to study the in vitro seminal quality analyzed by complementary tests and to compare them with physical, morphological and biochemical aspects of male goat semen of the Alpine breed. This experiment took place at the Federal University of Viçosa, situated at 20º45’ S latitude and 42º51’ W longitude, Southwest of Brazil. It was done during the summer months of January and February, and three adult male goats of the Alpine breed were used in intensive conditions. The semen was collected by artificial vagina method. In all semen samples (45 ejaculates, after the physical and morphological analysis, the hiposmotic test was done. In 24 ejaculates, it were done thermo-resistance test, and in 21 ejaculates it were determined the concentration of total soluble proteins in seminal plasma. The male goats presented difference in the semen physical and morphological aspects, in the hiposmotic test and thermo-resistance test, but they did not presented difference in total soluble proteins concentration in seminal plasma. Results of the slow thermo-resistance test and hiposmotic test were positively correlated (r = 0.60. It was concluded, according to our results, that the concentration of total soluble proteins in seminal plasma can not be used as a parameter to predict the seminal quality of Alpine bucks.It was aimed to study the in vitro seminal quality analyzed by complementary tests and to compare them with physical, morphological and biochemical aspects of male goat semen of the Alpine breed. This experiment took place at the Federal University of Viçosa, situated at 20º45’ S latitude and 42º51’ W longitude, Southwest of Brazil. It was done during the summer months of January and February, and three adult male goats of the Alpine breed were used in intensive conditions. The semen was collected by artificial vagina method. In all semen samples (45 ejaculates, after the physical and morphological analysis, the hiposmotic test

  1. Toxicological relationships between proteins obtained from protein target predictions of large toxicity databases

    International Nuclear Information System (INIS)

    Nigsch, Florian; Mitchell, John B.O.

    2008-01-01

    The combination of models for protein target prediction with large databases containing toxicological information for individual molecules allows the derivation of 'toxiclogical' profiles, i.e., to what extent are molecules of known toxicity predicted to interact with a set of protein targets. To predict protein targets of drug-like and toxic molecules, we built a computational multiclass model using the Winnow algorithm based on a dataset of protein targets derived from the MDL Drug Data Report. A 15-fold Monte Carlo cross-validation using 50% of each class for training, and the remaining 50% for testing, provided an assessment of the accuracy of that model. We retained the 3 top-ranking predictions and found that in 82% of all cases the correct target was predicted within these three predictions. The first prediction was the correct one in almost 70% of cases. A model built on the whole protein target dataset was then used to predict the protein targets for 150 000 molecules from the MDL Toxicity Database. We analysed the frequency of the predictions across the panel of protein targets for experimentally determined toxicity classes of all molecules. This allowed us to identify clusters of proteins related by their toxicological profiles, as well as toxicities that are related. Literature-based evidence is provided for some specific clusters to show the relevance of the relationships identified

  2. HKC: An Algorithm to Predict Protein Complexes in Protein-Protein Interaction Networks

    Directory of Open Access Journals (Sweden)

    Xiaomin Wang

    2011-01-01

    Full Text Available With the availability of more and more genome-scale protein-protein interaction (PPI networks, research interests gradually shift to Systematic Analysis on these large data sets. A key topic is to predict protein complexes in PPI networks by identifying clusters that are densely connected within themselves but sparsely connected with the rest of the network. In this paper, we present a new topology-based algorithm, HKC, to detect protein complexes in genome-scale PPI networks. HKC mainly uses the concepts of highest k-core and cohesion to predict protein complexes by identifying overlapping clusters. The experiments on two data sets and two benchmarks show that our algorithm has relatively high F-measure and exhibits better performance compared with some other methods.

  3. Limitations of polyethylene glycol-induced precipitation as predictive tool for protein solubility during formulation development.

    Science.gov (United States)

    Hofmann, Melanie; Winzer, Matthias; Weber, Christian; Gieseler, Henning

    2018-05-01

    Polyethylene glycol (PEG)-induced protein precipitation is often used to extrapolate apparent protein solubility at specific formulation compositions. The procedure was used for several fields of application such as protein crystal growth but also protein formulation development. Nevertheless, most studies focused on applicability in protein crystal growth. In contrast, this study focuses on applicability of PEG-induced precipitation during high-concentration protein formulation development. In this study, solubility of three different model proteins was investigated over a broad range of pH. Solubility values predicted by PEG-induced precipitation were compared to real solubility behaviour determined by either turbidity or content measurements. Predicted solubility by PEG-induced precipitation was confirmed for an Fc fusion protein and a monoclonal antibody. In contrast, PEG-induced precipitation failed to predict solubility of a single-domain antibody construct. Applicability of PEG-induced precipitation as indicator of protein solubility during formulation development was found to be not valid for one of three model molecules. Under certain conditions, PEG-induced protein precipitation is not valid for prediction of real protein solubility behaviour. The procedure should be used carefully as tool for formulation development, and the results obtained should be validated by additional investigations. © 2017 Royal Pharmaceutical Society.

  4. MEGADOCK-Web: an integrated database of high-throughput structure-based protein-protein interaction predictions.

    Science.gov (United States)

    Hayashi, Takanori; Matsuzaki, Yuri; Yanagisawa, Keisuke; Ohue, Masahito; Akiyama, Yutaka

    2018-05-08

    Protein-protein interactions (PPIs) play several roles in living cells, and computational PPI prediction is a major focus of many researchers. The three-dimensional (3D) structure and binding surface are important for the design of PPI inhibitors. Therefore, rigid body protein-protein docking calculations for two protein structures are expected to allow elucidation of PPIs different from known complexes in terms of 3D structures because known PPI information is not explicitly required. We have developed rapid PPI prediction software based on protein-protein docking, called MEGADOCK. In order to fully utilize the benefits of computational PPI predictions, it is necessary to construct a comprehensive database to gather prediction results and their predicted 3D complex structures and to make them easily accessible. Although several databases exist that provide predicted PPIs, the previous databases do not contain a sufficient number of entries for the purpose of discovering novel PPIs. In this study, we constructed an integrated database of MEGADOCK PPI predictions, named MEGADOCK-Web. MEGADOCK-Web provides more than 10 times the number of PPI predictions than previous databases and enables users to conduct PPI predictions that cannot be found in conventional PPI prediction databases. In MEGADOCK-Web, there are 7528 protein chains and 28,331,628 predicted PPIs from all possible combinations of those proteins. Each protein structure is annotated with PDB ID, chain ID, UniProt AC, related KEGG pathway IDs, and known PPI pairs. Additionally, MEGADOCK-Web provides four powerful functions: 1) searching precalculated PPI predictions, 2) providing annotations for each predicted protein pair with an experimentally known PPI, 3) visualizing candidates that may interact with the query protein on biochemical pathways, and 4) visualizing predicted complex structures through a 3D molecular viewer. MEGADOCK-Web provides a huge amount of comprehensive PPI predictions based on

  5. Computational prediction of protein hot spot residues.

    Science.gov (United States)

    Morrow, John Kenneth; Zhang, Shuxing

    2012-01-01

    Most biological processes involve multiple proteins interacting with each other. It has been recently discovered that certain residues in these protein-protein interactions, which are called hot spots, contribute more significantly to binding affinity than others. Hot spot residues have unique and diverse energetic properties that make them challenging yet important targets in the modulation of protein-protein complexes. Design of therapeutic agents that interact with hot spot residues has proven to be a valid methodology in disrupting unwanted protein-protein interactions. Using biological methods to determine which residues are hot spots can be costly and time consuming. Recent advances in computational approaches to predict hot spots have incorporated a myriad of features, and have shown increasing predictive successes. Here we review the state of knowledge around protein-protein interactions, hot spots, and give an overview of multiple in silico prediction techniques of hot spot residues.

  6. Prediction of protein-protein interactions between viruses and human by an SVM model

    Directory of Open Access Journals (Sweden)

    Cui Guangyu

    2012-05-01

    Full Text Available Abstract Background Several computational methods have been developed to predict protein-protein interactions from amino acid sequences, but most of those methods are intended for the interactions within a species rather than for interactions across different species. Methods for predicting interactions between homogeneous proteins are not appropriate for finding those between heterogeneous proteins since they do not distinguish the interactions between proteins of the same species from those of different species. Results We developed a new method for representing a protein sequence of variable length in a frequency vector of fixed length, which encodes the relative frequency of three consecutive amino acids of a sequence. We built a support vector machine (SVM model to predict human proteins that interact with virus proteins. In two types of viruses, human papillomaviruses (HPV and hepatitis C virus (HCV, our SVM model achieved an average accuracy above 80%, which is higher than that of another SVM model with a different representation scheme. Using the SVM model and Gene Ontology (GO annotations of proteins, we predicted new interactions between virus proteins and human proteins. Conclusions Encoding the relative frequency of amino acid triplets of a protein sequence is a simple yet powerful representation method for predicting protein-protein interactions across different species. The representation method has several advantages: (1 it enables a prediction model to achieve a better performance than other representations, (2 it generates feature vectors of fixed length regardless of the sequence length, and (3 the same representation is applicable to different types of proteins.

  7. Influence of physical and chemical properties of HTSXT-FTIR samples on the quality of prediction models developed to determine absolute concentrations of total proteins, carbohydrates and triglycerides: a preliminary study on the determination of their absolute concentrations in fresh microalgal biomass.

    Science.gov (United States)

    Serrano León, Esteban; Coat, Rémy; Moutel, Benjamin; Pruvost, Jérémy; Legrand, Jack; Gonçalves, Olivier

    2014-11-01

    Absolute concentrations of total macromolecules (triglycerides, proteins and carbohydrates) in microorganisms can be rapidly measured by FTIR spectroscopy, but caution is needed to avoid non-specific experimental bias. Here, we assess the limits within which this approach can be used on model solutions of macromolecules of interest. We used the Bruker HTSXT-FTIR system. Our results show that the solid deposits obtained after the sampling procedure present physical and chemical properties that influence the quality of the absolute concentration prediction models (univariate and multivariate). The accuracy of the models was degraded by a factor of 2 or 3 outside the recommended concentration interval of 0.5-35 µg spot(-1). Change occurred notably in the sample hydrogen bond network, which could, however, be controlled using an internal probe (pseudohalide anion). We also demonstrate that for aqueous solutions, accurate prediction of total carbohydrate quantities (in glucose equivalent) could not be made unless a constant amount of protein was added to the model solution (BSA). The results of the prediction model for more complex solutions, here with two components: glucose and BSA, were very encouraging, suggesting that this FTIR approach could be used as a rapid quantification method for mixtures of molecules of interest, provided the limits of use of the HTSXT-FTIR method are precisely known and respected. This last finding opens the way to direct quantification of total molecules of interest in more complex matrices.

  8. Prediction and characterization of protein-protein interaction networks in swine

    Directory of Open Access Journals (Sweden)

    Wang Fen

    2012-01-01

    Full Text Available Abstract Background Studying the large-scale protein-protein interaction (PPI network is important in understanding biological processes. The current research presents the first PPI map of swine, which aims to give new insights into understanding their biological processes. Results We used three methods, Interolog-based prediction of porcine PPI network, domain-motif interactions from structural topology-based prediction of porcine PPI network and motif-motif interactions from structural topology-based prediction of porcine PPI network, to predict porcine protein interactions among 25,767 porcine proteins. We predicted 20,213, 331,484, and 218,705 porcine PPIs respectively, merged the three results into 567,441 PPIs, constructed four PPI networks, and analyzed the topological properties of the porcine PPI networks. Our predictions were validated with Pfam domain annotations and GO annotations. Averages of 70, 10,495, and 863 interactions were related to the Pfam domain-interacting pairs in iPfam database. For comparison, randomized networks were generated, and averages of only 4.24, 66.79, and 44.26 interactions were associated with Pfam domain-interacting pairs in iPfam database. In GO annotations, we found 52.68%, 75.54%, 27.20% of the predicted PPIs sharing GO terms respectively. However, the number of PPI pairs sharing GO terms in the 10,000 randomized networks reached 52.68%, 75.54%, 27.20% is 0. Finally, we determined the accuracy and precision of the methods. The methods yielded accuracies of 0.92, 0.53, and 0.50 at precisions of about 0.93, 0.74, and 0.75, respectively. Conclusion The results reveal that the predicted PPI networks are considerably reliable. The present research is an important pioneering work on protein function research. The porcine PPI data set, the confidence score of each interaction and a list of related data are available at (http://pppid.biositemap.com/.

  9. Refining intra-protein contact prediction by graph analysis

    Directory of Open Access Journals (Sweden)

    Eyal Eran

    2007-05-01

    Full Text Available Abstract Background Accurate prediction of intra-protein residue contacts from sequence information will allow the prediction of protein structures. Basic predictions of such specific contacts can be further refined by jointly analyzing predicted contacts, and by adding information on the relative positions of contacts in the protein primary sequence. Results We introduce a method for graph analysis refinement of intra-protein contacts, termed GARP. Our previously presented intra-contact prediction method by means of pair-to-pair substitution matrix (P2PConPred was used to test the GARP method. In our approach, the top contact predictions obtained by a basic prediction method were used as edges to create a weighted graph. The edges were scored by a mutual clustering coefficient that identifies highly connected graph regions, and by the density of edges between the sequence regions of the edge nodes. A test set of 57 proteins with known structures was used to determine contacts. GARP improves the accuracy of the P2PConPred basic prediction method in whole proteins from 12% to 18%. Conclusion Using a simple approach we increased the contact prediction accuracy of a basic method by 1.5 times. Our graph approach is simple to implement, can be used with various basic prediction methods, and can provide input for further downstream analyses.

  10. Effect of Limited Hydrolysis on Traditional Soy Protein Concentrate

    Directory of Open Access Journals (Sweden)

    Mirjana B. Pesic

    2006-09-01

    Full Text Available The influence of limited proteolysis of soy protein concentrate on proteinextractability, the composition of the extractable proteins, their emulsifying properties andsome nutritional properties were investigated. Traditional concentrate (alcohol leachedconcentrate was hydrolyzed using trypsin and pepsin as hydrolytic agents. Significantdifferences in extractable protein composition between traditional concentrate and theirhydrolysates were observed by polyacrylamide gel electrophoresis (PAGE and by SDSPAGE.All hydrolysates showed better extractability than the original protein concentrate,whereas significantly better emulsifying properties were noticed at modified concentratesobtained by trypsin induced hydrolysis. These improved properties are the result of twosimultaneous processes, dissociation and degradation of insoluble alcohol-induced proteinaggregates. Enzyme induced hydrolysis had no influence on trypsin-inibitor activity, andsignificantly reduced phytic acid content.

  11. A domain-based approach to predict protein-protein interactions

    Directory of Open Access Journals (Sweden)

    Resat Haluk

    2007-06-01

    Full Text Available Abstract Background Knowing which proteins exist in a certain organism or cell type and how these proteins interact with each other are necessary for the understanding of biological processes at the whole cell level. The determination of the protein-protein interaction (PPI networks has been the subject of extensive research. Despite the development of reasonably successful methods, serious technical difficulties still exist. In this paper we present DomainGA, a quantitative computational approach that uses the information about the domain-domain interactions to predict the interactions between proteins. Results DomainGA is a multi-parameter optimization method in which the available PPI information is used to derive a quantitative scoring scheme for the domain-domain pairs. Obtained domain interaction scores are then used to predict whether a pair of proteins interacts. Using the yeast PPI data and a series of tests, we show the robustness and insensitivity of the DomainGA method to the selection of the parameter sets, score ranges, and detection rules. Our DomainGA method achieves very high explanation ratios for the positive and negative PPIs in yeast. Based on our cross-verification tests on human PPIs, comparison of the optimized scores with the structurally observed domain interactions obtained from the iPFAM database, and sensitivity and specificity analysis; we conclude that our DomainGA method shows great promise to be applicable across multiple organisms. Conclusion We envision the DomainGA as a first step of a multiple tier approach to constructing organism specific PPIs. As it is based on fundamental structural information, the DomainGA approach can be used to create potential PPIs and the accuracy of the constructed interaction template can be further improved using complementary methods. Explanation ratios obtained in the reported test case studies clearly show that the false prediction rates of the template networks constructed

  12. Protein-protein interaction site predictions with minimum covariance determinant and Mahalanobis distance.

    Science.gov (United States)

    Qiu, Zhijun; Zhou, Bo; Yuan, Jiangfeng

    2017-11-21

    Protein-protein interaction site (PPIS) prediction must deal with the diversity of interaction sites that limits their prediction accuracy. Use of proteins with unknown or unidentified interactions can also lead to missing interfaces. Such data errors are often brought into the training dataset. In response to these two problems, we used the minimum covariance determinant (MCD) method to refine the training data to build a predictor with better performance, utilizing its ability of removing outliers. In order to predict test data in practice, a method based on Mahalanobis distance was devised to select proper test data as input for the predictor. With leave-one-validation and independent test, after the Mahalanobis distance screening, our method achieved higher performance according to Matthews correlation coefficient (MCC), although only a part of test data could be predicted. These results indicate that data refinement is an efficient approach to improve protein-protein interaction site prediction. By further optimizing our method, it is hopeful to develop predictors of better performance and wide range of application. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. 21 CFR 172.385 - Whole fish protein concentrate.

    Science.gov (United States)

    2010-04-01

    ... CONSUMPTION Special Dietary and Nutritional Additives § 172.385 Whole fish protein concentrate. The food additive whole fish protein concentrate may be safely used as a food supplement in accordance with the... fish that are used in other forms for human food. (b) The additive consists essentially of a dried fish...

  14. Deep learning methods for protein torsion angle prediction.

    Science.gov (United States)

    Li, Haiou; Hou, Jie; Adhikari, Badri; Lyu, Qiang; Cheng, Jianlin

    2017-09-18

    Deep learning is one of the most powerful machine learning methods that has achieved the state-of-the-art performance in many domains. Since deep learning was introduced to the field of bioinformatics in 2012, it has achieved success in a number of areas such as protein residue-residue contact prediction, secondary structure prediction, and fold recognition. In this work, we developed deep learning methods to improve the prediction of torsion (dihedral) angles of proteins. We design four different deep learning architectures to predict protein torsion angles. The architectures including deep neural network (DNN) and deep restricted Boltzmann machine (DRBN), deep recurrent neural network (DRNN) and deep recurrent restricted Boltzmann machine (DReRBM) since the protein torsion angle prediction is a sequence related problem. In addition to existing protein features, two new features (predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments) are used as input to each of the four deep learning architectures to predict phi and psi angles of protein backbone. The mean absolute error (MAE) of phi and psi angles predicted by DRNN, DReRBM, DRBM and DNN is about 20-21° and 29-30° on an independent dataset. The MAE of phi angle is comparable to the existing methods, but the MAE of psi angle is 29°, 2° lower than the existing methods. On the latest CASP12 targets, our methods also achieved the performance better than or comparable to a state-of-the art method. Our experiment demonstrates that deep learning is a valuable method for predicting protein torsion angles. The deep recurrent network architecture performs slightly better than deep feed-forward architecture, and the predicted residue contact number and the error distribution of torsion angles extracted from sequence fragments are useful features for improving prediction accuracy.

  15. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions.

    Science.gov (United States)

    Deng, Xin; Gumm, Jordan; Karki, Suman; Eickholt, Jesse; Cheng, Jianlin

    2015-07-07

    Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  16. An Overview of Practical Applications of Protein Disorder Prediction and Drive for Faster, More Accurate Predictions

    Directory of Open Access Journals (Sweden)

    Xin Deng

    2015-07-01

    Full Text Available Protein disordered regions are segments of a protein chain that do not adopt a stable structure. Thus far, a variety of protein disorder prediction methods have been developed and have been widely used, not only in traditional bioinformatics domains, including protein structure prediction, protein structure determination and function annotation, but also in many other biomedical fields. The relationship between intrinsically-disordered proteins and some human diseases has played a significant role in disorder prediction in disease identification and epidemiological investigations. Disordered proteins can also serve as potential targets for drug discovery with an emphasis on the disordered-to-ordered transition in the disordered binding regions, and this has led to substantial research in drug discovery or design based on protein disordered region prediction. Furthermore, protein disorder prediction has also been applied to healthcare by predicting the disease risk of mutations in patients and studying the mechanistic basis of diseases. As the applications of disorder prediction increase, so too does the need to make quick and accurate predictions. To fill this need, we also present a new approach to predict protein residue disorder using wide sequence windows that is applicable on the genomic scale.

  17. Production of protein concentrate and isolate from cashew ...

    African Journals Online (AJOL)

    The protein isolates were obtained by an alkaline extraction-isoelectric precipitation method, which involved aqueous alkaline extraction of the proteins at low temperature, and isoelectric precipitation of the protein fractions; the protein concentrates were obtained using an alkaline extraction-methanol precipitation method, ...

  18. CHEMICAL COMPOSITION AND FUNCTIONAL PROPERTIES OF RICE PROTEIN CONCENTRATES

    Directory of Open Access Journals (Sweden)

    V. V. Kolpakova

    2015-01-01

    Full Text Available Traditionally rice and products of its processing are used to cook porridge, pilaf, lettuce, confectionery, fish, dairy and meat products. At the same time new ways of its processing with releasing of protein products for more effective using, including the use of a glutenfree diet, are developing. The task of this study was a comparative research of nutrition and biological value and functional properties of protein and protein-calcium concentrates produced from rice flour milled from white and brown rice. The traditional and special methods were used. Concentrates were isolated with enzyme preparations of xylanase and amylolytic activity with the next dissolution of protein in diluted hydrochloric acid. Concentrates differed in the content of mineral substances (calcium, zinc, iron and other elements, amino acids and functional properties. The values of the functional properties and indicators of the nutritional value of concentrates from white rice show the advisability of their using in food products, including gluten-free products prepared on the basis of the emulsion and foam systems, and concentrates from brown rice in food products prepared on the basis of using of the emulsion systems. Protein concentrates of brown rice have a low foaming capacity and there is no foam stability at all.

  19. Topology of membrane proteins-predictions, limitations and variations.

    Science.gov (United States)

    Tsirigos, Konstantinos D; Govindarajan, Sudha; Bassot, Claudio; Västermark, Åke; Lamb, John; Shu, Nanjiang; Elofsson, Arne

    2017-10-26

    Transmembrane proteins perform a variety of important biological functions necessary for the survival and growth of the cells. Membrane proteins are built up by transmembrane segments that span the lipid bilayer. The segments can either be in the form of hydrophobic alpha-helices or beta-sheets which create a barrel. A fundamental aspect of the structure of transmembrane proteins is the membrane topology, that is, the number of transmembrane segments, their position in the protein sequence and their orientation in the membrane. Along these lines, many predictive algorithms for the prediction of the topology of alpha-helical and beta-barrel transmembrane proteins exist. The newest algorithms obtain an accuracy close to 80% both for alpha-helical and beta-barrel transmembrane proteins. However, lately it has been shown that the simplified picture presented when describing a protein family by its topology is limited. To demonstrate this, we highlight examples where the topology is either not conserved in a protein superfamily or where the structure cannot be described solely by the topology of a protein. The prediction of these non-standard features from sequence alone was not successful until the recent revolutionary progress in 3D-structure prediction of proteins. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Text mining improves prediction of protein functional sites.

    Directory of Open Access Journals (Sweden)

    Karin M Verspoor

    Full Text Available We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites. The structure analysis was carried out using Dynamics Perturbation Analysis (DPA, which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions.

  1. Text Mining Improves Prediction of Protein Functional Sites

    Science.gov (United States)

    Cohn, Judith D.; Ravikumar, Komandur E.

    2012-01-01

    We present an approach that integrates protein structure analysis and text mining for protein functional site prediction, called LEAP-FS (Literature Enhanced Automated Prediction of Functional Sites). The structure analysis was carried out using Dynamics Perturbation Analysis (DPA), which predicts functional sites at control points where interactions greatly perturb protein vibrations. The text mining extracts mentions of residues in the literature, and predicts that residues mentioned are functionally important. We assessed the significance of each of these methods by analyzing their performance in finding known functional sites (specifically, small-molecule binding sites and catalytic sites) in about 100,000 publicly available protein structures. The DPA predictions recapitulated many of the functional site annotations and preferentially recovered binding sites annotated as biologically relevant vs. those annotated as potentially spurious. The text-based predictions were also substantially supported by the functional site annotations: compared to other residues, residues mentioned in text were roughly six times more likely to be found in a functional site. The overlap of predictions with annotations improved when the text-based and structure-based methods agreed. Our analysis also yielded new high-quality predictions of many functional site residues that were not catalogued in the curated data sources we inspected. We conclude that both DPA and text mining independently provide valuable high-throughput protein functional site predictions, and that integrating the two methods using LEAP-FS further improves the quality of these predictions. PMID:22393388

  2. Protein subcellular localization prediction using artificial intelligence technology.

    Science.gov (United States)

    Nair, Rajesh; Rost, Burkhard

    2008-01-01

    Proteins perform many important tasks in living organisms, such as catalysis of biochemical reactions, transport of nutrients, and recognition and transmission of signals. The plethora of aspects of the role of any particular protein is referred to as its "function." One aspect of protein function that has been the target of intensive research by computational biologists is its subcellular localization. Proteins must be localized in the same subcellular compartment to cooperate toward a common physiological function. Aberrant subcellular localization of proteins can result in several diseases, including kidney stones, cancer, and Alzheimer's disease. To date, sequence homology remains the most widely used method for inferring the function of a protein. However, the application of advanced artificial intelligence (AI)-based techniques in recent years has resulted in significant improvements in our ability to predict the subcellular localization of a protein. The prediction accuracy has risen steadily over the years, in large part due to the application of AI-based methods such as hidden Markov models (HMMs), neural networks (NNs), and support vector machines (SVMs), although the availability of larger experimental datasets has also played a role. Automatic methods that mine textual information from the biological literature and molecular biology databases have considerably sped up the process of annotation for proteins for which some information regarding function is available in the literature. State-of-the-art methods based on NNs and HMMs can predict the presence of N-terminal sorting signals extremely accurately. Ab initio methods that predict subcellular localization for any protein sequence using only the native amino acid sequence and features predicted from the native sequence have shown the most remarkable improvements. The prediction accuracy of these methods has increased by over 30% in the past decade. The accuracy of these methods is now on par with

  3. Protein-protein interaction site predictions with three-dimensional probability distributions of interacting atoms on protein surfaces.

    Directory of Open Access Journals (Sweden)

    Ching-Tai Chen

    Full Text Available Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins and were tested on an independent dataset (consisting of 142 proteins. The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted

  4. Protein-Protein Interaction Site Predictions with Three-Dimensional Probability Distributions of Interacting Atoms on Protein Surfaces

    Science.gov (United States)

    Chen, Ching-Tai; Peng, Hung-Pin; Jian, Jhih-Wei; Tsai, Keng-Chang; Chang, Jeng-Yih; Yang, Ei-Wen; Chen, Jun-Bo; Ho, Shinn-Ying; Hsu, Wen-Lian; Yang, An-Suei

    2012-01-01

    Protein-protein interactions are key to many biological processes. Computational methodologies devised to predict protein-protein interaction (PPI) sites on protein surfaces are important tools in providing insights into the biological functions of proteins and in developing therapeutics targeting the protein-protein interaction sites. One of the general features of PPI sites is that the core regions from the two interacting protein surfaces are complementary to each other, similar to the interior of proteins in packing density and in the physicochemical nature of the amino acid composition. In this work, we simulated the physicochemical complementarities by constructing three-dimensional probability density maps of non-covalent interacting atoms on the protein surfaces. The interacting probabilities were derived from the interior of known structures. Machine learning algorithms were applied to learn the characteristic patterns of the probability density maps specific to the PPI sites. The trained predictors for PPI sites were cross-validated with the training cases (consisting of 432 proteins) and were tested on an independent dataset (consisting of 142 proteins). The residue-based Matthews correlation coefficient for the independent test set was 0.423; the accuracy, precision, sensitivity, specificity were 0.753, 0.519, 0.677, and 0.779 respectively. The benchmark results indicate that the optimized machine learning models are among the best predictors in identifying PPI sites on protein surfaces. In particular, the PPI site prediction accuracy increases with increasing size of the PPI site and with increasing hydrophobicity in amino acid composition of the PPI interface; the core interface regions are more likely to be recognized with high prediction confidence. The results indicate that the physicochemical complementarity patterns on protein surfaces are important determinants in PPIs, and a substantial portion of the PPI sites can be predicted correctly with

  5. Flow-covariate prediction of stream pesticide concentrations.

    Science.gov (United States)

    Mosquin, Paul L; Aldworth, Jeremy; Chen, Wenlin

    2018-01-01

    Potential peak functions (e.g., maximum rolling averages over a given duration) of annual pesticide concentrations in the aquatic environment are important exposure parameters (or target quantities) for ecological risk assessments. These target quantities require accurate concentration estimates on nonsampled days in a monitoring program. We examined stream flow as a covariate via universal kriging to improve predictions of maximum m-day (m = 1, 7, 14, 30, 60) rolling averages and the 95th percentiles of atrazine concentration in streams where data were collected every 7 or 14 d. The universal kriging predictions were evaluated against the target quantities calculated directly from the daily (or near daily) measured atrazine concentration at 32 sites (89 site-yr) as part of the Atrazine Ecological Monitoring Program in the US corn belt region (2008-2013) and 4 sites (62 site-yr) in Ohio by the National Center for Water Quality Research (1993-2008). Because stream flow data are strongly skewed to the right, 3 transformations of the flow covariate were considered: log transformation, short-term flow anomaly, and normalized Box-Cox transformation. The normalized Box-Cox transformation resulted in predictions of the target quantities that were comparable to those obtained from log-linear interpolation (i.e., linear interpolation on the log scale) for 7-d sampling. However, the predictions appeared to be negatively affected by variability in regression coefficient estimates across different sample realizations of the concentration time series. Therefore, revised models incorporating seasonal covariates and partially or fully constrained regression parameters were investigated, and they were found to provide much improved predictions in comparison with those from log-linear interpolation for all rolling average measures. Environ Toxicol Chem 2018;37:260-273. © 2017 SETAC. © 2017 SETAC.

  6. Predicting and validating protein interactions using network structure.

    Directory of Open Access Journals (Sweden)

    Pao-Yang Chen

    2008-07-01

    Full Text Available Protein interactions play a vital part in the function of a cell. As experimental techniques for detection and validation of protein interactions are time consuming, there is a need for computational methods for this task. Protein interactions appear to form a network with a relatively high degree of local clustering. In this paper we exploit this clustering by suggesting a score based on triplets of observed protein interactions. The score utilises both protein characteristics and network properties. Our score based on triplets is shown to complement existing techniques for predicting protein interactions, outperforming them on data sets which display a high degree of clustering. The predicted interactions score highly against test measures for accuracy. Compared to a similar score derived from pairwise interactions only, the triplet score displays higher sensitivity and specificity. By looking at specific examples, we show how an experimental set of interactions can be enriched and validated. As part of this work we also examine the effect of different prior databases upon the accuracy of prediction and find that the interactions from the same kingdom give better results than from across kingdoms, suggesting that there may be fundamental differences between the networks. These results all emphasize that network structure is important and helps in the accurate prediction of protein interactions. The protein interaction data set and the program used in our analysis, and a list of predictions and validations, are available at http://www.stats.ox.ac.uk/bioinfo/resources/PredictingInteractions.

  7. Predicting protein-protein interactions from multimodal biological data sources via nonnegative matrix tri-factorization.

    Science.gov (United States)

    Wang, Hua; Huang, Heng; Ding, Chris; Nie, Feiping

    2013-04-01

    Protein interactions are central to all the biological processes and structural scaffolds in living organisms, because they orchestrate a number of cellular processes such as metabolic pathways and immunological recognition. Several high-throughput methods, for example, yeast two-hybrid system and mass spectrometry method, can help determine protein interactions, which, however, suffer from high false-positive rates. Moreover, many protein interactions predicted by one method are not supported by another. Therefore, computational methods are necessary and crucial to complete the interactome expeditiously. In this work, we formulate the problem of predicting protein interactions from a new mathematical perspective--sparse matrix completion, and propose a novel nonnegative matrix factorization (NMF)-based matrix completion approach to predict new protein interactions from existing protein interaction networks. Through using manifold regularization, we further develop our method to integrate different biological data sources, such as protein sequences, gene expressions, protein structure information, etc. Extensive experimental results on four species, Saccharomyces cerevisiae, Drosophila melanogaster, Homo sapiens, and Caenorhabditis elegans, have shown that our new methods outperform related state-of-the-art protein interaction prediction methods.

  8. Sequence-based prediction of protein protein interaction using a deep-learning algorithm.

    Science.gov (United States)

    Sun, Tanlin; Zhou, Bo; Lai, Luhua; Pei, Jianfeng

    2017-05-25

    Protein-protein interactions (PPIs) are critical for many biological processes. It is therefore important to develop accurate high-throughput methods for identifying PPI to better understand protein function, disease occurrence, and therapy design. Though various computational methods for predicting PPI have been developed, their robustness for prediction with external datasets is unknown. Deep-learning algorithms have achieved successful results in diverse areas, but their effectiveness for PPI prediction has not been tested. We used a stacked autoencoder, a type of deep-learning algorithm, to study the sequence-based PPI prediction. The best model achieved an average accuracy of 97.19% with 10-fold cross-validation. The prediction accuracies for various external datasets ranged from 87.99% to 99.21%, which are superior to those achieved with previous methods. To our knowledge, this research is the first to apply a deep-learning algorithm to sequence-based PPI prediction, and the results demonstrate its potential in this field.

  9. The effects of dietary energy and protein concentrations on ostrich ...

    African Journals Online (AJOL)

    The effects were investigated of energy and protein concentrations (with associated amino acid concentrations) in ostrich diets on leather quality of the skins of 50 ostriches. Energy concentrations were 9.0, 10.5 and 12.0 MJ ME/kg diet and protein concentrations were 130, 150 and 170 g/kg diet. The physical leather ...

  10. Prediction of protein–protein interactions: unifying evolution and structure at protein interfaces

    International Nuclear Information System (INIS)

    Tuncbag, Nurcan; Gursoy, Attila; Keskin, Ozlem

    2011-01-01

    The vast majority of the chores in the living cell involve protein–protein interactions. Providing details of protein interactions at the residue level and incorporating them into protein interaction networks are crucial toward the elucidation of a dynamic picture of cells. Despite the rapid increase in the number of structurally known protein complexes, we are still far away from a complete network. Given experimental limitations, computational modeling of protein interactions is a prerequisite to proceed on the way to complete structural networks. In this work, we focus on the question 'how do proteins interact?' rather than 'which proteins interact?' and we review structure-based protein–protein interaction prediction approaches. As a sample approach for modeling protein interactions, PRISM is detailed which combines structural similarity and evolutionary conservation in protein interfaces to infer structures of complexes in the protein interaction network. This will ultimately help us to understand the role of protein interfaces in predicting bound conformations

  11. Construction of ontology augmented networks for protein complex prediction.

    Science.gov (United States)

    Zhang, Yijia; Lin, Hongfei; Yang, Zhihao; Wang, Jian

    2013-01-01

    Protein complexes are of great importance in understanding the principles of cellular organization and function. The increase in available protein-protein interaction data, gene ontology and other resources make it possible to develop computational methods for protein complex prediction. Most existing methods focus mainly on the topological structure of protein-protein interaction networks, and largely ignore the gene ontology annotation information. In this article, we constructed ontology augmented networks with protein-protein interaction data and gene ontology, which effectively unified the topological structure of protein-protein interaction networks and the similarity of gene ontology annotations into unified distance measures. After constructing ontology augmented networks, a novel method (clustering based on ontology augmented networks) was proposed to predict protein complexes, which was capable of taking into account the topological structure of the protein-protein interaction network, as well as the similarity of gene ontology annotations. Our method was applied to two different yeast protein-protein interaction datasets and predicted many well-known complexes. The experimental results showed that (i) ontology augmented networks and the unified distance measure can effectively combine the structure closeness and gene ontology annotation similarity; (ii) our method is valuable in predicting protein complexes and has higher F1 and accuracy compared to other competing methods.

  12. Detection of dysregulated protein-association networks by high-throughput proteomics predicts cancer vulnerabilities.

    Science.gov (United States)

    Lapek, John D; Greninger, Patricia; Morris, Robert; Amzallag, Arnaud; Pruteanu-Malinici, Iulian; Benes, Cyril H; Haas, Wilhelm

    2017-10-01

    The formation of protein complexes and the co-regulation of the cellular concentrations of proteins are essential mechanisms for cellular signaling and for maintaining homeostasis. Here we use isobaric-labeling multiplexed proteomics to analyze protein co-regulation and show that this allows the identification of protein-protein associations with high accuracy. We apply this 'interactome mapping by high-throughput quantitative proteome analysis' (IMAHP) method to a panel of 41 breast cancer cell lines and show that deviations of the observed protein co-regulations in specific cell lines from the consensus network affects cellular fitness. Furthermore, these aberrant interactions serve as biomarkers that predict the drug sensitivity of cell lines in screens across 195 drugs. We expect that IMAHP can be broadly used to gain insight into how changing landscapes of protein-protein associations affect the phenotype of biological systems.

  13. Roles for text mining in protein function prediction.

    Science.gov (United States)

    Verspoor, Karin M

    2014-01-01

    The Human Genome Project has provided science with a hugely valuable resource: the blueprints for life; the specification of all of the genes that make up a human. While the genes have all been identified and deciphered, it is proteins that are the workhorses of the human body: they are essential to virtually all cell functions and are the primary mechanism through which biological function is carried out. Hence in order to fully understand what happens at a molecular level in biological organisms, and eventually to enable development of treatments for diseases where some aspect of a biological system goes awry, we must understand the functions of proteins. However, experimental characterization of protein function cannot scale to the vast amount of DNA sequence data now available. Computational protein function prediction has therefore emerged as a problem at the forefront of modern biology (Radivojac et al., Nat Methods 10(13):221-227, 2013).Within the varied approaches to computational protein function prediction that have been explored, there are several that make use of biomedical literature mining. These methods take advantage of information in the published literature to associate specific proteins with specific protein functions. In this chapter, we introduce two main strategies for doing this: association of function terms, represented as Gene Ontology terms (Ashburner et al., Nat Genet 25(1):25-29, 2000), to proteins based on information in published articles, and a paradigm called LEAP-FS (Literature-Enhanced Automated Prediction of Functional Sites) in which literature mining is used to validate the predictions of an orthogonal computational protein function prediction method.

  14. Evaluation of serum biochemical marker concentrations and survival time in dogs with protein-losing enteropathy.

    Science.gov (United States)

    Equilino, Mirjam; Théodoloz, Vincent; Gorgas, Daniela; Doherr, Marcus G; Heilmann, Romy M; Suchodolski, Jan S; Steiner, Jörg M; Burgener Dvm, Iwan A

    2015-01-01

    To evaluate serum concentrations of biochemical markers and survival time in dogs with protein-losing enteropathy (PLE). Prospective study. 29 dogs with PLE and 18 dogs with food-responsive diarrhea (FRD). Data regarding serum concentrations of various biochemical markers at the initial evaluation were available for 18 of the 29 dogs with PLE and compared with findings for dogs with FRD. Correlations between biochemical marker concentrations and survival time (interval between time of initial evaluation and death or euthanasia) for dogs with PLE were evaluated. Serum C-reactive protein concentration was high in 13 of 18 dogs with PLE and in 2 of 18 dogs with FRD. Serum concentration of canine pancreatic lipase immunoreactivity was high in 3 dogs with PLE but within the reference interval in all dogs with FRD. Serum α1-proteinase inhibitor concentration was less than the lower reference limit in 9 dogs with PLE and 1 dog with FRD. Compared with findings in dogs with FRD, values of those 3 variables in dogs with PLE were significantly different. Serum calprotectin (measured by radioimmunoassay and ELISA) and S100A12 concentrations were high but did not differ significantly between groups. Seventeen of the 29 dogs with PLE were euthanized owing to this disease; median survival time was 67 days (range, 2 to 2,551 days). Serum C-reactive protein, canine pancreatic lipase immunoreactivity, and α1-proteinase inhibitor concentrations differed significantly between dogs with PLE and FRD. Most initial biomarker concentrations were not predictive of survival time in dogs with PLE.

  15. Effect of initial protein concentration and pH on in vitro gastric digestion of heated whey proteins.

    Science.gov (United States)

    Zhang, Sha; Vardhanabhuti, Bongkosh

    2014-02-15

    The in vitro digestion of heated whey protein aggregates having different structure and physicochemical properties was evaluated under simulated gastric conditions. Aggregates were formed by heating whey protein isolates (WPI) at 3-9% w/w initial protein concentration and pH 3.0-7.0. Results showed that high protein concentration led to formation of larger WPI aggregates with fewer remaining monomers. Aggregates formed at high protein concentrations showed slower degradation rate compared to those formed at low protein concentration. The effect of initial protein concentration on peptide release pattern was not apparent. Heating pH was a significant factor affecting digestion pattern. At pH above the isoelectric point, the majority of the proteins involved in the aggregation, and aggregates formed at pH 6.0 were more susceptible to pepsin digestion than at pH 7.0. At acidic conditions, only small amount of proteins was involved in the aggregation and heated aggregates were easily digested by pepsin, while the remaining unaggregated proteins were very resistant to gastric digestion. The potential physiological implication of these results on satiety was discussed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Pea protein concentrate as a substitute for fish meal protein in sea bass diet

    Directory of Open Access Journals (Sweden)

    E. Badini

    2010-01-01

    Full Text Available Pea seeds, even if lower in protein than oilseed meals, have been shown to successfully replace moderate amounts of fish meal protein in diets for carnivorous fish species (Kaushik et al., 1993, Gouveia and Davies, 2000. A further processing of such pulses provides concentrated protein products which look very promising as fish meal substitutes in aquafeeds (Thiessen et al., 2003. The aim of the present study was to evaluate nutrient digestibility, growth response, nutrient and energy retention efficiencies and whole body composition of sea bass (Dicentrarchus labrax, L. fed complete diets in which a pea protein concentrate (PPC was used to replace graded levels of fish meal protein.

  17. EVA: continuous automatic evaluation of protein structure prediction servers.

    Science.gov (United States)

    Eyrich, V A; Martí-Renom, M A; Przybylski, D; Madhusudhan, M S; Fiser, A; Pazos, F; Valencia, A; Sali, A; Rost, B

    2001-12-01

    Evaluation of protein structure prediction methods is difficult and time-consuming. Here, we describe EVA, a web server for assessing protein structure prediction methods, in an automated, continuous and large-scale fashion. Currently, EVA evaluates the performance of a variety of prediction methods available through the internet. Every week, the sequences of the latest experimentally determined protein structures are sent to prediction servers, results are collected, performance is evaluated, and a summary is published on the web. EVA has so far collected data for more than 3000 protein chains. These results may provide valuable insight to both developers and users of prediction methods. http://cubic.bioc.columbia.edu/eva. eva@cubic.bioc.columbia.edu

  18. Absence of diurnal variation of C-reactive protein concentrations in healthy human subjects

    Science.gov (United States)

    Meier-Ewert, H. K.; Ridker, P. M.; Rifai, N.; Price, N.; Dinges, D. F.; Mullington, J. M.

    2001-01-01

    BACKGROUND: The concentration of C-reactive protein (CRP) in otherwise healthy subjects has been shown to predict future risk of myocardial infarction and stroke. CRP is synthesized by the liver in response to interleukin-6, the serum concentration of which is subject to diurnal variation. METHODS: To examine the existence of a time-of-day effect for baseline CRP values, we determined CRP concentrations in hourly blood samples drawn from healthy subjects (10 males, 3 females; age range, 21-35 years) during a baseline day in a controlled environment (8 h of nighttime sleep). RESULTS: Overall CRP concentrations were low, with only three subjects having CRP concentrations >2 mg/L. Comparison of raw data showed stability of CRP concentrations throughout the 24 h studied. When compared with cutoff values of CRP quintile derived from population-based studies, misclassification of greater than one quintile did not occur as a result of diurnal variation in any of the subjects studied. Nonparametric ANOVA comparing different time points showed no significant differences for both raw and z-transformed data. Analysis for rhythmic diurnal variation using a method fitting a cosine curve to the group data was negative. CONCLUSIONS: Our data show that baseline CRP concentrations are not subject to time-of-day variation and thus help to explain why CRP concentrations are a better predictor of vascular risk than interleukin-6. Determination of CRP for cardiovascular risk prediction may be performed without concern for diurnal variation.

  19. Predicting DNA-binding proteins and binding residues by complex structure prediction and application to human proteome.

    Directory of Open Access Journals (Sweden)

    Huiying Zhao

    Full Text Available As more and more protein sequences are uncovered from increasingly inexpensive sequencing techniques, an urgent task is to find their functions. This work presents a highly reliable computational technique for predicting DNA-binding function at the level of protein-DNA complex structures, rather than low-resolution two-state prediction of DNA-binding as most existing techniques do. The method first predicts protein-DNA complex structure by utilizing the template-based structure prediction technique HHblits, followed by binding affinity prediction based on a knowledge-based energy function (Distance-scaled finite ideal-gas reference state for protein-DNA interactions. A leave-one-out cross validation of the method based on 179 DNA-binding and 3797 non-binding protein domains achieves a Matthews correlation coefficient (MCC of 0.77 with high precision (94% and high sensitivity (65%. We further found 51% sensitivity for 82 newly determined structures of DNA-binding proteins and 56% sensitivity for the human proteome. In addition, the method provides a reasonably accurate prediction of DNA-binding residues in proteins based on predicted DNA-binding complex structures. Its application to human proteome leads to more than 300 novel DNA-binding proteins; some of these predicted structures were validated by known structures of homologous proteins in APO forms. The method [SPOT-Seq (DNA] is available as an on-line server at http://sparks-lab.org.

  20. Raapzaadeiwitconcentraat en erwteneiwitconcentraat in biologisch biggenvoer = Canola protein concentrate and pea protein concentratrate in diets for organically housed piglets

    NARCIS (Netherlands)

    Peet-Schwering, van der C.M.C.; Binnendijk, G.P.; Diepen, van J.T.M.

    2011-01-01

    At the Experimental Farm Raalte it was investigated whether canola protein concentrate and pea protein concentrate are suitable protein-rich feedstuffs for organically housed piglets. It is concluded that both protein concentrates are suitable protein-rich feedstuffs for piglets. Feed intake and

  1. ProteinSplit: splitting of multi-domain proteins using prediction of ordered and disordered regions in protein sequences for virtual structural genomics

    International Nuclear Information System (INIS)

    Wyrwicz, Lucjan S; Koczyk, Grzegorz; Rychlewski, Leszek; Plewczynski, Dariusz

    2007-01-01

    The annotation of protein folds within newly sequenced genomes is the main target for semi-automated protein structure prediction (virtual structural genomics). A large number of automated methods have been developed recently with very good results in the case of single-domain proteins. Unfortunately, most of these automated methods often fail to properly predict the distant homology between a given multi-domain protein query and structural templates. Therefore a multi-domain protein should be split into domains in order to overcome this limitation. ProteinSplit is designed to identify protein domain boundaries using a novel algorithm that predicts disordered regions in protein sequences. The software utilizes various sequence characteristics to assess the local propensity of a protein to be disordered or ordered in terms of local structure stability. These disordered parts of a protein are likely to create interdomain spacers. Because of its speed and portability, the method was successfully applied to several genome-wide fold annotation experiments. The user can run an automated analysis of sets of proteins or perform semi-automated multiple user projects (saving the results on the server). Additionally the sequences of predicted domains can be sent to the Bioinfo.PL Protein Structure Prediction Meta-Server for further protein three-dimensional structure and function prediction. The program is freely accessible as a web service at http://lucjan.bioinfo.pl/proteinsplit together with detailed benchmark results on the critical assessment of a fully automated structure prediction (CAFASP) set of sequences. The source code of the local version of protein domain boundary prediction is available upon request from the authors

  2. Study of the proteins in the defatted flour and protein concentrate of baru nuts (Dipteryx alata Vog

    Directory of Open Access Journals (Sweden)

    Rita de Cássia Avellaneda Guimarães

    2012-09-01

    Full Text Available Baru (Dipteryx alata Vog. is an abundant legume in the Brazilian Savanna. Its nuts can be exploited sustainably using its protein and lipid fractions. This study aimed to analyze the proteins of the nuts present in the defatted flour and protein concentrate in terms of their functional properties, the profile of their fractions, and the in vitro digestibility. The flour was defatted with hexane and extracted at the pH of higher protein solubility to obtain the protein concentrate. The electrophoretic profile of the protein fractions was evaluated in SDS-PAGE gel. The functional properties of the proteins indicate the possibility of their use in various foods, like soybeans providing water absorption capacity, oil absorption capacity, emulsifying properties, and foamability. Globulins, followed by the albumins, are the major fractions of the flour and protein concentrate, respectively. Digestibility was greater for the concentrate than for the defatted flour.

  3. PSPP: a protein structure prediction pipeline for computing clusters.

    Directory of Open Access Journals (Sweden)

    Michael S Lee

    2009-07-01

    Full Text Available Protein structures are critical for understanding the mechanisms of biological systems and, subsequently, for drug and vaccine design. Unfortunately, protein sequence data exceed structural data by a factor of more than 200 to 1. This gap can be partially filled by using computational protein structure prediction. While structure prediction Web servers are a notable option, they often restrict the number of sequence queries and/or provide a limited set of prediction methodologies. Therefore, we present a standalone protein structure prediction software package suitable for high-throughput structural genomic applications that performs all three classes of prediction methodologies: comparative modeling, fold recognition, and ab initio. This software can be deployed on a user's own high-performance computing cluster.The pipeline consists of a Perl core that integrates more than 20 individual software packages and databases, most of which are freely available from other research laboratories. The query protein sequences are first divided into domains either by domain boundary recognition or Bayesian statistics. The structures of the individual domains are then predicted using template-based modeling or ab initio modeling. The predicted models are scored with a statistical potential and an all-atom force field. The top-scoring ab initio models are annotated by structural comparison against the Structural Classification of Proteins (SCOP fold database. Furthermore, secondary structure, solvent accessibility, transmembrane helices, and structural disorder are predicted. The results are generated in text, tab-delimited, and hypertext markup language (HTML formats. So far, the pipeline has been used to study viral and bacterial proteomes.The standalone pipeline that we introduce here, unlike protein structure prediction Web servers, allows users to devote their own computing assets to process a potentially unlimited number of queries as well as perform

  4. Blind Test of Physics-Based Prediction of Protein Structures

    Science.gov (United States)

    Shell, M. Scott; Ozkan, S. Banu; Voelz, Vincent; Wu, Guohong Albert; Dill, Ken A.

    2009-01-01

    We report here a multiprotein blind test of a computer method to predict native protein structures based solely on an all-atom physics-based force field. We use the AMBER 96 potential function with an implicit (GB/SA) model of solvation, combined with replica-exchange molecular-dynamics simulations. Coarse conformational sampling is performed using the zipping and assembly method (ZAM), an approach that is designed to mimic the putative physical routes of protein folding. ZAM was applied to the folding of six proteins, from 76 to 112 monomers in length, in CASP7, a community-wide blind test of protein structure prediction. Because these predictions have about the same level of accuracy as typical bioinformatics methods, and do not utilize information from databases of known native structures, this work opens up the possibility of predicting the structures of membrane proteins, synthetic peptides, or other foldable polymers, for which there is little prior knowledge of native structures. This approach may also be useful for predicting physical protein folding routes, non-native conformations, and other physical properties from amino acid sequences. PMID:19186130

  5. CNNcon: improved protein contact maps prediction using cascaded neural networks.

    Directory of Open Access Journals (Sweden)

    Wang Ding

    Full Text Available BACKGROUNDS: Despite continuing progress in X-ray crystallography and high-field NMR spectroscopy for determination of three-dimensional protein structures, the number of unsolved and newly discovered sequences grows much faster than that of determined structures. Protein modeling methods can possibly bridge this huge sequence-structure gap with the development of computational science. A grand challenging problem is to predict three-dimensional protein structure from its primary structure (residues sequence alone. However, predicting residue contact maps is a crucial and promising intermediate step towards final three-dimensional structure prediction. Better predictions of local and non-local contacts between residues can transform protein sequence alignment to structure alignment, which can finally improve template based three-dimensional protein structure predictors greatly. METHODS: CNNcon, an improved multiple neural networks based contact map predictor using six sub-networks and one final cascade-network, was developed in this paper. Both the sub-networks and the final cascade-network were trained and tested with their corresponding data sets. While for testing, the target protein was first coded and then input to its corresponding sub-networks for prediction. After that, the intermediate results were input to the cascade-network to finish the final prediction. RESULTS: The CNNcon can accurately predict 58.86% in average of contacts at a distance cutoff of 8 Å for proteins with lengths ranging from 51 to 450. The comparison results show that the present method performs better than the compared state-of-the-art predictors. Particularly, the prediction accuracy keeps steady with the increase of protein sequence length. It indicates that the CNNcon overcomes the thin density problem, with which other current predictors have trouble. This advantage makes the method valuable to the prediction of long length proteins. As a result, the effective

  6. On the analysis of protein-protein interactions via knowledge-based potentials for the prediction of protein-protein docking

    DEFF Research Database (Denmark)

    Feliu, Elisenda; Aloy, Patrick; Oliva, Baldo

    2011-01-01

    Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions for s...... and with independence of the partner. This information is encoded at the residue level and could be easily incorporated in the initial grid scoring for Fast Fourier Transform rigid-body docking methods.......Development of effective methods to screen binary interactions obtained by rigid-body protein-protein docking is key for structure prediction of complexes and for elucidating physicochemical principles of protein-protein binding. We have derived empirical knowledge-based potential functions...... for selecting rigid-body docking poses. These potentials include the energetic component that provides the residues with a particular secondary structure and surface accessibility. These scoring functions have been tested on a state-of-art benchmark dataset and on a decoy dataset of permanent interactions. Our...

  7. Protein function prediction involved on radio-resistant bacteria

    International Nuclear Information System (INIS)

    Mezhoud, Karim; Mankai, Houda; Sghaier, Haitham; Barkallah, Insaf

    2009-01-01

    Previously, we identified 58 proteins under positive selection in ionizing-radiation-resistant bacteria (IRRB) but absent in all ionizing-radiation-sensitive bacteria (IRSB). These are good reasons to believe these 58 proteins with their interactions with other proteins (interactomes) are a part of the answer to the question as to how IRRB resist to radiation, because our knowledge of interactomes of positively selected orphan proteins in IRRB might allow us to define cellular pathways important to ionizing-radiation resistance. Using the Database of Interacting Proteins and the PSIbase, we have predicted interactions of orthologs of the 58 proteins under positive selection in IRRB but absent in all IRSB. We used integrate experimental data sets with molecular interaction networks and protein structure prediction from databases. Among these, 18 proteins with their interactomes were identified in Deinococcus radiodurans R1. DNA checkpoint and repair, kinases pathways, energetic and nucleotide metabolisms were the important biological process that found. We predicted the interactomes of 58 proteins under positive selection in IRRB. It is hoped our data will provide new clues as to the cellular pathways that are important for ionizing-radiation resistance. We have identified news proteins involved on DNA management which were not previously mentioned. It is an important input in addition to protein that studied. It does still work to deepen our study on these new proteins

  8. Comprehensive predictions of target proteins based on protein-chemical interaction using virtual screening and experimental verifications.

    Science.gov (United States)

    Kobayashi, Hiroki; Harada, Hiroko; Nakamura, Masaomi; Futamura, Yushi; Ito, Akihiro; Yoshida, Minoru; Iemura, Shun-Ichiro; Shin-Ya, Kazuo; Doi, Takayuki; Takahashi, Takashi; Natsume, Tohru; Imoto, Masaya; Sakakibara, Yasubumi

    2012-04-05

    Identification of the target proteins of bioactive compounds is critical for elucidating the mode of action; however, target identification has been difficult in general, mostly due to the low sensitivity of detection using affinity chromatography followed by CBB staining and MS/MS analysis. We applied our protocol of predicting target proteins combining in silico screening and experimental verification for incednine, which inhibits the anti-apoptotic function of Bcl-xL by an unknown mechanism. One hundred eighty-two target protein candidates were computationally predicted to bind to incednine by the statistical prediction method, and the predictions were verified by in vitro binding of incednine to seven proteins, whose expression can be confirmed in our cell system.As a result, 40% accuracy of the computational predictions was achieved successfully, and we newly found 3 incednine-binding proteins. This study revealed that our proposed protocol of predicting target protein combining in silico screening and experimental verification is useful, and provides new insight into a strategy for identifying target proteins of small molecules.

  9. Comprehensive predictions of target proteins based on protein-chemical interaction using virtual screening and experimental verifications

    Directory of Open Access Journals (Sweden)

    Kobayashi Hiroki

    2012-04-01

    Full Text Available Abstract Background Identification of the target proteins of bioactive compounds is critical for elucidating the mode of action; however, target identification has been difficult in general, mostly due to the low sensitivity of detection using affinity chromatography followed by CBB staining and MS/MS analysis. Results We applied our protocol of predicting target proteins combining in silico screening and experimental verification for incednine, which inhibits the anti-apoptotic function of Bcl-xL by an unknown mechanism. One hundred eighty-two target protein candidates were computationally predicted to bind to incednine by the statistical prediction method, and the predictions were verified by in vitro binding of incednine to seven proteins, whose expression can be confirmed in our cell system. As a result, 40% accuracy of the computational predictions was achieved successfully, and we newly found 3 incednine-binding proteins. Conclusions This study revealed that our proposed protocol of predicting target protein combining in silico screening and experimental verification is useful, and provides new insight into a strategy for identifying target proteins of small molecules.

  10. Delineation of concentration ranges and longitudinal changes of human plasma protein variants.

    Directory of Open Access Journals (Sweden)

    Olgica Trenchevska

    Full Text Available Human protein diversity arises as a result of alternative splicing, single nucleotide polymorphisms (SNPs and posttranslational modifications. Because of these processes, each protein can exists as multiple variants in vivo. Tailored strategies are needed to study these protein variants and understand their role in health and disease. In this work we utilized quantitative mass spectrometric immunoassays to determine the protein variants concentration of beta-2-microglobulin, cystatin C, retinol binding protein, and transthyretin, in a population of 500 healthy individuals. Additionally, we determined the longitudinal concentration changes for the protein variants from four individuals over a 6 month period. Along with the native forms of the four proteins, 13 posttranslationally modified variants and 7 SNP-derived variants were detected and their concentration determined. Correlations of the variants concentration with geographical origin, gender, and age of the individuals were also examined. This work represents an important step toward building a catalog of protein variants concentrations and examining their longitudinal changes.

  11. Nutritional and functional properties of whey proteins concentrate and isolate

    Directory of Open Access Journals (Sweden)

    Zoran Herceg

    2006-12-01

    Full Text Available Whey protein fractions represent 18 - 20 % of total milk nitrogen content. Nutritional value in addition to diverse physico - chemical and functional properties make whey proteins highly suitable for application in foodstuffs. In the most cases, whey proteins are used because of their functional properties. Whey proteins possess favourable functional characteristics such as gelling, water binding, emulsification and foaming ability. Due to application of new process techniques (membrane fractionation techniques, it is possible to produce various whey - protein based products. The most important products based on the whey proteins are whey protein concentrates (WPC and whey protein isolates (WPI. The aim of this paper was to give comprehensive review of nutritional and functional properties of the most common used whey proteins (whey protein concentrate - WPC and whey protein isolate - WPI in the food industry.

  12. Efficient prediction of human protein-protein interactions at a global scale.

    Science.gov (United States)

    Schoenrock, Andrew; Samanfar, Bahram; Pitre, Sylvain; Hooshyar, Mohsen; Jin, Ke; Phillips, Charles A; Wang, Hui; Phanse, Sadhna; Omidi, Katayoun; Gui, Yuan; Alamgir, Md; Wong, Alex; Barrenäs, Fredrik; Babu, Mohan; Benson, Mikael; Langston, Michael A; Green, James R; Dehne, Frank; Golshani, Ashkan

    2014-12-10

    Our knowledge of global protein-protein interaction (PPI) networks in complex organisms such as humans is hindered by technical limitations of current methods. On the basis of short co-occurring polypeptide regions, we developed a tool called MP-PIPE capable of predicting a global human PPI network within 3 months. With a recall of 23% at a precision of 82.1%, we predicted 172,132 putative PPIs. We demonstrate the usefulness of these predictions through a range of experiments. The speed and accuracy associated with MP-PIPE can make this a potential tool to study individual human PPI networks (from genomic sequences alone) for personalized medicine.

  13. Effect of ceramic membrane channel diameter on limiting retentate protein concentration during skim milk microfiltration.

    Science.gov (United States)

    Adams, Michael C; Barbano, David M

    2016-01-01

    Our objective was to determine the effect of retentate flow channel diameter (4 or 6mm) of nongraded permeability 100-nm pore size ceramic membranes operated in nonuniform transmembrane pressure mode on the limiting retentate protein concentration (LRPC) while microfiltering (MF) skim milk at a temperature of 50°C, a flux of 55 kg · m(-2) · h(-1), and an average cross-flow velocity of 7 m · s(-1). At the above conditions, the retentate true protein concentration was incrementally increased from 7 to 11.5%. When temperature, flux, and average cross-flow velocity were controlled, ceramic membrane retentate flow channel diameter did not affect the LRPC. This indicates that LRPC is not a function of the Reynolds number. Computational fluid dynamics data, which indicated that both membranes had similar radial velocity profiles within their retentate flow channels, supported this finding. Membranes with 6-mm flow channels can be operated at a lower pressure decrease from membrane inlet to membrane outlet (ΔP) or at a higher cross-flow velocity, depending on which is controlled, than membranes with 4-mm flow channels. This implies that 6-mm membranes could achieve a higher LRPC than 4-mm membranes at the same ΔP due to an increase in cross-flow velocity. In theory, the higher LRPC of the 6-mm membranes could facilitate 95% serum protein removal in 2 MF stages with diafiltration between stages if no serum protein were rejected by the membrane. At the same flux, retentate protein concentration, and average cross-flow velocity, 4-mm membranes require 21% more energy to remove a given amount of permeate than 6-mm membranes, despite the lower surface area of the 6-mm membranes. Equations to predict skim milk MF retentate viscosity as a function of protein concentration and temperature are provided. Retentate viscosity, retentate recirculation pump frequency required to maintain a given cross-flow velocity at a given retentate viscosity, and retentate protein

  14. Protein and oil composition predictions of single soybeans by transmission Raman spectroscopy.

    Science.gov (United States)

    Schulmerich, Matthew V; Walsh, Michael J; Gelber, Matthew K; Kong, Rong; Kole, Matthew R; Harrison, Sandra K; McKinney, John; Thompson, Dennis; Kull, Linda S; Bhargava, Rohit

    2012-08-22

    The soybean industry requires rapid, accurate, and precise technologies for the analyses of seed/grain constituents. While the current gold standard for nondestructive quantification of economically and nutritionally important soybean components is near-infrared spectroscopy (NIRS), emerging technology may provide viable alternatives and lead to next generation instrumentation for grain compositional analysis. In principle, Raman spectroscopy provides the necessary chemical information to generate models for predicting the concentration of soybean constituents. In this communication, we explore the use of transmission Raman spectroscopy (TRS) for nondestructive soybean measurements. We show that TRS uses the light scattering properties of soybeans to effectively homogenize the heterogeneous bulk of a soybean for representative sampling. Working with over 1000 individual intact soybean seeds, we developed a simple partial least-squares model for predicting oil and protein content nondestructively. We find TRS to have a root-mean-standard error of prediction (RMSEP) of 0.89% for oil measurements and 0.92% for protein measurements. In both calibration and validation sets, the predicative capabilities of the model were similar to the error in the reference methods.

  15. Biochemical studies on gamma irradiated male rats fed on whey protein concentrate

    International Nuclear Information System (INIS)

    Mohamed, N.E; Anwar, M.M.; El-bostany, N.A.

    2010-01-01

    This study carried out to investigate the possible role of whey protein protein concentrate in ameliorating some biochemical disorders induced in gamma irradiated male rats. Forty eight male albino rats were divided into four equal groups: Group 1 fed on normal diet during experimental period. Group 2 where the diet contain 15 % whey protein concentrate instead of soybean protein . Group 3 rats were exposed to whole body gamma radiation with single dose of 5 Gy and fed on the normal diet. Group 4 rate exposed to 5 Gy then fed on diet contain 15 % whey protein concentrate, the rats were decapitated after two and four weeks post irradiation. Exposure to whole body irradiation caused significant elevation of serum ALT, AST, glucose, urea, creatinine and total triiodothyronine with significant decrease in total protein, albumin and thyroxin. Irradiated rats fed on whey protein concentrate revealed significant improvement of some biochemical parameters. It could be conclude that whey protein concentrate may be considered as a useful protein source for reducing radiation injury via metabolic pathway.

  16. Barrier, mechanical and optical properties of whey protein concentrate films

    Directory of Open Access Journals (Sweden)

    Viviane Machado Azevedo

    2014-08-01

    Full Text Available Whey is recognized as a valuable source of high quality protein and, when processed as protein concentrate, may be used in the production of biodegradable films. The objective of the study was to develop films of whey protein concentrate 80% (WPC at concentrations of 6, 8, 10 and 12% and evaluate the influence of this factor in the barrier, mechanical and optical properties of the films. Treatments showed moisture content with a mean value of 22.10% ± 0.76and high solubility values between 56.67 to 62.42%. Thus, there is little or no influence of varying the concentration of WPC in these properties and high hydrophilicity of the films. With increasing concentration of WPC, increases the water vapor permeability of the films (7.42 x 10-13 to 3.49 x 10-12 g.m-1.s-1.Pa-1. The treatment at the concentration of 6% of WPC showed a higher modulus of elasticity (287.90 ± 41.79 MPa. Thegreater rigidity in films with higher concentrations is possibly due to the greater number of bonds between molecules of the polymeric matrix. The films have the same puncture resistance. The increased concentration of WPC promotes resistance to the action of a localized force. In general, films of whey protein concentrate in the tested concentrations exhibited slightly yellowish color and transparency, and can be used in food packaging that requiring intermediate permeability to water vapor, to keep moisture and texture desired.

  17. Predicting protein-binding RNA nucleotides with consideration of binding partners.

    Science.gov (United States)

    Tuvshinjargal, Narankhuu; Lee, Wook; Park, Byungkyu; Han, Kyungsook

    2015-06-01

    In recent years several computational methods have been developed to predict RNA-binding sites in protein. Most of these methods do not consider interacting partners of a protein, so they predict the same RNA-binding sites for a given protein sequence even if the protein binds to different RNAs. Unlike the problem of predicting RNA-binding sites in protein, the problem of predicting protein-binding sites in RNA has received little attention mainly because it is much more difficult and shows a lower accuracy on average. In our previous study, we developed a method that predicts protein-binding nucleotides from an RNA sequence. In an effort to improve the prediction accuracy and usefulness of the previous method, we developed a new method that uses both RNA and protein sequence data. In this study, we identified effective features of RNA and protein molecules and developed a new support vector machine (SVM) model to predict protein-binding nucleotides from RNA and protein sequence data. The new model that used both protein and RNA sequence data achieved a sensitivity of 86.5%, a specificity of 86.2%, a positive predictive value (PPV) of 72.6%, a negative predictive value (NPV) of 93.8% and Matthews correlation coefficient (MCC) of 0.69 in a 10-fold cross validation; it achieved a sensitivity of 58.8%, a specificity of 87.4%, a PPV of 65.1%, a NPV of 84.2% and MCC of 0.48 in independent testing. For comparative purpose, we built another prediction model that used RNA sequence data alone and ran it on the same dataset. In a 10 fold-cross validation it achieved a sensitivity of 85.7%, a specificity of 80.5%, a PPV of 67.7%, a NPV of 92.2% and MCC of 0.63; in independent testing it achieved a sensitivity of 67.7%, a specificity of 78.8%, a PPV of 57.6%, a NPV of 85.2% and MCC of 0.45. In both cross-validations and independent testing, the new model that used both RNA and protein sequences showed a better performance than the model that used RNA sequence data alone in

  18. Improving protein function prediction methods with integrated literature data

    Directory of Open Access Journals (Sweden)

    Gabow Aaron P

    2008-04-01

    Full Text Available Abstract Background Determining the function of uncharacterized proteins is a major challenge in the post-genomic era due to the problem's complexity and scale. Identifying a protein's function contributes to an understanding of its role in the involved pathways, its suitability as a drug target, and its potential for protein modifications. Several graph-theoretic approaches predict unidentified functions of proteins by using the functional annotations of better-characterized proteins in protein-protein interaction networks. We systematically consider the use of literature co-occurrence data, introduce a new method for quantifying the reliability of co-occurrence and test how performance differs across species. We also quantify changes in performance as the prediction algorithms annotate with increased specificity. Results We find that including information on the co-occurrence of proteins within an abstract greatly boosts performance in the Functional Flow graph-theoretic function prediction algorithm in yeast, fly and worm. This increase in performance is not simply due to the presence of additional edges since supplementing protein-protein interactions with co-occurrence data outperforms supplementing with a comparably-sized genetic interaction dataset. Through the combination of protein-protein interactions and co-occurrence data, the neighborhood around unknown proteins is quickly connected to well-characterized nodes which global prediction algorithms can exploit. Our method for quantifying co-occurrence reliability shows superior performance to the other methods, particularly at threshold values around 10% which yield the best trade off between coverage and accuracy. In contrast, the traditional way of asserting co-occurrence when at least one abstract mentions both proteins proves to be the worst method for generating co-occurrence data, introducing too many false positives. Annotating the functions with greater specificity is harder

  19. Age-dependent changes in the total protein concentrations in the ...

    African Journals Online (AJOL)

    related changes in total protein concentrations in ten regions of the pig brain and hypophyses from birth to 36 months of age. Age-related changes in protein concentrations in all the brain regions except the pons and cerebral cortex were not ...

  20. Inactive Doses and Protein Concentration of Gamma Irradiated Yersinia Enterocolitica

    International Nuclear Information System (INIS)

    Irawan Sugoro; Sandra Hermanto

    2009-01-01

    Yersinia enterocolitica is one of bacteria which cause coliform mastitis in dairy cows. The bacteria could be inactivated by gamma irradiation as inactivated vaccine candidate. The experiment has been conducted to determine the inactive doses and the protein concentration of Yersinia enterocolitica Y3 which has been irradiated by gamma rays. The cells cultures were irradiated by gamma rays with doses of 0, 100, 200, 400, 600, 800, 1.000 and 1.500 Gy (doses rate was 1089,59 Gy/hours). The inactive dose was determined by the drop test method and the protein concentration of cells were determined by Lowry method. The results showed that the inactive doses occurred on 800 – 1500 Gy. The different irradiation doses of cell cultures showed the effect of gamma irradiation on the protein concentration that was random and has a significant effect on the protein concentration. (author)

  1. Prediction of protein-protein interaction sites in sequences and 3D structures by random forests.

    Directory of Open Access Journals (Sweden)

    Mile Sikić

    2009-01-01

    Full Text Available Identifying interaction sites in proteins provides important clues to the function of a protein and is becoming increasingly relevant in topics such as systems biology and drug discovery. Although there are numerous papers on the prediction of interaction sites using information derived from structure, there are only a few case reports on the prediction of interaction residues based solely on protein sequence. Here, a sliding window approach is combined with the Random Forests method to predict protein interaction sites using (i a combination of sequence- and structure-derived parameters and (ii sequence information alone. For sequence-based prediction we achieved a precision of 84% with a 26% recall and an F-measure of 40%. When combined with structural information, the prediction performance increases to a precision of 76% and a recall of 38% with an F-measure of 51%. We also present an attempt to rationalize the sliding window size and demonstrate that a nine-residue window is the most suitable for predictor construction. Finally, we demonstrate the applicability of our prediction methods by modeling the Ras-Raf complex using predicted interaction sites as target binding interfaces. Our results suggest that it is possible to predict protein interaction sites with quite a high accuracy using only sequence information.

  2. Prediction of protein loop geometries in solution

    NARCIS (Netherlands)

    Rapp, Chaya S.; Strauss, Temima; Nederveen, Aart; Fuentes, Gloria

    2007-01-01

    The ability to determine the structure of a protein in solution is a critical tool for structural biology, as proteins in their native state are found in aqueous environments. Using a physical chemistry based prediction protocol, we demonstrate the ability to reproduce protein loop geometries in

  3. Protein Concentrate Production from Thin Stillage.

    Science.gov (United States)

    Ratanapariyanuch, Kornsulee; Shim, Youn Young; Emami, Shahram; Reaney, Martin J T

    2016-12-21

    Two-stage fermentation (TSF) of saccharified wheat with a consortium of endemic lactobacilli produced CO 2 and induced colloid separation of fermented solution to produce a protein concentrate (PC). Protein-rich slurry (50%, db) was obtained by decanting solution or skimming floating material during or after TSF. Washing and drying processes were explored to improve protein content, extend storage life of slurry, and yield converted stillage for compound recovery. Centrifuging and washing slurry afforded a PC and clarified solution. PC protein content increased to 60% (w/w, db). The PC was dried in a spray dryer or drum dryer or tray dryer. Dried PC water activity ranged 0.23-0.30. The dried PC lysine content was low, but lysine availability (95%) was excellent. Liquid from TSF and washing was readily microfiltered. Mass recovery of protein, glycerol, 1,3-propanediol, lactic acid, acetic acid, and glycerylphosphorylcholine from combined TSF, washing, and filtration were 66, 76, 72, 77, 74, and 84%, respectively.

  4. Prediction Methods for Blood Glucose Concentration

    DEFF Research Database (Denmark)

    “Recent Results on Glucose–Insulin Predictions by Means of a State Observer for Time-Delay Systems” by Pasquale Palumbo et al. introduces a prediction model which in real time predicts the insulin concentration in blood which in turn is used in a control system. The method is tested in simulation...... EEG signals to predict upcoming hypoglycemic situations in real-time by employing artificial neural networks. The results of a 30-day long clinical study with the implanted device and the developed algorithm are presented. The chapter “Meta-Learning Based Blood Glucose Predictor for Diabetic......, but the insulin amount is chosen using factors that account for this expectation. The increasing availability of more accurate continuous blood glucose measurement (CGM) systems is attracting much interest to the possibilities of explicit prediction of future BG values. Against this background, in 2014 a two...

  5. Total protein and cholesterol concentrations in brain regions of male ...

    African Journals Online (AJOL)

    The results showed similarities (P>0.05) between the treatments in total protein concentrations in the cerebral cortex, medulla, hypothalamus, amygdala, mesencephalon and hippocampus. Total protein concentrations however differed significantly between diets (P<0.05) in the cerebellum and pons varoli with the lowest ...

  6. Quantification of protein concentration using UV absorbance and Coomassie dyes.

    Science.gov (United States)

    Noble, James E

    2014-01-01

    The measurement of a solubilized protein concentration in solution is an important assay in biochemistry research and development labs for applications ranging from enzymatic studies to providing data for biopharmaceutical lot release. Spectrophotometric protein quantification assays are methods that use UV and visible spectroscopy to rapidly determine the concentration of protein, relative to a standard, or using an assigned extinction coefficient. Where multiple samples need measurement, and/or the sample volume and concentration is limited, preparations of the Coomassie dye commonly known as the Bradford assay can be used. © 2014 Elsevier Inc. All rights reserved.

  7. An overview of the prediction of protein DNA-binding sites.

    Science.gov (United States)

    Si, Jingna; Zhao, Rui; Wu, Rongling

    2015-03-06

    Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  8. Mapping monomeric threading to protein-protein structure prediction.

    Science.gov (United States)

    Guerler, Aysam; Govindarajoo, Brandon; Zhang, Yang

    2013-03-25

    The key step of template-based protein-protein structure prediction is the recognition of complexes from experimental structure libraries that have similar quaternary fold. Maintaining two monomer and dimer structure libraries is however laborious, and inappropriate library construction can degrade template recognition coverage. We propose a novel strategy SPRING to identify complexes by mapping monomeric threading alignments to protein-protein interactions based on the original oligomer entries in the PDB, which does not rely on library construction and increases the efficiency and quality of complex template recognitions. SPRING is tested on 1838 nonhomologous protein complexes which can recognize correct quaternary template structures with a TM score >0.5 in 1115 cases after excluding homologous proteins. The average TM score of the first model is 60% and 17% higher than that by HHsearch and COTH, respectively, while the number of targets with an interface RMSD benchmark proteins. Although the relative performance of SPRING and ZDOCK depends on the level of homology filters, a combination of the two methods can result in a significantly higher model quality than ZDOCK at all homology thresholds. These data demonstrate a new efficient approach to quaternary structure recognition that is ready to use for genome-scale modeling of protein-protein interactions due to the high speed and accuracy.

  9. C-reactive protein, fibrinogen, and cardiovascular disease prediction

    DEFF Research Database (Denmark)

    Kaptoge, Stephen; Di Angelantonio, Emanuele; Pennells, Lisa

    2012-01-01

    There is debate about the value of assessing levels of C-reactive protein (CRP) and other biomarkers of inflammation for the prediction of first cardiovascular events.......There is debate about the value of assessing levels of C-reactive protein (CRP) and other biomarkers of inflammation for the prediction of first cardiovascular events....

  10. From nonspecific DNA-protein encounter complexes to the prediction of DNA-protein interactions.

    Directory of Open Access Journals (Sweden)

    Mu Gao

    2009-03-01

    Full Text Available DNA-protein interactions are involved in many essential biological activities. Because there is no simple mapping code between DNA base pairs and protein amino acids, the prediction of DNA-protein interactions is a challenging problem. Here, we present a novel computational approach for predicting DNA-binding protein residues and DNA-protein interaction modes without knowing its specific DNA target sequence. Given the structure of a DNA-binding protein, the method first generates an ensemble of complex structures obtained by rigid-body docking with a nonspecific canonical B-DNA. Representative models are subsequently selected through clustering and ranking by their DNA-protein interfacial energy. Analysis of these encounter complex models suggests that the recognition sites for specific DNA binding are usually favorable interaction sites for the nonspecific DNA probe and that nonspecific DNA-protein interaction modes exhibit some similarity to specific DNA-protein binding modes. Although the method requires as input the knowledge that the protein binds DNA, in benchmark tests, it achieves better performance in identifying DNA-binding sites than three previously established methods, which are based on sophisticated machine-learning techniques. We further apply our method to protein structures predicted through modeling and demonstrate that our method performs satisfactorily on protein models whose root-mean-square Calpha deviation from native is up to 5 A from their native structures. This study provides valuable structural insights into how a specific DNA-binding protein interacts with a nonspecific DNA sequence. The similarity between the specific DNA-protein interaction mode and nonspecific interaction modes may reflect an important sampling step in search of its specific DNA targets by a DNA-binding protein.

  11. Stringent homology-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.

    Science.gov (United States)

    Zhou, Hufeng; Gao, Shangzhi; Nguyen, Nam Ninh; Fan, Mengyuan; Jin, Jingjing; Liu, Bing; Zhao, Liang; Xiong, Geng; Tan, Min; Li, Shijun; Wong, Limsoon

    2014-04-08

    H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are essential for understanding the infection mechanism of the formidable pathogen M. tuberculosis H37Rv. Computational prediction is an important strategy to fill the gap in experimental H. sapiens-M. tuberculosis H37Rv PPI data. Homology-based prediction is frequently used in predicting both intra-species and inter-species PPIs. However, some limitations are not properly resolved in several published works that predict eukaryote-prokaryote inter-species PPIs using intra-species template PPIs. We develop a stringent homology-based prediction approach by taking into account (i) differences between eukaryotic and prokaryotic proteins and (ii) differences between inter-species and intra-species PPI interfaces. We compare our stringent homology-based approach to a conventional homology-based approach for predicting host-pathogen PPIs, based on cellular compartment distribution analysis, disease gene list enrichment analysis, pathway enrichment analysis and functional category enrichment analysis. These analyses support the validity of our prediction result, and clearly show that our approach has better performance in predicting H. sapiens-M. tuberculosis H37Rv PPIs. Using our stringent homology-based approach, we have predicted a set of highly plausible H. sapiens-M. tuberculosis H37Rv PPIs which might be useful for many of related studies. Based on our analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent homology-based approach, we have discovered several interesting properties which are reported here for the first time. We find that both host proteins and pathogen proteins involved in the host-pathogen PPIs tend to be hubs in their own intra-species PPI network. Also, both host and pathogen proteins involved in host-pathogen PPIs tend to have longer primary sequence, tend to have more domains, tend to be more hydrophilic, etc. And the protein domains from both

  12. PIPE: a protein-protein interaction prediction engine based on the re-occurring short polypeptide sequences between known interacting protein pairs

    Directory of Open Access Journals (Sweden)

    Greenblatt Jack

    2006-07-01

    Full Text Available Abstract Background Identification of protein interaction networks has received considerable attention in the post-genomic era. The currently available biochemical approaches used to detect protein-protein interactions are all time and labour intensive. Consequently there is a growing need for the development of computational tools that are capable of effectively identifying such interactions. Results Here we explain the development and implementation of a novel Protein-Protein Interaction Prediction Engine termed PIPE. This tool is capable of predicting protein-protein interactions for any target pair of the yeast Saccharomyces cerevisiae proteins from their primary structure and without the need for any additional information or predictions about the proteins. PIPE showed a sensitivity of 61% for detecting any yeast protein interaction with 89% specificity and an overall accuracy of 75%. This rate of success is comparable to those associated with the most commonly used biochemical techniques. Using PIPE, we identified a novel interaction between YGL227W (vid30 and YMR135C (gid8 yeast proteins. This lead us to the identification of a novel yeast complex that here we term vid30 complex (vid30c. The observed interaction was confirmed by tandem affinity purification (TAP tag, verifying the ability of PIPE to predict novel protein-protein interactions. We then used PIPE analysis to investigate the internal architecture of vid30c. It appeared from PIPE analysis that vid30c may consist of a core and a secondary component. Generation of yeast gene deletion strains combined with TAP tagging analysis indicated that the deletion of a member of the core component interfered with the formation of vid30c, however, deletion of a member of the secondary component had little effect (if any on the formation of vid30c. Also, PIPE can be used to analyse yeast proteins for which TAP tagging fails, thereby allowing us to predict protein interactions that are not

  13. Use of refractometry for determination of psittacine plasma protein concentration.

    Science.gov (United States)

    Cray, Carolyn; Rodriguez, Marilyn; Arheart, Kristopher L

    2008-12-01

    Previous studies have demonstrated both poor and good correlation of total protein concentrations in various avian species using refractometry and biuret methodologies. The purpose of the current study was to compare these 2 techniques of total protein determination using plasma samples from several psittacine species and to determine the effect of cholesterol and other solutes on refractometry results. Total protein concentration in heparinized plasma samples without visible lipemia was analyzed by refractometry and an automated biuret method on a dry reagent analyzer (Ortho 250). Cholesterol, glucose, and uric acid concentrations were measured using the same analyzer. Results were compared using Deming regression analysis, Bland-Altman bias plots, and Spearman's rank correlation. Correlation coefficients (r) for total protein results by refractometry and biuret methods were 0.49 in African grey parrots (n=28), 0.77 in Amazon parrots (20), 0.57 in cockatiels (20), 0.73 in cockatoos (36), 0.86 in conures (20), and 0.93 in macaws (38) (Prefractometry in Amazon parrots, conures, and macaws (n=25 each, PRefractometry can be used to accurately measure total protein concentration in nonlipemic plasma samples from some psittacine species. Method and species-specific reference intervals should be used in the interpretation of total protein values.

  14. Bioinformatic Prediction of WSSV-Host Protein-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Zheng Sun

    2014-01-01

    Full Text Available WSSV is one of the most dangerous pathogens in shrimp aquaculture. However, the molecular mechanism of how WSSV interacts with shrimp is still not very clear. In the present study, bioinformatic approaches were used to predict interactions between proteins from WSSV and shrimp. The genome data of WSSV (NC_003225.1 and the constructed transcriptome data of F. chinensis were used to screen potentially interacting proteins by searching in protein interaction databases, including STRING, Reactome, and DIP. Forty-four pairs of proteins were suggested to have interactions between WSSV and the shrimp. Gene ontology analysis revealed that 6 pairs of these interacting proteins were classified into “extracellular region” or “receptor complex” GO-terms. KEGG pathway analysis showed that they were involved in the “ECM-receptor interaction pathway.” In the 6 pairs of interacting proteins, an envelope protein called “collagen-like protein” (WSSV-CLP encoded by an early virus gene “wsv001” in WSSV interacted with 6 deduced proteins from the shrimp, including three integrin alpha (ITGA, two integrin beta (ITGB, and one syndecan (SDC. Sequence analysis on WSSV-CLP, ITGA, ITGB, and SDC revealed that they possessed the sequence features for protein-protein interactions. This study might provide new insights into the interaction mechanisms between WSSV and shrimp.

  15. Predicting co-complexed protein pairs using genomic and proteomic data integration

    Directory of Open Access Journals (Sweden)

    King Oliver D

    2004-04-01

    Full Text Available Abstract Background Identifying all protein-protein interactions in an organism is a major objective of proteomics. A related goal is to know which protein pairs are present in the same protein complex. High-throughput methods such as yeast two-hybrid (Y2H and affinity purification coupled with mass spectrometry (APMS have been used to detect interacting proteins on a genomic scale. However, both Y2H and APMS methods have substantial false-positive rates. Aside from high-throughput interaction screens, other gene- or protein-pair characteristics may also be informative of physical interaction. Therefore it is desirable to integrate multiple datasets and utilize their different predictive value for more accurate prediction of co-complexed relationship. Results Using a supervised machine learning approach – probabilistic decision tree, we integrated high-throughput protein interaction datasets and other gene- and protein-pair characteristics to predict co-complexed pairs (CCP of proteins. Our predictions proved more sensitive and specific than predictions based on Y2H or APMS methods alone or in combination. Among the top predictions not annotated as CCPs in our reference set (obtained from the MIPS complex catalogue, a significant fraction was found to physically interact according to a separate database (YPD, Yeast Proteome Database, and the remaining predictions may potentially represent unknown CCPs. Conclusions We demonstrated that the probabilistic decision tree approach can be successfully used to predict co-complexed protein (CCP pairs from other characteristics. Our top-scoring CCP predictions provide testable hypotheses for experimental validation.

  16. Effect of Crude Protein Levels in Concentrate and Concentrate Levels in Diet on Fermentation

    Directory of Open Access Journals (Sweden)

    Dinh Van Dung

    2014-06-01

    Full Text Available The effect of concentrate mixtures with crude protein (CP levels 10%, 13%, 16%, and 19% and diets with roughage to concentrate ratios 80:20, 60:40, 40:60, and 20:80 (w/w were determined on dry matter (DM and organic matter (OM digestibility, and fermentation metabolites using an in vitro fermentation technique. In vitro fermented attributes were measured after 4, 24, and 48 h of incubation respectively. The digestibility of DM and OM, and total volatile fatty acid (VFA increased whereas pH decreased with the increased amount of concentrate in the diet (p<0.001, however CP levels of concentrate did not have any influence on these attributes. Gas production reduced with increased CP levels, while it increased with increasing concentrate levels. Ammonia nitrogen (NH3-N concentration and microbial CP production increased significantly (p<0.05 by increasing CP levels and with increasing concentrate levels in diet as well, however, no significant difference was found between 16% and 19% CP levels. Therefore, 16% CP in concentrate and increasing proportion of concentrate up to 80% in diet all had improved digestibility of DM and organic matter, and higher microbial protein production, with improved fermentation characteristics.

  17. Nutritive evaluation of Telfairia occidentalis leaf protein concentrate ...

    African Journals Online (AJOL)

    Leaf meal (LM), leaf proteins concentrate (LPC) and LPC residues from Telfairia occidentalis were produced, chemically characterized and the protein quality of the LPC evaluated using rats. Five infant weaning foods were formulated using varying combinations of T. occidentalis LPC and soybean meal. These foods were ...

  18. Automatic selection of reference taxa for protein-protein interaction prediction with phylogenetic profiling

    DEFF Research Database (Denmark)

    Simonsen, Martin; Maetschke, S.R.; Ragan, M.A.

    2012-01-01

    Motivation: Phylogenetic profiling methods can achieve good accuracy in predicting protein–protein interactions, especially in prokaryotes. Recent studies have shown that the choice of reference taxa (RT) is critical for accurate prediction, but with more than 2500 fully sequenced taxa publicly......: We present three novel methods for automating the selection of RT, using machine learning based on known protein–protein interaction networks. One of these methods in particular, Tree-Based Search, yields greatly improved prediction accuracies. We further show that different methods for constituting...... phylogenetic profiles often require very different RT sets to support high prediction accuracy....

  19. Dynamics and Predictive Potential of Antibodies against Insect-Derived Recombinant Leishmania infantum Proteins during Chemotherapy of Naturally Infected Dogs

    Science.gov (United States)

    Todolí, Felicitat; Galindo, Inmaculada; Gómez-Sebastián, Silvia; Pérez-Filgueira, Mariano; Escribano, José M.; Alberola, Jordi; Rodríguez-Cortés, Alhelí

    2010-01-01

    A predictive marker for the success treatment of canine leishmaniasis is required for the application of a more rational therapy protocol, which must improve the probability of cure and reduce Leishmania resistance to drugs. We investigated the dynamics and predictive value of antibodies against insect-derived recombinant L. infantum proteins rKMPII and rTRYP by using an enzyme-linked immunosorbent assay with retrospective serum samples from 36 dogs during treatment of canine leishmaniasis. In the entire group of dogs, concentrations of antibodies against rKMPII and rTRYP significantly decreased earlier than concentrations of antibodies against crude total Leishmania antigen (one versus six months), which suggested that the dynamics of antibodies against recombinant proteins may be useful for assessing clinical improvement after treatment. Interestingly, decreases in antibody concentrations against rKMPII occurred earlier in disease-free dogs than in dogs that remain clinically ill one year after beginning of treatment, which suggested that these antibodies may be useful for predicting disease-free survival one year after the beginning of therapy against canine leishmaniasis. PMID:20439957

  20. A computational tool to predict the evolutionarily conserved protein-protein interaction hot-spot residues from the structure of the unbound protein.

    Science.gov (United States)

    Agrawal, Neeraj J; Helk, Bernhard; Trout, Bernhardt L

    2014-01-21

    Identifying hot-spot residues - residues that are critical to protein-protein binding - can help to elucidate a protein's function and assist in designing therapeutic molecules to target those residues. We present a novel computational tool, termed spatial-interaction-map (SIM), to predict the hot-spot residues of an evolutionarily conserved protein-protein interaction from the structure of an unbound protein alone. SIM can predict the protein hot-spot residues with an accuracy of 36-57%. Thus, the SIM tool can be used to predict the yet unknown hot-spot residues for many proteins for which the structure of the protein-protein complexes are not available, thereby providing a clue to their functions and an opportunity to design therapeutic molecules to target these proteins. Copyright © 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  1. An Overview of the Prediction of Protein DNA-Binding Sites

    Directory of Open Access Journals (Sweden)

    Jingna Si

    2015-03-01

    Full Text Available Interactions between proteins and DNA play an important role in many essential biological processes such as DNA replication, transcription, splicing, and repair. The identification of amino acid residues involved in DNA-binding sites is critical for understanding the mechanism of these biological activities. In the last decade, numerous computational approaches have been developed to predict protein DNA-binding sites based on protein sequence and/or structural information, which play an important role in complementing experimental strategies. At this time, approaches can be divided into three categories: sequence-based DNA-binding site prediction, structure-based DNA-binding site prediction, and homology modeling and threading. In this article, we review existing research on computational methods to predict protein DNA-binding sites, which includes data sets, various residue sequence/structural features, machine learning methods for comparison and selection, evaluation methods, performance comparison of different tools, and future directions in protein DNA-binding site prediction. In particular, we detail the meta-analysis of protein DNA-binding sites. We also propose specific implications that are likely to result in novel prediction methods, increased performance, or practical applications.

  2. Predicting protein-protein interactions in Arabidopsis thaliana through integration of orthology, gene ontology and co-expression

    Directory of Open Access Journals (Sweden)

    Vandepoele Klaas

    2009-06-01

    Full Text Available Abstract Background Large-scale identification of the interrelationships between different components of the cell, such as the interactions between proteins, has recently gained great interest. However, unraveling large-scale protein-protein interaction maps is laborious and expensive. Moreover, assessing the reliability of the interactions can be cumbersome. Results In this study, we have developed a computational method that exploits the existing knowledge on protein-protein interactions in diverse species through orthologous relations on the one hand, and functional association data on the other hand to predict and filter protein-protein interactions in Arabidopsis thaliana. A highly reliable set of protein-protein interactions is predicted through this integrative approach making use of existing protein-protein interaction data from yeast, human, C. elegans and D. melanogaster. Localization, biological process, and co-expression data are used as powerful indicators for protein-protein interactions. The functional repertoire of the identified interactome reveals interactions between proteins functioning in well-conserved as well as plant-specific biological processes. We observe that although common mechanisms (e.g. actin polymerization and components (e.g. ARPs, actin-related proteins exist between different lineages, they are active in specific processes such as growth, cancer metastasis and trichome development in yeast, human and Arabidopsis, respectively. Conclusion We conclude that the integration of orthology with functional association data is adequate to predict protein-protein interactions. Through this approach, a high number of novel protein-protein interactions with diverse biological roles is discovered. Overall, we have predicted a reliable set of protein-protein interactions suitable for further computational as well as experimental analyses.

  3. Blood harmane concentrations and dietary protein consumption in essential tremor.

    Science.gov (United States)

    Louis, E D; Zheng, W; Applegate, L; Shi, L; Factor-Litvak, P

    2005-08-09

    Beta-carboline alkaloids (e.g., harmane) are highly tremorogenic chemicals. Animal protein (meat) is the major dietary source of these alkaloids. The authors previously demonstrated that blood harmane concentrations were elevated in patients with essential tremor (ET) vs controls. Whether this difference is due to greater animal protein consumption by patients or their failure to metabolize harmane is unknown. The aim of this study was to determine whether patients with ET and controls differ with regard to 1) daily animal protein consumption and 2) the correlation between animal protein consumption and blood harmane concentration. Data on current diet were collected with a semiquantitative food frequency questionnaire and daily calories and consumption of animal protein and other food types was calculated. Blood harmane concentrations were log-transformed (logHA). The mean logHA was higher in 106 patients than 161 controls (0.61 +/- 0.67 vs 0.43 +/- 0.72 g(-10)/mL, p = 0.035). Patients and controls consumed similar amounts of animal protein (50.2 +/- 19.6 vs 49.4 +/- 19.1 g/day, p = 0.74) and other food types (animal fat, carbohydrates, vegetable fat) and had similar caloric intakes. In controls, logHA was correlated with daily consumption of animal protein (r = 0.24, p = 0.003); in patients, there was no such correlation (r = -0.003, p = 0.98). The similarity between patients and controls in daily animal protein consumption and the absence of the normal correlation between daily animal protein consumption and logHA in patients suggests that another factor (e.g., a metabolic defect) may be increasing blood harmane concentration in patients.

  4. Protein (multi-)location prediction: utilizing interdependencies via a generative model.

    Science.gov (United States)

    Simha, Ramanuja; Briesemeister, Sebastian; Kohlbacher, Oliver; Shatkay, Hagit

    2015-06-15

    Proteins are responsible for a multitude of vital tasks in all living organisms. Given that a protein's function and role are strongly related to its subcellular location, protein location prediction is an important research area. While proteins move from one location to another and can localize to multiple locations, most existing location prediction systems assign only a single location per protein. A few recent systems attempt to predict multiple locations for proteins, however, their performance leaves much room for improvement. Moreover, such systems do not capture dependencies among locations and usually consider locations as independent. We hypothesize that a multi-location predictor that captures location inter-dependencies can improve location predictions for proteins. We introduce a probabilistic generative model for protein localization, and develop a system based on it-which we call MDLoc-that utilizes inter-dependencies among locations to predict multiple locations for proteins. The model captures location inter-dependencies using Bayesian networks and represents dependency between features and locations using a mixture model. We use iterative processes for learning model parameters and for estimating protein locations. We evaluate our classifier MDLoc, on a dataset of single- and multi-localized proteins derived from the DBMLoc dataset, which is the most comprehensive protein multi-localization dataset currently available. Our results, obtained by using MDLoc, significantly improve upon results obtained by an initial simpler classifier, as well as on results reported by other top systems. MDLoc is available at: http://www.eecis.udel.edu/∼compbio/mdloc. © The Author 2015. Published by Oxford University Press.

  5. Boosting compound-protein interaction prediction by deep learning.

    Science.gov (United States)

    Tian, Kai; Shao, Mingyu; Wang, Yang; Guan, Jihong; Zhou, Shuigeng

    2016-11-01

    The identification of interactions between compounds and proteins plays an important role in network pharmacology and drug discovery. However, experimentally identifying compound-protein interactions (CPIs) is generally expensive and time-consuming, computational approaches are thus introduced. Among these, machine-learning based methods have achieved a considerable success. However, due to the nonlinear and imbalanced nature of biological data, many machine learning approaches have their own limitations. Recently, deep learning techniques show advantages over many state-of-the-art machine learning methods in some applications. In this study, we aim at improving the performance of CPI prediction based on deep learning, and propose a method called DL-CPI (the abbreviation of Deep Learning for Compound-Protein Interactions prediction), which employs deep neural network (DNN) to effectively learn the representations of compound-protein pairs. Extensive experiments show that DL-CPI can learn useful features of compound-protein pairs by a layerwise abstraction, and thus achieves better prediction performance than existing methods on both balanced and imbalanced datasets. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Comparing human-Salmonella with plant-Salmonella protein-protein interaction predictions

    Directory of Open Access Journals (Sweden)

    Sylvia eSchleker

    2015-01-01

    Full Text Available Salmonellosis is the most frequent food-borne disease world-wide and can be transmitted to humans by a variety of routes, especially via animal and plant products. Salmonella bacteria are believed to use not only animal and human but also plant hosts despite their evolutionary distance. This raises the question if Salmonella employs similar mechanisms in infection of these diverse hosts. Given that most of our understanding comes from its interaction with human hosts, we investigate here to what degree knowledge of Salmonella-human interactions can be transferred to the Salmonella-plant system. Reviewed are recent publications on analysis and prediction of Salmonella-host interactomes. Putative protein-protein interactions (PPIs between Salmonella and its human and Arabidopsis hosts were retrieved utilizing purely interolog-based approaches in which predictions were inferred based on available sequence and domain information of known PPIs, and machine learning approaches that integrate a larger set of useful information from different sources. Transfer learning is an especially suitable machine learning technique to predict plant host targets from the knowledge of human host targets. A comparison of the prediction results with transcriptomic data shows a clear overlap between the host proteins predicted to be targeted by PPIs and their gene ontology enrichment in both host species and regulation of gene expression. In particular, the cellular processes Salmonella interferes with in plants and humans are catabolic processes. The details of how these processes are targeted, however, are quite different between the two organisms, as expected based on their evolutionary and habitat differences. Possible implications of this observation on evolution of host-pathogen communication are discussed.

  7. Prediction of protein hydration sites from sequence by modular neural networks

    DEFF Research Database (Denmark)

    Ehrlich, L.; Reczko, M.; Bohr, Henrik

    1998-01-01

    The hydration properties of a protein are important determinants of its structure and function. Here, modular neural networks are employed to predict ordered hydration sites using protein sequence information. First, secondary structure and solvent accessibility are predicted from sequence with two...... separate neural networks. These predictions are used as input together with protein sequences for networks predicting hydration of residues, backbone atoms and sidechains. These networks are teined with protein crystal structures. The prediction of hydration is improved by adding information on secondary...... structure and solvent accessibility and, using actual values of these properties, redidue hydration can be predicted to 77% accuracy with a Metthews coefficient of 0.43. However, predicted property data with an accuracy of 60-70% result in less than half the improvement in predictive performance observed...

  8. Prediction of heterodimeric protein complexes from weighted protein-protein interaction networks using novel features and kernel functions.

    Directory of Open Access Journals (Sweden)

    Peiying Ruan

    Full Text Available Since many proteins express their functional activity by interacting with other proteins and forming protein complexes, it is very useful to identify sets of proteins that form complexes. For that purpose, many prediction methods for protein complexes from protein-protein interactions have been developed such as MCL, MCODE, RNSC, PCP, RRW, and NWE. These methods have dealt with only complexes with size of more than three because the methods often are based on some density of subgraphs. However, heterodimeric protein complexes that consist of two distinct proteins occupy a large part according to several comprehensive databases of known complexes. In this paper, we propose several feature space mappings from protein-protein interaction data, in which each interaction is weighted based on reliability. Furthermore, we make use of prior knowledge on protein domains to develop feature space mappings, domain composition kernel and its combination kernel with our proposed features. We perform ten-fold cross-validation computational experiments. These results suggest that our proposed kernel considerably outperforms the naive Bayes-based method, which is the best existing method for predicting heterodimeric protein complexes.

  9. Exploration of the dynamic properties of protein complexes predicted from spatially constrained protein-protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Eric A Yen

    2014-05-01

    Full Text Available Protein complexes are not static, but rather highly dynamic with subunits that undergo 1-dimensional diffusion with respect to each other. Interactions within protein complexes are modulated through regulatory inputs that alter interactions and introduce new components and deplete existing components through exchange. While it is clear that the structure and function of any given protein complex is coupled to its dynamical properties, it remains a challenge to predict the possible conformations that complexes can adopt. Protein-fragment Complementation Assays detect physical interactions between protein pairs constrained to ≤8 nm from each other in living cells. This method has been used to build networks composed of 1000s of pair-wise interactions. Significantly, these networks contain a wealth of dynamic information, as the assay is fully reversible and the proteins are expressed in their natural context. In this study, we describe a method that extracts this valuable information in the form of predicted conformations, allowing the user to explore the conformational landscape, to search for structures that correlate with an activity state, and estimate the abundance of conformations in the living cell. The generator is based on a Markov Chain Monte Carlo simulation that uses the interaction dataset as input and is constrained by the physical resolution of the assay. We applied this method to an 18-member protein complex composed of the seven core proteins of the budding yeast Arp2/3 complex and 11 associated regulators and effector proteins. We generated 20,480 output structures and identified conformational states using principle component analysis. We interrogated the conformation landscape and found evidence of symmetry breaking, a mixture of likely active and inactive conformational states and dynamic exchange of the core protein Arc15 between core and regulatory components. Our method provides a novel tool for prediction and

  10. Radionuclides and selected trace elements in marine protein concentrates

    Energy Technology Data Exchange (ETDEWEB)

    Beasley, T M; Jokela, T A; Eagle, R J

    1971-12-01

    The concentrations of various trace elements and radionuclides have been measured in marine protein concentrates prepared from surface feeding fishes. As with concentrates prepared from benthic fishes, the /sup 210/Pb-/sup 210/Po pair are the most significant radionuclides present. Concentrations of stable Pb, Co and Ag in certain concentrates are sufficiently high to contribute substantially to estimated current intakes of these elements.

  11. Improving N-terminal protein annotation of Plasmodium species based on signal peptide prediction of orthologous proteins

    Directory of Open Access Journals (Sweden)

    Neto Armando

    2012-11-01

    Full Text Available Abstract Background Signal peptide is one of the most important motifs involved in protein trafficking and it ultimately influences protein function. Considering the expected functional conservation among orthologs it was hypothesized that divergence in signal peptides within orthologous groups is mainly due to N-terminal protein sequence misannotation. Thus, discrepancies in signal peptide prediction of orthologous proteins were used to identify misannotated proteins in five Plasmodium species. Methods Signal peptide (SignalP and orthology (OrthoMCL were combined in an innovative strategy to identify orthologous groups showing discrepancies in signal peptide prediction among their protein members (Mixed groups. In a comparative analysis, multiple alignments for each of these groups and gene models were visually inspected in search of misannotated proteins and, whenever possible, alternative gene models were proposed. Thresholds for signal peptide prediction parameters were also modified to reduce their impact as a possible source of discrepancy among orthologs. Validation of new gene models was based on RT-PCR (few examples or on experimental evidence already published (ApiLoc. Results The rate of misannotated proteins was significantly higher in Mixed groups than in Positive or Negative groups, corroborating the proposed hypothesis. A total of 478 proteins were reannotated and change of signal peptide prediction from negative to positive was the most common. Reannotations triggered the conversion of almost 50% of all Mixed groups, which were further reduced by optimization of signal peptide prediction parameters. Conclusions The methodological novelty proposed here combining orthology and signal peptide prediction proved to be an effective strategy for the identification of proteins showing wrongly N-terminal annotated sequences, and it might have an important impact in the available data for genome-wide searching of potential vaccine and drug

  12. Protein (multi-)location prediction: utilizing interdependencies via a generative model

    Science.gov (United States)

    Shatkay, Hagit

    2015-01-01

    Motivation: Proteins are responsible for a multitude of vital tasks in all living organisms. Given that a protein’s function and role are strongly related to its subcellular location, protein location prediction is an important research area. While proteins move from one location to another and can localize to multiple locations, most existing location prediction systems assign only a single location per protein. A few recent systems attempt to predict multiple locations for proteins, however, their performance leaves much room for improvement. Moreover, such systems do not capture dependencies among locations and usually consider locations as independent. We hypothesize that a multi-location predictor that captures location inter-dependencies can improve location predictions for proteins. Results: We introduce a probabilistic generative model for protein localization, and develop a system based on it—which we call MDLoc—that utilizes inter-dependencies among locations to predict multiple locations for proteins. The model captures location inter-dependencies using Bayesian networks and represents dependency between features and locations using a mixture model. We use iterative processes for learning model parameters and for estimating protein locations. We evaluate our classifier MDLoc, on a dataset of single- and multi-localized proteins derived from the DBMLoc dataset, which is the most comprehensive protein multi-localization dataset currently available. Our results, obtained by using MDLoc, significantly improve upon results obtained by an initial simpler classifier, as well as on results reported by other top systems. Availability and implementation: MDLoc is available at: http://www.eecis.udel.edu/∼compbio/mdloc. Contact: shatkay@udel.edu. PMID:26072505

  13. Improving protein-protein interaction prediction using evolutionary information from low-quality MSAs.

    Science.gov (United States)

    Várnai, Csilla; Burkoff, Nikolas S; Wild, David L

    2017-01-01

    Evolutionary information stored in multiple sequence alignments (MSAs) has been used to identify the interaction interface of protein complexes, by measuring either co-conservation or co-mutation of amino acid residues across the interface. Recently, maximum entropy related correlated mutation measures (CMMs) such as direct information, decoupling direct from indirect interactions, have been developed to identify residue pairs interacting across the protein complex interface. These studies have focussed on carefully selected protein complexes with large, good-quality MSAs. In this work, we study protein complexes with a more typical MSA consisting of fewer than 400 sequences, using a set of 79 intramolecular protein complexes. Using a maximum entropy based CMM at the residue level, we develop an interface level CMM score to be used in re-ranking docking decoys. We demonstrate that our interface level CMM score compares favourably to the complementarity trace score, an evolutionary information-based score measuring co-conservation, when combined with the number of interface residues, a knowledge-based potential and the variability score of individual amino acid sites. We also demonstrate, that, since co-mutation and co-complementarity in the MSA contain orthogonal information, the best prediction performance using evolutionary information can be achieved by combining the co-mutation information of the CMM with co-conservation information of a complementarity trace score, predicting a near-native structure as the top prediction for 41% of the dataset. The method presented is not restricted to small MSAs, and will likely improve interface prediction also for complexes with large and good-quality MSAs.

  14. SitesIdentify: a protein functional site prediction tool

    Directory of Open Access Journals (Sweden)

    Doig Andrew J

    2009-11-01

    Full Text Available Abstract Background The rate of protein structures being deposited in the Protein Data Bank surpasses the capacity to experimentally characterise them and therefore computational methods to analyse these structures have become increasingly important. Identifying the region of the protein most likely to be involved in function is useful in order to gain information about its potential role. There are many available approaches to predict functional site, but many are not made available via a publicly-accessible application. Results Here we present a functional site prediction tool (SitesIdentify, based on combining sequence conservation information with geometry-based cleft identification, that is freely available via a web-server. We have shown that SitesIdentify compares favourably to other functional site prediction tools in a comparison of seven methods on a non-redundant set of 237 enzymes with annotated active sites. Conclusion SitesIdentify is able to produce comparable accuracy in predicting functional sites to its closest available counterpart, but in addition achieves improved accuracy for proteins with few characterised homologues. SitesIdentify is available via a webserver at http://www.manchester.ac.uk/bioinformatics/sitesidentify/

  15. CONCENTRATION AND RECOVERY OF PROTEIN FROM TUNA COOKING JUICE BY FORWARD OSMOSIS

    Directory of Open Access Journals (Sweden)

    KHONGNAKORN W.

    2016-07-01

    Full Text Available Tuna cooking processing plants generate large amount of cooking juice containing a significant content of protein. Recovery and concentrating process of this valuable compound together with a low energy consumption process are of interest regarding full utilization concept and green process approach. Forward osmosis (FO was employed in this work to recover and concentrate tuna cooking juice. FO process could increase the protein concentration up to 9% with an average permeate flux of 2.54 L/m2h. The permeate flux however tended to decrease as protein concentration increased due to the impact of osmotic pressure of the feed and fouling on the membrane surface. Since tuna cooking juice consists of protein and minerals, membrane analyses indicated that fouling was more severe compared to the fouling caused by standard bovine serum albumin pure protein. However, the presence of minerals rendered it a quicker and lower energy process by comparison. These results indicated that FO is a promising technique in the recovery and concentration of tuna cooking juice protein.

  16. Prediction of methyl-side Chain Dynamics in Proteins

    International Nuclear Information System (INIS)

    Ming Dengming; Brueschweiler, Rafael

    2004-01-01

    A simple analytical model is presented for the prediction of methyl-side chain dynamics in comparison with S 2 order parameters obtained by NMR relaxation spectroscopy. The model, which is an extension of the local contact model for backbone order parameter prediction, uses a static 3D protein structure as input. It expresses the methyl-group S 2 order parameters as a function of local contacts of the methyl carbon with respect to the neighboring atoms in combination with the number of consecutive mobile dihedral angles between the methyl group and the protein backbone. For six out of seven proteins the prediction results are good when compared with experimentally determined methyl-group S 2 values with an average correlation coefficient r-bar=0.65±0.14. For the unusually rigid cytochrome c 2 no significant correlation between prediction and experiment is found. The presented model provides independent support for the reliability of current side-chain relaxation methods along with their interpretation by the model-free formalism

  17. Utilizing knowledge base of amino acids structural neighborhoods to predict protein-protein interaction sites.

    Science.gov (United States)

    Jelínek, Jan; Škoda, Petr; Hoksza, David

    2017-12-06

    Protein-protein interactions (PPI) play a key role in an investigation of various biochemical processes, and their identification is thus of great importance. Although computational prediction of which amino acids take part in a PPI has been an active field of research for some time, the quality of in-silico methods is still far from perfect. We have developed a novel prediction method called INSPiRE which benefits from a knowledge base built from data available in Protein Data Bank. All proteins involved in PPIs were converted into labeled graphs with nodes corresponding to amino acids and edges to pairs of neighboring amino acids. A structural neighborhood of each node was then encoded into a bit string and stored in the knowledge base. When predicting PPIs, INSPiRE labels amino acids of unknown proteins as interface or non-interface based on how often their structural neighborhood appears as interface or non-interface in the knowledge base. We evaluated INSPiRE's behavior with respect to different types and sizes of the structural neighborhood. Furthermore, we examined the suitability of several different features for labeling the nodes. Our evaluations showed that INSPiRE clearly outperforms existing methods with respect to Matthews correlation coefficient. In this paper we introduce a new knowledge-based method for identification of protein-protein interaction sites called INSPiRE. Its knowledge base utilizes structural patterns of known interaction sites in the Protein Data Bank which are then used for PPI prediction. Extensive experiments on several well-established datasets show that INSPiRE significantly surpasses existing PPI approaches.

  18. Improving accuracy of protein-protein interaction prediction by considering the converse problem for sequence representation

    Directory of Open Access Journals (Sweden)

    Wang Yong

    2011-10-01

    Full Text Available Abstract Background With the development of genome-sequencing technologies, protein sequences are readily obtained by translating the measured mRNAs. Therefore predicting protein-protein interactions from the sequences is of great demand. The reason lies in the fact that identifying protein-protein interactions is becoming a bottleneck for eventually understanding the functions of proteins, especially for those organisms barely characterized. Although a few methods have been proposed, the converse problem, if the features used extract sufficient and unbiased information from protein sequences, is almost untouched. Results In this study, we interrogate this problem theoretically by an optimization scheme. Motivated by the theoretical investigation, we find novel encoding methods for both protein sequences and protein pairs. Our new methods exploit sufficiently the information of protein sequences and reduce artificial bias and computational cost. Thus, it significantly outperforms the available methods regarding sensitivity, specificity, precision, and recall with cross-validation evaluation and reaches ~80% and ~90% accuracy in Escherichia coli and Saccharomyces cerevisiae respectively. Our findings here hold important implication for other sequence-based prediction tasks because representation of biological sequence is always the first step in computational biology. Conclusions By considering the converse problem, we propose new representation methods for both protein sequences and protein pairs. The results show that our method significantly improves the accuracy of protein-protein interaction predictions.

  19. Predictability Analysis of PM10 Concentrations in Budapest

    Science.gov (United States)

    Ferenczi, Zita

    2013-04-01

    Climate, weather and air quality may have harmful effects on human health and environment. Over the past few hundred years we had to face the changes in climate in parallel with the changes in air quality. These observed changes in climate, weather and air quality continuously interact with each other: pollutants are changing the climate, thus changing the weather, but climate also has impacts on air quality. The increasing number of extreme weather situations may be a result of climate change, which could create favourable conditions for rising of pollutant concentrations. Air quality in Budapest is determined by domestic and traffic emissions combined with the meteorological conditions. In some cases, the effect of long-range transport could also be essential. While the time variability of the industrial and traffic emissions is not significant, the domestic emissions increase in winter season. In recent years, PM10 episodes have caused the most critical air quality problems in Budapest, especially in winter. In Budapest, an air quality network of 11 stations detects the concentration values of different pollutants hourly. The Hungarian Meteorological Service has developed an air quality prediction model system for the area of Budapest. The system forecasts the concentration of air pollutants (PM10, NO2, SO2 and O3) for two days in advance. In this work we used meteorological parameters and PM10 data detected by the stations of the air quality network, as well as the forecasted PM10 values of the air quality prediction model system. In this work we present the evaluation of PM10 predictions in the last two years and the most important meteorological parameters affecting PM10 concentration. The results of this analysis determine the effect of the meteorological parameters and the emission of aerosol particles on the PM10 concentration values as well as the limits of this prediction system.

  20. Protein structure prediction using bee colony optimization metaheuristic

    DEFF Research Database (Denmark)

    Fonseca, Rasmus; Paluszewski, Martin; Winter, Pawel

    2010-01-01

    of the proteins structure, an energy potential and some optimization algorithm that ¿nds the structure with minimal energy. Bee Colony Optimization (BCO) is a relatively new approach to solving opti- mization problems based on the foraging behaviour of bees. Several variants of BCO have been suggested......Predicting the native structure of proteins is one of the most challenging problems in molecular biology. The goal is to determine the three-dimensional struc- ture from the one-dimensional amino acid sequence. De novo prediction algorithms seek to do this by developing a representation...... our BCO method to generate good solutions to the protein structure prediction problem. The results show that BCO generally ¿nds better solutions than simulated annealing which so far has been the metaheuristic of choice for this problem....

  1. DomPep--a general method for predicting modular domain-mediated protein-protein interactions.

    Directory of Open Access Journals (Sweden)

    Lei Li

    Full Text Available Protein-protein interactions (PPIs are frequently mediated by the binding of a modular domain in one protein to a short, linear peptide motif in its partner. The advent of proteomic methods such as peptide and protein arrays has led to the accumulation of a wealth of interaction data for modular interaction domains. Although several computational programs have been developed to predict modular domain-mediated PPI events, they are often restricted to a given domain type. We describe DomPep, a method that can potentially be used to predict PPIs mediated by any modular domains. DomPep combines proteomic data with sequence information to achieve high accuracy and high coverage in PPI prediction. Proteomic binding data were employed to determine a simple yet novel parameter Ligand-Binding Similarity which, in turn, is used to calibrate Domain Sequence Identity and Position-Weighted-Matrix distance, two parameters that are used in constructing prediction models. Moreover, DomPep can be used to predict PPIs for both domains with experimental binding data and those without. Using the PDZ and SH2 domain families as test cases, we show that DomPep can predict PPIs with accuracies superior to existing methods. To evaluate DomPep as a discovery tool, we deployed DomPep to identify interactions mediated by three human PDZ domains. Subsequent in-solution binding assays validated the high accuracy of DomPep in predicting authentic PPIs at the proteome scale. Because DomPep makes use of only interaction data and the primary sequence of a domain, it can be readily expanded to include other types of modular domains.

  2. Preclinical models used for immunogenicity prediction of therapeutic proteins.

    Science.gov (United States)

    Brinks, Vera; Weinbuch, Daniel; Baker, Matthew; Dean, Yann; Stas, Philippe; Kostense, Stefan; Rup, Bonita; Jiskoot, Wim

    2013-07-01

    All therapeutic proteins are potentially immunogenic. Antibodies formed against these drugs can decrease efficacy, leading to drastically increased therapeutic costs and in rare cases to serious and sometimes life threatening side-effects. Many efforts are therefore undertaken to develop therapeutic proteins with minimal immunogenicity. For this, immunogenicity prediction of candidate drugs during early drug development is essential. Several in silico, in vitro and in vivo models are used to predict immunogenicity of drug leads, to modify potentially immunogenic properties and to continue development of drug candidates with expected low immunogenicity. Despite the extensive use of these predictive models, their actual predictive value varies. Important reasons for this uncertainty are the limited/insufficient knowledge on the immune mechanisms underlying immunogenicity of therapeutic proteins, the fact that different predictive models explore different components of the immune system and the lack of an integrated clinical validation. In this review, we discuss the predictive models in use, summarize aspects of immunogenicity that these models predict and explore the merits and the limitations of each of the models.

  3. Predicting turns in proteins with a unified model.

    Directory of Open Access Journals (Sweden)

    Qi Song

    Full Text Available MOTIVATION: Turns are a critical element of the structure of a protein; turns play a crucial role in loops, folds, and interactions. Current prediction methods are well developed for the prediction of individual turn types, including α-turn, β-turn, and γ-turn, etc. However, for further protein structure and function prediction it is necessary to develop a uniform model that can accurately predict all types of turns simultaneously. RESULTS: In this study, we present a novel approach, TurnP, which offers the ability to investigate all the turns in a protein based on a unified model. The main characteristics of TurnP are: (i using newly exploited features of structural evolution information (secondary structure and shape string of protein based on structure homologies, (ii considering all types of turns in a unified model, and (iii practical capability of accurate prediction of all turns simultaneously for a query. TurnP utilizes predicted secondary structures and predicted shape strings, both of which have greater accuracy, based on innovative technologies which were both developed by our group. Then, sequence and structural evolution features, which are profile of sequence, profile of secondary structures and profile of shape strings are generated by sequence and structure alignment. When TurnP was validated on a non-redundant dataset (4,107 entries by five-fold cross-validation, we achieved an accuracy of 88.8% and a sensitivity of 71.8%, which exceeded the most state-of-the-art predictors of certain type of turn. Newly determined sequences, the EVA and CASP9 datasets were used as independent tests and the results we achieved were outstanding for turn predictions and confirmed the good performance of TurnP for practical applications.

  4. Prediction and Dissection of Protein-RNA Interactions by Molecular Descriptors.

    Science.gov (United States)

    Liu, Zhi-Ping; Chen, Luonan

    2016-01-01

    Protein-RNA interactions play crucial roles in numerous biological processes. However, detecting the interactions and binding sites between protein and RNA by traditional experiments is still time consuming and labor costing. Thus, it is of importance to develop bioinformatics methods for predicting protein-RNA interactions and binding sites. Accurate prediction of protein-RNA interactions and recognitions will highly benefit to decipher the interaction mechanisms between protein and RNA, as well as to improve the RNA-related protein engineering and drug design. In this work, we summarize the current bioinformatics strategies of predicting protein-RNA interactions and dissecting protein-RNA interaction mechanisms from local structure binding motifs. In particular, we focus on the feature-based machine learning methods, in which the molecular descriptors of protein and RNA are extracted and integrated as feature vectors of representing the interaction events and recognition residues. In addition, the available methods are classified and compared comprehensively. The molecular descriptors are expected to elucidate the binding mechanisms of protein-RNA interaction and reveal the functional implications from structural complementary perspective.

  5. Scoring protein relationships in functional interaction networks predicted from sequence data.

    Directory of Open Access Journals (Sweden)

    Gaston K Mazandu

    Full Text Available UNLABELLED: The abundance of diverse biological data from various sources constitutes a rich source of knowledge, which has the power to advance our understanding of organisms. This requires computational methods in order to integrate and exploit these data effectively and elucidate local and genome wide functional connections between protein pairs, thus enabling functional inferences for uncharacterized proteins. These biological data are primarily in the form of sequences, which determine functions, although functional properties of a protein can often be predicted from just the domains it contains. Thus, protein sequences and domains can be used to predict protein pair-wise functional relationships, and thus contribute to the function prediction process of uncharacterized proteins in order to ensure that knowledge is gained from sequencing efforts. In this work, we introduce information-theoretic based approaches to score protein-protein functional interaction pairs predicted from protein sequence similarity and conserved protein signature matches. The proposed schemes are effective for data-driven scoring of connections between protein pairs. We applied these schemes to the Mycobacterium tuberculosis proteome to produce a homology-based functional network of the organism with a high confidence and coverage. We use the network for predicting functions of uncharacterised proteins. AVAILABILITY: Protein pair-wise functional relationship scores for Mycobacterium tuberculosis strain CDC1551 sequence data and python scripts to compute these scores are available at http://web.cbio.uct.ac.za/~gmazandu/scoringschemes.

  6. MetaGO: Predicting Gene Ontology of Non-homologous Proteins Through Low-Resolution Protein Structure Prediction and Protein-Protein Network Mapping.

    Science.gov (United States)

    Zhang, Chengxin; Zheng, Wei; Freddolino, Peter L; Zhang, Yang

    2018-03-10

    Homology-based transferal remains the major approach to computational protein function annotations, but it becomes increasingly unreliable when the sequence identity between query and template decreases below 30%. We propose a novel pipeline, MetaGO, to deduce Gene Ontology attributes of proteins by combining sequence homology-based annotation with low-resolution structure prediction and comparison, and partner's homology-based protein-protein network mapping. The pipeline was tested on a large-scale set of 1000 non-redundant proteins from the CAFA3 experiment. Under the stringent benchmark conditions where templates with >30% sequence identity to the query are excluded, MetaGO achieves average F-measures of 0.487, 0.408, and 0.598, for Molecular Function, Biological Process, and Cellular Component, respectively, which are significantly higher than those achieved by other state-of-the-art function annotations methods. Detailed data analysis shows that the major advantage of the MetaGO lies in the new functional homolog detections from partner's homology-based network mapping and structure-based local and global structure alignments, the confidence scores of which can be optimally combined through logistic regression. These data demonstrate the power of using a hybrid model incorporating protein structure and interaction networks to deduce new functional insights beyond traditional sequence homology-based referrals, especially for proteins that lack homologous function templates. The MetaGO pipeline is available at http://zhanglab.ccmb.med.umich.edu/MetaGO/. Copyright © 2018. Published by Elsevier Ltd.

  7. DeepLoc: prediction of protein subcellular localization using deep learning

    DEFF Research Database (Denmark)

    Almagro Armenteros, Jose Juan; Sønderby, Casper Kaae; Sønderby, Søren Kaae

    2017-01-01

    The prediction of eukaryotic protein subcellular localization is a well-studied topic in bioinformatics due to its relevance in proteomics research. Many machine learning methods have been successfully applied in this task, but in most of them, predictions rely on annotation of homologues from...... knowledge databases. For novel proteins where no annotated homologues exist, and for predicting the effects of sequence variants, it is desirable to have methods for predicting protein properties from sequence information only. Here, we present a prediction algorithm using deep neural networks to predict...... current state-of-the-art algorithms, including those relying on homology information. The method is available as a web server at http://www.cbs.dtu.dk/services/DeepLoc . Example code is available at https://github.com/JJAlmagro/subcellular_localization . The dataset is available at http...

  8. Application of XGBoost algorithm in hourly PM2.5 concentration prediction

    Science.gov (United States)

    Pan, Bingyue

    2018-02-01

    In view of prediction techniques of hourly PM2.5 concentration in China, this paper applied the XGBoost(Extreme Gradient Boosting) algorithm to predict hourly PM2.5 concentration. The monitoring data of air quality in Tianjin city was analyzed by using XGBoost algorithm. The prediction performance of the XGBoost method is evaluated by comparing observed and predicted PM2.5 concentration using three measures of forecast accuracy. The XGBoost method is also compared with the random forest algorithm, multiple linear regression, decision tree regression and support vector machines for regression models using computational results. The results demonstrate that the XGBoost algorithm outperforms other data mining methods.

  9. Stringent DDI-based prediction of H. sapiens-M. tuberculosis H37Rv protein-protein interactions.

    Science.gov (United States)

    Zhou, Hufeng; Rezaei, Javad; Hugo, Willy; Gao, Shangzhi; Jin, Jingjing; Fan, Mengyuan; Yong, Chern-Han; Wozniak, Michal; Wong, Limsoon

    2013-01-01

    H. sapiens-M. tuberculosis H37Rv protein-protein interaction (PPI) data are very important information to illuminate the infection mechanism of M. tuberculosis H37Rv. But current H. sapiens-M. tuberculosis H37Rv PPI data are very scarce. This seriously limits the study of the interaction between this important pathogen and its host H. sapiens. Computational prediction of H. sapiens-M. tuberculosis H37Rv PPIs is an important strategy to fill in the gap. Domain-domain interaction (DDI) based prediction is one of the frequently used computational approaches in predicting both intra-species and inter-species PPIs. However, the performance of DDI-based host-pathogen PPI prediction has been rather limited. We develop a stringent DDI-based prediction approach with emphasis on (i) differences between the specific domain sequences on annotated regions of proteins under the same domain ID and (ii) calculation of the interaction strength of predicted PPIs based on the interacting residues in their interaction interfaces. We compare our stringent DDI-based approach to a conventional DDI-based approach for predicting PPIs based on gold standard intra-species PPIs and coherent informative Gene Ontology terms assessment. The assessment results show that our stringent DDI-based approach achieves much better performance in predicting PPIs than the conventional approach. Using our stringent DDI-based approach, we have predicted a small set of reliable H. sapiens-M. tuberculosis H37Rv PPIs which could be very useful for a variety of related studies. We also analyze the H. sapiens-M. tuberculosis H37Rv PPIs predicted by our stringent DDI-based approach using cellular compartment distribution analysis, functional category enrichment analysis and pathway enrichment analysis. The analyses support the validity of our prediction result. Also, based on an analysis of the H. sapiens-M. tuberculosis H37Rv PPI network predicted by our stringent DDI-based approach, we have discovered some

  10. A dual small-molecule rheostat for precise control of protein concentration in Mammalian cells.

    Science.gov (United States)

    Lin, Yu Hsuan; Pratt, Matthew R

    2014-04-14

    One of the most successful strategies for controlling protein concentrations in living cells relies on protein destabilization domains (DD). Under normal conditions, a DD will be rapidly degraded by the proteasome. However, the same DD can be stabilized or "shielded" in a stoichiometric complex with a small molecule, enabling dose-dependent control of its concentration. This process has been exploited by several labs to post-translationally control the expression levels of proteins in vitro as well as in vivo, although the previous technologies resulted in permanent fusion of the protein of interest to the DD, which can affect biological activity and complicate results. We previously reported a complementary strategy, termed traceless shielding (TShld), in which the protein of interest is released in its native form. Here, we describe an optimized protein concentration control system, TTShld, which retains the traceless features of TShld but utilizes two tiers of small molecule control to set protein concentrations in living cells. These experiments provide the first protein concentration control system that results in both a wide range of protein concentrations and proteins free from engineered fusion constructs. The TTShld system has a greatly improved dynamic range compared to our previously reported system, and the traceless feature is attractive for elucidation of the consequences of protein concentration in cell biology. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Predicting membrane protein types by fusing composite protein sequence features into pseudo amino acid composition.

    Science.gov (United States)

    Hayat, Maqsood; Khan, Asifullah

    2011-02-21

    Membrane proteins are vital type of proteins that serve as channels, receptors, and energy transducers in a cell. Prediction of membrane protein types is an important research area in bioinformatics. Knowledge of membrane protein types provides some valuable information for predicting novel example of the membrane protein types. However, classification of membrane protein types can be both time consuming and susceptible to errors due to the inherent similarity of membrane protein types. In this paper, neural networks based membrane protein type prediction system is proposed. Composite protein sequence representation (CPSR) is used to extract the features of a protein sequence, which includes seven feature sets; amino acid composition, sequence length, 2 gram exchange group frequency, hydrophobic group, electronic group, sum of hydrophobicity, and R-group. Principal component analysis is then employed to reduce the dimensionality of the feature vector. The probabilistic neural network (PNN), generalized regression neural network, and support vector machine (SVM) are used as classifiers. A high success rate of 86.01% is obtained using SVM for the jackknife test. In case of independent dataset test, PNN yields the highest accuracy of 95.73%. These classifiers exhibit improved performance using other performance measures such as sensitivity, specificity, Mathew's correlation coefficient, and F-measure. The experimental results show that the prediction performance of the proposed scheme for classifying membrane protein types is the best reported, so far. This performance improvement may largely be credited to the learning capabilities of neural networks and the composite feature extraction strategy, which exploits seven different properties of protein sequences. The proposed Mem-Predictor can be accessed at http://111.68.99.218/Mem-Predictor. Copyright © 2010 Elsevier Ltd. All rights reserved.

  12. Application of infrared portable sensor technology for predicting perceived astringency of acidic whey protein beverages.

    Science.gov (United States)

    Wang, Ting; Tan, Siow-Ying; Mutilangi, William; Plans, Marcal; Rodriguez-Saona, Luis

    2016-12-01

    Formulating whey protein beverages at acidic pH provides better clarity but the beverages typically develop an unpleasant and astringent flavor. Our aim was to evaluate the application of infrared spectroscopy and chemometrics in predicting astringency of acidic whey protein beverages. Whey protein isolate (WPI), whey protein concentrate (WPC), and whey protein hydrolysate (WPH) from different manufacturers were used to formulate beverages at pH ranging from 2.2 to 3.9. Trained panelists using the spectrum method of descriptive analysis tested the beverages providing astringency scores. A portable Fourier transform infrared spectroscopy attenuated total reflectance spectrometer was used for spectra collection that was analyzed by multivariate regression analysis (partial least squares regression) to build calibration models with the sensory astringency scores. Beverage astringency scores fluctuated from 1.9 to 5.2 units and were explained by pH, protein type (WPC, WPI, or WPH), source (manufacturer), and their interactions, revealing the complexity of astringency development in acidic whey protein beverages. The WPC and WPH beverages showed an increase in astringency as the pH of the solution was lowered, but no relationship was found for WPI beverages. The partial least squares regression analysis showed strong relationship between the reference astringency scores and the infrared predicted values (correlation coefficient >0.94), giving standard error of cross-validation ranging from 0.08 to 0.12 units, depending on whey protein type. Major absorption bands explaining astringency scores were associated with carboxylic groups and amide regions of proteins. The portable infrared technique allowed rapid prediction of astringency of acidic whey protein beverages, providing the industry a novel tool for monitoring sensory characteristics of whey-containing beverages. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  13. Semi-supervised drug-protein interaction prediction from heterogeneous biological spaces.

    Science.gov (United States)

    Xia, Zheng; Wu, Ling-Yun; Zhou, Xiaobo; Wong, Stephen T C

    2010-09-13

    Predicting drug-protein interactions from heterogeneous biological data sources is a key step for in silico drug discovery. The difficulty of this prediction task lies in the rarity of known drug-protein interactions and myriad unknown interactions to be predicted. To meet this challenge, a manifold regularization semi-supervised learning method is presented to tackle this issue by using labeled and unlabeled information which often generates better results than using the labeled data alone. Furthermore, our semi-supervised learning method integrates known drug-protein interaction network information as well as chemical structure and genomic sequence data. Using the proposed method, we predicted certain drug-protein interactions on the enzyme, ion channel, GPCRs, and nuclear receptor data sets. Some of them are confirmed by the latest publicly available drug targets databases such as KEGG. We report encouraging results of using our method for drug-protein interaction network reconstruction which may shed light on the molecular interaction inference and new uses of marketed drugs.

  14. Structural features that predict real-value fluctuations of globular proteins.

    Science.gov (United States)

    Jamroz, Michal; Kolinski, Andrzej; Kihara, Daisuke

    2012-05-01

    It is crucial to consider dynamics for understanding the biological function of proteins. We used a large number of molecular dynamics (MD) trajectories of nonhomologous proteins as references and examined static structural features of proteins that are most relevant to fluctuations. We examined correlation of individual structural features with fluctuations and further investigated effective combinations of features for predicting the real value of residue fluctuations using the support vector regression (SVR). It was found that some structural features have higher correlation than crystallographic B-factors with fluctuations observed in MD trajectories. Moreover, SVR that uses combinations of static structural features showed accurate prediction of fluctuations with an average Pearson's correlation coefficient of 0.669 and a root mean square error of 1.04 Å. This correlation coefficient is higher than the one observed in predictions by the Gaussian network model (GNM). An advantage of the developed method over the GNMs is that the former predicts the real value of fluctuation. The results help improve our understanding of relationships between protein structure and fluctuation. Furthermore, the developed method provides a convienient practial way to predict fluctuations of proteins using easily computed static structural features of proteins. Copyright © 2012 Wiley Periodicals, Inc.

  15. Protein Sub-Nuclear Localization Prediction Using SVM and Pfam Domain Information

    Science.gov (United States)

    Kumar, Ravindra; Jain, Sohni; Kumari, Bandana; Kumar, Manish

    2014-01-01

    The nucleus is the largest and the highly organized organelle of eukaryotic cells. Within nucleus exist a number of pseudo-compartments, which are not separated by any membrane, yet each of them contains only a specific set of proteins. Understanding protein sub-nuclear localization can hence be an important step towards understanding biological functions of the nucleus. Here we have described a method, SubNucPred developed by us for predicting the sub-nuclear localization of proteins. This method predicts protein localization for 10 different sub-nuclear locations sequentially by combining presence or absence of unique Pfam domain and amino acid composition based SVM model. The prediction accuracy during leave-one-out cross-validation for centromeric proteins was 85.05%, for chromosomal proteins 76.85%, for nuclear speckle proteins 81.27%, for nucleolar proteins 81.79%, for nuclear envelope proteins 79.37%, for nuclear matrix proteins 77.78%, for nucleoplasm proteins 76.98%, for nuclear pore complex proteins 88.89%, for PML body proteins 75.40% and for telomeric proteins it was 83.33%. Comparison with other reported methods showed that SubNucPred performs better than existing methods. A web-server for predicting protein sub-nuclear localization named SubNucPred has been established at http://14.139.227.92/mkumar/subnucpred/. Standalone version of SubNucPred can also be downloaded from the web-server. PMID:24897370

  16. Protein secondary structure: category assignment and predictability

    DEFF Research Database (Denmark)

    Andersen, Claus A.; Bohr, Henrik; Brunak, Søren

    2001-01-01

    In the last decade, the prediction of protein secondary structure has been optimized using essentially one and the same assignment scheme known as DSSP. We present here a different scheme, which is more predictable. This scheme predicts directly the hydrogen bonds, which stabilize the secondary......-forward neural network with one hidden layer on a data set identical to the one used in earlier work....

  17. Whey protein concentration by ultrafiltration and study of functional properties

    Directory of Open Access Journals (Sweden)

    Sidiane Iltchenco

    2018-06-01

    Full Text Available ABSTRACT: This paper aim to evaluate the ultrafiltration (UF process for constituents recovery from whey. Sequences of factorial designs were performed by varying temperature (5 to 40°C and pressure (1 to 3 bar, to maximize the proteins concentration using membrane of 100kDa in dead end system. Based on the best result new experiments were performed with membrane of 50kDa and 10kDa. With the membrane of 50 the protein retention was about 3 times higher than the membrane of 100kDa. The concentrated obtained by UF membrane of 10kDa, 10°C and 2 bar in laboratory scale showed a mean protein retention of 80 %, greater protein solubility, emulsion stability and the identification of β-lactoglobulins (18.3 kDa and α-lactalbumin fractions (14.2kDa. Therefore, the use of membrane of 100 and 50kDa are became a industrially recommendable alternatives to concentration of whey proteins, and/or as a previous step to the fractionation of whey constituents using membrane ≤10kDa, aiming at future applications in different areas (food, pharmaceutical, chemical, etc..

  18. Concentration of serum thyroid hormone binding proteins after 131I treatment of hyperthyroidism

    International Nuclear Information System (INIS)

    Harrop, J.S.; Hopton, M.R.; Lazarus, J.H.

    1981-01-01

    Serum concentrations of the thyroid hormone binding proteins, thyroxine binding globulin, prealbumin, and albumin were determined in 30 thyrotoxic patients before and after 131 I treatment. Each patient was placed into one of three groups according to response to treatment. The serum concentration of all three proteins rose significantly in 10 patients who became euthyroid, and a greater increase was seen in 10 patients who developed hypothyroidism. There was no significant change in thyroid hormone binding protein concentrations in 10 subjects who remained hyperthyroid. Changes in the concentration of thyroid hormone binding proteins should be borne in mind when total thyroid hormone concentrations are used to monitor the progress of patients receiving treatment for hyperthyroidism. (author)

  19. HitPredict version 4: comprehensive reliability scoring of physical protein-protein interactions from more than 100 species.

    Science.gov (United States)

    López, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein-protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein-protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of physical, genetic and predicted interactions. Automated integration of interactions is further complicated by varying levels of accuracy of database content and lack of adherence to standard formats. To address these issues, the latest version of HitPredict provides a manually curated dataset of 398 696 physical associations between 70 808 proteins from 105 species. Manual confirmation was used to resolve all issues encountered during data integration. For improved reliability assessment, this version combines a new score derived from the experimental information of the interactions with the original score based on the features of the interacting proteins. The combined interaction score performs better than either of the individual scores in HitPredict as well as the reliability score of another similar database. HitPredict provides a web interface to search proteins and visualize their interactions, and the data can be downloaded for offline analysis. Data usability has been enhanced by mapping protein identifiers across multiple reference databases. Thus, the latest version of HitPredict provides a significantly larger, more reliable and usable dataset of protein-protein interactions from several species for the study of gene groups. Database URL: http://hintdb.hgc.jp/htp. © The Author(s) 2015. Published by Oxford University Press.

  20. Protein-lipid interactions in concentrated infant formula

    International Nuclear Information System (INIS)

    Rowley, B.O.; Richardson, T.

    1985-01-01

    Radiolabeled milk proteins ([carbon-14] β-lactoglobulin or [carbon-14] kappa-casein) were added to raw skim milk used to prepare concentrated humanized infant formula. Ultracentrifugation of the sterilized product allowed separation of three fractions: lipids and the proteins associated with them; free casein micelles and other dense particles; and the fluid phase. Distribution of radiolabeled tracer proteins or of protein measured by chemical methods among these three phases varied significantly with differences in processing conditions (time and temperature of sterilization) or amount of certain additives (potassium hydroxide or urea). In the range of 0 to 8 meq/L of potassium hydroxide added to the formula after homogenization but before sterilization, the lipid layer content of carbon-14 from [carbon-14] kappa-casein in the sterilized product decreased by 4.7% for each 1 meq/L of added potassium hydroxide. Lipid layer content of protein decreased by 2 g/L ( of a total of 32 g/L) for each 1 meq/L potassium hydroxide

  1. The Protein Cost of Metabolic Fluxes: Prediction from Enzymatic Rate Laws and Cost Minimization.

    Directory of Open Access Journals (Sweden)

    Elad Noor

    2016-11-01

    Full Text Available Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell's capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants, but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM, a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 4.1 and 2.6, respectively, for the two kinds of data. This result from the cost-optimized metabolic state is significantly better than randomly sampled metabolite profiles, supporting the hypothesis that enzyme cost is important for the fitness of E. coli. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, and could be a valuable computational tool to assist metabolic engineering projects. Furthermore, it establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or

  2. Protein-Based Urine Test Predicts Kidney Transplant Outcomes

    Science.gov (United States)

    ... News Releases News Release Thursday, August 22, 2013 Protein-based urine test predicts kidney transplant outcomes NIH- ... supporting development of noninvasive tests. Levels of a protein in the urine of kidney transplant recipients can ...

  3. Prediction of Protein Thermostability by an Efficient Neural Network Approach

    Directory of Open Access Journals (Sweden)

    Jalal Rezaeenour

    2016-10-01

    Full Text Available Introduction: Manipulation of protein stability is important for understanding the principles that govern protein thermostability, both in basic research and industrial applications. Various data mining techniques exist for prediction of thermostable proteins. Furthermore, ANN methods have attracted significant attention for prediction of thermostability, because they constitute an appropriate approach to mapping the non-linear input-output relationships and massive parallel computing. Method: An Extreme Learning Machine (ELM was applied to estimate thermal behavior of 1289 proteins. In the proposed algorithm, the parameters of ELM were optimized using a Genetic Algorithm (GA, which tuned a set of input variables, hidden layer biases, and input weights, to and enhance the prediction performance. The method was executed on a set of amino acids, yielding a total of 613 protein features. A number of feature selection algorithms were used to build subsets of the features. A total of 1289 protein samples and 613 protein features were calculated from UniProt database to understand features contributing to the enzymes’ thermostability and find out the main features that influence this valuable characteristic. Results:At the primary structure level, Gln, Glu and polar were the features that mostly contributed to protein thermostability. At the secondary structure level, Helix_S, Coil, and charged_Coil were the most important features affecting protein thermostability. These results suggest that the thermostability of proteins is mainly associated with primary structural features of the protein. According to the results, the influence of primary structure on the thermostabilty of a protein was more important than that of the secondary structure. It is shown that prediction accuracy of ELM (mean square error can improve dramatically using GA with error rates RMSE=0.004 and MAPE=0.1003. Conclusion: The proposed approach for forecasting problem

  4. Protein complex prediction via dense subgraphs and false positive analysis.

    Directory of Open Access Journals (Sweden)

    Cecilia Hernandez

    Full Text Available Many proteins work together with others in groups called complexes in order to achieve a specific function. Discovering protein complexes is important for understanding biological processes and predict protein functions in living organisms. Large-scale and throughput techniques have made possible to compile protein-protein interaction networks (PPI networks, which have been used in several computational approaches for detecting protein complexes. Those predictions might guide future biologic experimental research. Some approaches are topology-based, where highly connected proteins are predicted to be complexes; some propose different clustering algorithms using partitioning, overlaps among clusters for networks modeled with unweighted or weighted graphs; and others use density of clusters and information based on protein functionality. However, some schemes still require much processing time or the quality of their results can be improved. Furthermore, most of the results obtained with computational tools are not accompanied by an analysis of false positives. We propose an effective and efficient mining algorithm for discovering highly connected subgraphs, which is our base for defining protein complexes. Our representation is based on transforming the PPI network into a directed acyclic graph that reduces the number of represented edges and the search space for discovering subgraphs. Our approach considers weighted and unweighted PPI networks. We compare our best alternative using PPI networks from Saccharomyces cerevisiae (yeast and Homo sapiens (human with state-of-the-art approaches in terms of clustering, biological metrics and execution times, as well as three gold standards for yeast and two for human. Furthermore, we analyze false positive predicted complexes searching the PDBe (Protein Data Bank in Europe database in order to identify matching protein complexes that have been purified and structurally characterized. Our analysis shows

  5. Behavior of whey protein concentrates under extreme storage conditions

    Science.gov (United States)

    The overseas demand for whey protein concentrates (WPC) has increased steadily in recent years. Emergency aid foods often include WPC, but shelf-life studies of whey proteins under different shipment and storage conditions have not been conducted in the last 50 yr. Microbial quality, compound form...

  6. Validation of predicted exponential concentration profiles of chemicals in soils

    International Nuclear Information System (INIS)

    Hollander, Anne; Baijens, Iris; Ragas, Ad; Huijbregts, Mark; Meent, Dik van de

    2007-01-01

    Multimedia mass balance models assume well-mixed homogeneous compartments. Particularly for soils, this does not correspond to reality, which results in potentially large uncertainties in estimates of transport fluxes from soils. A theoretically expected exponential decrease model of chemical concentrations with depth has been proposed, but hardly tested against empirical data. In this paper, we explored the correspondence between theoretically predicted soil concentration profiles and 84 field measured profiles. In most cases, chemical concentrations in soils appear to decline exponentially with depth, and values for the chemical specific soil penetration depth (d p ) are predicted within one order of magnitude. Over all, the reliability of multimedia models will improve when they account for depth-dependent soil concentrations, so we recommend to take into account the described theoretical exponential decrease model of chemical concentrations with depth in chemical fate studies. In this model the d p -values should estimated be either based on local conditions or on a fixed d p -value, which we recommend to be 10 cm for chemicals with a log K ow > 3. - Multimedia mass model predictions will improve when taking into account depth dependent soil concentrations

  7. Comparison of predicted and measured variations of indoor radon concentration

    International Nuclear Information System (INIS)

    Arvela, H.; Voutilainen, A.; Maekelaeinen, I.; Castren, O.; Winqvist, K.

    1988-01-01

    Prediction of the variations of indoor radon concentration were calculated using a model relating indoor radon concentration to radon entry rate, air infiltration and meteorological factors. These calculated variations have been compared with seasonal variations of 33 houses during 1-4 years, with winter-summer concentration ratios of 300 houses and the measured diurnal variation. In houses with a slab in ground contact the measured seasonal variations are quite often in agreement with variations predicted for nearly pure pressure difference driven flow. The contribution of a diffusion source is significant in houses with large porous concrete walls against the ground. Air flow due to seasonally variable thermal convection within eskers strongly affects the seasonal variations within houses located thereon. Measured and predicted winter-summer concentration ratios demonstrate that, on average, the ratio is a function of radon concentration. The ratio increases with increasing winter concentration. According to the model the diurnal maximum caused by a pressure difference driven flow occurs in the morning, a finding which is in agreement with the measurements. The model presented can be used for differentiating between factors affecting radon entry into houses. (author)

  8. Hidden markov model for the prediction of transmembrane proteins using MATLAB.

    Science.gov (United States)

    Chaturvedi, Navaneet; Shanker, Sudhanshu; Singh, Vinay Kumar; Sinha, Dhiraj; Pandey, Paras Nath

    2011-01-01

    Since membranous proteins play a key role in drug targeting therefore transmembrane proteins prediction is active and challenging area of biological sciences. Location based prediction of transmembrane proteins are significant for functional annotation of protein sequences. Hidden markov model based method was widely applied for transmembrane topology prediction. Here we have presented a revised and a better understanding model than an existing one for transmembrane protein prediction. Scripting on MATLAB was built and compiled for parameter estimation of model and applied this model on amino acid sequence to know the transmembrane and its adjacent locations. Estimated model of transmembrane topology was based on TMHMM model architecture. Only 7 super states are defined in the given dataset, which were converted to 96 states on the basis of their length in sequence. Accuracy of the prediction of model was observed about 74 %, is a good enough in the area of transmembrane topology prediction. Therefore we have concluded the hidden markov model plays crucial role in transmembrane helices prediction on MATLAB platform and it could also be useful for drug discovery strategy. The database is available for free at bioinfonavneet@gmail.comvinaysingh@bhu.ac.in.

  9. Protein concentrate production from the biomass contaminated with radionuclides

    International Nuclear Information System (INIS)

    Nizhko, V.F.; Shinkarenko, M.P.; Polozhaj, V.V.; Krivchik, O.V.

    1992-01-01

    Coefficients of radionuclides accumulation are determined for traditional and rare forage crops grown on contaminated soils. It is shown that with low concentration of radionuclides in soil minimal level of contamination were found in the biomass of lupine (Lupinus luteus L.) and sainfoin (Onobrychis hybridus L.). Relatively high levels of contamination were found in comfrey (Symphytum asperum Lepech.) and bistort (Polygonum divaricatum L.). Comparatively low accumulation coefficients in case of higher density of soil contamination were observed for white and yellow sweetclovers (Melilotus albus Medik. and M. officinalis (L.) Desr.), while higher values of coefficients were found for bird's-foot trefoil (Lotus corniculatus L.), white clover (Trifolium repens L.) and alsike clover (t. hybridum L.). Biomass of white sweet-clover and alsike clover has been processed to produce leaf protein concentrate. It is shown that with biomass contamination of 1 kBq/kg and above conventional technology based on thermal precipitation of the protein does not provide production of pure product. More purified protein concentrates are obtained after two-stage processing of the biomass

  10. Exploring the potential of 3D Zernike descriptors and SVM for protein-protein interface prediction.

    Science.gov (United States)

    Daberdaku, Sebastian; Ferrari, Carlo

    2018-02-06

    The correct determination of protein-protein interaction interfaces is important for understanding disease mechanisms and for rational drug design. To date, several computational methods for the prediction of protein interfaces have been developed, but the interface prediction problem is still not fully understood. Experimental evidence suggests that the location of binding sites is imprinted in the protein structure, but there are major differences among the interfaces of the various protein types: the characterising properties can vary a lot depending on the interaction type and function. The selection of an optimal set of features characterising the protein interface and the development of an effective method to represent and capture the complex protein recognition patterns are of paramount importance for this task. In this work we investigate the potential of a novel local surface descriptor based on 3D Zernike moments for the interface prediction task. Descriptors invariant to roto-translations are extracted from circular patches of the protein surface enriched with physico-chemical properties from the HQI8 amino acid index set, and are used as samples for a binary classification problem. Support Vector Machines are used as a classifier to distinguish interface local surface patches from non-interface ones. The proposed method was validated on 16 classes of proteins extracted from the Protein-Protein Docking Benchmark 5.0 and compared to other state-of-the-art protein interface predictors (SPPIDER, PrISE and NPS-HomPPI). The 3D Zernike descriptors are able to capture the similarity among patterns of physico-chemical and biochemical properties mapped on the protein surface arising from the various spatial arrangements of the underlying residues, and their usage can be easily extended to other sets of amino acid properties. The results suggest that the choice of a proper set of features characterising the protein interface is crucial for the interface prediction

  11. Influence of bleaching on flavor of 34% whey protein concentrate and residual benzoic acid concentration in dried whey products

    Science.gov (United States)

    Previous studies have shown that bleaching negatively affects the flavor of 70% whey protein concentrate (WPC70), but bleaching effects on lower-protein products have not been established. Benzoyl peroxide (BP), a whey bleaching agent, degrades to benzoic acid (BA) and may elevate BA concentrations...

  12. Constraint Logic Programming approach to protein structure prediction

    Directory of Open Access Journals (Sweden)

    Fogolari Federico

    2004-11-01

    Full Text Available Abstract Background The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Results Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. Conclusions The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.

  13. Constraint Logic Programming approach to protein structure prediction.

    Science.gov (United States)

    Dal Palù, Alessandro; Dovier, Agostino; Fogolari, Federico

    2004-11-30

    The protein structure prediction problem is one of the most challenging problems in biological sciences. Many approaches have been proposed using database information and/or simplified protein models. The protein structure prediction problem can be cast in the form of an optimization problem. Notwithstanding its importance, the problem has very seldom been tackled by Constraint Logic Programming, a declarative programming paradigm suitable for solving combinatorial optimization problems. Constraint Logic Programming techniques have been applied to the protein structure prediction problem on the face-centered cube lattice model. Molecular dynamics techniques, endowed with the notion of constraint, have been also exploited. Even using a very simplified model, Constraint Logic Programming on the face-centered cube lattice model allowed us to obtain acceptable results for a few small proteins. As a test implementation their (known) secondary structure and the presence of disulfide bridges are used as constraints. Simplified structures obtained in this way have been converted to all atom models with plausible structure. Results have been compared with a similar approach using a well-established technique as molecular dynamics. The results obtained on small proteins show that Constraint Logic Programming techniques can be employed for studying protein simplified models, which can be converted into realistic all atom models. The advantage of Constraint Logic Programming over other, much more explored, methodologies, resides in the rapid software prototyping, in the easy way of encoding heuristics, and in exploiting all the advances made in this research area, e.g. in constraint propagation and its use for pruning the huge search space.

  14. Which clustering algorithm is better for predicting protein complexes?

    Directory of Open Access Journals (Sweden)

    Moschopoulos Charalampos N

    2011-12-01

    Full Text Available Abstract Background Protein-Protein interactions (PPI play a key role in determining the outcome of most cellular processes. The correct identification and characterization of protein interactions and the networks, which they comprise, is critical for understanding the molecular mechanisms within the cell. Large-scale techniques such as pull down assays and tandem affinity purification are used in order to detect protein interactions in an organism. Today, relatively new high-throughput methods like yeast two hybrid, mass spectrometry, microarrays, and phage display are also used to reveal protein interaction networks. Results In this paper we evaluated four different clustering algorithms using six different interaction datasets. We parameterized the MCL, Spectral, RNSC and Affinity Propagation algorithms and applied them to six PPI datasets produced experimentally by Yeast 2 Hybrid (Y2H and Tandem Affinity Purification (TAP methods. The predicted clusters, so called protein complexes, were then compared and benchmarked with already known complexes stored in published databases. Conclusions While results may differ upon parameterization, the MCL and RNSC algorithms seem to be more promising and more accurate at predicting PPI complexes. Moreover, they predict more complexes than other reviewed algorithms in absolute numbers. On the other hand the spectral clustering algorithm achieves the highest valid prediction rate in our experiments. However, it is nearly always outperformed by both RNSC and MCL in terms of the geometrical accuracy while it generates the fewest valid clusters than any other reviewed algorithm. This article demonstrates various metrics to evaluate the accuracy of such predictions as they are presented in the text below. Supplementary material can be found at: http://www.bioacademy.gr/bioinformatics/projects/ppireview.htm

  15. The 82-plex plasma protein signature that predicts increasing inflammation

    DEFF Research Database (Denmark)

    Tepel, Martin; Beck, Hans C; Tan, Qihua

    2015-01-01

    The objective of the study was to define the specific plasma protein signature that predicts the increase of the inflammation marker C-reactive protein from index day to next-day using proteome analysis and novel bioinformatics tools. We performed a prospective study of 91 incident kidney....... The prediction model selected and validated 82 plasma proteins which determined increased next-day C-reactive protein (area under receiver-operator-characteristics curve, 0.772; 95% confidence interval, 0.669 to 0.876; P signature (P ....001) was associated with observed increased next-day C-reactive protein. The 82-plex protein signature outperformed routine clinical procedures. The category-free net reclassification index improved with 82-plex plasma protein signature (total net reclassification index, 88.3%). Using the 82-plex plasma protein...

  16. Protein Secondary Structure Prediction Using Deep Convolutional Neural Fields.

    Science.gov (United States)

    Wang, Sheng; Peng, Jian; Ma, Jianzhu; Xu, Jinbo

    2016-01-11

    Protein secondary structure (SS) prediction is important for studying protein structure and function. When only the sequence (profile) information is used as input feature, currently the best predictors can obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF (Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent SS labels, so it is much more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy, ~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict other protein structure properties such as contact number, disorder regions, and solvent accessibility.

  17. Combining modularity, conservation, and interactions of proteins significantly increases precision and coverage of protein function prediction

    Directory of Open Access Journals (Sweden)

    Sers Christine T

    2010-12-01

    Full Text Available Abstract Background While the number of newly sequenced genomes and genes is constantly increasing, elucidation of their function still is a laborious and time-consuming task. This has led to the development of a wide range of methods for predicting protein functions in silico. We report on a new method that predicts function based on a combination of information about protein interactions, orthology, and the conservation of protein networks in different species. Results We show that aggregation of these independent sources of evidence leads to a drastic increase in number and quality of predictions when compared to baselines and other methods reported in the literature. For instance, our method generates more than 12,000 novel protein functions for human with an estimated precision of ~76%, among which are 7,500 new functional annotations for 1,973 human proteins that previously had zero or only one function annotated. We also verified our predictions on a set of genes that play an important role in colorectal cancer (MLH1, PMS2, EPHB4 and could confirm more than 73% of them based on evidence in the literature. Conclusions The combination of different methods into a single, comprehensive prediction method infers thousands of protein functions for every species included in the analysis at varying, yet always high levels of precision and very good coverage.

  18. Prediction of beta-turns in proteins using the first-order Markov models.

    Science.gov (United States)

    Lin, Thy-Hou; Wang, Ging-Ming; Wang, Yen-Tseng

    2002-01-01

    We present a method based on the first-order Markov models for predicting simple beta-turns and loops containing multiple turns in proteins. Sequences of 338 proteins in a database are divided using the published turn criteria into the following three regions, namely, the turn, the boundary, and the nonturn ones. A transition probability matrix is constructed for either the turn or the nonturn region using the weighted transition probabilities computed for dipeptides identified from each region. There are two such matrices constructed for the boundary region since the transition probabilities for dipeptides immediately preceding or following a turn are different. The window used for scanning a protein sequence from amino (N-) to carboxyl (C-) terminal is a hexapeptide since the transition probability computed for a turn tetrapeptide is capped at both the N- and C- termini with a boundary transition probability indexed respectively from the two boundary transition matrices. A sum of the averaged product of the transition probabilities of all the hexapeptides involving each residue is computed. This is then weighted with a probability computed from assuming that all the hexapeptides are from the nonturn region to give the final prediction quantity. Both simple beta-turns and loops containing multiple turns in a protein are then identified by the rising of the prediction quantity computed. The performance of the prediction scheme or the percentage (%) of correct prediction is evaluated through computation of Matthews correlation coefficients for each protein predicted. It is found that the prediction method is capable of giving prediction results with better correlation between the percent of correct prediction and the Matthews correlation coefficients for a group of test proteins as compared with those predicted using some secondary structural prediction methods. The prediction accuracy for about 40% of proteins in the database or 50% of proteins in the test set is

  19. Nanoparticles-cell association predicted by protein corona fingerprints

    Science.gov (United States)

    Palchetti, S.; Digiacomo, L.; Pozzi, D.; Peruzzi, G.; Micarelli, E.; Mahmoudi, M.; Caracciolo, G.

    2016-06-01

    In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface chemistry (unmodified and PEGylated) to investigate the relationships between NP physicochemical properties (nanoparticle size, aggregation state and surface charge), protein corona fingerprints (PCFs), and NP-cell association. We found out that none of the NPs' physicochemical properties alone was exclusively able to account for association with human cervical cancer cell line (HeLa). For the entire library of NPs, a total of 436 distinct serum proteins were detected. We developed a predictive-validation modeling that provides a means of assessing the relative significance of the identified corona proteins. Interestingly, a minor fraction of the HC, which consists of only 8 PCFs were identified as main promoters of NP association with HeLa cells. Remarkably, identified PCFs have several receptors with high level of expression on the plasma membrane of HeLa cells.In a physiological environment (e.g., blood and interstitial fluids) nanoparticles (NPs) will bind proteins shaping a ``protein corona'' layer. The long-lived protein layer tightly bound to the NP surface is referred to as the hard corona (HC) and encodes information that controls NP bioactivity (e.g. cellular association, cellular signaling pathways, biodistribution, and toxicity). Decrypting this complex code has become a priority to predict the NP biological outcomes. Here, we use a library of 16 lipid NPs of varying size (Ø ~ 100-250 nm) and surface

  20. DC biased low-frequency insulating constriction dielectrophoresis for protein biomolecules concentration.

    Science.gov (United States)

    Zhang, Peng; Liu, Yuxin

    2017-09-01

    Sample enrichment or molecules concentration is considered an essential step in sample processing of miniaturized devices aimed at biosensing and bioanalysis. Among all the means involved to achieve this aim, dielectrophoresis (DEP) is increasingly employed in molecules manipulation and concentration because it is non-destructive and high efficiency. This paper presents a methodology to achieve protein concentration utilizing the combination effects of electrokinetics and low frequency insulating dielectrophoresis (iDEP) generated within a microfluidic device, in which a submicron constricted channel was fabricated using DNA molecular combing and replica molding. This fabrication technique avoids using e-beam lithography or other complicated nanochannel fabrication methods, and provides an easy and low cost approach with the flexibility of controlling channel dimensions to create highly constricted channels embedded in a microfluidic device. With theoretical analysis and experiments, we demonstrated that fluorescein isothiocyanate conjugated bovine serum albumin (FITC-BSA) protein molecules can be significantly concentrated to form an arc-shaped band near the constricted channel under the effects of a negative dielectrophoretic force and DC electrokinetic forces within a short period of time. It was also observed that the amplitudes of the applied DC and AC electric fields, the AC frequencies as well as the suspending medium conductivities had strong effects on the concentration responses of the FITC-BSA molecules, including the concentrated area and position, intensities of the focused molecules, and concentration speed. Our method provides a simple and flexible approach for quickly concentrating protein molecules by controlling the applied electric field parameters. The iDEP device reported in this paper can be used as a stand-alone sensor or worked as a pre-concentration module integrated with biosensors for protein biomarker detection. Furthermore, low

  1. Predicting radon/radon daughter concentrations in underground mines

    International Nuclear Information System (INIS)

    Leach, V.A.

    1984-01-01

    A detailed description of a computer programme is outlined for the calculation of radon/radon daughter concentrations in air. This computer model is used to predict the radon/radon daughter concentrations in Working Level (WL) at the workplace and at the various junctions at either end of the branches in a typical ventilation network proposed for the Jabiluka mine in the Northern Territory

  2. PCI-SS: MISO dynamic nonlinear protein secondary structure prediction

    Directory of Open Access Journals (Sweden)

    Aboul-Magd Mohammed O

    2009-07-01

    Full Text Available Abstract Background Since the function of a protein is largely dictated by its three dimensional configuration, determining a protein's structure is of fundamental importance to biology. Here we report on a novel approach to determining the one dimensional secondary structure of proteins (distinguishing α-helices, β-strands, and non-regular structures from primary sequence data which makes use of Parallel Cascade Identification (PCI, a powerful technique from the field of nonlinear system identification. Results Using PSI-BLAST divergent evolutionary profiles as input data, dynamic nonlinear systems are built through a black-box approach to model the process of protein folding. Genetic algorithms (GAs are applied in order to optimize the architectural parameters of the PCI models. The three-state prediction problem is broken down into a combination of three binary sub-problems and protein structure classifiers are built using 2 layers of PCI classifiers. Careful construction of the optimization, training, and test datasets ensures that no homology exists between any training and testing data. A detailed comparison between PCI and 9 contemporary methods is provided over a set of 125 new protein chains guaranteed to be dissimilar to all training data. Unlike other secondary structure prediction methods, here a web service is developed to provide both human- and machine-readable interfaces to PCI-based protein secondary structure prediction. This server, called PCI-SS, is available at http://bioinf.sce.carleton.ca/PCISS. In addition to a dynamic PHP-generated web interface for humans, a Simple Object Access Protocol (SOAP interface is added to permit invocation of the PCI-SS service remotely. This machine-readable interface facilitates incorporation of PCI-SS into multi-faceted systems biology analysis pipelines requiring protein secondary structure information, and greatly simplifies high-throughput analyses. XML is used to represent the input

  3. Protein thermostability prediction within homologous families using temperature-dependent statistical potentials.

    Directory of Open Access Journals (Sweden)

    Fabrizio Pucci

    Full Text Available The ability to rationally modify targeted physical and biological features of a protein of interest holds promise in numerous academic and industrial applications and paves the way towards de novo protein design. In particular, bioprocesses that utilize the remarkable properties of enzymes would often benefit from mutants that remain active at temperatures that are either higher or lower than the physiological temperature, while maintaining the biological activity. Many in silico methods have been developed in recent years for predicting the thermodynamic stability of mutant proteins, but very few have focused on thermostability. To bridge this gap, we developed an algorithm for predicting the best descriptor of thermostability, namely the melting temperature Tm, from the protein's sequence and structure. Our method is applicable when the Tm of proteins homologous to the target protein are known. It is based on the design of several temperature-dependent statistical potentials, derived from datasets consisting of either mesostable or thermostable proteins. Linear combinations of these potentials have been shown to yield an estimation of the protein folding free energies at low and high temperatures, and the difference of these energies, a prediction of the melting temperature. This particular construction, that distinguishes between the interactions that contribute more than others to the stability at high temperatures and those that are more stabilizing at low T, gives better performances compared to the standard approach based on T-independent potentials which predict the thermal resistance from the thermodynamic stability. Our method has been tested on 45 proteins of known Tm that belong to 11 homologous families. The standard deviation between experimental and predicted Tm's is equal to 13.6°C in cross validation, and decreases to 8.3°C if the 6 worst predicted proteins are excluded. Possible extensions of our approach are discussed.

  4. Improving prediction of heterodimeric protein complexes using combination with pairwise kernel.

    Science.gov (United States)

    Ruan, Peiying; Hayashida, Morihiro; Akutsu, Tatsuya; Vert, Jean-Philippe

    2018-02-19

    Since many proteins become functional only after they interact with their partner proteins and form protein complexes, it is essential to identify the sets of proteins that form complexes. Therefore, several computational methods have been proposed to predict complexes from the topology and structure of experimental protein-protein interaction (PPI) network. These methods work well to predict complexes involving at least three proteins, but generally fail at identifying complexes involving only two different proteins, called heterodimeric complexes or heterodimers. There is however an urgent need for efficient methods to predict heterodimers, since the majority of known protein complexes are precisely heterodimers. In this paper, we use three promising kernel functions, Min kernel and two pairwise kernels, which are Metric Learning Pairwise Kernel (MLPK) and Tensor Product Pairwise Kernel (TPPK). We also consider the normalization forms of Min kernel. Then, we combine Min kernel or its normalization form and one of the pairwise kernels by plugging. We applied kernels based on PPI, domain, phylogenetic profile, and subcellular localization properties to predicting heterodimers. Then, we evaluate our method by employing C-Support Vector Classification (C-SVC), carrying out 10-fold cross-validation, and calculating the average F-measures. The results suggest that the combination of normalized-Min-kernel and MLPK leads to the best F-measure and improved the performance of our previous work, which had been the best existing method so far. We propose new methods to predict heterodimers, using a machine learning-based approach. We train a support vector machine (SVM) to discriminate interacting vs non-interacting protein pairs, based on informations extracted from PPI, domain, phylogenetic profiles and subcellular localization. We evaluate in detail new kernel functions to encode these data, and report prediction performance that outperforms the state-of-the-art.

  5. Comparison of observed and predicted Kr-85 air concentrations

    International Nuclear Information System (INIS)

    Yildiran, M.; Miller, C.W.

    1984-01-01

    A computer code, ANEMOS has been written to estimate concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operation Sources. This code uses a modified Gaussian plume equation. Output from ANEMOS includes annual-average air concentrations and ground deposition rates of dispersed radionuclides and daughters. To use the environmental transport model properly, some estimate of the models predictive accuracy must be obtained. To validate the ANEMOS model, one year of weekly average Kr-85 concentrations observed at 13 stations located 28 to 144 km distant from continuous point source at the Savannah River Plant have been used. There was a general tendency for the model to underpredict the observed air concentrations slightly. Pearson's correlation between pairs of logarithms of observed and predicted annual-average values was r=0.84. The monthly results tend to show more scatter than do either the seasonal or the annual comparisons. (orig.)

  6. Protein Function Prediction Based on Sequence and Structure Information

    KAUST Repository

    Smaili, Fatima Z.

    2016-05-25

    The number of available protein sequences in public databases is increasing exponentially. However, a significant fraction of these sequences lack functional annotation which is essential to our understanding of how biological systems and processes operate. In this master thesis project, we worked on inferring protein functions based on the primary protein sequence. In the approach we follow, 3D models are first constructed using I-TASSER. Functions are then deduced by structurally matching these predicted models, using global and local similarities, through three independent enzyme commission (EC) and gene ontology (GO) function libraries. The method was tested on 250 “hard” proteins, which lack homologous templates in both structure and function libraries. The results show that this method outperforms the conventional prediction methods based on sequence similarity or threading. Additionally, our method could be improved even further by incorporating protein-protein interaction information. Overall, the method we use provides an efficient approach for automated functional annotation of non-homologous proteins, starting from their sequence.

  7. Exploiting protein flexibility to predict the location of allosteric sites

    Directory of Open Access Journals (Sweden)

    Panjkovich Alejandro

    2012-10-01

    Full Text Available Abstract Background Allostery is one of the most powerful and common ways of regulation of protein activity. However, for most allosteric proteins identified to date the mechanistic details of allosteric modulation are not yet well understood. Uncovering common mechanistic patterns underlying allostery would allow not only a better academic understanding of the phenomena, but it would also streamline the design of novel therapeutic solutions. This relatively unexplored therapeutic potential and the putative advantages of allosteric drugs over classical active-site inhibitors fuel the attention allosteric-drug research is receiving at present. A first step to harness the regulatory potential and versatility of allosteric sites, in the context of drug-discovery and design, would be to detect or predict their presence and location. In this article, we describe a simple computational approach, based on the effect allosteric ligands exert on protein flexibility upon binding, to predict the existence and position of allosteric sites on a given protein structure. Results By querying the literature and a recently available database of allosteric sites, we gathered 213 allosteric proteins with structural information that we further filtered into a non-redundant set of 91 proteins. We performed normal-mode analysis and observed significant changes in protein flexibility upon allosteric-ligand binding in 70% of the cases. These results agree with the current view that allosteric mechanisms are in many cases governed by changes in protein dynamics caused by ligand binding. Furthermore, we implemented an approach that achieves 65% positive predictive value in identifying allosteric sites within the set of predicted cavities of a protein (stricter parameters set, 0.22 sensitivity, by combining the current analysis on dynamics with previous results on structural conservation of allosteric sites. We also analyzed four biological examples in detail, revealing

  8. Paracetamol (acetaminophen) protein adduct concentrations during therapeutic dosing.

    Science.gov (United States)

    Heard, Kennon; Green, Jody L; Anderson, Victoria; Bucher-Bartelson, Becki; Dart, Richard C

    2016-03-01

    Paracetamol protein adducts (PPA) are a biomarker of paracetamol exposure. PPA are quantified as paracetamol-cysteine (APAP-CYS), and concentrations above 1.1 μmol l(-1) have been suggested as a marker of paracetamol-induced hepatotoxicity. However, there is little information on the range of concentrations observed during prolonged therapeutic dosing. The aim of the present study was to describe the concentration of PPA in the serum of subjects taking therapeutic doses of paracetamol for at least 16 days. Preplanned secondary aim of a prospective randomized controlled (placebo vs. 4g day(-1) paracetamol) trial. We measured subjects' serum PPA concentrations every 3 days for a minimum of 16 days. We also measured concentrations on study days 1-3 and 16-25 in subsets of patients. PPA were quantified as APAP-CYS after gel filtration and protein digestion using liquid chromatography/mass spectrometry. Ninety per cent of subjects had detectable PPA after five doses. Median APAP-CYS concentrations in paracetamol-treated subjects increased to a plateau of 0.1 μmol l(-1) on day 7, where they remained. The highest concentration measured was 1.1 μmol l(-1) and two subjects never had detectable PPA levels. PPA were detected in the serum of 78% of subjects 9 days after their final dose. PPA are detectable in the vast majority of subjects taking therapeutic doses of paracetamol. While most have concentrations well below the threshold associated with hepatotoxicity, concentrations may approach 1.1 μmol l(-1) in rare cases. Adducts are detectable after a few doses and can persist for over a week after dosing is stopped. © 2015 The British Pharmacological Society.

  9. Predicting nucleic acid binding interfaces from structural models of proteins.

    Science.gov (United States)

    Dror, Iris; Shazman, Shula; Mukherjee, Srayanta; Zhang, Yang; Glaser, Fabian; Mandel-Gutfreund, Yael

    2012-02-01

    The function of DNA- and RNA-binding proteins can be inferred from the characterization and accurate prediction of their binding interfaces. However, the main pitfall of various structure-based methods for predicting nucleic acid binding function is that they are all limited to a relatively small number of proteins for which high-resolution three-dimensional structures are available. In this study, we developed a pipeline for extracting functional electrostatic patches from surfaces of protein structural models, obtained using the I-TASSER protein structure predictor. The largest positive patches are extracted from the protein surface using the patchfinder algorithm. We show that functional electrostatic patches extracted from an ensemble of structural models highly overlap the patches extracted from high-resolution structures. Furthermore, by testing our pipeline on a set of 55 known nucleic acid binding proteins for which I-TASSER produces high-quality models, we show that the method accurately identifies the nucleic acids binding interface on structural models of proteins. Employing a combined patch approach we show that patches extracted from an ensemble of models better predicts the real nucleic acid binding interfaces compared with patches extracted from independent models. Overall, these results suggest that combining information from a collection of low-resolution structural models could be a valuable approach for functional annotation. We suggest that our method will be further applicable for predicting other functional surfaces of proteins with unknown structure. Copyright © 2011 Wiley Periodicals, Inc.

  10. Protein Secondary Structure Prediction Using AutoEncoder Network and Bayes Classifier

    Science.gov (United States)

    Wang, Leilei; Cheng, Jinyong

    2018-03-01

    Protein secondary structure prediction is belong to bioinformatics,and it's important in research area. In this paper, we propose a new prediction way of protein using bayes classifier and autoEncoder network. Our experiments show some algorithms including the construction of the model, the classification of parameters and so on. The data set is a typical CB513 data set for protein. In terms of accuracy, the method is the cross validation based on the 3-fold. Then we can get the Q3 accuracy. Paper results illustrate that the autoencoder network improved the prediction accuracy of protein secondary structure.

  11. PRODIGY : a web server for predicting the binding affinity of protein-protein complexes

    NARCIS (Netherlands)

    Xue, Li; Garcia Lopes Maia Rodrigues, João; Kastritis, Panagiotis L; Bonvin, Alexandre Mjj; Vangone, Anna

    2016-01-01

    Gaining insights into the structural determinants of protein-protein interactions holds the key for a deeper understanding of biological functions, diseases and development of therapeutics. An important aspect of this is the ability to accurately predict the binding strength for a given

  12. Prediction of Protein-Protein Interaction By Metasample-Based Sparse Representation

    Directory of Open Access Journals (Sweden)

    Xiuquan Du

    2015-01-01

    Full Text Available Protein-protein interactions (PPIs play key roles in many cellular processes such as transcription regulation, cell metabolism, and endocrine function. Understanding these interactions takes a great promotion to the pathogenesis and treatment of various diseases. A large amount of data has been generated by experimental techniques; however, most of these data are usually incomplete or noisy, and the current biological experimental techniques are always very time-consuming and expensive. In this paper, we proposed a novel method (metasample-based sparse representation classification, MSRC for PPIs prediction. A group of metasamples are extracted from the original training samples and then use the l1-regularized least square method to express a new testing sample as the linear combination of these metasamples. PPIs prediction is achieved by using a discrimination function defined in the representation coefficients. The MSRC is applied to PPIs dataset; it achieves 84.9% sensitivity, and 94.55% specificity, which is slightly lower than support vector machine (SVM and much higher than naive Bayes (NB, neural networks (NN, and k-nearest neighbor (KNN. The result shows that the MSRC is efficient for PPIs prediction.

  13. RSARF: Prediction of residue solvent accessibility from protein sequence using random forest method

    KAUST Repository

    Ganesan, Pugalenthi; Kandaswamy, Krishna Kumar Umar; Chou -, Kuochen; Vivekanandan, Saravanan; Kolatkar, Prasanna R.

    2012-01-01

    Prediction of protein structure from its amino acid sequence is still a challenging problem. The complete physicochemical understanding of protein folding is essential for the accurate structure prediction. Knowledge of residue solvent accessibility gives useful insights into protein structure prediction and function prediction. In this work, we propose a random forest method, RSARF, to predict residue accessible surface area from protein sequence information. The training and testing was performed using 120 proteins containing 22006 residues. For each residue, buried and exposed state was computed using five thresholds (0%, 5%, 10%, 25%, and 50%). The prediction accuracy for 0%, 5%, 10%, 25%, and 50% thresholds are 72.9%, 78.25%, 78.12%, 77.57% and 72.07% respectively. Further, comparison of RSARF with other methods using a benchmark dataset containing 20 proteins shows that our approach is useful for prediction of residue solvent accessibility from protein sequence without using structural information. The RSARF program, datasets and supplementary data are available at http://caps.ncbs.res.in/download/pugal/RSARF/. - See more at: http://www.eurekaselect.com/89216/article#sthash.pwVGFUjq.dpuf

  14. Concentration-Induced Association in a Protein System Caused by a Highly Directional Patch Attraction.

    Science.gov (United States)

    Li, Weimin; Persson, Björn A; Lund, Mikael; Bergenholtz, Johan; Zackrisson Oskolkova, Malin

    2016-09-01

    Self-association of the protein lactoferrin is studied in solution using small-angle X-ray scattering techniques. Effective static structure factors have been shown to exhibit either a monotonic or a nonmonotonic dependence on protein concentration in the small wavevector limit, depending on salt concentration. The behavior correlates with a nonmonotonic dependence of the second virial coefficient on salt concentration, such that a maximum appears in the structure factor at a low protein concentration when the second virial coefficient is negative and close to a minimum. The results are interpreted in terms of an integral equation theory with explicit dimers, formulated by Wertheim, which provides a consistent framework able to explain the behavior in terms of a monomer-dimer equilibrium that appears because of a highly directional patch attraction. Short attraction ranges preclude trimer formation, which explains why the protein system behaves as if it were subject to a concentration-dependent isotropic protein-protein attraction. Superimposing an isotropic interaction, comprising screened Coulomb repulsion and van der Waals attraction, on the patch attraction allows for a semiquantitative modeling of the complete transition pathway from monomers in the dilute limit to monomer-dimer systems at somewhat higher protein concentrations.

  15. BetaTPred: prediction of beta-TURNS in a protein using statistical algorithms.

    Science.gov (United States)

    Kaur, Harpreet; Raghava, G P S

    2002-03-01

    beta-turns play an important role from a structural and functional point of view. beta-turns are the most common type of non-repetitive structures in proteins and comprise on average, 25% of the residues. In the past numerous methods have been developed to predict beta-turns in a protein. Most of these prediction methods are based on statistical approaches. In order to utilize the full potential of these methods, there is a need to develop a web server. This paper describes a web server called BetaTPred, developed for predicting beta-TURNS in a protein from its amino acid sequence. BetaTPred allows the user to predict turns in a protein using existing statistical algorithms. It also allows to predict different types of beta-TURNS e.g. type I, I', II, II', VI, VIII and non-specific. This server assists the users in predicting the consensus beta-TURNS in a protein. The server is accessible from http://imtech.res.in/raghava/betatpred/

  16. Critical Features of Fragment Libraries for Protein Structure Prediction.

    Science.gov (United States)

    Trevizani, Raphael; Custódio, Fábio Lima; Dos Santos, Karina Baptista; Dardenne, Laurent Emmanuel

    2017-01-01

    The use of fragment libraries is a popular approach among protein structure prediction methods and has proven to substantially improve the quality of predicted structures. However, some vital aspects of a fragment library that influence the accuracy of modeling a native structure remain to be determined. This study investigates some of these features. Particularly, we analyze the effect of using secondary structure prediction guiding fragments selection, different fragments sizes and the effect of structural clustering of fragments within libraries. To have a clearer view of how these factors affect protein structure prediction, we isolated the process of model building by fragment assembly from some common limitations associated with prediction methods, e.g., imprecise energy functions and optimization algorithms, by employing an exact structure-based objective function under a greedy algorithm. Our results indicate that shorter fragments reproduce the native structure more accurately than the longer. Libraries composed of multiple fragment lengths generate even better structures, where longer fragments show to be more useful at the beginning of the simulations. The use of many different fragment sizes shows little improvement when compared to predictions carried out with libraries that comprise only three different fragment sizes. Models obtained from libraries built using only sequence similarity are, on average, better than those built with a secondary structure prediction bias. However, we found that the use of secondary structure prediction allows greater reduction of the search space, which is invaluable for prediction methods. The results of this study can be critical guidelines for the use of fragment libraries in protein structure prediction.

  17. Gas Concentration Prediction Based on the Measured Data of a Coal Mine Rescue Robot

    Directory of Open Access Journals (Sweden)

    Xiliang Ma

    2016-01-01

    Full Text Available The coal mine environment is complex and dangerous after gas accident; then a timely and effective rescue and relief work is necessary. Hence prediction of gas concentration in front of coal mine rescue robot is an important significance to ensure that the coal mine rescue robot carries out the exploration and search and rescue mission. In this paper, a gray neural network is proposed to predict the gas concentration 10 meters in front of the coal mine rescue robot based on the gas concentration, temperature, and wind speed of the current position and 1 meter in front. Subsequently the quantum genetic algorithm optimization gray neural network parameters of the gas concentration prediction method are proposed to get more accurate prediction of the gas concentration in the roadway. Experimental results show that a gray neural network optimized by the quantum genetic algorithm is more accurate for predicting the gas concentration. The overall prediction error is 9.12%, and the largest forecasting error is 11.36%; compared with gray neural network, the gas concentration prediction error increases by 55.23%. This means that the proposed method can better allow the coal mine rescue robot to accurately predict the gas concentration in the coal mine roadway.

  18. Predicting protein complexes from weighted protein-protein interaction graphs with a novel unsupervised methodology: Evolutionary enhanced Markov clustering.

    Science.gov (United States)

    Theofilatos, Konstantinos; Pavlopoulou, Niki; Papasavvas, Christoforos; Likothanassis, Spiros; Dimitrakopoulos, Christos; Georgopoulos, Efstratios; Moschopoulos, Charalampos; Mavroudi, Seferina

    2015-03-01

    Proteins are considered to be the most important individual components of biological systems and they combine to form physical protein complexes which are responsible for certain molecular functions. Despite the large availability of protein-protein interaction (PPI) information, not much information is available about protein complexes. Experimental methods are limited in terms of time, efficiency, cost and performance constraints. Existing computational methods have provided encouraging preliminary results, but they phase certain disadvantages as they require parameter tuning, some of them cannot handle weighted PPI data and others do not allow a protein to participate in more than one protein complex. In the present paper, we propose a new fully unsupervised methodology for predicting protein complexes from weighted PPI graphs. The proposed methodology is called evolutionary enhanced Markov clustering (EE-MC) and it is a hybrid combination of an adaptive evolutionary algorithm and a state-of-the-art clustering algorithm named enhanced Markov clustering. EE-MC was compared with state-of-the-art methodologies when applied to datasets from the human and the yeast Saccharomyces cerevisiae organisms. Using public available datasets, EE-MC outperformed existing methodologies (in some datasets the separation metric was increased by 10-20%). Moreover, when applied to new human datasets its performance was encouraging in the prediction of protein complexes which consist of proteins with high functional similarity. In specific, 5737 protein complexes were predicted and 72.58% of them are enriched for at least one gene ontology (GO) function term. EE-MC is by design able to overcome intrinsic limitations of existing methodologies such as their inability to handle weighted PPI networks, their constraint to assign every protein in exactly one cluster and the difficulties they face concerning the parameter tuning. This fact was experimentally validated and moreover, new

  19. Short Term Prediction of PM10 Concentrations Using Seasonal Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Hamid Hazrul Abdul

    2016-01-01

    Full Text Available Air pollution modelling is one of an important tool that usually used to make short term and long term prediction. Since air pollution gives a big impact especially to human health, prediction of air pollutants concentration is needed to help the local authorities to give an early warning to people who are in risk of acute and chronic health effects from air pollution. Finding the best time series model would allow prediction to be made accurately. This research was carried out to find the best time series model to predict the PM10 concentrations in Nilai, Negeri Sembilan, Malaysia. By considering two seasons which is wet season (north east monsoon and dry season (south west monsoon, seasonal autoregressive integrated moving average model were used to find the most suitable model to predict the PM10 concentrations in Nilai, Negeri Sembilan by using three error measures. Based on AIC statistics, results show that ARIMA (1, 1, 1 × (1, 0, 012 is the most suitable model to predict PM10 concentrations in Nilai, Negeri Sembilan.

  20. Integration of relational and hierarchical network information for protein function prediction

    Directory of Open Access Journals (Sweden)

    Jiang Xiaoyu

    2008-08-01

    Full Text Available Abstract Background In the current climate of high-throughput computational biology, the inference of a protein's function from related measurements, such as protein-protein interaction relations, has become a canonical task. Most existing technologies pursue this task as a classification problem, on a term-by-term basis, for each term in a database, such as the Gene Ontology (GO database, a popular rigorous vocabulary for biological functions. However, ontology structures are essentially hierarchies, with certain top to bottom annotation rules which protein function predictions should in principle follow. Currently, the most common approach to imposing these hierarchical constraints on network-based classifiers is through the use of transitive closure to predictions. Results We propose a probabilistic framework to integrate information in relational data, in the form of a protein-protein interaction network, and a hierarchically structured database of terms, in the form of the GO database, for the purpose of protein function prediction. At the heart of our framework is a factorization of local neighborhood information in the protein-protein interaction network across successive ancestral terms in the GO hierarchy. We introduce a classifier within this framework, with computationally efficient implementation, that produces GO-term predictions that naturally obey a hierarchical 'true-path' consistency from root to leaves, without the need for further post-processing. Conclusion A cross-validation study, using data from the yeast Saccharomyces cerevisiae, shows our method offers substantial improvements over both standard 'guilt-by-association' (i.e., Nearest-Neighbor and more refined Markov random field methods, whether in their original form or when post-processed to artificially impose 'true-path' consistency. Further analysis of the results indicates that these improvements are associated with increased predictive capabilities (i.e., increased

  1. Comparison of observed and predicted Kr-85 air concentrations

    International Nuclear Information System (INIS)

    Yildiran, M.; Miller, C.W.

    1984-01-01

    A computer code, ANEMOS has been written to estimate concentrations in air and ground deposition rates for Atmospheric Nuclides Emitted from Multiple Operation Sources. This code uses a modified Gaussian plum equation. Output from ANEMOS includes annual-average air concentrations and ground deposition rates of dispersed radionuclides and daughters. To use the environmental transport model properly, some estimate of the models predictive accuracy must be obtained. To validate the ANEMOS model, one year of weekly average Kr-85 concentrations observed at 13 stations located 28 to 144 km distant from continuous point source at the Savannah River Plant (SRP), Aiken, South Carolina, have been used. There was a general tendency for the model to underpredict the observed air concentrations slightly. Pearsons's correlation between pairs of logarithms of observed and predicted annual-average values was r = 0.84. The monthly results tend to show more scatter than do either the seasonal or the annual comparisons. 18 references, 3 figures, 3 tables

  2. Prediction of RNA-Binding Proteins by Voting Systems

    Directory of Open Access Journals (Sweden)

    C. R. Peng

    2011-01-01

    Full Text Available It is important to identify which proteins can interact with RNA for the purpose of protein annotation, since interactions between RNA and proteins influence the structure of the ribosome and play important roles in gene expression. This paper tries to identify proteins that can interact with RNA using voting systems. Firstly through Weka, 34 learning algorithms are chosen for investigation. Then simple majority voting system (SMVS is used for the prediction of RNA-binding proteins, achieving average ACC (overall prediction accuracy value of 79.72% and MCC (Matthew’s correlation coefficient value of 59.77% for the independent testing dataset. Then mRMR (minimum redundancy maximum relevance strategy is used, which is transferred into algorithm selection. In addition, the MCC value of each classifier is assigned to be the weight of the classifier’s vote. As a result, best average MCC values are attained when 22 algorithms are selected and integrated through weighted votes, which are 64.70% for the independent testing dataset, and ACC value is 82.04% at this moment.

  3. Fast dynamics perturbation analysis for prediction of protein functional sites

    Directory of Open Access Journals (Sweden)

    Cohn Judith D

    2008-01-01

    Full Text Available Abstract Background We present a fast version of the dynamics perturbation analysis (DPA algorithm to predict functional sites in protein structures. The original DPA algorithm finds regions in proteins where interactions cause a large change in the protein conformational distribution, as measured using the relative entropy Dx. Such regions are associated with functional sites. Results The Fast DPA algorithm, which accelerates DPA calculations, is motivated by an empirical observation that Dx in a normal-modes model is highly correlated with an entropic term that only depends on the eigenvalues of the normal modes. The eigenvalues are accurately estimated using first-order perturbation theory, resulting in a N-fold reduction in the overall computational requirements of the algorithm, where N is the number of residues in the protein. The performance of the original and Fast DPA algorithms was compared using protein structures from a standard small-molecule docking test set. For nominal implementations of each algorithm, top-ranked Fast DPA predictions overlapped the true binding site 94% of the time, compared to 87% of the time for original DPA. In addition, per-protein recall statistics (fraction of binding-site residues that are among predicted residues were slightly better for Fast DPA. On the other hand, per-protein precision statistics (fraction of predicted residues that are among binding-site residues were slightly better using original DPA. Overall, the performance of Fast DPA in predicting ligand-binding-site residues was comparable to that of the original DPA algorithm. Conclusion Compared to the original DPA algorithm, the decreased run time with comparable performance makes Fast DPA well-suited for implementation on a web server and for high-throughput analysis.

  4. BIPS: BIANA Interolog Prediction Server. A tool for protein-protein interaction inference.

    Science.gov (United States)

    Garcia-Garcia, Javier; Schleker, Sylvia; Klein-Seetharaman, Judith; Oliva, Baldo

    2012-07-01

    Protein-protein interactions (PPIs) play a crucial role in biology, and high-throughput experiments have greatly increased the coverage of known interactions. Still, identification of complete inter- and intraspecies interactomes is far from being complete. Experimental data can be complemented by the prediction of PPIs within an organism or between two organisms based on the known interactions of the orthologous genes of other organisms (interologs). Here, we present the BIANA (Biologic Interactions and Network Analysis) Interolog Prediction Server (BIPS), which offers a web-based interface to facilitate PPI predictions based on interolog information. BIPS benefits from the capabilities of the framework BIANA to integrate the several PPI-related databases. Additional metadata can be used to improve the reliability of the predicted interactions. Sensitivity and specificity of the server have been calculated using known PPIs from different interactomes using a leave-one-out approach. The specificity is between 72 and 98%, whereas sensitivity varies between 1 and 59%, depending on the sequence identity cut-off used to calculate similarities between sequences. BIPS is freely accessible at http://sbi.imim.es/BIPS.php.

  5. Integrative approaches to the prediction of protein functions based on the feature selection

    Directory of Open Access Journals (Sweden)

    Lee Hyunju

    2009-12-01

    Full Text Available Abstract Background Protein function prediction has been one of the most important issues in functional genomics. With the current availability of various genomic data sets, many researchers have attempted to develop integration models that combine all available genomic data for protein function prediction. These efforts have resulted in the improvement of prediction quality and the extension of prediction coverage. However, it has also been observed that integrating more data sources does not always increase the prediction quality. Therefore, selecting data sources that highly contribute to the protein function prediction has become an important issue. Results We present systematic feature selection methods that assess the contribution of genome-wide data sets to predict protein functions and then investigate the relationship between genomic data sources and protein functions. In this study, we use ten different genomic data sources in Mus musculus, including: protein-domains, protein-protein interactions, gene expressions, phenotype ontology, phylogenetic profiles and disease data sources to predict protein functions that are labelled with Gene Ontology (GO terms. We then apply two approaches to feature selection: exhaustive search feature selection using a kernel based logistic regression (KLR, and a kernel based L1-norm regularized logistic regression (KL1LR. In the first approach, we exhaustively measure the contribution of each data set for each function based on its prediction quality. In the second approach, we use the estimated coefficients of features as measures of contribution of data sources. Our results show that the proposed methods improve the prediction quality compared to the full integration of all data sources and other filter-based feature selection methods. We also show that contributing data sources can differ depending on the protein function. Furthermore, we observe that highly contributing data sets can be similar among

  6. A probabilistic fragment-based protein structure prediction algorithm.

    Directory of Open Access Journals (Sweden)

    David Simoncini

    Full Text Available Conformational sampling is one of the bottlenecks in fragment-based protein structure prediction approaches. They generally start with a coarse-grained optimization where mainchain atoms and centroids of side chains are considered, followed by a fine-grained optimization with an all-atom representation of proteins. It is during this coarse-grained phase that fragment-based methods sample intensely the conformational space. If the native-like region is sampled more, the accuracy of the final all-atom predictions may be improved accordingly. In this work we present EdaFold, a new method for fragment-based protein structure prediction based on an Estimation of Distribution Algorithm. Fragment-based approaches build protein models by assembling short fragments from known protein structures. Whereas the probability mass functions over the fragment libraries are uniform in the usual case, we propose an algorithm that learns from previously generated decoys and steers the search toward native-like regions. A comparison with Rosetta AbInitio protocol shows that EdaFold is able to generate models with lower energies and to enhance the percentage of near-native coarse-grained decoys on a benchmark of [Formula: see text] proteins. The best coarse-grained models produced by both methods were refined into all-atom models and used in molecular replacement. All atom decoys produced out of EdaFold's decoy set reach high enough accuracy to solve the crystallographic phase problem by molecular replacement for some test proteins. EdaFold showed a higher success rate in molecular replacement when compared to Rosetta. Our study suggests that improving low resolution coarse-grained decoys allows computational methods to avoid subsequent sampling issues during all-atom refinement and to produce better all-atom models. EdaFold can be downloaded from http://www.riken.jp/zhangiru/software.html [corrected].

  7. G-LoSA for Prediction of Protein-Ligand Binding Sites and Structures.

    Science.gov (United States)

    Lee, Hui Sun; Im, Wonpil

    2017-01-01

    Recent advances in high-throughput structure determination and computational protein structure prediction have significantly enriched the universe of protein structure. However, there is still a large gap between the number of available protein structures and that of proteins with annotated function in high accuracy. Computational structure-based protein function prediction has emerged to reduce this knowledge gap. The identification of a ligand binding site and its structure is critical to the determination of a protein's molecular function. We present a computational methodology for predicting small molecule ligand binding site and ligand structure using G-LoSA, our protein local structure alignment and similarity measurement tool. All the computational procedures described here can be easily implemented using G-LoSA Toolkit, a package of standalone software programs and preprocessed PDB structure libraries. G-LoSA and G-LoSA Toolkit are freely available to academic users at http://compbio.lehigh.edu/GLoSA . We also illustrate a case study to show the potential of our template-based approach harnessing G-LoSA for protein function prediction.

  8. Variation in predicted internal concentrations in relation to PBPK model complexity for rainbow trout

    Energy Technology Data Exchange (ETDEWEB)

    Salmina, E.S.; Wondrousch, D. [UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Institute for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg (Germany); Kühne, R. [UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Potemkin, V.A. [Department of Chemistry, South Ural State Medical University, Vorovskogo 64, 454048, Chelyabinsk (Russian Federation); Schüürmann, G. [UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig (Germany); Institute for Organic Chemistry, Technical University Bergakademie Freiberg, Leipziger Str. 29, 09596 Freiberg (Germany)

    2016-04-15

    The present study is motivated by the increasing demand to consider internal partitioning into tissues instead of exposure concentrations for the environmental toxicity assessment. To this end, physiologically based pharmacokinetic (PBPK) models can be applied. We evaluated the variation in accuracy of PBPK model outcomes depending on tissue constituents modeled as sorptive phases and chemical distribution tendencies addressed by molecular descriptors. The model performance was examined using data from 150 experiments for 28 chemicals collected from US EPA databases. The simplest PBPK model is based on the “K{sub ow}-lipid content” approach as being traditional for environmental toxicology. The most elaborated one considers five biological sorptive phases (polar and non-polar lipids, water, albumin and the remaining proteins) and makes use of LSER (linear solvation energy relationship) parameters to describe the compound partitioning behavior. The “K{sub ow}-lipid content”-based PBPK model shows more than one order of magnitude difference in predicted and measured values for 37% of the studied exposure experiments while for the most elaborated model this happens only for 7%. It is shown that further improvements could be achieved by introducing corrections for metabolic biotransformation and compound transmission hindrance through a cellular membrane. The analysis of the interface distribution tendencies shows that polar tissue constituents, namely water, polar lipids and proteins, play an important role in the accumulation behavior of polar compounds with H-bond donating functional groups. For compounds without H-bond donating fragments preferable accumulation phases are storage lipids and water depending on compound polarity. - Highlights: • For reliable predictions, models of a certain complexity should be compared. • For reliable predictions non-lipid fish tissue constituents should be considered. • H-donor compounds preferably accumulate in water

  9. Variation in predicted internal concentrations in relation to PBPK model complexity for rainbow trout

    International Nuclear Information System (INIS)

    Salmina, E.S.; Wondrousch, D.; Kühne, R.; Potemkin, V.A.; Schüürmann, G.

    2016-01-01

    The present study is motivated by the increasing demand to consider internal partitioning into tissues instead of exposure concentrations for the environmental toxicity assessment. To this end, physiologically based pharmacokinetic (PBPK) models can be applied. We evaluated the variation in accuracy of PBPK model outcomes depending on tissue constituents modeled as sorptive phases and chemical distribution tendencies addressed by molecular descriptors. The model performance was examined using data from 150 experiments for 28 chemicals collected from US EPA databases. The simplest PBPK model is based on the “K_o_w-lipid content” approach as being traditional for environmental toxicology. The most elaborated one considers five biological sorptive phases (polar and non-polar lipids, water, albumin and the remaining proteins) and makes use of LSER (linear solvation energy relationship) parameters to describe the compound partitioning behavior. The “K_o_w-lipid content”-based PBPK model shows more than one order of magnitude difference in predicted and measured values for 37% of the studied exposure experiments while for the most elaborated model this happens only for 7%. It is shown that further improvements could be achieved by introducing corrections for metabolic biotransformation and compound transmission hindrance through a cellular membrane. The analysis of the interface distribution tendencies shows that polar tissue constituents, namely water, polar lipids and proteins, play an important role in the accumulation behavior of polar compounds with H-bond donating functional groups. For compounds without H-bond donating fragments preferable accumulation phases are storage lipids and water depending on compound polarity. - Highlights: • For reliable predictions, models of a certain complexity should be compared. • For reliable predictions non-lipid fish tissue constituents should be considered. • H-donor compounds preferably accumulate in water, polar

  10. Ground level environmental protein concentrations in various ecuadorian environments: potential uses of aerosolized protein for ecological research

    Science.gov (United States)

    Staton, Sarah J.R.; Woodward, Andrea; Castillo, Josemar A.; Swing, Kelly; Hayes, Mark A.

    2014-01-01

    Large quantities of free protein in the environment and other bioaerosols are ubiquitous throughout terrestrial ground level environments and may be integrative indicators of ecosystem status. Samples of ground level bioaerosols were collected from various ecosystems throughout Ecuador, including pristine humid tropical forest (pristine), highly altered secondary humid tropical forest (highly altered), secondary transitional very humid forest (regrowth transitional), and suburban dry montane deforested (suburban deforested). The results explored the sensitivity of localized aerosol protein concentrations to spatial and temporal variations within ecosystems, and their value for assessing environmental change. Ecosystem specific variations in environmental protein concentrations were observed: pristine 0.32 ± 0.09 μg/m3, highly altered 0.07 ± 0.05 μg/m3, regrowth transitional 0.17 ± 0.06 μg/m3, and suburban deforested 0.09 ± 0.04 μg/m3. Additionally, comparisons of intra-environmental differences in seasonal/daily weather (dry season 0.08 ± 0.03 μg/m3 and wet season 0.10 ± 0.04 μg/m3), environmental fragmentation (buffered 0.19 ± 0.06 μg/m3 and edge 0.15 ± 0.06 μg/m3), and sampling height (ground level 0.32 ± 0.09 μg/m3 and 10 m 0.24 ± 0.04 μg/m3) demonstrated the sensitivity of protein concentrations to environmental conditions. Local protein concentrations in altered environments correlated well with satellite-based spectral indices describing vegetation productivity: normalized difference vegetation index (NDVI) (r2 = 0.801), net primary production (NPP) (r2 = 0.827), leaf area index (LAI) (r2 = 0.410). Moreover, protein concentrations distinguished the pristine site, which was not differentiated in spectral indices, potentially due to spectral saturation typical of highly vegetated environments. Bioaerosol concentrations represent an inexpensive method to increase understanding of environmental changes, especially in densely vegetated

  11. Predicting Protein Function via Semantic Integration of Multiple Networks.

    Science.gov (United States)

    Yu, Guoxian; Fu, Guangyuan; Wang, Jun; Zhu, Hailong

    2016-01-01

    Determining the biological functions of proteins is one of the key challenges in the post-genomic era. The rapidly accumulated large volumes of proteomic and genomic data drives to develop computational models for automatically predicting protein function in large scale. Recent approaches focus on integrating multiple heterogeneous data sources and they often get better results than methods that use single data source alone. In this paper, we investigate how to integrate multiple biological data sources with the biological knowledge, i.e., Gene Ontology (GO), for protein function prediction. We propose a method, called SimNet, to Semantically integrate multiple functional association Networks derived from heterogenous data sources. SimNet firstly utilizes GO annotations of proteins to capture the semantic similarity between proteins and introduces a semantic kernel based on the similarity. Next, SimNet constructs a composite network, obtained as a weighted summation of individual networks, and aligns the network with the kernel to get the weights assigned to individual networks. Then, it applies a network-based classifier on the composite network to predict protein function. Experiment results on heterogenous proteomic data sources of Yeast, Human, Mouse, and Fly show that, SimNet not only achieves better (or comparable) results than other related competitive approaches, but also takes much less time. The Matlab codes of SimNet are available at https://sites.google.com/site/guoxian85/simnet.

  12. Validation of Molecular Dynamics Simulations for Prediction of Three-Dimensional Structures of Small Proteins.

    Science.gov (United States)

    Kato, Koichi; Nakayoshi, Tomoki; Fukuyoshi, Shuichi; Kurimoto, Eiji; Oda, Akifumi

    2017-10-12

    Although various higher-order protein structure prediction methods have been developed, almost all of them were developed based on the three-dimensional (3D) structure information of known proteins. Here we predicted the short protein structures by molecular dynamics (MD) simulations in which only Newton's equations of motion were used and 3D structural information of known proteins was not required. To evaluate the ability of MD simulationto predict protein structures, we calculated seven short test protein (10-46 residues) in the denatured state and compared their predicted and experimental structures. The predicted structure for Trp-cage (20 residues) was close to the experimental structure by 200-ns MD simulation. For proteins shorter or longer than Trp-cage, root-mean square deviation values were larger than those for Trp-cage. However, secondary structures could be reproduced by MD simulations for proteins with 10-34 residues. Simulations by replica exchange MD were performed, but the results were similar to those from normal MD simulations. These results suggest that normal MD simulations can roughly predict short protein structures and 200-ns simulations are frequently sufficient for estimating the secondary structures of protein (approximately 20 residues). Structural prediction method using only fundamental physical laws are useful for investigating non-natural proteins, such as primitive proteins and artificial proteins for peptide-based drug delivery systems.

  13. The elution of certain protein affinity tags with millimolar concentrations of diclofenac.

    Science.gov (United States)

    Baliova, Martina; Juhasova, Anna; Jursky, Frantisek

    2015-12-01

    Diclofenac (2-[(2, 6-dichlorophenyl)amino] benzeneacetic acid) is a sparingly soluble, nonsteroidal anti-inflammatory drug therapeutically acting at low micromolar concentrations. In pH range from 8 to 11, its aqueous solubility can be increased up to 200 times by the presence of counter ions such as sodium. Our protein interaction studies revealed that a millimolar concentration of sodium diclofenac is able to elute glutathione S-transferase (GST), cellulose binding protein (CBD), and maltose binding protein (MBP) but not histidine-tagged or PDZ-tagged proteins from their affinity resins. The elution efficiency of diclofenac is comparable with the eluting agents normally used at similar concentrations. Native gel electrophoresis of sodium diclofenac-treated proteins showed that the interaction is non-covalent and non-denaturing. These results suggest that sodium diclofenac, in addition to its pharmaceutical applications, can also be exploited as a lead for the development of new proteomics reagents. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Pharmacological considerations for predicting PK/PD at the site of action for therapeutic proteins.

    Science.gov (United States)

    Wang, Weirong; Zhou, Honghui

    For therapeutic proteins whose sites of action are distal to the systemic circulation, both drug and target concentrations at the tissue sites are not necessarily proportional to those in systemic circulation, highlighting the importance of understanding pharmacokinetic/pharmacodynamic (PK/PD) relationship at the sites of action. This review summarizes the pharmacological considerations for predicting local PK/PD and the importance of measuring PK and PD at site of action. Three case examples are presented to show how mechanistic and physiologically based PK/PD (PBPK/PD) models which incorporated the PK and PD at the tissue site can be used to facilitate understanding the exposure-response relationship for therapeutic proteins. Copyright © 2016. Published by Elsevier Ltd.

  15. Feature-Based and String-Based Models for Predicting RNA-Protein Interaction

    Directory of Open Access Journals (Sweden)

    Donald Adjeroh

    2018-03-01

    Full Text Available In this work, we study two approaches for the problem of RNA-Protein Interaction (RPI. In the first approach, we use a feature-based technique by combining extracted features from both sequences and secondary structures. The feature-based approach enhanced the prediction accuracy as it included much more available information about the RNA-protein pairs. In the second approach, we apply search algorithms and data structures to extract effective string patterns for prediction of RPI, using both sequence information (protein and RNA sequences, and structure information (protein and RNA secondary structures. This led to different string-based models for predicting interacting RNA-protein pairs. We show results that demonstrate the effectiveness of the proposed approaches, including comparative results against leading state-of-the-art methods.

  16. Prediction of toxic metals concentration using artificial intelligence techniques

    Science.gov (United States)

    Gholami, R.; Kamkar-Rouhani, A.; Doulati Ardejani, F.; Maleki, Sh.

    2011-12-01

    Groundwater and soil pollution are noted to be the worst environmental problem related to the mining industry because of the pyrite oxidation, and hence acid mine drainage generation, release and transport of the toxic metals. The aim of this paper is to predict the concentration of Ni and Fe using a robust algorithm named support vector machine (SVM). Comparison of the obtained results of SVM with those of the back-propagation neural network (BPNN) indicates that the SVM can be regarded as a proper algorithm for the prediction of toxic metals concentration due to its relative high correlation coefficient and the associated running time. As a matter of fact, the SVM method has provided a better prediction of the toxic metals Fe and Ni and resulted the running time faster compared with that of the BPNN.

  17. Extraction of Protein-Protein Interaction from Scientific Articles by Predicting Dominant Keywords.

    Science.gov (United States)

    Koyabu, Shun; Phan, Thi Thanh Thuy; Ohkawa, Takenao

    2015-01-01

    For the automatic extraction of protein-protein interaction information from scientific articles, a machine learning approach is useful. The classifier is generated from training data represented using several features to decide whether a protein pair in each sentence has an interaction. Such a specific keyword that is directly related to interaction as "bind" or "interact" plays an important role for training classifiers. We call it a dominant keyword that affects the capability of the classifier. Although it is important to identify the dominant keywords, whether a keyword is dominant depends on the context in which it occurs. Therefore, we propose a method for predicting whether a keyword is dominant for each instance. In this method, a keyword that derives imbalanced classification results is tentatively assumed to be a dominant keyword initially. Then the classifiers are separately trained from the instance with and without the assumed dominant keywords. The validity of the assumed dominant keyword is evaluated based on the classification results of the generated classifiers. The assumption is updated by the evaluation result. Repeating this process increases the prediction accuracy of the dominant keyword. Our experimental results using five corpora show the effectiveness of our proposed method with dominant keyword prediction.

  18. Evaluation of multiple protein docking structures using correctly predicted pairwise subunits

    Directory of Open Access Journals (Sweden)

    Esquivel-Rodríguez Juan

    2012-03-01

    Full Text Available Abstract Background Many functionally important proteins in a cell form complexes with multiple chains. Therefore, computational prediction of multiple protein complexes is an important task in bioinformatics. In the development of multiple protein docking methods, it is important to establish a metric for evaluating prediction results in a reasonable and practical fashion. However, since there are only few works done in developing methods for multiple protein docking, there is no study that investigates how accurate structural models of multiple protein complexes should be to allow scientists to gain biological insights. Methods We generated a series of predicted models (decoys of various accuracies by our multiple protein docking pipeline, Multi-LZerD, for three multi-chain complexes with 3, 4, and 6 chains. We analyzed the decoys in terms of the number of correctly predicted pair conformations in the decoys. Results and conclusion We found that pairs of chains with the correct mutual orientation exist even in the decoys with a large overall root mean square deviation (RMSD to the native. Therefore, in addition to a global structure similarity measure, such as the global RMSD, the quality of models for multiple chain complexes can be better evaluated by using the local measurement, the number of chain pairs with correct mutual orientation. We termed the fraction of correctly predicted pairs (RMSD at the interface of less than 4.0Å as fpair and propose to use it for evaluation of the accuracy of multiple protein docking.

  19. Fast computational methods for predicting protein structure from primary amino acid sequence

    Science.gov (United States)

    Agarwal, Pratul Kumar [Knoxville, TN

    2011-07-19

    The present invention provides a method utilizing primary amino acid sequence of a protein, energy minimization, molecular dynamics and protein vibrational modes to predict three-dimensional structure of a protein. The present invention also determines possible intermediates in the protein folding pathway. The present invention has important applications to the design of novel drugs as well as protein engineering. The present invention predicts the three-dimensional structure of a protein independent of size of the protein, overcoming a significant limitation in the prior art.

  20. Predicting Secretory Proteins with SignalP

    DEFF Research Database (Denmark)

    Nielsen, Henrik

    2017-01-01

    SignalP is the currently most widely used program for prediction of signal peptides from amino acid sequences. Proteins with signal peptides are targeted to the secretory pathway, but are not necessarily secreted. After a brief introduction to the biology of signal peptides and the history...

  1. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework

    Science.gov (United States)

    2014-01-01

    Motivation Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. Results We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set. PMID:24646119

  2. Protein (multi-)location prediction: using location inter-dependencies in a probabilistic framework.

    Science.gov (United States)

    Simha, Ramanuja; Shatkay, Hagit

    2014-03-19

    Knowing the location of a protein within the cell is important for understanding its function, role in biological processes, and potential use as a drug target. Much progress has been made in developing computational methods that predict single locations for proteins. Most such methods are based on the over-simplifying assumption that proteins localize to a single location. However, it has been shown that proteins localize to multiple locations. While a few recent systems attempt to predict multiple locations of proteins, their performance leaves much room for improvement. Moreover, they typically treat locations as independent and do not attempt to utilize possible inter-dependencies among locations. Our hypothesis is that directly incorporating inter-dependencies among locations into both the classifier-learning and the prediction process can improve location prediction performance. We present a new method and a preliminary system we have developed that directly incorporates inter-dependencies among locations into the location-prediction process of multiply-localized proteins. Our method is based on a collection of Bayesian network classifiers, where each classifier is used to predict a single location. Learning the structure of each Bayesian network classifier takes into account inter-dependencies among locations, and the prediction process uses estimates involving multiple locations. We evaluate our system on a dataset of single- and multi-localized proteins (the most comprehensive protein multi-localization dataset currently available, derived from the DBMLoc dataset). Our results, obtained by incorporating inter-dependencies, are significantly higher than those obtained by classifiers that do not use inter-dependencies. The performance of our system on multi-localized proteins is comparable to a top performing system (YLoc+), without being restricted only to location-combinations present in the training set.

  3. Enhanced Temperature During Grain Filling Reduces Protein Concentration of Durum Wheat

    Directory of Open Access Journals (Sweden)

    Franco Miglietta

    2011-02-01

    Full Text Available Durum wheat is cultivated over more than 13 millions of hectares (ha world wide and Italy is the main European producer with 3.5 millions tons per year. The protein concentration of durum wheat is very important, it ensures high nutritional value and is highly appreciated by the pasta production industries. The protein concentration of wheat is determined during the grain filling period when carbon and nitrogen compounds are translocated into the grains. Air temperature affects translocation rates and contributes to final protein concentration of wheat grains. Two common commercial varieties of durum and bread wheat were exposed from anthesis to harvest, to a source of infrared radiation in the field. This allowed to investigate the relative effect of temperature on translocation of carbon and nitrogen compound during grain filling. The heat treatment imposed affected marginally dry mass accumulation of the grains in bread wheat and didn’t affect dry mass in durum wheat. Grain protein was affected by heat treatment in durum but not in bread wheat. Carbon accumulation rate was higher for durum than for bread wheat. The protein concentration was greater in durum than in bread wheat and we can assume that the absolute nitrogen accumulation rates were higher for the former species. Such difference may be either caused by a faster nitrogen uptake rate and translocation or a more efficient relocation of nitrogen accumulated in reserve organs.

  4. Adaptive compressive learning for prediction of protein-protein interactions from primary sequence.

    Science.gov (United States)

    Zhang, Ya-Nan; Pan, Xiao-Yong; Huang, Yan; Shen, Hong-Bin

    2011-08-21

    Protein-protein interactions (PPIs) play an important role in biological processes. Although much effort has been devoted to the identification of novel PPIs by integrating experimental biological knowledge, there are still many difficulties because of lacking enough protein structural and functional information. It is highly desired to develop methods based only on amino acid sequences for predicting PPIs. However, sequence-based predictors are often struggling with the high-dimensionality causing over-fitting and high computational complexity problems, as well as the redundancy of sequential feature vectors. In this paper, a novel computational approach based on compressed sensing theory is proposed to predict yeast Saccharomyces cerevisiae PPIs from primary sequence and has achieved promising results. The key advantage of the proposed compressed sensing algorithm is that it can compress the original high-dimensional protein sequential feature vector into a much lower but more condensed space taking the sparsity property of the original signal into account. What makes compressed sensing much more attractive in protein sequence analysis is its compressed signal can be reconstructed from far fewer measurements than what is usually considered necessary in traditional Nyquist sampling theory. Experimental results demonstrate that proposed compressed sensing method is powerful for analyzing noisy biological data and reducing redundancy in feature vectors. The proposed method represents a new strategy of dealing with high-dimensional protein discrete model and has great potentiality to be extended to deal with many other complicated biological systems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    KAUST Repository

    Cui, Xuefeng; Lu, Zhiwu; Wang, Sheng; Jing-Yan Wang, Jim; Gao, Xin

    2016-01-01

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment

  6. Hill-Climbing search and diversification within an evolutionary approach to protein structure prediction.

    Science.gov (United States)

    Chira, Camelia; Horvath, Dragos; Dumitrescu, D

    2011-07-30

    Proteins are complex structures made of amino acids having a fundamental role in the correct functioning of living cells. The structure of a protein is the result of the protein folding process. However, the general principles that govern the folding of natural proteins into a native structure are unknown. The problem of predicting a protein structure with minimum-energy starting from the unfolded amino acid sequence is a highly complex and important task in molecular and computational biology. Protein structure prediction has important applications in fields such as drug design and disease prediction. The protein structure prediction problem is NP-hard even in simplified lattice protein models. An evolutionary model based on hill-climbing genetic operators is proposed for protein structure prediction in the hydrophobic - polar (HP) model. Problem-specific search operators are implemented and applied using a steepest-ascent hill-climbing approach. Furthermore, the proposed model enforces an explicit diversification stage during the evolution in order to avoid local optimum. The main features of the resulting evolutionary algorithm - hill-climbing mechanism and diversification strategy - are evaluated in a set of numerical experiments for the protein structure prediction problem to assess their impact to the efficiency of the search process. Furthermore, the emerging consolidated model is compared to relevant algorithms from the literature for a set of difficult bidimensional instances from lattice protein models. The results obtained by the proposed algorithm are promising and competitive with those of related methods.

  7. Hill-Climbing search and diversification within an evolutionary approach to protein structure prediction

    Directory of Open Access Journals (Sweden)

    Chira Camelia

    2011-07-01

    Full Text Available Abstract Proteins are complex structures made of amino acids having a fundamental role in the correct functioning of living cells. The structure of a protein is the result of the protein folding process. However, the general principles that govern the folding of natural proteins into a native structure are unknown. The problem of predicting a protein structure with minimum-energy starting from the unfolded amino acid sequence is a highly complex and important task in molecular and computational biology. Protein structure prediction has important applications in fields such as drug design and disease prediction. The protein structure prediction problem is NP-hard even in simplified lattice protein models. An evolutionary model based on hill-climbing genetic operators is proposed for protein structure prediction in the hydrophobic - polar (HP model. Problem-specific search operators are implemented and applied using a steepest-ascent hill-climbing approach. Furthermore, the proposed model enforces an explicit diversification stage during the evolution in order to avoid local optimum. The main features of the resulting evolutionary algorithm - hill-climbing mechanism and diversification strategy - are evaluated in a set of numerical experiments for the protein structure prediction problem to assess their impact to the efficiency of the search process. Furthermore, the emerging consolidated model is compared to relevant algorithms from the literature for a set of difficult bidimensional instances from lattice protein models. The results obtained by the proposed algorithm are promising and competitive with those of related methods.

  8. An update of the DEF database of protein fold class predictions

    DEFF Research Database (Denmark)

    Reczko, Martin; Karras, Dimitris; Bohr, Henrik

    1997-01-01

    An update is given on the Database of Expected Fold classes (DEF) that contains a collection of fold-class predictions made from protein sequences and a mail server that provides new predictions for new sequences. To any given sequence one of 49 fold-classes is chosen to classify the structure re...... related to the sequence with high accuracy. The updated predictions system is developed using data from the new version of the 3D-ALI database of aligned protein structures and thus is giving more reliable and more detailed predictions than the previous DEF system.......An update is given on the Database of Expected Fold classes (DEF) that contains a collection of fold-class predictions made from protein sequences and a mail server that provides new predictions for new sequences. To any given sequence one of 49 fold-classes is chosen to classify the structure...

  9. Minimum curvilinearity to enhance topological prediction of protein interactions by network embedding

    KAUST Repository

    Cannistraci, Carlo

    2013-06-21

    Motivation: Most functions within the cell emerge thanks to protein-protein interactions (PPIs), yet experimental determination of PPIs is both expensive and time-consuming. PPI networks present significant levels of noise and incompleteness. Predicting interactions using only PPI-network topology (topological prediction) is difficult but essential when prior biological knowledge is absent or unreliable.Methods: Network embedding emphasizes the relations between network proteins embedded in a low-dimensional space, in which protein pairs that are closer to each other represent good candidate interactions. To achieve network denoising, which boosts prediction performance, we first applied minimum curvilinear embedding (MCE), and then adopted shortest path (SP) in the reduced space to assign likelihood scores to candidate interactions. Furthermore, we introduce (i) a new valid variation of MCE, named non-centred MCE (ncMCE); (ii) two automatic strategies for selecting the appropriate embedding dimension; and (iii) two new randomized procedures for evaluating predictions.Results: We compared our method against several unsupervised and supervisedly tuned embedding approaches and node neighbourhood techniques. Despite its computational simplicity, ncMCE-SP was the overall leader, outperforming the current methods in topological link prediction.Conclusion: Minimum curvilinearity is a valuable non-linear framework that we successfully applied to the embedding of protein networks for the unsupervised prediction of novel PPIs. The rationale for our approach is that biological and evolutionary information is imprinted in the non-linear patterns hidden behind the protein network topology, and can be exploited for predicting new protein links. The predicted PPIs represent good candidates for testing in high-throughput experiments or for exploitation in systems biology tools such as those used for network-based inference and prediction of disease-related functional modules. The

  10. Increase in local protein concentration by field-inversion gel electrophoresis

    Directory of Open Access Journals (Sweden)

    Paulus Aran

    2007-09-01

    Full Text Available Abstract Background Proteins that migrate through cross-linked polyacrylamide gels (PAGs under the influence of a constant electric field experience negative factors, such as diffusion and non-specific trapping in the gel matrix. These negative factors reduce protein concentrations within a defined gel volume with increasing migration distance and, therefore, decrease protein separation efficiency. Enhancement of protein separation efficiency was investigated by implementing pulsed field-inversion gel electrophoresis (FIGE. Results Separation of model protein species and large protein complexes was compared between FIGE and constant field electrophoresis (CFE in different percentages of PAGs. Band intensities of proteins in FIGE with appropriate ratios of forward and backward pulse times were superior to CFE despite longer running times. These results revealed an increase in band intensity per defined gel volume. A biphasic protein relative mobility shift was observed in percentages of PAGs up to 14%. However, the effect of FIGE on protein separation was stochastic at higher PAG percentage. Rat liver lysates subjected to FIGE in the second-dimension separation of two-dimensional polyarcylamide gel electrophoresis (2D PAGE showed a 20% increase in the number of discernible spots compared with CFE. Nine common spots from both FIGE and CFE were selected for peptide sequencing by mass spectrometry (MS, which revealed higher final ion scores of all nine protein spots from FIGE. Native protein complexes ranging from 800 kDa to larger than 2000 kDa became apparent using FIGE compared with CFE. Conclusion The present investigation suggests that FIGE under appropriate conditions improves protein separation efficiency during PAGE as a result of increased local protein concentration. FIGE can be implemented with minimal additional instrumentation in any laboratory setting. Despite the tradeoff of longer running times, FIGE can be a powerful protein

  11. Increase in local protein concentration by field-inversion gel electrophoresis.

    Science.gov (United States)

    Tsai, Henghang; Low, Teck Yew; Freeby, Steve; Paulus, Aran; Ramnarayanan, Kalpana; Cheng, Chung-Pui Paul; Leung, Hon-Chiu Eastwood

    2007-09-26

    Proteins that migrate through cross-linked polyacrylamide gels (PAGs) under the influence of a constant electric field experience negative factors, such as diffusion and non-specific trapping in the gel matrix. These negative factors reduce protein concentrations within a defined gel volume with increasing migration distance and, therefore, decrease protein separation efficiency. Enhancement of protein separation efficiency was investigated by implementing pulsed field-inversion gel electrophoresis (FIGE). Separation of model protein species and large protein complexes was compared between FIGE and constant field electrophoresis (CFE) in different percentages of PAGs. Band intensities of proteins in FIGE with appropriate ratios of forward and backward pulse times were superior to CFE despite longer running times. These results revealed an increase in band intensity per defined gel volume. A biphasic protein relative mobility shift was observed in percentages of PAGs up to 14%. However, the effect of FIGE on protein separation was stochastic at higher PAG percentage. Rat liver lysates subjected to FIGE in the second-dimension separation of two-dimensional polyarcylamide gel electrophoresis (2D PAGE) showed a 20% increase in the number of discernible spots compared with CFE. Nine common spots from both FIGE and CFE were selected for peptide sequencing by mass spectrometry (MS), which revealed higher final ion scores of all nine protein spots from FIGE. Native protein complexes ranging from 800 kDa to larger than 2000 kDa became apparent using FIGE compared with CFE. The present investigation suggests that FIGE under appropriate conditions improves protein separation efficiency during PAGE as a result of increased local protein concentration. FIGE can be implemented with minimal additional instrumentation in any laboratory setting. Despite the tradeoff of longer running times, FIGE can be a powerful protein separation tool.

  12. Evaluation of energy status of dairy cows using milk fat, protein and urea concentrations

    Directory of Open Access Journals (Sweden)

    Kirovski Danijela

    2011-11-01

    Full Text Available Energy status of dairy cows may be estimated using results for concentrations of fat, protein and urea (MUN in milk samples obtained from bulk tank or individual cows. Using individual cow milk samples is recommended on dairy farms in our geografical region due to the unhomogenity of cows in the herds in respect to their genetic potential for milk production. Depression of milk fat occurs as a consequence of heat stress, underfeeding of peripartal cows, overfeeding concentrate with reduced ration fiber levels or overfeeding with dietary fat. High milk fat content is usually combined with severe negative energy balance. Nutrition and feeding practices have great impact on milk protein level. A deficiency of crude protein in the ration may depress protein in milk. Feeding excessive dietary protein does not significantly increase milk protein. MUN analyses point out potential problems in feeding program on dairy farm. High MUN values may reflect excessive dietary crude protein and/or low rumen degradable non fiber carbohydrates intake. Also, MUN levels is impacted by heat stress since its value is increased during the summer season. Low MUNs indicate a possible dietary protein deficiency. Additionally, low MUNs concentration may indicate excess in dietary nonstructural carbohydrates. On the bases on the interrelationships between protein and urea concentrations, as well as protein and fat concentrations in individual milk sample, estimation of energy balance of dairy cows may be done more accurately.

  13. Predicting the subcellular localization of viral proteins within a mammalian host cell

    Directory of Open Access Journals (Sweden)

    Thomas DY

    2006-04-01

    Full Text Available Abstract Background The bioinformatic prediction of protein subcellular localization has been extensively studied for prokaryotic and eukaryotic organisms. However, this is not the case for viruses whose proteins are often involved in extensive interactions at various subcellular localizations with host proteins. Results Here, we investigate the extent of utilization of human cellular localization mechanisms by viral proteins and we demonstrate that appropriate eukaryotic subcellular localization predictors can be used to predict viral protein localization within the host cell. Conclusion Such predictions provide a method to rapidly annotate viral proteomes with subcellular localization information. They are likely to have widespread applications both in the study of the functions of viral proteins in the host cell and in the design of antiviral drugs.

  14. A Particle Swarm Optimization-Based Approach with Local Search for Predicting Protein Folding.

    Science.gov (United States)

    Yang, Cheng-Hong; Lin, Yu-Shiun; Chuang, Li-Yeh; Chang, Hsueh-Wei

    2017-10-01

    The hydrophobic-polar (HP) model is commonly used for predicting protein folding structures and hydrophobic interactions. This study developed a particle swarm optimization (PSO)-based algorithm combined with local search algorithms; specifically, the high exploration PSO (HEPSO) algorithm (which can execute global search processes) was combined with three local search algorithms (hill-climbing algorithm, greedy algorithm, and Tabu table), yielding the proposed HE-L-PSO algorithm. By using 20 known protein structures, we evaluated the performance of the HE-L-PSO algorithm in predicting protein folding in the HP model. The proposed HE-L-PSO algorithm exhibited favorable performance in predicting both short and long amino acid sequences with high reproducibility and stability, compared with seven reported algorithms. The HE-L-PSO algorithm yielded optimal solutions for all predicted protein folding structures. All HE-L-PSO-predicted protein folding structures possessed a hydrophobic core that is similar to normal protein folding.

  15. Predicting Protein-Protein Interaction Sites with a Novel Membership Based Fuzzy SVM Classifier.

    Science.gov (United States)

    Sriwastava, Brijesh K; Basu, Subhadip; Maulik, Ujjwal

    2015-01-01

    Predicting residues that participate in protein-protein interactions (PPI) helps to identify, which amino acids are located at the interface. In this paper, we show that the performance of the classical support vector machine (SVM) algorithm can further be improved with the use of a custom-designed fuzzy membership function, for the partner-specific PPI interface prediction problem. We evaluated the performances of both classical SVM and fuzzy SVM (F-SVM) on the PPI databases of three different model proteomes of Homo sapiens, Escherichia coli and Saccharomyces Cerevisiae and calculated the statistical significance of the developed F-SVM over classical SVM algorithm. We also compared our performance with the available state-of-the-art fuzzy methods in this domain and observed significant performance improvements. To predict interaction sites in protein complexes, local composition of amino acids together with their physico-chemical characteristics are used, where the F-SVM based prediction method exploits the membership function for each pair of sequence fragments. The average F-SVM performance (area under ROC curve) on the test samples in 10-fold cross validation experiment are measured as 77.07, 78.39, and 74.91 percent for the aforementioned organisms respectively. Performances on independent test sets are obtained as 72.09, 73.24 and 82.74 percent respectively. The software is available for free download from http://code.google.com/p/cmater-bioinfo.

  16. Effect of protein binding on unbound atazanavir and darunavir cerebrospinal fluid concentrations.

    Science.gov (United States)

    Delille, Cecile A; Pruett, Sarah T; Marconi, Vincent C; Lennox, Jeffrey L; Armstrong, Wendy S; Arrendale, Richard F; Sheth, Anandi N; Easley, Kirk A; Acosta, Edward P; Vunnava, Aswani; Ofotokun, Ighovwerha

    2014-09-01

    HIV-1 protease inhibitors (PIs) exhibit different protein binding affinities and achieve variable plasma and tissue concentrations. Degree of plasma protein binding may impact central nervous system penetration. This cross-sectional study assessed cerebrospinal fluid (CSF) unbound PI concentrations, HIV-1 RNA, and neopterin levels in subjects receiving either ritonavir-boosted darunavir (DRV), 95% plasma protein bound, or atazanavir (ATV), 86% bound. Unbound PI trough concentrations were measured using rapid equilibrium dialysis and liquid chromatography/tandem mass spectrometry. Plasma and CSF HIV-1 RNA and neopterin were measured by Ampliprep/COBAS® Taqman® 2.0 assay (Roche) and enzyme-linked immunosorbent assay (ALPCO), respectively. CSF/plasma unbound drug concentration ratio was higher for ATV, 0.09 [95% confidence interval (CI) 0.06-0.12] than DRV, 0.04 (95%CI 0.03-0.06). Unbound CSF concentrations were lower than protein adjusted wild-type inhibitory concentration-50 (IC50 ) in all ATV and 1 DRV-treated subjects (P < 0.001). CSF HIV-1 RNA was detected in 2/15 ATV and 4/15 DRV subjects (P = 0.65). CSF neopterin levels were low and similar between arms. ATV relative to DRV had higher CSF/plasma unbound drug ratio. Low CSF HIV-1 RNA and neopterin suggest that both regimens resulted in CSF virologic suppression and controlled inflammation. © 2014, The American College of Clinical Pharmacology.

  17. Building a better fragment library for de novo protein structure prediction.

    Directory of Open Access Journals (Sweden)

    Saulo H P de Oliveira

    Full Text Available Fragment-based approaches are the current standard for de novo protein structure prediction. These approaches rely on accurate and reliable fragment libraries to generate good structural models. In this work, we describe a novel method for structure fragment library generation and its application in fragment-based de novo protein structure prediction. The importance of correct testing procedures in assessing the quality of fragment libraries is demonstrated. In particular, the exclusion of homologs to the target from the libraries to correctly simulate a de novo protein structure prediction scenario, something which surprisingly is not always done. We demonstrate that fragments presenting different predominant predicted secondary structures should be treated differently during the fragment library generation step and that exhaustive and random search strategies should both be used. This information was used to develop a novel method, Flib. On a validation set of 41 structurally diverse proteins, Flib libraries presents both a higher precision and coverage than two of the state-of-the-art methods, NNMake and HHFrag. Flib also achieves better precision and coverage on the set of 275 protein domains used in the two previous experiments of the the Critical Assessment of Structure Prediction (CASP9 and CASP10. We compared Flib libraries against NNMake libraries in a structure prediction context. Of the 13 cases in which a correct answer was generated, Flib models were more accurate than NNMake models for 10. "Flib is available for download at: http://www.stats.ox.ac.uk/research/proteins/resources".

  18. Building a Better Fragment Library for De Novo Protein Structure Prediction

    Science.gov (United States)

    de Oliveira, Saulo H. P.; Shi, Jiye; Deane, Charlotte M.

    2015-01-01

    Fragment-based approaches are the current standard for de novo protein structure prediction. These approaches rely on accurate and reliable fragment libraries to generate good structural models. In this work, we describe a novel method for structure fragment library generation and its application in fragment-based de novo protein structure prediction. The importance of correct testing procedures in assessing the quality of fragment libraries is demonstrated. In particular, the exclusion of homologs to the target from the libraries to correctly simulate a de novo protein structure prediction scenario, something which surprisingly is not always done. We demonstrate that fragments presenting different predominant predicted secondary structures should be treated differently during the fragment library generation step and that exhaustive and random search strategies should both be used. This information was used to develop a novel method, Flib. On a validation set of 41 structurally diverse proteins, Flib libraries presents both a higher precision and coverage than two of the state-of-the-art methods, NNMake and HHFrag. Flib also achieves better precision and coverage on the set of 275 protein domains used in the two previous experiments of the the Critical Assessment of Structure Prediction (CASP9 and CASP10). We compared Flib libraries against NNMake libraries in a structure prediction context. Of the 13 cases in which a correct answer was generated, Flib models were more accurate than NNMake models for 10. “Flib is available for download at: http://www.stats.ox.ac.uk/research/proteins/resources”. PMID:25901595

  19. InterMap3D: predicting and visualizing co-evolving protein residues

    DEFF Research Database (Denmark)

    Oliveira, Rodrigo Gouveia; Roque, francisco jose sousa simôes almeida; Wernersson, Rasmus

    2009-01-01

    InterMap3D predicts co-evolving protein residues and plots them on the 3D protein structure. Starting with a single protein sequence, InterMap3D automatically finds a set of homologous sequences, generates an alignment and fetches the most similar 3D structure from the Protein Data Bank (PDB......). It can also accept a user-generated alignment. Based on the alignment, co-evolving residues are then predicted using three different methods: Row and Column Weighing of Mutual Information, Mutual Information/Entropy and Dependency. Finally, InterMap3D generates high-quality images of the protein...

  20. Binding Ligand Prediction for Proteins Using Partial Matching of Local Surface Patches

    Directory of Open Access Journals (Sweden)

    Lee Sael

    2010-12-01

    Full Text Available Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comparison of binding sites in proteins, a weighted bipartite matching algorithm is used to match pairs of surface patches. The surface patches are encoded with the 3D Zernike descriptors. Unlike the existing methods which compare global characteristics of the protein fold or the global pocket shape, the local surface patch method can find functional similarity between non-homologous proteins and binding pockets for flexible ligand molecules. The proposed method improves prediction results over global pocket shape-based method which was previously developed by our group.

  1. Binding ligand prediction for proteins using partial matching of local surface patches.

    Science.gov (United States)

    Sael, Lee; Kihara, Daisuke

    2010-01-01

    Functional elucidation of uncharacterized protein structures is an important task in bioinformatics. We report our new approach for structure-based function prediction which captures local surface features of ligand binding pockets. Function of proteins, specifically, binding ligands of proteins, can be predicted by finding similar local surface regions of known proteins. To enable partial comparison of binding sites in proteins, a weighted bipartite matching algorithm is used to match pairs of surface patches. The surface patches are encoded with the 3D Zernike descriptors. Unlike the existing methods which compare global characteristics of the protein fold or the global pocket shape, the local surface patch method can find functional similarity between non-homologous proteins and binding pockets for flexible ligand molecules. The proposed method improves prediction results over global pocket shape-based method which was previously developed by our group.

  2. Turkish Tombul hazelnut (Corylus avellana L.) protein concentrates: functional and rheological properties.

    Science.gov (United States)

    Tatar, F; Tunç, M T; Kahyaoglu, T

    2015-02-01

    Turkish Tombul hazelnut consumed as natural or processed forms were evaluated to obtain protein concentrate. Defatted hazelnut flour protein (DHFP) and defatted hazelnut cake protein (DHCP) were produced from defatted hazelnut flour (DHF) and defatted hazelnut cake (DHC), respectively. The functional properties (protein solubility, emulsifying properties, foaming capacity, and colour), and dynamic rheological characteristics of protein concentrates were measured. The protein contents of samples varied in the range of 35-48 % (w/w, db) and 91-92 % (w/w, db) for DHF/DHC and DHFP/DHCP samples, respectively. The significant difference for water/fat absorption capacity, emulsion stability between DHF and DHC were determined. On the other hand, the solubility and emulsion activity of DHF and DHC were not significantly different (p > 0.05). Emulsion stability of DHFP (%46) was higher than that of DHCP (%35) but other functional properties were found similar. According to these results, the DHCP could be used as DHFP in food product formulations. The DHFP and DHCP samples showed different apparent viscosity at the same temperature and concentration, the elastic modulus (G' value) of DHPC was also found higher than that of DHFP samples.

  3. CMsearch: simultaneous exploration of protein sequence space and structure space improves not only protein homology detection but also protein structure prediction

    KAUST Repository

    Cui, Xuefeng

    2016-06-15

    Motivation: Protein homology detection, a fundamental problem in computational biology, is an indispensable step toward predicting protein structures and understanding protein functions. Despite the advances in recent decades on sequence alignment, threading and alignment-free methods, protein homology detection remains a challenging open problem. Recently, network methods that try to find transitive paths in the protein structure space demonstrate the importance of incorporating network information of the structure space. Yet, current methods merge the sequence space and the structure space into a single space, and thus introduce inconsistency in combining different sources of information. Method: We present a novel network-based protein homology detection method, CMsearch, based on cross-modal learning. Instead of exploring a single network built from the mixture of sequence and structure space information, CMsearch builds two separate networks to represent the sequence space and the structure space. It then learns sequence–structure correlation by simultaneously taking sequence information, structure information, sequence space information and structure space information into consideration. Results: We tested CMsearch on two challenging tasks, protein homology detection and protein structure prediction, by querying all 8332 PDB40 proteins. Our results demonstrate that CMsearch is insensitive to the similarity metrics used to define the sequence and the structure spaces. By using HMM–HMM alignment as the sequence similarity metric, CMsearch clearly outperforms state-of-the-art homology detection methods and the CASP-winning template-based protein structure prediction methods.

  4. Serum acute phase protein concentrations in female dogs with mammary tumors.

    Science.gov (United States)

    Tecles, Fernando; Caldín, Marco; Zanella, Anna; Membiela, Francisco; Tvarijonaviciute, Asta; Subiela, Silvia Martínez; Cerón, José Joaquín

    2009-03-01

    Acute phase proteins (APPs) are proteins whose concentrations in serum change after any inflammatory stimulus or tissue damage. The aim of the current study was to evaluate 3 positive APPs (C-reactive protein, serum amyloid A, and haptoglobin) and 1 negative APP (albumin) in female dogs with mammary neoplasia. Acute phase proteins were studied in 70 female dogs aged 8-12 years in the following groups: healthy (n = 10); mammary tumors in stages I (n = 19), II (n = 5), III (n = 6), IV (n = 5), and V (n = 7); and with mammary neoplasia plus a concomitant disease (n = 18). In animals with mammary neoplasia, significant increases of positive APPs were only detected in those that had metastasis or a neoplasm with a diameter greater than 5 cm and ulceration. Dogs with mammary neoplasia and a concomitant disease also had high C-reactive protein concentrations. Albumin concentration was decreased in animals with metastasis and with a concomitant disease. The results of the present study indicate that the acute phase response could be stimulated in female dogs with mammary gland tumors because of different factors, such as metastasis, large size of the primary mass, and ulceration or secondary inflammation of the neoplasm.

  5. Protein 8-class secondary structure prediction using conditional neural fields.

    Science.gov (United States)

    Wang, Zhiyong; Zhao, Feng; Peng, Jian; Xu, Jinbo

    2011-10-01

    Compared with the protein 3-class secondary structure (SS) prediction, the 8-class prediction gains less attention and is also much more challenging, especially for proteins with few sequence homologs. This paper presents a new probabilistic method for 8-class SS prediction using conditional neural fields (CNFs), a recently invented probabilistic graphical model. This CNF method not only models the complex relationship between sequence features and SS, but also exploits the interdependency among SS types of adjacent residues. In addition to sequence profiles, our method also makes use of non-evolutionary information for SS prediction. Tested on the CB513 and RS126 data sets, our method achieves Q8 accuracy of 64.9 and 64.7%, respectively, which are much better than the SSpro8 web server (51.0 and 48.0%, respectively). Our method can also be used to predict other structure properties (e.g. solvent accessibility) of a protein or the SS of RNA. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Prediction of protein-protein interactions in dengue virus coat proteins guided by low resolution cryoEM structures

    Directory of Open Access Journals (Sweden)

    Srinivasan Narayanaswamy

    2010-06-01

    Full Text Available Abstract Background Dengue virus along with the other members of the flaviviridae family has reemerged as deadly human pathogens. Understanding the mechanistic details of these infections can be highly rewarding in developing effective antivirals. During maturation of the virus inside the host cell, the coat proteins E and M undergo conformational changes, altering the morphology of the viral coat. However, due to low resolution nature of the available 3-D structures of viral assemblies, the atomic details of these changes are still elusive. Results In the present analysis, starting from Cα positions of low resolution cryo electron microscopic structures the residue level details of protein-protein interaction interfaces of dengue virus coat proteins have been predicted. By comparing the preexisting structures of virus in different phases of life cycle, the changes taking place in these predicted protein-protein interaction interfaces were followed as a function of maturation process of the virus. Besides changing the current notion about the presence of only homodimers in the mature viral coat, the present analysis indicated presence of a proline-rich motif at the protein-protein interaction interface of the coat protein. Investigating the conservation status of these seemingly functionally crucial residues across other members of flaviviridae family enabled dissecting common mechanisms used for infections by these viruses. Conclusions Thus, using computational approach the present analysis has provided better insights into the preexisting low resolution structures of virus assemblies, the findings of which can be made use of in designing effective antivirals against these deadly human pathogens.

  7. Prediction of Protein–Protein Interactions by Evidence Combining Methods

    Directory of Open Access Journals (Sweden)

    Ji-Wei Chang

    2016-11-01

    Full Text Available Most cellular functions involve proteins’ features based on their physical interactions with other partner proteins. Sketching a map of protein–protein interactions (PPIs is therefore an important inception step towards understanding the basics of cell functions. Several experimental techniques operating in vivo or in vitro have made significant contributions to screening a large number of protein interaction partners, especially high-throughput experimental methods. However, computational approaches for PPI predication supported by rapid accumulation of data generated from experimental techniques, 3D structure definitions, and genome sequencing have boosted the map sketching of PPIs. In this review, we shed light on in silico PPI prediction methods that integrate evidence from multiple sources, including evolutionary relationship, function annotation, sequence/structure features, network topology and text mining. These methods are developed for integration of multi-dimensional evidence, for designing the strategies to predict novel interactions, and for making the results consistent with the increase of prediction coverage and accuracy.

  8. Update on protein structure prediction: results of the 1995 IRBM workshop

    DEFF Research Database (Denmark)

    Hubbard, Tim; Tramontano, Anna; Hansen, Jan

    1996-01-01

    Computational tools for protein structure prediction are of great interest to molecular, structural and theoretical biologists due to a rapidly increasing number of protein sequences with no known structure. In October 1995, a workshop was held at IRBM to predict as much as possible about a numbe...

  9. Update on protein structure prediction: results of the 1995 IRBM workshop

    DEFF Research Database (Denmark)

    Hubbard, Tim; Tramontano, Anna; Hansen, Jan

    1996-01-01

    Computational tools for protein structure prediction are of great interest to molecular, structural and theoretical biologists due to a rapidly increasing number of protein sequences with no known structure. In October 1995, a workshop was held at IRBM to predict as much as possible about a number...

  10. Predicting pKa for proteins using COSMO-RS

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Jensen, Jan Halborg; Stipp, Susan Louise Svane

    2013-01-01

    We have used the COSMO-RS implicit solvation method to calculate the equilibrium constants, pKa, for deprotonation of the acidic residues of the ovomucoid inhibitor protein, OMTKY3. The root mean square error for comparison with experimental data is only 0.5 pH units and the maximum error 0.8 p......H units. The results show that the accuracy of pKa prediction using COSMO-RS is as good for large biomolecules as it is for smaller inorganic and organic acids and that the method compares very well to previous pKa predictions of the OMTKY3 protein using Quantum Mechanics/Molecular Mechanics. Our approach...

  11. Knowledge base and neural network approach for protein secondary structure prediction.

    Science.gov (United States)

    Patel, Maulika S; Mazumdar, Himanshu S

    2014-11-21

    Protein structure prediction is of great relevance given the abundant genomic and proteomic data generated by the genome sequencing projects. Protein secondary structure prediction is addressed as a sub task in determining the protein tertiary structure and function. In this paper, a novel algorithm, KB-PROSSP-NN, which is a combination of knowledge base and modeling of the exceptions in the knowledge base using neural networks for protein secondary structure prediction (PSSP), is proposed. The knowledge base is derived from a proteomic sequence-structure database and consists of the statistics of association between the 5-residue words and corresponding secondary structure. The predicted results obtained using knowledge base are refined with a Backpropogation neural network algorithm. Neural net models the exceptions of the knowledge base. The Q3 accuracy of 90% and 82% is achieved on the RS126 and CB396 test sets respectively which suggest improvement over existing state of art methods. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. ComplexContact: a web server for inter-protein contact prediction using deep learning

    KAUST Repository

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-01-01

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  13. ComplexContact: a web server for inter-protein contact prediction using deep learning

    KAUST Repository

    Zeng, Hong

    2018-05-20

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  14. ComplexContact: a web server for inter-protein contact prediction using deep learning.

    Science.gov (United States)

    Zeng, Hong; Wang, Sheng; Zhou, Tianming; Zhao, Feifeng; Li, Xiufeng; Wu, Qing; Xu, Jinbo

    2018-05-22

    ComplexContact (http://raptorx2.uchicago.edu/ComplexContact/) is a web server for sequence-based interfacial residue-residue contact prediction of a putative protein complex. Interfacial residue-residue contacts are critical for understanding how proteins form complex and interact at residue level. When receiving a pair of protein sequences, ComplexContact first searches for their sequence homologs and builds two paired multiple sequence alignments (MSA), then it applies co-evolution analysis and a CASP-winning deep learning (DL) method to predict interfacial contacts from paired MSAs and visualizes the prediction as an image. The DL method was originally developed for intra-protein contact prediction and performed the best in CASP12. Our large-scale experimental test further shows that ComplexContact greatly outperforms pure co-evolution methods for inter-protein contact prediction, regardless of the species.

  15. Incorporating information on predicted solvent accessibility to the co-evolution-based study of protein interactions.

    Science.gov (United States)

    Ochoa, David; García-Gutiérrez, Ponciano; Juan, David; Valencia, Alfonso; Pazos, Florencio

    2013-01-27

    A widespread family of methods for studying and predicting protein interactions using sequence information is based on co-evolution, quantified as similarity of phylogenetic trees. Part of the co-evolution observed between interacting proteins could be due to co-adaptation caused by inter-protein contacts. In this case, the co-evolution is expected to be more evident when evaluated on the surface of the proteins or the internal layers close to it. In this work we study the effect of incorporating information on predicted solvent accessibility to three methods for predicting protein interactions based on similarity of phylogenetic trees. We evaluate the performance of these methods in predicting different types of protein associations when trees based on positions with different characteristics of predicted accessibility are used as input. We found that predicted accessibility improves the results of two recent versions of the mirrortree methodology in predicting direct binary physical interactions, while it neither improves these methods, nor the original mirrortree method, in predicting other types of interactions. That improvement comes at no cost in terms of applicability since accessibility can be predicted for any sequence. We also found that predictions of protein-protein interactions are improved when multiple sequence alignments with a richer representation of sequences (including paralogs) are incorporated in the accessibility prediction.

  16. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates.

    Science.gov (United States)

    Kalman, Douglas S

    2014-06-30

    A protein concentrate (Oryzatein-80™) and a protein isolate (Oryzatein-90™) from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA). Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA). After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains.

  17. Interfacial composition and stability of emulsions made with mixtures of commercial sodium caseinate and whey protein concentrate.

    Science.gov (United States)

    Ye, Aiqian

    2008-10-15

    The interfacial composition and the stability of oil-in-water emulsion droplets (30% soya oil, pH 7.0) made with mixtures of sodium caseinate and whey protein concentrate (WPC) (1:1 by protein weight) at various total protein concentrations were examined. The average volume-surface diameter (d32) and the total surface protein concentration of emulsion droplets were similar to those of emulsions made with both sodium caseinate alone and WPC alone. Whey proteins were adsorbed in preference to caseins at low protein concentrations (caseins were adsorbed in preference to whey proteins at high protein concentrations. The creaming stability of the emulsions decreased markedly as the total protein concentration of the system was increased above 2% (sodium caseinate >1%). This was attributed to depletion flocculation caused by the sodium caseinate in these emulsions. Whey proteins did not retard this instability in the emulsions made with mixtures of sodium caseinate and WPC. Copyright © 2008 Elsevier Ltd. All rights reserved.

  18. Analysis of Low Frequency Protein Truncating Stop-Codon Variants and Fasting Concentration of Growth Hormone.

    Directory of Open Access Journals (Sweden)

    Erik Hallengren

    Full Text Available The genetic background of Growth Hormone (GH secretion is not well understood. Mutations giving rise to a stop codon have a high likelihood of affecting protein function.To analyze likely functional stop codon mutations that are associated with fasting plasma concentration of Growth Hormone.We analyzed stop codon mutations in 5451 individuals in the Malmö Diet and Cancer study by genotyping the Illumina Exome Chip. To enrich for stop codon mutations with likely functional effects on protein function, we focused on those disrupting >80% of the predicted amino acid sequence, which were carried by ≥ 10 individuals. Such mutations were related to GH concentration, measured with a high sensitivity assay (hs-GH and, if nominally significant, to GH related phenotypes, using linear regression analysis.Two stop codon mutations were associated with the fasting concentration of hs-GH. rs121909305 (NP_005370.1:p.R93* [Minor Allele Frequency (MAF = 0.8%] in the Myosin 1A gene (MYO1A was associated with a 0.36 (95%CI, 0.04 to 0.54; p=0.02 increment of the standardized value of the natural logarithm of hs-GH per 1 minor allele and rs35699176 (NP_067040.1:p.Q100* in the Zink Finger protein 77 gene (ZNF77 (MAF = 4.8% was associated with a 0.12 (95%CI, 0.02 to 0.22; p = 0.02 increase of hs-GH. The mutated high hs-GH associated allele of MYO1A was related to lower BMI (β-coefficient, -0.22; p = 0.05, waist (β-coefficient, -0.22; p = 0.04, body fat percentage (β-coefficient, -0.23; p = 0.03 and with higher HDL (β-coefficient, 0.23; p = 0.04. The ZNF77 stop codon was associated with height (β-coefficient, 0.11; p = 0.02 but not with cardiometabolic risk factors.We here suggest that a stop codon of MYO1A, disrupting 91% of the predicted amino acid sequence, is associated with higher hs-GH and GH-related traits suggesting that MYO1A is involved in GH metabolism and possibly body fat distribution. However, our results are preliminary and need replication in

  19. A Kernel for Protein Secondary Structure Prediction

    OpenAIRE

    Guermeur , Yann; Lifchitz , Alain; Vert , Régis

    2004-01-01

    http://mitpress.mit.edu/catalog/item/default.asp?ttype=2&tid=10338&mode=toc; International audience; Multi-class support vector machines have already proved efficient in protein secondary structure prediction as ensemble methods, to combine the outputs of sets of classifiers based on different principles. In this chapter, their implementation as basic prediction methods, processing the primary structure or the profile of multiple alignments, is investigated. A kernel devoted to the task is in...

  20. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

    Directory of Open Access Journals (Sweden)

    Ning Zhang

    2018-05-01

    Full Text Available Targeting and translocation of proteins to the appropriate subcellular compartments are crucial for cell organization and function. Newly synthesized proteins are transported to mitochondria with the assistance of complex targeting sequences containing either an N-terminal pre-sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino acid composition, protein position weight matrix, and gene co-expression information, and trained predictors using deep neural network and support vector machine. Benchmarked on two independent datasets, MU-LOC achieved substantial improvements over six state-of-the-art tools for plant mitochondrial targeting prediction. In addition, MU-LOC has the advantage of predicting plant mitochondrial proteins either possessing or lacking N-terminal pre-sequences. We applied MU-LOC to predict candidate mitochondrial proteins for the whole proteome of Arabidopsis and potato. MU-LOC is publicly available at http://mu-loc.org.

  1. Structural changes induced by high-pressure processing in micellar casein and milk protein concentrates.

    Science.gov (United States)

    Cadesky, Lee; Walkling-Ribeiro, Markus; Kriner, Kyle T; Karwe, Mukund V; Moraru, Carmen I

    2017-09-01

    Reconstituted micellar casein concentrates and milk protein concentrates of 2.5 and 10% (wt/vol) protein concentration were subjected to high-pressure processing at pressures from 150 to 450 MPa, for 15 min, at ambient temperature. The structural changes induced in milk proteins by high-pressure processing were investigated using a range of physical, physicochemical, and chemical methods, including dynamic light scattering, rheology, mid-infrared spectroscopy, scanning electron microscopy, proteomics, and soluble mineral analyses. The experimental data clearly indicate pressure-induced changes of casein micelles, as well as denaturation of serum proteins. Calcium-binding α S1 - and α S2 -casein levels increased in the soluble phase after all pressure treatments. Pressurization up to 350 MPa also increased levels of soluble calcium and phosphorus, in all samples and concentrations, whereas treatment at 450 MPa reduced the levels of soluble Ca and P. Experimental data suggest dissociation of calcium phosphate and subsequent casein micelle destabilization as a result of pressure treatment. Treatment of 10% micellar casein concentrate and 10% milk protein concentrate samples at 450 MPa resulted in weak, physical gels, which featured aggregates of uniformly distributed, casein substructures of 15 to 20 nm in diameter. Serum proteins were significantly denatured by pressures above 250 MPa. These results provide information on pressure-induced changes in high-concentration protein systems, and may inform the development on new milk protein-based foods with novel textures and potentially high nutritional quality, of particular interest being the soft gel structures formed at high pressure levels. The Authors. Published by the Federation of Animal Science Societies and Elsevier Inc. on behalf of the American Dairy Science Association®. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).

  2. I-TASSER server for protein 3D structure prediction

    Directory of Open Access Journals (Sweden)

    Zhang Yang

    2008-01-01

    Full Text Available Abstract Background Prediction of 3-dimensional protein structures from amino acid sequences represents one of the most important problems in computational structural biology. The community-wide Critical Assessment of Structure Prediction (CASP experiments have been designed to obtain an objective assessment of the state-of-the-art of the field, where I-TASSER was ranked as the best method in the server section of the recent 7th CASP experiment. Our laboratory has since then received numerous requests about the public availability of the I-TASSER algorithm and the usage of the I-TASSER predictions. Results An on-line version of I-TASSER is developed at the KU Center for Bioinformatics which has generated protein structure predictions for thousands of modeling requests from more than 35 countries. A scoring function (C-score based on the relative clustering structural density and the consensus significance score of multiple threading templates is introduced to estimate the accuracy of the I-TASSER predictions. A large-scale benchmark test demonstrates a strong correlation between the C-score and the TM-score (a structural similarity measurement with values in [0, 1] of the first models with a correlation coefficient of 0.91. Using a C-score cutoff > -1.5 for the models of correct topology, both false positive and false negative rates are below 0.1. Combining C-score and protein length, the accuracy of the I-TASSER models can be predicted with an average error of 0.08 for TM-score and 2 Å for RMSD. Conclusion The I-TASSER server has been developed to generate automated full-length 3D protein structural predictions where the benchmarked scoring system helps users to obtain quantitative assessments of the I-TASSER models. The output of the I-TASSER server for each query includes up to five full-length models, the confidence score, the estimated TM-score and RMSD, and the standard deviation of the estimations. The I-TASSER server is freely available

  3. Improving the accuracy of protein secondary structure prediction using structural alignment

    Directory of Open Access Journals (Sweden)

    Gallin Warren J

    2006-06-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has steadily improved over the past 30 years. Now many secondary structure prediction methods routinely achieve an accuracy (Q3 of about 75%. We believe this accuracy could be further improved by including structure (as opposed to sequence database comparisons as part of the prediction process. Indeed, given the large size of the Protein Data Bank (>35,000 sequences, the probability of a newly identified sequence having a structural homologue is actually quite high. Results We have developed a method that performs structure-based sequence alignments as part of the secondary structure prediction process. By mapping the structure of a known homologue (sequence ID >25% onto the query protein's sequence, it is possible to predict at least a portion of that query protein's secondary structure. By integrating this structural alignment approach with conventional (sequence-based secondary structure methods and then combining it with a "jury-of-experts" system to generate a consensus result, it is possible to attain very high prediction accuracy. Using a sequence-unique test set of 1644 proteins from EVA, this new method achieves an average Q3 score of 81.3%. Extensive testing indicates this is approximately 4–5% better than any other method currently available. Assessments using non sequence-unique test sets (typical of those used in proteome annotation or structural genomics indicate that this new method can achieve a Q3 score approaching 88%. Conclusion By using both sequence and structure databases and by exploiting the latest techniques in machine learning it is possible to routinely predict protein secondary structure with an accuracy well above 80%. A program and web server, called PROTEUS, that performs these secondary structure predictions is accessible at http://wishart.biology.ualberta.ca/proteus. For high throughput or batch sequence analyses, the PROTEUS programs

  4. Incorporating functional inter-relationships into protein function prediction algorithms

    Directory of Open Access Journals (Sweden)

    Kumar Vipin

    2009-05-01

    Full Text Available Abstract Background Functional classification schemes (e.g. the Gene Ontology that serve as the basis for annotation efforts in several organisms are often the source of gold standard information for computational efforts at supervised protein function prediction. While successful function prediction algorithms have been developed, few previous efforts have utilized more than the protein-to-functional class label information provided by such knowledge bases. For instance, the Gene Ontology not only captures protein annotations to a set of functional classes, but it also arranges these classes in a DAG-based hierarchy that captures rich inter-relationships between different classes. These inter-relationships present both opportunities, such as the potential for additional training examples for small classes from larger related classes, and challenges, such as a harder to learn distinction between similar GO terms, for standard classification-based approaches. Results We propose a method to enhance the performance of classification-based protein function prediction algorithms by addressing the issue of using these interrelationships between functional classes constituting functional classification schemes. Using a standard measure for evaluating the semantic similarity between nodes in an ontology, we quantify and incorporate these inter-relationships into the k-nearest neighbor classifier. We present experiments on several large genomic data sets, each of which is used for the modeling and prediction of over hundred classes from the GO Biological Process ontology. The results show that this incorporation produces more accurate predictions for a large number of the functional classes considered, and also that the classes benefitted most by this approach are those containing the fewest members. In addition, we show how our proposed framework can be used for integrating information from the entire GO hierarchy for improving the accuracy of

  5. Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoalanine formation.

    Science.gov (United States)

    Hou, Furong; Ding, Wenhui; Qu, Wenjuan; Oladejo, Ayobami Olayemi; Xiong, Feng; Zhang, Weiwei; He, Ronghai; Ma, Haile

    2017-03-01

    This study evaluated the nutrient property and safety of the rice residue protein isolates (RRPI) product (extracted by different alkali concentrations) by exploring the protein functional, structural properties and lysinoalanine (LAL) formation. The results showed that with the rising of alkali concentration from 0.03M to 0.15M, the solubility, emulsifying and foaming properties of RRPI increased at first and then descended. When the alkali concentration was greater than 0.03M, the RRPI surface hydrophobicity decreased and the content of thiol and disulfide bond, Lys and Cys significantly reduced. By the analysis of HPLC, the content of LAL rose up from 276.08 to 15,198.07mg/kg and decreased to 1340.98mg/kg crude protein when the alkali concentration increased from 0.03 to 0.09M and until to 0.15M. These results indicated that RRPI alkaline extraction concentration above 0.03M may cause severe nutrient or safety problems of protein. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Prediction of essential proteins based on subcellular localization and gene expression correlation.

    Science.gov (United States)

    Fan, Yetian; Tang, Xiwei; Hu, Xiaohua; Wu, Wei; Ping, Qing

    2017-12-01

    Essential proteins are indispensable to the survival and development process of living organisms. To understand the functional mechanisms of essential proteins, which can be applied to the analysis of disease and design of drugs, it is important to identify essential proteins from a set of proteins first. As traditional experimental methods designed to test out essential proteins are usually expensive and laborious, computational methods, which utilize biological and topological features of proteins, have attracted more attention in recent years. Protein-protein interaction networks, together with other biological data, have been explored to improve the performance of essential protein prediction. The proposed method SCP is evaluated on Saccharomyces cerevisiae datasets and compared with five other methods. The results show that our method SCP outperforms the other five methods in terms of accuracy of essential protein prediction. In this paper, we propose a novel algorithm named SCP, which combines the ranking by a modified PageRank algorithm based on subcellular compartments information, with the ranking by Pearson correlation coefficient (PCC) calculated from gene expression data. Experiments show that subcellular localization information is promising in boosting essential protein prediction.

  7. Parallel protein secondary structure prediction based on neural networks.

    Science.gov (United States)

    Zhong, Wei; Altun, Gulsah; Tian, Xinmin; Harrison, Robert; Tai, Phang C; Pan, Yi

    2004-01-01

    Protein secondary structure prediction has a fundamental influence on today's bioinformatics research. In this work, binary and tertiary classifiers of protein secondary structure prediction are implemented on Denoeux belief neural network (DBNN) architecture. Hydrophobicity matrix, orthogonal matrix, BLOSUM62 and PSSM (position specific scoring matrix) are experimented separately as the encoding schemes for DBNN. The experimental results contribute to the design of new encoding schemes. New binary classifier for Helix versus not Helix ( approximately H) for DBNN produces prediction accuracy of 87% when PSSM is used for the input profile. The performance of DBNN binary classifier is comparable to other best prediction methods. The good test results for binary classifiers open a new approach for protein structure prediction with neural networks. Due to the time consuming task of training the neural networks, Pthread and OpenMP are employed to parallelize DBNN in the hyperthreading enabled Intel architecture. Speedup for 16 Pthreads is 4.9 and speedup for 16 OpenMP threads is 4 in the 4 processors shared memory architecture. Both speedup performance of OpenMP and Pthread is superior to that of other research. With the new parallel training algorithm, thousands of amino acids can be processed in reasonable amount of time. Our research also shows that hyperthreading technology for Intel architecture is efficient for parallel biological algorithms.

  8. Using support vector machine to predict beta- and gamma-turns in proteins.

    Science.gov (United States)

    Hu, Xiuzhen; Li, Qianzhong

    2008-09-01

    By using the composite vector with increment of diversity, position conservation scoring function, and predictive secondary structures to express the information of sequence, a support vector machine (SVM) algorithm for predicting beta- and gamma-turns in the proteins is proposed. The 426 and 320 nonhomologous protein chains described by Guruprasad and Rajkumar (Guruprasad and Rajkumar J. Biosci 2000, 25,143) are used for training and testing the predictive model of the beta- and gamma-turns, respectively. The overall prediction accuracy and the Matthews correlation coefficient in 7-fold cross-validation are 79.8% and 0.47, respectively, for the beta-turns. The overall prediction accuracy in 5-fold cross-validation is 61.0% for the gamma-turns. These results are significantly higher than the other algorithms in the prediction of beta- and gamma-turns using the same datasets. In addition, the 547 and 823 nonhomologous protein chains described by Fuchs and Alix (Fuchs and Alix Proteins: Struct Funct Bioinform 2005, 59, 828) are used for training and testing the predictive model of the beta- and gamma-turns, and better results are obtained. This algorithm may be helpful to improve the performance of protein turns' prediction. To ensure the ability of the SVM method to correctly classify beta-turn and non-beta-turn (gamma-turn and non-gamma-turn), the receiver operating characteristic threshold independent measure curves are provided. (c) 2008 Wiley Periodicals, Inc.

  9. Plasma proteins predict conversion to dementia from prodromal disease.

    Science.gov (United States)

    Hye, Abdul; Riddoch-Contreras, Joanna; Baird, Alison L; Ashton, Nicholas J; Bazenet, Chantal; Leung, Rufina; Westman, Eric; Simmons, Andrew; Dobson, Richard; Sattlecker, Martina; Lupton, Michelle; Lunnon, Katie; Keohane, Aoife; Ward, Malcolm; Pike, Ian; Zucht, Hans Dieter; Pepin, Danielle; Zheng, Wei; Tunnicliffe, Alan; Richardson, Jill; Gauthier, Serge; Soininen, Hilkka; Kłoszewska, Iwona; Mecocci, Patrizia; Tsolaki, Magda; Vellas, Bruno; Lovestone, Simon

    2014-11-01

    The study aimed to validate previously discovered plasma biomarkers associated with AD, using a design based on imaging measures as surrogate for disease severity and assess their prognostic value in predicting conversion to dementia. Three multicenter cohorts of cognitively healthy elderly, mild cognitive impairment (MCI), and AD participants with standardized clinical assessments and structural neuroimaging measures were used. Twenty-six candidate proteins were quantified in 1148 subjects using multiplex (xMAP) assays. Sixteen proteins correlated with disease severity and cognitive decline. Strongest associations were in the MCI group with a panel of 10 proteins predicting progression to AD (accuracy 87%, sensitivity 85%, and specificity 88%). We have identified 10 plasma proteins strongly associated with disease severity and disease progression. Such markers may be useful for patient selection for clinical trials and assessment of patients with predisease subjective memory complaints. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Enhancing the prediction of protein pairings between interacting families using orthology information

    Directory of Open Access Journals (Sweden)

    Pazos Florencio

    2008-01-01

    Full Text Available Abstract Background It has repeatedly been shown that interacting protein families tend to have similar phylogenetic trees. These similarities can be used to predicting the mapping between two families of interacting proteins (i.e. which proteins from one family interact with which members of the other. The correct mapping will be that which maximizes the similarity between the trees. The two families may eventually comprise orthologs and paralogs, if members of the two families are present in more than one organism. This fact can be exploited to restrict the possible mappings, simply by impeding links between proteins of different organisms. We present here an algorithm to predict the mapping between families of interacting proteins which is able to incorporate information regarding orthologues, or any other assignment of proteins to "classes" that may restrict possible mappings. Results For the first time in methods for predicting mappings, we have tested this new approach on a large number of interacting protein domains in order to statistically assess its performance. The method accurately predicts around 80% in the most favourable cases. We also analysed in detail the results of the method for a well defined case of interacting families, the sensor and kinase components of the Ntr-type two-component system, for which up to 98% of the pairings predicted by the method were correct. Conclusion Based on the well established relationship between tree similarity and interactions we developed a method for predicting the mapping between two interacting families using genomic information alone. The program is available through a web interface.

  11. Buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions: from protein buffer capacity prediction to bioprocess applications.

    Science.gov (United States)

    Bahrenburg, Sven; Karow, Anne R; Garidel, Patrick

    2015-04-01

    Protein therapeutics, including monoclonal antibodies (mAbs), have significant buffering capacity, particularly at concentrations>50 mg/mL. This report addresses pH-related issues critical to adoption of self-buffered monoclonal antibody formulations. We evaluated solution conditions with protein concentrations ranging from 50 to 250 mg/mL. Samples were both buffer-free and conventionally buffered with citrate. Samples were non-isotonic or adjusted for isotonicity with NaCl or trehalose. Studies included accelerated temperature stability tests, shaking stability studies, and pH changes in infusion media as protein concentrate is added. We present averaged buffering slopes of capacity that can be applied to any mAb and present a general method for calculating buffering capacity of buffer-free, highly concentrated antibody liquid formulations. In temperature stability tests, neither buffer-free nor conventionally buffered solution conditions showed significant pH changes. Conventionally buffered solutions showed significantly higher opalescence than buffer-free ones. In general, buffer-free solution conditions showed less aggregation than conventionally buffered solutions. Shaking stability tests showed no differences between buffer-free and conventionally buffered solutions. "In-use" preparation experiments showed that pH in infusion bag medium can rapidly approximate that of self-buffered protein concentrate as concentrate is added. In summary, the buffer capacity of proteins can be predicted and buffer-free therapeutic antibody preparations provide a viable alternative to conventionally buffered solutions. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Analysis of substructural variation in families of enzymatic proteins with applications to protein function prediction

    Directory of Open Access Journals (Sweden)

    Fofanov Viacheslav Y

    2010-05-01

    Full Text Available Abstract Background Structural variations caused by a wide range of physico-chemical and biological sources directly influence the function of a protein. For enzymatic proteins, the structure and chemistry of the catalytic binding site residues can be loosely defined as a substructure of the protein. Comparative analysis of drug-receptor substructures across and within species has been used for lead evaluation. Substructure-level similarity between the binding sites of functionally similar proteins has also been used to identify instances of convergent evolution among proteins. In functionally homologous protein families, shared chemistry and geometry at catalytic sites provide a common, local point of comparison among proteins that may differ significantly at the sequence, fold, or domain topology levels. Results This paper describes two key results that can be used separately or in combination for protein function analysis. The Family-wise Analysis of SubStructural Templates (FASST method uses all-against-all substructure comparison to determine Substructural Clusters (SCs. SCs characterize the binding site substructural variation within a protein family. In this paper we focus on examples of automatically determined SCs that can be linked to phylogenetic distance between family members, segregation by conformation, and organization by homology among convergent protein lineages. The Motif Ensemble Statistical Hypothesis (MESH framework constructs a representative motif for each protein cluster among the SCs determined by FASST to build motif ensembles that are shown through a series of function prediction experiments to improve the function prediction power of existing motifs. Conclusions FASST contributes a critical feedback and assessment step to existing binding site substructure identification methods and can be used for the thorough investigation of structure-function relationships. The application of MESH allows for an automated

  13. Composition, structure and functional properties of protein concentrates and isolates produced from walnut (Juglans regia L.).

    Science.gov (United States)

    Mao, Xiaoying; Hua, Yufei

    2012-01-01

    In this study, composition, structure and the functional properties of protein concentrate (WPC) and protein isolate (WPI) produced from defatted walnut flour (DFWF) were investigated. The results showed that the composition and structure of walnut protein concentrate (WPC) and walnut protein isolate (WPI) were significantly different. The molecular weight distribution of WPI was uniform and the protein composition of DFWF and WPC was complex with the protein aggregation. H(0) of WPC was significantly higher (p structure of WPI was similar to WPC. WPI showed big flaky plate like structures; whereas WPC appeared as a small flaky and more compact structure. The most functional properties of WPI were better than WPC. In comparing most functional properties of WPI and WPC with soybean protein concentrate and isolate, WPI and WPC showed higher fat absorption capacity (FAC). Emulsifying properties and foam properties of WPC and WPI in alkaline pH were comparable with that of soybean protein concentrate and isolate. Walnut protein concentrates and isolates can be considered as potential functional food ingredients.

  14. Computational Prediction of Human Salivary Proteins from Blood Circulation and Application to Diagnostic Biomarker Identification

    Science.gov (United States)

    Wang, Jiaxin; Liang, Yanchun; Wang, Yan; Cui, Juan; Liu, Ming; Du, Wei; Xu, Ying

    2013-01-01

    Proteins can move from blood circulation into salivary glands through active transportation, passive diffusion or ultrafiltration, some of which are then released into saliva and hence can potentially serve as biomarkers for diseases if accurately identified. We present a novel computational method for predicting salivary proteins that come from circulation. The basis for the prediction is a set of physiochemical and sequence features we found to be discerning between human proteins known to be movable from circulation to saliva and proteins deemed to be not in saliva. A classifier was trained based on these features using a support-vector machine to predict protein secretion into saliva. The classifier achieved 88.56% average recall and 90.76% average precision in 10-fold cross-validation on the training data, indicating that the selected features are informative. Considering the possibility that our negative training data may not be highly reliable (i.e., proteins predicted to be not in saliva), we have also trained a ranking method, aiming to rank the known salivary proteins from circulation as the highest among the proteins in the general background, based on the same features. This prediction capability can be used to predict potential biomarker proteins for specific human diseases when coupled with the information of differentially expressed proteins in diseased versus healthy control tissues and a prediction capability for blood-secretory proteins. Using such integrated information, we predicted 31 candidate biomarker proteins in saliva for breast cancer. PMID:24324552

  15. Functional properties and sensory testing of whey protein concentrate sweetened with rebaudioside A

    Directory of Open Access Journals (Sweden)

    Paula Gimenez MILANI

    2016-02-01

    Full Text Available ABSTRACT Objective: To develop a natural dietary product with functional benefits for diabetic patients. Whey protein concentrate was obtained through the separation membrane processes and sweetened with rebaudioside A. This product was submitted to sensory testing in humans and used to evaluate possible functional properties in male Wistar rats models with diabetesMellitus induced by streptozotocin. Methods: Two concentrates were produced. Only the second showed protein content of 74.3 and 17.3% of lactose was used as supplementation in induced diabetic rats. This concentrate was obtained from the concentration by reverse osmosis system (180 k Daltons, followed by nanofiltration in a 500 k Daltons membrane and spray drying at 5.0% solution of the first concentrate developed. The concentrate was sweetened with rebaudioside A (rebaudioside A 26 mg/100 g concentrate. All procedures were performed at the Center for Studies in Natural Products, at the Universidade Estadual de Maringá. Three experimental groups were established (n=6: two groups of diabetic animals, one control group and one supplemented group; and a control group of normal mice (non-diabetic. The supplemented group received concentrates sweetened with rebaudioside A in a dose of 100 mg/kg bw/day by an esophageal tube for 35 days. Fasting, the fed state and body weight were assessed weekly for all groups. At the end of the supplementation period, the following were analyzed: plasma parameters of glucose, total cholesterol, triglycerides and fructosamine; the serum levels of aspartate aminotransferase and alanine aminotransferase, water and food intake. Organs and tissues were removed and weighed to assess mass and anatomical changes. Results: The product presented 74% of proteins and 17% of lactose and showed satisfactory sensory testing by the addition of 26 mg of rebaudioside A/100 g concentrate. Supplementation of the product reduced hyperglycemia, plasma fructosamine levels

  16. A large-scale evaluation of computational protein function prediction

    NARCIS (Netherlands)

    Radivojac, P.; Clark, W.T.; Oron, T.R.; Schnoes, A.M.; Wittkop, T.; Kourmpetis, Y.A.I.; Dijk, van A.D.J.; Friedberg, I.

    2013-01-01

    Automated annotation of protein function is challenging. As the number of sequenced genomes rapidly grows, the overwhelming majority of protein products can only be annotated computationally. If computational predictions are to be relied upon, it is crucial that the accuracy of these methods be

  17. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features.

    Science.gov (United States)

    Zaman, Rianon; Chowdhury, Shahana Yasmin; Rashid, Mahmood A; Sharma, Alok; Dehzangi, Abdollah; Shatabda, Swakkhar

    2017-01-01

    DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM) as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  18. HMMBinder: DNA-Binding Protein Prediction Using HMM Profile Based Features

    Directory of Open Access Journals (Sweden)

    Rianon Zaman

    2017-01-01

    Full Text Available DNA-binding proteins often play important role in various processes within the cell. Over the last decade, a wide range of classification algorithms and feature extraction techniques have been used to solve this problem. In this paper, we propose a novel DNA-binding protein prediction method called HMMBinder. HMMBinder uses monogram and bigram features extracted from the HMM profiles of the protein sequences. To the best of our knowledge, this is the first application of HMM profile based features for the DNA-binding protein prediction problem. We applied Support Vector Machines (SVM as a classification technique in HMMBinder. Our method was tested on standard benchmark datasets. We experimentally show that our method outperforms the state-of-the-art methods found in the literature.

  19. Automatic generation of bioinformatics tools for predicting protein-ligand binding sites.

    Science.gov (United States)

    Komiyama, Yusuke; Banno, Masaki; Ueki, Kokoro; Saad, Gul; Shimizu, Kentaro

    2016-03-15

    Predictive tools that model protein-ligand binding on demand are needed to promote ligand research in an innovative drug-design environment. However, it takes considerable time and effort to develop predictive tools that can be applied to individual ligands. An automated production pipeline that can rapidly and efficiently develop user-friendly protein-ligand binding predictive tools would be useful. We developed a system for automatically generating protein-ligand binding predictions. Implementation of this system in a pipeline of Semantic Web technique-based web tools will allow users to specify a ligand and receive the tool within 0.5-1 day. We demonstrated high prediction accuracy for three machine learning algorithms and eight ligands. The source code and web application are freely available for download at http://utprot.net They are implemented in Python and supported on Linux. shimizu@bi.a.u-tokyo.ac.jp Supplementary data are available at Bioinformatics online. © The Author 2015. Published by Oxford University Press.

  20. Distance matrix-based approach to protein structure prediction.

    Science.gov (United States)

    Kloczkowski, Andrzej; Jernigan, Robert L; Wu, Zhijun; Song, Guang; Yang, Lei; Kolinski, Andrzej; Pokarowski, Piotr

    2009-03-01

    Much structural information is encoded in the internal distances; a distance matrix-based approach can be used to predict protein structure and dynamics, and for structural refinement. Our approach is based on the square distance matrix D = [r(ij)(2)] containing all square distances between residues in proteins. This distance matrix contains more information than the contact matrix C, that has elements of either 0 or 1 depending on whether the distance r (ij) is greater or less than a cutoff value r (cutoff). We have performed spectral decomposition of the distance matrices D = sigma lambda(k)V(k)V(kT), in terms of eigenvalues lambda kappa and the corresponding eigenvectors v kappa and found that it contains at most five nonzero terms. A dominant eigenvector is proportional to r (2)--the square distance of points from the center of mass, with the next three being the principal components of the system of points. By predicting r (2) from the sequence we can approximate a distance matrix of a protein with an expected RMSD value of about 7.3 A, and by combining it with the prediction of the first principal component we can improve this approximation to 4.0 A. We can also explain the role of hydrophobic interactions for the protein structure, because r is highly correlated with the hydrophobic profile of the sequence. Moreover, r is highly correlated with several sequence profiles which are useful in protein structure prediction, such as contact number, the residue-wise contact order (RWCO) or mean square fluctuations (i.e. crystallographic temperature factors). We have also shown that the next three components are related to spatial directionality of the secondary structure elements, and they may be also predicted from the sequence, improving overall structure prediction. We have also shown that the large number of available HIV-1 protease structures provides a remarkable sampling of conformations, which can be viewed as direct structural information about the

  1. Prediction of Hydrophobic Cores of Proteins Using Wavelet Analysis.

    Science.gov (United States)

    Hirakawa; Kuhara

    1997-01-01

    Information concerning the secondary structures, flexibility, epitope and hydrophobic regions of amino acid sequences can be extracted by assigning physicochemical indices to each amino acid residue, and information on structure can be derived using the sliding window averaging technique, which is in wide use for smoothing out raw functions. Wavelet analysis has shown great potential and applicability in many fields, such as astronomy, radar, earthquake prediction, and signal or image processing. This approach is efficient for removing noise from various functions. Here we employed wavelet analysis to smooth out a plot assigned to a hydrophobicity index for amino acid sequences. We then used the resulting function to predict hydrophobic cores in globular proteins. We calculated the prediction accuracy for the hydrophobic cores of 88 representative set of proteins. Use of wavelet analysis made feasible the prediction of hydrophobic cores at 6.13% greater accuracy than the sliding window averaging technique.

  2. Effects of correcting in situ ruminal microbial colonization of feed particles on the relationship between ruminally undegraded and intestinally digested crude protein in concentrate feeds.

    Science.gov (United States)

    González, Javier; Mouhbi, Rabiaa; Guevara-González, Jesús Alberto; Arroyo, José María

    2018-02-01

    In situ estimates of ruminally undegraded protein (RUP) and intestinally digested protein (IDP) of ten concentrates, uncorrected or corrected for the ruminal microbial colonization, were used to examine the effects of this correction on the relationship between IDP and RUP values. Both variables were established for three rumen and duodenum cannulated wethers using 15 N labeling-techniques and considering measured rates of ruminal particle comminution (k c ) and outflow (k p ). A covariance analysis showed that the close relationship found between both variables (IDP = -0.0132 ± 0.00679 + 0.776 ± 0.0002 RUP; n = 60; P content in concentrates and industrial by-products can be predicted from RUP values, thus avoiding the laborious and complex procedure of determining intestinal digestibility; however, a larger sample of feeds is necessary to achieve more accurate predictions. The lack of influence of the correction for microbial contamination on the prediction observed in the present study increases the data available for this prediction. However, only the use of corrected values may provide an accurate evaluation. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. (PS)2: protein structure prediction server version 3.0.

    Science.gov (United States)

    Huang, Tsun-Tsao; Hwang, Jenn-Kang; Chen, Chu-Huang; Chu, Chih-Sheng; Lee, Chi-Wen; Chen, Chih-Chieh

    2015-07-01

    Protein complexes are involved in many biological processes. Examining coupling between subunits of a complex would be useful to understand the molecular basis of protein function. Here, our updated (PS)(2) web server predicts the three-dimensional structures of protein complexes based on comparative modeling; furthermore, this server examines the coupling between subunits of the predicted complex by combining structural and evolutionary considerations. The predicted complex structure could be indicated and visualized by Java-based 3D graphics viewers and the structural and evolutionary profiles are shown and compared chain-by-chain. For each subunit, considerations with or without the packing contribution of other subunits cause the differences in similarities between structural and evolutionary profiles, and these differences imply which form, complex or monomeric, is preferred in the biological condition for the subunit. We believe that the (PS)(2) server would be a useful tool for biologists who are interested not only in the structures of protein complexes but also in the coupling between subunits of the complexes. The (PS)(2) is freely available at http://ps2v3.life.nctu.edu.tw/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. Predicting protein structures with a multiplayer online game.

    Science.gov (United States)

    Cooper, Seth; Khatib, Firas; Treuille, Adrien; Barbero, Janos; Lee, Jeehyung; Beenen, Michael; Leaver-Fay, Andrew; Baker, David; Popović, Zoran; Players, Foldit

    2010-08-05

    People exert large amounts of problem-solving effort playing computer games. Simple image- and text-recognition tasks have been successfully 'crowd-sourced' through games, but it is not clear if more complex scientific problems can be solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search space. Here we describe Foldit, a multiplayer online game that engages non-scientists in solving hard prediction problems. Foldit players interact with protein structures using direct manipulation tools and user-friendly versions of algorithms from the Rosetta structure prediction methodology, while they compete and collaborate to optimize the computed energy. We show that top-ranked Foldit players excel at solving challenging structure refinement problems in which substantial backbone rearrangements are necessary to achieve the burial of hydrophobic residues. Players working collaboratively develop a rich assortment of new strategies and algorithms; unlike computational approaches, they explore not only the conformational space but also the space of possible search strategies. The integration of human visual problem-solving and strategy development capabilities with traditional computational algorithms through interactive multiplayer games is a powerful new approach to solving computationally-limited scientific problems.

  5. An ensemble method for predicting subnuclear localizations from primary protein structures.

    Directory of Open Access Journals (Sweden)

    Guo Sheng Han

    Full Text Available BACKGROUND: Predicting protein subnuclear localization is a challenging problem. Some previous works based on non-sequence information including Gene Ontology annotations and kernel fusion have respective limitations. The aim of this work is twofold: one is to propose a novel individual feature extraction method; another is to develop an ensemble method to improve prediction performance using comprehensive information represented in the form of high dimensional feature vector obtained by 11 feature extraction methods. METHODOLOGY/PRINCIPAL FINDINGS: A novel two-stage multiclass support vector machine is proposed to predict protein subnuclear localizations. It only considers those feature extraction methods based on amino acid classifications and physicochemical properties. In order to speed up our system, an automatic search method for the kernel parameter is used. The prediction performance of our method is evaluated on four datasets: Lei dataset, multi-localization dataset, SNL9 dataset and a new independent dataset. The overall accuracy of prediction for 6 localizations on Lei dataset is 75.2% and that for 9 localizations on SNL9 dataset is 72.1% in the leave-one-out cross validation, 71.7% for the multi-localization dataset and 69.8% for the new independent dataset, respectively. Comparisons with those existing methods show that our method performs better for both single-localization and multi-localization proteins and achieves more balanced sensitivities and specificities on large-size and small-size subcellular localizations. The overall accuracy improvements are 4.0% and 4.7% for single-localization proteins and 6.5% for multi-localization proteins. The reliability and stability of our classification model are further confirmed by permutation analysis. CONCLUSIONS: It can be concluded that our method is effective and valuable for predicting protein subnuclear localizations. A web server has been designed to implement the proposed method

  6. Amino Acid Composition of an Organic Brown Rice Protein Concentrate and Isolate Compared to Soy and Whey Concentrates and Isolates

    Directory of Open Access Journals (Sweden)

    Douglas S. Kalman

    2014-06-01

    Full Text Available A protein concentrate (Oryzatein-80™ and a protein isolate (Oryzatein-90™ from organic whole-grain brown rice were analyzed for their amino acid composition. Two samples from different batches of Oryzatein-90™ and one sample of Oryzatein-80™ were provided by Axiom Foods (Los Angeles, CA, USA. Preparation and analysis was carried out by Covance Laboratories (Madison, WI, USA. After hydrolysis in 6-N hydrochloric acid for 24 h at approximately 110 °C and further chemical stabilization, samples were analyzed by HPLC after pre-injection derivitization. Total amino acid content of both the isolate and the concentrate was approximately 78% by weight with 36% essential amino acids and 18% branched-chain amino acids. These results are similar to the profiles of raw and cooked brown rice except in the case of glutamic acid which was 3% lower in the isolate and concentrate. The amino acid content and profile of the Oryzatein-90™ isolate was similar to published values for soy protein isolate but the total, essential, and branched-chain amino acid content of whey protein isolate was 20%, 39% and 33% greater, respectively, than that of Oryzatein-90™. These results provide a valuable addition to the nutrient database of protein isolates and concentrates from cereal grains.

  7. Prediction Methods for Blood Glucose Concentration

    DEFF Research Database (Denmark)

    -day workshop on the design, use and evaluation of prediction methods for blood glucose concentration was held at the Johannes Kepler University Linz, Austria. One intention of the workshop was to bring together experts working in various fields on the same topic, in order to shed light from different angles...... discussions which allowed to receive direct feedback from the point of view of different disciplines. This book is based on the contributions of that workshop and is intended to convey an overview of the different aspects involved in the prediction. The individual chapters are based on the presentations given...... in the process of writing this book: All authors for their individual contributions, all reviewers of the book chapters, Daniela Hummer for the entire organization of the workshop, Boris Tasevski for helping with the typesetting, Florian Reiterer for his help editing the book, as well as Oliver Jackson and Karin...

  8. Resting serum concentration of high-sensitivity C-reactive protein ...

    African Journals Online (AJOL)

    Resting serum concentration of high-sensitivity C-reactive protein (hs-CRP) in sportsmen and untrained male adults. F.A. Niyi-Odumosu, O. A. Bello, S.A. Biliaminu, B.V. Owoyele, T.O. Abu, O.L. Dominic ...

  9. GRIP: A web-based system for constructing Gold Standard datasets for protein-protein interaction prediction

    Directory of Open Access Journals (Sweden)

    Zheng Huiru

    2009-01-01

    Full Text Available Abstract Background Information about protein interaction networks is fundamental to understanding protein function and cellular processes. Interaction patterns among proteins can suggest new drug targets and aid in the design of new therapeutic interventions. Efforts have been made to map interactions on a proteomic-wide scale using both experimental and computational techniques. Reference datasets that contain known interacting proteins (positive cases and non-interacting proteins (negative cases are essential to support computational prediction and validation of protein-protein interactions. Information on known interacting and non interacting proteins are usually stored within databases. Extraction of these data can be both complex and time consuming. Although, the automatic construction of reference datasets for classification is a useful resource for researchers no public resource currently exists to perform this task. Results GRIP (Gold Reference dataset constructor from Information on Protein complexes is a web-based system that provides researchers with the functionality to create reference datasets for protein-protein interaction prediction in Saccharomyces cerevisiae. Both positive and negative cases for a reference dataset can be extracted, organised and downloaded by the user. GRIP also provides an upload facility whereby users can submit proteins to determine protein complex membership. A search facility is provided where a user can search for protein complex information in Saccharomyces cerevisiae. Conclusion GRIP is developed to retrieve information on protein complex, cellular localisation, and physical and genetic interactions in Saccharomyces cerevisiae. Manual construction of reference datasets can be a time consuming process requiring programming knowledge. GRIP simplifies and speeds up this process by allowing users to automatically construct reference datasets. GRIP is free to access at http://rosalind.infj.ulst.ac.uk/GRIP/.

  10. Preservation of grass juice and wet leaf protein concentrate for animal feeds

    Directory of Open Access Journals (Sweden)

    Matti Näsi

    1983-09-01

    Full Text Available Formic acid, mixtures of acids (AIV 1, AIV 2 and formalin-acid mixtures (Viher solution, Viher acid were tested as preservatives of juice and wet leaf protein concentrate (LPC obtained from grass, clover and pea. The main criteria used in judging the success of preservation were changes in the protein fraction, fermentation of sugars, and losses of dry matter and true protein during storage. Fermentation of sugars and moulding could be inhibited in plant juices by adding 0.5 % v/w preservative, but proteolysis continued and true protein was degraded in unheated juices. Ensiling losses of pea juice were considerable, 4.0-15.6 % of DM, in all treatments. For wet leaf protein concentrate precipitated by steaming (85°C, good preservation could be obtained with the additives used in silage making applied at a level of 1 % v/w. In these treatments protein breakdown was minimal, because heating eliminated proteolytic enzymes and partly sterilized the LPC product.

  11. Feature Selection and the Class Imbalance Problem in Predicting Protein Function from Sequence

    NARCIS (Netherlands)

    Al-Shahib, A.; Breitling, R.; Gilbert, D.

    2005-01-01

    Abstract: When the standard approach to predict protein function by sequence homology fails, other alternative methods can be used that require only the amino acid sequence for predicting function. One such approach uses machine learning to predict protein function directly from amino acid sequence

  12. PRmePRed: A protein arginine methylation prediction tool.

    Directory of Open Access Journals (Sweden)

    Pawan Kumar

    Full Text Available Protein methylation is an important Post-Translational Modification (PTMs of proteins. Arginine methylation carries out and regulates several important biological functions, including gene regulation and signal transduction. Experimental identification of arginine methylation site is a daunting task as it is costly as well as time and labour intensive. Hence reliable prediction tools play an important task in rapid screening and identification of possible methylation sites in proteomes. Our preliminary assessment using the available prediction methods on collected data yielded unimpressive results. This motivated us to perform a comprehensive data analysis and appraisal of features relevant in the context of biological significance, that led to the development of a prediction tool PRmePRed with better performance. The PRmePRed perform reasonably well with an accuracy of 84.10%, 82.38% sensitivity, 83.77% specificity, and Matthew's correlation coefficient of 66.20% in 10-fold cross-validation. PRmePRed is freely available at http://bioinfo.icgeb.res.in/PRmePRed/.

  13. [Activity of alpha-amylase and concentration of protein in saliva of pregnant women].

    Science.gov (United States)

    Ciejak, Magdalena; Olszewska, Maria; Jakubowska, Katarzyna; Zebiełowicz, Dariusz; Safranow, Krzysztof; Chlubek, Dariusz

    2007-01-01

    One of the hypothetical reasons of the increased incidence of caries in women during the pregnancy may be the increased activity of alpha-amylase, which can be found in their saliva. The enzyme takes part in the process of decomposition of simple sugars, which make basic substrate for caries-causing bacteria. The aim of the paper was the evaluation of the influence of pregnancy and gestational age on the activity of alpha-amylase and the concentration of protein in women's saliva. The examined group consisted of 64 pregnant women at age 17-39, between 21st and 40th week of pregnancy. The control group consisted of 44 healthy women at age 20-35, who were not pregnant. In saliva, which was taken before morning meal, without stimulation, protein concentration was determined by Bradford method and the activity of amylase was determined by kinetic method. The activity of amylase correlated strongly and positively with protein concentration in saliva of both the pregnant (RS = +0.65; p women. There were no significant differences between examined parameters in the examined and the control group. It has been observed in the examined group, that there is the significant negative correlation between protein concentration in saliva and the week of pregnancy (RS = -0.35; p increased caries incidence of pregnant women. However, the observed changes of total protein concentration in saliva during pregnancy, suggest that the exact cognition of proteins in pregnant women's saliva may reveal new mechanisms, which lead to an increase of caries risk.

  14. Preparation and physicochemical properties of protein concentrate and isolate produced from Acacia tortilis (Forssk.) Hayne ssp. raddiana.

    Science.gov (United States)

    Embaby, Hassan E; Swailam, Hesham M; Rayan, Ahmed M

    2018-02-01

    The composition and physicochemical properties of defatted acacia flour (DFAF), acacia protein concentrate (APC) and acacia protein isolate (API) were evaluated. The results indicated that API had lower, ash and fat content, than DFAF and APC. Also, significant difference in protein content was noticed among DFAF, APC and API (37.5, 63.7 and 91.8%, respectively). Acacia protein concentrate and isolates were good sources of essential amino acids except cystine and methionine. The physicochemical and functional properties of acacia protein improved with the processing of acacia into protein concentrate and protein isolate. The results of scanning electron micrographs showed that DFAF had a compact structure; protein concentrate were, flaky, and porous type, and protein isolate had intact flakes morphology.

  15. Electrostatics, structure prediction, and the energy landscapes for protein folding and binding.

    Science.gov (United States)

    Tsai, Min-Yeh; Zheng, Weihua; Balamurugan, D; Schafer, Nicholas P; Kim, Bobby L; Cheung, Margaret S; Wolynes, Peter G

    2016-01-01

    While being long in range and therefore weakly specific, electrostatic interactions are able to modulate the stability and folding landscapes of some proteins. The relevance of electrostatic forces for steering the docking of proteins to each other is widely acknowledged, however, the role of electrostatics in establishing specifically funneled landscapes and their relevance for protein structure prediction are still not clear. By introducing Debye-Hückel potentials that mimic long-range electrostatic forces into the Associative memory, Water mediated, Structure, and Energy Model (AWSEM), a transferable protein model capable of predicting tertiary structures, we assess the effects of electrostatics on the landscapes of thirteen monomeric proteins and four dimers. For the monomers, we find that adding electrostatic interactions does not improve structure prediction. Simulations of ribosomal protein S6 show, however, that folding stability depends monotonically on electrostatic strength. The trend in predicted melting temperatures of the S6 variants agrees with experimental observations. Electrostatic effects can play a range of roles in binding. The binding of the protein complex KIX-pKID is largely assisted by electrostatic interactions, which provide direct charge-charge stabilization of the native state and contribute to the funneling of the binding landscape. In contrast, for several other proteins, including the DNA-binding protein FIS, electrostatics causes frustration in the DNA-binding region, which favors its binding with DNA but not with its protein partner. This study highlights the importance of long-range electrostatics in functional responses to problems where proteins interact with their charged partners, such as DNA, RNA, as well as membranes. © 2015 The Protein Society.

  16. Serum protein concentrations from clinically healthy horses determined by agarose gel electrophoresis.

    Science.gov (United States)

    Riond, Barbara; Wenger-Riggenbach, Bettina; Hofmann-Lehmann, Regina; Lutz, Hans

    2009-03-01

    Serum protein electrophoresis is a useful screening test in equine laboratory medicine. The method can provide valuable information about changes in the concentrations of albumin and alpha-, beta-, and gamma-globulins and thereby help characterize dysproteinemias in equine patients. Reference values for horses using agarose gel as a support medium have not been reported. The purpose of this study was to establish reference intervals for serum protein concentrations in adult horses using agarose gel electrophoresis and to assess differences between warm-blooded and heavy draught horses. In addition, the precision of electrophoresis for determining fraction percentages and the detection limit were determined. Blood samples were obtained from 126 clinically healthy horses, including 105 Thoroughbreds and 21 heavy draught horses of both sexes and ranging from 2 to 20 years of age. The total protein concentration was determined by an automated biuret method. Serum protein electrophoresis was performed using a semi-automated agarose gel electrophoresis system. Coefficients of variation (CVs) were calculated for within-run and within-assay precision. Data from warm-blooded and draught horses were compared using the Mann-Whitney U test. Within-run and within-assay CVs were draught horses and so combined reference intervals (2.5-97.5%) were calculated for total protein (51.0-72.0 g/L), albumin (29.6-38.5 g/L), alpha(1)-globulin (1.9-3.1 g/L), alpha(2)-globulin (5.3-8.7 g/L), beta(1)-globulin (2.8-7.3g/L), beta(2)-globulin (2.2-6.0 g/L), and gamma-globulin (5.8-12.7 g/L) concentrations, and albumin/globulin ratio (0.93-1.65). Using agarose gel as the supporting matrix for serum protein electrophoresis in horses resulted in excellent resolution and accurate results that facilitated standardization into 6 protein fractions.

  17. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng

    2015-12-03

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  18. A sequence-based dynamic ensemble learning system for protein ligand-binding site prediction

    KAUST Repository

    Chen, Peng; Hu, ShanShan; Zhang, Jun; Gao, Xin; Li, Jinyan; Xia, Junfeng; Wang, Bing

    2015-01-01

    Background: Proteins have the fundamental ability to selectively bind to other molecules and perform specific functions through such interactions, such as protein-ligand binding. Accurate prediction of protein residues that physically bind to ligands is important for drug design and protein docking studies. Most of the successful protein-ligand binding predictions were based on known structures. However, structural information is not largely available in practice due to the huge gap between the number of known protein sequences and that of experimentally solved structures

  19. Grain protein concentration and harvestable protein under future climate conditions. A study of 108 spring barley accessions

    DEFF Research Database (Denmark)

    Ingvordsen, Cathrine Heinz; Gislum, René; Jørgensen, Johannes Ravn

    2016-01-01

    In the present study a set of 108 spring barley (H. vulgare L.) accessions were cultivated under predicted future levels of temperature and [CO2] as single factors and in combination (IPCC, AR5, RCP8.5). Across all genotypes, elevated [CO2] (700 ppm day/night) slightly decreased protein concentra......In the present study a set of 108 spring barley (H. vulgare L.) accessions were cultivated under predicted future levels of temperature and [CO2] as single factors and in combination (IPCC, AR5, RCP8.5). Across all genotypes, elevated [CO2] (700 ppm day/night) slightly decreased protein...

  20. On the quantitative Amido Black B staining of protein spots in agar gel at low local protein concentrations

    NARCIS (Netherlands)

    Jansen, M.T.

    1962-01-01

    Protein spots in agar gel of identical protein content but different in surface area are found to bind different amounts of dye upon staining with Amido Black B. The lower the protein concentration within the agar gel, the more the Amido Black B content of the spot falls short of the value expected

  1. Dysregulation of autism-associated synaptic proteins by psychoactive pharmaceuticals at environmental concentrations.

    Science.gov (United States)

    Kaushik, Gaurav; Xia, Yu; Pfau, Jean C; Thomas, Michael A

    2017-11-20

    Autism Spectrum Disorders (ASD) are complex neurological disorders for which the prevalence in the U.S. is currently estimated to be 1 in 50 children. A majority of cases of idiopathic autism in children likely result from unknown environmental triggers in genetically susceptible individuals. These triggers may include maternal exposure of a developing embryo to environmentally relevant minute concentrations of psychoactive pharmaceuticals through ineffectively purified drinking water. Previous studies in our lab examined the extent to which gene sets associated with neuronal development were up- and down-regulated (enriched) in the brains of fathead minnows treated with psychoactive pharmaceuticals at environmental concentrations. The aim of this study was to determine whether similar treatments would alter in vitro expression of ASD-associated synaptic proteins on differentiated human neuronal cells. Human SK-N-SH neuroblastoma cells were differentiated for two weeks with 10μM retinoic acid (RA) and treated with environmentally relevant concentrations of fluoxetine, carbamazepine or venlafaxine, and flow cytometry technique was used to analyze expression of ASD-associated synaptic proteins. Data showed that carbamazepine individually, venlafaxine individually and mixture treatment at environmental concentrations significantly altered the expression of key synaptic proteins (NMDAR1, PSD95, SV2A, HTR1B, HTR2C and OXTR). Data indicated that psychoactive pharmaceuticals at extremely low concentrations altered the in vitro expression of key synaptic proteins that may potentially contribute to neurological disorders like ASD by disrupting neuronal development. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Romanian plant produces protein concentrate from paraffin-nourished yeasts

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    One of the world's few factories in which proteins are produced by continuous biotechnology is located in Romania. Here, at the bioproteins plant, microorganisms are converted into a flour which contains a protein concentrate that is so essential to the fattening of swine, cattle, sheep, fowl, and fish. These microorganisms are Candida type yeasts. The culture medium in which they are grown contains sulfates and phosphates. Paraffin, a petroleum product, supplies the carbon that is essential to the microorganisms viability.

  3. Microvolume protein concentration determination using the NanoDrop 2000c spectrophotometer.

    Science.gov (United States)

    Desjardins, Philippe; Hansen, Joel B; Allen, Michael

    2009-11-04

    Traditional spectrophotometry requires placing samples into cuvettes or capillaries. This is often impractical due to the limited sample volumes often used for protein analysis. The Thermo Scientific NanoDrop 2000c Spectrophotometer solves this issue with an innovative sample retention system that holds microvolume samples between two measurement surfaces using the surface tension properties of liquids, enabling the quantification of samples in volumes as low as 0.5-2 microL. The elimination of cuvettes or capillaries allows real time changes in path length, which reduces the measurement time while greatly increasing the dynamic range of protein concentrations that can be measured. The need for dilutions is also eliminated, and preparations for sample quantification are relatively easy as the measurement surfaces can be simply wiped with laboratory wipe. This video article presents modifications to traditional protein concentration determination methods for quantification of microvolume amounts of protein using A280 absorbance readings or the BCA colorimetric assay.

  4. Supervised maximum-likelihood weighting of composite protein networks for complex prediction

    Directory of Open Access Journals (Sweden)

    Yong Chern Han

    2012-12-01

    Full Text Available Abstract Background Protein complexes participate in many important cellular functions, so finding the set of existent complexes is essential for understanding the organization and regulation of processes in the cell. With the availability of large amounts of high-throughput protein-protein interaction (PPI data, many algorithms have been proposed to discover protein complexes from PPI networks. However, such approaches are hindered by the high rate of noise in high-throughput PPI data, including spurious and missing interactions. Furthermore, many transient interactions are detected between proteins that are not from the same complex, while not all proteins from the same complex may actually interact. As a result, predicted complexes often do not match true complexes well, and many true complexes go undetected. Results We address these challenges by integrating PPI data with other heterogeneous data sources to construct a composite protein network, and using a supervised maximum-likelihood approach to weight each edge based on its posterior probability of belonging to a complex. We then use six different clustering algorithms, and an aggregative clustering strategy, to discover complexes in the weighted network. We test our method on Saccharomyces cerevisiae and Homo sapiens, and show that complex discovery is improved: compared to previously proposed supervised and unsupervised weighting approaches, our method recalls more known complexes, achieves higher precision at all recall levels, and generates novel complexes of greater functional similarity. Furthermore, our maximum-likelihood approach allows learned parameters to be used to visualize and evaluate the evidence of novel predictions, aiding human judgment of their credibility. Conclusions Our approach integrates multiple data sources with supervised learning to create a weighted composite protein network, and uses six clustering algorithms with an aggregative clustering strategy to

  5. Multi-level machine learning prediction of protein–protein interactions in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Julian Zubek

    2015-07-01

    Full Text Available Accurate identification of protein–protein interactions (PPI is the key step in understanding proteins’ biological functions, which are typically context-dependent. Many existing PPI predictors rely on aggregated features from protein sequences, however only a few methods exploit local information about specific residue contacts. In this work we present a two-stage machine learning approach for prediction of protein–protein interactions. We start with the carefully filtered data on protein complexes available for Saccharomyces cerevisiae in the Protein Data Bank (PDB database. First, we build linear descriptions of interacting and non-interacting sequence segment pairs based on their inter-residue distances. Secondly, we train machine learning classifiers to predict binary segment interactions for any two short sequence fragments. The final prediction of the protein–protein interaction is done using the 2D matrix representation of all-against-all possible interacting sequence segments of both analysed proteins. The level-I predictor achieves 0.88 AUC for micro-scale, i.e., residue-level prediction. The level-II predictor improves the results further by a more complex learning paradigm. We perform 30-fold macro-scale, i.e., protein-level cross-validation experiment. The level-II predictor using PSIPRED-predicted secondary structure reaches 0.70 precision, 0.68 recall, and 0.70 AUC, whereas other popular methods provide results below 0.6 threshold (recall, precision, AUC. Our results demonstrate that multi-scale sequence features aggregation procedure is able to improve the machine learning results by more than 10% as compared to other sequence representations. Prepared datasets and source code for our experimental pipeline are freely available for download from: http://zubekj.github.io/mlppi/ (open source Python implementation, OS independent.

  6. Agarose gel electrophoresis of cerebrospinal fluid proteins of dogs after sample concentration using a membrane microconcentrator technique.

    Science.gov (United States)

    Gama, Fernanda Gomes Velasque; Santana, Aureo Evangelista; Filho, Eugênio de Campos; Nogueira, Cláudia Aparecida da Silva

    2007-03-01

    Cerebrospinal fluid (CSF) is produced in the cerebral ventricles through ultrafiltration of plasma and active transport mechanisms. Evaluation of proteins in CSF may provide important information about the production of immunoglobulins within the central nervous system as well as possible disturbances in the blood-brain barrier. The objective of this study was to measure the concentration and fractions of protein in CSF samples using a membrane microconcentrator technique followed by electrophoresis, and to compare the protein fractions obtained with those in serum. CSF samples from 3 healthy dogs and 3 dogs with canine distemper virus infection were concentrated using a membrane microconcentrator having a 0.5 to 30,000 d nominal molecular weight limit (Ultrafree, Millipore, Billerica, MA, USA). Protein concentration was determined before and after concentration. Agarose gel electrophoresis was done on concentrated CSF samples, serum, and serial dilutions of one of the CSF samples. Electrophoretic bands were clearly identified in densitometer tracings in CSF samples with protein concentrations as low as 1.3 g/dL. The higher CSF protein concentration in dogs with distemper was mainly the result of increased albumin concentration. The microconcentrating method used in this study enables characterization of the main protein fractions in CSF by routine electrophoresis and may be useful for interpreting the underlying cause of changes in CSF protein concentrations.

  7. Mathematical Model to Predict Skin Concentration after Topical Application of Drugs

    Directory of Open Access Journals (Sweden)

    Hiroaki Todo

    2013-12-01

    Full Text Available Skin permeation experiments have been broadly done since 1970s to 1980s as an evaluation method for transdermal drug delivery systems. In topically applied drug and cosmetic formulations, skin concentration of chemical compounds is more important than their skin permeations, because primary target site of the chemical compounds is skin surface or skin tissues. Furthermore, the direct pharmacological reaction of a metabolically stable drug that binds with specific receptors of known expression levels in an organ can be determined by Hill’s equation. Nevertheless, little investigation was carried out on the test method of skin concentration after topically application of chemical compounds. Recently we investigated an estimating method of skin concentration of the chemical compounds from their skin permeation profiles. In the study, we took care of “3Rs” issues for animal experiments. We have proposed an equation which was capable to estimate animal skin concentration from permeation profile through the artificial membrane (silicone membrane and animal skin. This new approach may allow the skin concentration of a drug to be predicted using Fick’s second law of diffusion. The silicone membrane was found to be useful as an alternative membrane to animal skin for predicting skin concentration of chemical compounds, because an extremely excellent extrapolation to animal skin concentration was attained by calculation using the silicone membrane permeation data. In this chapter, we aimed to establish an accurate and convenient method for predicting the concentration profiles of drugs in the skin based on the skin permeation parameters of topically active drugs derived from steady-state skin permeation experiments.

  8. NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features

    DEFF Research Database (Denmark)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-01-01

    is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino......β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method...... NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which...

  9. Effect of membrane protein concentration on binding of 3H-imipramine in human platelets

    International Nuclear Information System (INIS)

    Barkai, A.I.; Kowalik, S.; Baron, M.

    1985-01-01

    Binding of 3 H-imipramine to platelet membranes has been implicated as a marker for depression. Comparing 3 H-IMI binding between depressed patients and normal subjects we observed an increase in the dissociation constant Kd with increasing membrane protein. This phenomenon was studied more rigorously in five normal subjects. Platelet membranes were prepared and adjusted to four concentrations of protein ranging from 100 to 800 micrograms/ml. The 3 H-IMI binding parameters of maximum binding sites number (Bmax) and Kd were obtained by Scatchard analysis at each membrane concentration. A positive linear relationship was found between K/sub d/ values and the concentration of membrane protein in the assay, but no change was observed in Bmax. The variability in Kd values reported in the literature may be accounted for in part by the different concentrations of membrane protein used in various studies

  10. Brown pigment formation in heated sugar-protein mixed suspensions containing unmodified and peptically modified whey protein concentrates.

    Science.gov (United States)

    Rongsirikul, Narumol; Hongsprabhas, Parichat

    2016-01-01

    Commercial whey protein concentrate (WPC) was modified by heating the acidified protein suspensions (pH 2.0) at 80 °C for 30 min and treating with pepsin at 37 °C for 60 min. Prior to spray-drying, such modification did not change the molecular weights (MWs) of whey proteins determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). After spray-drying the modified whey protein concentrate with trehalose excipient (MWPC-TH), it was found that the α-lactalbumin (α-La) was the major protein that was further hydrolyzed the most. The reconstituted MWPC-TH contained β-lactoglobulin (β-Lg) as the major protein and small molecular weight (MW) peptides of less than 6.5 kDa. The reconstituted MWPC-TH had higher NH2 group, Trolox equivalent antioxidant capacity (TEAC), lower exposed aromatic ring and thiol (SH) contents than did the commercial WPC. Kinetic studies revealed that the addition of MWPC-TH in fructose-glycine solution was able to reduce brown pigment formation in the mixtures heated at 80 to 95 °C by increasing the activation energy (Ea) of brown pigment formation due to the retardation of fluoresced advanced glycation end product (AGEs) formation. The addition of MWPC to reducing sugar-glycine/commercial WPC was also able to lower brown pigment formation in the sterilized (121 °C, 15 min) mixed suspensions containing 0.1 M reducing sugar and 0.5-1.0 % glycine and/or commercial (P < 0.05). It was demonstrated that the modification investigated in this study selectively hydrolyzed α-La and retained β-Lg for the production of antibrowning whey protein concentrate.

  11. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2006-06-01

    Full Text Available Abstract Background The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. Results A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. Conclusion This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.

  12. Predicting Protein Secondary Structure with Markov Models

    DEFF Research Database (Denmark)

    Fischer, Paul; Larsen, Simon; Thomsen, Claus

    2004-01-01

    we are considering here, is to predict the secondary structure from the primary one. To this end we train a Markov model on training data and then use it to classify parts of unknown protein sequences as sheets, helices or coils. We show how to exploit the directional information contained...... in the Markov model for this task. Classifications that are purely based on statistical models might not always be biologically meaningful. We present combinatorial methods to incorporate biological background knowledge to enhance the prediction performance....

  13. Systematic Prediction of Scaffold Proteins Reveals New Design Principles in Scaffold-Mediated Signal Transduction

    Science.gov (United States)

    Hu, Jianfei; Neiswinger, Johnathan; Zhang, Jin; Zhu, Heng; Qian, Jiang

    2015-01-01

    Scaffold proteins play a crucial role in facilitating signal transduction in eukaryotes by bringing together multiple signaling components. In this study, we performed a systematic analysis of scaffold proteins in signal transduction by integrating protein-protein interaction and kinase-substrate relationship networks. We predicted 212 scaffold proteins that are involved in 605 distinct signaling pathways. The computational prediction was validated using a protein microarray-based approach. The predicted scaffold proteins showed several interesting characteristics, as we expected from the functionality of scaffold proteins. We found that the scaffold proteins are likely to interact with each other, which is consistent with previous finding that scaffold proteins tend to form homodimers and heterodimers. Interestingly, a single scaffold protein can be involved in multiple signaling pathways by interacting with other scaffold protein partners. Furthermore, we propose two possible regulatory mechanisms by which the activity of scaffold proteins is coordinated with their associated pathways through phosphorylation process. PMID:26393507

  14. Correlation of chemical shifts predicted by molecular dynamics simulations for partially disordered proteins

    Energy Technology Data Exchange (ETDEWEB)

    Karp, Jerome M.; Erylimaz, Ertan; Cowburn, David, E-mail: cowburn@cowburnlab.org, E-mail: David.cowburn@einstein.yu.edu [Albert Einstein College of Medicine of Yeshiva University, Department of Biochemistry (United States)

    2015-01-15

    There has been a longstanding interest in being able to accurately predict NMR chemical shifts from structural data. Recent studies have focused on using molecular dynamics (MD) simulation data as input for improved prediction. Here we examine the accuracy of chemical shift prediction for intein systems, which have regions of intrinsic disorder. We find that using MD simulation data as input for chemical shift prediction does not consistently improve prediction accuracy over use of a static X-ray crystal structure. This appears to result from the complex conformational ensemble of the disordered protein segments. We show that using accelerated molecular dynamics (aMD) simulations improves chemical shift prediction, suggesting that methods which better sample the conformational ensemble like aMD are more appropriate tools for use in chemical shift prediction for proteins with disordered regions. Moreover, our study suggests that data accurately reflecting protein dynamics must be used as input for chemical shift prediction in order to correctly predict chemical shifts in systems with disorder.

  15. Sequence-based prediction of protein-binding sites in DNA: comparative study of two SVM models.

    Science.gov (United States)

    Park, Byungkyu; Im, Jinyong; Tuvshinjargal, Narankhuu; Lee, Wook; Han, Kyungsook

    2014-11-01

    As many structures of protein-DNA complexes have been known in the past years, several computational methods have been developed to predict DNA-binding sites in proteins. However, its inverse problem (i.e., predicting protein-binding sites in DNA) has received much less attention. One of the reasons is that the differences between the interaction propensities of nucleotides are much smaller than those between amino acids. Another reason is that DNA exhibits less diverse sequence patterns than protein. Therefore, predicting protein-binding DNA nucleotides is much harder than predicting DNA-binding amino acids. We computed the interaction propensity (IP) of nucleotide triplets with amino acids using an extensive dataset of protein-DNA complexes, and developed two support vector machine (SVM) models that predict protein-binding nucleotides from sequence data alone. One SVM model predicts protein-binding nucleotides using DNA sequence data alone, and the other SVM model predicts protein-binding nucleotides using both DNA and protein sequences. In a 10-fold cross-validation with 1519 DNA sequences, the SVM model that uses DNA sequence data only predicted protein-binding nucleotides with an accuracy of 67.0%, an F-measure of 67.1%, and a Matthews correlation coefficient (MCC) of 0.340. With an independent dataset of 181 DNAs that were not used in training, it achieved an accuracy of 66.2%, an F-measure 66.3% and a MCC of 0.324. Another SVM model that uses both DNA and protein sequences achieved an accuracy of 69.6%, an F-measure of 69.6%, and a MCC of 0.383 in a 10-fold cross-validation with 1519 DNA sequences and 859 protein sequences. With an independent dataset of 181 DNAs and 143 proteins, it showed an accuracy of 67.3%, an F-measure of 66.5% and a MCC of 0.329. Both in cross-validation and independent testing, the second SVM model that used both DNA and protein sequence data showed better performance than the first model that used DNA sequence data. To the best of

  16. Prediction on long-term mean and mean square pollutant concentrations in an urban atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S; Lamb, R G; Seinfeld, J H

    1976-01-01

    The general problem of predicting long-term average (say yearly) pollutant concentrations in an urban atmosphere is formulated. The pollutant concentration can be viewed as a random process, the complete description of which requires knowledge of its probability density function, which is unknown. The mean concentration is the first moment of the concentration distribution, and at present there exist a number of models for predicting the long-term mean concentration of an inert pollutant. The second moment, or mean square concentration, indicates additional features of the distribution, such as the level of fluctuations about the mean. In the paper a model proposed by Lamb for the long-term mean concentration is reviewed, and a new model for prediction of the long-term mean square concentration of an inert air pollutant is derived. The properties and uses of the model are discussed, and the equations defining the model are presented in a form for direct application to an urban area.

  17. Comparing predicted estrogen concentrations with measurements in US waters

    International Nuclear Information System (INIS)

    Kostich, Mitch; Flick, Robert; Martinson, John

    2013-01-01

    The range of exposure rates to the steroidal estrogens estrone (E1), beta-estradiol (E2), estriol (E3), and ethinyl estradiol (EE2) in the aquatic environment was investigated by modeling estrogen introduction via municipal wastewater from sewage plants across the US. Model predictions were compared to published measured concentrations. Predictions were congruent with most of the measurements, but a few measurements of E2 and EE2 exceed those that would be expected from the model, despite very conservative model assumptions of no degradation or in-stream dilution. Although some extreme measurements for EE2 may reflect analytical artifacts, remaining data suggest concentrations of E2 and EE2 may reach twice the 99th percentile predicted from the model. The model and bulk of the measurement data both suggest that cumulative exposure rates to humans are consistently low relative to effect levels, but also suggest that fish exposures to E1, E2, and EE2 sometimes substantially exceed chronic no-effect levels. -- Highlights: •Conservatively modeled steroidal estrogen concentrations in ambient water. •Found reasonable agreement between model and published measurements. •Model and measurements agree that risks to humans are remote. •Model and measurements agree significant questions remain about risk to fish. •Need better understanding of temporal variations and their impact on fish. -- Our model and published measurements for estrogens suggest aquatic exposure rates for humans are below potential effect levels, but fish exposure sometimes exceeds published no-effect levels

  18. Effect of Addition of Concentrated Proteins and Seminal Plasma Low Molecular Weight Proteins in Freezing and Thawing of Equine Semen

    Directory of Open Access Journals (Sweden)

    Fagundes, B.

    2011-07-01

    Full Text Available Difficulties in obtaining equine frozen semen with potential fertility are recognized. This study was designed to investigate the effect of seminal plasma on frozen/thawing of eight stallion semen from different breed using the following treatments: Seminal plasma with ten-fold concentrated proteins with molecular weight above 10 kDa on frozen extender; Part of seminal plasma with proteins under 10 kDa on frozen extender; Conventional freezing, using whole seminal plasma on frozen extender. Using the parameter of 30% of seminal motility post-thawing as index of good freezability, it was verified an increased percentage of stallions that presented good freezability when semen was frozen with seminal plasma containing ten-fold concentrated proteins with molecular weight above 10 kDa on frozen extender. These results, suggested the use of seminal plasma concentrated proteins from own stallion to freezing/thawing semen.

  19. Amikacin Concentrations Predictive of Ototoxicity in Multidrug-Resistant Tuberculosis Patients.

    Science.gov (United States)

    Modongo, Chawangwa; Pasipanodya, Jotam G; Zetola, Nicola M; Williams, Scott M; Sirugo, Giorgio; Gumbo, Tawanda

    2015-10-01

    Aminoglycosides, such as amikacin, are used to treat multidrug-resistant tuberculosis. However, ototoxicity is a common problem and is monitored using peak and trough amikacin concentrations based on World Health Organization recommendations. Our objective was to identify clinical factors predictive of ototoxicity using an agnostic machine learning method. We used classification and regression tree (CART) analyses to identify clinical factors, including amikacin concentration thresholds that predicted audiometry-confirmed ototoxicity among 28 multidrug-resistant pulmonary tuberculosis patients in Botswana. Amikacin concentrations were measured for all patients. The quantitative relationship between predictive factors and the probability of ototoxicity were then identified using probit analyses. The primary predictors of ototoxicity on CART analyses were cumulative days of therapy, followed by cumulative area under the concentration-time curve (AUC), which improved on the primary predictor by 87%. The area under the receiver operating curve was 0.97 on the test set. Peak and trough were not predictors in any tree. When algorithms were forced to pick peak and trough as primary predictors, the area under the receiver operating curve fell to 0.46. Probit analysis revealed that the probability of ototoxicity increased sharply starting after 6 months of therapy to near maximum at 9 months. A 10% probability of ototoxicity occurred with a threshold cumulative AUC of 87,232 days · mg · h/liter, while that of 20% occurred at 120,000 days · mg · h/liter. Thus, cumulative amikacin AUC and duration of therapy, and not peak and trough concentrations, should be used as the primary decision-making parameters to minimize the likelihood of ototoxicity in multidrug-resistant tuberculosis. Copyright © 2015, Modongo et al.

  20. MUFOLD-SS: New deep inception-inside-inception networks for protein secondary structure prediction.

    Science.gov (United States)

    Fang, Chao; Shang, Yi; Xu, Dong

    2018-05-01

    Protein secondary structure prediction can provide important information for protein 3D structure prediction and protein functions. Deep learning offers a new opportunity to significantly improve prediction accuracy. In this article, a new deep neural network architecture, named the Deep inception-inside-inception (Deep3I) network, is proposed for protein secondary structure prediction and implemented as a software tool MUFOLD-SS. The input to MUFOLD-SS is a carefully designed feature matrix corresponding to the primary amino acid sequence of a protein, which consists of a rich set of information derived from individual amino acid, as well as the context of the protein sequence. Specifically, the feature matrix is a composition of physio-chemical properties of amino acids, PSI-BLAST profile, and HHBlits profile. MUFOLD-SS is composed of a sequence of nested inception modules and maps the input matrix to either eight states or three states of secondary structures. The architecture of MUFOLD-SS enables effective processing of local and global interactions between amino acids in making accurate prediction. In extensive experiments on multiple datasets, MUFOLD-SS outperformed the best existing methods and other deep neural networks significantly. MUFold-SS can be downloaded from http://dslsrv8.cs.missouri.edu/~cf797/MUFoldSS/download.html. © 2018 Wiley Periodicals, Inc.

  1. Influence of watermelon seed protein concentrates on dough handling, textural and sensory properties of cookies.

    Science.gov (United States)

    Wani, Ali Abas; Sogi, D S; Singh, Preeti; Khatkar, B S

    2015-04-01

    Fruit processing wastes contain numerous by products of potential use in food & allied industry. Watermelon seeds represent a major by-product of the processing waste and contain high amount of nutritional proteins. Protein rich cereal based products are in demand due to their health promoting benefits. With this aim, wheat flour was fortified with watermelon seed protein concentrates (2.5 %, 5 %, 7.5 % and 10 % levels) to prepare cookies with desirable physical, nutritional, and textural and sensory properties. Substitution levels of 5 % and 10 % significantly (p ≤ 0.05) increased the dough stability and mixing tolerance index, however pasting properties and dough extensibility decreased considerably above 5 % substitution levels. Cookie fracture force (kg) increased significantly (p ≤ 0.05) above 5 % fortification levels. Cookie spread factor (W/T) increased from 2.5 % to 7.5 % fortification levels, further increase showed negative impact. Sensory scores of the cookies showed that protein concentrate may be added up to 7.5 % fortification levels. This study revealed that watermelon protein concentrates can be fortified with protein concentrates upto 5-7.5 % levels in cookies to improve their protein quality.

  2. Prediction of human protein function according to Gene Ontology categories

    DEFF Research Database (Denmark)

    Jensen, Lars Juhl; Gupta, Ramneek; Stærfeldt, Hans Henrik

    2003-01-01

    developed a method for prediction of protein function for a subset of classes from the Gene Ontology classification scheme. This subset includes several pharmaceutically interesting categories-transcription factors, receptors, ion channels, stress and immune response proteins, hormones and growth factors...

  3. The Phyre2 web portal for protein modeling, prediction and analysis.

    Science.gov (United States)

    Kelley, Lawrence A; Mezulis, Stefans; Yates, Christopher M; Wass, Mark N; Sternberg, Michael J E

    2015-06-01

    Phyre2 is a suite of tools available on the web to predict and analyze protein structure, function and mutations. The focus of Phyre2 is to provide biologists with a simple and intuitive interface to state-of-the-art protein bioinformatics tools. Phyre2 replaces Phyre, the original version of the server for which we previously published a paper in Nature Protocols. In this updated protocol, we describe Phyre2, which uses advanced remote homology detection methods to build 3D models, predict ligand binding sites and analyze the effect of amino acid variants (e.g., nonsynonymous SNPs (nsSNPs)) for a user's protein sequence. Users are guided through results by a simple interface at a level of detail they determine. This protocol will guide users from submitting a protein sequence to interpreting the secondary and tertiary structure of their models, their domain composition and model quality. A range of additional available tools is described to find a protein structure in a genome, to submit large number of sequences at once and to automatically run weekly searches for proteins that are difficult to model. The server is available at http://www.sbg.bio.ic.ac.uk/phyre2. A typical structure prediction will be returned between 30 min and 2 h after submission.

  4. Whey protein concentrate storage at elevated temperature and humidity

    Science.gov (United States)

    Dairy processors are finding new export markets for whey protein concentrate (WPC), a byproduct of cheesemaking, but they need to know if full-sized bags of this powder will withstand high temperature and relative humidity (RH) levels during unrefrigerated storage under tropical conditions. To answ...

  5. Predicting protein structures with a multiplayer online game

    OpenAIRE

    Cooper, Seth; Khatib, Firas; Treuille, Adrien; Barbero, Janos; Lee, Jeehyung; Beenen, Michael; Leaver-Fay, Andrew; Baker, David; Popović, Zoran

    2010-01-01

    People exert significant amounts of problem solving effort playing computer games. Simple image- and text-recognition tasks have been successfully crowd-sourced through gamesi, ii, iii, but it is not clear if more complex scientific problems can be similarly solved with human-directed computing. Protein structure prediction is one such problem: locating the biologically relevant native conformation of a protein is a formidable computational challenge given the very large size of the search sp...

  6. System and methods for predicting transmembrane domains in membrane proteins and mining the genome for recognizing G-protein coupled receptors

    Science.gov (United States)

    Trabanino, Rene J; Vaidehi, Nagarajan; Hall, Spencer E; Goddard, William A; Floriano, Wely

    2013-02-05

    The invention provides computer-implemented methods and apparatus implementing a hierarchical protocol using multiscale molecular dynamics and molecular modeling methods to predict the presence of transmembrane regions in proteins, such as G-Protein Coupled Receptors (GPCR), and protein structural models generated according to the protocol. The protocol features a coarse grain sampling method, such as hydrophobicity analysis, to provide a fast and accurate procedure for predicting transmembrane regions. Methods and apparatus of the invention are useful to screen protein or polynucleotide databases for encoded proteins with transmembrane regions, such as GPCRs.

  7. Multi-Label Learning via Random Label Selection for Protein Subcellular Multi-Locations Prediction.

    Science.gov (United States)

    Wang, Xiao; Li, Guo-Zheng

    2013-03-12

    Prediction of protein subcellular localization is an important but challenging problem, particularly when proteins may simultaneously exist at, or move between, two or more different subcellular location sites. Most of the existing protein subcellular localization methods are only used to deal with the single-location proteins. In the past few years, only a few methods have been proposed to tackle proteins with multiple locations. However, they only adopt a simple strategy, that is, transforming the multi-location proteins to multiple proteins with single location, which doesn't take correlations among different subcellular locations into account. In this paper, a novel method named RALS (multi-label learning via RAndom Label Selection), is proposed to learn from multi-location proteins in an effective and efficient way. Through five-fold cross validation test on a benchmark dataset, we demonstrate our proposed method with consideration of label correlations obviously outperforms the baseline BR method without consideration of label correlations, indicating correlations among different subcellular locations really exist and contribute to improvement of prediction performance. Experimental results on two benchmark datasets also show that our proposed methods achieve significantly higher performance than some other state-of-the-art methods in predicting subcellular multi-locations of proteins. The prediction web server is available at http://levis.tongji.edu.cn:8080/bioinfo/MLPred-Euk/ for the public usage.

  8. Population PK modelling and simulation based on fluoxetine and norfluoxetine concentrations in milk: a milk concentration-based prediction model.

    Science.gov (United States)

    Tanoshima, Reo; Bournissen, Facundo Garcia; Tanigawara, Yusuke; Kristensen, Judith H; Taddio, Anna; Ilett, Kenneth F; Begg, Evan J; Wallach, Izhar; Ito, Shinya

    2014-10-01

    Population pharmacokinetic (pop PK) modelling can be used for PK assessment of drugs in breast milk. However, complex mechanistic modelling of a parent and an active metabolite using both blood and milk samples is challenging. We aimed to develop a simple predictive pop PK model for milk concentration-time profiles of a parent and a metabolite, using data on fluoxetine (FX) and its active metabolite, norfluoxetine (NFX), in milk. Using a previously published data set of drug concentrations in milk from 25 women treated with FX, a pop PK model predictive of milk concentration-time profiles of FX and NFX was developed. Simulation was performed with the model to generate FX and NFX concentration-time profiles in milk of 1000 mothers. This milk concentration-based pop PK model was compared with the previously validated plasma/milk concentration-based pop PK model of FX. Milk FX and NFX concentration-time profiles were described reasonably well by a one compartment model with a FX-to-NFX conversion coefficient. Median values of the simulated relative infant dose on a weight basis (sRID: weight-adjusted daily doses of FX and NFX through breastmilk to the infant, expressed as a fraction of therapeutic FX daily dose per body weight) were 0.028 for FX and 0.029 for NFX. The FX sRID estimates were consistent with those of the plasma/milk-based pop PK model. A predictive pop PK model based on only milk concentrations can be developed for simultaneous estimation of milk concentration-time profiles of a parent (FX) and an active metabolite (NFX). © 2014 The British Pharmacological Society.

  9. MemBrain: An Easy-to-Use Online Webserver for Transmembrane Protein Structure Prediction

    Science.gov (United States)

    Yin, Xi; Yang, Jing; Xiao, Feng; Yang, Yang; Shen, Hong-Bin

    2018-03-01

    Membrane proteins are an important kind of proteins embedded in the membranes of cells and play crucial roles in living organisms, such as ion channels, transporters, receptors. Because it is difficult to determinate the membrane protein's structure by wet-lab experiments, accurate and fast amino acid sequence-based computational methods are highly desired. In this paper, we report an online prediction tool called MemBrain, whose input is the amino acid sequence. MemBrain consists of specialized modules for predicting transmembrane helices, residue-residue contacts and relative accessible surface area of α-helical membrane proteins. MemBrain achieves a prediction accuracy of 97.9% of A TMH, 87.1% of A P, 3.2 ± 3.0 of N-score, 3.1 ± 2.8 of C-score. MemBrain-Contact obtains 62%/64.1% prediction accuracy on training and independent dataset on top L/5 contact prediction, respectively. And MemBrain-Rasa achieves Pearson correlation coefficient of 0.733 and its mean absolute error of 13.593. These prediction results provide valuable hints for revealing the structure and function of membrane proteins. MemBrain web server is free for academic use and available at www.csbio.sjtu.edu.cn/bioinf/MemBrain/. [Figure not available: see fulltext.

  10. MU-LOC: A Machine-Learning Method for Predicting Mitochondrially Localized Proteins in Plants

    DEFF Research Database (Denmark)

    Zhang, Ning; Rao, R Shyama Prasad; Salvato, Fernanda

    2018-01-01

    -sequence or a multitude of internal signals. Compared with experimental approaches, computational predictions provide an efficient way to infer subcellular localization of a protein. However, it is still challenging to predict plant mitochondrially localized proteins accurately due to various limitations. Consequently......, the performance of current tools can be improved with new data and new machine-learning methods. We present MU-LOC, a novel computational approach for large-scale prediction of plant mitochondrial proteins. We collected a comprehensive dataset of plant subcellular localization, extracted features including amino...

  11. Prediction of localization and interactions of apoptotic proteins

    Directory of Open Access Journals (Sweden)

    Matula Pavel

    2009-07-01

    Full Text Available Abstract During apoptosis several mitochondrial proteins are released. Some of them participate in caspase-independent nuclear DNA degradation, especially apoptosis-inducing factor (AIF and endonuclease G (endoG. Another interesting protein, which was expected to act similarly as AIF due to the high sequence homology with AIF is AIF-homologous mitochondrion-associated inducer of death (AMID. We studied the structure, cellular localization, and interactions of several proteins in silico and also in cells using fluorescent microscopy. We found the AMID protein to be cytoplasmic, most probably incorporated into the cytoplasmic side of the lipid membranes. Bioinformatic predictions were conducted to analyze the interactions of the studied proteins with each other and with other possible partners. We conducted molecular modeling of proteins with unknown 3D structures. These models were then refined by MolProbity server and employed in molecular docking simulations of interactions. Our results show data acquired using a combination of modern in silico methods and image analysis to understand the localization, interactions and functions of proteins AMID, AIF, endonuclease G, and other apoptosis-related proteins.

  12. Biodynamic modelling and the prediction of accumulated trace metal concentrations in the polychaete Arenicola marina

    International Nuclear Information System (INIS)

    Casado-Martinez, M. Carmen; Smith, Brian D.; DelValls, T. Angel; Luoma, Samuel N.; Rainbow, Philip S.

    2009-01-01

    The use of biodynamic models to understand metal uptake directly from sediments by deposit-feeding organisms still represents a special challenge. In this study, accumulated concentrations of Cd, Zn and Ag predicted by biodynamic modelling in the lugworm Arenicola marina have been compared to measured concentrations in field populations in several UK estuaries. The biodynamic model predicted accumulated field Cd concentrations remarkably accurately, and predicted bioaccumulated Ag concentrations were in the range of those measured in lugworms collected from the field. For Zn the model showed less but still good comparability, accurately predicting Zn bioaccumulation in A. marina at high sediment concentrations but underestimating accumulated Zn in the worms from sites with low and intermediate levels of Zn sediment contamination. Therefore, it appears that the physiological parameters experimentally derived for A. marina are applicable to the conditions encountered in these environments and that the assumptions made in the model are plausible. - Biodynamic modelling predicts accumulated field concentrations of Ag, Cd and Zn in the deposit-feeding polychaete Arenicola marina.

  13. Genome-scale prediction of proteins with long intrinsically disordered regions.

    Science.gov (United States)

    Peng, Zhenling; Mizianty, Marcin J; Kurgan, Lukasz

    2014-01-01

    Proteins with long disordered regions (LDRs), defined as having 30 or more consecutive disordered residues, are abundant in eukaryotes, and these regions are recognized as a distinct class of biologically functional domains. LDRs facilitate various cellular functions and are important for target selection in structural genomics. Motivated by the lack of methods that directly predict proteins with LDRs, we designed Super-fast predictor of proteins with Long Intrinsically DisordERed regions (SLIDER). SLIDER utilizes logistic regression that takes an empirically chosen set of numerical features, which consider selected physicochemical properties of amino acids, sequence complexity, and amino acid composition, as its inputs. Empirical tests show that SLIDER offers competitive predictive performance combined with low computational cost. It outperforms, by at least a modest margin, a comprehensive set of modern disorder predictors (that can indirectly predict LDRs) and is 16 times faster compared to the best currently available disorder predictor. Utilizing our time-efficient predictor, we characterized abundance and functional roles of proteins with LDRs over 110 eukaryotic proteomes. Similar to related studies, we found that eukaryotes have many (on average 30.3%) proteins with LDRs with majority of proteomes having between 25 and 40%, where higher abundance is characteristic to proteomes that have larger proteins. Our first-of-its-kind large-scale functional analysis shows that these proteins are enriched in a number of cellular functions and processes including certain binding events, regulation of catalytic activities, cellular component organization, biogenesis, biological regulation, and some metabolic and developmental processes. A webserver that implements SLIDER is available at http://biomine.ece.ualberta.ca/SLIDER/. Copyright © 2013 Wiley Periodicals, Inc.

  14. Prediction and analysis of near-road concentrations using a reduced-form emission/dispersion model

    Directory of Open Access Journals (Sweden)

    Kononowech Robert

    2010-06-01

    Full Text Available Abstract Background Near-road exposures of traffic-related air pollutants have been receiving increased attention due to evidence linking emissions from high-traffic roadways to adverse health outcomes. To date, most epidemiological and risk analyses have utilized simple but crude exposure indicators, most typically proximity measures, such as the distance between freeways and residences, to represent air quality impacts from traffic. This paper derives and analyzes a simplified microscale simulation model designed to predict short- (hourly to long-term (annual average pollutant concentrations near roads. Sensitivity analyses and case studies are used to highlight issues in predicting near-road exposures. Methods Process-based simulation models using a computationally efficient reduced-form response surface structure and a minimum number of inputs integrate the major determinants of air pollution exposures: traffic volume and vehicle emissions, meteorology, and receptor location. We identify the most influential variables and then derive a set of multiplicative submodels that match predictions from "parent" models MOBILE6.2 and CALINE4. The assembled model is applied to two case studies in the Detroit, Michigan area. The first predicts carbon monoxide (CO concentrations at a monitoring site near a freeway. The second predicts CO and PM2.5 concentrations in a dense receptor grid over a 1 km2 area around the intersection of two major roads. We analyze the spatial and temporal patterns of pollutant concentration predictions. Results Predicted CO concentrations showed reasonable agreement with annual average and 24-hour measurements, e.g., 59% of the 24-hr predictions were within a factor of two of observations in the warmer months when CO emissions are more consistent. The highest concentrations of both CO and PM2.5 were predicted to occur near intersections and downwind of major roads during periods of unfavorable meteorology (e.g., low wind

  15. Three-dimensional protein structure prediction: Methods and computational strategies.

    Science.gov (United States)

    Dorn, Márcio; E Silva, Mariel Barbachan; Buriol, Luciana S; Lamb, Luis C

    2014-10-12

    A long standing problem in structural bioinformatics is to determine the three-dimensional (3-D) structure of a protein when only a sequence of amino acid residues is given. Many computational methodologies and algorithms have been proposed as a solution to the 3-D Protein Structure Prediction (3-D-PSP) problem. These methods can be divided in four main classes: (a) first principle methods without database information; (b) first principle methods with database information; (c) fold recognition and threading methods; and (d) comparative modeling methods and sequence alignment strategies. Deterministic computational techniques, optimization techniques, data mining and machine learning approaches are typically used in the construction of computational solutions for the PSP problem. Our main goal with this work is to review the methods and computational strategies that are currently used in 3-D protein prediction. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. CaMELS: In silico prediction of calmodulin binding proteins and their binding sites.

    Science.gov (United States)

    Abbasi, Wajid Arshad; Asif, Amina; Andleeb, Saiqa; Minhas, Fayyaz Ul Amir Afsar

    2017-09-01

    Due to Ca 2+ -dependent binding and the sequence diversity of Calmodulin (CaM) binding proteins, identifying CaM interactions and binding sites in the wet-lab is tedious and costly. Therefore, computational methods for this purpose are crucial to the design of such wet-lab experiments. We present an algorithm suite called CaMELS (CalModulin intEraction Learning System) for predicting proteins that interact with CaM as well as their binding sites using sequence information alone. CaMELS offers state of the art accuracy for both CaM interaction and binding site prediction and can aid biologists in studying CaM binding proteins. For CaM interaction prediction, CaMELS uses protein sequence features coupled with a large-margin classifier. CaMELS models the binding site prediction problem using multiple instance machine learning with a custom optimization algorithm which allows more effective learning over imprecisely annotated CaM-binding sites during training. CaMELS has been extensively benchmarked using a variety of data sets, mutagenic studies, proteome-wide Gene Ontology enrichment analyses and protein structures. Our experiments indicate that CaMELS outperforms simple motif-based search and other existing methods for interaction and binding site prediction. We have also found that the whole sequence of a protein, rather than just its binding site, is important for predicting its interaction with CaM. Using the machine learning model in CaMELS, we have identified important features of protein sequences for CaM interaction prediction as well as characteristic amino acid sub-sequences and their relative position for identifying CaM binding sites. Python code for training and evaluating CaMELS together with a webserver implementation is available at the URL: http://faculty.pieas.edu.pk/fayyaz/software.html#camels. © 2017 Wiley Periodicals, Inc.

  17. Influence of whey protein concentrate addition on textural properties of corn flour extrudates

    Directory of Open Access Journals (Sweden)

    Mladen Brnčić

    2008-05-01

    Full Text Available Texture is an important propertiy of extruded snack products, and depended on extrusion process conditions, raw material properties and various ingredients properties as well. The main purpose of this research was, using twin-screw extrusion, to manufacture a direct expanded extrudate based on mixtures of corn flour and whey protein concentrate with acceptable textural properties. Mixtures were made of corn flour and three different concentrations of whey protein concentrate (7,5 %, 15 %, 22,5 %. Materials were processed in co-rotating twin-screw extruder APV Baker, MPF 50.15 under input conditions: water intake was 10,08 L/h, 12,18 L/h, 14,28 L/h, screw speed was 300 rpm; expansion temperature was 130 °C; feed rate was 70 kg/h. Textural properties: breaking strength index and expansion ratio were determined. Breaking strength index had largest value for the sample with 22,5 % of whey protein concentrate and water intake of 14,28 L/h. Sample with 7,5 % of whey protein concentrate and 10,08 L/h had largest expansion ratio. Calculated textural properties confirmed validity of samples. This results suggest that enrichment of extrudates with wpc addition up to 22,5 % to improve their nutritional value as well as their textural characteristics can be accomplished. Validation of direct expanded extrudates in dependence of its textural properties have shown validity and justification of this research.

  18. Prediction of antigenic epitopes on protein surfaces by consensus scoring

    Directory of Open Access Journals (Sweden)

    Zhang Chi

    2009-09-01

    Full Text Available Abstract Background Prediction of antigenic epitopes on protein surfaces is important for vaccine design. Most existing epitope prediction methods focus on protein sequences to predict continuous epitopes linear in sequence. Only a few structure-based epitope prediction algorithms are available and they have not yet shown satisfying performance. Results We present a new antigen Epitope Prediction method, which uses ConsEnsus Scoring (EPCES from six different scoring functions - residue epitope propensity, conservation score, side-chain energy score, contact number, surface planarity score, and secondary structure composition. Applied to unbounded antigen structures from an independent test set, EPCES was able to predict antigenic eptitopes with 47.8% sensitivity, 69.5% specificity and an AUC value of 0.632. The performance of the method is statistically similar to other published methods. The AUC value of EPCES is slightly higher compared to the best results of existing algorithms by about 0.034. Conclusion Our work shows consensus scoring of multiple features has a better performance than any single term. The successful prediction is also due to the new score of residue epitope propensity based on atomic solvent accessibility.

  19. High concentrations of protein test substances may have non-toxic effects on Daphnia magna: implications for regulatory study designs and ecological risk assessments for GM crops.

    Science.gov (United States)

    Raybould, Alan; Burns, Andrea; Hamer, Mick

    2014-01-01

    Laboratory testing for possible adverse effects of insecticidal proteins on non-target organisms (NTOs) is an important part of many ecological risk assessments for regulatory decision-making about the cultivation of insect-resistant genetically modified (IRGM) crops. To increase confidence in the risk assessments, regulatory guidelines for effects testing specify that representative surrogate species for NTOs are exposed to concentrations of insecticidal proteins that are in excess of worst-case predicted exposures in the field. High concentrations in effects tests are achieved by using protein test substances produced in microbes, such as Escherichia coli. In a study that exposed Daphnia magna to a single high concentration of a microbial test substance containing Vip3Aa20, the insecticidal protein in MIR162 maize, small reductions in growth were observed. These effects were surprising as many other studies strongly suggest that the activity of Vip3Aa20 is limited to Lepidoptera. A plausible explanation for the effect on growth is that high concentrations of test substance have a non-toxic effect on Daphnia, perhaps by reducing its feeding rate. A follow-up study tested that hypothesis by exposing D. magna to several concentrations of Vip3Aa20, and a high concentration of a non-toxic protein, bovine serum albumin (BSA). Vip3Aa20 and BSA had sporadic effects on the reproduction and growth of D. magna. The pattern of the effects suggests that they result from non-toxic effects of high concentrations of protein, and not from toxicity. The implications of these results for regulatory NTO effects testing and ERA of IRGM crops are discussed.

  20. Defining the predicted protein secretome of the fungal wheat leaf pathogen Mycosphaerella graminicola.

    Directory of Open Access Journals (Sweden)

    Alexandre Morais do Amaral

    Full Text Available The Dothideomycete fungus Mycosphaerella graminicola is the causal agent of Septoria tritici blotch, a devastating disease of wheat leaves that causes dramatic decreases in yield. Infection involves an initial extended period of symptomless intercellular colonisation prior to the development of visible necrotic disease lesions. Previous functional genomics and gene expression profiling studies have implicated the production of secreted virulence effector proteins as key facilitators of the initial symptomless growth phase. In order to identify additional candidate virulence effectors, we re-analysed and catalogued the predicted protein secretome of M. graminicola isolate IPO323, which is currently regarded as the reference strain for this species. We combined several bioinformatic approaches in order to increase the probability of identifying truly secreted proteins with either a predicted enzymatic function or an as yet unknown function. An initial secretome of 970 proteins was predicted, whilst further stringent selection criteria predicted 492 proteins. Of these, 321 possess some functional annotation, the composition of which may reflect the strictly intercellular growth habit of this pathogen, leaving 171 with no functional annotation. This analysis identified a protein family encoding secreted peroxidases/chloroperoxidases (PF01328 which is expanded within all members of the family Mycosphaerellaceae. Further analyses were done on the non-annotated proteins for size and cysteine content (effector protein hallmarks, and then by studying the distribution of homologues in 17 other sequenced Dothideomycete fungi within an overall total of 91 predicted proteomes from fungal, oomycete and nematode species. This detailed M. graminicola secretome analysis provides the basis for further functional and comparative genomics studies.

  1. An automated decision-tree approach to predicting protein interaction hot spots.

    Science.gov (United States)

    Darnell, Steven J; Page, David; Mitchell, Julie C

    2007-09-01

    Protein-protein interactions can be altered by mutating one or more "hot spots," the subset of residues that account for most of the interface's binding free energy. The identification of hot spots requires a significant experimental effort, highlighting the practical value of hot spot predictions. We present two knowledge-based models that improve the ability to predict hot spots: K-FADE uses shape specificity features calculated by the Fast Atomic Density Evaluation (FADE) program, and K-CON uses biochemical contact features. The combined K-FADE/CON (KFC) model displays better overall predictive accuracy than computational alanine scanning (Robetta-Ala). In addition, because these methods predict different subsets of known hot spots, a large and significant increase in accuracy is achieved by combining KFC and Robetta-Ala. The KFC analysis is applied to the calmodulin (CaM)/smooth muscle myosin light chain kinase (smMLCK) interface, and to the bone morphogenetic protein-2 (BMP-2)/BMP receptor-type I (BMPR-IA) interface. The results indicate a strong correlation between KFC hot spot predictions and mutations that significantly reduce the binding affinity of the interface. 2007 Wiley-Liss, Inc.

  2. Changes in predicted protein disorder tendency may contribute to disease risk

    Directory of Open Access Journals (Sweden)

    Hu Yang

    2011-12-01

    Full Text Available Abstract Background Recent studies suggest that many proteins or regions of proteins lack 3D structure. Defined as intrinsically disordered proteins, these proteins/peptides are functionally important. Recent advances in next generation sequencing technologies enable genome-wide identification of novel nucleotide variations in a specific population or cohort. Results Using the exonic single nucleotide variations (SNVs identified in the 1,000 Genomes Project and distributed by the Genetic Analysis Workshop 17, we systematically analysed the genetic and predicted disorder potential features of the non-synonymous variations. The result of experiments suggests that a significant change in the tendency of a protein region to be structured or disordered caused by SNVs may lead to malfunction of such a protein and contribute to disease risk. Conclusions After validation with functional SNVs on the traits distributed by GAW17, we conclude that it is valuable to consider structure/disorder tendencies while prioritizing and predicting mechanistic effects arising from novel genetic variations.

  3. Sequence Based Prediction of Antioxidant Proteins Using a Classifier Selection Strategy.

    Directory of Open Access Journals (Sweden)

    Lina Zhang

    Full Text Available Antioxidant proteins perform significant functions in maintaining oxidation/antioxidation balance and have potential therapies for some diseases. Accurate identification of antioxidant proteins could contribute to revealing physiological processes of oxidation/antioxidation balance and developing novel antioxidation-based drugs. In this study, an ensemble method is presented to predict antioxidant proteins with hybrid features, incorporating SSI (Secondary Structure Information, PSSM (Position Specific Scoring Matrix, RSA (Relative Solvent Accessibility, and CTD (Composition, Transition, Distribution. The prediction results of the ensemble predictor are determined by an average of prediction results of multiple base classifiers. Based on a classifier selection strategy, we obtain an optimal ensemble classifier composed of RF (Random Forest, SMO (Sequential Minimal Optimization, NNA (Nearest Neighbor Algorithm, and J48 with an accuracy of 0.925. A Relief combined with IFS (Incremental Feature Selection method is adopted to obtain optimal features from hybrid features. With the optimal features, the ensemble method achieves improved performance with a sensitivity of 0.95, a specificity of 0.93, an accuracy of 0.94, and an MCC (Matthew's Correlation Coefficient of 0.880, far better than the existing method. To evaluate the prediction performance objectively, the proposed method is compared with existing methods on the same independent testing dataset. Encouragingly, our method performs better than previous studies. In addition, our method achieves more balanced performance with a sensitivity of 0.878 and a specificity of 0.860. These results suggest that the proposed ensemble method can be a potential candidate for antioxidant protein prediction. For public access, we develop a user-friendly web server for antioxidant protein identification that is freely accessible at http://antioxidant.weka.cc.

  4. QuaBingo: A Prediction System for Protein Quaternary Structure Attributes Using Block Composition

    Directory of Open Access Journals (Sweden)

    Chi-Hua Tung

    2016-01-01

    Full Text Available Background. Quaternary structures of proteins are closely relevant to gene regulation, signal transduction, and many other biological functions of proteins. In the current study, a new method based on protein-conserved motif composition in block format for feature extraction is proposed, which is termed block composition. Results. The protein quaternary assembly states prediction system which combines blocks with functional domain composition, called QuaBingo, is constructed by three layers of classifiers that can categorize quaternary structural attributes of monomer, homooligomer, and heterooligomer. The building of the first layer classifier uses support vector machines (SVM based on blocks and functional domains of proteins, and the second layer SVM was utilized to process the outputs of the first layer. Finally, the result is determined by the Random Forest of the third layer. We compared the effectiveness of the combination of block composition, functional domain composition, and pseudoamino acid composition of the model. In the 11 kinds of functional protein families, QuaBingo is 23% of Matthews Correlation Coefficient (MCC higher than the existing prediction system. The results also revealed the biological characterization of the top five block compositions. Conclusions. QuaBingo provides better predictive ability for predicting the quaternary structural attributes of proteins.

  5. Prediction of protein post-translational modifications: main trends and methods

    Science.gov (United States)

    Sobolev, B. N.; Veselovsky, A. V.; Poroikov, V. V.

    2014-02-01

    The review summarizes main trends in the development of methods for the prediction of protein post-translational modifications (PTMs) by considering the three most common types of PTMs — phosphorylation, acetylation and glycosylation. Considerable attention is given to general characteristics of regulatory interactions associated with PTMs. Different approaches to the prediction of PTMs are analyzed. Most of the methods are based only on the analysis of the neighbouring environment of modification sites. The related software is characterized by relatively low accuracy of PTM predictions, which may be due both to the incompleteness of training data and the features of PTM regulation. Advantages and limitations of the phylogenetic approach are considered. The prediction of PTMs using data on regulatory interactions, including the modular organization of interacting proteins, is a promising field, provided that a more carefully selected training data will be used. The bibliography includes 145 references.

  6. Cascaded bidirectional recurrent neural networks for protein secondary structure prediction.

    Science.gov (United States)

    Chen, Jinmiao; Chaudhari, Narendra

    2007-01-01

    Protein secondary structure (PSS) prediction is an important topic in bioinformatics. Our study on a large set of non-homologous proteins shows that long-range interactions commonly exist and negatively affect PSS prediction. Besides, we also reveal strong correlations between secondary structure (SS) elements. In order to take into account the long-range interactions and SS-SS correlations, we propose a novel prediction system based on cascaded bidirectional recurrent neural network (BRNN). We compare the cascaded BRNN against another two BRNN architectures, namely the original BRNN architecture used for speech recognition as well as Pollastri's BRNN that was proposed for PSS prediction. Our cascaded BRNN achieves an overall three state accuracy Q3 of 74.38\\%, and reaches a high Segment OVerlap (SOV) of 66.0455. It outperforms the original BRNN and Pollastri's BRNN in both Q3 and SOV. Specifically, it improves the SOV score by 4-6%.

  7. The specific ion effect on emulsions, foam and gels of a seed protein concentrate

    International Nuclear Information System (INIS)

    Lawal, O.S.

    2008-05-01

    Protein concentrate was prepared from the seeds of jack bean (Canavalia ensiformis) and the influences of selected Hofmeister salts on some functional properties of the protein concentrate were investigated. The results indicate that kosmotropic salts (Na 2 SO 4 , NaCl, NaBr) had improved water absorption capacities over the chaotropic salts (NaI, NaClO 4 , NaSCN) and generally, the reduction in water absorption capacity followed the Hofmeister trend: Na 2 SO 4 > NaCl > NaBr > NaI > NaClO 4 > NaSCN. However, the reverse was observed for the foaming and emulsification properties. The least gelation concentration (LGC) was used as the index of gelation properties and the results showed that LGC were higher in kosmotropic salts than in chaotropic salts. Generally, increases in salt concentration reduced the water absorption capacity, the surfactant properties as well as the gelation property. The findings would provide insight into the understanding of the structure property relations of the protein concentrate. (author)

  8. Parametric Bayesian priors and better choice of negative examples improve protein function prediction.

    Science.gov (United States)

    Youngs, Noah; Penfold-Brown, Duncan; Drew, Kevin; Shasha, Dennis; Bonneau, Richard

    2013-05-01

    Computational biologists have demonstrated the utility of using machine learning methods to predict protein function from an integration of multiple genome-wide data types. Yet, even the best performing function prediction algorithms rely on heuristics for important components of the algorithm, such as choosing negative examples (proteins without a given function) or determining key parameters. The improper choice of negative examples, in particular, can hamper the accuracy of protein function prediction. We present a novel approach for choosing negative examples, using a parameterizable Bayesian prior computed from all observed annotation data, which also generates priors used during function prediction. We incorporate this new method into the GeneMANIA function prediction algorithm and demonstrate improved accuracy of our algorithm over current top-performing function prediction methods on the yeast and mouse proteomes across all metrics tested. Code and Data are available at: http://bonneaulab.bio.nyu.edu/funcprop.html

  9. Determination of possible effects of mineral concentration on protein synthesis by rumen microbes in vitro

    International Nuclear Information System (INIS)

    Nikolic, J.A.; Jovanovic, M.; Andric, R.

    1976-01-01

    The aim of the present investigation was to determine the effect of different concentrations of sulphide, magnesium and zinc on protein synthesis by rumen micro-organisms in vitro. Rumen content was taken from a young bull fed a diet based on maize and dried sugar beet pulp (2/1) supplemented with urea. The rate of incorporation of 35 S from Na 2 35 SO 4 in relation to the mean specific radioactivity of the sulphide pool was used to estimate the overall rate of microbial protein synthesis. It was found that the rate of protein synthesis and the net rate of utilization of ammonia-N were not affected by differences in mean sulphide concentration from 3.6-8.0 mg/litre. The rate of reduction of sulphate appeared not to be affected by the addition of sodium sulphide to the medium. The rate and efficiency of protein synthesis by rumen micro-organisms were not significantly affected by increasing the concentration of total magnesium from 8.4-15.3 mg/100 ml. The values for soluble magnesium varied widely (1.2-7.8 mg/100 ml), and appeared to be partly dependent on the pH of the medium. Zinc concentrations varying from 5.2-12.4 mg/litre did not influence the overall rate of protein synthesis, although the efficiency tended to be higher when the concentration of zinc was greater. Concentrations of soluble zinc were low (0.3-1.15 mg/litre), and not influenced by changes in the concentration of total zinc. It was concluded that increasing the concentrations of the examined elements above the basic values did not lead consistently to an improved production of microbial protein but, on the other hand, had no obvious detrimental effect on microbial metabolic activity within the limits studied. (author)

  10. Quantitative analysis and prediction of curvature in leucine-rich repeat proteins.

    Science.gov (United States)

    Hindle, K Lauren; Bella, Jordi; Lovell, Simon C

    2009-11-01

    Leucine-rich repeat (LRR) proteins form a large and diverse family. They have a wide range of functions most of which involve the formation of protein-protein interactions. All known LRR structures form curved solenoids, although there is large variation in their curvature. It is this curvature that determines the shape and dimensions of the inner space available for ligand binding. Unfortunately, large-scale parameters such as the overall curvature of a protein domain are extremely difficult to predict. Here, we present a quantitative analysis of determinants of curvature of this family. Individual repeats typically range in length between 20 and 30 residues and have a variety of secondary structures on their convex side. The observed curvature of the LRR domains correlates poorly with the lengths of their individual repeats. We have, therefore, developed a scoring function based on the secondary structure of the convex side of the protein that allows prediction of the overall curvature with a high degree of accuracy. We also demonstrate the effectiveness of this method in selecting a suitable template for comparative modeling. We have developed an automated, quantitative protocol that can be used to predict accurately the curvature of leucine-rich repeat proteins of unknown structure from sequence alone. This protocol is available as an online resource at http://www.bioinf.manchester.ac.uk/curlrr/.

  11. A predicted protein interactome identifies conserved global networks and disease resistance subnetworks in maize.

    Directory of Open Access Journals (Sweden)

    Matt eGeisler

    2015-06-01

    Full Text Available Interactomes are genome-wide roadmaps of protein-protein interactions. They have been produced for humans, yeast, the fruit fly, and Arabidopsis thaliana and have become invaluable tools for generating and testing hypotheses. A predicted interactome for Zea mays (PiZeaM is presented here as an aid to the research community for this valuable crop species. PiZeaM was built using a proven method of interologs (interacting orthologs that were identified using both one-to-one and many-to-many orthology between genomes of maize and reference species. Where both maize orthologs occurred for an experimentally determined interaction in the reference species, we predicted a likely interaction in maize. A total of 49,026 unique interactions for 6,004 maize proteins were predicted. These interactions are enriched for processes that are evolutionarily conserved, but include many otherwise poorly annotated proteins in maize. The predicted maize interactions were further analyzed by comparing annotation of interacting proteins, including different layers of ontology. A map of pairwise gene co-expression was also generated and compared to predicted interactions. Two global subnetworks were constructed for highly conserved interactions. These subnetworks showed clear clustering of proteins by function. Another subnetwork was created for disease response using a bait and prey strategy to capture interacting partners for proteins that respond to other organisms. Closer examination of this subnetwork revealed the connectivity between biotic and abiotic hormone stress pathways. We believe PiZeaM will provide a useful tool for the prediction of protein function and analysis of pathways for Z. mays researchers and is presented in this paper as a reference tool for the exploration of protein interactions in maize.

  12. Milk protein concentration, estimated breeding value for fertility, and reproductive performance in lactating dairy cows.

    Science.gov (United States)

    Morton, John M; Auldist, Martin J; Douglas, Meaghan L; Macmillan, Keith L

    2017-07-01

    Milk protein concentration in dairy cows has been positively associated with a range of measures of reproductive performance, and genetic factors affecting both milk protein concentration and reproductive performance may contribute to the observed phenotypic associations. It was of interest to assess whether these beneficial phenotypic associations are accounted for or interact with the effects of estimated breeding values for fertility. The effects of a multitrait estimated breeding value for fertility [the Australian breeding value for daughter fertility (ABV fertility)] on reproductive performance were also of interest. Interactions of milk protein concentration and ABV fertility with the interval from calving date to the start of the herd's seasonally concentrated breeding period were also assessed. A retrospective single cohort study was conducted using data collected from 74 Australian seasonally and split calving dairy herds. Associations between milk protein concentration, ABV fertility, and reproductive performance in Holstein cows were assessed using random effects logistic regression. Between 52,438 and 61,939 lactations were used for analyses of 4 reproductive performance measures. Milk protein concentration was strongly and positively associated with reproductive performance in dairy cows, and this effect was not accounted for by the effects of ABV fertility. Increases in ABV fertility had important additional beneficial effects on the probability of pregnancy by wk 6 and 21 of the herd's breeding period. For cows calved before the start of the breeding period, the effects of increases in both milk protein concentration and ABV fertility were beneficial regardless of their interval from calving to the start of the breeding period. These findings demonstrate the potential for increasing reproductive performance through identifying the causes of the association between milk protein concentration and reproductive performance and then devising management

  13. Improved hybrid optimization algorithm for 3D protein structure prediction.

    Science.gov (United States)

    Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang

    2014-07-01

    A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.

  14. A novel representation for apoptosis protein subcellular localization prediction using support vector machine.

    Science.gov (United States)

    Zhang, Li; Liao, Bo; Li, Dachao; Zhu, Wen

    2009-07-21

    Apoptosis, or programmed cell death, plays an important role in development of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful to understand the apoptosis mechanism. In this paper, based on the concept that the position distribution information of amino acids is closely related with the structure and function of proteins, we introduce the concept of distance frequency [Matsuda, S., Vert, J.P., Ueda, N., Toh, H., Akutsu, T., 2005. A novel representation of protein sequences for prediction of subcellular location using support vector machines. Protein Sci. 14, 2804-2813] and propose a novel way to calculate distance frequencies. In order to calculate the local features, each protein sequence is separated into p parts with the same length in our paper. Then we use the novel representation of protein sequences and adopt support vector machine to predict subcellular location. The overall prediction accuracy is significantly improved by jackknife test.

  15. Comparison of total protein concentration in skeletal muscle as measured by the Bradford and Lowry assays.

    Science.gov (United States)

    Seevaratnam, Rajini; Patel, Barkha P; Hamadeh, Mazen J

    2009-06-01

    The Lowry and Bradford assays are the most commonly used methods of total protein quantification, yet vary in several aspects. To date, no comparisons have been made in skeletal muscle. We compared total protein concentrations of mouse red and white gastrocnemius, reagent stability, protein stability and range of linearity using both assays. The Lowry averaged protein concentrations 15% higher than the Bradford with a moderate correlation (r = 0.36, P = 0.01). However, Bland-Altman analysis revealed considerable bias (15.8 +/- 29.7%). Both Lowry reagents and its protein-reagent interactions were less stable over time than the Bradford. The linear range of concentration was smaller for the Lowry (0.05-0.50 mg/ml) than the Bradford (0-2.0 mg/ml). We conclude that the Bradford and Lowry measures of total protein concentration in skeletal muscle are not interchangeable. The Bradford and Lowry assays have various strengths and weaknesses in terms of substance interference and protein size. However, the Bradford provides greater reagent stability, protein-reagent stability and range of linearity, and requires less time to analyse compared to the Lowry assay.

  16. Predicting binding within disordered protein regions to structurally characterised peptide-binding domains.

    Directory of Open Access Journals (Sweden)

    Waqasuddin Khan

    Full Text Available Disordered regions of proteins often bind to structured domains, mediating interactions within and between proteins. However, it is difficult to identify a priori the short disordered regions involved in binding. We set out to determine if docking such peptide regions to peptide binding domains would assist in these predictions.We assembled a redundancy reduced dataset of SLiM (Short Linear Motif containing proteins from the ELM database. We selected 84 sequences which had an associated PDB structures showing the SLiM bound to a protein receptor, where the SLiM was found within a 50 residue region of the protein sequence which was predicted to be disordered. First, we investigated the Vina docking scores of overlapping tripeptides from the 50 residue SLiM containing disordered regions of the protein sequence to the corresponding PDB domain. We found only weak discrimination of docking scores between peptides involved in binding and adjacent non-binding peptides in this context (AUC 0.58.Next, we trained a bidirectional recurrent neural network (BRNN using as input the protein sequence, predicted secondary structure, Vina docking score and predicted disorder score. The results were very promising (AUC 0.72 showing that multiple sources of information can be combined to produce results which are clearly superior to any single source.We conclude that the Vina docking score alone has only modest power to define the location of a peptide within a larger protein region known to contain it. However, combining this information with other knowledge (using machine learning methods clearly improves the identification of peptide binding regions within a protein sequence. This approach combining docking with machine learning is primarily a predictor of binding to peptide-binding sites, and is not intended as a predictor of specificity of binding to particular receptors.

  17. Protein denaturation and functional properties of Lenient Steam Injection heat treated whey protein concentrate

    DEFF Research Database (Denmark)

    Dickow, Jonatan Ahrens; Kaufmann, Niels; Wiking, Lars

    2012-01-01

    Whey protein concentrate (WPC) was heat treated by use of the novel heat treatment method of Lenient Steam Injection (LSI) to elucidate new functional properties in relation to heat-induced gelation of heat treated WPC. Denaturation was measured by both DSC and FPLC, and the results of the two...... methods were highly correlated. Temperatures of up to 90 °C were applicable using LSI, whereas only 68 °C could be reached by plate heat exchange before coagulation/fouling. Denaturation of whey proteins increased with increasing heat treatment temperature up to a degree of 30–35% denaturation at 90 °C...

  18. Prediction and analysis of beta-turns in proteins by support vector machine.

    Science.gov (United States)

    Pham, Tho Hoan; Satou, Kenji; Ho, Tu Bao

    2003-01-01

    Tight turn has long been recognized as one of the three important features of proteins after the alpha-helix and beta-sheet. Tight turns play an important role in globular proteins from both the structural and functional points of view. More than 90% tight turns are beta-turns. Analysis and prediction of beta-turns in particular and tight turns in general are very useful for the design of new molecules such as drugs, pesticides, and antigens. In this paper, we introduce a support vector machine (SVM) approach to prediction and analysis of beta-turns. We have investigated two aspects of applying SVM to the prediction and analysis of beta-turns. First, we developed a new SVM method, called BTSVM, which predicts beta-turns of a protein from its sequence. The prediction results on the dataset of 426 non-homologous protein chains by sevenfold cross-validation technique showed that our method is superior to the other previous methods. Second, we analyzed how amino acid positions support (or prevent) the formation of beta-turns based on the "multivariable" classification model of a linear SVM. This model is more general than the other ones of previous statistical methods. Our analysis results are more comprehensive and easier to use than previously published analysis results.

  19. High serum uric acid concentration predicts poor survival in patients with breast cancer.

    Science.gov (United States)

    Yue, Cai-Feng; Feng, Pin-Ning; Yao, Zhen-Rong; Yu, Xue-Gao; Lin, Wen-Bin; Qian, Yuan-Min; Guo, Yun-Miao; Li, Lai-Sheng; Liu, Min

    2017-10-01

    Uric acid is a product of purine metabolism. Recently, uric acid has gained much attraction in cancer. In this study, we aim to investigate the clinicopathological and prognostic significance of serum uric acid concentration in breast cancer patients. A total of 443 female patients with histopathologically diagnosed breast cancer were included. After a mean follow-up time of 56months, survival was analysed using the Kaplan-Meier method. To further evaluate the prognostic significance of uric acid concentrations, univariate and multivariate Cox regression analyses were applied. Of the clinicopathological parameters, uric acid concentration was associated with age, body mass index, ER status and PR status. Univariate analysis identified that patients with increased uric acid concentration had a significantly inferior overall survival (HR 2.13, 95% CI 1.15-3.94, p=0.016). In multivariate analysis, we found that high uric acid concentration is an independent prognostic factor predicting death, but insufficient to predict local relapse or distant metastasis. Kaplan-Meier analysis indicated that high uric acid concentration is related to the poor overall survival (p=0.013). High uric acid concentration predicts poor survival in patients with breast cancer, and might serve as a potential marker for appropriate management of breast cancer patients. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Multi-label learning with fuzzy hypergraph regularization for protein subcellular location prediction.

    Science.gov (United States)

    Chen, Jing; Tang, Yuan Yan; Chen, C L Philip; Fang, Bin; Lin, Yuewei; Shang, Zhaowei

    2014-12-01

    Protein subcellular location prediction aims to predict the location where a protein resides within a cell using computational methods. Considering the main limitations of the existing methods, we propose a hierarchical multi-label learning model FHML for both single-location proteins and multi-location proteins. The latent concepts are extracted through feature space decomposition and label space decomposition under the nonnegative data factorization framework. The extracted latent concepts are used as the codebook to indirectly connect the protein features to their annotations. We construct dual fuzzy hypergraphs to capture the intrinsic high-order relations embedded in not only feature space, but also label space. Finally, the subcellular location annotation information is propagated from the labeled proteins to the unlabeled proteins by performing dual fuzzy hypergraph Laplacian regularization. The experimental results on the six protein benchmark datasets demonstrate the superiority of our proposed method by comparing it with the state-of-the-art methods, and illustrate the benefit of exploiting both feature correlations and label correlations.

  1. Characterization and Prediction of Protein Phosphorylation Hotspots in Arabidopsis thaliana.

    Science.gov (United States)

    Christian, Jan-Ole; Braginets, Rostyslav; Schulze, Waltraud X; Walther, Dirk

    2012-01-01

    The regulation of protein function by modulating the surface charge status via sequence-locally enriched phosphorylation sites (P-sites) in so called phosphorylation "hotspots" has gained increased attention in recent years. We set out to identify P-hotspots in the model plant Arabidopsis thaliana. We analyzed the spacing of experimentally detected P-sites within peptide-covered regions along Arabidopsis protein sequences as available from the PhosPhAt database. Confirming earlier reports (Schweiger and Linial, 2010), we found that, indeed, P-sites tend to cluster and that distributions between serine and threonine P-sites to their respected closest next P-site differ significantly from those for tyrosine P-sites. The ability to predict P-hotspots by applying available computational P-site prediction programs that focus on identifying single P-sites was observed to be severely compromised by the inevitable interference of nearby P-sites. We devised a new approach, named HotSPotter, for the prediction of phosphorylation hotspots. HotSPotter is based primarily on local amino acid compositional preferences rather than sequence position-specific motifs and uses support vector machines as the underlying classification engine. HotSPotter correctly identified experimentally determined phosphorylation hotspots in A. thaliana with high accuracy. Applied to the Arabidopsis proteome, HotSPotter-predicted 13,677 candidate P-hotspots in 9,599 proteins corresponding to 7,847 unique genes. Hotspot containing proteins are involved predominantly in signaling processes confirming the surmised modulating role of hotspots in signaling and interaction events. Our study provides new bioinformatics means to identify phosphorylation hotspots and lays the basis for further investigating novel candidate P-hotspots. All phosphorylation hotspot annotations and predictions have been made available as part of the PhosPhAt database at http://phosphat.mpimp-golm.mpg.de.

  2. Predicting the tolerated sequences for proteins and protein interfaces using RosettaBackrub flexible backbone design.

    Directory of Open Access Journals (Sweden)

    Colin A Smith

    Full Text Available Predicting the set of sequences that are tolerated by a protein or protein interface, while maintaining a desired function, is useful for characterizing protein interaction specificity and for computationally designing sequence libraries to engineer proteins with new functions. Here we provide a general method, a detailed set of protocols, and several benchmarks and analyses for estimating tolerated sequences using flexible backbone protein design implemented in the Rosetta molecular modeling software suite. The input to the method is at least one experimentally determined three-dimensional protein structure or high-quality model. The starting structure(s are expanded or refined into a conformational ensemble using Monte Carlo simulations consisting of backrub backbone and side chain moves in Rosetta. The method then uses a combination of simulated annealing and genetic algorithm optimization methods to enrich for low-energy sequences for the individual members of the ensemble. To emphasize certain functional requirements (e.g. forming a binding interface, interactions between and within parts of the structure (e.g. domains can be reweighted in the scoring function. Results from each backbone structure are merged together to create a single estimate for the tolerated sequence space. We provide an extensive description of the protocol and its parameters, all source code, example analysis scripts and three tests applying this method to finding sequences predicted to stabilize proteins or protein interfaces. The generality of this method makes many other applications possible, for example stabilizing interactions with small molecules, DNA, or RNA. Through the use of within-domain reweighting and/or multistate design, it may also be possible to use this method to find sequences that stabilize particular protein conformations or binding interactions over others.

  3. HitPredict version 4: comprehensive reliability scoring of physical protein?protein interactions from more than 100 species

    OpenAIRE

    L?pez, Yosvany; Nakai, Kenta; Patil, Ashwini

    2015-01-01

    HitPredict is a consolidated resource of experimentally identified, physical protein?protein interactions with confidence scores to indicate their reliability. The study of genes and their inter-relationships using methods such as network and pathway analysis requires high quality protein?protein interaction information. Extracting reliable interactions from most of the existing databases is challenging because they either contain only a subset of the available interactions, or a mixture of p...

  4. InterProSurf: a web server for predicting interacting sites on protein surfaces

    Science.gov (United States)

    Negi, Surendra S.; Schein, Catherine H.; Oezguen, Numan; Power, Trevor D.; Braun, Werner

    2009-01-01

    Summary A new web server, InterProSurf, predicts interacting amino acid residues in proteins that are most likely to interact with other proteins, given the 3D structures of subunits of a protein complex. The prediction method is based on solvent accessible surface area of residues in the isolated subunits, a propensity scale for interface residues and a clustering algorithm to identify surface regions with residues of high interface propensities. Here we illustrate the application of InterProSurf to determine which areas of Bacillus anthracis toxins and measles virus hemagglutinin protein interact with their respective cell surface receptors. The computationally predicted regions overlap with those regions previously identified as interface regions by sequence analysis and mutagenesis experiments. PMID:17933856

  5. A web server for analysis, comparison and prediction of protein ligand binding sites.

    Science.gov (United States)

    Singh, Harinder; Srivastava, Hemant Kumar; Raghava, Gajendra P S

    2016-03-25

    One of the major challenges in the field of system biology is to understand the interaction between a wide range of proteins and ligands. In the past, methods have been developed for predicting binding sites in a protein for a limited number of ligands. In order to address this problem, we developed a web server named 'LPIcom' to facilitate users in understanding protein-ligand interaction. Analysis, comparison and prediction modules are available in the "LPIcom' server to predict protein-ligand interacting residues for 824 ligands. Each ligand must have at least 30 protein binding sites in PDB. Analysis module of the server can identify residues preferred in interaction and binding motif for a given ligand; for example residues glycine, lysine and arginine are preferred in ATP binding sites. Comparison module of the server allows comparing protein-binding sites of multiple ligands to understand the similarity between ligands based on their binding site. This module indicates that ATP, ADP and GTP ligands are in the same cluster and thus their binding sites or interacting residues exhibit a high level of similarity. Propensity-based prediction module has been developed for predicting ligand-interacting residues in a protein for more than 800 ligands. In addition, a number of web-based tools have been integrated to facilitate users in creating web logo and two-sample between ligand interacting and non-interacting residues. In summary, this manuscript presents a web-server for analysis of ligand interacting residue. This server is available for public use from URL http://crdd.osdd.net/raghava/lpicom .

  6. Prediction of Carbohydrate-Binding Proteins from Sequences Using Support Vector Machines

    Directory of Open Access Journals (Sweden)

    Seizi Someya

    2010-01-01

    Full Text Available Carbohydrate-binding proteins are proteins that can interact with sugar chains but do not modify them. They are involved in many physiological functions, and we have developed a method for predicting them from their amino acid sequences. Our method is based on support vector machines (SVMs. We first clarified the definition of carbohydrate-binding proteins and then constructed positive and negative datasets with which the SVMs were trained. By applying the leave-one-out test to these datasets, our method delivered 0.92 of the area under the receiver operating characteristic (ROC curve. We also examined two amino acid grouping methods that enable effective learning of sequence patterns and evaluated the performance of these methods. When we applied our method in combination with the homology-based prediction method to the annotated human genome database, H-invDB, we found that the true positive rate of prediction was improved.

  7. Computational methods using weighed-extreme learning machine to predict protein self-interactions with protein evolutionary information.

    Science.gov (United States)

    An, Ji-Yong; Zhang, Lei; Zhou, Yong; Zhao, Yu-Jun; Wang, Da-Fu

    2017-08-18

    Self-interactions Proteins (SIPs) is important for their biological activity owing to the inherent interaction amongst their secondary structures or domains. However, due to the limitations of experimental Self-interactions detection, one major challenge in the study of prediction SIPs is how to exploit computational approaches for SIPs detection based on evolutionary information contained protein sequence. In the work, we presented a novel computational approach named WELM-LAG, which combined the Weighed-Extreme Learning Machine (WELM) classifier with Local Average Group (LAG) to predict SIPs based on protein sequence. The major improvement of our method lies in presenting an effective feature extraction method used to represent candidate Self-interactions proteins by exploring the evolutionary information embedded in PSI-BLAST-constructed position specific scoring matrix (PSSM); and then employing a reliable and robust WELM classifier to carry out classification. In addition, the Principal Component Analysis (PCA) approach is used to reduce the impact of noise. The WELM-LAG method gave very high average accuracies of 92.94 and 96.74% on yeast and human datasets, respectively. Meanwhile, we compared it with the state-of-the-art support vector machine (SVM) classifier and other existing methods on human and yeast datasets, respectively. Comparative results indicated that our approach is very promising and may provide a cost-effective alternative for predicting SIPs. In addition, we developed a freely available web server called WELM-LAG-SIPs to predict SIPs. The web server is available at http://219.219.62.123:8888/WELMLAG/ .

  8. Assessment of nutritional quality of water hyacinth leaf protein concentrate

    Directory of Open Access Journals (Sweden)

    Oyeyemi Adeyemi

    2016-09-01

    Full Text Available This study was embarked upon to convert water hyacinth, an environmental nuisance, to a natural resource for economic development. Water hyacinth leaf protein concentrate (WHLPC was extracted in edible form and determination of its physicochemical characteristics, total alkaloids and phenolic compounds was done. Analysis of proximate composition and amino acid profile of the WHLPC was also done. The level of heavy metals (mg/kg in WHLPC was found to be Cd (0.02 ± 0.001, Cr (0.13 ± 0.001, Pd (0.003 ± 0.001 and Hg (0.02 ± 0.001 while concentrations of Pb, Pt, Sn, Fe, Cu, Zn, Ni and Co were found to be 0.001 ± 0.00. Level of all heavy metals was found to be within safe limit. Proximate analysis revealed that protein in WHLPC accounted for 50% of its nutrients, carbohydrate accounted for 33% of its nutrients while fat, ash and fibre made up the remaining nutrients. Amino acid analysis showed that WHLPC contained 17 out of 20 common amino acids, particularly, Phe (3.67%, Leu (5.01%. Level of total alkaloids and phenolic compounds was 16.6 mg/kg and 6.0 mg/kg respectively. Evidence from this study suggests that WHLPC is a good source of leaf protein concentrate (LPC; it is nutritious and acutely non toxic.

  9. Aggregation in concentrated protein solutions: Insights from rheology, neutron scattering and molecular simulations

    Science.gov (United States)

    Castellanos, Maria Monica

    Aggregation of therapeutic proteins is currently one of the major challenges in the bio-pharmaceutical industry, because aggregates could induce immunogenic responses and compromise the quality of the product. Current scientific efforts, both in industry and academia, are focused on developing rational approaches to screen different drug candidates and predict their stability under different conditions. Moreover, aggregation is promoted in highly concentrated protein solutions, which are typically required for subcutaneous injection. In order to gain further understanding about the mechanisms that lead to aggregation, an approach that combined rheology, neutron scattering, and molecular simulations was undertaken. Two model systems were studied in this work: Bovine Serum Albumin in surfactant-free Phosphate Buffered Saline at pH = 7.4 at concentrations from 11 mg/mL up to ˜519 mg/mL, and a monoclonal antibody in 20 mM Histidine/Histidine Hydrochloride at pH = 6.0 with 60 mg/mL trehalose and 0.2 mg/mL polysorbate-80 at concentrations from 53 mg/mL up to ˜220 mg/mL. The antibody used here has three mutations in the CH2 domain, which result in lower stability upon incubation at 40 °C with respect to the wild-type protein, based on size-exclusion chromatography assays. This temperature is below 49 °C, where unfolding of the least stable, CH2 domain occurs, according to differential scanning calorimetry. This dissertation focuses on identifying the role of aggregation on the viscosity of protein solutions. The protein solutions of this work show an increase in the low shear viscosity in the absence of surfactants, because proteins adsorb at the air/water interface forming a viscoelastic film that affects the measured rheology. Stable surfactant-laden protein solutions behave as simple Newtonian fluids. However, the surfactant-laden antibody solution also shows an increase in the low shear viscosity from bulk aggregation, after prolonged incubation at 40 °C. Small

  10. Protein secondary structure prediction for a single-sequence using hidden semi-Markov models

    Directory of Open Access Journals (Sweden)

    Borodovsky Mark

    2006-03-01

    Full Text Available Abstract Background The accuracy of protein secondary structure prediction has been improving steadily towards the 88% estimated theoretical limit. There are two types of prediction algorithms: Single-sequence prediction algorithms imply that information about other (homologous proteins is not available, while algorithms of the second type imply that information about homologous proteins is available, and use it intensively. The single-sequence algorithms could make an important contribution to studies of proteins with no detected homologs, however the accuracy of protein secondary structure prediction from a single-sequence is not as high as when the additional evolutionary information is present. Results In this paper, we further refine and extend the hidden semi-Markov model (HSMM initially considered in the BSPSS algorithm. We introduce an improved residue dependency model by considering the patterns of statistically significant amino acid correlation at structural segment borders. We also derive models that specialize on different sections of the dependency structure and incorporate them into HSMM. In addition, we implement an iterative training method to refine estimates of HSMM parameters. The three-state-per-residue accuracy and other accuracy measures of the new method, IPSSP, are shown to be comparable or better than ones for BSPSS as well as for PSIPRED, tested under the single-sequence condition. Conclusions We have shown that new dependency models and training methods bring further improvements to single-sequence protein secondary structure prediction. The results are obtained under cross-validation conditions using a dataset with no pair of sequences having significant sequence similarity. As new sequences are added to the database it is possible to augment the dependency structure and obtain even higher accuracy. Current and future advances should contribute to the improvement of function prediction for orphan proteins inscrutable

  11. The composition and functional properties of whey protein concentrates produced from buttermilk are comparable with those of whey protein concentrates produced from skimmed milk.

    Science.gov (United States)

    Svanborg, Sigrid; Johansen, Anne-Grethe; Abrahamsen, Roger K; Skeie, Siv B

    2015-09-01

    The demand for whey protein is increasing in the food industry. Traditionally, whey protein concentrates (WPC) and isolates are produced from cheese whey. At present, microfiltration (MF) enables the utilization of whey from skim milk (SM) through milk protein fractionation. This study demonstrates that buttermilk (BM) can be a potential source for the production of a WPC with a comparable composition and functional properties to a WPC obtained by MF of SM. Through the production of WPC powder and a casein- and phospholipid (PL)-rich fraction by the MF of BM, sweet BM may be used in a more optimal and economical way. Sweet cream BM from industrial churning was skimmed before MF with 0.2-µm ceramic membranes at 55 to 58°C. The fractionations of BM and SM were performed under the same conditions using the same process, and the whey protein fractions from BM and SM were concentrated by ultrafiltration and diafiltration. The ultrafiltration and diafiltration was performed at 50°C using pasteurized tap water and a membrane with a 20-kDa cut-off to retain as little lactose as possible in the final WPC powders. The ultrafiltrates were subsequently spray dried, and their functional properties and chemical compositions were compared. The amounts of whey protein and PL in the WPC powder from BM (BMWPC) were comparable to the amounts found in the WPC from SM (SMWPC); however, the composition of the PL classes differed. The BMWPC contained less total protein, casein, and lactose compared with SMWPC, as well as higher contents of fat and citric acid. No difference in protein solubility was observed at pH values of 4.6 and 7.0, and the overrun was the same for BMWPC and SMWPC; however, the BMWPC made less stable foam than SMWPC. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  12. Predicting and measurement of pH of seawater reverse osmosis concentrates

    KAUST Repository

    Waly, Tarek

    2011-10-01

    The pH of seawater reverse osmosis plants (SWRO) is the most influential parameter in determining the degree of supersaturation of CaCO3 in the concentrate stream. For this, the results of pH measurements of the concentrate of a seawater reverse osmosis pilot plant were compared with pH calculations based on the CO2-HCO3 --CO3 2- system equilibrium equations. Results were compared with two commercial software programs from membrane suppliers and also the software package Phreeqc. Results suggest that the real concentrate pH is lower than that of the feed and that none of the used programs was able to predict correctly real pH values. In addition, the effect of incorporating the acidity constant calculated for NaCl medium or seawater medium showed a great influence on the concentrate pH determination. The HCO3 - and CO3 2- equilibrium equation using acidity constants developed for seawater medium was the only method able to predict correctly the concentrate pH. The outcome of this study indicated that the saturation level of the concentrate was lower than previously anticipated. This was confirmed by shutting down the acid and the antiscalants dosing without any signs of scaling over a period of 12 months. © 2011 Elsevier B.V.

  13. Development of system on predicting uranium concentration from pregnant solution

    International Nuclear Information System (INIS)

    Yi Weiping

    2004-01-01

    Uranium concentration from pregnant solution is primary index of process for in-situ leaching of uranium, and the suitable method with which to predicate this index and effective means to solve it with were continuously studied hard. SPUC-system on predicting uranium concentration based on GM model of gray system theory is developed, and the mathematical model, constitution, function and theory foundation of this system are introduced. (authors)

  14. Sequence-based feature prediction and annotation of proteins

    DEFF Research Database (Denmark)

    Juncker, Agnieszka; Jensen, Lars J.; Pierleoni, Andrea

    2009-01-01

    A recent trend in computational methods for annotation of protein function is that many prediction tools are combined in complex workflows and pipelines to facilitate the analysis of feature combinations, for example, the entire repertoire of kinase-binding motifs in the human proteome....

  15. Hybrid ATDL-gamma distribution model for predicting area source acid gas concentrations

    Energy Technology Data Exchange (ETDEWEB)

    Jakeman, A J; Taylor, J A

    1985-01-01

    An air quality model is developed to predict the distribution of concentrations of acid gas in an urban airshed. The model is hybrid in character, combining reliable features of a deterministic ATDL-based model with statistical distributional approaches. The gamma distribution was identified from a range of distributional models as the best model. The paper shows that the assumptions of a previous hybrid model may be relaxed and presents a methodology for characterizing the uncertainty associated with model predictions. Results are demonstrated for the 98-percentile predictions of 24-h average data over annual periods at six monitoring sites. This percentile relates to the World Health Organization goal for acid gas concentrations.

  16. Predicting Ligand Binding Sites on Protein Surfaces by 3-Dimensional Probability Density Distributions of Interacting Atoms

    Science.gov (United States)

    Jian, Jhih-Wei; Elumalai, Pavadai; Pitti, Thejkiran; Wu, Chih Yuan; Tsai, Keng-Chang; Chang, Jeng-Yih; Peng, Hung-Pin; Yang, An-Suei

    2016-01-01

    Predicting ligand binding sites (LBSs) on protein structures, which are obtained either from experimental or computational methods, is a useful first step in functional annotation or structure-based drug design for the protein structures. In this work, the structure-based machine learning algorithm ISMBLab-LIG was developed to predict LBSs on protein surfaces with input attributes derived from the three-dimensional probability density maps of interacting atoms, which were reconstructed on the query protein surfaces and were relatively insensitive to local conformational variations of the tentative ligand binding sites. The prediction accuracy of the ISMBLab-LIG predictors is comparable to that of the best LBS predictors benchmarked on several well-established testing datasets. More importantly, the ISMBLab-LIG algorithm has substantial tolerance to the prediction uncertainties of computationally derived protein structure models. As such, the method is particularly useful for predicting LBSs not only on experimental protein structures without known LBS templates in the database but also on computationally predicted model protein structures with structural uncertainties in the tentative ligand binding sites. PMID:27513851

  17. Prediction of indoor radon concentration based on residence location and construction

    International Nuclear Information System (INIS)

    Maekelaeinen, I.; Voutilainen, A.; Castren, O.

    1992-01-01

    We have constructed a model for assessing indoor radon concentrations in houses where measurements cannot be performed. It has been used in an epidemiological study and to determine the radon potential of new building sites. The model is based on data from about 10,000 buildings. Integrated radon measurements were made during the cold season in all the houses; their geographic coordinates were also known. The 2-mo measurement results were corrected to annual average concentrations. Construction data were collected from questionnaires completed by residents; geological data were determined from geological maps. Data were classified according to geographical, geological, and construction factors. In order to describe different radon production levels, the country was divided into four zones. We assumed that the factors were multiplicative, and a linear concentration-prediction model was used. The most significant factor in determining radon concentration was the geographical region, followed by soil type, year of construction, and type of foundation. The predicted indoor radon concentrations given by the model varied from 50 to 440 Bq m -3 . The lower figure represents a house with a basement, built in the 1950s on clay soil, in the region with the lowest radon concentration levels. The higher value represents a house with a concrete slab in contact with the ground, built in the 1980s, on gravel, in the region with the highest average radon concentration

  18. Evaluation of five commercially available assays and measurement of serum total protein concentration via refractometry for the diagnosis of failure of passive transfer of immunity in foals.

    Science.gov (United States)

    Davis, Rachel; Giguère, Steeve

    2005-11-15

    To determine and compare sensitivity, specificity, accuracy, and predictive values of measurement of serum total protein concentration by refractometry as well as 5 commercially available kits for the diagnosis of failure of passive transfer (FPT) of immunity in foals. Prospective study. 65 foals with various medical problems and 35 clinically normal foals. IgG concentration in serum was assessed by use of zinc sulfate turbidity (assay C), glutaraldehyde coagulation (assay D), 2 semiquantitative immunoassays (assays F and G), and a quantitative immunoassay (assay H). Serum total protein concentration was assessed by refractometry. Radial immunodiffusion (assays A and B) was used as the reference method. For detection of IgG or = 6.0 g/dL indicated adequate IgG concentrations. Most assays were adequate as initial screening tests. However, their use as a definitive test would result in unnecessary treatment of foals with adequate IgG concentrations.

  19. A Deep Learning Network Approach to ab initio Protein Secondary Structure Prediction.

    Science.gov (United States)

    Spencer, Matt; Eickholt, Jesse; Jianlin Cheng

    2015-01-01

    Ab initio protein secondary structure (SS) predictions are utilized to generate tertiary structure predictions, which are increasingly demanded due to the rapid discovery of proteins. Although recent developments have slightly exceeded previous methods of SS prediction, accuracy has stagnated around 80 percent and many wonder if prediction cannot be advanced beyond this ceiling. Disciplines that have traditionally employed neural networks are experimenting with novel deep learning techniques in attempts to stimulate progress. Since neural networks have historically played an important role in SS prediction, we wanted to determine whether deep learning could contribute to the advancement of this field as well. We developed an SS predictor that makes use of the position-specific scoring matrix generated by PSI-BLAST and deep learning network architectures, which we call DNSS. Graphical processing units and CUDA software optimize the deep network architecture and efficiently train the deep networks. Optimal parameters for the training process were determined, and a workflow comprising three separately trained deep networks was constructed in order to make refined predictions. This deep learning network approach was used to predict SS for a fully independent test dataset of 198 proteins, achieving a Q3 accuracy of 80.7 percent and a Sov accuracy of 74.2 percent.

  20. Technology development of protein rich concentrates for nutrition in extreme conditions using soybean and meat by-products.

    Science.gov (United States)

    Kalenik, Tatiana K; Costa, Rui; Motkina, Elena V; Kosenko, Tamara A; Skripko, Olga V; Kadnikova, Irina A

    2017-01-01

    There is a need to develop new foods for participants of expeditions in extreme conditions, which must be self-sufficient. These foods should be light to carry, with a long shelf life, tasty and with  high nutrient density. Currently, protein sources are limited mainly to dried and canned meat. In this work, a protein-rich dried concentrate suitable for extreme expeditions was developed using soya, tomato, milk whey and meat by-products. Protein concentrates were developed using minced beef liver and heart, dehydrated and mixed with a soya protein-lycopene coagulate (SPLC) obtained from a solution prepared with germi- nated soybeans and mixed with tomato paste in milk whey, and finally dried. The technological parameters of pressing SPLC and of drying the protein concentrate were optimized using response surface methodology. The optimized technological parameters to prepare the protein concentrates were obtained, with 70:30 being the ideal ratio of minced meat to SPLC. The developed protein concentrates are characterized by a high calorific value of 376 kcal/100 g of dry product, with a water content of 98 g·kg-1, and 641-644 g·kg-1 of proteins. The essential amino acid indices are 100, with minimum essential amino acid content constitut- ing 100-128% of the FAO standard, depending on the raw meat used. These concentrates are also rich in micronutrients such as β-carotene and vitamin C. Analysis of the nutrient content showed that these non-perishable concentrates present a high nutritional value and complement other widely available vegetable concentrates to prepare a two-course meal. The soups and porridges prepared with these concentrates can be classified as functional foods, and comply with army requirements applicable to food products for extreme conditions.

  1. Prediction of membrane transport proteins and their substrate specificities using primary sequence information.

    Directory of Open Access Journals (Sweden)

    Nitish K Mishra

    Full Text Available Membrane transport proteins (transporters move hydrophilic substrates across hydrophobic membranes and play vital roles in most cellular functions. Transporters represent a diverse group of proteins that differ in topology, energy coupling mechanism, and substrate specificity as well as sequence similarity. Among the functional annotations of transporters, information about their transporting substrates is especially important. The experimental identification and characterization of transporters is currently costly and time-consuming. The development of robust bioinformatics-based methods for the prediction of membrane transport proteins and their substrate specificities is therefore an important and urgent task.Support vector machine (SVM-based computational models, which comprehensively utilize integrative protein sequence features such as amino acid composition, dipeptide composition, physico-chemical composition, biochemical composition, and position-specific scoring matrices (PSSM, were developed to predict the substrate specificity of seven transporter classes: amino acid, anion, cation, electron, protein/mRNA, sugar, and other transporters. An additional model to differentiate transporters from non-transporters was also developed. Among the developed models, the biochemical composition and PSSM hybrid model outperformed other models and achieved an overall average prediction accuracy of 76.69% with a Mathews correlation coefficient (MCC of 0.49 and a receiver operating characteristic area under the curve (AUC of 0.833 on our main dataset. This model also achieved an overall average prediction accuracy of 78.88% and MCC of 0.41 on an independent dataset.Our analyses suggest that evolutionary information (i.e., the PSSM and the AAIndex are key features for the substrate specificity prediction of transport proteins. In comparison, similarity-based methods such as BLAST, PSI-BLAST, and hidden Markov models do not provide accurate predictions

  2. Rationally designed synthetic protein hydrogels with predictable mechanical properties.

    Science.gov (United States)

    Wu, Junhua; Li, Pengfei; Dong, Chenling; Jiang, Heting; Bin Xue; Gao, Xiang; Qin, Meng; Wang, Wei; Bin Chen; Cao, Yi

    2018-02-12

    Designing synthetic protein hydrogels with tailored mechanical properties similar to naturally occurring tissues is an eternal pursuit in tissue engineering and stem cell and cancer research. However, it remains challenging to correlate the mechanical properties of protein hydrogels with the nanomechanics of individual building blocks. Here we use single-molecule force spectroscopy, protein engineering and theoretical modeling to prove that the mechanical properties of protein hydrogels are predictable based on the mechanical hierarchy of the cross-linkers and the load-bearing modules at the molecular level. These findings provide a framework for rationally designing protein hydrogels with independently tunable elasticity, extensibility, toughness and self-healing. Using this principle, we demonstrate the engineering of self-healable muscle-mimicking hydrogels that can significantly dissipate energy through protein unfolding. We expect that this principle can be generalized for the construction of protein hydrogels with customized mechanical properties for biomedical applications.

  3. NetTurnP--neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features.

    Directory of Open Access Journals (Sweden)

    Bent Petersen

    Full Text Available UNLABELLED: β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. CONCLUSION: The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.

  4. NetTurnP--neural network prediction of beta-turns by use of evolutionary information and predicted protein sequence features.

    Science.gov (United States)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-11-30

    β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences.

  5. Predictive and comparative analysis of Ebolavirus proteins

    Science.gov (United States)

    Cong, Qian; Pei, Jimin; Grishin, Nick V

    2015-01-01

    Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus. PMID:26158395

  6. Predictive and comparative analysis of Ebolavirus proteins.

    Science.gov (United States)

    Cong, Qian; Pei, Jimin; Grishin, Nick V

    2015-01-01

    Ebolavirus is the pathogen for Ebola Hemorrhagic Fever (EHF). This disease exhibits a high fatality rate and has recently reached a historically epidemic proportion in West Africa. Out of the 5 known Ebolavirus species, only Reston ebolavirus has lost human pathogenicity, while retaining the ability to cause EHF in long-tailed macaque. Significant efforts have been spent to determine the three-dimensional (3D) structures of Ebolavirus proteins, to study their interaction with host proteins, and to identify the functional motifs in these viral proteins. Here, in light of these experimental results, we apply computational analysis to predict the 3D structures and functional sites for Ebolavirus protein domains with unknown structure, including a zinc-finger domain of VP30, the RNA-dependent RNA polymerase catalytic domain and a methyltransferase domain of protein L. In addition, we compare sequences of proteins that interact with Ebolavirus proteins from RESTV-resistant primates with those from RESTV-susceptible monkeys. The host proteins that interact with GP and VP35 show an elevated level of sequence divergence between the RESTV-resistant and RESTV-susceptible species, suggesting that they may be responsible for host specificity. Meanwhile, we detect variable positions in protein sequences that are likely associated with the loss of human pathogenicity in RESTV, map them onto the 3D structures and compare their positions to known functional sites. VP35 and VP30 are significantly enriched in these potential pathogenicity determinants and the clustering of such positions on the surfaces of VP35 and GP suggests possible uncharacterized interaction sites with host proteins that contribute to the virulence of Ebolavirus.

  7. A rapid method of predicting radiocaesium concentrations in sheep from activity levels in faeces

    International Nuclear Information System (INIS)

    McGee, E.J.; Synnott, H.J.; Colgan, P.A.; Keatinge, M.J.

    1994-01-01

    The use of faecal samples taken from sheep flocks as a means of predicting radiocaesium concentrations in live animals was studied. Radiocaesium levels in 1726 sheep from 29 flocks were measured using in vivo techniques and a single faecal sample taken from each flock was also analysed. A highly significant relationship was found to exist between mean flock activity and activity in the corresponding faecal samples. Least-square regression yielded a simple model for predicting mean flock radiocaesium concentrations based on activity levels in faecal samples. A similar analysis of flock maxima and activity levels in faeces provides an alternative model for predicting the expected within-flock maximum radiocaesium concentration. (Author)

  8. Concentration of Proteins and Protein Fractions in Blood Plasma of Chickens Hatched from Eggs Irradiated with Low Level Gamma Rays

    International Nuclear Information System (INIS)

    Kraljevic, P.; Vilic, M.; Simpraga, M.; Matisic, D.; Miljanic, S.

    2011-01-01

    In literature there are many results which have shown that low dose radiation can stimulate many physiological processes of living organism. In our earlier paper it was shown that low dose of gamma radiation has a stimulative effect upon metabolic process in chickens hatched from eggs irradiated before incubation. This was proved by increase of body weight gain and body weight, as well as by increase of two enzymes activities in blood plasma (aspartate aminotransferase and alanine aminotransferase) which play an important role in protein metabolism. Therefore, an attempt was made to determine the effect of eggs irradiation by low dose gamma rays upon concentration of total proteins and protein fractions in the blood plasma of chickens hatched from irradiated eggs. The eggs of heavy breed chickens were irradiated with a dose of 0.15 Gy gamma radiation (60Co) before incubation. Along with the chickens which were hatched from irradiated eggs, there was a control group of chickens hatched from nonirradiated eggs. All other conditions were the same for both groups of chickens. Blood samples were taken from the right jugular vein on the 1 s t and 3 r d day, or from the wing vein on days 5 and 7 after hatching. The total proteins concentration in the blood plasma was determined by the biuret method using Boehringer Mannheim GmbH optimized kits. The protein fractions (albumin, α 1 -globulin, α 2 -globulin, β- and γ-globulins) were estimated electrophoretically on Cellogel strips. The total proteins concentration was significantly decreased in blood plasma of chickens hatched from irradiated eggs on days 3 (P t h day (P 2 -globulin was decreased on days 1 (P t h day of life. Obtained results indicate that low dose of gamma radiation has mostly inhibitory effect upon concentration of total proteins and protein fractions in the blood plasma of chickens hatched from irradiated eggs before incubation. (author)

  9. Development and evaluation of a regression-based model to predict cesium-137 concentration ratios for saltwater fish

    International Nuclear Information System (INIS)

    Pinder, John E.; Rowan, David J.; Smith, Jim T.

    2016-01-01

    Data from published studies and World Wide Web sources were combined to develop a regression model to predict "1"3"7Cs concentration ratios for saltwater fish. Predictions were developed from 1) numeric trophic levels computed primarily from random resampling of known food items and 2) K concentrations in the saltwater for 65 samplings from 41 different species from both the Atlantic and Pacific Oceans. A number of different models were initially developed and evaluated for accuracy which was assessed as the ratios of independently measured concentration ratios to those predicted by the model. In contrast to freshwater systems, were K concentrations are highly variable and are an important factor in affecting fish concentration ratios, the less variable K concentrations in saltwater were relatively unimportant in affecting concentration ratios. As a result, the simplest model, which used only trophic level as a predictor, had comparable accuracies to more complex models that also included K concentrations. A test of model accuracy involving comparisons of 56 published concentration ratios from 51 species of marine fish to those predicted by the model indicated that 52 of the predicted concentration ratios were within a factor of 2 of the observed concentration ratios. - Highlights: • We developed a model to predict concentration ratios (C_r) for saltwater fish. • The model requires only a single input variable to predict C_r. • That variable is a mean numeric trophic level available at (fishbase.org). • The K concentrations in seawater were not an important predictor variable. • The median-to observed ratio for 56 independently measured C_r was 0.83.

  10. C-Reactive Protein, Fibrinogen, and Cardiovascular Disease Prediction

    NARCIS (Netherlands)

    Kaptoge, Stephen; Di Angelantonio, Emanuele; Pennells, Lisa; Wood, Angela M.; White, Ian R.; Gao, Pei; Walker, Matthew; Thompson, Alexander; Sarwar, Nadeem; Caslake, Muriel; Butterworth, Adam S.; Amouyel, Philippe; Assmann, Gerd; Bakker, Stephan J. L.; Barr, Elizabeth L. M.; Barrett-Connor, Elizabeth; Benjamin, Emelia J.; Bjorkelund, Cecilia; Brenner, Hermann; Brunner, Eric; Clarke, Robert; Cooper, Jackie A.; Cremer, Peter; Cushman, Mary; Dagenais, Gilles R.; D'Agostino, Ralph B.; Dankner, Rachel; Davey-Smith, George; Deeg, Dorly; Dekker, Jacqueline M.; Engstrom, Gunnar; Folsom, Aaron R.; Fowkes, F. Gerry R.; Gallacher, John; Gaziano, J. Michael; Giampaoli, Simona; Gillum, Richard F.; Hofman, Albert; Howard, Barbara V.; Ingelsson, Erik; Iso, Hiroyasu; Jorgensen, Torben; Kiechl, Stefan; Kitamura, Akihiko; Kiyohara, Yutaka; Koenig, Wolfgang; Kromhout, Daan; Kuller, Lewis H.; Lawlor, Debbie A.; Meade, Tom W.

    2012-01-01

    Background There is debate about the value of assessing levels of C-reactive protein (CRP) and other biomarkers of inflammation for the prediction of first cardiovascular events. Methods We analyzed data from 52 prospective studies that included 246,669 participants without a history of

  11. Prediction of thermodynamic instabilities of protein solutions from simple protein–protein interactions

    International Nuclear Information System (INIS)

    D’Agostino, Tommaso; Solana, José Ramón; Emanuele, Antonio

    2013-01-01

    Highlights: ► We propose a model of effective protein–protein interaction embedding solvent effects. ► A previous square-well model is enhanced by giving to the interaction a free energy character. ► The temperature dependence of the interaction is due to entropic effects of the solvent. ► The validity of the original SW model is extended to entropy driven phase transitions. ► We get good fits for lysozyme and haemoglobin spinodal data taken from literature. - Abstract: Statistical thermodynamics of protein solutions is often studied in terms of simple, microscopic models of particles interacting via pairwise potentials. Such modelling can reproduce the short range structure of protein solutions at equilibrium and predict thermodynamics instabilities of these systems. We introduce a square well model of effective protein–protein interaction that embeds the solvent’s action. We modify an existing model [45] by considering a well depth having an explicit dependence on temperature, i.e. an explicit free energy character, thus encompassing the statistically relevant configurations of solvent molecules around proteins. We choose protein solutions exhibiting demixing upon temperature decrease (lysozyme, enthalpy driven) and upon temperature increase (haemoglobin, entropy driven). We obtain satisfactory fits of spinodal curves for both the two proteins without adding any mean field term, thus extending the validity of the original model. Our results underline the solvent role in modulating or stretching the interaction potential

  12. USING TURBIDITY DATA TO PREDICT SUSPENDED SEDIMENT CONCENTRATIONS: POSSIBILITIES, LIMITATIONS, AND PITFALLS

    Science.gov (United States)

    This talk will look at the relationships between turbidity and suspended sediment concentrations in a variety of geographic areas, geomorphic river types, and river sizes; and attempt to give guidance on using existing turbidity data to predict suspended sediment concentrations.

  13. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences.

    Science.gov (United States)

    Wang, Yanbin; You, Zhuhong; Li, Xiao; Chen, Xing; Jiang, Tonghai; Zhang, Jingting

    2017-05-11

    Protein-protein interactions (PPIs) are essential for most living organisms' process. Thus, detecting PPIs is extremely important to understand the molecular mechanisms of biological systems. Although many PPIs data have been generated by high-throughput technologies for a variety of organisms, the whole interatom is still far from complete. In addition, the high-throughput technologies for detecting PPIs has some unavoidable defects, including time consumption, high cost, and high error rate. In recent years, with the development of machine learning, computational methods have been broadly used to predict PPIs, and can achieve good prediction rate. In this paper, we present here PCVMZM, a computational method based on a Probabilistic Classification Vector Machines (PCVM) model and Zernike moments (ZM) descriptor for predicting the PPIs from protein amino acids sequences. Specifically, a Zernike moments (ZM) descriptor is used to extract protein evolutionary information from Position-Specific Scoring Matrix (PSSM) generated by Position-Specific Iterated Basic Local Alignment Search Tool (PSI-BLAST). Then, PCVM classifier is used to infer the interactions among protein. When performed on PPIs datasets of Yeast and H. Pylori , the proposed method can achieve the average prediction accuracy of 94.48% and 91.25%, respectively. In order to further evaluate the performance of the proposed method, the state-of-the-art support vector machines (SVM) classifier is used and compares with the PCVM model. Experimental results on the Yeast dataset show that the performance of PCVM classifier is better than that of SVM classifier. The experimental results indicate that our proposed method is robust, powerful and feasible, which can be used as a helpful tool for proteomics research.

  14. Combining neural networks for protein secondary structure prediction

    DEFF Research Database (Denmark)

    Riis, Søren Kamaric

    1995-01-01

    In this paper structured neural networks are applied to the problem of predicting the secondary structure of proteins. A hierarchical approach is used where specialized neural networks are designed for each structural class and then combined using another neural network. The submodels are designed...... by using a priori knowledge of the mapping between protein building blocks and the secondary structure and by using weight sharing. Since none of the individual networks have more than 600 adjustable weights over-fitting is avoided. When ensembles of specialized experts are combined the performance...

  15. Photonic reagents for concentration measurement of flu-orescent proteins with overlapping spectra

    Science.gov (United States)

    Goun, Alexei; Bondar, Denys I.; Er, Ali O.; Quine, Zachary; Rabitz, Herschel A.

    2016-05-01

    By exploiting photonic reagents (i.e., coherent control by shaped laser pulses), we employ Optimal Dynamic Discrimination (ODD) as a novel means for quantitatively characterizing mixtures of fluorescent proteins with a large spectral overlap. To illustrate ODD, we simultaneously measured concentrations of in vitro mixtures of Enhanced Blue Fluorescent Protein (EBFP) and Enhanced Cyan Fluorescent Protein (ECFP). Building on this foundational study, the ultimate goal is to exploit the capabilities of ODD for parallel monitoring of genetic and protein circuits by suppressing the spectral cross-talk among multiple fluorescent reporters.

  16. Association between feline immunodeficiency virus (FIV) plasma viral RNA load, concentration of acute phase proteins and disease severity.

    Science.gov (United States)

    Kann, Rebecca K C; Seddon, Jennifer M; Kyaw-Tanner, Myat T; Henning, Joerg; Meers, Joanne

    2014-08-01

    Veterinarians have few tools to predict the rate of disease progression in FIV-infected cats. In contrast, in HIV infection, plasma viral RNA load and acute phase protein concentrations are commonly used as predictors of disease progression. This study evaluated these predictors in cats naturally infected with FIV. In older cats (>5 years), log10 FIV RNA load was higher in the terminal stages of disease compared to the asymptomatic stage. There was a significant association between log10 FIV RNA load and both log10 serum amyloid A concentration and age in unwell FIV-infected cats. This study suggests that viral RNA load and serum amyloid A warrant further investigation as predictors of disease status and prognosis in FIV-infected cats. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Development of Indoor Air Pollution Concentration Prediction by Geospatial Analysis

    Directory of Open Access Journals (Sweden)

    Adyati Pradini Yudison

    2015-07-01

    Full Text Available People living near busy roads are potentially exposed to traffic-induced air pollutants. The pollutants may intrude into the indoor environment, causing health risks to the occupants. Prediction of pollutant exposure therefore is of great importance for impact assessment and policy making related to environmentally sustainable transport. This study involved the selection of spatial interpolation methods that can be used for prediction of indoor air quality based on outdoor pollutant mapping without indoor measurement data. The research was undertaken in the densely populated area of Karees, Bandung, Indonesia. The air pollutant NO2 was monitored in this area as a preliminary study. Nitrogen dioxide concentrations were measured by passive diffusion tube. Outdoor NO2 concentrations were measured at 94 locations, consisting of 30 roadside and 64 outdoor locations. Residential indoor NO2 concentrations were measured at 64 locations. To obtain a spatially continuous air quality map, the spatial interpolation methods of inverse distance weighting (IDW and Kriging were applied. Selection of interpolation method was done based on the smallest root mean square error (RMSE and standard deviation (SD. The most appropriate interpolation method for outdoor NO2 concentration mapping was Kriging with an SD value of 5.45 µg/m3 and an RMSE value of 5.45 µg/m3, while for indoor NO2 concentration mapping the IDW was best fitted with an RMSE value of 5.92 µg/m3 and an SD value of 5.92 µg/m3.

  18. Prediction of residue-residue contact matrix for protein-protein interaction with Fisher score features and deep learning.

    Science.gov (United States)

    Du, Tianchuan; Liao, Li; Wu, Cathy H; Sun, Bilin

    2016-11-01

    Protein-protein interactions play essential roles in many biological processes. Acquiring knowledge of the residue-residue contact information of two interacting proteins is not only helpful in annotating functions for proteins, but also critical for structure-based drug design. The prediction of the protein residue-residue contact matrix of the interfacial regions is challenging. In this work, we introduced deep learning techniques (specifically, stacked autoencoders) to build deep neural network models to tackled the residue-residue contact prediction problem. In tandem with interaction profile Hidden Markov Models, which was used first to extract Fisher score features from protein sequences, stacked autoencoders were deployed to extract and learn hidden abstract features. The deep learning model showed significant improvement over the traditional machine learning model, Support Vector Machines (SVM), with the overall accuracy increased by 15% from 65.40% to 80.82%. We showed that the stacked autoencoders could extract novel features, which can be utilized by deep neural networks and other classifiers to enhance learning, out of the Fisher score features. It is further shown that deep neural networks have significant advantages over SVM in making use of the newly extracted features. Copyright © 2016. Published by Elsevier Inc.

  19. A Rapid Method for Determining the Concentration of Recombinant Protein Secreted from Pichia pastoris

    International Nuclear Information System (INIS)

    Sun, L W; Zhao, Y; Jiang, R; Song, Y; Feng, H; Feng, K; Niu, L P; Qi, C

    2011-01-01

    Pichia secretive expression system is one of powerful eukaryotic expression systems in genetic engineering, which is especially suitable for industrial utilization. Because of the low concentration of the target protein in initial experiment, the methods and conditions for expression of the target protein should be optimized according to the protein yield repetitively. It is necessary to set up a rapid, simple and convenient analysis method for protein expression levels instead of the generally used method such as ultrafiltration, purification, dialysis, lyophilization and so on. In this paper, acetone precipitation method was chosen to concentrate the recombinant protein firstly after comparing with four different protein precipitation methods systematically, and then the protein was analyzed by SDS-Polyacrylamide Gel Electrophoresis. The recombinant protein was determined with the feature of protein band by the Automated Image Capture and 1-D Analysis Software directly. With this method, the optimized expression conditions of basic fibroblast growth factor secreted from pichia were obtained, which is as the same as using traditional methods. Hence, a convenient tool to determine the optimized conditions for the expression of recombinant proteins in Pichia was established.

  20. Replacement of fish meal by protein soybean concentrate in practical diets for Pacific white shrimp

    Directory of Open Access Journals (Sweden)

    Mariana Soares

    2015-10-01

    Full Text Available ABSTRACTThe objective of this work was to evaluate the performance of Litopenaeus vannameifed different levels (0, 25, 50, 75, and 100% of soybean protein concentrate (63.07% crude protein, CP to replace fish meal-by product (61.24% CP. The study was conducted in clear water in fifteen 800 L tanks equipped with aeration systems, constant heating (29 ºC, and daily water exchange (30%. Each tank was stocked with 37.5 shrimp/m3 (3.03±0.14 g. Feed was supplied four times a day, at 6% of the initial biomass, adjusted daily. After 42 days, the weight gain of shrimp fed diets with 0 and 25% protein replacement was higher than that observed in shrimp fed 100% replacement, and there were no differences among those fed the other diets. Feed efficiency and survival did not differ among shrimp fed different protein replacements. There was a negative linear trend for growth parameters and feed intake as protein replacement with soybean protein concentrate increased. Fish meal by-product can be replaced by up to 75% of soybean protein concentrate, with no harm to the growth of Pacific white shrimp.

  1. Prediction of interactions between viral and host proteins using supervised machine learning methods.

    Directory of Open Access Journals (Sweden)

    Ranjan Kumar Barman

    Full Text Available BACKGROUND: Viral-host protein-protein interaction plays a vital role in pathogenesis, since it defines viral infection of the host and regulation of the host proteins. Identification of key viral-host protein-protein interactions (PPIs has great implication for therapeutics. METHODS: In this study, a systematic attempt has been made to predict viral-host PPIs by integrating different features, including domain-domain association, network topology and sequence information using viral-host PPIs from VirusMINT. The three well-known supervised machine learning methods, such as SVM, Naïve Bayes and Random Forest, which are commonly used in the prediction of PPIs, were employed to evaluate the performance measure based on five-fold cross validation techniques. RESULTS: Out of 44 descriptors, best features were found to be domain-domain association and methionine, serine and valine amino acid composition of viral proteins. In this study, SVM-based method achieved better sensitivity of 67% over Naïve Bayes (37.49% and Random Forest (55.66%. However the specificity of Naïve Bayes was the highest (99.52% as compared with SVM (74% and Random Forest (89.08%. Overall, the SVM and Random Forest achieved accuracy of 71% and 72.41%, respectively. The proposed SVM-based method was evaluated on blind dataset and attained a sensitivity of 64%, specificity of 83%, and accuracy of 74%. In addition, unknown potential targets of hepatitis B virus-human and hepatitis E virus-human PPIs have been predicted through proposed SVM model and validated by gene ontology enrichment analysis. Our proposed model shows that, hepatitis B virus "C protein" binds to membrane docking protein, while "X protein" and "P protein" interacts with cell-killing and metabolic process proteins, respectively. CONCLUSION: The proposed method can predict large scale interspecies viral-human PPIs. The nature and function of unknown viral proteins (HBV and HEV, interacting partners of host

  2. EFFECTS OF PROTEIN-XANTHOPHYLL (PX CONCENTRATE OF ALFALFA ADDITIVE TO CRUDE PROTEIN-REDUCED DIETS ON NITROGEN EXCRETION, GROWTH PERFORMANCE AND MEAT QUALITY OF PIGS

    Directory of Open Access Journals (Sweden)

    Eugeniusz GRELA

    2009-06-01

    Full Text Available The infl uence of protein-xanthophyll (PX concentrate of alfalfa supplement to crude protein-reduced diets was examined in relation to nitrogen excretion, performance parameters and pig meat quality. The investigations included 60 growers (PL x PLW x Duroc crossbreeds assigned to 3 groups. The conclusion is that there is a large potential to decrease nitrogen emission to the environment by 10% lowering of dietary crude protein intake along with reduced animal growth rate and elevated mixture utilization. Inclusion of a protein-xanthophyll concentrate (PX of alfalfa to the diet is likely to diminish disadvantageous productive parameters arising from limiting of total crude protein level in relation to the requirements of pigs feeding norms [1993]. At the same time, it improves feed nitrogen utilization and reduces noxious odour emissions from a piggery. The components of a protein-xanthophyll concentrate (PX contribute to increased liver and kidney weight.

  3. Topology and weights in a protein domain interaction network--a novel way to predict protein interactions.

    Science.gov (United States)

    Wuchty, Stefan

    2006-05-23

    While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. We consider a web of interactions between protein domains of the Protein Family database (PFAM), which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we show a simple way to predict potential protein interactions

  4. Antepartal insulin-like growth factor 1 and insulin-like growth factor binding protein 2 concentrations are indicative of ketosis in dairy cows.

    Science.gov (United States)

    Piechotta, M; Mysegades, W; Ligges, U; Lilienthal, J; Hoeflich, A; Miyamoto, A; Bollwein, H

    2015-05-01

    A study involving a small number of cows found that the concentrations of insulin-like growth hormone 1 (IGF1) may be a useful predictor of metabolic disease. Further, IGF1 may provide also a pathophysiological link to metabolic diseases such as ketosis. The objective of the current study was to test whether the low antepartal total IGF1 or IGF1 binding protein (IGFBP) concentrations might predict ketosis under field conditions. Clinical examinations and blood sampling were performed antepartum (262-270 d after artificial insemination) on 377 pluriparous pregnant Holstein Friesian cows. The presence of postpartum diseases were recorded (ketosis, fatty liver, displacement of the abomasum, hypocalcemia, mastitis, retention of fetal membranes, and clinical metritis or endometritis), and the concentrations of IGF1, IGFBP2, IGFBP3, and nonesterified fatty acids were measured. Cows with postpartum clinical ketosis had lower IGF1 concentrations antepartum than healthy cows. The sensitivity of antepartal IGF1 as a marker for postpartum ketosis was 0.87, and the specificity was 0.43; a positive predictive value of 0.91 and a negative predictive value of 0.35 were calculated. The cows with ketosis and retained fetal membranes had lower IGFBP2 concentrations compared with the healthy cows. It can be speculated that lower IGF1 production in the liver during late pregnancy may increase growth hormone secretions and lipolysis, thereby increasing the risk of ketosis. Lower IGFBP2 concentrations may reflect the suppression of IGFBP2 levels through higher growth hormone secretion. In conclusion, compared with nonesterified fatty acids as a predictive parameter, IGF1 and IGFBP2 may represent earlier biomarkers of inadequate metabolic adaptation to the high energy demand required postpartum. Copyright © 2015 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  5. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier

    KAUST Repository

    Kulmanov, Maxat

    2017-09-27

    Motivation A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. Results We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein–protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations.

  6. AptRank: an adaptive PageRank model for protein function prediction on   bi-relational graphs.

    Science.gov (United States)

    Jiang, Biaobin; Kloster, Kyle; Gleich, David F; Gribskov, Michael

    2017-06-15

    Diffusion-based network models are widely used for protein function prediction using protein network data and have been shown to outperform neighborhood-based and module-based methods. Recent studies have shown that integrating the hierarchical structure of the Gene Ontology (GO) data dramatically improves prediction accuracy. However, previous methods usually either used the GO hierarchy to refine the prediction results of multiple classifiers, or flattened the hierarchy into a function-function similarity kernel. No study has taken the GO hierarchy into account together with the protein network as a two-layer network model. We first construct a Bi-relational graph (Birg) model comprised of both protein-protein association and function-function hierarchical networks. We then propose two diffusion-based methods, BirgRank and AptRank, both of which use PageRank to diffuse information on this two-layer graph model. BirgRank is a direct application of traditional PageRank with fixed decay parameters. In contrast, AptRank utilizes an adaptive diffusion mechanism to improve the performance of BirgRank. We evaluate the ability of both methods to predict protein function on yeast, fly and human protein datasets, and compare with four previous methods: GeneMANIA, TMC, ProteinRank and clusDCA. We design four different validation strategies: missing function prediction, de novo function prediction, guided function prediction and newly discovered function prediction to comprehensively evaluate predictability of all six methods. We find that both BirgRank and AptRank outperform the previous methods, especially in missing function prediction when using only 10% of the data for training. The MATLAB code is available at https://github.rcac.purdue.edu/mgribsko/aptrank . gribskov@purdue.edu. Supplementary data are available at Bioinformatics online. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  7. Accurate microRNA target prediction correlates with protein repression levels

    Directory of Open Access Journals (Sweden)

    Simossis Victor A

    2009-09-01

    Full Text Available Abstract Background MicroRNAs are small endogenously expressed non-coding RNA molecules that regulate target gene expression through translation repression or messenger RNA degradation. MicroRNA regulation is performed through pairing of the microRNA to sites in the messenger RNA of protein coding genes. Since experimental identification of miRNA target genes poses difficulties, computational microRNA target prediction is one of the key means in deciphering the role of microRNAs in development and disease. Results DIANA-microT 3.0 is an algorithm for microRNA target prediction which is based on several parameters calculated individually for each microRNA and combines conserved and non-conserved microRNA recognition elements into a final prediction score, which correlates with protein production fold change. Specifically, for each predicted interaction the program reports a signal to noise ratio and a precision score which can be used as an indication of the false positive rate of the prediction. Conclusion Recently, several computational target prediction programs were benchmarked based on a set of microRNA target genes identified by the pSILAC method. In this assessment DIANA-microT 3.0 was found to achieve the highest precision among the most widely used microRNA target prediction programs reaching approximately 66%. The DIANA-microT 3.0 prediction results are available online in a user friendly web server at http://www.microrna.gr/microT

  8. Predicting beta-turns in proteins using support vector machines with fractional polynomials.

    Science.gov (United States)

    Elbashir, Murtada; Wang, Jianxin; Wu, Fang-Xiang; Wang, Lusheng

    2013-11-07

    β-turns are secondary structure type that have essential role in molecular recognition, protein folding, and stability. They are found to be the most common type of non-repetitive structures since 25% of amino acids in protein structures are situated on them. Their prediction is considered to be one of the crucial problems in bioinformatics and molecular biology, which can provide valuable insights and inputs for the fold recognition and drug design. We propose an approach that combines support vector machines (SVMs) and logistic regression (LR) in a hybrid prediction method, which we call (H-SVM-LR) to predict β-turns in proteins. Fractional polynomials are used for LR modeling. We utilize position specific scoring matrices (PSSMs) and predicted secondary structure (PSS) as features. Our simulation studies show that H-SVM-LR achieves Qtotal of 82.87%, 82.84%, and 82.32% on the BT426, BT547, and BT823 datasets respectively. These values are the highest among other β-turns prediction methods that are based on PSSMs and secondary structure information. H-SVM-LR also achieves favorable performance in predicting β-turns as measured by the Matthew's correlation coefficient (MCC) on these datasets. Furthermore, H-SVM-LR shows good performance when considering shape strings as additional features. In this paper, we present a comprehensive approach for β-turns prediction. Experiments show that our proposed approach achieves better performance compared to other competing prediction methods.

  9. LoopIng: a template-based tool for predicting the structure of protein loops.

    KAUST Repository

    Messih, Mario Abdel

    2015-08-06

    Predicting the structure of protein loops is very challenging, mainly because they are not necessarily subject to strong evolutionary pressure. This implies that, unlike the rest of the protein, standard homology modeling techniques are not very effective in modeling their structure. However, loops are often involved in protein function, hence inferring their structure is important for predicting protein structure as well as function.We describe a method, LoopIng, based on the Random Forest automated learning technique, which, given a target loop, selects a structural template for it from a database of loop candidates. Compared to the most recently available methods, LoopIng is able to achieve similar accuracy for short loops (4-10 residues) and significant enhancements for long loops (11-20 residues). The quality of the predictions is robust to errors that unavoidably affect the stem regions when these are modeled. The method returns a confidence score for the predicted template loops and has the advantage of being very fast (on average: 1 min/loop).www.biocomputing.it/loopinganna.tramontano@uniroma1.itSupplementary data are available at Bioinformatics online.

  10. Prediction of Chl-a concentrations in an eutrophic lake using ANN models with hybrid inputs

    Science.gov (United States)

    Aksoy, A.; Yuzugullu, O.

    2017-12-01

    Chlorophyll-a (Chl-a) concentrations in water bodies exhibit both spatial and temporal variations. As a result, frequent sampling is required with higher number of samples. This motivates the use of remote sensing as a monitoring tool. Yet, prediction performances of models that convert radiance values into Chl-a concentrations can be poor in shallow lakes. In this study, Chl-a concentrations in Lake Eymir, a shallow eutrophic lake in Ankara (Turkey), are determined using artificial neural network (ANN) models that use hybrid inputs composed of water quality and meteorological data as well as remotely sensed radiance values to improve prediction performance. Following a screening based on multi-collinearity and principal component analysis (PCA), dissolved-oxygen concentration (DO), pH, turbidity, and humidity were selected among several parameters as the constituents of the hybrid input dataset. Radiance values were obtained from QuickBird-2 satellite. Conversion of the hybrid input into Chl-a concentrations were studied for two different periods in the lake. ANN models were successful in predicting Chl-a concentrations. Yet, prediction performance declined for low Chl-a concentrations in the lake. In general, models with hybrid inputs were superior over the ones that solely used remotely sensed data.

  11. In silico platform for predicting and initiating β-turns in a protein at desired locations.

    Science.gov (United States)

    Singh, Harinder; Singh, Sandeep; Raghava, Gajendra P S

    2015-05-01

    Numerous studies have been performed for analysis and prediction of β-turns in a protein. This study focuses on analyzing, predicting, and designing of β-turns to understand the preference of amino acids in β-turn formation. We analyzed around 20,000 PDB chains to understand the preference of residues or pair of residues at different positions in β-turns. Based on the results, a propensity-based method has been developed for predicting β-turns with an accuracy of 82%. We introduced a new approach entitled "Turn level prediction method," which predicts the complete β-turn rather than focusing on the residues in a β-turn. Finally, we developed BetaTPred3, a Random forest based method for predicting β-turns by utilizing various features of four residues present in β-turns. The BetaTPred3 achieved an accuracy of 79% with 0.51 MCC that is comparable or better than existing methods on BT426 dataset. Additionally, models were developed to predict β-turn types with better performance than other methods available in the literature. In order to improve the quality of prediction of turns, we developed prediction models on a large and latest dataset of 6376 nonredundant protein chains. Based on this study, a web server has been developed for prediction of β-turns and their types in proteins. This web server also predicts minimum number of mutations required to initiate or break a β-turn in a protein at specified location of a protein. © 2015 Wiley Periodicals, Inc.

  12. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar

    2011-08-17

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  13. BLProt: Prediction of bioluminescent proteins based on support vector machine and relieff feature selection

    KAUST Repository

    Kandaswamy, Krishna Kumar; Pugalenthi, Ganesan; Hazrati, Mehrnaz Khodam; Kalies, Kai-Uwe; Martinetz, Thomas

    2011-01-01

    Background: Bioluminescence is a process in which light is emitted by a living organism. Most creatures that emit light are sea creatures, but some insects, plants, fungi etc, also emit light. The biotechnological application of bioluminescence has become routine and is considered essential for many medical and general technological advances. Identification of bioluminescent proteins is more challenging due to their poor similarity in sequence. So far, no specific method has been reported to identify bioluminescent proteins from primary sequence.Results: In this paper, we propose a novel predictive method that uses a Support Vector Machine (SVM) and physicochemical properties to predict bioluminescent proteins. BLProt was trained using a dataset consisting of 300 bioluminescent proteins and 300 non-bioluminescent proteins, and evaluated by an independent set of 141 bioluminescent proteins and 18202 non-bioluminescent proteins. To identify the most prominent features, we carried out feature selection with three different filter approaches, ReliefF, infogain, and mRMR. We selected five different feature subsets by decreasing the number of features, and the performance of each feature subset was evaluated.Conclusion: BLProt achieves 80% accuracy from training (5 fold cross-validations) and 80.06% accuracy from testing. The performance of BLProt was compared with BLAST and HMM. High prediction accuracy and successful prediction of hypothetical proteins suggests that BLProt can be a useful approach to identify bioluminescent proteins from sequence information, irrespective of their sequence similarity. 2011 Kandaswamy et al; licensee BioMed Central Ltd.

  14. Effect of mobile phone use on salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein of the parotid gland.

    Science.gov (United States)

    Hashemipour, M S; Yarbakht, M; Gholamhosseinian, A; Famori, H

    2014-05-01

    The possibility of side effects associated with the electromagnetic waves emitted from mobile phones is a controversial issue. The present study aimed to evaluate the effect of mobile phone use on parotid gland salivary concentrations of protein, amylase, lipase, immunoglobulin A, lysozyme, lactoferrin, peroxidase and C-reactive protein. Stimulated salivary samples were collected simultaneously from both parotid glands of 86 healthy volunteers. Salivary flow rate and salivary concentrations of proteins, amylase, lipase, lysozyme, lactoferrin, peroxidase, C-reactive protein and immunoglobulin A, were measured. Data were analysed using t-tests and one-way analyses of variance. Salivary flow rate and parotid gland salivary concentrations of protein were significantly higher on the right side compared to the left in those that predominantly held mobile phones on the right side. In addition, there was a decrease in concentrations of amylase, lipase, lysozyme, lactoferrin and peroxidase. The side of dominant mobile phone use was associated with differences in salivary flow rate and parotid gland salivary concentrations, in right-dominant users. Although mobile phone use influenced salivary composition, the relationship was not significant.

  15. Optimization of mold wheat bread fortified with soy flour, pea flour and whey protein concentrate.

    Science.gov (United States)

    Erben, Melina; Osella, Carlos A

    2017-07-01

    The objective of this work was to study the effect of replacing a selected wheat flour for defatted soy flour, pea flour and whey protein concentrate on both dough rheological characteristics and the performance and nutritional quality of bread. A mixture design was used to analyze the combination of the ingredients. The optimization process suggested that a mixture containing 88.8% of wheat flour, 8.2% of defatted soy flour, 0.0% of pea flour and 3.0% of whey protein concentrate could be a good combination to achieve the best fortified-bread nutritional quality. The fortified bread resulted in high protein concentration, with an increase in dietary fiber content and higher calcium levels compared with those of control (wheat flour 100%). Regarding protein quality, available lysine content was significantly higher, thus contributing with the essential amino acid requirement.

  16. Experimental-confirmation and functional-annotation of predicted proteins in the chicken genome

    Directory of Open Access Journals (Sweden)

    McCarthy Fiona M

    2007-11-01

    Full Text Available Abstract Background The chicken genome was sequenced because of its phylogenetic position as a non-mammalian vertebrate, its use as a biomedical model especially to study embryology and development, its role as a source of human disease organisms and its importance as the major source of animal derived food protein. However, genomic sequence data is, in itself, of limited value; generally it is not equivalent to understanding biological function. The benefit of having a genome sequence is that it provides a basis for functional genomics. However, the sequence data currently available is poorly structurally and functionally annotated and many genes do not have standard nomenclature assigned. Results We analysed eight chicken tissues and improved the chicken genome structural annotation by providing experimental support for the in vivo expression of 7,809 computationally predicted proteins, including 30 chicken proteins that were only electronically predicted or hypothetical translations in human. To improve functional annotation (based on Gene Ontology, we mapped these identified proteins to their human and mouse orthologs and used this orthology to transfer Gene Ontology (GO functional annotations to the chicken proteins. The 8,213 orthology-based GO annotations that we produced represent an 8% increase in currently available chicken GO annotations. Orthologous chicken products were also assigned standardized nomenclature based on current chicken nomenclature guidelines. Conclusion We demonstrate the utility of high-throughput expression proteomics for rapid experimental structural annotation of a newly sequenced eukaryote genome. These experimentally-supported predicted proteins were further annotated by assigning the proteins with standardized nomenclature and functional annotation. This method is widely applicable to a diverse range of species. Moreover, information from one genome can be used to improve the annotation of other genomes and

  17. Predictive value of C-reactive protein in critically ill patients after abdominal surgery

    Directory of Open Access Journals (Sweden)

    Frédéric Sapin

    Full Text Available OBJECTIVES: The development of sepsis after abdominal surgery is associated with high morbidity and mortality. Due to inflammation, it may be difficult to diagnose infection when it occurs, but measurement of C-reactive protein could facilitate this diagnosis. In the present study, we evaluated the predictive value and time course of C-reactive protein in relation to outcome in patients admitted to the intensive care unit (ICU after abdominal surgery. METHODS: We included patients admitted to the ICU after abdominal surgery over a period of two years. The patients were divided into two groups according to their outcome: favorable (F; left the ICU alive, without modification of the antibiotic regimen and unfavorable (D; death in the ICU, surgical revision with or without modification of the antibiotic regimen or just modification of the regimen. We then compared the highest C-reactive protein level on the first day of admission between the two groups. RESULTS: A total of 308 patients were included: 86 patients had an unfavorable outcome (group D and 222 had a favorable outcome (group F. The groups were similar in terms of leukocytosis, neutrophilia, and platelet count. C-reactive protein was significantly higher at admission in group D and was the best predictor of an unfavorable outcome, with a sensitivity of 74% and a specificity of 72% for a threshold of 41 mg/L. No changes in C-reactive protein, as assessed based on the delta C-reactive protein, especially at days 4 and 5, were associated with a poor prognosis. CONCLUSIONS: A C-reactive protein cut-off of 41 mg/L during the first day of ICU admission after abdominal surgery was a predictor of an adverse outcome. However, no changes in the C-reactive protein concentration, especially by day 4 or 5, could identify patients at risk of death.

  18. Direct Analysis of Proteins from Solutions with High Salt Concentration Using Laser Electrospray Mass Spectrometry

    Science.gov (United States)

    Karki, Santosh; Shi, Fengjian; Archer, Jieutonne J.; Sistani, Habiballah; Levis, Robert J.

    2018-05-01

    The detection of lysozyme, or a mixture of lysozyme, cytochrome c, and myoglobin, from solutions with varying salt concentrations (0.1 to 250 mM NaCl) is compared using laser electrospray mass spectrometry (LEMS) and electrospray ionization-mass spectrometry (ESI-MS). Protonated protein peaks were observed up to a concentration of 250 mM NaCl in the case of LEMS. In the case of ESI-MS, a protein solution with salt concentration > 0.5 mM resulted in predominantly salt-adducted features, with suppression of the protonated protein ions. The constituents in the mixture of proteins were assignable up to 250 mM NaCl for LEMS and were not assignable above a NaCl concentration of 0.5 mM for ESI. The average sodium adducts () bound to the 7+ charge state of lysozyme for LEMS measurements from salt concentrations of 2.5, 25, 50, and 100 mM NaCl are 1.71, 5.23, 5.26, and 5.11, respectively. The conventional electrospray measurements for lysozyme solution containing salt concentrations of 0.1, 1, 2, and 5 mM NaCl resulted in of 2.65, 6.44, 7.57, and 8.48, respectively. LEMS displays an approximately two orders of magnitude higher salt tolerance in comparison with conventional ESI-MS. The non-equilibrium partitioning of proteins on the surface of the charged droplets is proposed as the mechanism for the high salt tolerance phenomena observed in the LEMS measurements. [Figure not available: see fulltext.

  19. Sequence- and interactome-based prediction of viral protein hotspots targeting host proteins: a case study for HIV Nef.

    Directory of Open Access Journals (Sweden)

    Mahdi Sarmady

    Full Text Available Virus proteins alter protein pathways of the host toward the synthesis of viral particles by breaking and making edges via binding to host proteins. In this study, we developed a computational approach to predict viral sequence hotspots for binding to host proteins based on sequences of viral and host proteins and literature-curated virus-host protein interactome data. We use a motif discovery algorithm repeatedly on collections of sequences of viral proteins and immediate binding partners of their host targets and choose only those motifs that are conserved on viral sequences and highly statistically enriched among binding partners of virus protein targeted host proteins. Our results match experimental data on binding sites of Nef to host proteins such as MAPK1, VAV1, LCK, HCK, HLA-A, CD4, FYN, and GNB2L1 with high statistical significance but is a poor predictor of Nef binding sites on highly flexible, hoop-like regions. Predicted hotspots recapture CD8 cell epitopes of HIV Nef highlighting their importance in modulating virus-host interactions. Host proteins potentially targeted or outcompeted by Nef appear crowding the T cell receptor, natural killer cell mediated cytotoxicity, and neurotrophin signaling pathways. Scanning of HIV Nef motifs on multiple alignments of hepatitis C protein NS5A produces results consistent with literature, indicating the potential value of the hotspot discovery in advancing our understanding of virus-host crosstalk.

  20. Exploration of the omics evidence landscape: adding qualitative labels to predicted protein-protein interactions.

    NARCIS (Netherlands)

    Noort, V. van; Snel, B.; Huynen, M.A.

    2007-01-01

    BACKGROUND: In the post-genomic era various functional genomics, proteomics and computational techniques have been developed to elucidate the protein interaction network. While some of these techniques are specific for a certain type of interaction, most predict a mixture of interactions.

  1. ngLOC: software and web server for predicting protein subcellular localization in prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    King Brian R

    2012-07-01

    Full Text Available Abstract Background Understanding protein subcellular localization is a necessary component toward understanding the overall function of a protein. Numerous computational methods have been published over the past decade, with varying degrees of success. Despite the large number of published methods in this area, only a small fraction of them are available for researchers to use in their own studies. Of those that are available, many are limited by predicting only a small number of organelles in the cell. Additionally, the majority of methods predict only a single location for a sequence, even though it is known that a large fraction of the proteins in eukaryotic species shuttle between locations to carry out their function. Findings We present a software package and a web server for predicting the subcellular localization of protein sequences based on the ngLOC method. ngLOC is an n-gram-based Bayesian classifier that predicts subcellular localization of proteins both in prokaryotes and eukaryotes. The overall prediction accuracy varies from 89.8% to 91.4% across species. This program can predict 11 distinct locations each in plant and animal species. ngLOC also predicts 4 and 5 distinct locations on gram-positive and gram-negative bacterial datasets, respectively. Conclusions ngLOC is a generic method that can be trained by data from a variety of species or classes for predicting protein subcellular localization. The standalone software is freely available for academic use under GNU GPL, and the ngLOC web server is also accessible at http://ngloc.unmc.edu.

  2. De novo protein structure prediction by dynamic fragment assembly and conformational space annealing.

    Science.gov (United States)

    Lee, Juyong; Lee, Jinhyuk; Sasaki, Takeshi N; Sasai, Masaki; Seok, Chaok; Lee, Jooyoung

    2011-08-01

    Ab initio protein structure prediction is a challenging problem that requires both an accurate energetic representation of a protein structure and an efficient conformational sampling method for successful protein modeling. In this article, we present an ab initio structure prediction method which combines a recently suggested novel way of fragment assembly, dynamic fragment assembly (DFA) and conformational space annealing (CSA) algorithm. In DFA, model structures are scored by continuous functions constructed based on short- and long-range structural restraint information from a fragment library. Here, DFA is represented by the full-atom model by CHARMM with the addition of the empirical potential of DFIRE. The relative contributions between various energy terms are optimized using linear programming. The conformational sampling was carried out with CSA algorithm, which can find low energy conformations more efficiently than simulated annealing used in the existing DFA study. The newly introduced DFA energy function and CSA sampling algorithm are implemented into CHARMM. Test results on 30 small single-domain proteins and 13 template-free modeling targets of the 8th Critical Assessment of protein Structure Prediction show that the current method provides comparable and complementary prediction results to existing top methods. Copyright © 2011 Wiley-Liss, Inc.

  3. Sequential search leads to faster, more efficient fragment-based de novo protein structure prediction.

    Science.gov (United States)

    de Oliveira, Saulo H P; Law, Eleanor C; Shi, Jiye; Deane, Charlotte M

    2018-04-01

    Most current de novo structure prediction methods randomly sample protein conformations and thus require large amounts of computational resource. Here, we consider a sequential sampling strategy, building on ideas from recent experimental work which shows that many proteins fold cotranslationally. We have investigated whether a pseudo-greedy search approach, which begins sequentially from one of the termini, can improve the performance and accuracy of de novo protein structure prediction. We observed that our sequential approach converges when fewer than 20 000 decoys have been produced, fewer than commonly expected. Using our software, SAINT2, we also compared the run time and quality of models produced in a sequential fashion against a standard, non-sequential approach. Sequential prediction produces an individual decoy 1.5-2.5 times faster than non-sequential prediction. When considering the quality of the best model, sequential prediction led to a better model being produced for 31 out of 41 soluble protein validation cases and for 18 out of 24 transmembrane protein cases. Correct models (TM-Score > 0.5) were produced for 29 of these cases by the sequential mode and for only 22 by the non-sequential mode. Our comparison reveals that a sequential search strategy can be used to drastically reduce computational time of de novo protein structure prediction and improve accuracy. Data are available for download from: http://opig.stats.ox.ac.uk/resources. SAINT2 is available for download from: https://github.com/sauloho/SAINT2. saulo.deoliveira@dtc.ox.ac.uk. Supplementary data are available at Bioinformatics online.

  4. Food chain model to predict westslope cutthroat trout ovary selenium concentrations from water concentrations in the Elk Valley, BC

    International Nuclear Information System (INIS)

    Orr, P.; Wiramanaden, C.; Franklin, W.; Fraser, C.

    2010-01-01

    The 5 coal mines operated by Teck Coal Ltd. in British Columbia's Elk River watershed release selenium during weathering of mine waste rock. Since 1966, several field studies have been conducted in which selenium concentrations in biota were measured. They revealed that tissue concentrations are higher in aquatic biota sampled in lentic compared to lotic habitats of the watershed with similar water selenium concentrations. Two food chain models were developed based on the available data. The models described dietary selenium accumulation in the ovaries of lotic versus lentic westslope cutthroat trout (WCT), a valued aquatic resource in the Elk River system. The following 3 trophic transfer relationships were characterized for each model: (1) water to base of the food web, (2) base of the food web to benthic invertebrates, and (3) benthic invertebrates to WCT ovaries. The lotic and lentic models combined the resulting equations for each trophic transfer relationships to predict WCT ovary concentrations from water concentrations. The models were in very good agreement with the available data, despite fish movement and the fact that composite benthic invertebrate sample data were only an approximation of the feeding preferences of individual fish. Based on the observed rates of increase in water selenium concentrations throughout the watershed, the models predicted very small/slow increases in WCT ovary concentrations with time.

  5. Baseline Plasma C-Reactive Protein Concentrations and Motor Prognosis in Parkinson Disease.

    Directory of Open Access Journals (Sweden)

    Atsushi Umemura

    Full Text Available C-reactive protein (CRP, a blood inflammatory biomarker, is associated with the development of Alzheimer disease. In animal models of Parkinson disease (PD, systemic inflammatory stimuli can promote neuroinflammation and accelerate dopaminergic neurodegeneration. However, the association between long-term systemic inflammations and neurodegeneration has not been assessed in PD patients.To investigate the longitudinal effects of baseline CRP concentrations on motor prognosis in PD.Retrospective analysis of 375 patients (mean age, 69.3 years; mean PD duration, 6.6 years. Plasma concentrations of high-sensitivity CRP were measured in the absence of infections, and the Unified Parkinson's Disease Rating Scale Part III (UPDRS-III scores were measured at five follow-up intervals (Days 1-90, 91-270, 271-450, 451-630, and 631-900.Change of UPDRS-III scores from baseline to each of the five follow-up periods.Change in UPDRS-III scores was significantly greater in PD patients with CRP concentrations ≥0.7 mg/L than in those with CRP concentrations <0.7 mg/L, as determined by a generalized estimation equation model (P = 0.021 for the entire follow-up period and by a generalized regression model (P = 0.030 for the last follow-up interval (Days 631-900. The regression coefficients of baseline CRP for the two periods were 1.41 (95% confidence interval [CI] 0.21-2.61 and 2.62 (95% CI 0.25-4.98, respectively, after adjusting for sex, age, baseline UPDRS-III score, dementia, and incremental L-dopa equivalent dose.Baseline plasma CRP levels were associated with motor deterioration and predicted motor prognosis in patients with PD. These associations were independent of sex, age, PD severity, dementia, and anti-Parkinsonian agents, suggesting that subclinical systemic inflammations could accelerate neurodegeneration in PD.

  6. A novel calibration approach of MODIS AOD data to predict PM2.5 concentrations

    Directory of Open Access Journals (Sweden)

    P. Koutrakis

    2011-08-01

    Full Text Available Epidemiological studies investigating the human health effects of PM2.5 are susceptible to exposure measurement errors, a form of bias in exposure estimates, since they rely on data from a limited number of PM2.5 monitors within their study area. Satellite data can be used to expand spatial coverage, potentially enhancing our ability to estimate location- or subject-specific exposures to PM2.5, but some have reported poor predictive power. A new methodology was developed to calibrate aerosol optical depth (AOD data obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS. Subsequently, this method was used to predict ground daily PM2.5 concentrations in the New England region. 2003 MODIS AOD data corresponding to the New England region were retrieved, and PM2.5 concentrations measured at 26 US Environmental Protection Agency (EPA PM2.5 monitoring sites were used to calibrate the AOD data. A mixed effects model which allows day-to-day variability in daily PM2.5-AOD relationships was used to predict location-specific PM2.5 levels. PM2.5 concentrations measured at the monitoring sites were compared to those predicted for the corresponding grid cells. Both cross-sectional and longitudinal comparisons between the observed and predicted concentrations suggested that the proposed new calibration approach renders MODIS AOD data a potentially useful predictor of PM2.5 concentrations. Furthermore, the estimated PM2.5 levels within the study domain were examined in relation to air pollution sources. Our approach made it possible to investigate the spatial patterns of PM2.5 concentrations within the study domain.

  7. Type 2 diabetes mellitus is associated with differential effects on plasma cholesteryl ester transfer protein and phospholipid transfer protein activities and concentrations

    NARCIS (Netherlands)

    Dullaart, RPF; De Vries, R; Scheek, L; Borggreve, SE; Van Gent, T; Dallinga-Thie, GM; Ito, M; Nagano, M; Sluiter, WJ; Hattori, H; Van Tol, A

    Background: Human plasma contains two lipid transfer proteins, cholesteryl ester transfer protein (CETP) and phospholipid transfer protein (PLTP), which are crucial in reverse cholesterol transport. Methods: Plasma CETP and PLTP activity levels and concentrations in 16 type 2 diabetic patients and

  8. StaRProtein, A Web Server for Prediction of the Stability of Repeat Proteins

    Science.gov (United States)

    Xu, Yongtao; Zhou, Xu; Huang, Meilan

    2015-01-01

    Repeat proteins have become increasingly important due to their capability to bind to almost any proteins and the potential as alternative therapy to monoclonal antibodies. In the past decade repeat proteins have been designed to mediate specific protein-protein interactions. The tetratricopeptide and ankyrin repeat proteins are two classes of helical repeat proteins that form different binding pockets to accommodate various partners. It is important to understand the factors that define folding and stability of repeat proteins in order to prioritize the most stable designed repeat proteins to further explore their potential binding affinities. Here we developed distance-dependant statistical potentials using two classes of alpha-helical repeat proteins, tetratricopeptide and ankyrin repeat proteins respectively, and evaluated their efficiency in predicting the stability of repeat proteins. We demonstrated that the repeat-specific statistical potentials based on these two classes of repeat proteins showed paramount accuracy compared with non-specific statistical potentials in: 1) discriminate correct vs. incorrect models 2) rank the stability of designed repeat proteins. In particular, the statistical scores correlate closely with the equilibrium unfolding free energies of repeat proteins and therefore would serve as a novel tool in quickly prioritizing the designed repeat proteins with high stability. StaRProtein web server was developed for predicting the stability of repeat proteins. PMID:25807112

  9. Avian reovirus L2 genome segment sequences and predicted structure/function of the encoded RNA-dependent RNA polymerase protein

    Directory of Open Access Journals (Sweden)

    Xu Wanhong

    2008-12-01

    Full Text Available Abstract Background The orthoreoviruses are infectious agents that possess a genome comprised of 10 double-stranded RNA segments encased in two concentric protein capsids. Like virtually all RNA viruses, an RNA-dependent RNA polymerase (RdRp enzyme is required for viral propagation. RdRp sequences have been determined for the prototype mammalian orthoreoviruses and for several other closely-related reoviruses, including aquareoviruses, but have not yet been reported for any avian orthoreoviruses. Results We determined the L2 genome segment nucleotide sequences, which encode the RdRp proteins, of two different avian reoviruses, strains ARV138 and ARV176 in order to define conserved and variable regions within reovirus RdRp proteins and to better delineate structure/function of this important enzyme. The ARV138 L2 genome segment was 3829 base pairs long, whereas the ARV176 L2 segment was 3830 nucleotides long. Both segments were predicted to encode λB RdRp proteins 1259 amino acids in length. Alignments of these newly-determined ARV genome segments, and their corresponding proteins, were performed with all currently available homologous mammalian reovirus (MRV and aquareovirus (AqRV genome segment and protein sequences. There was ~55% amino acid identity between ARV λB and MRV λ3 proteins, making the RdRp protein the most highly conserved of currently known orthoreovirus proteins, and there was ~28% identity between ARV λB and homologous MRV and AqRV RdRp proteins. Predictive structure/function mapping of identical and conserved residues within the known MRV λ3 atomic structure indicated most identical amino acids and conservative substitutions were located near and within predicted catalytic domains and lining RdRp channels, whereas non-identical amino acids were generally located on the molecule's surfaces. Conclusion The ARV λB and MRV λ3 proteins showed the highest ARV:MRV identity values (~55% amongst all currently known ARV and MRV

  10. Determination of adsorbed protein concentration in aluminum hydroxide suspensions by near-infrared transmittance Spectroscopy

    DEFF Research Database (Denmark)

    Lai, Xuxin; Zheng, Yiwu; Jacobsen, Susanne

    2008-01-01

    , using the partial least square regression (PLSR) method to construct a calibration model. The linear concentration range of adsorbed BSA is from 0 to 1.75 mg/mL by using 10 mm path length cuvettes. The influence of the sedimentation in suspension, different buffers, and different aluminum hydroxide......Analysis of aluminum hydroxide based vaccines is difficult after antigen adsorption. Adsorbed protein is often assessed by measuring residual unadsorbed protein for quality control. A new method for the direct determination of adsorbed protein concentration in suspension using near-infrared (NIR......) transmittance spectroscopy is proposed here. A simple adsorption system using albumin from bovine serum (BSA) and aluminum hydroxide as a model system is employed. The results show that the NIR absorbance at 700-1300 nm is correlated to the adsorbed BSA concentration, measured by the ultraviolet (UV) method...

  11. Disorder Prediction Methods, Their Applicability to Different Protein Targets and Their Usefulness for Guiding Experimental Studies

    Directory of Open Access Journals (Sweden)

    Jennifer D. Atkins

    2015-08-01

    Full Text Available The role and function of a given protein is dependent on its structure. In recent years, however, numerous studies have highlighted the importance of unstructured, or disordered regions in governing a protein’s function. Disordered proteins have been found to play important roles in pivotal cellular functions, such as DNA binding and signalling cascades. Studying proteins with extended disordered regions is often problematic as they can be challenging to express, purify and crystallise. This means that interpretable experimental data on protein disorder is hard to generate. As a result, predictive computational tools have been developed with the aim of predicting the level and location of disorder within a protein. Currently, over 60 prediction servers exist, utilizing different methods for classifying disorder and different training sets. Here we review several good performing, publicly available prediction methods, comparing their application and discussing how disorder prediction servers can be used to aid the experimental solution of protein structure. The use of disorder prediction methods allows us to adopt a more targeted approach to experimental studies by accurately identifying the boundaries of ordered protein domains so that they may be investigated separately, thereby increasing the likelihood of their successful experimental solution.

  12. BacHbpred: Support Vector Machine Methods for the Prediction of Bacterial Hemoglobin-Like Proteins

    Directory of Open Access Journals (Sweden)

    MuthuKrishnan Selvaraj

    2016-01-01

    Full Text Available The recent upsurge in microbial genome data has revealed that hemoglobin-like (HbL proteins may be widely distributed among bacteria and that some organisms may carry more than one HbL encoding gene. However, the discovery of HbL proteins has been limited to a small number of bacteria only. This study describes the prediction of HbL proteins and their domain classification using a machine learning approach. Support vector machine (SVM models were developed for predicting HbL proteins based upon amino acid composition (AC, dipeptide composition (DC, hybrid method (AC + DC, and position specific scoring matrix (PSSM. In addition, we introduce for the first time a new prediction method based on max to min amino acid residue (MM profiles. The average accuracy, standard deviation (SD, false positive rate (FPR, confusion matrix, and receiver operating characteristic (ROC were analyzed. We also compared the performance of our proposed models in homology detection databases. The performance of the different approaches was estimated using fivefold cross-validation techniques. Prediction accuracy was further investigated through confusion matrix and ROC curve analysis. All experimental results indicate that the proposed BacHbpred can be a perspective predictor for determination of HbL related proteins. BacHbpred, a web tool, has been developed for HbL prediction.

  13. Exploration of the omics evidence landscape: adding qualitative labels to predicted protein-protein interactions

    NARCIS (Netherlands)

    Noort, V. van; Snel, B.; Huynen, M.A.

    2007-01-01

    ABSTRACT: BACKGROUND: In the post-genomic era various functional genomics, proteomics and computational techniques have been developed to elucidate the protein interaction network. While some of these techniques are specific for a certain type of interaction, most predict a mixture of interactions.

  14. Prediction of flexible/rigid regions from protein sequences using k-spaced amino acid pairs

    Directory of Open Access Journals (Sweden)

    Ruan Jishou

    2007-04-01

    Full Text Available Abstract Background Traditionally, it is believed that the native structure of a protein corresponds to a global minimum of its free energy. However, with the growing number of known tertiary (3D protein structures, researchers have discovered that some proteins can alter their structures in response to a change in their surroundings or with the help of other proteins or ligands. Such structural shifts play a crucial role with respect to the protein function. To this end, we propose a machine learning method for the prediction of the flexible/rigid regions of proteins (referred to as FlexRP; the method is based on a novel sequence representation and feature selection. Knowledge of the flexible/rigid regions may provide insights into the protein folding process and the 3D structure prediction. Results The flexible/rigid regions were defined based on a dataset, which includes protein sequences that have multiple experimental structures, and which was previously used to study the structural conservation of proteins. Sequences drawn from this dataset were represented based on feature sets that were proposed in prior research, such as PSI-BLAST profiles, composition vector and binary sequence encoding, and a newly proposed representation based on frequencies of k-spaced amino acid pairs. These representations were processed by feature selection to reduce the dimensionality. Several machine learning methods for the prediction of flexible/rigid regions and two recently proposed methods for the prediction of conformational changes and unstructured regions were compared with the proposed method. The FlexRP method, which applies Logistic Regression and collocation-based representation with 95 features, obtained 79.5% accuracy. The two runner-up methods, which apply the same sequence representation and Support Vector Machines (SVM and Naïve Bayes classifiers, obtained 79.2% and 78.4% accuracy, respectively. The remaining considered methods are

  15. Prediction of hydrogen concentration in nuclear power plant containment under severe accidents using cascaded fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Geon Pil; Kim, Dong Yeong; Yoo, Kwae Hwan; Na, Man Gyun, E-mail: magyna@chosun.ac.kr

    2016-04-15

    Highlights: • We present a hydrogen-concentration prediction method in an NPP containment. • The cascaded fuzzy neural network (CFNN) is used in this prediction model. • The CFNN model is much better than the existing FNN model. • This prediction can help prevent severe accidents in NPP due to hydrogen explosion. - Abstract: Recently, severe accidents in nuclear power plants (NPPs) have attracted worldwide interest since the Fukushima accident. If the hydrogen concentration in an NPP containment is increased above 4% in atmospheric pressure, hydrogen combustion will likely occur. Therefore, the hydrogen concentration must be kept below 4%. This study presents the prediction of hydrogen concentration using cascaded fuzzy neural network (CFNN). The CFNN model repeatedly applies FNN modules that are serially connected. The CFNN model was developed using data on severe accidents in NPPs. The data were obtained by numerically simulating the accident scenarios using the MAAP4 code for optimized power reactor 1000 (OPR1000) because real severe accident data cannot be obtained from actual NPP accidents. The root-mean-square error level predicted by the CFNN model is below approximately 5%. It was confirmed that the CFNN model could accurately predict the hydrogen concentration in the containment. If NPP operators can predict the hydrogen concentration in the containment using the CFNN model, this prediction can assist them in preventing a hydrogen explosion.

  16. Detrended cross-correlation coefficient: Application to predict apoptosis protein subcellular localization.

    Science.gov (United States)

    Liang, Yunyun; Liu, Sanyang; Zhang, Shengli

    2016-12-01

    Apoptosis, or programed cell death, plays a central role in the development and homeostasis of an organism. Obtaining information on subcellular location of apoptosis proteins is very helpful for understanding the apoptosis mechanism. The prediction of subcellular localization of an apoptosis protein is still a challenging task, and existing methods mainly based on protein primary sequences. In this paper, we introduce a new position-specific scoring matrix (PSSM)-based method by using detrended cross-correlation (DCCA) coefficient of non-overlapping windows. Then a 190-dimensional (190D) feature vector is constructed on two widely used datasets: CL317 and ZD98, and support vector machine is adopted as classifier. To evaluate the proposed method, objective and rigorous jackknife cross-validation tests are performed on the two datasets. The results show that our approach offers a novel and reliable PSSM-based tool for prediction of apoptosis protein subcellular localization. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Contingency Table Browser - prediction of early stage protein structure.

    Science.gov (United States)

    Kalinowska, Barbara; Krzykalski, Artur; Roterman, Irena

    2015-01-01

    The Early Stage (ES) intermediate represents the starting structure in protein folding simulations based on the Fuzzy Oil Drop (FOD) model. The accuracy of FOD predictions is greatly dependent on the accuracy of the chosen intermediate. A suitable intermediate can be constructed using the sequence-structure relationship information contained in the so-called contingency table - this table expresses the likelihood of encountering various structural motifs for each tetrapeptide fragment in the amino acid sequence. The limited accuracy with which such structures could previously be predicted provided the motivation for a more indepth study of the contingency table itself. The Contingency Table Browser is a tool which can visualize, search and analyze the table. Our work presents possible applications of Contingency Table Browser, among them - analysis of specific protein sequences from the point of view of their structural ambiguity.

  18. [A case of IgA2-lambda type M-protein that IgA concentration differs from the values of M-protein by serum protein electrophoresis].

    Science.gov (United States)

    Fukushima, M; Sugano, M; Ichikawa, T; Honda, T; Totsuka, M; Katsuyama, T; Fujita, K

    2001-07-01

    We report an IgA-lambda type M-protein in which the IgA concentration differed from the values of M-protein by serum protein electrophoresis found in a 53-year-old man with multiple myeloma. The M-protein value as determined by serum protein electrophoresis was 6,170 mg/dl. However, the serum IgA concentration was 3,052 mg/dl by turbidimetric immunoassay. Immuno-fixation electrophoresis using IgA subclass antisera revealed that this M-protein was the IgA2-lambda type. Western blotting analysis showed that the IgA2 molecules were composed of two approximately 68 kDa alpha 2 chains and two 28 kDa lambda chains. In addition the free lambda chain band was detected at the position of 28 kDa without 2-mercaptoethanol(2-ME) even though the patient IgA was purified. Since it is known that IgA2m(1) allotype easily release light chains from the IgA molecules in SDS-PAGE without 2-ME, we speculated that in this patient the IgA was the IgA2m(1) allotype. After peripheral blood stem cell transplantation(PBSCT), immunofixation electrophoresis of the patient serum revealed not only the bands of IgA2-lambda type M-protein, but also three bands of IgG1-kappa type M-protein in the gamma region.

  19. Structure Based Thermostability Prediction Models for Protein Single Point Mutations with Machine Learning Tools.

    Directory of Open Access Journals (Sweden)

    Lei Jia

    Full Text Available Thermostability issue of protein point mutations is a common occurrence in protein engineering. An application which predicts the thermostability of mutants can be helpful for guiding decision making process in protein design via mutagenesis. An in silico point mutation scanning method is frequently used to find "hot spots" in proteins for focused mutagenesis. ProTherm (http://gibk26.bio.kyutech.ac.jp/jouhou/Protherm/protherm.html is a public database that consists of thousands of protein mutants' experimentally measured thermostability. Two data sets based on two differently measured thermostability properties of protein single point mutations, namely the unfolding free energy change (ddG and melting temperature change (dTm were obtained from this database. Folding free energy change calculation from Rosetta, structural information of the point mutations as well as amino acid physical properties were obtained for building thermostability prediction models with informatics modeling tools. Five supervised machine learning methods (support vector machine, random forests, artificial neural network, naïve Bayes classifier, K nearest neighbor and partial least squares regression are used for building the prediction models. Binary and ternary classifications as well as regression models were built and evaluated. Data set redundancy and balancing, the reverse mutations technique, feature selection, and comparison to other published methods were discussed. Rosetta calculated folding free energy change ranked as the most influential features in all prediction models. Other descriptors also made significant contributions to increasing the accuracy of the prediction models.

  20. Prediction of protein subcellular localization using support vector machine with the choice of proper kernel

    Directory of Open Access Journals (Sweden)

    Al Mehedi Hasan

    2017-07-01

    Full Text Available The prediction of subcellular locations of proteins can provide useful hints for revealing their functions as well as for understanding the mechanisms of some diseases and, finally, for developing novel drugs. As the number of newly discovered proteins has been growing exponentially, laboratory-based experiments to determine the location of an uncharacterized protein in a living cell have become both expensive and time-consuming. Consequently, to tackle these challenges, computational methods are being developed as an alternative to help biologists in selecting target proteins and designing related experiments. However, the success of protein subcellular localization prediction is still a complicated and challenging problem, particularly when query proteins may have multi-label characteristics, i.e. their simultaneous existence in more than one subcellular location, or if they move between two or more different subcellular locations as well. At this point, to get rid of this problem, several types of subcellular localization prediction methods with different levels of accuracy have been proposed. The support vector machine (SVM has been employed to provide potential solutions for problems connected with the prediction of protein subcellular localization. However, the practicability of SVM is affected by difficulties in selecting its appropriate kernel as well as in selecting the parameters of that selected kernel. The literature survey has shown that most researchers apply the radial basis function (RBF kernel to build a SVM based subcellular localization prediction system. Surprisingly, there are still many other kernel functions which have not yet been applied in the prediction of protein subcellular localization. However, the nature of this classification problem requires the application of different kernels for SVM to ensure an optimal result. From this viewpoint, this paper presents the work to apply different kernels for SVM in protein

  1. Concentration of rat brown adipose tissue uncoupling protein may not be correlated with 3H-GDP binding

    International Nuclear Information System (INIS)

    Henningfield, M.F.; Swick, A.G.; Swick, R.W.

    1986-01-01

    Rats fed diets low in protein or exposed to cold show an increase in brown adipose tissue (BAT) mitochondrial 3 H-GDP binding. To investigate this phenomenon further, the uncoupling protein associated with BAT function was measured immunochemically on nitrocellulose blots. Quantitation of uncoupling protein was achieved by densitometer scanning with a BioRad densitometer. Peaks were integrated with Chromatochart software and an Apple IIe computer. A standard curve of purified uncoupling protein (50 to 500 ng) was used to calculate uncoupling protein concentration. There is a 1.5-fold increase in uncoupling protein per mg of protein in BAT mitochondria from rats exposed to cold for 15 days. There was no decrease in uncoupling protein from rats exposed to the cold followed by 24 h at 27 0 C although 3 H-GDP binding had decreased by half. Rats fed diets containing either 5 or 15% lactalbumin for 3 weeks did not show differences in uncoupling protein concentration although 3 H-GDP binding was 1.5-fold greater in BAT mitochondria from the low protein group. These results indicate that GDP binding does not necessarily reflect the concentration of uncoupling protein in BAT mitochondria

  2. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation

    International Nuclear Information System (INIS)

    Li, Xiang; Peng, Ling; Yao, Xiaojing; Cui, Shaolong; Hu, Yuan; You, Chengzeng; Chi, Tianhe

    2017-01-01

    Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM 2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13–24 h prediction tasks (MAPE = 31.47%). - Highlights: • Regional air pollutant concentration shows an obvious spatiotemporal correlation. • Our prediction model presents superior performance. • Climate data and metadata can significantly

  3. Prediction of Coal Face Gas Concentration by Multi-Scale Selective Ensemble Hybrid Modeling

    Directory of Open Access Journals (Sweden)

    WU Xiang

    2014-06-01

    Full Text Available A selective ensemble hybrid modeling prediction method based on wavelet transformation is proposed to improve the fitting and generalization capability of the existing prediction models of the coal face gas concentration, which has a strong stochastic volatility. Mallat algorithm was employed for the multi-scale decomposition and single-scale reconstruction of the gas concentration time series. Then, it predicted every subsequence by sparsely weighted multi unstable ELM(extreme learning machine predictor within method SERELM(sparse ensemble regressors of ELM. At last, it superimposed the predicted values of these models to obtain the predicted values of the original sequence. The proposed method takes advantage of characteristics of multi scale analysis of wavelet transformation, accuracy and fast characteristics of ELM prediction and the generalization ability of L1 regularized selective ensemble learning method. The results show that the forecast accuracy has large increase by using the proposed method. The average relative error is 0.65%, the maximum relative error is 4.16% and the probability of relative error less than 1% reaches 0.785.

  4. Total protein concentration and diagnostic test results for gray wolf (Canis lupus) serum using Nobuto filter paper strips

    Science.gov (United States)

    Jara, Rocio F.; Sepúlveda, Carolina; Ip, Hon S.; Samuel, Michael D.

    2015-01-01

    Nobuto filter paper strips are widely used for storing blood-serum samples, but the recovery of proteins from these strips following rehydration is unknown. Poor recovery of proteins could reduce the concentration of antibodies and antigens and reduce the sensitivity of diagnostic assays. We compared the protein concentration, and its association with test sensitivity, of eluted Nobuto strip samples with paired sera. We collected and froze serum from five gray wolves (Canis lupus) for 8 mo. When thawed, we used a spectrophotometer (absorbance 280 nm) to determine the serum protein concentration for paired sera and Nobuto eluates for each animal in 2-fold serial dilutions. Total protein concentration was similar for both sample storage methods (Nobuto eluates and control sera), except for the undiluted samples in which Nobuto eluates had higher total protein concentrations. Both sample storage methods appear to produce similar results using the SNAP® 4Dx® Test to detect antibodies against pathogens causing Lyme disease, anaplasmosis, and ehrlichiosis as well as antigen for canine heartworm disease.

  5. MultiLoc2: integrating phylogeny and Gene Ontology terms improves subcellular protein localization prediction

    Directory of Open Access Journals (Sweden)

    Kohlbacher Oliver

    2009-09-01

    Full Text Available Abstract Background Knowledge of subcellular localization of proteins is crucial to proteomics, drug target discovery and systems biology since localization and biological function are highly correlated. In recent years, numerous computational prediction methods have been developed. Nevertheless, there is still a need for prediction methods that show more robustness and higher accuracy. Results We extended our previous MultiLoc predictor by incorporating phylogenetic profiles and Gene Ontology terms. Two different datasets were used for training the system, resulting in two versions of this high-accuracy prediction method. One version is specialized for globular proteins and predicts up to five localizations, whereas a second version covers all eleven main eukaryotic subcellular localizations. In a benchmark study with five localizations, MultiLoc2 performs considerably better than other methods for animal and plant proteins and comparably for fungal proteins. Furthermore, MultiLoc2 performs clearly better when using a second dataset that extends the benchmark study to all eleven main eukaryotic subcellular localizations. Conclusion MultiLoc2 is an extensive high-performance subcellular protein localization prediction system. By incorporating phylogenetic profiles and Gene Ontology terms MultiLoc2 yields higher accuracies compared to its previous version. Moreover, it outperforms other prediction systems in two benchmarks studies. MultiLoc2 is available as user-friendly and free web-service, available at: http://www-bs.informatik.uni-tuebingen.de/Services/MultiLoc2.

  6. A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction.

    Science.gov (United States)

    Deng, Lei; Fan, Chao; Zeng, Zhiwen

    2017-12-28

    Direct prediction of the three-dimensional (3D) structures of proteins from one-dimensional (1D) sequences is a challenging problem. Significant structural characteristics such as solvent accessibility and contact number are essential for deriving restrains in modeling protein folding and protein 3D structure. Thus, accurately predicting these features is a critical step for 3D protein structure building. In this study, we present DeepSacon, a computational method that can effectively predict protein solvent accessibility and contact number by using a deep neural network, which is built based on stacked autoencoder and a dropout method. The results demonstrate that our proposed DeepSacon achieves a significant improvement in the prediction quality compared with the state-of-the-art methods. We obtain 0.70 three-state accuracy for solvent accessibility, 0.33 15-state accuracy and 0.74 Pearson Correlation Coefficient (PCC) for the contact number on the 5729 monomeric soluble globular protein dataset. We also evaluate the performance on the CASP11 benchmark dataset, DeepSacon achieves 0.68 three-state accuracy and 0.69 PCC for solvent accessibility and contact number, respectively. We have shown that DeepSacon can reliably predict solvent accessibility and contact number with stacked sparse autoencoder and a dropout approach.

  7. ProLanGO: Protein Function Prediction Using Neural Machine Translation Based on a Recurrent Neural Network.

    Science.gov (United States)

    Cao, Renzhi; Freitas, Colton; Chan, Leong; Sun, Miao; Jiang, Haiqing; Chen, Zhangxin

    2017-10-17

    With the development of next generation sequencing techniques, it is fast and cheap to determine protein sequences but relatively slow and expensive to extract useful information from protein sequences because of limitations of traditional biological experimental techniques. Protein function prediction has been a long standing challenge to fill the gap between the huge amount of protein sequences and the known function. In this paper, we propose a novel method to convert the protein function problem into a language translation problem by the new proposed protein sequence language "ProLan" to the protein function language "GOLan", and build a neural machine translation model based on recurrent neural networks to translate "ProLan" language to "GOLan" language. We blindly tested our method by attending the latest third Critical Assessment of Function Annotation (CAFA 3) in 2016, and also evaluate the performance of our methods on selected proteins whose function was released after CAFA competition. The good performance on the training and testing datasets demonstrates that our new proposed method is a promising direction for protein function prediction. In summary, we first time propose a method which converts the protein function prediction problem to a language translation problem and applies a neural machine translation model for protein function prediction.

  8. The effect of dietary protein on reproduction in the mare. VI. Serum progestagen concentrations during pregnancy

    Directory of Open Access Journals (Sweden)

    F.E. Van Niekerk

    1998-07-01

    Full Text Available Sixty-four Thoroughbred and Anglo-Arab mares aged 6-12 years were used, of which 40 were non-lactating and 24 lactating. Foals from these 24 mares were weaned at the age of 6 months. Non-lactating and lactating mares were divided into 4 dietary groups each. The total daily protein intake and the protein quality (essential amino-acid content differed in the 4 groups of non-lactating and 4 groups of lactating mares. The mares were covered and the effect of the quantity and quality of dietary protein on serum progestagen concentrations during pregnancy was studied. A sharp decline in serum progestagen concentrations was recorded in all dietary groups from Days 18 to 40 of pregnancy, with some individual mares reaching values of less than 4 ng/mℓ. Serum progestagen concentrations recorded in some of the non-lactating mares on the low-quality protein diet increased to higher values (p<0.05 than those of mares in the other 3 dietary groups at 35-140 days of pregnancy. A similar trend was observed for the lactating mares on a low-quality protein diet at 30-84 days of pregnancy. No such trends were observed in any of the other dietary groups. High-quality protein supplementation increased serum progestagen concentrations during the 1st 30 days of pregnancy. Lactation depressed serum progestagen concentrations until after the foals were weaned.

  9. Chemical composition of protein concentrate prepared from Yellowfin tuna Thunnus albacares roe by cook-dried process

    Directory of Open Access Journals (Sweden)

    Hyun Ji Lee

    2016-05-01

    Full Text Available Abstract Roe is the term used to describe fish eggs (oocytes gathered in skeins and is one of the most valuable food products from fishery sources. Thus, means of processing are required to convert the underutilized yellowfin tuna roes (YTR into more marketable and acceptable forms as protein concentrate. Roe protein concentrates (RPCs were prepared by cooking condition (boil-dried concentrate, BDC and steam-dried concentrate, SDC, respectively and un-cooking condition (freeze-dried concentrate, FDC from yellowfin tuna roe. The yield of RPCs was in the range from 22.2 to 25.3 g/100 g of roe. RPCs contained protein (72.3–77.3 %, moisture (4.3–5.6 %, lipid (10.6–11.3 % and ash (4.3–5.7 % as the major constituents. The prominent amino acids of RPCs were aspartic acid, 8.7–9.2, glutamic acid, 13.1–13.2, and leucine, 8.5–8.6 g/100 g of protein. Major differences were not observed in each of the amino acid. K, S, Na, and P as minerals were the major elements in RPCs. No difference noted in sodium dodecyl sulfate polyacrylamide gel electrophoresis protein band (15–100 K possibly representing partial hydrolysis of myosin. Therefore, RPCs from YTR could be use potential protein ingredient for human food and animal feeds.

  10. Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins

    DEFF Research Database (Denmark)

    Rognan, D; Lauemoller, S L; Holm, A

    1999-01-01

    A simple and fast free energy scoring function (Fresno) has been developed to predict the binding free energy of peptides to class I major histocompatibility (MHC) proteins. It differs from existing scoring functions mainly by the explicit treatment of ligand desolvation and of unfavorable protein...... coordinates of the MHC-bound peptide have first been determined with an accuracy of about 1-1.5 A. Furthermore, it may be easily recalibrated for any protein-ligand complex.......) and of a series of 16 peptides to H-2K(k). Predictions were more accurate for HLA-A2-binding peptides as the training set had been built from experimentally determined structures. The average error in predicting the binding free energy of the test peptides was 3.1 kJ/mol. For the homology model-derived equation...

  11. Do plasma concentrations of apelin predict prognosis in patients with advanced heart failure?

    Science.gov (United States)

    Dalzell, Jonathan R; Jackson, Colette E; Chong, Kwok S; McDonagh, Theresa A; Gardner, Roy S

    2014-01-01

    Apelin is an endogenous vasodilator and inotrope, plasma concentrations of which are reduced in advanced heart failure (HF). We determined the prognostic significance of plasma concentrations of apelin in advanced HF. Plasma concentrations of apelin were measured in 182 patients with advanced HF secondary to left ventricular systolic dysfunction. The predictive value of apelin for the primary end point of all-cause mortality was assessed over a median follow-up period of 544 (IQR: 196-923) days. In total, 30 patients (17%) reached the primary end point. Of those patients with a plasma apelin concentration above the median, 14 (16%) reached the primary end point compared with 16 (17%) of those with plasma apelin levels below the median (p = NS). NT-proBNP was the most powerful prognostic marker in this population (log rank statistic: 10.37; p = 0.001). Plasma apelin concentrations do not predict medium to long-term prognosis in patients with advanced HF secondary to left ventricular systolic dysfunction.

  12. Global concentration additivity and prediction of mixture toxicities, taking nitrobenzene derivatives as an example.

    Science.gov (United States)

    Li, Tong; Liu, Shu-Shen; Qu, Rui; Liu, Hai-Ling

    2017-10-01

    The toxicity of a mixture depends not only on the mixture concentration level but also on the mixture ratio. For a multiple-component mixture (MCM) system with a definite chemical composition, the mixture toxicity can be predicted only if the global concentration additivity (GCA) is validated. The so-called GCA means that the toxicity of any mixture in the MCM system is the concentration additive, regardless of what its mixture ratio and concentration level. However, many mixture toxicity reports have usually employed one mixture ratio (such as the EC 50 ratio), the equivalent effect concentration ratio (EECR) design, to specify several mixtures. EECR mixtures cannot simulate the concentration diversity and mixture ratio diversity of mixtures in the real environment, and it is impossible to validate the GCA. Therefore, in this paper, the uniform design ray (UD-Ray) was used to select nine mixture ratios (rays) in the mixture system of five nitrobenzene derivatives (NBDs). The representative UD-Ray mixtures can effectively and rationally describe the diversity in the NBD mixture system. The toxicities of the mixtures to Vibrio qinghaiensis sp.-Q67 were determined by the microplate toxicity analysis (MTA). For each UD-Ray mixture, the concentration addition (CA) model was used to validate whether the mixture toxicity is additive. All of the UD-Ray mixtures of five NBDs are global concentration additive. Afterwards, the CA is employed to predict the toxicities of the external mixtures from three EECR mixture rays with the NOEC, EC 30 , and EC 70 ratios. The predictive toxicities are in good agreement with the experimental toxicities, which testifies to the predictability of the mixture toxicity of the NBDs. Copyright © 2017. Published by Elsevier Inc.

  13. osFP: a web server for predicting the oligomeric states of fluorescent proteins.

    Science.gov (United States)

    Simeon, Saw; Shoombuatong, Watshara; Anuwongcharoen, Nuttapat; Preeyanon, Likit; Prachayasittikul, Virapong; Wikberg, Jarl E S; Nantasenamat, Chanin

    2016-01-01

    Currently, monomeric fluorescent proteins (FP) are ideal markers for protein tagging. The prediction of oligomeric states is helpful for enhancing live biomedical imaging. Computational prediction of FP oligomeric states can accelerate the effort of protein engineering efforts of creating monomeric FPs. To the best of our knowledge, this study represents the first computational model for predicting and analyzing FP oligomerization directly from the amino acid sequence. After data curation, an exhaustive data set consisting of 397 non-redundant FP oligomeric states was compiled from the literature. Results from benchmarking of the protein descriptors revealed that the model built with amino acid composition descriptors was the top performing model with accuracy, sensitivity and specificity in excess of 80% and MCC greater than 0.6 for all three data subsets (e.g. training, tenfold cross-validation and external sets). The model provided insights on the important residues governing the oligomerization of FP. To maximize the benefit of the generated predictive model, it was implemented as a web server under the R programming environment. osFP affords a user-friendly interface that can be used to predict the oligomeric state of FP using the protein sequence. The advantage of osFP is that it is platform-independent meaning that it can be accessed via a web browser on any operating system and device. osFP is freely accessible at http://codes.bio/osfp/ while the source code and data set is provided on GitHub at https://github.com/chaninn/osFP/.Graphical Abstract.

  14. Graphical analysis of pH-dependent properties of proteins predicted using PROPKA.

    Science.gov (United States)

    Rostkowski, Michał; Olsson, Mats H M; Søndergaard, Chresten R; Jensen, Jan H

    2011-01-26

    Charge states of ionizable residues in proteins determine their pH-dependent properties through their pKa values. Thus, various theoretical methods to determine ionization constants of residues in biological systems have been developed. One of the more widely used approaches for predicting pKa values in proteins is the PROPKA program, which provides convenient structural rationalization of the predicted pKa values without any additional calculations. The PROPKA Graphical User Interface (GUI) is a new tool for studying the pH-dependent properties of proteins such as charge and stabilization energy. It facilitates a quantitative analysis of pKa values of ionizable residues together with their structural determinants by providing a direct link between the pKa data, predicted by the PROPKA calculations, and the structure via the Visual Molecular Dynamics (VMD) program. The GUI also calculates contributions to the pH-dependent unfolding free energy at a given pH for each ionizable group in the protein. Moreover, the PROPKA-computed pKa values or energy contributions of the ionizable residues in question can be displayed interactively. The PROPKA GUI can also be used for comparing pH-dependent properties of more than one structure at the same time. The GUI considerably extends the analysis and validation possibilities of the PROPKA approach. The PROPKA GUI can conveniently be used to investigate ionizable groups, and their interactions, of residues with significantly perturbed pKa values or residues that contribute to the stabilization energy the most. Charge-dependent properties can be studied either for a single protein or simultaneously with other homologous structures, which makes it a helpful tool, for instance, in protein design studies or structure-based function predictions. The GUI is implemented as a Tcl/Tk plug-in for VMD, and can be obtained online at http://propka.ki.ku.dk/~luca/wiki/index.php/GUI_Web.

  15. Physical and chemical changes in whey protein concentrate stored at elevated temperature and humidity

    Science.gov (United States)

    The chemistry of whey protein concentrate (WPC) under adverse storage conditions was monitored to provide information on shelf life in hot, humid areas. WPC34 (34.9 g protein/100 g) and WPC80 (76.8 g protein/100 g) were stored for up to 18 mo under ambient conditions and at elevated temperature and...

  16. Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence

    DEFF Research Database (Denmark)

    Blom, Nikolaj; Sicheritz-Pontén, Thomas; Gupta, Ramneek

    2004-01-01

    Post-translational modifications (PTMs) occur on almost all proteins analyzed to date. The function of a modified protein is often strongly affected by these modifications and therefore increased knowledge about the potential PTMs of a target protein may increase our understanding of the molecular...... steps by integrating computational approaches into the validation procedures. Many advanced methods for the prediction of PTMs exist and many are made publicly available. We describe our experiences with the development of prediction methods for phosphorylation and glycosylation sites...... and the development of PTM-specific databases. In addition, we discuss novel ideas for PTM visualization (exemplified by kinase landscapes) and improvements for prediction specificity (by using ESS-evolutionary stable sites). As an example, we present a new method for kinase-specific prediction of phosphorylation...

  17. Optimization of elution salt concentration in stepwise elution of protein chromatography using linear gradient elution data. Reducing residual protein A by cation-exchange chromatography in monoclonal antibody purification.

    Science.gov (United States)

    Ishihara, Takashi; Kadoya, Toshihiko; Endo, Naomi; Yamamoto, Shuichi

    2006-05-05

    Our simple method for optimization of the elution salt concentration in stepwise elution was applied to the actual protein separation system, which involves several difficulties such as detection of the target. As a model separation system, reducing residual protein A by cation-exchange chromatography in human monoclonal antibody (hMab) purification was chosen. We carried out linear gradient elution experiments and obtained the data for the peak salt concentration of hMab and residual protein A, respectively. An enzyme-linked immunosorbent assay was applied to the measurement of the residual protein A. From these data, we calculated the distribution coefficient of the hMab and the residual protein A as a function of salt concentration. The optimal salt concentration of stepwise elution to reduce the residual protein A from the hMab was determined based on the relationship between the distribution coefficient and the salt concentration. Using the optimized condition, we successfully performed the separation, resulting in high recovery of hMab and the elimination of residual protein A.

  18. Predicting the binding patterns of hub proteins: a study using yeast protein interaction networks.

    Directory of Open Access Journals (Sweden)

    Carson M Andorf

    Full Text Available Protein-protein interactions are critical to elucidating the role played by individual proteins in important biological pathways. Of particular interest are hub proteins that can interact with large numbers of partners and often play essential roles in cellular control. Depending on the number of binding sites, protein hubs can be classified at a structural level as singlish-interface hubs (SIH with one or two binding sites, or multiple-interface hubs (MIH with three or more binding sites. In terms of kinetics, hub proteins can be classified as date hubs (i.e., interact with different partners at different times or locations or party hubs (i.e., simultaneously interact with multiple partners.Our approach works in 3 phases: Phase I classifies if a protein is likely to bind with another protein. Phase II determines if a protein-binding (PB protein is a hub. Phase III classifies PB proteins as singlish-interface versus multiple-interface hubs and date versus party hubs. At each stage, we use sequence-based predictors trained using several standard machine learning techniques.Our method is able to predict whether a protein is a protein-binding protein with an accuracy of 94% and a correlation coefficient of 0.87; identify hubs from non-hubs with 100% accuracy for 30% of the data; distinguish date hubs/party hubs with 69% accuracy and area under ROC curve of 0.68; and SIH/MIH with 89% accuracy and area under ROC curve of 0.84. Because our method is based on sequence information alone, it can be used even in settings where reliable protein-protein interaction data or structures of protein-protein complexes are unavailable to obtain useful insights into the functional and evolutionary characteristics of proteins and their interactions.We provide a web server for our three-phase approach: http://hybsvm.gdcb.iastate.edu.

  19. Reducing crude protein and rumen degradable protein with a constant concentration of rumen undegradable protein in the diet of dairy cows: Production performance, nutrient digestibility, nitrogen efficiency, and blood metabolites.

    Science.gov (United States)

    Bahrami-Yekdangi, M; Ghorbani, G R; Khorvash, M; Khan, M A; Ghaffari, M H

    2016-02-01

    The goals of ruminant protein nutrition are to provide adequate amounts of RDP for optimal ruminal efficiency and to obtain the desired animal productivity with a minimum amount of dietary CP. The aim of the present study was to examine effects of decreasing dietary protein by decreasing RDP with the optimum concentration of RUP on production performance, nutrient digestibility, N retention, rumen fermentation parameters, and blood metabolites in high-producing Holstein cows in early lactation. Nine multiparous lactating cows (second parities, averaging 50 ± 12 d in milk and milk yield of 48 ± 5 kg/d) were used in a triplicate 3 × 3 Latin square design with 3 rations: 1) a total mixed ration (TMR) containing 16.4% CP (10.9% RDP based on DM), 2) a TMR containing 15.6% CP (10% RDP), and 3) a TMR containing 14.8% CP (9.3% RDP). The level of RUP was constant at 5.5% DM across the treatments. All diets were calculated to supply a postruminal lysine to methionine ratio of about 3:1. Dry matter intake, milk yield and composition, 4% fat-corrected milk, and energy-corrected milk were not significantly affected by decreasing dietary CP and RDP levels. Cows fed 16.4% CP diets had greater ( RUP and fecal N excretion (g/d) did not change. Apparent digestibility of nutrients, ruminal pH, and NH-N concentration were not affected with decreasing dietary CP and RDP levels. Apparent N efficiency increased, and RDP N intake and predicted urine N output decreased with decreased concentration of dietary CP and RDP in the diets ( RUP.

  20. 3dRPC: a web server for 3D RNA-protein structure prediction.

    Science.gov (United States)

    Huang, Yangyu; Li, Haotian; Xiao, Yi

    2018-04-01

    RNA-protein interactions occur in many biological processes. To understand the mechanism of these interactions one needs to know three-dimensional (3D) structures of RNA-protein complexes. 3dRPC is an algorithm for prediction of 3D RNA-protein complex structures and consists of a docking algorithm RPDOCK and a scoring function 3dRPC-Score. RPDOCK is used to sample possible complex conformations of an RNA and a protein by calculating the geometric and electrostatic complementarities and stacking interactions at the RNA-protein interface according to the features of atom packing of the interface. 3dRPC-Score is a knowledge-based potential that uses the conformations of nucleotide-amino-acid pairs as statistical variables and that is used to choose the near-native complex-conformations obtained from the docking method above. Recently, we built a web server for 3dRPC. The users can easily use 3dRPC without installing it locally. RNA and protein structures in PDB (Protein Data Bank) format are the only needed input files. It can also incorporate the information of interface residues or residue-pairs obtained from experiments or theoretical predictions to improve the prediction. The address of 3dRPC web server is http://biophy.hust.edu.cn/3dRPC. yxiao@hust.edu.cn.

  1. Influence of energy concentration and source on the utilization of feed protein and NPN in lambs. 3. Allantoin excretion and microbial protein synthesis

    Energy Technology Data Exchange (ETDEWEB)

    Ulbrich, M; Geissler, C; Bassuny, S M; Borowiec, F; Hoffmann, M

    1989-06-01

    In an N balance experiment with male crossbreeding lambs at an age of 3-4 months four different rations were given differing in energy concentration (high > 700 EFU/sub cattle//kg DM and low < 650 EFU/sub cattle//kg DM) and in the energy source (sugar, starch or crude fibre) with crude protein intake being almost equal. The rations contained 2% urea. Microbial protein synthesis in the rumen was assessed according to Roth and Kichgessner (1978) (1), Rys et al. (1975) (2) and Bickel-Baumann and Landis (1986) (3) on the basis of allantoin excretion in urine. The highest ruminal protein synthesis quotas were 868-921 mg protein N per kg LW/sup 0.75/ in (2). In (3) 723-766 mg protein N/kg LW /sup 0.75/ were synthesized. From the /sup 15/N labelling of the supplemented urea and the excreted allantoin it could be calculated that 26-40% of the microbial protein resulted from the urea-N of the ration. Despite a high crude protein content of the ration of between 16 and 17% in the DM and a relation of NPN: pure protein of 0.95 the utilization of the NPN in the ration was relatively high but slightly lower than the utilization of pure protein. The variants with higher energy concentration showed as a tendency higher allantoin excretion in spite of slightly lower dry matter intake and a slightly higher NPN utilization than the variants with lower energy concentration. (author).

  2. Replacing soybean meal with gelatin extracted from cow skin and corn protein concentrate as a protein source in broiler diets.

    Science.gov (United States)

    Khalaji, S; Manafi, M; Olfati, Z; Hedyati, M; Latifi, M; Veysi, A

    2016-02-01

    Two experiments were conducted to investigate the effects of replacing soybean meal with gelatin extracted from cow skin and corn protein concentrate as a protein source in broiler diets. Experiments were carried out as a completely randomized design where each experiment involved 4 treatments of 6 replicates and 10 chicks in each pen. Soybean meal proteins in a corn-soy control diet were replaced with 15, 30, and 45% of cow skin gelatin (CSG) or corn protein concentrate (CPC), respectively, in experiments 1 and 2. BW and cumulative feed intake were measured at 7, 21, and 42 d of age. Blood characteristics, relative organs weight and length, ileal digesta viscosity, ileal morphology, and cecal coliform and Salmonella population were measured at 42 d of age. Apparent total tract digestibility of protein was determined during 35 to 42 d of age. Replacement of soybean meal with CSG severely inhibited BW gain, decreased feed intake, and increased FCR in broilers during the experimental period (P ≤ 0.01). The inclusion of CPC reduced BW and increased FCR significantly (P ≤ 0.05) at 21 and 42 d of age without any consequence in feed intake. Protein digestibility was reduced and ileal digesta viscosity was increased linearly by increasing the amount of CSG and CPC in the control diet (P ≤ 0.01). Replacement of soybean meal with CSG and CPC did not significantly alter blood cell profile and plasma phosphorus, creatinine, blood urea nitrogen, Aspartate transaminase, and HDL and LDL cholesterol concentration. The inclusion of CSG linearly (P ≤ 0.05) increased plasma uric acid concentration and alkaline phosphatase activity. Triglyceride and cholesterol levels were decreased significantly (P ≤ 0.05) when the amount of CSG replacement was 15%. The results of this experiment showed that using CSG and CPC negatively affects broiler performance and therefore is not a suitable alternative to soybean meal in commercial diets. © 2015 Poultry Science Association Inc.

  3. Predicting arsenic concentrations in groundwater of San Luis Valley, Colorado: implications for individual-level lifetime exposure assessment.

    Science.gov (United States)

    James, Katherine A; Meliker, Jaymie R; Buttenfield, Barbara E; Byers, Tim; Zerbe, Gary O; Hokanson, John E; Marshall, Julie A

    2014-08-01

    Consumption of inorganic arsenic in drinking water at high levels has been associated with chronic diseases. Risk is less clear at lower levels of arsenic, in part due to difficulties in estimating exposure. Herein we characterize spatial and temporal variability of arsenic concentrations and develop models for predicting aquifer arsenic concentrations in the San Luis Valley, Colorado, an area of moderately elevated arsenic in groundwater. This study included historical water samples with total arsenic concentrations from 595 unique well locations. A longitudinal analysis established temporal stability in arsenic levels in individual wells. The mean arsenic levels for a random sample of 535 wells were incorporated into five kriging models to predict groundwater arsenic concentrations at any point in time. A separate validation dataset (n = 60 wells) was used to identify the model with strongest predictability. Findings indicate that arsenic concentrations are temporally stable (r = 0.88; 95 % CI 0.83-0.92 for samples collected from the same well 15-25 years apart) and the spatial model created using ordinary kriging best predicted arsenic concentrations (ρ = 0.72 between predicted and observed validation data). These findings illustrate the value of geostatistical modeling of arsenic and suggest the San Luis Valley is a good region for conducting epidemiologic studies of groundwater metals because of the ability to accurately predict variation in groundwater arsenic concentrations.

  4. A novel Multi-Agent Ada-Boost algorithm for predicting protein structural class with the information of protein secondary structure.

    Science.gov (United States)

    Fan, Ming; Zheng, Bin; Li, Lihua

    2015-10-01

    Knowledge of the structural class of a given protein is important for understanding its folding patterns. Although a lot of efforts have been made, it still remains a challenging problem for prediction of protein structural class solely from protein sequences. The feature extraction and classification of proteins are the main problems in prediction. In this research, we extended our earlier work regarding these two aspects. In protein feature extraction, we proposed a scheme by calculating the word frequency and word position from sequences of amino acid, reduced amino acid, and secondary structure. For an accurate classification of the structural class of protein, we developed a novel Multi-Agent Ada-Boost (MA-Ada) method by integrating the features of Multi-Agent system into Ada-Boost algorithm. Extensive experiments were taken to test and compare the proposed method using four benchmark datasets in low homology. The results showed classification accuracies of 88.5%, 96.0%, 88.4%, and 85.5%, respectively, which are much better compared with the existing methods. The source code and dataset are available on request.

  5. Topology and weights in a protein domain interaction network – a novel way to predict protein interactions

    Directory of Open Access Journals (Sweden)

    Wuchty Stefan

    2006-05-01

    Full Text Available Abstract Background While the analysis of unweighted biological webs as diverse as genetic, protein and metabolic networks allowed spectacular insights in the inner workings of a cell, biological networks are not only determined by their static grid of links. In fact, we expect that the heterogeneity in the utilization of connections has a major impact on the organization of cellular activities as well. Results We consider a web of interactions between protein domains of the Protein Family database (PFAM, which are weighted by a probability score. We apply metrics that combine the static layout and the weights of the underlying interactions. We observe that unweighted measures as well as their weighted counterparts largely share the same trends in the underlying domain interaction network. However, we only find weak signals that weights and the static grid of interactions are connected entities. Therefore assuming that a protein interaction is governed by a single domain interaction, we observe strong and significant correlations of the highest scoring domain interaction and the confidence of protein interactions in the underlying interactions of yeast and fly. Modeling an interaction between proteins if we find a high scoring protein domain interaction we obtain 1, 428 protein interactions among 361 proteins in the human malaria parasite Plasmodium falciparum. Assessing their quality by a logistic regression method we observe that increasing confidence of predicted interactions is accompanied by high scoring domain interactions and elevated levels of functional similarity and evolutionary conservation. Conclusion Our results indicate that probability scores are randomly distributed, allowing to treat static grid and weights of domain interactions as separate entities. In particular, these finding confirms earlier observations that a protein interaction is a matter of a single interaction event on domain level. As an immediate application, we

  6. The predictive nature of transcript expression levels on protein expression in adult human brain.

    Science.gov (United States)

    Bauernfeind, Amy L; Babbitt, Courtney C

    2017-04-24

    Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R 2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.

  7. Critical assessment of methods of protein structure prediction (CASP)-round IX

    KAUST Repository

    Moult, John; Fidelis, Krzysztof; Kryshtafovych, Andriy; Tramontano, Anna

    2011-01-01

    This article is an introduction to the special issue of the journal PROTEINS, dedicated to the ninth Critical Assessment of Structure Prediction (CASP) experiment to assess the state of the art in protein structure modeling. The article describes the conduct of the experiment, the categories of prediction included, and outlines the evaluation and assessment procedures. Methods for modeling protein structure continue to advance, although at a more modest pace than in the early CASP experiments. CASP developments of note are indications of improvement in model accuracy for some classes of target, an improved ability to choose the most accurate of a set of generated models, and evidence of improvement in accuracy for short "new fold" models. In addition, a new analysis of regions of models not derivable from the most obvious template structure has revealed better performance than expected.

  8. Development and evaluation of a regression-based model to predict cesium concentration ratios for freshwater fish

    International Nuclear Information System (INIS)

    Pinder, John E.; Rowan, David J.; Rasmussen, Joseph B.; Smith, Jim T.; Hinton, Thomas G.; Whicker, F.W.

    2014-01-01

    Data from published studies and World Wide Web sources were combined to produce and test a regression model to predict Cs concentration ratios for freshwater fish species. The accuracies of predicted concentration ratios, which were computed using 1) species trophic levels obtained from random resampling of known food items and 2) K concentrations in the water for 207 fish from 44 species and 43 locations, were tested against independent observations of ratios for 57 fish from 17 species from 25 locations. Accuracy was assessed as the percent of observed to predicted ratios within factors of 2 or 3. Conservatism, expressed as the lack of under prediction, was assessed as the percent of observed to predicted ratios that were less than 2 or less than 3. The model's median observed to predicted ratio was 1.26, which was not significantly different from 1, and 50% of the ratios were between 0.73 and 1.85. The percentages of ratios within factors of 2 or 3 were 67 and 82%, respectively. The percentages of ratios that were <2 or <3 were 79 and 88%, respectively. An example for Perca fluviatilis demonstrated that increased prediction accuracy could be obtained when more detailed knowledge of diet was available to estimate trophic level. - Highlights: • We developed a model to predict Cs concentration ratios for freshwater fish species. • The model uses only two variables to predict a species CR for any location. • One variable is the K concentration in the freshwater. • The other is a species mean trophic level measure easily obtained from (fishbase.org). • The median observed to predicted ratio for 57 independent test cases was 1.26

  9. Aquatic Exposure Predictions of Insecticide Field Concentrations Using a Multimedia Mass-Balance Model.

    Science.gov (United States)

    Knäbel, Anja; Scheringer, Martin; Stehle, Sebastian; Schulz, Ralf

    2016-04-05

    Highly complex process-driven mechanistic fate and transport models and multimedia mass balance models can be used for the exposure prediction of pesticides in different environmental compartments. Generally, both types of models differ in spatial and temporal resolution. Process-driven mechanistic fate models are very complex, and calculations are time-intensive. This type of model is currently used within the European regulatory pesticide registration (FOCUS). Multimedia mass-balance models require fewer input parameters to calculate concentration ranges and the partitioning between different environmental media. In this study, we used the fugacity-based small-region model (SRM) to calculate predicted environmental concentrations (PEC) for 466 cases of insecticide field concentrations measured in European surface waters. We were able to show that the PECs of the multimedia model are more protective in comparison to FOCUS. In addition, our results show that the multimedia model results have a higher predictive power to simulate varying field concentrations at a higher level of field relevance. The adaptation of the model scenario to actual field conditions suggests that the performance of the SRM increases when worst-case conditions are replaced by real field data. Therefore, this study shows that a less complex modeling approach than that used in the regulatory risk assessment exhibits a higher level of protectiveness and predictiveness and that there is a need to develop and evaluate new ecologically relevant scenarios in the context of pesticide exposure modeling.

  10. NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features

    Science.gov (United States)

    Petersen, Bent; Lundegaard, Claus; Petersen, Thomas Nordahl

    2010-01-01

    β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC  = 0.50, Qtotal = 82.1%, sensitivity  = 75.6%, PPV  = 68.8% and AUC  = 0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17 – 0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. Conclusion The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences. PMID:21152409

  11. DNCON2: improved protein contact prediction using two-level deep convolutional neural networks.

    Science.gov (United States)

    Adhikari, Badri; Hou, Jie; Cheng, Jianlin

    2018-05-01

    Significant improvements in the prediction of protein residue-residue contacts are observed in the recent years. These contacts, predicted using a variety of coevolution-based and machine learning methods, are the key contributors to the recent progress in ab initio protein structure prediction, as demonstrated in the recent CASP experiments. Continuing the development of new methods to reliably predict contact maps is essential to further improve ab initio structure prediction. In this paper we discuss DNCON2, an improved protein contact map predictor based on two-level deep convolutional neural networks. It consists of six convolutional neural networks-the first five predict contacts at 6, 7.5, 8, 8.5 and 10 Å distance thresholds, and the last one uses these five predictions as additional features to predict final contact maps. On the free-modeling datasets in CASP10, 11 and 12 experiments, DNCON2 achieves mean precisions of 35, 50 and 53.4%, respectively, higher than 30.6% by MetaPSICOV on CASP10 dataset, 34% by MetaPSICOV on CASP11 dataset and 46.3% by Raptor-X on CASP12 dataset, when top L/5 long-range contacts are evaluated. We attribute the improved performance of DNCON2 to the inclusion of short- and medium-range contacts into training, two-level approach to prediction, use of the state-of-the-art optimization and activation functions, and a novel deep learning architecture that allows each filter in a convolutional layer to access all the input features of a protein of arbitrary length. The web server of DNCON2 is at http://sysbio.rnet.missouri.edu/dncon2/ where training and testing datasets as well as the predictions for CASP10, 11 and 12 free-modeling datasets can also be downloaded. Its source code is available at https://github.com/multicom-toolbox/DNCON2/. chengji@missouri.edu. Supplementary data are available at Bioinformatics online.

  12. Evaluating a variety of text-mined features for automatic protein function prediction with GOstruct.

    Science.gov (United States)

    Funk, Christopher S; Kahanda, Indika; Ben-Hur, Asa; Verspoor, Karin M

    2015-01-01

    Most computational methods that predict protein function do not take advantage of the large amount of information contained in the biomedical literature. In this work we evaluate both ontology term co-mention and bag-of-words features mined from the biomedical literature and analyze their impact in the context of a structured output support vector machine model, GOstruct. We find that even simple literature based features are useful for predicting human protein function (F-max: Molecular Function =0.408, Biological Process =0.461, Cellular Component =0.608). One advantage of using literature features is their ability to offer easy verification of automated predictions. We find through manual inspection of misclassifications that some false positive predictions could be biologically valid predictions based upon support extracted from the literature. Additionally, we present a "medium-throughput" pipeline that was used to annotate a large subset of co-mentions; we suggest that this strategy could help to speed up the rate at which proteins are curated.

  13. Prediction of host - pathogen protein interactions between Mycobacterium tuberculosis and Homo sapiens using sequence motifs.

    Science.gov (United States)

    Huo, Tong; Liu, Wei; Guo, Yu; Yang, Cheng; Lin, Jianping; Rao, Zihe

    2015-03-26

    Emergence of multiple drug resistant strains of M. tuberculosis (MDR-TB) threatens to derail global efforts aimed at reigning in the pathogen. Co-infections of M. tuberculosis with HIV are difficult to treat. To counter these new challenges, it is essential to study the interactions between M. tuberculosis and the host to learn how these bacteria cause disease. We report a systematic flow to predict the host pathogen interactions (HPIs) between M. tuberculosis and Homo sapiens based on sequence motifs. First, protein sequences were used as initial input for identifying the HPIs by 'interolog' method. HPIs were further filtered by prediction of domain-domain interactions (DDIs). Functional annotations of protein and publicly available experimental results were applied to filter the remaining HPIs. Using such a strategy, 118 pairs of HPIs were identified, which involve 43 proteins from M. tuberculosis and 48 proteins from Homo sapiens. A biological interaction network between M. tuberculosis and Homo sapiens was then constructed using the predicted inter- and intra-species interactions based on the 118 pairs of HPIs. Finally, a web accessible database named PATH (Protein interactions of M. tuberculosis and Human) was constructed to store these predicted interactions and proteins. This interaction network will facilitate the research on host-pathogen protein-protein interactions, and may throw light on how M. tuberculosis interacts with its host.

  14. DeepGO: predicting protein functions from sequence and interactions using a deep ontology-aware classifier.

    Science.gov (United States)

    Kulmanov, Maxat; Khan, Mohammed Asif; Hoehndorf, Robert; Wren, Jonathan

    2018-02-15

    A large number of protein sequences are becoming available through the application of novel high-throughput sequencing technologies. Experimental functional characterization of these proteins is time-consuming and expensive, and is often only done rigorously for few selected model organisms. Computational function prediction approaches have been suggested to fill this gap. The functions of proteins are classified using the Gene Ontology (GO), which contains over 40 000 classes. Additionally, proteins have multiple functions, making function prediction a large-scale, multi-class, multi-label problem. We have developed a novel method to predict protein function from sequence. We use deep learning to learn features from protein sequences as well as a cross-species protein-protein interaction network. Our approach specifically outputs information in the structure of the GO and utilizes the dependencies between GO classes as background information to construct a deep learning model. We evaluate our method using the standards established by the Computational Assessment of Function Annotation (CAFA) and demonstrate a significant improvement over baseline methods such as BLAST, in particular for predicting cellular locations. Web server: http://deepgo.bio2vec.net, Source code: https://github.com/bio-ontology-research-group/deepgo. robert.hoehndorf@kaust.edu.sa. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  15. Reduced Fragment Diversity for Alpha and Alpha-Beta Protein Structure Prediction using Rosetta.

    Science.gov (United States)

    Abbass, Jad; Nebel, Jean-Christophe

    2017-01-01

    Protein structure prediction is considered a main challenge in computational biology. The biannual international competition, Critical Assessment of protein Structure Prediction (CASP), has shown in its eleventh experiment that free modelling target predictions are still beyond reliable accuracy, therefore, much effort should be made to improve ab initio methods. Arguably, Rosetta is considered as the most competitive method when it comes to targets with no homologues. Relying on fragments of length 9 and 3 from known structures, Rosetta creates putative structures by assembling candidate fragments. Generally, the structure with the lowest energy score, also known as first model, is chosen to be the "predicted one". A thorough study has been conducted on the role and diversity of 3-mers involved in Rosetta's model "refinement" phase. Usage of the standard number of 3-mers - i.e. 200 - has been shown to degrade alpha and alpha-beta protein conformations initially achieved by assembling 9-mers. Therefore, a new prediction pipeline is proposed for Rosetta where the "refinement" phase is customised according to a target's structural class prediction. Over 8% improvement in terms of first model structure accuracy is reported for alpha and alpha-beta classes when decreasing the number of 3- mers. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  16. PFP: Automated prediction of gene ontology functional annotations with confidence scores using protein sequence data.

    Science.gov (United States)

    Hawkins, Troy; Chitale, Meghana; Luban, Stanislav; Kihara, Daisuke

    2009-02-15

    Protein function prediction is a central problem in bioinformatics, increasing in importance recently due to the rapid accumulation of biological data awaiting interpretation. Sequence data represents the bulk of this new stock and is the obvious target for consideration as input, as newly sequenced organisms often lack any other type of biological characterization. We have previously introduced PFP (Protein Function Prediction) as our sequence-based predictor of Gene Ontology (GO) functional terms. PFP interprets the results of a PSI-BLAST search by extracting and scoring individual functional attributes, searching a wide range of E-value sequence matches, and utilizing conventional data mining techniques to fill in missing information. We have shown it to be effective in predicting both specific and low-resolution functional attributes when sufficient data is unavailable. Here we describe (1) significant improvements to the PFP infrastructure, including the addition of prediction significance and confidence scores, (2) a thorough benchmark of performance and comparisons to other related prediction methods, and (3) applications of PFP predictions to genome-scale data. We applied PFP predictions to uncharacterized protein sequences from 15 organisms. Among these sequences, 60-90% could be annotated with a GO molecular function term at high confidence (>or=80%). We also applied our predictions to the protein-protein interaction network of the Malaria plasmodium (Plasmodium falciparum). High confidence GO biological process predictions (>or=90%) from PFP increased the number of fully enriched interactions in this dataset from 23% of interactions to 94%. Our benchmark comparison shows significant performance improvement of PFP relative to GOtcha, InterProScan, and PSI-BLAST predictions. This is consistent with the performance of PFP as the overall best predictor in both the AFP-SIG '05 and CASP7 function (FN) assessments. PFP is available as a web service at http

  17. Predicting adverse drug reaction profiles by integrating protein interaction networks with drug structures.

    Science.gov (United States)

    Huang, Liang-Chin; Wu, Xiaogang; Chen, Jake Y

    2013-01-01

    The prediction of adverse drug reactions (ADRs) has become increasingly important, due to the rising concern on serious ADRs that can cause drugs to fail to reach or stay in the market. We proposed a framework for predicting ADR profiles by integrating protein-protein interaction (PPI) networks with drug structures. We compared ADR prediction performances over 18 ADR categories through four feature groups-only drug targets, drug targets with PPI networks, drug structures, and drug targets with PPI networks plus drug structures. The results showed that the integration of PPI networks and drug structures can significantly improve the ADR prediction performance. The median AUC values for the four groups were 0.59, 0.61, 0.65, and 0.70. We used the protein features in the best two models, "Cardiac disorders" (median-AUC: 0.82) and "Psychiatric disorders" (median-AUC: 0.76), to build ADR-specific PPI networks with literature supports. For validation, we examined 30 drugs withdrawn from the U.S. market to see if our approach can predict their ADR profiles and explain why they were withdrawn. Except for three drugs having ADRs in the categories we did not predict, 25 out of 27 withdrawn drugs (92.6%) having severe ADRs were successfully predicted by our approach. © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Proteins and carbohydrates in nipple aspirate fluid predict the presence of atypia and cancer in women requiring diagnostic breast biopsy

    International Nuclear Information System (INIS)

    Qin, Wenyi; Gui, Gerald; Zhang, Ke; Twelves, Dominique; Kliethermes, Beth; Sauter, Edward R

    2012-01-01

    Herein we present the results of two related investigations. The first study determined if concentrations in breast nipple discharge (ND) of two proteins (urinary plasminogen activator, uPA and its inhibitor, PAI-1) predicted the presence of breast atypia and cancer in pre- and/or postmenopausal women requiring surgery because of a suspicious breast lesion. The second study assessed if these proteins increased the predictive ability of a carbohydrate (Thomsen Friedenreich, TF) which we previously demonstrated predicted the presence of disease in postmenopausal women requiring surgery. In the first study we prospectively enrolled 79 participants from whom we collected ND, measured uPA and PAI-1 and correlated expression with pathologic findings. In the second study we analyzed 35 (uPA and PAI-1 in 24, uPA in an additional 11) ND samples collected from different participants requiring breast surgery, all of whom also had TF results. uPA expression was higher in pre- and PAI-1 in postmenopausal women with 1) cancer (DCIS or invasive) vs. either no cancer (atypia or benign pathology, p = .018 and .025, respectively), or benign pathology (p = .017 and .033, respectively); and 2) abnormal (atypia or cancer) versus benign pathology (p = .018 and .052, respectively). High uPA and PAI-1 concentrations and age were independent predictors of disease in premenopausal women, with an area under the curve (AUC) of 83-87% when comparing diseased vs. benign pathology. uPA, TF, and age correctly classified 35 pre- and postmenopausal women as having disease or not 84-91% of the time, whereas combining uPA+PAI-1+TF correctly classified 24 women 97-100% of the time. uPA and PAI-1 concentrations in ND were higher in women with atypia and cancer compared to women with benign disease. Combining uPA, PAI-1 and TF in the assessment of women requiring diagnostic breast surgery maximized disease prediction. The assessment of these markers may prove useful in early breast cancer detection

  19. Prediction of endoplasmic reticulum resident proteins using fragmented amino acid composition and support vector machine

    Directory of Open Access Journals (Sweden)

    Ravindra Kumar

    2017-09-01

    Full Text Available Background The endoplasmic reticulum plays an important role in many cellular processes, which includes protein synthesis, folding and post-translational processing of newly synthesized proteins. It is also the site for quality control of misfolded proteins and entry point of extracellular proteins to the secretory pathway. Hence at any given point of time, endoplasmic reticulum contains two different cohorts of proteins, (i proteins involved in endoplasmic reticulum-specific function, which reside in the lumen of the endoplasmic reticulum, called as endoplasmic reticulum resident proteins and (ii proteins which are in process of moving to the extracellular space. Thus, endoplasmic reticulum resident proteins must somehow be distinguished from newly synthesized secretory proteins, which pass through the endoplasmic reticulum on their way out of the cell. Approximately only 50% of the proteins used in this study as training data had endoplasmic reticulum retention signal, which shows that these signals are not essentially present in all endoplasmic reticulum resident proteins. This also strongly indicates the role of additional factors in retention of endoplasmic reticulum-specific proteins inside the endoplasmic reticulum. Methods This is a support vector machine based method, where we had used different forms of protein features as inputs for support vector machine to develop the prediction models. During training leave-one-out approach of cross-validation was used. Maximum performance was obtained with a combination of amino acid compositions of different part of proteins. Results In this study, we have reported a novel support vector machine based method for predicting endoplasmic reticulum resident proteins, named as ERPred. During training we achieved a maximum accuracy of 81.42% with leave-one-out approach of cross-validation. When evaluated on independent dataset, ERPred did prediction with sensitivity of 72.31% and specificity of 83

  20. Predicting highly-connected hubs in protein interaction networks by QSAR and biological data descriptors

    Science.gov (United States)

    Hsing, Michael; Byler, Kendall; Cherkasov, Artem

    2009-01-01

    Hub proteins (those engaged in most physical interactions in a protein interaction network (PIN) have recently gained much research interest due to their essential role in mediating cellular processes and their potential therapeutic value. It is straightforward to identify hubs if the underlying PIN is experimentally determined; however, theoretical hub prediction remains a very challenging task, as physicochemical properties that differentiate hubs from less connected proteins remain mostly uncharacterized. To adequately distinguish hubs from non-hub proteins we have utilized over 1300 protein descriptors, some of which represent QSAR (quantitative structure-activity relationship) parameters, and some reflect sequence-derived characteristics of proteins including domain composition and functional annotations. Those protein descriptors, together with available protein interaction data have been processed by a machine learning method (boosting trees) and resulted in the development of hub classifiers that are capable of predicting highly interacting proteins for four model organisms: Escherichia coli, Saccharomyces cerevisiae, Drosophila melanogaster and Homo sapiens. More importantly, through the analyses of the most relevant protein descriptors, we are able to demonstrate that hub proteins not only share certain common physicochemical and structural characteristics that make them different from non-hub counterparts, but they also exhibit species-specific characteristics that should be taken into account when analyzing different PINs. The developed prediction models can be used for determining highly interacting proteins in the four studied species to assist future proteomics experiments and PIN analyses. Availability The source code and executable program of the hub classifier are available for download at: http://www.cnbi2.ca/hub-analysis/ PMID:20198194

  1. Analysis of deep learning methods for blind protein contact prediction in CASP12.

    Science.gov (United States)

    Wang, Sheng; Sun, Siqi; Xu, Jinbo

    2018-03-01

    Here we present the results of protein contact prediction achieved in CASP12 by our RaptorX-Contact server, which is an early implementation of our deep learning method for contact prediction. On a set of 38 free-modeling target domains with a median family size of around 58 effective sequences, our server obtained an average top L/5 long- and medium-range contact accuracy of 47% and 44%, respectively (L = length). A complete implementation has an average accuracy of 59% and 57%, respectively. Our deep learning method formulates contact prediction as a pixel-level image labeling problem and simultaneously predicts all residue pairs of a protein using a combination of two deep residual neural networks, taking as input the residue conservation information, predicted secondary structure and solvent accessibility, contact potential, and coevolution information. Our approach differs from existing methods mainly in (1) formulating contact prediction as a pixel-level image labeling problem instead of an image-level classification problem; (2) simultaneously predicting all contacts of an individual protein to make effective use of contact occurrence patterns; and (3) integrating both one-dimensional and two-dimensional deep convolutional neural networks to effectively learn complex sequence-structure relationship including high-order residue correlation. This paper discusses the RaptorX-Contact pipeline, both contact prediction and contact-based folding results, and finally the strength and weakness of our method. © 2017 Wiley Periodicals, Inc.

  2. Protein Concentration in Milk Formula, Growth, and Later Risk of Obesity: A Systematic Review

    NARCIS (Netherlands)

    Patro-Gołąb, Bernadeta; Zalewski, Bartłomiej M.; Kouwenhoven, Stefanie M. P.; Karaś, Jacek; Koletzko, Berthold; van Goudoever, Johannes Bernard; Szajewska, Hania

    2016-01-01

    Background: Protein intake may influence important health outcomes in later life. Objective: The objective of this study was to investigate current evidence on the effects of infant formulas and follow-on formulas with different protein concentrations on infants' and children's growth, body

  3. Structural similarity-based predictions of protein interactions between HIV-1 and Homo sapiens

    Directory of Open Access Journals (Sweden)

    Gomez Shawn M

    2010-04-01

    Full Text Available Abstract Background In the course of infection, viruses such as HIV-1 must enter a cell, travel to sites where they can hijack host machinery to transcribe their genes and translate their proteins, assemble, and then leave the cell again, all while evading the host immune system. Thus, successful infection depends on the pathogen's ability to manipulate the biological pathways and processes of the organism it infects. Interactions between HIV-encoded and human proteins provide one means by which HIV-1 can connect into cellular pathways to carry out these survival processes. Results We developed and applied a computational approach to predict interactions between HIV and human proteins based on structural similarity of 9 HIV-1 proteins to human proteins having known interactions. Using functional data from RNAi studies as a filter, we generated over 2000 interaction predictions between HIV proteins and 406 unique human proteins. Additional filtering based on Gene Ontology cellular component annotation reduced the number of predictions to 502 interactions involving 137 human proteins. We find numerous known interactions as well as novel interactions showing significant functional relevance based on supporting Gene Ontology and literature evidence. Conclusions Understanding the interplay between HIV-1 and its human host will help in understanding the viral lifecycle and the ways in which this virus is able to manipulate its host. The results shown here provide a potential set of interactions that are amenable to further experimental manipulation as well as potential targets for therapeutic intervention.

  4. Artificial Intelligence in Prediction of Secondary Protein Structure Using CB513 Database

    Science.gov (United States)

    Avdagic, Zikrija; Purisevic, Elvir; Omanovic, Samir; Coralic, Zlatan

    2009-01-01

    In this paper we describe CB513 a non-redundant dataset, suitable for development of algorithms for prediction of secondary protein structure. A program was made in Borland Delphi for transforming data from our dataset to make it suitable for learning of neural network for prediction of secondary protein structure implemented in MATLAB Neural-Network Toolbox. Learning (training and testing) of neural network is researched with different sizes of windows, different number of neurons in the hidden layer and different number of training epochs, while using dataset CB513. PMID:21347158

  5. Volumetric interpretation of protein adsorption: interfacial packing of protein adsorbed to hydrophobic surfaces from surface-saturating solution concentrations.

    Science.gov (United States)

    Kao, Ping; Parhi, Purnendu; Krishnan, Anandi; Noh, Hyeran; Haider, Waseem; Tadigadapa, Srinivas; Allara, David L; Vogler, Erwin A

    2011-02-01

    The maximum capacity of a hydrophobic adsorbent is interpreted in terms of square or hexagonal (cubic and face-centered-cubic, FCC) interfacial packing models of adsorbed blood proteins in a way that accommodates experimental measurements by the solution-depletion method and quartz-crystal-microbalance (QCM) for the human proteins serum albumin (HSA, 66 kDa), immunoglobulin G (IgG, 160 kDa), fibrinogen (Fib, 341 kDa), and immunoglobulin M (IgM, 1000 kDa). A simple analysis shows that adsorbent capacity is capped by a fixed mass/volume (e.g. mg/mL) surface-region (interphase) concentration and not molar concentration. Nearly analytical agreement between the packing models and experiment suggests that, at surface saturation, above-mentioned proteins assemble within the interphase in a manner that approximates a well-ordered array. HSA saturates a hydrophobic adsorbent with the equivalent of a single square or hexagonally-packed layer of hydrated molecules whereas the larger proteins occupy two-or-more layers, depending on the specific protein under consideration and analytical method used to measure adsorbate mass (solution depletion or QCM). Square or hexagonal (cubic and FCC) packing models cannot be clearly distinguished by comparison to experimental data. QCM measurement of adsorbent capacity is shown to be significantly different than that measured by solution depletion for similar hydrophobic adsorbents. The underlying reason is traced to the fact that QCM measures contribution of both core protein, water of hydration, and interphase water whereas solution depletion measures only the contribution of core protein. It is further shown that thickness of the interphase directly measured by QCM systematically exceeds that inferred from solution-depletion measurements, presumably because the static model used to interpret solution depletion does not accurately capture the complexities of the viscoelastic interfacial environment probed by QCM. Copyright © 2010

  6. RaptorX-Property: a web server for protein structure property prediction.

    Science.gov (United States)

    Wang, Sheng; Li, Wei; Liu, Shiwang; Xu, Jinbo

    2016-07-08

    RaptorX Property (http://raptorx2.uchicago.edu/StructurePropertyPred/predict/) is a web server predicting structure property of a protein sequence without using any templates. It outperforms other servers, especially for proteins without close homologs in PDB or with very sparse sequence profile (i.e. carries little evolutionary information). This server employs a powerful in-house deep learning model DeepCNF (Deep Convolutional Neural Fields) to predict secondary structure (SS), solvent accessibility (ACC) and disorder regions (DISO). DeepCNF not only models complex sequence-structure relationship by a deep hierarchical architecture, but also interdependency between adjacent property labels. Our experimental results show that, tested on CASP10, CASP11 and the other benchmarks, this server can obtain ∼84% Q3 accuracy for 3-state SS, ∼72% Q8 accuracy for 8-state SS, ∼66% Q3 accuracy for 3-state solvent accessibility, and ∼0.89 area under the ROC curve (AUC) for disorder prediction. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  7. Predicting protein folding pathways at the mesoscopic level based on native interactions between secondary structure elements

    Directory of Open Access Journals (Sweden)

    Sze Sing-Hoi

    2008-07-01

    Full Text Available Abstract Background Since experimental determination of protein folding pathways remains difficult, computational techniques are often used to simulate protein folding. Most current techniques to predict protein folding pathways are computationally intensive and are suitable only for small proteins. Results By assuming that the native structure of a protein is known and representing each intermediate conformation as a collection of fully folded structures in which each of them contains a set of interacting secondary structure elements, we show that it is possible to significantly reduce the conformation space while still being able to predict the most energetically favorable folding pathway of large proteins with hundreds of residues at the mesoscopic level, including the pig muscle phosphoglycerate kinase with 416 residues. The model is detailed enough to distinguish between different folding pathways of structurally very similar proteins, including the streptococcal protein G and the peptostreptococcal protein L. The model is also able to recognize the differences between the folding pathways of protein G and its two structurally similar variants NuG1 and NuG2, which are even harder to distinguish. We show that this strategy can produce accurate predictions on many other proteins with experimentally determined intermediate folding states. Conclusion Our technique is efficient enough to predict folding pathways for both large and small proteins at the mesoscopic level. Such a strategy is often the only feasible choice for large proteins. A software program implementing this strategy (SSFold is available at http://faculty.cs.tamu.edu/shsze/ssfold.

  8. MFPred: Rapid and accurate prediction of protein-peptide recognition multispecificity using self-consistent mean field theory.

    Directory of Open Access Journals (Sweden)

    Aliza B Rubenstein

    2017-06-01

    Full Text Available Multispecificity-the ability of a single receptor protein molecule to interact with multiple substrates-is a hallmark of molecular recognition at protein-protein and protein-peptide interfaces, including enzyme-substrate complexes. The ability to perform structure-based prediction of multispecificity would aid in the identification of novel enzyme substrates, protein interaction partners, and enable design of novel enzymes targeted towards alternative substrates. The relatively slow speed of current biophysical, structure-based methods limits their use for prediction and, especially, design of multispecificity. Here, we develop a rapid, flexible-backbone self-consistent mean field theory-based technique, MFPred, for multispecificity modeling at protein-peptide interfaces. We benchmark our method by predicting experimentally determined peptide specificity profiles for a range of receptors: protease and kinase enzymes, and protein recognition modules including SH2, SH3, MHC Class I and PDZ domains. We observe robust recapitulation of known specificities for all receptor-peptide complexes, and comparison with other methods shows that MFPred results in equivalent or better prediction accuracy with a ~10-1000-fold decrease in computational expense. We find that modeling bound peptide backbone flexibility is key to the observed accuracy of the method. We used MFPred for predicting with high accuracy the impact of receptor-side mutations on experimentally determined multispecificity of a protease enzyme. Our approach should enable the design of a wide range of altered receptor proteins with programmed multispecificities.

  9. Maximum solid concentrations of coal water slurries predicted by neural network models

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Jun; Li, Yanchang; Zhou, Junhu; Liu, Jianzhong; Cen, Kefa

    2010-12-15

    The nonlinear back-propagation (BP) neural network models were developed to predict the maximum solid concentration of coal water slurry (CWS) which is a substitute for oil fuel, based on physicochemical properties of 37 typical Chinese coals. The Levenberg-Marquardt algorithm was used to train five BP neural network models with different input factors. The data pretreatment method, learning rate and hidden neuron number were optimized by training models. It is found that the Hardgrove grindability index (HGI), moisture and coalification degree of parent coal are 3 indispensable factors for the prediction of CWS maximum solid concentration. Each BP neural network model gives a more accurate prediction result than the traditional polynomial regression equation. The BP neural network model with 3 input factors of HGI, moisture and oxygen/carbon ratio gives the smallest mean absolute error of 0.40%, which is much lower than that of 1.15% given by the traditional polynomial regression equation. (author)

  10. Spray dried microparticles of chia oil using emulsion stabilized by whey protein concentrate and pectin by electrostatic deposition.

    Science.gov (United States)

    Noello, C; Carvalho, A G S; Silva, V M; Hubinger, M D

    2016-11-01

    Chia seed oil has a high content of α-linolenic acid (60%) and linoleic acid (20%). Use of this oil in different products is limited due to its liquid state, and the presence of insaturation is a trigger for oxidation. In this context, to facilitate the incorporation of chia oil in food products and increase its protection against oxidation, the aim of this work was to produce chia oil microparticles by spray drying using emulsions stabilized by whey protein concentrate (ζ-potential +13.4 at pH3.8) and pectin (ζ-potential -40.4 at pH3.8) through the electrostatic layer-by-layer deposition technique and emulsions prepared with only whey protein concentrate. Emulsions stabilized by whey protein concentrate and stabilized by whey protein concentrate-pectin were prepared using maltodextrin (10 DE) and modified starch (Hi-Cap® 100). They were characterized in relation to stability, droplet size, ζ-Potential and optical microscopy. The microparticles were characterized in relation to moisture content, water activity, particle size, microstructure and oxidative stability by the Rancimat method. Emulsions stabilized by whey protein concentrate-pectin with added maltodextrin 10 DE and emulsions stabilized by whey protein concentrate with added modified starch (Hi-Cap® 100) were stable after 24h. Emulsions stabilized by whey protein concentrate and by whey protein concentrate-pectin showed droplets with mean diameter ranging from 0.80 to 1.31μm, respectively and ζ-potential varying from -6.9 to -27.43mV, respectively. After spray drying, the microparticles showed an mean diameter ranging from 7.00 to 9.00μm. All samples presented high encapsulation efficiency values, above 99%. Microparticles produced with modified starch showed a smoother spherical surface than particles with maltodextrin 10 DE, which presented a wrinkled surface. All microparticles exhibited higher oxidative stability than chia oil in pure form. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Distribution of radionuclides in leaf-stem biomass of lupine and clover under production of protein concentrates

    International Nuclear Information System (INIS)

    Novikov, Yu.F.; Lobach, G.A.; Buzenko, T.A.; Zaretskaya, T.P.

    1993-01-01

    The basic regularities of radionuclide distribution between the obtained products have been studied using the fractionation of lupine and clover phytomass as an example. The content of radionuclides in protein concentrates has been shown to be strongly related to the crop species. A scheme and a regime of the fractionation of leaf-stem lupine biomass contaminated with cesium radioisotopes and strontium-90 which ensured the minimizing of their residual content in protein-vitaminic and protein concentrates have been selected with due accout of experimental data

  12. INTERACTION OF NIZKOMETILIROVANNYJ PECTINS WITH A CONCENTRATE OF PROTEINS OF WHEY

    Directory of Open Access Journals (Sweden)

    H. I. Teshaev

    2012-01-01

    Full Text Available Potentiometric titration method was used to study quality complex formation between low methylated pectin and proteins concentrated from whey. It’s shown that at рН>IEP of the lactoglobulin the interaction occurs between negatively charged chains of LM-pectin and positively charged patches of polypeptide chains. The biopolymers ratio had no significant effect on the initial pH of soluble complex formation (pHc; addition of sodium chloride decreased pHc and pK0 of complexes, which linked to electrostatic nature of complex formation between LM-pectin and whey proteins.

  13. Protein brownian rotation at the glass transition temperature of a freeze-concentrated buffer probed by superparamagnetic nanoparticles.

    Science.gov (United States)

    Eloi, J-C; Okuda, M; Jones, S E Ward; Schwarzacher, W

    2013-06-18

    For applications from food science to the freeze-thawing of proteins it is important to understand the often complex freezing behavior of solutions of biomolecules. Here we use a magnetic method to monitor the Brownian rotation of a quasi-spherical cage-shaped protein, apoferritin, approaching the glass transition Tg in a freeze-concentrated buffer (Tris-HCl). The protein incorporates a synthetic magnetic nanoparticle (Co-doped Fe3O4 (magnetite)). We use the magnetic signal from the nanoparticles to monitor the protein orientation. As T decreases toward Tg of the buffer solution the protein's rotational relaxation time increases exponentially, taking values in the range from a few seconds up to thousands of seconds, i.e., orders of magnitude greater than usually accessed, e.g., by NMR. The longest relaxation times measured correspond to estimated viscosities >2 MPa s. As well as being a means to study low-temperature, high-viscosity environments, our method provides evidence that, for the cooling protocol used, the following applies: 1), the concentration of the freeze-concentrated buffer at Tg is independent of its initial concentration; 2), little protein adsorption takes place at the interface between ice and buffer; and 3), the protein is free to rotate even at temperatures as low as 207 K. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  14. Improving predictions of protein-protein interfaces by combining amino acid-specific classifiers based on structural and physicochemical descriptors with their weighted neighbor averages.

    Directory of Open Access Journals (Sweden)

    Fábio R de Moraes

    Full Text Available Protein-protein interactions are involved in nearly all regulatory processes in the cell and are considered one of the most important issues in molecular biology and pharmaceutical sciences but are still not fully understood. Structural and computational biology contributed greatly to the elucidation of the mechanism of protein interactions. In this paper, we present a collection of the physicochemical and structural characteristics that distinguish interface-forming residues (IFR from free surface residues (FSR. We formulated a linear discriminative analysis (LDA classifier to assess whether chosen descriptors from the BlueStar STING database (http://www.cbi.cnptia.embrapa.br/SMS/ are suitable for such a task. Receiver operating characteristic (ROC analysis indicates that the particular physicochemical and structural descriptors used for building the linear classifier perform much better than a random classifier and in fact, successfully outperform some of the previously published procedures, whose performance indicators were recently compared by other research groups. The results presented here show that the selected set of descriptors can be utilized to predict IFRs, even when homologue proteins are missing (particularly important for orphan proteins where no homologue is available for comparative analysis/indication or, when certain conformational changes accompany interface formation. The development of amino acid type specific classifiers is shown to increase IFR classification performance. Also, we found that the addition of an amino acid conservation attribute did not improve the classification prediction. This result indicates that the increase in predictive power associated with amino acid conservation is exhausted by adequate use of an extensive list of independent physicochemical and structural parameters that, by themselves, fully describe the nano-environment at protein-protein interfaces. The IFR classifier developed in this study

  15. Improving predictions of protein-protein interfaces by combining amino acid-specific classifiers based on structural and physicochemical descriptors with their weighted neighbor averages.

    Science.gov (United States)

    de Moraes, Fábio R; Neshich, Izabella A P; Mazoni, Ivan; Yano, Inácio H; Pereira, José G C; Salim, José A; Jardine, José G; Neshich, Goran

    2014-01-01

    Protein-protein interactions are involved in nearly all regulatory processes in the cell and are considered one of the most important issues in molecular biology and pharmaceutical sciences but are still not fully understood. Structural and computational biology contributed greatly to the elucidation of the mechanism of protein interactions. In this paper, we present a collection of the physicochemical and structural characteristics that distinguish interface-forming residues (IFR) from free surface residues (FSR). We formulated a linear discriminative analysis (LDA) classifier to assess whether chosen descriptors from the BlueStar STING database (http://www.cbi.cnptia.embrapa.br/SMS/) are suitable for such a task. Receiver operating characteristic (ROC) analysis indicates that the particular physicochemical and structural descriptors used for building the linear classifier perform much better than a random classifier and in fact, successfully outperform some of the previously published procedures, whose performance indicators were recently compared by other research groups. The results presented here show that the selected set of descriptors can be utilized to predict IFRs, even when homologue proteins are missing (particularly important for orphan proteins where no homologue is available for comparative analysis/indication) or, when certain conformational changes accompany interface formation. The development of amino acid type specific classifiers is shown to increase IFR classification performance. Also, we found that the addition of an amino acid conservation attribute did not improve the classification prediction. This result indicates that the increase in predictive power associated with amino acid conservation is exhausted by adequate use of an extensive list of independent physicochemical and structural parameters that, by themselves, fully describe the nano-environment at protein-protein interfaces. The IFR classifier developed in this study is now

  16. Improving Predictions of Protein-Protein Interfaces by Combining Amino Acid-Specific Classifiers Based on Structural and Physicochemical Descriptors with Their Weighted Neighbor Averages

    Science.gov (United States)

    de Moraes, Fábio R.; Neshich, Izabella A. P.; Mazoni, Ivan; Yano, Inácio H.; Pereira, José G. C.; Salim, José A.; Jardine, José G.; Neshich, Goran

    2014-01-01

    Protein-protein interactions are involved in nearly all regulatory processes in the cell and are considered one of the most important issues in molecular biology and pharmaceutical sciences but are still not fully understood. Structural and computational biology contributed greatly to the elucidation of the mechanism of protein interactions. In this paper, we present a collection of the physicochemical and structural characteristics that distinguish interface-forming residues (IFR) from free surface residues (FSR). We formulated a linear discriminative analysis (LDA) classifier to assess whether chosen descriptors from the BlueStar STING database (http://www.cbi.cnptia.embrapa.br/SMS/) are suitable for such a task. Receiver operating characteristic (ROC) analysis indicates that the particular physicochemical and structural descriptors used for building the linear classifier perform much better than a random classifier and in fact, successfully outperform some of the previously published procedures, whose performance indicators were recently compared by other research groups. The results presented here show that the selected set of descriptors can be utilized to predict IFRs, even when homologue proteins are missing (particularly important for orphan proteins where no homologue is available for comparative analysis/indication) or, when certain conformational changes accompany interface formation. The development of amino acid type specific classifiers is shown to increase IFR classification performance. Also, we found that the addition of an amino acid conservation attribute did not improve the classification prediction. This result indicates that the increase in predictive power associated with amino acid conservation is exhausted by adequate use of an extensive list of independent physicochemical and structural parameters that, by themselves, fully describe the nano-environment at protein-protein interfaces. The IFR classifier developed in this study is now

  17. CNNH_PSS: protein 8-class secondary structure prediction by convolutional neural network with highway.

    Science.gov (United States)

    Zhou, Jiyun; Wang, Hongpeng; Zhao, Zhishan; Xu, Ruifeng; Lu, Qin

    2018-05-08

    Protein secondary structure is the three dimensional form of local segments of proteins and its prediction is an important problem in protein tertiary structure prediction. Developing computational approaches for protein secondary structure prediction is becoming increasingly urgent. We present a novel deep learning based model, referred to as CNNH_PSS, by using multi-scale CNN with highway. In CNNH_PSS, any two neighbor convolutional layers have a highway to deliver information from current layer to the output of the next one to keep local contexts. As lower layers extract local context while higher layers extract long-range interdependencies, the highways between neighbor layers allow CNNH_PSS to have ability to extract both local contexts and long-range interdependencies. We evaluate CNNH_PSS on two commonly used datasets: CB6133 and CB513. CNNH_PSS outperforms the multi-scale CNN without highway by at least 0.010 Q8 accuracy and also performs better than CNF, DeepCNF and SSpro8, which cannot extract long-range interdependencies, by at least 0.020 Q8 accuracy, demonstrating that both local contexts and long-range interdependencies are indeed useful for prediction. Furthermore, CNNH_PSS also performs better than GSM and DCRNN which need extra complex model to extract long-range interdependencies. It demonstrates that CNNH_PSS not only cost less computer resource, but also achieves better predicting performance. CNNH_PSS have ability to extracts both local contexts and long-range interdependencies by combing multi-scale CNN and highway network. The evaluations on common datasets and comparisons with state-of-the-art methods indicate that CNNH_PSS is an useful and efficient tool for protein secondary structure prediction.

  18. Computational tools for experimental determination and theoretical prediction of protein structure

    Energy Technology Data Exchange (ETDEWEB)

    O`Donoghue, S.; Rost, B.

    1995-12-31

    This tutorial was one of eight tutorials selected to be presented at the Third International Conference on Intelligent Systems for Molecular Biology which was held in the United Kingdom from July 16 to 19, 1995. The authors intend to review the state of the art in the experimental determination of protein 3D structure (focus on nuclear magnetic resonance), and in the theoretical prediction of protein function and of protein structure in 1D, 2D and 3D from sequence. All the atomic resolution structures determined so far have been derived from either X-ray crystallography (the majority so far) or Nuclear Magnetic Resonance (NMR) Spectroscopy (becoming increasingly more important). The authors briefly describe the physical methods behind both of these techniques; the major computational methods involved will be covered in some detail. They highlight parallels and differences between the methods, and also the current limitations. Special emphasis will be given to techniques which have application to ab initio structure prediction. Large scale sequencing techniques increase the gap between the number of known proteins sequences and that of known protein structures. They describe the scope and principles of methods that contribute successfully to closing that gap. Emphasis will be given on the specification of adequate testing procedures to validate such methods.

  19. Prediction of ore fluid metal concentrations from solid solution concentrations in ore-stage calcite: Application to the Illinois-Kentucky and Central Tennessee Mississippi Valley-type districts

    Science.gov (United States)

    Smith-Schmitz, Sarah E.; Appold, Martin S.

    2018-03-01

    Knowledge of the concentrations of Zn and Pb in Mississippi Valley-type (MVT) ore fluids is fundamental to understanding MVT deposit origin. Most previous attempts to quantify the concentrations of Zn and Pb in MVT ore fluids have focused on the analysis of fluid inclusions. However, these attempts have yielded ambiguous results due to possible contamination from secondary fluid inclusions, interferences from Zn and Pb in the host mineral matrix, and uncertainties about whether the measured Zn and Pb signals represent aqueous solute or accidental solid inclusions entrained within the fluid inclusions. The purpose of the present study, therefore, was to try to determine Zn and Pb concentrations in MVT ore fluids using an alternate method that avoids these ambiguities by calculating Zn and Pb concentrations in MVT ore fluids theoretically based on their solid solution concentrations in calcite. This method was applied to the Illinois-Kentucky and Central Tennessee districts, which both contain ore-stage calcite. Experimental partition coefficient (D) values from Rimstidt et al. (1998) and Tsusue and Holland (1966), and theoretical thermodynamic distribution coefficient (KD) values were employed in the present study. Ore fluid concentrations of Zn were likely most accurately predicted by Rimstidt et al. (1998) D values, based on their success in predicting known fluid inclusion concentrations of Mg and Mn, and likely also most accurately predicted ore fluid concentrations of Fe. All four of these elements have a divalent ionic radius smaller than that of Ca2+ and form carbonate minerals with the calcite structure. For both the Illinois-Kentucky and the Central Tennessee district, predicted ore fluid Zn and Fe concentrations were on the order of up to 10's of ppm. Ore fluid concentrations of Pb could only be predicted using Rimstidt et al. (1998) D values. However, these concentrations are unlikely to be reliable, as predicted ore fluid concentrations of Sr and Ba

  20. Watershed regressions for pesticides (WARP) for predicting atrazine concentration in Corn Belt streams

    Science.gov (United States)

    Stone, Wesley W.; Gilliom, Robert J.

    2011-01-01

    Watershed Regressions for Pesticides (WARP) models, previously developed for atrazine at the national scale, can be improved for application to the U.S. Corn Belt region by developing region-specific models that include important watershed characteristics that are influential in predicting atrazine concentration statistics within the Corn Belt. WARP models for the Corn Belt (WARP-CB) were developed for predicting annual maximum moving-average (14-, 21-, 30-, 60-, and 90-day durations) and annual 95th-percentile atrazine concentrations in streams of the Corn Belt region. All streams used in development of WARP-CB models drain watersheds with atrazine use intensity greater than 17 kilograms per square kilometer (kg/km2). The WARP-CB models accounted for 53 to 62 percent of the variability in the various concentration statistics among the model-development sites.