WorldWideScience

Sample records for protected reflection image

  1. Seismic reflection imaging, accounting for primary and multiple reflections

    Science.gov (United States)

    Wapenaar, Kees; van der Neut, Joost; Thorbecke, Jan; Broggini, Filippo; Slob, Evert; Snieder, Roel

    2015-04-01

    Imaging of seismic reflection data is usually based on the assumption that the seismic response consists of primary reflections only. Multiple reflections, i.e. waves that have reflected more than once, are treated as primaries and are imaged at wrong positions. There are two classes of multiple reflections, which we will call surface-related multiples and internal multiples. Surface-related multiples are those multiples that contain at least one reflection at the earth's surface, whereas internal multiples consist of waves that have reflected only at subsurface interfaces. Surface-related multiples are the strongest, but also relatively easy to deal with because the reflecting boundary (the earth's surface) is known. Internal multiples constitute a much more difficult problem for seismic imaging, because the positions and properties of the reflecting interfaces are not known. We are developing reflection imaging methodology which deals with internal multiples. Starting with the Marchenko equation for 1D inverse scattering problems, we derived 3D Marchenko-type equations, which relate reflection data at the surface to Green's functions between virtual sources anywhere in the subsurface and receivers at the surface. Based on these equations, we derived an iterative scheme by which these Green's functions can be retrieved from the reflection data at the surface. This iterative scheme requires an estimate of the direct wave of the Green's functions in a background medium. Note that this is precisely the same information that is also required by standard reflection imaging schemes. However, unlike in standard imaging, our iterative Marchenko scheme retrieves the multiple reflections of the Green's functions from the reflection data at the surface. For this, no knowledge of the positions and properties of the reflecting interfaces is required. Once the full Green's functions are retrieved, reflection imaging can be carried out by which the primaries and multiples are

  2. Terahertz wave reflective sensing and imaging

    Science.gov (United States)

    Zhong, Hua

    Sensing and imaging technologies using terahertz (THz) radiation have found diverse applications as they approach maturity. Since the burgeoning of this technique in the 1990's, many THz sensing and imaging investigations have been designed and conducted in transmission geometry, which provides sufficient phase and amplitude contrast for the study of the spectral properties of targets in the THz domain. Driven by rising expectations that THz technology will be a potential candidate in the next generation of security screening, remote sensing, biomedical imaging and non-destructive testing (NDT), most THz sensing and imaging modalities are being extended to reflection geometry, which offers unique and adaptive solutions, and multi-dimensional information in many real scenarios. This thesis takes an application-focused approach to the advancement of THz wave reflective sensing and imaging systems: The absorption signature of the explosive material hexahydro-1,3,5-trinitro-1,3,5triazine (RDX) is measured at 30 m---the longest standoff distance so far attained by THz time-domain spectroscopy (THz-TDS). The standoff distance sensing ability of THz-TDS is investigated along with discussions specifying the influences of a variety of factors such as propagation distance, water vapor absorption and collection efficiency. Highly directional THz radiation from four-wave mixing in laser-induced air plasmas is first observed and measured, which provides a potential solution for the atmospheric absorption effect in standoff THz sensing. The simulations of the beam profiles also illuminate the underlying physics behind the interaction of the optical beam with the plasma. THz wave reflective spectroscopic focal-plane imaging is realized the first time. Absorption features of some explosives and related compounds (ERCs) and biochemical materials are identified by using adaptive feature extraction method. Good classification results using multiple pattern recognition methods are

  3. Automatic specular reflections removal for endoscopic images

    Science.gov (United States)

    Tan, Ke; Wang, Bin; Gao, Yuan

    2017-07-01

    Endoscopy imaging is utilized to provide a realistic view about the surfaces of organs inside the human body. Owing to the damp internal environment, these surfaces usually have a glossy appearance showing specular reflections. For many computer vision algorithms, the highlights created by specular reflections may become a significant source of error. In this paper, we present a novel method for restoration of the specular reflection regions from a single image. Specular restoration process starts with generating a substitute specular-free image with RPCA method. Then the specular removed image was obtained by taking the binary weighting template of highlight regions as the weighting for merging the original specular image and the substitute image. The modified template was furthermore discussed for the concealment of artificial effects in the edge of specular regions. Experimental results on the removal of the endoscopic image with specular reflections demonstrate the efficiency of the proposed method comparing to the existing methods.

  4. Four-Mirror Freeform Reflective Imaging Systems

    Data.gov (United States)

    National Aeronautics and Space Administration — Central Objectives: The research involves a revelation of the solution space for revolutionary families of four-mirror freeform reflective imaging systems. A...

  5. Security authentication using the reflective glass pattern imaging effect.

    Science.gov (United States)

    Zhu, Ji Cheng; Shen, Su; Wu, Jian Hong

    2015-11-01

    The reflective glass pattern imaging effect is investigated experimentally for the utility in forming a synthetic 3D image as a security authentication device in this Letter. An array of homogeneously randomly distributed reflective elements and a corresponding micropattern array are integrated onto a thin layer of polyester film aiming to create a vivid image floating over a substrate surface, which can be clearly visible to the naked eye. By using the reflective-type configuration, the micro-optic system can be realized on a thinner substrate and is immune to external stain due to its flat working plane. A novel gravure-like doctor blading technique can realize a resolution up to 12,000 dpi and a stringent 2D alignment requirement should be imposed. Such devices can find applications in document security and banknotes or other valuable items to protect them against forgery.

  6. Reflections on imaging diagnosis of sella masses

    International Nuclear Information System (INIS)

    Hernandez Yero, Jose Arturo; Jorge Gonzalez, Raquel

    2005-01-01

    Some reflections were made on imaging diagnosis of sella masses, specifying some characteristics of the main sella masses and their appearance in magnetic resonance imaging. The purpose was to call the attention on this important issue on the basis that modern imaging advances offer very useful distinctive elements in the diagnosis of a group of masses located in the sella turcica region. The paper underlined details of signal intensity in pituitary adenomas, craniopharyngiomas, Rathkes pouch cysts, hypophyseal hyperplasia and the so-called empty sella syndrome, among other causes of anatomical changes in sella region. It was concluded that magnetic resonance imaging would be the ideal method for a better diagnosis of sella masses, but if this technique was not available, then contrast-enhanced tomography would be useful in under 2 mm views. The importance of a multidisciplinary team of clinicians, endocrinologists, imaging specialists, neurosurgeons and anatomy pathologists to reach more accurate diagnosis and better therapeutic results was stressed

  7. Reflective Coatings Protect People and Animals

    Science.gov (United States)

    2010-01-01

    Led by Marshall Space Flight Center, NASA engineers called upon National Metalizing of Cranbury, New Jersey, to help create a reflective sunshield to deploy on Skylab in place of a shield that was lost during launch in 1973. Years later, a former employee for National Metalizing founded Advanced Flexible Materials (AFM) Inc., of Petaluma, California, and utilized the radiant barrier technology in the public domain to produce a variety of products such as wraps to keep marathon finishers safe from hypothermia as well as a lining for mittens and vests. Recently, the material helped to keep manatees warm as they were lifted from the water as part of a tag-and-release program.

  8. Discriminating Yogurt Microstructure Using Diffuse Reflectance Images

    DEFF Research Database (Denmark)

    Skytte, Jacob Lercke; Møller, Flemming; Abildgaard, Otto Højager Attermann

    2015-01-01

    The protein microstructure of many dairy products is of great importance for the consumers’ experience when eating the product. However, studies concerning discrimination between protein microstructures are limited. This paper presents preliminary results for discriminating different yogurt...... microstructures using hyperspectral (500-900nm) diffuse reflectance images (DRIs) – a technique potentially well suited for inline process control. Comparisons are made to quantified measures of the yogurt microstructure observed through confocal scanning laser microscopy (CSLM). The output signal from both...... modalities is evaluated on a 24 factorial design covering four common production parameters, which significantly change the chemistry and the microstructure of the yogurt. It is found that the DRIs can be as discriminative as the CSLM images in certain cases, however the performance is highly governed...

  9. Reflections on a peculiar bet for the future's radiological protection

    International Nuclear Information System (INIS)

    O'Donnell, P.

    2000-01-01

    , setting a more rational hierarchy of decisions, getting close to the efficient management and the motivation of its workers. Within this context, the collective dose represents an indictor of excellence in management an the reflection of the workers' positive attitude. The author states that this change in mentality should not be forgotten in any new definition of this principle. The author agrees that avoiding the concept of limit does not necessarily mean lack of rigour, but affects the image of rigour. Therefore, if one is sensitive to public's risk perception, why not respect the rigour's perception? Nowadays, that a great number of countries have not yet finished the implementation process of the last ICRP recommendations, the author asks himself whether or not the timing of Clarke's proposal comes at the most convenient moment. Will not this new philosophy make futile such efforts? The author asserts that the positive and negative aspects of Clarke's approach are a reflection of its simplicity. If one thinks that awareness of social perception of hazard should be recognised in the essence of any protection system, simplicity and unity of criterion are a clear evidence of this virtue. On the opposite side, when its universality and visibility are taken to a particular scenario, completely and misunderstanding could arise and run the risk of losing essential values of the good practice. Although this proposal neither guarantees the stability against oncoming scientific evidences, nor ends the controversy on linear non-threshold response model, the author recognises the courage and brilliance of its philosophy and, also, considers that it is worth reflecting on it and taking advantage of its undoubted merits. (author)

  10. Reflection Group on 'Ethical Choices in Radiation Protection'

    International Nuclear Information System (INIS)

    Eggermont, G.

    2000-01-01

    As part of SCK-CEN's social sciences and humanities programme, a reflection group on 'Ethical Choices in Radiation Protection' was created. The objectives of the reflection group are (1) to brainstorm on critical issues of radiation protection; (2) to create a discussion forum with a variety os SCK-CEN researchers and external experts; (3) to make value judgements and open questions in radiation protection explicit; (4) to create an output for a topical day or workshop by editing a 'cahier' of contributed articles and discussion reports; (5) to complement the output of the SCK-CEN contribution in international ALARA workshops. The programme, achievements and perspectives of the refection group are summarised

  11. Inverse scattering and refraction corrected reflection for breast cancer imaging

    Science.gov (United States)

    Wiskin, J.; Borup, D.; Johnson, S.; Berggren, M.; Robinson, D.; Smith, J.; Chen, J.; Parisky, Y.; Klock, John

    2010-03-01

    Reflection ultrasound (US) has been utilized as an adjunct imaging modality for over 30 years. TechniScan, Inc. has developed unique, transmission and concomitant reflection algorithms which are used to reconstruct images from data gathered during a tomographic breast scanning process called Warm Bath Ultrasound (WBU™). The transmission algorithm yields high resolution, 3D, attenuation and speed of sound (SOS) images. The reflection algorithm is based on canonical ray tracing utilizing refraction correction via the SOS and attenuation reconstructions. The refraction correction reflection algorithm allows 360 degree compounding resulting in the reflection image. The requisite data are collected when scanning the entire breast in a 33° C water bath, on average in 8 minutes. This presentation explains how the data are collected and processed by the 3D transmission and reflection imaging mode algorithms. The processing is carried out using two NVIDIA® Tesla™ GPU processors, accessing data on a 4-TeraByte RAID. The WBU™ images are displayed in a DICOM viewer that allows registration of all three modalities. Several representative cases are presented to demonstrate potential diagnostic capability including: a cyst, fibroadenoma, and a carcinoma. WBU™ images (SOS, attenuation, and reflection modalities) are shown along with their respective mammograms and standard ultrasound images. In addition, anatomical studies are shown comparing WBU™ images and MRI images of a cadaver breast. This innovative technology is designed to provide additional tools in the armamentarium for diagnosis of breast disease.

  12. Concurrent reflectance imaging and microdialysis in the freely behaving cat

    DEFF Research Database (Denmark)

    Poe, G R; Nitz, D A; Rector, D M

    1996-01-01

    We present a method to perform simultaneous microdialysis with light reflectance imaging of neural activity in a discrete brain region of the freely behaving animal. We applied this method to the dorsal hippocampus of freely behaving cats to (1) measure extracellular glutamate and reflectance...... imaged neural activity. Sequential images showed that cocaine perfusion elicited a propagating reflectance change as cocaine reached the tissue. Microperfusion of hypo-osmotic solution ( - 100 mOsm), which increases cell volume, decreased reflectance. Microperfusion of hyperosmotic sucrose solutions...

  13. Lamont Doherty Seismic Reflection Scanned Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains single channel seismic reflection profiles as provided to NGDC by Lamont Doherty Earh Observatory (LDEO). The profiles were originally...

  14. Reflection symmetry-integrated image segmentation.

    Science.gov (United States)

    Sun, Yu; Bhanu, Bir

    2012-09-01

    This paper presents a new symmetry-integrated region-based image segmentation method. The method is developed to obtain improved image segmentation by exploiting image symmetry. It is realized by constructing a symmetry token that can be flexibly embedded into segmentation cues. Interesting points are initially extracted from an image by the SIFT operator and they are further refined for detecting the global bilateral symmetry. A symmetry affinity matrix is then computed using the symmetry axis and it is used explicitly as a constraint in a region growing algorithm in order to refine the symmetry of the segmented regions. A multi-objective genetic search finds the segmentation result with the highest performance for both segmentation and symmetry, which is close to the global optimum. The method has been investigated experimentally in challenging natural images and images containing man-made objects. It is shown that the proposed method outperforms current segmentation methods both with and without exploiting symmetry. A thorough experimental analysis indicates that symmetry plays an important role as a segmentation cue, in conjunction with other attributes like color and texture.

  15. Reflective optical imaging system for extreme ultraviolet wavelengths

    Science.gov (United States)

    Viswanathan, V.K.; Newnam, B.E.

    1993-05-18

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  16. A simple polarized-based diffused reflectance colour imaging system

    African Journals Online (AJOL)

    A simple polarized-based diffuse reflectance imaging system has been developed. The system is designed for both in vivo and in vitro imaging of agricultural specimen in the visible region. The system uses a commercial web camera and a halogen lamp that makes it relatively simple and less expensive for diagnostic ...

  17. Reflective and Non-conscious Responses to Exercise Images.

    Science.gov (United States)

    Cope, Kathryn; Vandelanotte, Corneel; Short, Camille E; Conroy, David E; Rhodes, Ryan E; Jackson, Ben; Dimmock, James A; Rebar, Amanda L

    2017-01-01

    Images portraying exercise are commonly used to promote exercise behavior and to measure automatic associations of exercise (e.g., via implicit association tests). The effectiveness of these promotion efforts and the validity of measurement techniques partially rely on the untested assumption that the images being used are perceived by the general public as portrayals of exercise that is pleasant and motivating. The aim of this study was to investigate how content of images impacted people's automatic and reflective evaluations of exercise images. Participants ( N = 90) completed a response time categorization task (similar to the implicit association test) to capture how automatically people perceived each image as relevant to Exercise or Not exercise . Participants also self-reported their evaluations of the images using visual analog scales with the anchors: Exercise / Not exercise, Does not motivate me to exercise / Motivates me to exercise, Pleasant / Unpleasant , and Energizing/Deactivating . People tended to more strongly automatically associate images with exercise if the images were of an outdoor setting, presented sport (as opposed to active labor or gym-based) activities, and included young (as opposed to middle-aged) adults. People tended to reflectively find images of young adults more motivating and relevant to exercise than images of older adults. The content of exercise images is an often overlooked source of systematic variability that may impact measurement validity and intervention effectiveness.

  18. Reflective and Non-conscious Responses to Exercise Images

    Directory of Open Access Journals (Sweden)

    Kathryn Cope

    2018-01-01

    Full Text Available Images portraying exercise are commonly used to promote exercise behavior and to measure automatic associations of exercise (e.g., via implicit association tests. The effectiveness of these promotion efforts and the validity of measurement techniques partially rely on the untested assumption that the images being used are perceived by the general public as portrayals of exercise that is pleasant and motivating. The aim of this study was to investigate how content of images impacted people's automatic and reflective evaluations of exercise images. Participants (N = 90 completed a response time categorization task (similar to the implicit association test to capture how automatically people perceived each image as relevant to Exercise or Not exercise. Participants also self-reported their evaluations of the images using visual analog scales with the anchors: Exercise/Not exercise, Does not motivate me to exercise/Motivates me to exercise, Pleasant/Unpleasant, and Energizing/Deactivating. People tended to more strongly automatically associate images with exercise if the images were of an outdoor setting, presented sport (as opposed to active labor or gym-based activities, and included young (as opposed to middle-aged adults. People tended to reflectively find images of young adults more motivating and relevant to exercise than images of older adults. The content of exercise images is an often overlooked source of systematic variability that may impact measurement validity and intervention effectiveness.

  19. Continuous wave terahertz reflection imaging of human colorectal tissue

    Science.gov (United States)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2013-03-01

    Continuous wave terahertz (THz) imaging has the potential to offer a safe, non-ionizing, and nondestructive medical imaging modality for delineating colorectal cancer. Fresh excisions of normal colon tissue were obtained from surgeries performed at the University of Massachusetts Medical School, Worcester. Reflection measurements of thick sections of colorectal tissues, mounted in an aluminum sample holder, were obtained for both fresh and formalin fixed tissues. The two-dimensional reflection images were acquired by using an optically pumped far-infrared molecular gas laser operating at 584 GHz with liquid Helium cooled silicon bolometer detector. Using polarizers in the experiment both co-polarized and cross-polarized remittance form the samples was collected. Analysis of the images showed the importance of understanding the effects of formalin fixation while determining reflectance level of tissue response. The resulting co- and cross-polarized images of both normal and formalin fixed tissues showed uniform terahertz response over the entire sample area. Initial measurements indicated a co-polarized reflectance of 16%, and a cross-polarized reflectance of 0.55% from fresh excisions of normal colonic tissues.

  20. Hemispherical reflectance model for passive images in an outdoor environment.

    Science.gov (United States)

    Kim, Charles C; Thai, Bea; Yamaoka, Neil; Aboutalib, Omar

    2015-05-01

    We present a hemispherical reflectance model for simulating passive images in an outdoor environment where illumination is provided by natural sources such as the sun and the clouds. While the bidirectional reflectance distribution function (BRDF) accurately produces radiance from any objects after the illumination, using the BRDF in calculating radiance requires double integration. Replacing the BRDF by hemispherical reflectance under the natural sources transforms the double integration into a multiplication. This reduces both storage space and computation time. We present the formalism for the radiance of the scene using hemispherical reflectance instead of BRDF. This enables us to generate passive images in an outdoor environment taking advantage of the computational and storage efficiencies. We show some examples for illustration.

  1. Gen-2 Hand-Held Optical Imager towards Cancer Imaging: Reflectance and Transillumination Phantom Studies

    Directory of Open Access Journals (Sweden)

    Anuradha Godavarty

    2012-02-01

    Full Text Available Hand-held near-infrared (NIR optical imagers are developed by various researchers towards non-invasive clinical breast imaging. Unlike these existing imagers that can perform only reflectance imaging, a generation-2 (Gen-2 hand-held optical imager has been recently developed to perform both reflectance and transillumination imaging. The unique forked design of the hand-held probe head(s allows for reflectance imaging (as in ultrasound and transillumination or compressed imaging (as in X-ray mammography. Phantom studies were performed to demonstrate two-dimensional (2D target detection via reflectance and transillumination imaging at various target depths (1–5 cm deep and using simultaneous multiple point illumination approach. It was observed that 0.45 cc targets were detected up to 5 cm deep during transillumination, but limited to 2.5 cm deep during reflectance imaging. Additionally, implementing appropriate data post-processing techniques along with a polynomial fitting approach, to plot 2D surface contours of the detected signal, yields distinct target detectability and localization. The ability of the gen-2 imager to perform both reflectance and transillumination imaging allows its direct comparison to ultrasound and X-ray mammography results, respectively, in future clinical breast imaging studies.

  2. Imaging Hybrid Photon Detectors with a Reflective Photocathode

    CERN Document Server

    Ferenc, D

    2000-01-01

    Modern epitaxially grown photocathodes, like GaAsP, bring a very high inherent quantum efficiency, but are rather expensive due to the complicated manufacturing and mounting process. We argue that such photocathodes could be used in reflective mode, in order to avoid the risky and expensive removal of the epitaxial growth substrate. Besides that the quantum efficiency should increase considerably. In this paper we present results of the development of large imaging Hybrid Photon Detectors (HPDs), particularly designed for such reflective photocathodes.

  3. Detection of Lettuce Discoloration Using Hyperspectral Reflectance Imaging.

    Science.gov (United States)

    Mo, Changyeun; Kim, Giyoung; Lim, Jongguk; Kim, Moon S; Cho, Hyunjeong; Cho, Byoung-Kwan

    2015-11-20

    Rapid visible/near-infrared (VNIR) hyperspectral imaging methods, employing both a single waveband algorithm and multi-spectral algorithms, were developed in order to discrimination between sound and discolored lettuce. Reflectance spectra for sound and discolored lettuce surfaces were extracted from hyperspectral reflectance images obtained in the 400-1000 nm wavelength range. The optimal wavebands for discriminating between discolored and sound lettuce surfaces were determined using one-way analysis of variance. Multi-spectral imaging algorithms developed using ratio and subtraction functions resulted in enhanced classification accuracy of above 99.9% for discolored and sound areas on both adaxial and abaxial lettuce surfaces. Ratio imaging (RI) and subtraction imaging (SI) algorithms at wavelengths of 552/701 nm and 557-701 nm, respectively, exhibited better classification performances compared to results obtained for all possible two-waveband combinations. These results suggest that hyperspectral reflectance imaging techniques can potentially be used to discriminate between discolored and sound fresh-cut lettuce.

  4. Seismic reflection imaging with conventional and unconventional sources

    Science.gov (United States)

    Quiros Ugalde, Diego Alonso

    This manuscript reports the results of research using both conventional and unconventional energy sources as well as conventional and unconventional analysis to image crustal structure using reflected seismic waves. The work presented here includes the use of explosions to investigate the Taiwanese lithosphere, the use of 'noise' from railroads to investigate the shallow subsurface of the Rio Grande rift, and the use of microearthquakes to image subsurface structure near an active fault zone within the Appalachian mountains. Chapter 1 uses recordings from the land refraction and wide-angle reflection component of the Taiwan Integrated Geodynamic Research (TAIGER) project. The most prominent reflection feature imaged by these surveys is an anomalously strong reflector found in northeastern Taiwan. The goal of this chapter is to analyze the TAIGER recordings and to place the reflector into a geologic framework that fits with the modern tectonic kinematics of the region. Chapter 2 uses railroad traffic as a source for reflection profiling within the Rio Grande rift. Here the railroad recordings are treated in an analogous way to Vibroseis recordings. These results suggest that railroad noise in general can be a valuable new tool in imaging and characterizing the shallow subsurface in environmental and geotechnical studies. In chapters 3 and 4, earthquakes serve as the seismic imaging source. In these studies the methodology of Vertical Seismic Profiling (VSP) is borrowed from the oil and gas industry to develop reflection images. In chapter 3, a single earthquake is used to probe a small area beneath Waterboro, Maine. In chapter 4, the same method is applied to multiple earthquakes to take advantage of the increased redundancy that results from multiple events illuminating the same structure. The latter study demonstrates how dense arrays can be a powerful new tool for delineating, and monitoring temporal changes of deep structure in areas characterized by significant

  5. REFLECTANCE CALIBRATION SCHEME FOR AIRBORNE FRAME CAMERA IMAGES

    Directory of Open Access Journals (Sweden)

    U. Beisl

    2012-07-01

    Full Text Available The image quality of photogrammetric images is influenced by various effects from outside the camera. One effect is the scattered light from the atmosphere that lowers contrast in the images and creates a colour shift towards the blue. Another is the changing illumination during the day which results in changing image brightness within an image block. In addition, there is the so-called bidirectional reflectance of the ground (BRDF effects that is giving rise to a view and sun angle dependent brightness gradient in the image itself. To correct for the first two effects an atmospheric correction with reflectance calibration is chosen. The effects have been corrected successfully for ADS linescan sensor data by using a parametrization of the atmospheric quantities. Following Kaufman et al. the actual atmospheric condition is estimated by the brightness of a dark pixel taken from the image. The BRDF effects are corrected using a semi-empirical modelling of the brightness gradient. Both methods are now extended to frame cameras. Linescan sensors have a viewing geometry that is only dependent from the cross track view zenith angle. The difference for frame cameras now is to include the extra dimension of the view azimuth into the modelling. Since both the atmospheric correction and the BRDF correction require a model inversion with the help of image data, a different image sampling strategy is necessary which includes the azimuth angle dependence. For the atmospheric correction a sixth variable is added to the existing five variables visibility, view zenith angle, sun zenith angle, ground altitude, and flight altitude – thus multiplying the number of modelling input combinations for the offline-inversion. The parametrization has to reflect the view azimuth angle dependence. The BRDF model already contains the view azimuth dependence and is combined with a new sampling strategy.

  6. Specialized Color Targets for Spectral Reflectance Reconstruction of Magnified Images

    Science.gov (United States)

    Kruschwitz, Jennifer D. T.

    Digital images are used almost exclusively instead of film to capture visual information across many scientific fields. The colorimetric color representation within these digital images can be relayed from the digital counts produced by the camera with the use of a known color target. In image capture of magnified images, there is currently no reliable color target that can be used at multiple magnifications and give the user a solid understanding of the color ground truth within those images. The first part of this dissertation included the design, fabrication, and testing of a color target produced with optical interference coated microlenses for use in an off-axis illumination, compound microscope. An ideal target was designed to increase the color gamut for colorimetric imaging and provide the necessary "Block Dye" spectral reflectance profiles across the visible spectrum to reduce the number of color patches necessary for multiple filter imaging systems that rely on statistical models for spectral reflectance reconstruction. There are other scientific disciplines that can benefit from a specialized color target to determine the color ground truth in their magnified images and perform spectral estimation. Not every discipline has the luxury of having a multi-filter imaging system. The second part of this dissertation developed two unique ways of using an interference coated color mirror target: one that relies on multiple light-source angles, and one that leverages a dynamic color change with time. The source multi-angle technique would be used for the microelectronic discipline where the reconstructed spectral reflectance would be used to determine a dielectric film thickness on a silicon substrate, and the time varying technique would be used for a biomedical example to determine the thickness of human tear film.

  7. Automatic registration of terrestrial point cloud using panoramic reflectance images

    NARCIS (Netherlands)

    Kang, Z.

    2008-01-01

    Much attention is paid to registration of terrestrial point clouds nowadays. Research is carried out towards improved efficiency and automation of the registration process. This paper reports a new approach for point clouds registration utilizing reflectance panoramic images. The approach follows a

  8. One-Step Real-Image Reflection Holograms

    Science.gov (United States)

    Buah-Bassuah, Paul K.; Vannoni, Maurizio; Molesini, Giuseppe

    2007-01-01

    A holographic process is presented where the object is made of the real image produced by a two-mirror system. Single-step reflection hologram recording is achieved. Details of the process are given, optics concepts are outlined and demonstrative results are presented. (Contains 6 figures and 2 footnotes.)

  9. Robust reflective ghost imaging against different partially polarized thermal light

    Science.gov (United States)

    Li, Hong-Guo; Wang, Yan; Zhang, Rui-Xue; Zhang, De-Jian; Liu, Hong-Chao; Li, Zong-Guo; Xiong, Jun

    2018-03-01

    We theoretically study the influence of degree of polarization (DOP) of thermal light on the contrast-to-noise ratio (CNR) of the reflective ghost imaging (RGI), which is a novel and indirect imaging modality. An expression for the CNR of RGI with partially polarized thermal light is carefully derived, which suggests a weak dependence of CNR on the DOP, especially when the ratio of the object size to the speckle size of thermal light has a large value. Different from conventional imaging approaches, our work reveals that RGI is much more robust against the DOP of the light source, which thereby has advantages in practical applications, such as remote sensing.

  10. A Wide Spectral Range Reflectance and Luminescence Imaging System

    Directory of Open Access Journals (Sweden)

    Tapani Hirvonen

    2013-10-01

    Full Text Available In this study, we introduce a wide spectral range (200–2500 nm imaging system with a 250 μm minimum spatial resolution, which can be freely modified for a wide range of resolutions and measurement geometries. The system has been tested for reflectance and luminescence measurements, but can also be customized for transmittance measurements. This study includes the performance results of the developed system, as well as examples of spectral images. Discussion of the system relates it to existing systems and methods. The wide range spectral imaging system that has been developed is however highly customizable and has great potential in many practical applications.

  11. Identifiable images of bystanders extracted from corneal reflections.

    Directory of Open Access Journals (Sweden)

    Rob Jenkins

    Full Text Available Criminal investigations often use photographic evidence to identify suspects. Here we combined robust face perception and high-resolution photography to mine face photographs for hidden information. By zooming in on high-resolution face photographs, we were able to recover images of unseen bystanders from reflections in the subjects' eyes. To establish whether these bystanders could be identified from the reflection images, we presented them as stimuli in a face matching task (Experiment 1. Accuracy in the face matching task was well above chance (50%, despite the unpromising source of the stimuli. Participants who were unfamiliar with the bystanders' faces (n = 16 performed at 71% accuracy [t(15 = 7.64, p<.0001, d = 1.91], and participants who were familiar with the faces (n = 16 performed at 84% accuracy [t(15 = 11.15, p<.0001, d = 2.79]. In a test of spontaneous recognition (Experiment 2, observers could reliably name a familiar face from an eye reflection image. For crimes in which the victims are photographed (e.g., hostage taking, child sex abuse, reflections in the eyes of the photographic subject could help to identify perpetrators.

  12. GREEN PRICES – A REFLECTION OF ENVIRONMETAL PROTECTION

    Directory of Open Access Journals (Sweden)

    Daniela SIMTION

    2014-10-01

    Full Text Available The price is generally a very important factor in taking the purchase decision; it will influence the acceptance or rejection of organic products. For those who believe market forces represent a path to sustainability, it is vital to include eco-costs in the product costs and, further, in their prices. Otherwise, consumption growth will result in a continuous degradation of ecosystems, taking into consideration that environmental costs are not reflected in the price. To what extent a company is considering the ecological policy will be reflected in its cost structure. Organic products, most of the times, will incur additional costs generated by preservation and improvement expenses for environmental. These expenses will be reflected in costs, the price will reflect the value of the main benefits required by the consumer.

  13. Diffuse reflectance imaging: a tool for guided biopsy

    Science.gov (United States)

    Jayanthi, Jayaraj L.; Subhash, Narayanan; Manju, Stephen; Nisha, Unni G.; Beena, Valappil T.

    2012-01-01

    Accurate diagnosis of premalignant or malignant oral lesions depends on the quality of the biopsy, adequate clinical information and correct interpretation of the biopsy results. The major clinical challenge is to precisely locate the biopsy site in a clinically suspicious lesion. Dips due to oxygenated hemoglobin absorption have been noticed at 545 and 575 nm in the diffusely reflected white light spectra of oral mucosa and the intensity ratio R545/R575 has been found suited for early detection of oral pre-cancers. A multi-spectral diffuse reflectance (DR) imaging system has been developed consisting of an electron multiplying charge coupled device (EMCCD) camera and a liquid crystal tunable filter for guiding the clinician to an optimal biopsy site. Towards this DR images were recorded from 27 patients with potentially malignant lesions on their tongue (dorsal, lateral and ventral sides) and from 44 healthy controls at 545 and 575 nm with the DR imaging system. False colored ratio image R545/R575 of the lesion provides a visual discerning capability that helps in locating the most malignant site for biopsy. Histopathological report of guided biopsy showed that out of the 27 patients 16 were cancers, 9 pre-cancers and 2 lichen planus. In this clinical trial DR imaging has correctly guided 25 biopsy sites, yielding a sensitivity of 93% and a specificity of 98%, thereby establishing the potential of DR imaging as a tool for guided biopsy.

  14. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    Science.gov (United States)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  15. Reflective all-sky thermal infrared cloud imager.

    Science.gov (United States)

    Redman, Brian J; Shaw, Joseph A; Nugent, Paul W; Clark, R Trevor; Piazzolla, Sabino

    2018-04-30

    A reflective all-sky imaging system has been built using a long-wave infrared microbolometer camera and a reflective metal sphere. This compact system was developed for measuring spatial and temporal patterns of clouds and their optical depth in support of applications including Earth-space optical communications. The camera is mounted to the side of the reflective sphere to leave the zenith sky unobstructed. The resulting geometric distortion is removed through an angular map derived from a combination of checkerboard-target imaging, geometric ray tracing, and sun-location-based alignment. A tape of high-emissivity material on the side of the reflector acts as a reference that is used to estimate and remove thermal emission from the metal sphere. Once a bias that is under continuing study was removed, sky radiance measurements from the all-sky imager in the 8-14 μm wavelength range agreed to within 0.91 W/(m 2 sr) of measurements from a previously calibrated, lens-based infrared cloud imager over its 110° field of view.

  16. a Comparative Case Study of Reflection Seismic Imaging Method

    Science.gov (United States)

    Alamooti, M.; Aydin, A.

    2017-12-01

    Seismic imaging is the most common means of gathering information about subsurface structural features. The accuracy of seismic images may be highly variable depending on the complexity of the subsurface and on how seismic data is processed. One of the crucial steps in this process, especially in layered sequences with complicated structure, is the time and/or depth migration of seismic data.The primary purpose of the migration is to increase the spatial resolution of seismic images by repositioning the recorded seismic signal back to its original point of reflection in time/space, which enhances information about complex structure. In this study, our objective is to process a seismic data set (courtesy of the University of South Carolina) to generate an image on which the Magruder fault near Allendale SC can be clearly distinguished and its attitude can be accurately depicted. The data was gathered by common mid-point method with 60 geophones equally spaced along an about 550 m long traverse over a nearly flat ground. The results obtained from the application of different migration algorithms (including finite-difference and Kirchhoff) are compared in time and depth domains to investigate the efficiency of each algorithm in reducing the processing time and improving the accuracy of seismic images in reflecting the correct position of the Magruder fault.

  17. DIRC, the internally reflecting ring imaging Cherenkov detector for BABAR

    International Nuclear Information System (INIS)

    Adam, I.; Aston, D.

    1997-11-01

    The DIRC is a new type of Cherenkov imaging device that will be used for the first time in the BABAR detector at the asymmetric B-factory, PEP-II. It is based on total internal reflection and uses long, rectangular bars made from synthetic fused silica as Cherenkov radiator and light guide. The principles of the DIRC ring imaging Cherenkov technique are explained and results from the prototype program are presented. Its choice for the BABAR detector particle identification system is motivated, followed by a discussion of the quartz radiator properties and the detector design

  18. Iterative reflectivity-constrained velocity estimation for seismic imaging

    Science.gov (United States)

    Masaya, Shogo; Verschuur, D. J. Eric

    2018-03-01

    This paper proposes a reflectivity constraint for velocity estimation to optimally solve the inverse problem for active seismic imaging. This constraint is based on the velocity model derived from the definition of reflectivity and acoustic impedance. The constraint does not require any prior information of the subsurface and large extra computational costs, like the calculation of so-called Hessian matrices. We incorporate this constraint into the Joint Migration Inversion algorithm, which simultaneously estimates both the reflectivity and velocity model of the subsurface in an iterative process. Using so-called full wavefield modeling, the misfit between forward modeled and measured data is minimized. Numerical and field data examples are given to demonstrate the validity of our proposed algorithm in case accurate initial models and the low frequency components of observed seismic data are absent.

  19. Theory of reflectivity blurring in seismic depth imaging

    Science.gov (United States)

    Thomson, C. J.; Kitchenside, P. W.; Fletcher, R. P.

    2016-05-01

    A subsurface extended image gather obtained during controlled-source depth imaging yields a blurred kernel of an interface reflection operator. This reflectivity kernel or reflection function is comprised of the interface plane-wave reflection coefficients and so, in principle, the gather contains amplitude versus offset or angle information. We present a modelling theory for extended image gathers that accounts for variable illumination and blurring, under the assumption of a good migration-velocity model. The method involves forward modelling as well as migration or back propagation so as to define a receiver-side blurring function, which contains the effects of the detector array for a given shot. Composition with the modelled incident wave and summation over shots then yields an overall blurring function that relates the reflectivity to the extended image gather obtained from field data. The spatial evolution or instability of blurring functions is a key concept and there is generally not just spatial blurring in the apparent reflectivity, but also slowness or angle blurring. Gridded blurring functions can be estimated with, for example, a reverse-time migration modelling engine. A calibration step is required to account for ad hoc band limitedness in the modelling and the method also exploits blurring-function reciprocity. To demonstrate the concepts, we show numerical examples of various quantities using the well-known SIGSBEE test model and a simple salt-body overburden model, both for 2-D. The moderately strong slowness/angle blurring in the latter model suggests that the effect on amplitude versus offset or angle analysis should be considered in more realistic structures. Although the description and examples are for 2-D, the extension to 3-D is conceptually straightforward. The computational cost of overall blurring functions implies their targeted use for the foreseeable future, for example, in reservoir characterization. The description is for scalar

  20. CMP reflection imaging via interferometry of distributed subsurface sources

    Science.gov (United States)

    Kim, D.; Brown, L. D.; Quiros, D. A.

    2015-12-01

    The theoretical foundations of recovering body wave energy via seismic interferometry are well established. However in practice, such recovery remains problematic. Here, synthetic seismograms computed for subsurface sources are used to evaluate the geometrical combinations of realistic ambient source and receiver distributions that result in useful recovery of virtual body waves. This study illustrates how surface receiver arrays that span a limited distribution suite of sources, can be processed to reproduce virtual shot gathers that result in CMP gathers which can be effectively stacked with traditional normal moveout corrections. To verify the feasibility of the approach in practice, seismic recordings of 50 aftershocks following the magnitude of 5.8 Virginia earthquake occurred in August, 2011 have been processed using seismic interferometry to produce seismic reflection images of the crustal structure above and beneath the aftershock cluster. Although monotonic noise proved to be problematic by significantly reducing the number of usable recordings, the edited dataset resulted in stacked seismic sections characterized by coherent reflections that resemble those seen on a nearby conventional reflection survey. In particular, "virtual" reflections at travel times of 3 to 4 seconds suggest reflector sat approximately 7 to 12 km depth that would seem to correspond to imbricate thrust structures formed during the Appalachian orogeny. The approach described here represents a promising new means of body wave imaging of 3D structure that can be applied to a wide array of geologic and energy problems. Unlike other imaging techniques using natural sources, this technique does not require precise source locations or times. It can thus exploit aftershocks too small for conventional analyses. This method can be applied to any type of microseismic cloud, whether tectonic, volcanic or man-made.

  1. Comparison of mouse mammary gland imaging techniques and applications: Reflectance confocal microscopy, GFP Imaging, and ultrasound

    International Nuclear Information System (INIS)

    Tilli, Maddalena T; Parrish, Angela R; Cotarla, Ion; Jones, Laundette P; Johnson, Michael D; Furth, Priscilla A

    2008-01-01

    Genetically engineered mouse models of mammary gland cancer enable the in vivo study of molecular mechanisms and signaling during development and cancer pathophysiology. However, traditional whole mount and histological imaging modalities are only applicable to non-viable tissue. We evaluated three techniques that can be quickly applied to living tissue for imaging normal and cancerous mammary gland: reflectance confocal microscopy, green fluorescent protein imaging, and ultrasound imaging. In the current study, reflectance confocal imaging offered the highest resolution and was used to optically section mammary ductal structures in the whole mammary gland. Glands remained viable in mammary gland whole organ culture when 1% acetic acid was used as a contrast agent. Our application of using green fluorescent protein expressing transgenic mice in our study allowed for whole mammary gland ductal structures imaging and enabled straightforward serial imaging of mammary gland ducts in whole organ culture to visualize the growth and differentiation process. Ultrasound imaging showed the lowest resolution. However, ultrasound was able to detect mammary preneoplastic lesions 0.2 mm in size and was used to follow cancer growth with serial imaging in living mice. In conclusion, each technique enabled serial imaging of living mammary tissue and visualization of growth and development, quickly and with minimal tissue preparation. The use of the higher resolution reflectance confocal and green fluorescent protein imaging techniques and lower resolution ultrasound were complementary

  2. Reflections On Employment Protection Legislation: An International Comparison

    Directory of Open Access Journals (Sweden)

    AMINE SAMIR

    2015-03-01

    Full Text Available In Europe, as in the rest of industrialized countries, reforms of the labour market have generally concerned employment protection legislation (EPL. One of the main missions of this legislation is to insure security for workers, particularly in case of redundancy. The object of this article is to compare the strictness and the degree of rigidity of EPL in two different economies, namely, Canada and France. This choice is justified by the fact that the labour market policies in both countries do not have the same orientation and are based on different ideological references.

  3. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-12-01

    The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements-including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth-were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light-tissue interactions and characterizing biophotonic system performance.

  4. Rapid prototyping of biomimetic vascular phantoms for hyperspectral reflectance imaging

    Science.gov (United States)

    Ghassemi, Pejhman; Wang, Jianting; Melchiorri, Anthony J.; Ramella-Roman, Jessica C.; Mathews, Scott A.; Coburn, James C.; Sorg, Brian S.; Chen, Yu; Joshua Pfefer, T.

    2015-01-01

    Abstract. The emerging technique of rapid prototyping with three-dimensional (3-D) printers provides a simple yet revolutionary method for fabricating objects with arbitrary geometry. The use of 3-D printing for generating morphologically biomimetic tissue phantoms based on medical images represents a potentially major advance over existing phantom approaches. Toward the goal of image-defined phantoms, we converted a segmented fundus image of the human retina into a matrix format and edited it to achieve a geometry suitable for printing. Phantoms with vessel-simulating channels were then printed using a photoreactive resin providing biologically relevant turbidity, as determined by spectrophotometry. The morphology of printed vessels was validated by x-ray microcomputed tomography. Channels were filled with hemoglobin (Hb) solutions undergoing desaturation, and phantoms were imaged with a near-infrared hyperspectral reflectance imaging system. Additionally, a phantom was printed incorporating two disjoint vascular networks at different depths, each filled with Hb solutions at different saturation levels. Light propagation effects noted during these measurements—including the influence of vessel density and depth on Hb concentration and saturation estimates, and the effect of wavelength on vessel visualization depth—were evaluated. Overall, our findings indicated that 3-D-printed biomimetic phantoms hold significant potential as realistic and practical tools for elucidating light–tissue interactions and characterizing biophotonic system performance. PMID:26662064

  5. Radiation protection in newer imaging technologies

    International Nuclear Information System (INIS)

    Rehani, M. M.

    2010-01-01

    Not even a week passes without a paper getting published in peer reviewed journals on radiation protection in newer imaging technologies that either did not exist 10 y ago or were not established for routine use. Computed tomography (CT) happens to be a common element in most of these technologies. Radiation protection is high on the agenda of manufacturers and researchers and that is becoming a driving force for users and international organisations. The media and thus the public have their own share in increasing the momentum. The slice war seems to be shifting to dose war. Manufacturers are now chasing the target of sub-mSv CT. The era of two digit mSv effective dose for a CT procedure is far from losing ground, although cardiac CT within 5 mSv seems possible. A few years ago the change in technology was faster than adoption of dose management but currently even the development of dose reduction techniques is faster than its adoption. There is dearth of large scale surveys of practice and lack of surveys with change in technology. (authors)

  6. An improved method to estimate reflectance parameters for high dynamic range imaging

    Science.gov (United States)

    Li, Shiying; Deguchi, Koichiro; Li, Renfa; Manabe, Yoshitsugu; Chihara, Kunihiro

    2008-01-01

    Two methods are described to accurately estimate diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness, over the dynamic range of the camera used to capture input images. Neither method needs to segment color areas on an image, or to reconstruct a high dynamic range (HDR) image. The second method improves on the first, bypassing the requirement for specific separation of diffuse and specular reflection components. For the latter method, diffuse and specular reflectance parameters are estimated separately, using the least squares method. Reflection values are initially assumed to be diffuse-only reflection components, and are subjected to the least squares method to estimate diffuse reflectance parameters. Specular reflection components, obtained by subtracting the computed diffuse reflection components from reflection values, are then subjected to a logarithmically transformed equation of the Torrance-Sparrow reflection model, and specular reflectance parameters for gloss intensity and surface roughness are finally estimated using the least squares method. Experiments were carried out using both methods, with simulation data at different saturation levels, generated according to the Lambert and Torrance-Sparrow reflection models, and the second method, with spectral images captured by an imaging spectrograph and a moving light source. Our results show that the second method can estimate the diffuse and specular reflectance parameters for colors, gloss intensity and surface roughness more accurately and faster than the first one, so that colors and gloss can be reproduced more efficiently for HDR imaging.

  7. Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.

    Science.gov (United States)

    Francis, Andrew W; Wanek, Justin; Lim, Jennifer I; Shahidi, Mahnaz

    2015-01-01

    To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.

  8. About the use of reflectance terminology in imaging spectroscopy

    NARCIS (Netherlands)

    Schaepman-Strub, G.; Schaepman, M.E.; Dangel, S.; Painter, T.; Martonchik, J.

    2005-01-01

    Analysing databases, field and airborne spectrometer data, modelling studies and publications, a lack of consistency in the use of definitions and terminology of reflectance quantities can be observed. One example is the term `BRDF¿ (bidirectional reflectance distribution function) assigned to

  9. New solution for transport and industrial noise protection through reflective noise barriers

    Directory of Open Access Journals (Sweden)

    Kralov Ivan

    2017-01-01

    Full Text Available A new solution for protection of transportation and industrial noise through reflective noise barriers is proposed and investigated in this study. The new solution combines the advantages of the known barriers and has its own advantages in addition. The preliminary results show a very good level of noise reduction for this type of barriers.

  10. The Effect of Glare on Regan Contrast Letter Acuity Scores Using Dye-Based and Reflective Laser Eye Protection

    National Research Council Canada - National Science Library

    Ghani, Nadeem

    2001-01-01

    Current laser eye protection devices (LEPDs) are dye-based or reflective. While both technologies block the laser wavelengths, reflective LEPDs generally transmit more visible light than do dye-based LEPDs...

  11. Image Gently: A campaign to promote radiation protection for ...

    African Journals Online (AJOL)

    2015-12-14

    Dec 14, 2015 ... developing education materials that support the protection of children worldwide from unnecessary radiation ... Emory University School of. Medicine .... materials for the Image Gently campaign are provided free of charge (cf.

  12. Core ethical values of radiological protection applied to Fukushima case: reflecting common morality and cultural diversities.

    Science.gov (United States)

    Kurihara, Chieko; Cho, Kunwoo; Toohey, Richard E

    2016-12-01

    The International Commission on Radiological Protection (ICRP) has established Task Group 94 (TG94) to develop a publication to clarify the ethical foundations of the radiological protection system it recommends. This TG identified four core ethical values which structure the system: beneficence and non-maleficence, prudence, justice, and dignity. Since the ICRP is an international organization, its recommendations and guidance should be globally applicable and acceptable. Therefore, first this paper presents the basic principles of the ICRP radiological protection system and its core ethical values, along with a reflection on the variation of these values in Western and Eastern cultural traditions. Secondly, this paper reflects upon how these values can be applied in difficult ethical dilemmas as in the case of the emergency and post-accident phases of a nuclear power plant accident, using the Fukushima case to illustrate the challenges at stake. We found that the core ethical values underlying the ICRP system of radiological protection seem to be quite common throughout the world, although there are some variations among various cultural contexts. Especially we found that 'prudence' would call for somewhat different implementation in each cultural context, balancing and integrating sometime conflicting values, but always with objectives to achieve the well-being of people, which is itself the ultimate aim of the radiological protection system.

  13. Image-based reflectance conversion of ASTER and IKONOS ...

    African Journals Online (AJOL)

    Spectral signatures derived from different image-based models for ASTER and IKONOS were inspected visually as first departure. This was followed by comparison of the total accuracy and Kappa index computed from supervised classification of images that were derived from different image-based atmospheric correction ...

  14. Subsurface offset behaviour in velocity analysis with extended reflectivity images

    NARCIS (Netherlands)

    Mulder, W.A.

    2013-01-01

    Migration velocity analysis with the constant-density acoustic wave equation can be accomplished by the focusing of extended migration images, obtained by introducing a subsurface shift in the imaging condition. A reflector in a wrong velocity model will show up as a curve in the extended image. In

  15. Subsurface offset behaviour in velocity analysis with extended reflectivity images

    NARCIS (Netherlands)

    Mulder, W.A.

    2012-01-01

    Migration velocity analysis with the wave equation can be accomplished by focusing of extended migration images, obtained by introducing a subsurface offset or shift. A reflector in the wrong velocity model will show up as a curve in the extended image. In the correct model, it should collapse to a

  16. Patients radiation protection in medical imaging. Conference proceedings

    International Nuclear Information System (INIS)

    2011-12-01

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  17. Reflection-artifact-free photoacoustic imaging using PAFUSion (photoacoustic-guided focused ultrasound)

    Science.gov (United States)

    Kuniyil Ajith Singh, Mithun; Jaeger, Michael; Frenz, Martin; Steenbergen, Wiendelt

    2016-03-01

    Reflection artifacts caused by acoustic inhomogeneities are a main challenge to deep-tissue photoacoustic imaging. Photoacoustic transients generated by the skin surface and superficial vasculature will propagate into the tissue and reflect back from echogenic structures to generate reflection artifacts. These artifacts can cause problems in image interpretation and limit imaging depth. In its basic version, PAFUSion mimics the inward travelling wave-field from blood vessel-like PA sources by applying focused ultrasound pulses, and thus provides a way to identify reflection artifacts. In this work, we demonstrate reflection artifact correction in addition to identification, towards obtaining an artifact-free photoacoustic image. In view of clinical applications, we implemented an improved version of PAFUSion in which photoacoustic data is backpropagated to imitate the inward travelling wave-field and thus the reflection artifacts of a more arbitrary distribution of PA sources that also includes the skin melanin layer. The backpropagation is performed in a synthetic way based on the pulse-echo acquisitions after transmission on each single element of the transducer array. We present a phantom experiment and initial in vivo measurements on human volunteers where we demonstrate significant reflection artifact reduction using our technique. The results provide a direct confirmation that reflection artifacts are prominent in clinical epi-photoacoustic imaging, and that PAFUSion can reduce these artifacts significantly to improve the deep-tissue photoacoustic imaging.

  18. The Protection of the Image and Privacy in France

    Directory of Open Access Journals (Sweden)

    Leonardo Estevam de Assis Zanini

    2018-03-01

    Full Text Available This article analyzes the emergence and development of the protection of the image and privacy in France. It emphasizes that initially the defense of these rights was only work of the courts, that created rules applicable to the concrete cases. The courts used the general clause of civil liability, because there was no developed doctrine on personality rights. Subsequently the matter also began to be object of study of the French doctrinators. Unlike Germany, which granted protection very early, France only regulated these rights with the promulgation of the Law 70-643, of 17th July 1970, which introduced the right to privacy in the article 9 of the French Civil Code. This norm reinforced the protection of the personality, but it remains to be seen whether there has also been an improvement in the protection of the image in France, which we will study in this article.

  19. A spectral image processing algorithm for evaluating the influence of the illuminants on the reconstructed reflectance

    Science.gov (United States)

    Toadere, Florin

    2017-12-01

    A spectral image processing algorithm that allows the illumination of the scene with different illuminants together with the reconstruction of the scene's reflectance is presented. Color checker spectral image and CIE A (warm light 2700 K), D65 (cold light 6500 K) and Cree TW Series LED T8 (4000 K) are employed for scene illumination. Illuminants used in the simulations have different spectra and, as a result of their illumination, the colors of the scene change. The influence of the illuminants on the reconstruction of the scene's reflectance is estimated. Demonstrative images and reflectance showing the operation of the algorithm are illustrated.

  20. Surface reflectance of Antarctic bryophytes and protection from UV and visible light

    International Nuclear Information System (INIS)

    Robinson, S.A.; Wasley, J.; Turnbull, J.

    2000-01-01

    Full text: As well as determining the amount of solar radiation available for photosynthesis, the surface reflectance and absorptance characteristics of plants are their first defence against damaging effects of solar radiation. The solar spectrum can be damaging to plants in many ways. At shorter wavelengths, UV-B (280-320 nm) radiation can cause lesions in nucleic acid and proteins. Excess levels of visible radiation (400-750) can cause photoinhibition whilst high absorbtance of longer wavelengths (>750) leads to increases in temperature that can be detrimental in some environments. The adaptation of surface reflectance properties of vascular plants to particular environments are well known in some ecosystems. For example in desert ecosystems pubescent leaf surfaces that increase reflectance are common and have been demonstrated to be important to protection from photoinhibition. The epidermal characteristics of some plants are also known to change in absorptance, due to the accumulation of specific compounds. For example flavonoids which are effective screens against UV-B radiation, increase upon exposure to UV-B radiation. In this study we surveyed the natural variability in surface reflectance in mosses growing in continental Antarctica. Antarctica is experiencing large increases in incident UV-B radiation due to reductions in concentrations of stratospheric ozone. Additionally over the summer months (November January), when moss is exposed to direct sunlight, levels of visible solar radiation are also high, increasing the likelihood of photoinhibitory damage in moss. Our aim in this study is to describe the natural variability in the surface reflectance characteristics of moss, such that we have a baseline with which to assess future changes in response to changes in global climate, and imposed experimental treatments, and also to develop hypotheses with respect to how mosses have adapted to the cold and arid antarctic environment. Variability in surface

  1. Reflections

    Directory of Open Access Journals (Sweden)

    Joanne Embree

    2001-01-01

    Full Text Available Ideally, editorials are written one to two months before publication in the Journal. It was my turn to write this one. I had planned to write the first draft the evening after my clinic on Tuesday, September 11. It didn't get done that night or during the next week. Somehow, the topic that I had originally chosen just didn't seem that important anymore as I, along my friends and colleagues, reflected on the changes that the events of that day were likely to have on our lives.

  2. Reflecting the divine image: The crux of Umunthu in contemporary ...

    African Journals Online (AJOL)

    ... implications of the nature of the image of God in humans; thereby pointing out that .... cradle of African thinking and acting. It implies the unity of ... Umunthu is a worldview that is commonly captured ... humanity has been a big quest. .... Calling on the Jewish, Muslim and Palestinian leaders, based on humanity created in ...

  3. Polarization resolved imaging with a reflection near-field optical microscope

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Xiao, Mufei; Hvam, Jørn Märcher

    1999-01-01

    Using a rigorous microscopic point-dipole description of probe-sample interactions, we study imaging with a reflection scanning near-field optical microscope. Optical content, topographical artifacts, sensitivity window-i.e., the scale on which near-field optical images represent mainly optical...... configuration is preferable to the cross-linear one, since it ensures more isotropic (in the surface plane) near-field imaging of surface features. The numerical results are supported with experimental near-field images obtained by using a reflection microscope with an uncoated fiber tip....

  4. DIRC dreams: research directions for the next generation of internally reflected imaging counters

    International Nuclear Information System (INIS)

    Ratcliff, Blair N.; Spanier, Stefan

    1999-01-01

    Some conceptual design features of the total internally reflecting, imaging Cherenkov counter (DIRC) are described. Limits of the DIRC approach to particle identification, and a few features of alternative DIRC designs, are briefly explored

  5. BOREAS RSS-19 1996 CASI At-Sensor Radiance and Reflectance Images

    Data.gov (United States)

    National Aeronautics and Space Administration — CASI images from the Chieftain Navaho aircraft collected in order to observe the seasonal change in the radiometric reflectance properties of the boreal forest...

  6. BOREAS RSS-19 1996 CASI At-Sensor Radiance and Reflectance Images

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: CASI images from the Chieftain Navaho aircraft collected in order to observe the seasonal change in the radiometric reflectance properties of the boreal...

  7. BOREAS RSS-19 1994 CASI At-Sensor Radiance and Reflectance Images

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: CASI images from the Chieftain Navaho aircraft taken in order to observe the seasonal change in the radiometric reflectance properties of the boreal forest...

  8. BOREAS RSS-19 1994 CASI At-Sensor Radiance and Reflectance Images

    Data.gov (United States)

    National Aeronautics and Space Administration — CASI images from the Chieftain Navaho aircraft taken in order to observe the seasonal change in the radiometric reflectance properties of the boreal forest...

  9. Diagnosing hypoxia in murine models of rheumatoid arthritis from reflectance multispectral images

    Science.gov (United States)

    Glinton, Sophie; Naylor, Amy J.; Claridge, Ela

    2017-07-01

    Spectra computed from multispectral images of murine models of Rheumatoid Arthritis show a characteristic decrease in reflectance within the 600-800nm region which is indicative of the reduction in blood oxygenation and is consistent with hypoxia.

  10. DIRC Dreams Redux: Research Directions for the Next Generation of Internally Reflected Imaging Counters

    Energy Technology Data Exchange (ETDEWEB)

    Ratcliff, Blair N

    2001-09-18

    Some general conceptual design features of total internally reflecting, imaging Cherenkov counters (DIRCs) are described. Limits of the DIRC approach to particle identification and a few features of alternative DIRC designs are briefly explored.

  11. Radiation protection in medical imaging and radiation oncology

    CERN Document Server

    Stoeva, Magdalena S

    2016-01-01

    Radiation Protection in Medical Imaging and Radiation Oncology focuses on the professional, operational, and regulatory aspects of radiation protection. Advances in radiation medicine have resulted in new modalities and procedures, some of which have significant potential to cause serious harm. Examples include radiologic procedures that require very long fluoroscopy times, radiolabeled monoclonal antibodies, and intravascular brachytherapy. This book summarizes evidence supporting changes in consensus recommendations, regulations, and health physics practices associated with these recent advances in radiology, nuclear medicine, and radiation oncology. It supports intelligent and practical methods for protection of personnel, the public, and patients. The book is based on current recommendations by the International Commission on Radiological Protection and is complemented by detailed practical sections and professional discussions by the world’s leading medical and health physics professionals. It also ...

  12. DCT-Based Characterization of Milk Products Using Diffuse Reflectance Images

    DEFF Research Database (Denmark)

    Sharifzadeh, Sara; Skytte, Jacob Lercke; Clemmensen, Line Katrine Harder

    2013-01-01

    We propose to use the two-dimensional Discrete Cosine Transform (DCT) for decomposition of diffuse reflectance images of laser illumination on milk products in different wavelengths. Based on the prior knowledge about the characteristics of the images, the initial feature vectors are formed at ea...... discriminate milk from yogurt products better....

  13. Cellular features of psoriatic skin: imaging and quantification using in vivo reflectance confocal microscopy

    NARCIS (Netherlands)

    Wolberink, E.A.W.; Erp, P.E.J. van; Teussink, M.M.; Kerkhof, P.C.M. van de; Gerritsen, M.J.P.

    2011-01-01

    BACKGROUND: In vivo reflectance confocal microscopy (RCM) is a novel, exciting imaging technique. It provides images of cell-and tissue structures and dynamics in situ, in real time, without the need for ex vivo tissue samples. RCM visualizes the superficial part of human skin up to a depth of 250

  14. Non-invasive detection of murals with pulsed terahertz reflected imaging system

    Science.gov (United States)

    Yuan, Minjie; Sun, Wenfeng; Wang, Xinke; Ye, Jiasheng; Wang, Sen; Zhang, Qunxi; Zhang, Yan

    2015-11-01

    Pulsed terahertz reflected imaging technology has been expected to have great potential for the non-invasive analysis of artworks. In this paper, three types of defects hidden in the plaster used to simulate the cases of defects in the murals, have been investigated by a pulsed terahertz reflected imaging system. These preset defects include a circular groove, a cross-shaped slit and a piece of "Y-type" metal plate built in the plaster. With the terahertz reflective tomography, information about defects has been determined involving the thickness from the surface of sample to the built-in defect, the profile and distribution of the defect. Additionally, three-dimensional analyses have been performed in order to reveal the internal structure of defects. Terahertz reflective imaging can be applied to the defect investigation of the murals.

  15. Properties of light reflected from road signs in active imaging for driving safety

    Science.gov (United States)

    Halstuch, Aviran; Yitzhaky, Yitzhak

    2007-10-01

    Night-vision systems in vehicles are a new emerging technology. A crucial problem in active (illumination-based) systems is distortion of images by saturation and blooming, due to strong retro-reflections from road signs. In this work we quantified this phenomenon. We measured the Mueller matrices and the polarization state of the reflected light from three different types of road signs commonly used. Measurements of the reflected intensity were taken also with respect to the angle of reflection. We found that different types of signs have different reflection properties. It is concluded from our measurements that the optimal solution for attenuating the retro-reflected intensity is using a linear horizontal polarized light source and a linear vertical polarizer. Unfortunately, while the performance of this solution is good for two types of road signs, it is less efficient for the third sign type.

  16. Copyright Protection of Color Imaging Using Robust-Encoded Watermarking

    Directory of Open Access Journals (Sweden)

    M. Cedillo-Hernandez

    2015-04-01

    Full Text Available In this paper we present a robust-encoded watermarking method applied to color images for copyright protection, which presents robustness against several geometric and signal processing distortions. Trade-off between payload, robustness and imperceptibility is a very important aspect which has to be considered when a watermark algorithm is designed. In our proposed scheme, previously to be embedded into the image, the watermark signal is encoded using a convolutional encoder, which can perform forward error correction achieving better robustness performance. Then, the embedding process is carried out through the discrete cosine transform domain (DCT of an image using the image normalization technique to accomplish robustness against geometric and signal processing distortions. The embedded watermark coded bits are extracted and decoded using the Viterbi algorithm. In order to determine the presence or absence of the watermark into the image we compute the bit error rate (BER between the recovered and the original watermark data sequence. The quality of the watermarked image is measured using the well-known indices: Peak Signal to Noise Ratio (PSNR, Visual Information Fidelity (VIF and Structural Similarity Index (SSIM. The color difference between the watermarked and original images is obtained by using the Normalized Color Difference (NCD measure. The experimental results show that the proposed method provides good performance in terms of imperceptibility and robustness. The comparison among the proposed and previously reported methods based on different techniques is also provided.

  17. Polarized near-infrared autofluorescence imaging combined with near-infrared diffuse reflectance imaging for improving colonic cancer detection.

    Science.gov (United States)

    Shao, Xiaozhuo; Zheng, Wei; Huang, Zhiwei

    2010-11-08

    We evaluate the diagnostic feasibility of the integrated polarized near-infrared (NIR) autofluorescence (AF) and NIR diffuse reflectance (DR) imaging technique developed for colonic cancer detection. A total of 48 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated NIR DR (850-1100 nm) and NIR AF imaging at the 785 nm laser excitation. The results showed that NIR AF intensities of cancer tissues are significantly lower than those of normal tissues (ppolarization conditions gives a higher diagnostic accuracy (of ~92-94%) compared to non-polarized NIR AF imaging or NIR DR imaging. Further, the ratio imaging of NIR DR to NIR AF with polarization provides the best diagnostic accuracy (of ~96%) among the NIR AF and NIR DR imaging techniques. This work suggests that the integrated NIR AF/DR imaging under polarization condition has the potential to improve the early diagnosis and detection of malignant lesions in the colon.

  18. Forme Fruste Keratoconus Imaging and Validation via Novel Multi-Spot Reflection Topography

    Directory of Open Access Journals (Sweden)

    Anastasios John Kanellopoulos

    2013-10-01

    Full Text Available Background/Aims: This case report aims to evaluate safety, efficacy and applicability of anterior surface imaging in a patient with forme fruste keratoconus (FFKC based on a novel multi-spot, multicolor light-emitting-diode (LED tear film-reflection imaging technology Case Description: A 45-year-old male patient, clinically diagnosed with FFKC, with highly asymmetric manifestation between his eyes, was subjected to the multicolor-spot reflection topography. We investigated elevation and sagittal curvature maps comparatively with the multicolor-spot reflection topographer, a Placido topographer and a Scheimpflug imaging system. For the right eye, steep and flat keratometry values were 41.92 and 41.05 D with the multicolor spot-reflection topographer, 42.30 and 42.08 D with the Placido, and 41.95 and 41.19 D with the Scheimpflug system. For the left eye, steep and flat keratometry values were 41.86 and 41.19 D with the multicolor spot-reflection topographer, 42.06 and 41.66 D with the Placido topographer, and 41.96 and 41.66 D with the Scheimpflug camera. Average repeatability of the keratometry measurements was ±0.35 D for the multicolor spot-reflection topographer, ±0.30 D for the Placido, and ±0.25 D for the Scheimpflug camera. Very good agreement between the instruments was demonstrated on the elevation and curvature maps. Conclusion: The ease of use and the comparable results offered by the multicolor spot-reflection topographer, in comparison to established Placido and Scheimpflug imaging, as well as the increased predictability that may be offered by the multicolor spot-reflection topographer, may hold promise for wider clinical application, such as screening of young adults for early keratoconus and, in a much wider perspective, potential candidates for laser corneal refractive surgery.

  19. Watch your step! A frustrated total internal reflection approach to forensic footwear imaging.

    Science.gov (United States)

    Needham, J A; Sharp, J S

    2016-02-16

    Forensic image retrieval and processing are vital tools in the fight against crime e.g. during fingerprint capture. However, despite recent advances in machine vision technology and image processing techniques (and contrary to the claims of popular fiction) forensic image retrieval is still widely being performed using outdated practices involving inkpads and paper. Ongoing changes in government policy, increasing crime rates and the reduction of forensic service budgets increasingly require that evidence be gathered and processed more rapidly and efficiently. A consequence of this is that new, low-cost imaging technologies are required to simultaneously increase the quality and throughput of the processing of evidence. This is particularly true in the burgeoning field of forensic footwear analysis, where images of shoe prints are being used to link individuals to crime scenes. Here we describe one such approach based upon frustrated total internal reflection imaging that can be used to acquire images of regions where shoes contact rigid surfaces.

  20. Watch your step! A frustrated total internal reflection approach to forensic footwear imaging

    Science.gov (United States)

    Needham, J. A.; Sharp, J. S.

    2016-02-01

    Forensic image retrieval and processing are vital tools in the fight against crime e.g. during fingerprint capture. However, despite recent advances in machine vision technology and image processing techniques (and contrary to the claims of popular fiction) forensic image retrieval is still widely being performed using outdated practices involving inkpads and paper. Ongoing changes in government policy, increasing crime rates and the reduction of forensic service budgets increasingly require that evidence be gathered and processed more rapidly and efficiently. A consequence of this is that new, low-cost imaging technologies are required to simultaneously increase the quality and throughput of the processing of evidence. This is particularly true in the burgeoning field of forensic footwear analysis, where images of shoe prints are being used to link individuals to crime scenes. Here we describe one such approach based upon frustrated total internal reflection imaging that can be used to acquire images of regions where shoes contact rigid surfaces.

  1. Non-destructive quality evaluation of pepper (Capsicum annuum L.) seeds using LED-induced hyperspectral reflectance imaging

    Science.gov (United States)

    In this study, we develop a viability evaluation method for pepper (Capsicum annuum L.) seed based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumin...

  2. Imaging of Volume Phase Gratings in a Photosensitive Polymer, Recorded in Transmission and Reflection Geometry

    Directory of Open Access Journals (Sweden)

    Tina Sabel

    2014-02-01

    Full Text Available Volume phase gratings, recorded in a photosensitive polymer by two-beam interference exposure, are studied by means of optical microscopy. Transmission gratings and reflection gratings, with periods in the order of 10 μm down to 130 nm, were investigated. Mapping of holograms by means of imaging in sectional view is introduced to study reflection-type gratings, evading the resolution limit of classical optical microscopy. In addition, this technique is applied to examine so-called parasitic gratings, arising from interference from the incident reference beam and the reflected signal beam. The appearance and possible avoidance of such unintentionally recorded secondary structures is discussed.

  3. [A Method to Reconstruct Surface Reflectance Spectrum from Multispectral Image Based on Canopy Radiation Transfer Model].

    Science.gov (United States)

    Zhao, Yong-guang; Ma, Ling-ling; Li, Chuan-rong; Zhu, Xiao-hua; Tang, Ling-li

    2015-07-01

    Due to the lack of enough spectral bands for multi-spectral sensor, it is difficult to reconstruct surface retlectance spectrum from finite spectral information acquired by multi-spectral instrument. Here, taking into full account of the heterogeneity of pixel from remote sensing image, a method is proposed to simulate hyperspectral data from multispectral data based on canopy radiation transfer model. This method first assumes the mixed pixels contain two types of land cover, i.e., vegetation and soil. The sensitive parameters of Soil-Leaf-Canopy (SLC) model and a soil ratio factor were retrieved from multi-spectral data based on Look-Up Table (LUT) technology. Then, by combined with a soil ratio factor, all the parameters were input into the SLC model to simulate the surface reflectance spectrum from 400 to 2 400 nm. Taking Landsat Enhanced Thematic Mapper Plus (ETM+) image as reference image, the surface reflectance spectrum was simulated. The simulated reflectance spectrum revealed different feature information of different surface types. To test the performance of this method, the simulated reflectance spectrum was convolved with the Landsat ETM + spectral response curves and Moderate Resolution Imaging Spectrometer (MODIS) spectral response curves to obtain the simulated Landsat ETM+ and MODIS image. Finally, the simulated Landsat ETM+ and MODIS images were compared with the observed Landsat ETM+ and MODIS images. The results generally showed high correction coefficients (Landsat: 0.90-0.99, MODIS: 0.74-0.85) between most simulated bands and observed bands and indicated that the simulated reflectance spectrum was well simulated and reliable.

  4. Phase resolved and coherence gated en face reflection imaging of multilayered embryonal carcinoma cells

    Science.gov (United States)

    Yamauchi, Toyohiko; Fukami, Tadashi; Iwai, Hidenao; Yamashita, Yutaka

    2012-03-01

    Embryonal carcinoma (EC) cells, which are cell lines derived from teratocarcinomas, have characteristics in common with stem cells and differentiate into many kinds of functional cells. Similar to embryonic stem (ES) cells, undifferentiated EC cells form multi-layered spheroids. In order to visualize the three-dimensional structure of multilayered EC cells without labeling, we employed full-field interference microscopy with the aid of a low-coherence quantitative phase microscope, which is a reflection-type interference microscope employing the digital holographic technique with a low-coherent light source. Owing to the low-coherency of the light-source (halogen lamp), only the light reflected from reflective surface at a specific sectioning height generates an interference image on the CCD camera. P19CL6 EC cells, derived from mouse teratocarcinomas, formed spheroids that are about 50 to 200 micrometers in diameter. Since the height of each cell is around 10 micrometers, it is assumed that each spheroid has 5 to 20 cell layers. The P19CL6 spheroids were imaged in an upright configuration and the horizontally sectioned reflection images of the sample were obtained by sequentially and vertically scanning the zero-path-length height. Our results show the threedimensional structure of the spheroids, in which plasma and nuclear membranes were distinguishably imaged. The results imply that our technique is further capable of imaging induced pluripotent stem (iPS) cells for the assessment of cell properties including their pluripotency.

  5. Contribution of Reflection Terahertz Time Domain-Imaging (THz-TDI) to Imaging Analysis of Artworks

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Fukunaga, Kaori; Kohzuma, Y.

    Different kind s of artefacts (easel painting, panel paintings and Asian lacquerwares) have been scanned by THz - TDI and results have been compared with those obtained by others standard imaging techniques (x-ray radiography, cross sectional imaging, technical photography) .......Different kind s of artefacts (easel painting, panel paintings and Asian lacquerwares) have been scanned by THz - TDI and results have been compared with those obtained by others standard imaging techniques (x-ray radiography, cross sectional imaging, technical photography) ....

  6. Registration of eye reflection and scene images using an aspherical eye model.

    Science.gov (United States)

    Nakazawa, Atsushi; Nitschke, Christian; Nishida, Toyoaki

    2016-11-01

    This paper introduces an image registration algorithm between an eye reflection and a scene image. Although there are currently a large number of image registration algorithms, this task remains difficult due to nonlinear distortions at the eye surface and large amounts of noise, such as iris texture, eyelids, eyelashes, and their shadows. To overcome this issue, we developed an image registration method combining an aspherical eye model that simulates nonlinear distortions considering eye geometry and a two-step iterative registration strategy that obtains dense correspondence of the feature points to achieve accurate image registrations for the entire image region. We obtained a database of eye reflection and scene images featuring four subjects in indoor and outdoor scenes and compared the registration performance with different asphericity conditions. Results showed that the proposed approach can perform accurate registration with an average accuracy of 1.05 deg by using the aspherical cornea model. This work is relevant for eye image analysis in general, enabling novel applications and scenarios.

  7. ICRP 2015. International symposium on the radiation protection system. Report and reflection on a significant symposium

    International Nuclear Information System (INIS)

    Lorenz, Bernd

    2016-01-01

    The ICRP international symposium on the radiation protection system provides always extensive information on new developments in radiation protection. The ICRP 2105 discussed the following issues: radiation effects of low dose irradiation, dose coefficients for internal and external exposures, radiation protection in nuclear medicine, application of ICRP recommendations, environmental protection, studies on existing exposure situations, medical radiation protection today, science behind radiation doses, new developments in radiation effects, and ethics in radiation protection.

  8. Radiation protection and image quality in dental radiography

    International Nuclear Information System (INIS)

    Boer, J.A. den; Sprengers, J.H.M.

    1980-01-01

    A comparison is made between radiation protection standards affecting dental X-ray equipment for intra-oral film. The comparison shows that the standards not only promote a reduction of the radiation load on the patient but also, and with more emphasis in the more recent standards, an optimum image quality. These standards can therefore be considered to balance the cost in terms of the radiation load against the benefit of the image quality obtained, a conclusion which explains the lack of strict requirements on tube voltage and the complete absence of requirements on film speed. An evolutionary development of the standards in the course of time can be traced, and future developments can be anticipated. A continuing consultation between the regulatory organizations, the dental profession and the industry is necessary to maintain the cost/benefit balance. (Auth.)

  9. Radiation protection and image quality in dental radiography

    Energy Technology Data Exchange (ETDEWEB)

    den Boer, J A; Sprengers, J H.M. [Philips Gloeilampenfabrieken N.V., Eindhoven (Netherlands)

    1980-01-01

    A comparison is made between radiation protection standards affecting dental X-ray equipment for intra-oral film. The comparison shows that the standards not only promote a reduction of the radiation load on the patient but also, and with more emphasis in the more recent standards, an optimum image quality. These standards can therefore be considered to balance the cost in terms of the radiation load against the benefit of the image quality obtained, a conclusion which explains the lack of strict requirements on tube voltage and the complete absence of requirements on film speed. An evolutionary development of the standards in the course of time can be traced, and future developments can be anticipated. A continuing consultation between the regulatory organizations, the dental profession and the industry is necessary to maintain the cost/benefit balance.

  10. Automated cart with VIS/NIR hyperspectral reflectance and fluorescence imaging capabilities

    Science.gov (United States)

    A system to take high-resolution VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm), respectively, for illumination was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified...

  11. Bright Retinal Lesions Detection using Colour Fundus Images Containing Reflective Features

    Energy Technology Data Exchange (ETDEWEB)

    Giancardo, Luca [ORNL; Karnowski, Thomas Paul [ORNL; Chaum, Edward [ORNL; Meriaudeau, Fabrice [ORNL; Tobin Jr, Kenneth William [ORNL; Li, Yaquin [University of Tennessee, Knoxville (UTK)

    2009-01-01

    In the last years the research community has developed many techniques to detect and diagnose diabetic retinopathy with retinal fundus images. This is a necessary step for the implementation of a large scale screening effort in rural areas where ophthalmologists are not available. In the United States of America, the incidence of diabetes is worryingly increasing among the young population. Retina fundus images of patients younger than 20 years old present a high amount of reflection due to the Nerve Fibre Layer (NFL), the younger the patient the more these reflections are visible. To our knowledge we are not aware of algorithms able to explicitly deal with this type of reflection artefact. This paper presents a technique to detect bright lesions also in patients with a high degree of reflective NFL. First, the candidate bright lesions are detected using image equalization and relatively simple histogram analysis. Then, a classifier is trained using texture descriptor (Multi-scale Local Binary Patterns) and other features in order to remove the false positives in the lesion detection. Finally, the area of the lesions is used to diagnose diabetic retinopathy. Our database consists of 33 images from a telemedicine network currently developed. When determining moderate to high diabetic retinopathy using the bright lesions detected the algorithm achieves a sensitivity of 100% at a specificity of 100% using hold-one-out testing.

  12. Total Internal Reflection Fluorescence Microscopy Imaging-Guided Confocal Single-Molecule Fluorescence Spectroscopy

    OpenAIRE

    Zheng, Desheng; Kaldaras, Leonora; Lu, H. Peter

    2013-01-01

    We have developed an integrated spectroscopy system combining total internal reflection fluorescence microscopy imaging with confocal single-molecule fluorescence spectroscopy for two-dimensional interfaces. This spectroscopy approach is capable of both multiple molecules simultaneously sampling and in situ confocal fluorescence dynamics analyses of individual molecules of interest. We have demonstrated the calibration with fluorescent microspheres, and carried out single-molecule spectroscop...

  13. Macro Photography for Reflectance Transformation Imaging: A Practical Guide to the Highlights Method

    Directory of Open Access Journals (Sweden)

    Antonino Cosentino

    2014-11-01

    Full Text Available Reflectance Transformation Imaging (RTI is increasingly being used for art documentation and analysis and it can be successful also for the examination of features on the order of hundreds of microns. This paper evaluates some macro scale photography methods specifically for RTI employing the Highlights method for documenting sub-millimeter details. This RTI technique consists in including one reflective sphere in the scene photographed so that the processing software can calculate for each photo the direction of the light source from its reflection on the sphere. RTI documentation can be performed also with an RTI dome, but the Highlights method is preferred because is more mobile and more affordable. This technique is demonstrated in the documentation of some prints ranging from the XV to the XX century from to the Ingels collection in Sweden. The images are here examined and discussed, showing the application of macro RTI for identifying features of prints.

  14. Pixel Statistical Analysis of Diabetic vs. Non-diabetic Foot-Sole Spectral Terahertz Reflection Images

    Science.gov (United States)

    Hernandez-Cardoso, G. G.; Alfaro-Gomez, M.; Rojas-Landeros, S. C.; Salas-Gutierrez, I.; Castro-Camus, E.

    2018-03-01

    In this article, we present a series of hydration mapping images of the foot soles of diabetic and non-diabetic subjects measured by terahertz reflectance. In addition to the hydration images, we present a series of RYG-color-coded (red yellow green) images where pixels are assigned one of the three colors in order to easily identify areas in risk of ulceration. We also present the statistics of the number of pixels with each color as a potential quantitative indicator for diabetic foot-syndrome deterioration.

  15. Attenuated total reflection-Fourier transform infrared imaging of large areas using inverted prism crystals and combining imaging and mapping.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2008-10-01

    Attenuated total reflection-Fourier transform infrared (ATR-FT-IR) imaging is a very useful tool for capturing chemical images of various materials due to the simple sample preparation and the ability to measure wet samples or samples in an aqueous environment. However, the size of the array detector used for image acquisition is often limited and there is usually a trade off between spatial resolution and the field of view (FOV). The combination of mapping and imaging can be used to acquire images with a larger FOV without sacrificing spatial resolution. Previous attempts have demonstrated this using an infrared microscope and a Germanium hemispherical ATR crystal to achieve images of up to 2.5 mm x 2.5 mm but with varying spatial resolution and depth of penetration across the imaged area. In this paper, we demonstrate a combination of mapping and imaging with a different approach using an external optics housing for large ATR accessories and inverted ATR prisms to achieve ATR-FT-IR images with a large FOV and reasonable spatial resolution. The results have shown that a FOV of 10 mm x 14 mm can be obtained with a spatial resolution of approximately 40-60 microm when using an accessory that gives no magnification. A FOV of 1.3 mm x 1.3 mm can be obtained with spatial resolution of approximately 15-20 microm when using a diamond ATR imaging accessory with 4x magnification. No significant change in image quality such as spatial resolution or depth of penetration has been observed across the whole FOV with this method and the measurement time was approximately 15 minutes for an image consisting of 16 image tiles.

  16. LSB-based Steganography Using Reflected Gray Code for Color Quantum Images

    Science.gov (United States)

    Li, Panchi; Lu, Aiping

    2018-02-01

    At present, the classical least-significant-bit (LSB) based image steganography has been extended to quantum image processing. For the existing LSB-based quantum image steganography schemes, the embedding capacity is no more than 3 bits per pixel. Therefore, it is meaningful to study how to improve the embedding capacity of quantum image steganography. This work presents a novel LSB-based steganography using reflected Gray code for colored quantum images, and the embedding capacity of this scheme is up to 4 bits per pixel. In proposed scheme, the secret qubit sequence is considered as a sequence of 4-bit segments. For the four bits in each segment, the first bit is embedded in the second LSB of B channel of the cover image, and and the remaining three bits are embedded in LSB of RGB channels of each color pixel simultaneously using reflected-Gray code to determine the embedded bit from secret information. Following the transforming rule, the LSB of stego-image are not always same as the secret bits and the differences are up to almost 50%. Experimental results confirm that the proposed scheme shows good performance and outperforms the previous ones currently found in the literature in terms of embedding capacity.

  17. Expanding the Caring Lens: Nursing and Medical Students Reflecting on Images of Older People.

    Science.gov (United States)

    Brand, Gabrielle; Miller, Karen; Saunders, Rosemary; Dugmore, Helen; Etherton-Beer, Christopher

    2016-01-01

    In changing higher education environments, health profession's educators have been increasingly challenged to prepare future health professionals to care for aging populations. This article reports on an exploratory, mixed-method research study that used an innovative photo-elicitation technique and interprofessional small-group work in the classroom to enhance the reflective learning experience of medical and nursing students. Data were collected from pre- and postquestionnaires and focus groups to explore shifts in perceptions toward older persons following the reflective learning session. The qualitative data revealed how using visual images of older persons provides a valuable learning space for reflection. Students found meaning in their own learning by creating shared storylines that challenged their perceptions of older people and themselves as future health professionals. These data support the use of visual methodologies to enhance engagement, reflection, and challenge students to explore and deepen their understanding in gerontology.

  18. Imaging rat esophagus using combination of reflectance confocal and multiphoton microscopy

    International Nuclear Information System (INIS)

    Zhuo, S M; Chen, J X; Jiang, X S; Lu, K C; Xie, S S

    2008-01-01

    We combine reflectance confocal microscopy (RCM) with multiphoton microscopy (MPM) to image rat esophagus. The two imaging modalities allow detection of layered–resolved complementary information from esophagus. In the keratinizing layer, the keratinocytes boundaries can be characterized by RCM, while the keratinocytes cytoplasm (keratin) can be further imaged by multiphoton autofluorescence signal. In the epithelium, the epithelial cellular boundaries and nucleus can be detected by RCM, and MPM can be used for imaging epithelial cell cytoplasm and monitoring metabolic state of epithelium. In the stroma, multiphoton autofluorescence signal is used to image elastin and second harmonic generation signal is utilized to detect collagen, while RCM is used to determine the optical property of stroma. Overall, these results suggest that the combination of RCM and MPM has potential to provide more important and comprehensive information for early diagnosis of esophageal cancer

  19. Reflection tomography from pre-stack migrated images; Tomographie de reflexion a partir des images migrees avant addition

    Energy Technology Data Exchange (ETDEWEB)

    Adler, F

    1996-10-29

    The application of reflection tomography to data from complex geological structures is very interesting in the hydrocarbons exploration. Indeed, it contributes to localize the hydrocarbons potential traps. The used reflection tomography method is faced with two major difficulties. Travel time picking is difficult or impossible in seismic time sections. The processing of multiple arrival travel times needs an adequate formulation of reflection tomography. In order to solve the first problem, we adopt the approach of the SMART (Sequential Migration Aided Reflection Tomography) method which is an original method for the implementation of migration velocity analysis. The velocity model is automatically calculated by reflection tomography. The kinematic data set for reflection tomography is constructed from pre-stack depth-migrated images that are interpreted in the chosen migration configuration. For the implementation of the SMART method in the common-offset domain, we propose an original formulation of reflection tomography that takes multiple arrival travel times, which are calculated from common-offset migrated images, into account. In this new formulation, we look for a model such that a modelling, which consists in shooting in this model from the source locations with some ray parameters at the source, matches some emergence conditions: for each offset, the rays emerge at the receiver locations (given by the offset) with the same travel times and the same travel time slopes as observed in the associated common-offset section. These conditions constitute the kinematic data set for tomographic inversion. The common-offset travel time slope is the difference between the ray parameter at the receiver and the ray parameter at the source. Therefore, the ray parameter at the source is an unknown and has to be determined together with the model parameters during inversion. (author)

  20. Wear monitoring of protective nitride coatings using image processing

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Guibert, M.; Belin, M.

    2010-01-01

    -meter with up to 105 19 repetitive cycles, eventually leaving the embedded TiN signal layer uncovered at the bottom the wear scar. 20 The worn surface was characterized by subsequent image processing. A color detection of the wear scar with 21 the exposed TiN layer by a simple optical imaging system showed......A double-layer model system, consisting of a thin layer of tribological titanium aluminum nitride (TiAlN) on 17 top of titanium nitride (TiN), was deposited on polished 100Cr6 steel substrates. The TiAlN top-coatings 18 were exposed to abrasive wear by a reciprocating wear process in a linear tribo...... a significant increase up to a factor of 2 of 22 the relative color values from the TiAlN top layers to the embedded TiN signal layers. This behavior agrees 23 well with the results of reflectance detection experiment with a red laser optical system on the same system. 24 Thus we have demonstrated that image...

  1. Radiation protection in newer medical imaging techniques: Cardiac CT

    International Nuclear Information System (INIS)

    2008-01-01

    Medical imaging has seen many developments as it has evolved since the mid-1890s. In the last 30-40 years, the pace of innovation has increased, starting with the introduction of computed tomography (CT) in the early 1970s. During the last decade, the rate of change has accelerated further, in terms of continuing innovation and its global application. Most patient exposure now arises from practices that barely existed two decades ago. These developments are evident in the technology on which this volume is based - multislice/detector CT scanning and its application in cardiac imaging. However, this advance is achieved at the cost of a radiation burden to the individual patient, and possibly to the community, if its screening potential is exploited. Much effort will be required to ensure that the undoubted benefit of this new practice will not pose an undue level of detriment to the individual in multiple examinations. For practitioners and regulators, it is evident that innovation has been driven by both the imaging industry and an increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practices lag (inevitably) behind the industrial and clinical innovations. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill this growing vacuum, by bringing up to date and timely advice from experienced practitioners to bear on the problems involved. The advice in this report has been developed as part of the IAEA's statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for the worldwide application of these standards. The Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) were issued by the IAEA and co-sponsored by organizations including the Food and Agriculture

  2. Radiation protection actions at Swedish nuclear power plants 1994-2002 and some reflections about the near future

    International Nuclear Information System (INIS)

    Erixon, Stig; Godaas, Tommy; Hofvander, Peter; Lund, Ingmar; Malmqvist, Lars; Thimgren, Ingela; Oelander-Guer, Hanna

    2003-12-01

    This report provides a summary of radiation protection experiences over the years 1994-2002 in the Swedish nuclear power industry. Actions to reduce radiation levels in reactor systems, occupational exposure results and some reflections about the near future are presented

  3. Improving Image Matching by Reducing Surface Reflections Using Polarising Filter Techniques

    Science.gov (United States)

    Conen, N.; Hastedt, H.; Kahmen, O.; Luhmann, T.

    2018-05-01

    In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera's orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002) using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm) with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  4. Diet pills and the cataract outbreak of 1935: reflections on the evolution of consumer protection legislation.

    Science.gov (United States)

    Margo, Curtis E; Harman, Lynn E

    2014-01-01

    An outbreak of cataracts in 1935 caused by dinitrophenol (DNP), the active ingredient of popular diet pills, highlighted the inability of the U.S. Food and Drug Administration (FDA) to prevent harmful drugs from entering the marketplace. Just two years earlier, the FDA used horrific images of ocular surface injury caused by cosmetics at the World's Fair in Chicago to garner public support for legislative reform. The FDA had to walk a fine line between a public awareness campaign and lobbying Congress while lawmakers debated the need for consumer protection. The cataract outbreak of 1935 was conspicuous in the medical literature during the height of New Deal legislation, but questions persist as to how much it affected passage of the proposed Food, Drug, and Cosmetic Act (of 1938). The legislation languished in committee for years. The cataract outbreak probably had little impact on the eventual outcome, but medical opinion concerning the safety of DNP may have contributed to the voluntary withdrawal of the diet drug from the market. We review the DNP cataract outbreak and examine it in context of the challenges facing regulatory reform at that time. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Kinematics of reflections in subsurface offset and angle-domain image gathers

    Science.gov (United States)

    Dafni, Raanan; Symes, William W.

    2018-05-01

    Seismic migration in the angle-domain generates multiple images of the earth's interior in which reflection takes place at different scattering-angles. Mechanically, the angle-dependent reflection is restricted to happen instantaneously and at a fixed point in space: Incident wave hits a discontinuity in the subsurface media and instantly generates a scattered wave at the same common point of interaction. Alternatively, the angle-domain image may be associated with space-shift (regarded as subsurface offset) extended migration that artificially splits the reflection geometry. Meaning that, incident and scattered waves interact at some offset distance. The geometric differences between the two approaches amount to a contradictory angle-domain behaviour, and unlike kinematic description. We present a phase space depiction of migration methods extended by the peculiar subsurface offset split and stress its profound dissimilarity. In spite of being in radical contradiction with the general physics, the subsurface offset reveals a link to some valuable angle-domain quantities, via post-migration transformations. The angle quantities are indicated by the direction normal to the subsurface offset extended image. They specifically define the local dip and scattering angles if the velocity at the split reflection coordinates is the same for incident and scattered wave pairs. Otherwise, the reflector normal is not a bisector of the opening angle, but of the corresponding slowness vectors. This evidence, together with the distinguished geometry configuration, fundamentally differentiates the angle-domain decomposition based on the subsurface offset split from the conventional decomposition at a common reflection point. An asymptotic simulation of angle-domain moveout curves in layered media exposes the notion of split versus common reflection point geometry. Traveltime inversion methods that involve the subsurface offset extended migration must accommodate the split geometry

  6. A comparison of hair colour measurement by digital image analysis with reflective spectrophotometry.

    Science.gov (United States)

    Vaughn, Michelle R; van Oorschot, Roland A H; Baindur-Hudson, Swati

    2009-01-10

    While reflective spectrophotometry is an established method for measuring macroscopic hair colour, it can be cumbersome to use on a large number of individuals and not all reflective spectrophotometry instruments are easily portable. This study investigates the use of digital photographs to measure hair colour and compares its use to reflective spectrophotometry. An understanding of the accuracy of colour determination by these methods is of relevance when undertaking specific investigations, such as those on the genetics of hair colour. Measurements of hair colour may also be of assistance in cases where a photograph is the only evidence of hair colour available (e.g. surveillance). Using the CIE L(*)a(*)b(*) colour space, the hair colour of 134 individuals of European ancestry was measured by both reflective spectrophotometry and by digital image analysis (in V++). A moderate correlation was found along all three colour axes, with Pearson correlation coefficients of 0.625, 0.593 and 0.513 for L(*), a(*) and b(*) respectively (p-values=0.000), with means being significantly overestimated by digital image analysis for all three colour components (by an average of 33.42, 3.38 and 8.00 for L(*), a(*) and b(*) respectively). When using digital image data to group individuals into clusters previously determined by reflective spectrophotometric analysis using a discriminant analysis, individuals were classified into the correct clusters 85.8% of the time when there were two clusters. The percentage of cases correctly classified decreases as the number of clusters increases. It is concluded that, although more convenient, hair colour measurement from digital images has limited use in situations requiring accurate and consistent measurements.

  7. Correction for reflected sky radiance in low-altitude coastal hyperspectral images.

    Science.gov (United States)

    Kim, Minsu; Park, Joong Yong; Kopilevich, Yuri; Tuell, Grady; Philpot, William

    2013-11-10

    Low-altitude coastal hyperspectral imagery is sensitive to reflections of sky radiance at the water surface. Even in the absence of sun glint, and for a calm water surface, the wide range of viewing angles may result in pronounced, low-frequency variations of the reflected sky radiance across the scan line depending on the solar position. The variation in reflected sky radiance can be obscured by strong high-spatial-frequency sun glint and at high altitude by path radiance. However, at low altitudes, the low-spatial-frequency sky radiance effect is frequently significant and is not removed effectively by the typical corrections for sun glint. The reflected sky radiance from the water surface observed by a low-altitude sensor can be modeled in the first approximation as the sum of multiple-scattered Rayleigh path radiance and the single-scattered direct-solar-beam radiance by the aerosol in the lower atmosphere. The path radiance from zenith to the half field of view (FOV) of a typical airborne spectroradiometer has relatively minimal variation and its reflected radiance to detector array results in a flat base. Therefore the along-track variation is mostly contributed by the forward single-scattered solar-beam radiance. The scattered solar-beam radiances arrive at the water surface with different incident angles. Thus the reflected radiance received at the detector array corresponds to a certain scattering angle, and its variation is most effectively parameterized using the downward scattering angle (DSA) of the solar beam. Computation of the DSA must account for the roll, pitch, and heading of the platform and the viewing geometry of the sensor along with the solar ephemeris. Once the DSA image is calculated, the near-infrared (NIR) radiance from selected water scan lines are compared, and a relationship between DSA and NIR radiance is derived. We then apply the relationship to the entire DSA image to create an NIR reference image. Using the NIR reference image

  8. State-dependent cellular activity patterns of the cat paraventricular hypothalamus measured by reflectance imaging

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Rector, D M; Poe, G R

    1996-01-01

    Activity within the cat paraventricular hypothalamus (PVH) during sleep and waking states was measured by quantifying intrinsic tissue reflectivity. A fiber optic probe consisting of a 1.0 mm coherent image conduit, surrounded by plastic fibers which conducted 660 nm source light, was attached...... to a charge-coupled device camera, and positioned over the PVH in five cats. Electrodes for assessing state variables, including electroencephalographic activity, eye movement, and somatic muscle tone were also placed. After surgical recovery, reflected light intensity was measured continuously at 2.5 Hz...

  9. Imaging the dorsal hippocampus: light reflectance relationships to electroencephalographic patterns during sleep

    DEFF Research Database (Denmark)

    Rector, D M; Poe, G R; Kristensen, Morten Pilgaard

    1995-01-01

    We assessed the correspondence of 660 nm light reflectance changes from the dorsal hippocampus with slow wave electroencephalographic (EEG) activity during quiet sleep (QS) and rapid eye movement (REM) sleep in four cats. An optic probe, attached to a charge-coupled-device (CCD) video camera...... as EEG changes. Dividing the image into 10 subregions revealed that reflectance changes at the rhythmical slow wave activity band (RSA, 4-6 Hz) persisted in localized regions during QS and REM sleep, but regional changes showed considerable wave-by-wave independence between areas and from slow wave...

  10. Reflective THz and MR imaging of burn wounds: a potential clinical validation of THz contrast mechanisms

    Science.gov (United States)

    Bajwa, Neha; Nowroozi, Bryan; Sung, Shijun; Garritano, James; Maccabi, Ashkan; Tewari, Priyamvada; Culjat, Martin; Singh, Rahul; Alger, Jeffry; Grundfest, Warren; Taylor, Zachary

    2012-10-01

    Terahertz (THz) imaging is an expanding area of research in the field of medical imaging due to its high sensitivity to changes in tissue water content. Previously reported in vivo rat studies demonstrate that spatially resolved hydration mapping with THz illumination can be used to rapidly and accurately detect fluid shifts following induction of burns and provide highly resolved spatial and temporal characterization of edematous tissue. THz imagery of partial and full thickness burn wounds acquired by our group correlate well with burn severity and suggest that hydration gradients are responsible for the observed contrast. This research aims to confirm the dominant contrast mechanism of THz burn imaging using a clinically accepted diagnostic method that relies on tissue water content for contrast generation to support the translation of this technology to clinical application. The hydration contrast sensing capabilities of magnetic resonance imaging (MRI), specifically T2 relaxation times and proton density values N(H), are well established and provide measures of mobile water content, lending MRI as a suitable method to validate hydration states of skin burns. This paper presents correlational studies performed with MR imaging of ex vivo porcine skin that confirm tissue hydration as the principal sensing mechanism in THz burn imaging. Insights from this preliminary research will be used to lay the groundwork for future, parallel MRI and THz imaging of in vivo rat models to further substantiate the clinical efficacy of reflective THz imaging in burn wound care.

  11. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    Directory of Open Access Journals (Sweden)

    Jin Zhang

    2016-06-01

    Full Text Available Terahertz (THz time-domain spectroscopy (TDS imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations.

  12. DETERMINING SPECTRAL REFLECTANCE COEFFICIENTS FROM HYPERSPECTRAL IMAGES OBTAINED FROM LOW ALTITUDES

    Directory of Open Access Journals (Sweden)

    P. Walczykowski

    2016-06-01

    Full Text Available Remote Sensing plays very important role in many different study fields, like hydrology, crop management, environmental and ecosystem studies. For all mentioned areas of interest different remote sensing and image processing techniques, such as: image classification (object and pixel- based, object identification, change detection, etc. can be applied. Most of this techniques use spectral reflectance coefficients as the basis for the identification and distinction of different objects and materials, e.g. monitoring of vegetation stress, identification of water pollutants, yield identification, etc. Spectral characteristics are usually acquired using discrete methods such as spectrometric measurements in both laboratory and field conditions. Such measurements however can be very time consuming, which has led many international researchers to investigate the reliability and accuracy of using image-based methods. According to published and ongoing studies, in order to acquire these spectral characteristics from images, it is necessary to have hyperspectral data. The presented article describes a series of experiments conducted using the push-broom Headwall MicroHyperspec A-series VNIR. This hyperspectral scanner allows for registration of images with more than 300 spectral channels with a 1.9 nm spectral bandwidth in the 380- 1000 nm range. The aim of these experiments was to establish a methodology for acquiring spectral reflectance characteristics of different forms of land cover using such sensor. All research work was conducted in controlled conditions from low altitudes. Hyperspectral images obtained with this specific type of sensor requires a unique approach in terms of post-processing, especially radiometric correction. Large amounts of acquired imagery data allowed the authors to establish a new post- processing approach. The developed methodology allowed the authors to obtain spectral reflectance coefficients from a hyperspectral sensor

  13. Determining Spectral Reflectance Coefficients from Hyperspectral Images Obtained from Low Altitudes

    Science.gov (United States)

    Walczykowski, P.; Jenerowicz, A.; Orych, A.; Siok, K.

    2016-06-01

    Remote Sensing plays very important role in many different study fields, like hydrology, crop management, environmental and ecosystem studies. For all mentioned areas of interest different remote sensing and image processing techniques, such as: image classification (object and pixel- based), object identification, change detection, etc. can be applied. Most of this techniques use spectral reflectance coefficients as the basis for the identification and distinction of different objects and materials, e.g. monitoring of vegetation stress, identification of water pollutants, yield identification, etc. Spectral characteristics are usually acquired using discrete methods such as spectrometric measurements in both laboratory and field conditions. Such measurements however can be very time consuming, which has led many international researchers to investigate the reliability and accuracy of using image-based methods. According to published and ongoing studies, in order to acquire these spectral characteristics from images, it is necessary to have hyperspectral data. The presented article describes a series of experiments conducted using the push-broom Headwall MicroHyperspec A-series VNIR. This hyperspectral scanner allows for registration of images with more than 300 spectral channels with a 1.9 nm spectral bandwidth in the 380- 1000 nm range. The aim of these experiments was to establish a methodology for acquiring spectral reflectance characteristics of different forms of land cover using such sensor. All research work was conducted in controlled conditions from low altitudes. Hyperspectral images obtained with this specific type of sensor requires a unique approach in terms of post-processing, especially radiometric correction. Large amounts of acquired imagery data allowed the authors to establish a new post- processing approach. The developed methodology allowed the authors to obtain spectral reflectance coefficients from a hyperspectral sensor mounted on an

  14. REFLECTIONS ON IMAGE AND PHOTOGRAPHY: possibilities in research and teaching of Physical Education

    Directory of Open Access Journals (Sweden)

    Mariana Mendonça Lisboa

    2010-12-01

    Full Text Available Starting this reflexion from the theoretical contributions such as Guy Debord and Susan Sontag to have a critical understanding of our reality, mediated by images, we intend, throughout this article, to reflect to the reader, some ability to think and work at school with images in educational processes and research, especially Physical Education. Is it possible their use? What can be the interests? How of photography can be enhanced and theoretical-methodologically thought over the educational and scientific practices that have commitment with social changes? These are the main considerations that we give as a challenge to be assumed by researchers/teachers.

  15. A direct reflection OLVF debris detector based on dark-field imaging

    Science.gov (United States)

    Li, Bo; Xi, Yinhu; Feng, Song; Mao, Junhong; Xie, You-Bai

    2018-06-01

    To solve the problems of monitoring wear debris in black oil, a direct reflection online visual ferrograph (OLVF) debris detector is presented. In current OLVF detectors, a reflected light source is used. The emitted light is reflected by wear debris directly instead of passing through the lube oil. Therefore, the transparency of the lube oil ceases to matter. Two experiments were conducted to validate the wear debris imaging feasibility and effectiveness of the newly developed detector. The results show that the visual feature information of the wear debris can be reliably obtained from black oil by this detector, and it can also be used to track the fast-changing wear of tribopairs at different wear stages. To the best of our knowledge, to date there is no other report for solving this issue.

  16. Radiation protection in newer medical imaging techniques: PET/CT

    International Nuclear Information System (INIS)

    2008-01-01

    A major part of patient exposure now arises from practices that barely existed two decades ago, and the technological basis for their successful dissemination only began to flourish in the last decade or so. Hybrid imaging systems, such as the combination of computed tomography (CT) and positron emission tomography (PET), are an example of a technique that has only been introduced in the last decade. PET/CT has established a valuable place for itself in medical research and diagnosis. However, it is an application that can result in high patient and staff doses. For practitioners and regulators, it is evident that innovation has been driven both by the imaging industry and by an increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practices lag (inevitably) behind the industrial and clinical innovations. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill the growing vacuum, by bringing up to date and timely advice from experienced practitioners to bear on the problems involved. The advice in this report has been developed within the IAEA's statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for the worldwide application of these standards. The Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS) were issued by the IAEA and co-sponsored by organizations including the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), and require the radiation protection of patients undergoing medical exposures through justification of the procedures involved and through

  17. Estimation of Melanin and Hemoglobin Using Spectral Reflectance Images Reconstructed from a Digital RGB Image by the Wiener Estimation Method

    Directory of Open Access Journals (Sweden)

    Yoshihisa Aizu

    2013-06-01

    Full Text Available A multi-spectral diffuse reflectance imaging method based on a single snap shot of Red-Green-Blue images acquired with the exposure time of 65 ms (15 fps was investigated for estimating melanin concentration, blood concentration, and oxygen saturation in human skin tissue. The technique utilizes the Wiener estimation method to deduce spectral reflectance images instantaneously from an RGB image. Using the resultant absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments on fingers during upper limb occlusion demonstrated the ability of the method to evaluate physiological reactions of human skin.

  18. Combined analysis of surface reflection imaging and vertical seismic profiling at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Daley, T.M.; Majer, E.L.; Karageorgi, E.

    1994-08-01

    This report presents results from surface and borehole seismic profiling performed by the Lawrence Berkeley Laboratory (LBL) on Yucca Mountain. This work was performed as part of the site characterization effort for the potential high-level nuclear waste repository. Their objective was to provide seismic imaging from the near surface (200 to 300 ft. depth) to the repository horizon and below, if possible. Among the issues addressed by this seismic imaging work are location and depth of fracturing and faulting, geologic identification of reflecting horizons, and spatial continuity of reflecting horizons. The authors believe their results are generally positive, with tome specific successes. This was the first attempt at this scale using modem seismic imaging techniques to determine geologic features on Yucca Mountain. The principle purpose of this report is to present the interpretation of the seismic reflection section in a geologic context. Three surface reflection profiles were acquired and processed as part of this study. Because of environmental concerns, all three lines were on preexisting roads. Line 1 crossed the mapped surface trace of the Ghost Dance fault and it was intended to study the dip and depth extent of the fault system. Line 2 was acquired along Drill Hole wash and was intended to help the ESF north ramp design activities. Line 3 was acquired along Yucca Crest and was designed to image geologic horizons which were thought to be less faulted along the ridge. Unfortunately, line 3 proved to have poor data quality, in part because of winds, poor field conditions and limited time. Their processing and interpretation efforts were focused on lines 1 and 2 and their associated VSP studies

  19. Artificial neural networks based estimation of optical parameters by diffuse reflectance imaging under in vitro conditions

    Directory of Open Access Journals (Sweden)

    Mahmut Ozan Gökkan

    2017-01-01

    Full Text Available Optical parameters (properties of tissue-mimicking phantoms are determined through noninvasive optical imaging. Objective of this study is to decompose obtained diffuse reflectance into these optical properties such as absorption and scattering coefficients. To do so, transmission spectroscopy is firstly used to measure the coefficients via an experimental setup. Next, the optical properties of each characterized phantom are input for Monte Carlo (MC simulations to get diffuse reflectance. Also, a surface image for each single phantom with its known optical properties is obliquely captured due to reflectance-based geometrical setup using CMOS camera that is positioned at 5∘ angle to the phantoms. For the illumination of light, a laser light source at 633nm wavelength is preferred, because optical properties of different components in a biological tissue on that wavelength are nonoverlapped. During in vitro measurements, we prepared 30 different mixture samples adding clinoleic intravenous lipid emulsion (CILE and evans blue (EB dye into a distilled water. Finally, all obtained diffuse reflectance values are used to estimate the optical coefficients by artificial neural networks (ANNs in inverse modeling. For a biological tissue it is found that the simulated and measured values in our results are in good agreement.

  20. Classification of peacock feather reflectance using principal component analysis similarity factors from multispectral imaging data.

    Science.gov (United States)

    Medina, José M; Díaz, José A; Vukusic, Pete

    2015-04-20

    Iridescent structural colors in biology exhibit sophisticated spatially-varying reflectance properties that depend on both the illumination and viewing angles. The classification of such spectral and spatial information in iridescent structurally colored surfaces is important to elucidate the functional role of irregularity and to improve understanding of color pattern formation at different length scales. In this study, we propose a non-invasive method for the spectral classification of spatial reflectance patterns at the micron scale based on the multispectral imaging technique and the principal component analysis similarity factor (PCASF). We demonstrate the effectiveness of this approach and its component methods by detailing its use in the study of the angle-dependent reflectance properties of Pavo cristatus (the common peacock) feathers, a species of peafowl very well known to exhibit bright and saturated iridescent colors. We show that multispectral reflectance imaging and PCASF approaches can be used as effective tools for spectral recognition of iridescent patterns in the visible spectrum and provide meaningful information for spectral classification of the irregularity of the microstructure in iridescent plumage.

  1. Electronic spreadsheet to acquire the reflectance from the TM and ETM+ Landsat images

    Directory of Open Access Journals (Sweden)

    Antonio R. Formaggio

    2005-08-01

    Full Text Available The reflectance of agricultural cultures and other terrestrial surface "targets" is an intrinsic parameter of these targets, so in many situations, it must be used instead of the values of "gray levels" that is found in the satellite images. In order to get reflectance values, it is necessary to eliminate the atmospheric interference and to make a set of calculations that uses sensor parameters and information regarding the original image. The automation of this procedure has the advantage to speed up the process and to reduce the possibility of errors during calculations. The objective of this paper is to present an electronic spreadsheet that simplifies and automatizes the transformation of the digital numbers of the TM/Landsat-5 and ETM+/Landsat-7 images into reflectance. The method employed for atmospheric correction was the dark object subtraction (DOS. The electronic spreadsheet described here is freely available to users and can be downloaded at the following website: http://www.dsr.inpe.br/Calculo_Reflectancia.xls.

  2. Progress in reflectance confocal microscopy for imaging oral tissues in vivo

    Science.gov (United States)

    Peterson, Gary; Zanoni, Daniella K.; Migliacci, Jocelyn; Cordova, Miguel; Rajadhyaksha, Milind; Patel, Snehal

    2016-02-01

    We report progress in development and feasibility testing of reflectance confocal microscopy (RCM) for imaging in the oral cavity of humans. We adapted a small rigid relay telescope (120mm long x 14mm diameter) and a small water immersion objective lens (12mm diameter, NA 0.7) to a commercial handheld RCM scanner (Vivascope 3000, Caliber ID, Rochester NY). This scanner is designed for imaging skin but we adapted the front end (the objective lens and the stepper motor that axially translates) for intra-oral use. This adaption required a new approach to address the loss of the automated stepper motor for acquisition of images in depth. A helical spring-like cap (with a coverslip to contact tissue) was designed for approximately 150 um of travel. Additionally other methods for focusing optics were designed and evaluated. The relay telescope optics is being tested in a clinical setting. With the capture of video and "video-mosaicing", extended areas can be imaged. The feasibility of imaging oral tissues was initially investigated in volunteers. RCM imaging in buccal mucosa in vivo shows nuclear and cellular detail in the epithelium and epithelial junction, and connective tissue and blood flow in the underlying lamina propria. Similar detail, including filiform and fungiform papillae, can be seen on the tongue in vivo. Clinical testing during head and neck surgery is now in progress and patients are being imaged for both normal tissue and cancerous margins in lip and tongue mucosa.

  3. Radiation protection in newer medical imaging techniques: CT colonography

    International Nuclear Information System (INIS)

    2008-01-01

    Multislice/detector computed tomography (CT) scanning, applied to visualization of the colon in CT colonography (CTC), also known as virtual colonoscopy (VC), is a relatively new application of CT introduced in recent years. The possibility of its application in population screening techniques raises a number of questions. Effort is required to ensure that the benefit of this new practice will not pose an undue level of detriment to the individual in multiple examinations. For practitioners and regulators, it is evident that innovation has been driven by both the imaging industry and by an ever increasing array of new applications generated and validated in the clinical environment. Regulation, industrial standardization, safety procedures and advice on best practice lag (inevitably) behind the industrial and clinical innovations being achieved. This series of Safety Reports (Nos 58, 60 and 61) is designed to help fill this growing vacuum, by bringing up to date and timely advice to bear on the problems involved. Under its statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for worldwide application of these standards, the IAEA has developed the Fundamental Safety Principles and the International Basic Safety Standards for Protection against Ionizing Radiation and for the Safety of Radiation Sources (BSS). The BSS was issued by the IAEA and co-sponsored by the Food and Agriculture Organization of the United Nations (FAO), the International Labour Organisation (ILO), the OECD Nuclear Energy Agency (OECD/NEA), the Pan American Health Organization (PAHO) and the World Health Organization (WHO), and requires radiation protection of patients undergoing medical exposures through justification of the procedures involved and through optimization. The IAEA programme on radiation protection of patients encourages the reduction of patient doses without losing diagnostic benefits. To facilitate this

  4. Hyperspectral optical imaging of human iris in vivo: characteristics of reflectance spectra

    Science.gov (United States)

    Medina, José M.; Pereira, Luís M.; Correia, Hélder T.; Nascimento, Sérgio M. C.

    2011-07-01

    We report a hyperspectral imaging system to measure the reflectance spectra of real human irises with high spatial resolution. A set of ocular prosthesis was used as the control condition. Reflectance data were decorrelated by the principal-component analysis. The main conclusion is that spectral complexity of the human iris is considerable: between 9 and 11 principal components are necessary to account for 99% of the cumulative variance in human irises. Correcting image misalignments associated with spontaneous ocular movements did not influence this result. The data also suggests a correlation between the first principal component and different levels of melanin present in the irises. It was also found that although the spectral characteristics of the first five principal components were not affected by the radial and angular position of the selected iridal areas, they affect the higher-order ones, suggesting a possible influence of the iris texture. The results show that hyperspectral imaging in the iris, together with adequate spectroscopic analyses provide more information than conventional colorimetric methods, making hyperspectral imaging suitable for the characterization of melanin and the noninvasive diagnosis of ocular diseases and iris color.

  5. Full Waveform Inversion of Diving & Reflected Waves based on Scale Separation for Velocity and Impedance Imaging

    Science.gov (United States)

    Brossier, Romain; Zhou, Wei; Operto, Stéphane; Virieux, Jean

    2015-04-01

    Full Waveform Inversion (FWI) is an appealing method for quantitative high-resolution subsurface imaging (Virieux et al., 2009). For crustal-scales exploration from surface seismic, FWI generally succeeds in recovering a broadband of wavenumbers in the shallow part of the targeted medium taking advantage of the broad scattering-angle provided by both reflected and diving waves. In contrast, deeper targets are often only illuminated by short-spread reflections, which favor the reconstruction of the short wavelengths at the expense of the longer ones, leading to a possible notch in the intermediate part of the wavenumber spectrum. To update the velocity macromodel from reflection data, image-domain strategies (e.g., Symes & Carazzone, 1991) aim to maximize a semblance criterion in the migrated domain. Alternatively, recent data-domain strategies (e.g., Xu et al., 2012, Ma & Hale, 2013, Brossier et al., 2014), called Reflection FWI (RFWI), inspired by Chavent et al. (1994), rely on a scale separation between the velocity macromodel and prior knowledge of the reflectivity to emphasize the transmission regime in the sensitivity kernel of the inversion. However, all these strategies focus on reflected waves only, discarding the low-wavenumber information carried out by diving waves. With the current development of very long-offset and wide-azimuth acquisitions, a significant part of the recorded energy is provided by diving waves and subcritical reflections, and high-resolution tomographic methods should take advantage of all types of waves. In this presentation, we will first review the issues of classical FWI when applied to reflected waves and how RFWI is able to retrieve the long wavelength of the model. We then propose a unified formulation of FWI (Zhou et al., 2014) to update the low wavenumbers of the velocity model by the joint inversion of diving and reflected arrivals, while the impedance model is updated thanks to reflected wave only. An alternate inversion of

  6. Diffuse reflectance imaging for non-melanoma skin cancer detection using laser feedback interferometry

    Science.gov (United States)

    Mowla, Alireza; Taimre, Thomas; Lim, Yah L.; Bertling, Karl; Wilson, Stephen J.; Prow, Tarl W.; Soyer, H. P.; Rakić, Aleksandar D.

    2016-04-01

    We propose a compact, self-aligned, low-cost, and versatile infrared diffuse-reflectance laser imaging system using a laser feedback interferometry technique with possible applications in in vivo biological tissue imaging and skin cancer detection. We examine the proposed technique experimentally using a three-layer agar skin phantom. A cylindrical region with a scattering rate lower than that of the surrounding normal tissue was used as a model for a non-melanoma skin tumour. The same structure was implemented in a Monte Carlo computational model. The experimental results agree well with the Monte Carlo simulations validating the theoretical basis of the technique. Results prove the applicability of the proposed technique for biological tissue imaging, with the capability of depth sectioning and a penetration depth of well over 1.2 mm into the skin phantom.

  7. Integrated manufacture of a freeform off-axis multi-reflective imaging system without optical alignment.

    Science.gov (United States)

    Li, Zexiao; Liu, Xianlei; Fang, Fengzhou; Zhang, Xiaodong; Zeng, Zhen; Zhu, Linlin; Yan, Ning

    2018-03-19

    Multi-reflective imaging systems find wide applications in optical imaging and space detection. However, it is faced with difficulties in adjusting the freeform mirrors with high accuracy to guarantee the optical function. Motivated by this, an alignment-free manufacture approach is proposed to machine the optical system. The direct optical performance-guided manufacture route is established without measuring the form error of freeform optics. An analytical model is established to investigate the effects of machine errors to serve the error identification and compensation in machining. Based on the integrated manufactured system, an ingenious self-designed testing configuration is constructed to evaluate the optical performance by directly measuring the wavefront aberration. Experiments are carried out to manufacture a three-mirror anastigmat, surface topographical details and optical performance shows agreement to the designed expectation. The final system works as an off-axis infrared imaging system. Results validate the feasibility of the proposed method to achieve excellent optical application.

  8. IMPROVING IMAGE MATCHING BY REDUCING SURFACE REFLECTIONS USING POLARISING FILTER TECHNIQUES

    Directory of Open Access Journals (Sweden)

    N. Conen

    2018-05-01

    Full Text Available In dense stereo matching applications surface reflections may lead to incorrect measurements and blunders in the resulting point cloud. To overcome the problem of disturbing reflexions polarising filters can be mounted on the camera lens and light source. Reflections in the images can be suppressed by crossing the polarising direction of the filters leading to homogeneous illuminated images and better matching results. However, the filter may influence the camera’s orientation parameters as well as the measuring accuracy. To quantify these effects, a calibration and an accuracy analysis is conducted within a spatial test arrangement according to the German guideline VDI/VDE 2634.1 (2002 using a DSLR with and without polarising filter. In a second test, the interior orientation is analysed in more detail. The results do not show significant changes of the measuring accuracy in object space and only very small changes of the interior orientation (Δc ≤ 4 μm with the polarising filter in use. Since in medical applications many tiny reflections are present and impede robust surface measurements, a prototypic trinocular endoscope is equipped with polarising technique. The interior and relative orientation is determined and analysed. The advantage of the polarising technique for medical image matching is shown in an experiment with a moistened pig kidney. The accuracy and completeness of the resulting point cloud can be improved clearly when using polarising filters. Furthermore, an accuracy analysis using a laser triangulation system is performed and the special reflection properties of metallic surfaces are presented.

  9. Delay and Standard Deviation Beamforming to Enhance Specular Reflections in Ultrasound Imaging.

    Science.gov (United States)

    Bandaru, Raja Sekhar; Sornes, Anders Rasmus; Hermans, Jeroen; Samset, Eigil; D'hooge, Jan

    2016-12-01

    Although interventional devices, such as needles, guide wires, and catheters, are best visualized by X-ray, real-time volumetric echography could offer an attractive alternative as it avoids ionizing radiation; it provides good soft tissue contrast, and it is mobile and relatively cheap. Unfortunately, as echography is traditionally used to image soft tissue and blood flow, the appearance of interventional devices in conventional ultrasound images remains relatively poor, which is a major obstacle toward ultrasound-guided interventions. The objective of this paper was therefore to enhance the appearance of interventional devices in ultrasound images. Thereto, a modified ultrasound beamforming process using conventional-focused transmit beams is proposed that exploits the properties of received signals containing specular reflections (as arising from these devices). This new beamforming approach referred to as delay and standard deviation beamforming (DASD) was quantitatively tested using simulated as well as experimental data using a linear array transducer. Furthermore, the influence of different imaging settings (i.e., transmit focus, imaging depth, and scan angle) on the obtained image contrast was evaluated. The study showed that the image contrast of specular regions improved by 5-30 dB using DASD beamforming compared with traditional delay and sum (DAS) beamforming. The highest gain in contrast was observed when the interventional device was tilted away from being orthogonal to the transmit beam, which is a major limitation in standard DAS imaging. As such, the proposed beamforming methodology can offer an improved visualization of interventional devices in the ultrasound image with potential implications for ultrasound-guided interventions.

  10. Accessible biometrics: A frustrated total internal reflection approach to imaging fingerprints.

    Science.gov (United States)

    Smith, Nathan D; Sharp, James S

    2017-05-01

    Fingerprints are widely used as a means of identifying persons of interest because of the highly individual nature of the spatial distribution and types of features (or minuta) found on the surface of a finger. This individuality has led to their wide application in the comparison of fingerprints found at crime scenes with those taken from known offenders and suspects in custody. However, despite recent advances in machine vision technology and image processing techniques, fingerprint evidence is still widely being collected using outdated practices involving ink and paper - a process that can be both time consuming and expensive. Reduction of forensic service budgets increasingly requires that evidence be gathered and processed more rapidly and efficiently. However, many of the existing digital fingerprint acquisition devices have proven too expensive to roll out on a large scale. As a result new, low-cost imaging technologies are required to increase the quality and throughput of the processing of fingerprint evidence. Here we describe an inexpensive approach to digital fingerprint acquisition that is based upon frustrated total internal reflection imaging. The quality and resolution of the images produced are shown to be as good as those currently acquired using ink and paper based methods. The same imaging technique is also shown to be capable of imaging powdered fingerprints that have been lifted from a crime scene using adhesive tape or gel lifters. Copyright © 2017 The Chartered Society of Forensic Sciences. Published by Elsevier B.V. All rights reserved.

  11. In vivo inflammation mapping of periodontal disease based on diffuse reflectance spectral imaging: a clinical study

    Science.gov (United States)

    Prasanth, Chandra Sekhar; Betsy, Joseph; Jayanthi, Jayaraj L.; Nisha, Unni G.; Prasantila, Janam; Subhash, Narayanan

    2013-02-01

    Since conventional techniques using periodontal probes have inherent drawbacks in the diagnosis of different grades of gingival inflammation, development of noninvasive screening devices becomes significant. Diffuse reflectance (DR) spectra recorded with white light illumination is utilized to detect periodontal inflammation from the oxygenated hemoglobin absorption ratio R620/R575. A multispectral imaging system is utilized to record narrow-band DR images at 575 and 620 nm from the anterior sextant of the gingivia of 15 healthy volunteers and 25 patients (N=40). An experienced periodontist assesses the level of gingival inflammation at each site through periodontal probing and assigns diagnosis as healthy, mild, moderate, or severe inflammation. The DR image ratio R620/R575 computed for each pixel (8-μm resolution) from the monochrome images is pseudo-color-mapped to identify gingival inflammation sites. The DR image ratio values at each site are compared with clinical diagnosis to estimate the specificity and sensitivity of the DR imaging technique in inflammation mapping. The high diagnostic accuracy is utilized to detect underlying inflammation in six patients with a previous history of periodontitis.

  12. REFLECT: Logiciel de restitution des reflectances au sol pour l'amelioration de la qualite de l'information extraite des images satellitales a haute resolution spatiale

    Science.gov (United States)

    Bouroubi, Mohamed Yacine

    Multi-spectral satellite imagery, especially at high spatial resolution (finer than 30 m on the ground), represents an invaluable source of information for decision making in various domains in connection with natural resources management, environment preservation or urban planning and management. The mapping scales may range from local (finer resolution than 5 m) to regional (resolution coarser than 5m). The images are characterized by objects reflectance in the electromagnetic spectrum witch represents the key information in many applications. However, satellite sensor measurements are also affected by parasite input due to illumination and observation conditions, to the atmosphere, to topography and to sensor properties. Two questions have oriented this research. What is the best approach to retrieve surface reflectance with the measured values while taking into account these parasite factors? Is this retrieval a sine qua non condition for reliable image information extraction for the diverse domains of application for the images (mapping, environmental monitoring, landscape change detection, resources inventory, etc.)? The goals we have delineated for this research are as follow: (1) Develop software to retrieve ground reflectance while taking into account the aspects mentioned earlier. This software had to be modular enough to allow improvement and adaptation to diverse remote sensing application problems; and (2) Apply this software in various context (urban, agricultural, forest) and analyse results to evaluate the accuracy gain of extracted information from remote sensing imagery transformed in ground reflectance images to demonstrate the necessity of operating in this way, whatever the type of application. During this research, we have developed a tool to retrieve ground reflectance (the new version of the REFLECT software). This software is based on the formulas (and routines) of the 6S code (Second Simulation of Satellite Signal in the Solar Spectrum

  13. A wide angle view imaging diagnostic with all reflective, in-vessel optics at JET

    Energy Technology Data Exchange (ETDEWEB)

    Clever, M. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, 52425 Jülich (Germany); Arnoux, G.; Balshaw, N. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Garcia-Sanchez, P. [Laboratorio Nacional de Fusion, Asociacion EURATOM-CIEMAT, Madrid (Spain); Patel, K. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Sergienko, G. [Institute of Energy and Climate Research – Plasma Physics, Forschungszentrum Jülich GmbH, Association EURATOM-FZJ, 52425 Jülich (Germany); Soler, D. [Winlight System, 135 rue Benjamin Franklin, ZA Saint Martin, F-84120 Pertuis (France); Stamp, M.F.; Williams, J.; Zastrow, K.-D. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom)

    2013-10-15

    Highlights: ► A new wide angle view camera system has been installed at JET. ► The system helps to protect the ITER-like wall plasma facing components from damage. ► The coverage of the vessel by camera observation systems was increased. ► The system comprises an in-vessel part with parabolic and flat mirrors. ► The required image quality for plasma monitoring and wall protection was delivered. -- Abstract: A new wide angle view camera system has been installed at JET in preparation for the ITER-like wall campaigns. It considerably increases the coverage of the vessel by camera observation systems and thereby helps to protect the – compared to carbon – more fragile plasma facing components from damage. The system comprises an in-vessel part with parabolic and flat mirrors and an ex-vessel part with beam splitters, lenses and cameras. The system delivered the image quality required for plasma monitoring and wall protection.

  14. [Insert Image Here]: A Reflection on the Ethics of Imagery in a Critical Pedagogy for the Humanities

    Science.gov (United States)

    Carniel, Jessica

    2018-01-01

    Using the controversial image of Syrian toddler Alan Kurdi as its provocation, this paper reflects upon the ethics of images used in teaching in a time of high-volume image circulation via social media, as well as a time when debates about content and trigger warnings are starting to gain more traction in the Australian tertiary sector. It…

  15. Automatic and improved radiometric correction of Landsat imagery using reference values from MODIS surface reflectance images

    Science.gov (United States)

    Pons, X.; Pesquer, L.; Cristóbal, J.; González-Guerrero, O.

    2014-12-01

    Radiometric correction is a prerequisite for generating high-quality scientific data, making it possible to discriminate between product artefacts and real changes in Earth processes as well as accurately produce land cover maps and detect changes. This work contributes to the automatic generation of surface reflectance products for Landsat satellite series. Surface reflectances are generated by a new approach developed from a previous simplified radiometric (atmospheric + topographic) correction model. The proposed model keeps the core of the old model (incidence angles and cast-shadows through a digital elevation model [DEM], Earth-Sun distance, etc.) and adds new characteristics to enhance and automatize ground reflectance retrieval. The new model includes the following new features: (1) A fitting model based on reference values from pseudoinvariant areas that have been automatically extracted from existing reflectance products (Terra MODIS MOD09GA) that were selected also automatically by applying quality criteria that include a geostatistical pattern model. This guarantees the consistency of the internal and external series, making it unnecessary to provide extra atmospheric data for the acquisition date and time, dark objects or dense vegetation. (2) A spatial model for atmospheric optical depth that uses detailed DEM and MODTRAN simulations. (3) It is designed so that large time-series of images can be processed automatically to produce consistent Landsat surface reflectance time-series. (4) The approach can handle most images, acquired now or in the past, regardless of the processing system, with the exception of those with extremely high cloud coverage. The new methodology has been successfully applied to a series of near 300 images of the same area including MSS, TM and ETM+ imagery as well as to different formats and processing systems (LPGS and NLAPS from the USGS; CEOS from ESA) for different degrees of cloud coverage (up to 60%) and SLC

  16. Guided wave imaging of oblique reflecting interfaces in pipes using common-source synthetic focusing

    Science.gov (United States)

    Sun, Zeqing; Sun, Anyu; Ju, Bing-Feng

    2018-04-01

    Cross-mode-family mode conversion and secondary reflection of guided waves in pipes complicate the processing of guided waves signals, and can cause false detection. In this paper, filters operating in the spectral domain of wavenumber, circumferential order and frequency are designed to suppress the signal components of unwanted mode-family and unwanted traveling direction. Common-source synthetic focusing is used to reconstruct defect images from the guided wave signals. Simulations of the reflections from linear oblique defects and a semicircle defect are separately implemented. Defect images, which are reconstructed from the simulation results under different excitation conditions, are comparatively studied in terms of axial resolution, reflection amplitude, detectable oblique angle and so on. Further, the proposed method is experimentally validated by detecting linear cracks with various oblique angles (10-40°). The proposed method relies on the guided wave signals that are captured during 2-D scanning of a cylindrical area on the pipe. The redundancy of the signals is analyzed to reduce the time-consumption of the scanning process and to enhance the practicability of the proposed method.

  17. MBR-SIFT: A mirror reflected invariant feature descriptor using a binary representation for image matching.

    Directory of Open Access Journals (Sweden)

    Mingzhe Su

    Full Text Available The traditional scale invariant feature transform (SIFT method can extract distinctive features for image matching. However, it is extremely time-consuming in SIFT matching because of the use of the Euclidean distance measure. Recently, many binary SIFT (BSIFT methods have been developed to improve matching efficiency; however, none of them is invariant to mirror reflection. To address these problems, in this paper, we present a horizontal or vertical mirror reflection invariant binary descriptor named MBR-SIFT, in addition to a novel image matching approach. First, 16 cells in the local region around the SIFT keypoint are reorganized, and then the 128-dimensional vector of the SIFT descriptor is transformed into a reconstructed vector according to eight directions. Finally, the MBR-SIFT descriptor is obtained after binarization and reverse coding. To improve the matching speed and accuracy, a fast matching algorithm that includes a coarse-to-fine two-step matching strategy in addition to two similarity measures for the MBR-SIFT descriptor are proposed. Experimental results on the UKBench dataset show that the proposed method not only solves the problem of mirror reflection, but also ensures desirable matching accuracy and speed.

  18. MBR-SIFT: A mirror reflected invariant feature descriptor using a binary representation for image matching.

    Science.gov (United States)

    Su, Mingzhe; Ma, Yan; Zhang, Xiangfen; Wang, Yan; Zhang, Yuping

    2017-01-01

    The traditional scale invariant feature transform (SIFT) method can extract distinctive features for image matching. However, it is extremely time-consuming in SIFT matching because of the use of the Euclidean distance measure. Recently, many binary SIFT (BSIFT) methods have been developed to improve matching efficiency; however, none of them is invariant to mirror reflection. To address these problems, in this paper, we present a horizontal or vertical mirror reflection invariant binary descriptor named MBR-SIFT, in addition to a novel image matching approach. First, 16 cells in the local region around the SIFT keypoint are reorganized, and then the 128-dimensional vector of the SIFT descriptor is transformed into a reconstructed vector according to eight directions. Finally, the MBR-SIFT descriptor is obtained after binarization and reverse coding. To improve the matching speed and accuracy, a fast matching algorithm that includes a coarse-to-fine two-step matching strategy in addition to two similarity measures for the MBR-SIFT descriptor are proposed. Experimental results on the UKBench dataset show that the proposed method not only solves the problem of mirror reflection, but also ensures desirable matching accuracy and speed.

  19. Seismic reflection data imaging and interpretation from Braniewo2014 experiment using additional wide-angle refraction and reflection and well-logs data

    Science.gov (United States)

    Trzeciak, Maciej; Majdański, Mariusz; Białas, Sebastian; Gaczyński, Edward; Maksym, Andrzej

    2015-04-01

    Braniewo2014 reflection and refraction experiment was realized in cooperation between Polish Oil and Gas Company (PGNiG) and the Institute of Geophysics (IGF), Polish Academy of Sciences, near the locality of Braniewo in northern Poland. PGNiG realized a 20-km-long reflection profile, using vibroseis and dynamite shooting; the aim of the reflection survey was to characterise Silurian shale gas reservoir. IGF deployed 59 seismic stations along this profile and registered additional full-spread wide-angle refraction and reflection data, with offsets up to 12 km; maximum offsets from the seismic reflection survey was 3 km. To improve the velocity information two velocity logs from near deep boreholes were used. The main goal of the joint reflection-refraction interpretation was to find relations between velocity field from reflection velocity analysis and refraction tomography, and to build a velocity model which would be consistent for both, reflection and refraction, datasets. In this paper we present imaging results and velocity models from Braniewo2014 experiment and the methodology we used.

  20. Form or function: Does focusing on body functionality protect women from body dissatisfaction when viewing media images?

    Science.gov (United States)

    Mulgrew, Kate E; Tiggemann, Marika

    2018-01-01

    We examined whether shifting young women's ( N =322) attention toward functionality components of media-portrayed idealized images would protect against body dissatisfaction. Image type was manipulated via images of models in either an objectified body-as-object form or active body-as-process form; viewing focus was manipulated via questions about the appearance or functionality of the models. Social comparison was examined as a moderator. Negative outcomes were most pronounced within the process-related conditions (body-as-process images or functionality viewing focus) and for women who reported greater functionality comparison. Results suggest that functionality-based depictions, reflections, and comparisons may actually produce worse outcomes than those based on appearance.

  1. Refractive Index Imaging of Cells with Variable-Angle Near-Total Internal Reflection (TIR) Microscopy.

    Science.gov (United States)

    Bohannon, Kevin P; Holz, Ronald W; Axelrod, Daniel

    2017-10-01

    The refractive index in the interior of single cells affects the evanescent field depth in quantitative studies using total internal reflection (TIR) fluorescence, but often that index is not well known. We here present method to measure and spatially map the absolute index of refraction in a microscopic sample, by imaging a collimated light beam reflected from the substrate/buffer/cell interference at variable angles of incidence. Above the TIR critical angle (which is a strong function of refractive index), the reflection is 100%, but in the immediate sub-critical angle zone, the reflection intensity is a very strong ascending function of incidence angle. By analyzing the angular position of that edge at each location in the field of view, the local refractive index can be estimated. In addition, by analyzing the steepness of the edge, the distance-to-substrate can be determined. We apply the technique to liquid calibration samples, silica beads, cultured Chinese hamster ovary cells, and primary culture chromaffin cells. The optical technique suffers from decremented lateral resolution, scattering, and interference artifacts. However, it still provides reasonable results for both refractive index (~1.38) and for distance-to-substrate (~150 nm) for the cells, as well as a lateral resolution to about 1 µm.

  2. Simultaneous in vivo imaging of diffuse optical reflectance, optoacoustic pressure and ultrasonic scattering (Conference Presentation)

    Science.gov (United States)

    Subochev, Pavel V.; Orlova, Anna G.; Turchin, Ilya V.

    2017-03-01

    We will present reflection-mode bioimaging system providing complementary optical, photoacsoutic and acoustic measurements by acoustic detector after each laser pulse with 2kHz repetition rate. The photons absorbed within the biological tissue provide optoacoustic (OA) signals, the photons absorbed by the external electrode of a detector provide the measurable diffuse reflectance (DR) from the sample and the probing ultrasonic (US) pulse. To demonstrate the in vivo capabilities of the system we performed complementary DR/OA/US imaging of small laboratory animals and human palm with 3.5mm/50μm/35μm lateral resolution at up to 3 mm diagnostic depth. Functional OA and DR imaging demonstrated the levels of tissue vascularization and blood supply. Structural US imaging was essential for understanding the position of vessels and zones with different perfusion. Before BiOS-2017 we plan to accomplish more in vivo experiments validating the developed triple-modality system as diagnostic tool to detect vascularization as well as mechanisms of vascular changes when monitoring response to therapy.

  3. Method of forming latent image to protect documents based on the effect moire

    OpenAIRE

    Troyan, О.

    2015-01-01

    Analysis of modern methods of information protection based on printed documents. It is shown that methods of protection from moiré effect provide reliable and effective protection by gaining new protection technology that is displayed in the optical acceleration motion layers and causes moire in fraud. Latent images can securely protect paper documents. Introduce a system of equations to calculate curvilinear patterns, where the optical formula of acceleration and periods moire stored in i...

  4. State-dependent cellular activity patterns of the cat paraventricular hypothalamus measured by reflectance imaging

    DEFF Research Database (Denmark)

    Kristensen, Morten Pilgaard; Rector, D M; Poe, G R

    1996-01-01

    Activity within the cat paraventricular hypothalamus (PVH) during sleep and waking states was measured by quantifying intrinsic tissue reflectivity. A fiber optic probe consisting of a 1.0 mm coherent image conduit, surrounded by plastic fibers which conducted 660 nm source light, was attached...... to a charge-coupled device camera, and positioned over the PVH in five cats. Electrodes for assessing state variables, including electroencephalographic activity, eye movement, and somatic muscle tone were also placed. After surgical recovery, reflected light intensity was measured continuously at 2.5 Hz...... changes with behavioral state in a regionally specific manner, and that overall activity increases during quiet sleep, and is even more enhanced in active sleep. PVH activation could be expected to stimulate pituitary release of adrenocorticotropic hormone (ACTH) and affect input to autonomic regulatory...

  5. Active laser radar (lidar) for measurement of corresponding height and reflectance images

    Science.gov (United States)

    Froehlich, Christoph; Mettenleiter, M.; Haertl, F.

    1997-08-01

    For the survey and inspection of environmental objects, a non-tactile, robust and precise imaging of height and depth is the basis sensor technology. For visual inspection,surface classification, and documentation purposes, however, additional information concerning reflectance of measured objects is necessary. High-speed acquisition of both geometric and visual information is achieved by means of an active laser radar, supporting consistent 3D height and 2D reflectance images. The laser radar is an optical-wavelength system, and is comparable to devices built by ERIM, Odetics, and Perceptron, measuring the range between sensor and target surfaces as well as the reflectance of the target surface, which corresponds to the magnitude of the back scattered laser energy. In contrast to these range sensing devices, the laser radar under consideration is designed for high speed and precise operation in both indoor and outdoor environments, emitting a minimum of near-IR laser energy. It integrates a laser range measurement system and a mechanical deflection system for 3D environmental measurements. This paper reports on design details of the laser radar for surface inspection tasks. It outlines the performance requirements and introduces the measurement principle. The hardware design, including the main modules, such as the laser head, the high frequency unit, the laser beam deflection system, and the digital signal processing unit are discussed.the signal processing unit consists of dedicated signal processors for real-time sensor data preprocessing as well as a sensor computer for high-level image analysis and feature extraction. The paper focuses on performance data of the system, including noise, drift over time, precision, and accuracy with measurements. It discuses the influences of ambient light, surface material of the target, and ambient temperature for range accuracy and range precision. Furthermore, experimental results from inspection of buildings, monuments

  6. Imaging the spectral reflectance properties of bipolar radiofrequency-fused bowel tissue

    Science.gov (United States)

    Clancy, Neil T.; Arya, Shobhit; Stoyanov, Danail; Du, Xiaofei; Hanna, George B.; Elson, Daniel S.

    2015-07-01

    Delivery of radiofrequency (RF) electrical energy is used during surgery to heat and seal tissue, such as vessels, allowing resection without blood loss. Recent work has suggested that this approach may be extended to allow surgical attachment of larger tissue segments for applications such as bowel anastomosis. In a large series of porcine surgical procedures bipolar RF energy was used to resect and re-seal the small bowel in vivo with a commercial tissue fusion device (Ligasure; Covidien PLC, USA). The tissue was then imaged with a multispectral imaging laparoscope to obtain a spectral datacube comprising both fused and healthy tissue. Maps of blood volume, oxygen saturation and scattering power were derived from the measured reflectance spectra using an optimised light-tissue interaction model. A 60% increase in reflectance of visible light (460-700 nm) was observed after fusion, with the tissue taking on a white appearance. Despite this the distinctive shape of the haemoglobin absorption spectrum was still noticeable in the 460-600 nm wavelength range. Scattering power increased in the fused region in comparison to normal serosa, while blood volume and oxygen saturation decreased. Observed fusion-induced changes in the reflectance spectrum are consistent with the biophysical changes induced through tissue denaturation and increased collagen cross-linking. The multispectral imager allows mapping of the spatial extent of these changes and classification of the zone of damaged tissue. Further analysis of the spectral data in parallel with histopathological examination of excised specimens will allow correlation of the optical property changes with microscopic alterations in tissue structure.

  7. Magnetic fields and star formation: evidence from imaging polarimetry of the Serpens Reflection Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Warren-Smith, R F; Draper, P W; Scarrott, S M

    1987-08-01

    CCD imaging of the Serpens bipolar reflection nebula shows it to be surrounded by dark material having spiral density structure. Multi-colour polarization mapping also reveals details of the surrounding magnetic field, indicating that this also has spiral structure. These observations are discussed along with current ideas about the role of magnetic fields during star formation. An interpretation involving the non-axisymmetric magnetically braked collapse of a protostellar cloud is proposed and a resulting magnetic field configuration is described which can account for the observations. Evidence is also discussed for the formation of a binary star system within the nebula, resulting from the fragmentation of a magnetized protostellar disc.

  8. Polarization-based and specular-reflection-based noncontact latent fingerprint imaging and lifting

    Science.gov (United States)

    Lin, Shih-Schön; Yemelyanov, Konstantin M.; Pugh, Edward N., Jr.; Engheta, Nader

    2006-09-01

    In forensic science the finger marks left unintentionally by people at a crime scene are referred to as latent fingerprints. Most existing techniques to detect and lift latent fingerprints require application of a certain material directly onto the exhibit. The chemical and physical processing applied to the fingerprint potentially degrades or prevents further forensic testing on the same evidence sample. Many existing methods also have deleterious side effects. We introduce a method to detect and extract latent fingerprint images without applying any powder or chemicals on the object. Our method is based on the optical phenomena of polarization and specular reflection together with the physiology of fingerprint formation. The recovered image quality is comparable to existing methods. In some cases, such as the sticky side of tape, our method shows unique advantages.

  9. Terahertz pulse imaging in reflection geometry of human skin cancer and skin tissue

    International Nuclear Information System (INIS)

    Woodward, Ruth M; Cole, Bryan E; Wallace, Vincent P; Pye, Richard J; Arnone, Donald D; Linfield, Edmund H; Pepper, Michael

    2002-01-01

    We demonstrate the application of terahertz pulse imaging (TPI) in reflection geometry for the study of skin tissue and related cancers both in vitro and in vivo. The sensitivity of terahertz radiation to polar molecules, such as water, makes TPI suitable for studying the hydration levels in the skin and the determination of the lateral spread of skin cancer pre-operatively. By studying the terahertz pulse shape in the time domain we have been able to differentiate between diseased and normal tissue for the study of basal cell carcinoma (BCC). Basal cell carcinoma has shown a positive terahertz contrast, and inflammation and scar tissue a negative terahertz contrast compared to normal tissue. In vivo measurements on the stratum corneum have enabled visualization of the stratum corneum-epidermis interface and the study of skin hydration levels. These results demonstrate the potential of terahertz pulse imaging for the study of skin tissue and its related disorders, both in vitro and in vivo

  10. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy.

    Science.gov (United States)

    Allgeyer, Edward S; Sterling, Sarah M; Gunewardene, Mudalige S; Hess, Samuel T; Neivandt, David J; Mason, Michael D

    2015-01-27

    Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.

  11. Child Protection in Sport: Reflections on Thirty Years of Science and Activism

    Directory of Open Access Journals (Sweden)

    Celia H. Brackenridge

    2014-07-01

    Full Text Available This paper examines the responses of state and third sector agencies to the emergence of child abuse in sport since the mid-1980s. As with other social institutions such as the church, health and education, sport has both initiated its own child protection interventions and also responded to wider social and political influences. Sport has exemplified many of the changes identified in the brief for this special issue, such as the widening of definitional focus, increasing geographic scope and broadening of concerns to encompass health and welfare. The child protection agenda in sport was initially driven by sexual abuse scandals and has since embraced a range of additional harms to children, such as physical and psychological abuse, neglect and damaging hazing (initiation rituals. Whereas in the 1990s, only a few sport organisations acknowledged or addressed child abuse and protection (notably, UK, Canada and Australia, there has since been rapid growth in interest in the issue internationally, with many agencies now taking an active role in prevention work. These agencies adopt different foci related to their overall mission and may be characterised broadly as sport-specific (focussing on abuse prevention in sport, children’s rights organisations (focussing on child protection around sport events and humanitarian organisations (focussing on child development and protection through sport. This article examines how these differences in organisational focus lead to very different child protection approaches and “solutions”. It critiques the scientific approaches used thus far to inform activism and policy changes and ends by considering future challenges for athlete safeguarding and welfare.

  12. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    Science.gov (United States)

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Automated Cart with VIS/NIR Hyperspectral Reflectance and Fluorescence Imaging Capabilities

    Directory of Open Access Journals (Sweden)

    Alan M. Lefcourt

    2016-12-01

    Full Text Available A system to take high-resolution Visible/Near Infra-Red (VIS/NIR hyperspectral reflectance and fluorescence images in outdoor fields using ambient lighting or a pulsed laser (355 nm, respectively, for illumination purposes was designed, built, and tested. Components of the system include a semi-autonomous cart, a gated-intensified camera, a spectral adapter, a frequency-triple Nd:YAG (Neodymium-doped Yttrium Aluminium Garnet laser, and optics to convert the Gaussian laser beam into a line-illumination source. The front wheels of the cart are independently powered by stepper motors that support stepping or continuous motion. When stepping, a spreadsheet is used to program parameters of image sets to be acquired at each step. For example, the spreadsheet can be used to set delays before the start of image acquisitions, acquisition times, and laser attenuation. One possible use of this functionality would be to establish acquisition parameters to facilitate the measurement of fluorescence decay-curve characteristics. The laser and camera are mounted on an aluminum plate that allows the optics to be calibrated in a laboratory setting and then moved to the cart. The system was validated by acquiring images of fluorescence responses of spinach leaves and dairy manure.

  14. New light on ion channel imaging by total internal reflection fluorescence (TIRF) microscopy.

    Science.gov (United States)

    Yamamura, Hisao; Suzuki, Yoshiaki; Imaizumi, Yuji

    2015-05-01

    Ion channels play pivotal roles in a wide variety of cellular functions; therefore, their physiological characteristics, pharmacological responses, and molecular structures have been extensively investigated. However, the mobility of an ion channel itself in the cell membrane has not been examined in as much detail. A total internal reflection fluorescence (TIRF) microscope allows fluorophores to be imaged in a restricted region within an evanescent field of less than 200 nm from the interface of the coverslip and plasma membrane in living cells. Thus the TIRF microscope is useful for selectively visualizing the plasmalemmal surface and subplasmalemmal zone. In this review, we focused on a single-molecule analysis of the dynamic movement of ion channels in the plasma membrane using TIRF microscopy. We also described two single-molecule imaging techniques under TIRF microscopy: fluorescence resonance energy transfer (FRET) for the identification of molecules that interact with ion channels, and subunit counting for the determination of subunit stoichiometry in a functional channel. TIRF imaging can also be used to analyze spatiotemporal Ca(2+) events in the subplasmalemma. Single-molecule analyses of ion channels and localized Ca(2+) signals based on TIRF imaging provide beneficial pharmacological and physiological information concerning the functions of ion channels. Copyright © 2015 The Authors. Production and hosting by Elsevier B.V. All rights reserved.

  15. Deep Interior Mission: Imaging the Interior of Near-Earth Asteroids Using Radio Reflection Tomography

    Science.gov (United States)

    Safaeinili, A.; Asphaug, E.; Belton, M.; Klaasen, K.; Ostro, S.; Plaut, J.; Yeomans, D.

    2004-12-01

    Near-Earth asteroids are important exploration targets since they provide clues to the evolution of the solar system. They are also of interest since they present a clear danger to Earth in the future. Our mission objective is to image the internal structure of two NEOs using radio reflection tomography (RRT), in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that these important members of the solar system are rubble piles rather than consolidated bodies. Our mission's RRT technique is analogous to doing a ``CAT scan" of the asteroid from orbit. Closely sampled radar echoes are processed to yield volumetric maps of mechanical and compositional boundaries, and measure interior material dielectric properties. The RRT instrument is a radar that operates at 5 and 15 MHz with two 30-m (tip-to-tip) dipole antennas that are used in a cross-dipole configuration. The radar transmitter and receiver electronics have heritage from JPL's MARSIS contribution to Mars Express, and the antenna is similar to systems used in IMAGE and LACE missions. The 5-MHz channel is designed to penetrate >1 km of basaltic rock, and 15-MHz penetrates a few hundred meters or more. In addition to RRT volumetric imaging, we use a redundant color cameras to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. The camera also yields stereo color imaging for geology and RRT-related compositional analysis. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Deep interior has two targets (S-type 1999 ND43 and V-type Nyx ) whose composition bracket the diversity of solar system materials that we are likely to encounter, and are richly complementary.

  16. Thin film transistors on plastic substrates with reflective coatings for radiation protection

    Science.gov (United States)

    Wolfe, Jesse D [Fairfield, CA; Theiss, Steven D [Woodbury, MN; Carey, Paul G [Mountain View, CA; Smith, Patrick M [San Ramon, CA; Wickbold, Paul [Walnut Creek, CA

    2006-09-26

    Fabrication of silicon thin film transistors (TFT) on low-temperature plastic substrates using a reflective coating so that inexpensive plastic substrates may be used in place of standard glass, quartz, and silicon wafer-based substrates. The TFT can be used in large area low cost electronics, such as flat panel displays and portable electronics such as video cameras, personal digital assistants, and cell phones.

  17. Asymmetry quantification from reflectance images of orthotic patients using structural similarity metrics

    Science.gov (United States)

    Boucher, Marc-Antoine; Watts, Nicolas; Gremillet, Frederic; Legare, Philippe; Kadoury, Samuel

    2018-02-01

    Pathologies like plantar fasciitis, a common soft tissue disorder of the foot, is frequently associated with older age, high BMI and little exercise. Like other pathologies associated with the foot, the knee or hip, foot orthoses can help the patient's posture and recent techniques allow the creation of personalized foot orthoses based on 3D foot model that are fitted with high accuracy to the foot surface. In order to assess the efficacy of the personalized orthoses on the patient's pose and balance, depth images with reflectance camera filters are acquired in order to evaluate the posture of the patient before and after the use of the orthoses. Images are analysed by clinicians to assess the region asymmetry and posture changes. However, this remains a subjective evaluation and a quantifiable measurement is required to follow patient progression. In this paper, we present a novel tool to assess and quantify the asymmetry of body regions using a color-based structural similarity metric calculated from paired regions. This provides a quantitative measure to evaluate the effect of the personalized orthoses on the patient. A user-friendly interface allows the user to select an area of the body and automatically generate a symmetry axis, along with a measure of asymmetry measuring reflectance variations from the skin. The tool was validated on 30 patients, demonstrating an 83% agreement rate compare to clinical observations.

  18. Electrochemical, atomic force microscopy and infrared reflection absorption spectroscopy studies of pre-formed mussel adhesive protein films on carbon steel for corrosion protection

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Fan, E-mail: fanzhang@kth.se [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Pan, Jinshan [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Claesson, Per Martin [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Chemistry, Div. of Surface and Corrosion Science, Drottning Kristinas vaeg.51, SE-100 44 Stockholm (Sweden); Institute for Surface Chemistry, P.O. Box 5607, SE-114 86 Stockholm (Sweden); Brinck, Tore [KTH Royal Institute of Technology, School of Chemical Science and Engineering, Department of Physical Chemistry, Division of Physical Chemistry, Teknikringen 36, SE-10044 Stockholm (Sweden)

    2012-10-01

    Electrochemical measurements, in situ and ex situ atomic force microscopy (AFM) experiments and infrared reflection absorption spectroscopy (IRAS) analysis were performed to investigate the formation and stability as well as corrosion protection properties of mussel adhesive protein (Mefp-1) films on carbon steel, and the influence of cross-linking by NaIO{sub 4} oxidation. The in situ AFM measurements show flake-like adsorbed protein aggregates in the film formed at pH 9. The ex situ AFM images indicate multilayer-like films and that the film becomes more compact and stable in NaCl solution after the cross-linking. The IRAS results reveal the absorption bands of Mefp-1 on carbon steel before and after NaIO{sub 4} induced oxidation of the pre-adsorbed protein. Within a short exposure time, a certain corrosion protection effect was noted for the pre-formed Mefp-1 film in 0.1 M NaCl solution. Cross-linking the pre-adsorbed film by NaIO{sub 4} oxidation significantly enhanced the protection efficiency by up to 80%. - Highlights: Black-Right-Pointing-Pointer Mussel protein was tested as 'green' corrosion protection strategy for steel. Black-Right-Pointing-Pointer At pH 9, the protein adsorbs on carbon steel and forms a multilayer-like film. Black-Right-Pointing-Pointer NaIO{sub 4} leads to structural changes and cross-linking of the protein film. Black-Right-Pointing-Pointer Cross-linking results in a dense and compact film with increased stability. Black-Right-Pointing-Pointer Cross-linking of preformed film significantly enhances the corrosion protection.

  19. REFLECTIONS ON ROMANIA'S ENVIRONMENTAL PROTECTION IN THE CONTEXT OF SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    PAUL-BOGDAN ZAMFIR

    2013-02-01

    Full Text Available The destructive impact of antropic activities can no longer be ignored and all the human activities – from industry to domestic household - must impose a friendly behavior in relation to the environment. The environmental protection is an esential part of the enlarged reproduction and modern economic growth, aiming to ensure the dinamic ecological equilibrium, preserving and improving the quality of natural factors, the development of country's natural riches, ensuring better conditions of life and work for present and future generations. Thus, the whole activity for environmental protection in all of its components has a productive beeing creative of net income and value. On the long term, the achievement of dynamic economic equilibrium is illusory, without observing and respecting of ecological balance, the economic imbalances will cannot be resolved on the basis of creating some ecological imbalances, because these latter generate huge economic damage, a to which we can add a series of consequences, most often unpredictable.

  20. Consumers` Attitude towards Consumer Protection in the Digital Single Market, as Reflected by European Barometers

    Directory of Open Access Journals (Sweden)

    Doru Alexandru Pleşea

    2014-05-01

    Full Text Available The European Single Market is an ongoing project that will continue to further develop and adapt to changing realities. Traditional economic activities, and the administrative rules governing them, face the challenge of adapting to developments that blur the dividing lines, for example, between shop and online sales or between traditional media and Internet communication. Convergence of this type will lead to a European Digital Single Market. A genuine Digital Single Market would generate new types of growth and also sustainable economic and social benefits for all European citizens. There are still a number of barriers which impose obstacles for the development of the digital market in Europe. Obstacles which can be identified include national differences regarding data protection rules, e-commerce rules, consumer protection rules and other legislation pertaining to information flows. The paper brings in discussion the advantages of a Digital Single Market, the obstacles in developing it in connection with e-commerce regulations, consumer protection and information flows legislation and also the premises for implementing a Digital Single Market. Consumers’ trust in on-line commerce results as one of the driving factors in implementing a Digital Single Market. These are some of the main obstacles for the boosting consumers’ confidence in the European Single Market. Improving consumer confidence in cross-border shopping online by taking appropriate policy action could provide a major boost to economic growth in Europe. Empowered and confident consumers can drive forward the European economy. Starting from the results of the Flash Euro-barometer survey „Consumer attitudes towards cross-border trade and consumer protection this study analyzes consumer`s readiness for the European Digital Single Market

  1. Evaluating visibility of age spot and freckle based on simulated spectral reflectance distribution and facial color image

    Science.gov (United States)

    Hirose, Misa; Toyota, Saori; Tsumura, Norimichi

    2018-02-01

    In this research, we evaluate the visibility of age spot and freckle with changing the blood volume based on simulated spectral reflectance distribution and the actual facial color images, and compare these results. First, we generate three types of spatial distribution of age spot and freckle in patch-like images based on the simulated spectral reflectance. The spectral reflectance is simulated using Monte Carlo simulation of light transport in multi-layered tissue. Next, we reconstruct the facial color image with changing the blood volume. We acquire the concentration distribution of melanin, hemoglobin and shading components by applying the independent component analysis on a facial color image. We reproduce images using the obtained melanin and shading concentration and the changed hemoglobin concentration. Finally, we evaluate the visibility of pigmentations using simulated spectral reflectance distribution and facial color images. In the result of simulated spectral reflectance distribution, we found that the visibility became lower as the blood volume increases. However, we can see that a specific blood volume reduces the visibility of the actual pigmentations from the result of the facial color images.

  2. Ultraviolet Imaging Telescope images of the reflection nebula NGC 7023 - Derivation of ultraviolet scattering properties of dust grains

    Science.gov (United States)

    Witt, Adolf N.; Petersohn, Jens K.; Bohlin, Ralph C.; O'Connell, Robert W.; Roberts, Morton S.; Smith, Andrew M.; Stecher, Theodore P.

    1992-01-01

    The Ultraviolet Imaging Telescope as part of the Astro-1 mission, was used to obtain high-resolution surface brightness distribution data in six ultraviolet wavelength bands for the bright reflection nebula NGC 7023. From the quantitative comparison of the measured surface brightness gradients ratios of nebular to stellar flux, and detail radial surface brightness profiles with corresponding data from the visible, two major conclusions results: (1) the scattering in the near- and far-ultraviolet in this nebula is more strongly forward-directed than in the visible; (2) the dust albedo in the ultraviolet for wavelengths not less than 140 nm is identical to that in the visible, with the exception of the 220 nm bump in the extinction curve. In the wavelengths region of the bump, the albedo is reduced by 25 to 30 percent in comparison with wavelengths regions both shorter and longer. This lower albedo is expected, if the bump is a pure absorption feature.

  3. Thin Images Reflected in the Water: Narcissism and Girls' Vulnerability to the Thin-Ideal.

    Science.gov (United States)

    Thomaes, Sander; Sedikides, Constantine

    2016-10-01

    The purpose of this research is to test how adolescent girls' narcissistic traits-characterized by a need to impress others and avoid ego-threat-influence acute adverse effects of thin-ideal exposure. Participants (11-15 years; total N = 366; all female) reported their narcissistic traits. Next, in two experiments, they viewed images of either very thin or average-sized models, reported their wishful identification with the models (Experiment 2), and tasted high-calorie foods in an alleged taste test (both experiments). Narcissism kept girls from wishfully identifying with thin models, which is consistent with the view that narcissistic girls are prone to disengage from thin-ideal exposure. Moreover, narcissism protected vulnerable girls (those who experience low weight-esteem) from inhibiting their food intake, and led other girls (those who consider their appearance relatively unimportant) to increase their food intake. These effects did not generalize to conceptually related traits of self-esteem and perfectionism, and were not found for a low-calorie foods outcome, attesting to the specificity of findings. These experiments demonstrate the importance of narcissism at reducing girls' thin-ideal vulnerability. Girls high in narcissism disengage self-protectively from threats to their self-image, a strategy that renders at least subsets of them less vulnerable to the thin-ideal. © 2015 Wiley Periodicals, Inc.

  4. On image pre-processing for PIV of sinlge- and two-phase flows over reflecting objects

    NARCIS (Netherlands)

    Deen, N.G.; Willems, P.; van Sint Annaland, M.; Kuipers, J.A.M.; Lammertink, Rob G.H.; Kemperman, Antonius J.B.; Wessling, Matthias; van der Meer, Walterus Gijsbertus Joseph

    2010-01-01

    A novel image pre-processing scheme for PIV of single- and two-phase flows over reflecting objects which does not require the use of additional hardware is discussed. The approach for single-phase flow consists of image normalization and intensity stretching followed by background subtraction. For

  5. Separation of irradiance and reflectance from observed color images by logarithmical nonlinear diffusion process

    Science.gov (United States)

    Saito, Takahiro; Takahashi, Hiromi; Komatsu, Takashi

    2006-02-01

    The Retinex theory was first proposed by Land, and deals with separation of irradiance from reflectance in an observed image. The separation problem is an ill-posed problem. Land and others proposed various Retinex separation algorithms. Recently, Kimmel and others proposed a variational framework that unifies the previous Retinex algorithms such as the Poisson-equation-type Retinex algorithms developed by Horn and others, and presented a Retinex separation algorithm with the time-evolution of a linear diffusion process. However, the Kimmel's separation algorithm cannot achieve physically rational separation, if true irradiance varies among color channels. To cope with this problem, we introduce a nonlinear diffusion process into the time-evolution. Moreover, as to its extension to color images, we present two approaches to treat color channels: the independent approach to treat each color channel separately and the collective approach to treat all color channels collectively. The latter approach outperforms the former. Furthermore, we apply our separation algorithm to a high quality chroma key in which before combining a foreground frame and a background frame into an output image a color of each pixel in the foreground frame are spatially adaptively corrected through transformation of the separated irradiance. Experiments demonstrate superiority of our separation algorithm over the Kimmel's separation algorithm.

  6. Development of algorithms for detecting citrus canker based on hyperspectral reflectance imaging.

    Science.gov (United States)

    Li, Jiangbo; Rao, Xiuqin; Ying, Yibin

    2012-01-15

    Automated discrimination of fruits with canker from other fruit with normal surface and different type of peel defects has become a helpful task to enhance the competitiveness and profitability of the citrus industry. Over the last several years, hyperspectral imaging technology has received increasing attention in the agricultural products inspection field. This paper studied the feasibility of classification of citrus canker from other peel conditions including normal surface and nine peel defects by hyperspectal imaging. A combination algorithm based on principal component analysis and the two-band ratio (Q(687/630)) method was proposed. Since fewer wavelengths were desired in order to develop a rapid multispectral imaging system, the canker classification performance of the two-band ratio (Q(687/630)) method alone was also evaluated. The proposed combination approach and two-band ratio method alone resulted in overall classification accuracy for training set samples and test set samples of 99.5%, 84.5% and 98.2%, 82.9%, respectively. The proposed combination approach was more efficient for classifying canker against various conditions under reflectance hyperspectral imagery. However, the two-band ratio (Q(687/630)) method alone also demonstrated effectiveness in discriminating citrus canker from normal fruit and other peel diseases except for copper burn and anthracnose. Copyright © 2011 Society of Chemical Industry.

  7. Visualizing Ebolavirus Particles Using Single-Particle Interferometric Reflectance Imaging Sensor (SP-IRIS).

    Science.gov (United States)

    Carter, Erik P; Seymour, Elif Ç; Scherr, Steven M; Daaboul, George G; Freedman, David S; Selim Ünlü, M; Connor, John H

    2017-01-01

    This chapter describes an approach for the label-free imaging and quantification of intact Ebola virus (EBOV) and EBOV viruslike particles (VLPs) using a light microscopy technique. In this technique, individual virus particles are captured onto a silicon chip that has been printed with spots of virus-specific capture antibodies. These captured virions are then detected using an optical approach called interference reflectance imaging. This approach allows for the detection of each virus particle that is captured on an antibody spot and can resolve the filamentous structure of EBOV VLPs without the need for electron microscopy. Capture of VLPs and virions can be done from a variety of sample types ranging from tissue culture medium to blood. The technique also allows automated quantitative analysis of the number of virions captured. This can be used to identify the virus concentration in an unknown sample. In addition, this technique offers the opportunity to easily image virions captured from native solutions without the need for additional labeling approaches while offering a means of assessing the range of particle sizes and morphologies in a quantitative manner.

  8. Attenuated total internal reflection infrared microspectroscopic imaging using a large-radius germanium internal reflection element and a linear array detector.

    Science.gov (United States)

    Patterson, Brian M; Havrilla, George J

    2006-11-01

    The number of techniques and instruments available for Fourier transform infrared (FT-IR) microspectroscopic imaging has grown significantly over the past few years. Attenuated total internal reflectance (ATR) FT-IR microspectroscopy reduces sample preparation time and has simplified the analysis of many difficult samples. FT-IR imaging has become a powerful analytical tool using either a focal plane array or a linear array detector, especially when coupled with a chemometric analysis package. The field of view of the ATR-IR microspectroscopic imaging area can be greatly increased from 300 x 300 microm to 2500 x 2500 microm using a larger internal reflection element of 12.5 mm radius instead of the typical 1.5 mm radius. This gives an area increase of 70x before aberrant effects become too great. Parameters evaluated include the change in penetration depth as a function of beam displacement, measurements of the active area, magnification factor, and change in spatial resolution over the imaging area. Drawbacks such as large file size will also be discussed. This technique has been successfully applied to the FT-IR imaging of polydimethylsiloxane foam cross-sections, latent human fingerprints, and a model inorganic mixture, which demonstrates the usefulness of the method for pharmaceuticals.

  9. Deep Interior: Radio Reflection Tomographic Imaging of Earth-Crossing Asteroids

    Science.gov (United States)

    Asphaug, E.; Belton, M.; Safaeinili, A.; Klaasen, K.; Ostro, S.; Yeomans, D.; Plaut, J.

    2004-12-01

    Near-Earth Objects (NEOs) present an important scientific question and an intriguing space hazard. They are scrutinized by a number of large, dedicated groundbased telescopes, and their diverse compositions are represented by thousands of well-studied meteorites. A successful program of NEO spacecraft exploration has begun, and we are proposing Deep Interior as the next logical step. Our mission objective is to image the deep interior structure of two NEOs using radio reflection tomography (RRT), in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that these important members of the solar system are rubble piles rather than consolidated bodies. Asteroid Interiors. Our mission's RRT technique is like a CAT scan from orbit. Closely sampled radar echoes yield volumetric maps of mechanical and compositional boundaries, and measure interior material dielectric properties. Exteriors. We use color imaging to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Diversity. We first visit a common, primitive, S-type asteroid. We next visit an asteroid that was perhaps blasted from the surface of a differentiated asteroid. We attain an up-close and inside look at two taxonomic archetypes spanning an important range of NEO mass and spin rate. Scientific focus is achieved by keeping our payload simple: Radar. A 30-m (tip-to-tip) cross-dipole antenna system operates at 5 and 15-MHz, with electronics heritage from JPL's MARSIS contribution to Mars Express, and antenna heritage from IMAGE and LACE. The 5-MHz channel is designed to penetrate >1 km of basaltic rock, and 15-MHz penetrates a few 100 m or more. They bracket the diversity of solar system materials that we are likely to

  10. Label free imaging of cell-substrate contacts by holographic total internal reflection microscopy.

    Science.gov (United States)

    Mandracchia, Biagio; Gennari, Oriella; Marchesano, Valentina; Paturzo, Melania; Ferraro, Pietro

    2017-09-01

    The study of cell adhesion contacts is pivotal to understand cell mechanics and interaction at substrates or chemical and physical stimuli. We designed and built a HoloTIR microscope for label-free quantitative phase imaging of total internal reflection. Here we show for the first time that HoloTIR is a good choice for label-free study of focal contacts and of cell/substrate interaction as its sensitivity is enhanced in comparison with standard TIR microscopy. Finally, the simplicity of implementation and relative low cost, due to the requirement of less optical components, make HoloTIR a reasonable alternative, or even an addition, to TIRF microscopy for mapping cell/substratum topography. As a proof of concept, we studied the formation of focal contacts of fibroblasts on three substrates with different levels of affinity for cell adhesion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Imaging Early Steps of Sindbis Virus Infection by Total Internal Reflection Fluorescence Microscopy

    Directory of Open Access Journals (Sweden)

    Youling Gu

    2011-01-01

    Full Text Available Sindbis virus (SINV is an alphavirus that has a broad host range and has been widely used as a vector for recombinant gene transduction, DNA-based vaccine production, and oncolytic cancer therapy. The mechanism of SINV entry into host cells has yet to be fully understood. In this paper, we used single virus tracking under total internal reflection fluorescence microscopy (TIRFM to investigate SINV attachment to cell surface. Biotinylated viral particles were labeled with quantum dots, which retained viral viability and infectivity. By time-lapse imaging, we showed that the SINV exhibited a heterogeneous dynamics on the surface of the host cells. Analysis of SINV motility demonstrated a two-step attachment reaction. Moreover, dual color TIRFM of GFP-Rab5 and SINV suggested that the virus was targeted to the early endosomes after endocytosis. These findings demonstrate the utility of quantum dot labeling in studying the early steps and behavior of SINV infection.

  12. Image analysis using reflected light: an underutilized tool for interpreting magnetic fabrics

    Science.gov (United States)

    Waters-Tormey, C. L.; Liner, T.; Miller, B.; Kelso, P. R.

    2010-12-01

    Grain shape fabric analysis is one of the most common tools used to compare magnetic fabric and handsample scale rock fabric. Usually, this image analysis uses photomicrographs taken under plane or polarized light, which may be problematic if there are several dominant magnetic carriers (e.g., magnetite and pyrrhotite). The method developed for this study uses reflected light photomicrographs, and is effective in assessing the relative contribution of different phases to the opaque mineral shape-preferred orientation (SPO). Mosaics of high-resolution photomicrographs are first assembled and processed in Adobe Photoshop®. The Adobe Illustrator® “Live Trace” tool, whose settings can be optimized for reflected light images, completes initial automatic grain tracing and phase separation. Checking and re-classification of phases using reflected light properties and trace editing occurs manually. Phase identification is confirmed by microprobe or quantitative EDS, after which grain traces are easily reclassified as needed. Traces are imported into SPO2003 (Launeau and Robin, 2005) for SPO analysis. The combination of image resolution and magnification used here includes grains down to 10 microns. This work is part of an ongoing study examining fabric development across strain gradients in the granulite facies Capricorn ridge shear zone exposed in the Mt. Hay block of central Australia (Waters-Tormey et al., 2009). Strain marker shape fabrics, mesoscale structures, and strain localization adjacent to major lithologic boundaries all indicate that the deformation involved flattening, but that components of the deformation have been partitioned into different lithological domains. Thin sections were taken from the two gabbroic map units which volumetrically dominate the shear zone (northern and southern) using samples with similar outcrop fabric intensity. Prior thermomagnetic analyses indicate these units contain magnetite ± titanomagnetite ± ilmenite ± pyrrhotite

  13. Interferometric Reflectance Imaging Sensor (IRIS—A Platform Technology for Multiplexed Diagnostics and Digital Detection

    Directory of Open Access Journals (Sweden)

    Oguzhan Avci

    2015-07-01

    Full Text Available Over the last decade, the growing need in disease diagnostics has stimulated rapid development of new technologies with unprecedented capabilities. Recent emerging infectious diseases and epidemics have revealed the shortcomings of existing diagnostics tools, and the necessity for further improvements. Optical biosensors can lay the foundations for future generation diagnostics by providing means to detect biomarkers in a highly sensitive, specific, quantitative and multiplexed fashion. Here, we review an optical sensing technology, Interferometric Reflectance Imaging Sensor (IRIS, and the relevant features of this multifunctional platform for quantitative, label-free and dynamic detection. We discuss two distinct modalities for IRIS: (i low-magnification (ensemble biomolecular mass measurements and (ii high-magnification (digital detection of individual nanoparticles along with their applications, including label-free detection of multiplexed protein chips, measurement of single nucleotide polymorphism, quantification of transcription factor DNA binding, and high sensitivity digital sensing and characterization of nanoparticles and viruses.

  14. Virtual source reflection imaging of the Socorro Magma Body, New Mexico, using a dense seismic array

    Science.gov (United States)

    Finlay, T. S.; Worthington, L. L.; Schmandt, B.; Hansen, S. M.; Bilek, S. L.; Aster, R. C.; Ranasinghe, N. R.

    2017-12-01

    The Socorro Magma Body (SMB) is one of the largest known actively inflating continental magmatic intrusions. Previous studies have relied on sparse instrument coverage to determine its spatial extent, depth, and seismic signature, which characterized the body as a thin sill with a surface at 19 km below the Earth's surface. However, over the last two decades, InSAR and magneto-telluric (MT) studies have shed new light on the SMB and invigorated the scientific debate of the spatial distribution and uplift rate of the SMB. We return to seismic imaging of the SMB with the Sevilleta Array, a 12-day deployment of approximately 800 vertical component, 10-Hz geophones north of Socorro, New Mexico above and around the estimated northern half of the SMB. Teleseismic virtual source reflection profiling (TVR) employs the free surface reflection off of a teleseismic P as a virtual source in dense arrays, and has been used successfully to image basin structure and the Moho in multiple tectonic environments. The Sevilleta Array recorded 62 teleseismic events greater than M5. Applying TVR to the data collected by the Sevilleta Array, we present stacks from four events that produced the with high signal-to-noise ratios and simple source-time functions: the February 11, 2015 M6.7 in northern Argentina, the February 19, 2015 M5.4 in Kamchatka, Russia, and the February 21, 2015 M5.1 and February 22, 2015 M5.5 in western Colombia. Preliminary results suggest eastward-dipping reflectors at approximately 5 km depth near the Sierra Ladrones range in the northwestern corner of the array. Further analysis will focus on creating profiles across the area of maximum SMB uplift and constraining basin geometry.

  15. Mapping Reflectance Anisotropy of a Potato Canopy Using Aerial Images Acquired with an Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Peter P. J. Roosjen

    2017-04-01

    Full Text Available Viewing and illumination geometry has a strong influence on optical measurements of natural surfaces due to their anisotropic reflectance properties. Typically, cameras on-board unmanned aerial vehicles (UAVs are affected by this because of their relatively large field of view (FOV and thus large range of viewing angles. In this study, we investigated the magnitude of reflectance anisotropy effects in the 500–900 nm range, captured by a frame camera mounted on a UAV during a standard mapping flight. After orthorectification and georeferencing of the images collected by the camera, we calculated the viewing geometry of all observations of each georeferenced ground pixel, forming a dataset with multi-angular observations. We performed UAV flights on two days during the summer of 2016 over an experimental potato field where different zones in the field received different nitrogen fertilization treatments. These fertilization levels caused variation in potato plant growth and thereby differences in structural properties such as leaf area index (LAI and canopy cover. We fitted the Rahman–Pinty–Verstraete (RPV model through the multi-angular observations of each ground pixel to quantify, interpret, and visualize the anisotropy patterns in our study area. The Θ parameter of the RPV model, which controls the proportion of forward and backward scattering, showed strong correlation with canopy cover, where in general an increase in canopy cover resulted in a reduction of backward scattering intensity, indicating that reflectance anisotropy contains information on canopy structure. In this paper, we demonstrated that anisotropy data can be extracted from measurements using a frame camera, collected during a typical UAV mapping flight. Future research will focus on how to use the anisotropy signal as a source of information for estimation of physical vegetation properties.

  16. Image Gently: A campaign to promote radiation protection for ...

    African Journals Online (AJOL)

    With the goal of raising awareness and developing stakeholder educational tools for the appropriate imaging of children, the Image Gently campaign was launched in 2007. This campaign is a product of a multidisciplinary alliance with international representation which now numbers nearly 100 medical and dental ...

  17. A reflection about the social and technological aspects in flood risk management - the case of the Italian Civil Protection

    Science.gov (United States)

    Llasat, M. Del Carmen; Siccardi, F.

    2010-01-01

    The right of a person to be protected from natural hazards is a characteristic of the social and economical development of the society. This paper is a contribution to the reflection about the role of Civil Protection organizations in a modern society. The paper is based in the inaugural conference made by the authors on the 9th Plinius Conference on Mediterranean Storms. Two major issues are considered. The first one is sociological; the Civil Protection organizations and the responsible administration of the land use planning should be perceived as reliable as possible, in order to get consensus on the restrictions they pose, temporary or definitely, on the individual free use of the territory as well as in the entire warning system. The second one is technological: in order to be reliable they have to issue timely alert and warning to the population at large, but such alarms should be as "true" as possible. With this aim, the paper summarizes the historical evolution of the risk assessment, starting from the original concept of "hazard", introducing the concepts of "scenario of event" and "scenario of risk" and ending with a discussion about the uncertainties and limits of the most advanced and efficient tools to predict, to forecast and to observe the ground effects affecting people and their properties. The discussion is centred in the case of heavy rains and flood events in the North-West of Mediterranean Region.

  18. Improved classification and visualization of healthy and pathological hard dental tissues by modeling specular reflections in NIR hyperspectral images

    Science.gov (United States)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2012-03-01

    Despite major improvements in dental healthcare and technology, dental caries remains one of the most prevalent chronic diseases of modern society. The initial stages of dental caries are characterized by demineralization of enamel crystals, commonly known as white spots, which are difficult to diagnose. Near-infrared (NIR) hyperspectral imaging is a new promising technique for early detection of demineralization which can classify healthy and pathological dental tissues. However, due to non-ideal illumination of the tooth surface the hyperspectral images can exhibit specular reflections, in particular around the edges and the ridges of the teeth. These reflections significantly affect the performance of automated classification and visualization methods. Cross polarized imaging setup can effectively remove the specular reflections, however is due to the complexity and other imaging setup limitations not always possible. In this paper, we propose an alternative approach based on modeling the specular reflections of hard dental tissues, which significantly improves the classification accuracy in the presence of specular reflections. The method was evaluated on five extracted human teeth with corresponding gold standard for 6 different healthy and pathological hard dental tissues including enamel, dentin, calculus, dentin caries, enamel caries and demineralized regions. Principal component analysis (PCA) was used for multivariate local modeling of healthy and pathological dental tissues. The classification was performed by employing multiple discriminant analysis. Based on the obtained results we believe the proposed method can be considered as an effective alternative to the complex cross polarized imaging setups.

  19. Open source tools for standardized privacy protection of medical images

    Science.gov (United States)

    Lien, Chung-Yueh; Onken, Michael; Eichelberg, Marco; Kao, Tsair; Hein, Andreas

    2011-03-01

    In addition to the primary care context, medical images are often useful for research projects and community healthcare networks, so-called "secondary use". Patient privacy becomes an issue in such scenarios since the disclosure of personal health information (PHI) has to be prevented in a sharing environment. In general, most PHIs should be completely removed from the images according to the respective privacy regulations, but some basic and alleviated data is usually required for accurate image interpretation. Our objective is to utilize and enhance these specifications in order to provide reliable software implementations for de- and re-identification of medical images suitable for online and offline delivery. DICOM (Digital Imaging and Communications in Medicine) images are de-identified by replacing PHI-specific information with values still being reasonable for imaging diagnosis and patient indexing. In this paper, this approach is evaluated based on a prototype implementation built on top of the open source framework DCMTK (DICOM Toolkit) utilizing standardized de- and re-identification mechanisms. A set of tools has been developed for DICOM de-identification that meets privacy requirements of an offline and online sharing environment and fully relies on standard-based methods.

  20. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    Science.gov (United States)

    Nishitsuji, Yohei; Rowe, C. A.; Wapenaar, Kees; Draganov, Deyan

    2016-04-01

    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection responses (and thus images) beneath the Apollo stations on the nearside of the Moon from virtual sources colocated with the stations. This method is called deep-moonquake seismic interferometry (DMSI). Our results show a laterally coherent acoustic boundary around 50 km depth beneath all four Apollo stations. We interpret this boundary as the lunar seismic Moho. This depth agrees with Japan Aerospace Exploration Agency's (JAXA) SELenological and Engineering Explorer (SELENE) result and previous travel time analysis at the Apollo 12/14 sites. The deeper part of the image we obtain from DMSI shows laterally incoherent structures. Such lateral inhomogeneity we interpret as representing a zone characterized by strong scattering and constant apparent seismic velocity at our resolution scale (0.2-2.0 Hz).

  1. Automatic luminous reflections detector using global threshold with increased luminosity contrast in images

    Science.gov (United States)

    Silva, Ricardo Petri; Naozuka, Gustavo Taiji; Mastelini, Saulo Martiello; Felinto, Alan Salvany

    2018-01-01

    The incidence of luminous reflections (LR) in captured images can interfere with the color of the affected regions. These regions tend to oversaturate, becoming whitish and, consequently, losing the original color information of the scene. Decision processes that employ images acquired from digital cameras can be impaired by the LR incidence. Such applications include real-time video surgeries, facial, and ocular recognition. This work proposes an algorithm called contrast enhancement of potential LR regions, which is a preprocessing to increase the contrast of potential LR regions, in order to improve the performance of automatic LR detectors. In addition, three automatic detectors were compared with and without the employment of our preprocessing method. The first one is a technique already consolidated in the literature called the Chang-Tseng threshold. We propose two automatic detectors called adapted histogram peak and global threshold. We employed four performance metrics to evaluate the detectors, namely, accuracy, precision, exactitude, and root mean square error. The exactitude metric is developed by this work. Thus, a manually defined reference model was created. The global threshold detector combined with our preprocessing method presented the best results, with an average exactitude rate of 82.47%.

  2. BMI and WHR Are Reflected in Female Facial Shape and Texture: A Geometric Morphometric Image Analysis.

    Directory of Open Access Journals (Sweden)

    Christine Mayer

    Full Text Available Facial markers of body composition are frequently studied in evolutionary psychology and are important in computational and forensic face recognition. We assessed the association of body mass index (BMI and waist-to-hip ratio (WHR with facial shape and texture (color pattern in a sample of young Middle European women by a combination of geometric morphometrics and image analysis. Faces of women with high BMI had a wider and rounder facial outline relative to the size of the eyes and lips, and relatively lower eyebrows. Furthermore, women with high BMI had a brighter and more reddish skin color than women with lower BMI. The same facial features were associated with WHR, even though BMI and WHR were only moderately correlated. Yet BMI was better predictable than WHR from facial attributes. After leave-one-out cross-validation, we were able to predict 25% of variation in BMI and 10% of variation in WHR by facial shape. Facial texture predicted only about 3-10% of variation in BMI and WHR. This indicates that facial shape primarily reflects total fat proportion, rather than the distribution of fat within the body. The association of reddish facial texture in high-BMI women may be mediated by increased blood pressure and superficial blood flow as well as diet. Our study elucidates how geometric morphometric image analysis serves to quantify the effect of biological factors such as BMI and WHR to facial shape and color, which in turn contributes to social perception.

  3. Extending Whole Slide Imaging: Color Darkfield Internal Reflection Illumination (DIRI for Biological Applications.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kawano

    Full Text Available Whole slide imaging (WSI is a useful tool for multi-modal imaging, and in our work, we have often combined WSI with darkfield microscopy. However, traditional darkfield microscopy cannot use a single condenser to support high- and low-numerical-aperture objectives, which limits the modality of WSI. To overcome this limitation, we previously developed a darkfield internal reflection illumination (DIRI microscope using white light-emitting diodes (LEDs. Although the developed DIRI is useful for biological applications, substantial problems remain to be resolved. In this study, we propose a novel illumination technique called color DIRI. The use of three-color LEDs dramatically improves the capability of the system, such that color DIRI (1 enables optimization of the illumination color; (2 can be combined with an oil objective lens; (3 can produce fluorescence excitation illumination; (4 can adjust the wavelength of light to avoid cell damage or reactions; and (5 can be used as a photostimulator. These results clearly illustrate that the proposed color DIRI can significantly extend WSI modalities for biological applications.

  4. Direct visualization of polarization reversal of organic ferroelectric memory transistor by using charge modulated reflectance imaging

    Science.gov (United States)

    Otsuka, Takako; Taguchi, Dai; Manaka, Takaaki; Iwamoto, Mitsumasa

    2017-11-01

    By using the charge modulated reflectance (CMR) imaging technique, charge distribution in the pentacene organic field-effect transistor (OFET) with a ferroelectric gate insulator [P(VDF-TrFE)] was investigated in terms of polarization reversal of the P(VDF-TrFE) layer. We studied the polarization reversal process and the carrier spreading process in the OFET channel. The I-V measurement showed a hysteresis behavior caused by the spontaneous polarization of P(VDF-TrFE), but the hysteresis I-V curve changes depending on the applied drain bias, possibly due to the gradual shift of the polarization reversal position in the OFET channel. CMR imaging visualized the gradual shift of the polarization reversal position and showed that the electrostatic field formed by the polarization of P(VDF-TrFE) contributes to hole and electron injection into the pentacene layer and the carrier distribution is significantly dependent on the direction of the polarization. The polarization reversal position in the channel region is governed by the electrostatic potential, and it happens where the potential reaches the coercive voltage of P(VDF-TrFE). The transmission line model developed on the basis of the Maxwell-Wagner effect element analysis well accounts for this polarization reversal process in the OFET channel.

  5. Diffuse reflectance spectroscopy and optical polarization imaging of in-vivo biological tissue

    Science.gov (United States)

    Mora-Núñez, A.; Castillejos, Y.; García-Torales, G.; Martínez-Ponce, G.

    2013-11-01

    A number of optical techniques have been reported in the scientific literature as accomplishable methodologies to diagnose diseases in biological tissue, for instance, diffuse reflectance spectroscopy (DRS) and optical polarization imaging (OPI). The skin is the largest organ in the body and consists of three primary layers, namely, the epidermis (the outermost layer exposed to the world), the dermis, and the hypodermis. The epidermis changes from to site to site, mainly because of difference in hydration. A lower water content increase light scattering and reduce the penetration depth of radiation. In this work, two hairless mice have been selected to evaluate their skin features by using DRS and OPI. Four areas of the specimen body were chosen to realize the comparison: back, abdomen, tail, and head. From DRS, it was possible to distinguish the skin nature because of different blood irrigation at dermis. In the other hand, OPI shows pseudo-depolarizing regions in the measured Mueller images related to a spatially varying propagation of the scattered light. This provides information about the cell size in the irradiated skin.

  6. Characterization of hydrogel microstructure using laser tweezers particle tracking and confocal reflection imaging

    International Nuclear Information System (INIS)

    Kotlarchyk, M A; Botvinick, E L; Putnam, A J

    2010-01-01

    Hydrogels are commonly used as extracellular matrix mimetics for applications in tissue engineering and increasingly as cell culture platforms with which to study the influence of biophysical and biochemical cues on cell function in 3D. In recent years, a significant number of studies have focused on linking substrate mechanical properties to cell function using standard methodologies to characterize the bulk mechanical properties of the hydrogel substrates. However, current understanding of the correlations between the microstructural mechanical properties of hydrogels and cell function in 3D is poor, in part because of a lack of appropriate techniques. Here we have utilized a laser tracking system, based on passive optical microrheology instrumentation, to characterize the microstructure of viscoelastic fibrin clots. Trajectories and mean square displacements were observed as bioinert PEGylated (PEG: polyethylene glycol) microspheres (1, 2 or 4.7 μm in diameter) diffused within confined pores created by the protein phase of fibrin hydrogels. Complementary confocal reflection imaging revealed microstructures comprised of a highly heterogeneous fibrin network with a wide range of pore sizes. As the protein concentration of fibrin gels was increased, our quantitative laser tracking measurements showed a corresponding decrease in particle mean square displacements with greater resolution and sensitivity than conventional imaging techniques. This platform-independent method will enable a more complete understanding of how changes in substrate mechanical properties simultaneously influence other microenvironmental parameters in 3D cultures.

  7. Imaging spin filter for electrons based on specular reflection from iridium (001)

    Energy Technology Data Exchange (ETDEWEB)

    Kutnyakhov, D.; Lushchyk, P. [Johannes Gutenberg-Universität, Institut für Physik, 55099 Mainz (Germany); Fognini, A.; Perriard, D. [Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich (Switzerland); Kolbe, M.; Medjanik, K.; Fedchenko, E.; Nepijko, S.A.; Elmers, H.J. [Johannes Gutenberg-Universität, Institut für Physik, 55099 Mainz (Germany); Salvatella, G.; Stieger, C.; Gort, R.; Bähler, T.; Michlmayer, T.; Acremann, Y.; Vaterlaus, A. [Laboratorium für Festkörperphysik, ETH Zürich, 8093 Zürich (Switzerland); Giebels, F.; Gollisch, H.; Feder, R. [Universität Duisburg-Essen, Theoretische Festkörperphysik, 47057 Duisburg (Germany); Tusche, C. [Max Planck-Institut für Mikrostrukturphysik, 06120 Halle (Germany); and others

    2013-07-15

    As Stern–Gerlach type spin filters do not work with electrons, spin analysis of electron beams is accomplished by spin-dependent scattering processes based on spin–orbit or exchange interaction. Existing polarimeters are single-channel devices characterized by an inherently low figure of merit (FoM) of typically 10{sup −4}–10{sup −3}. This single-channel approach is not compatible with parallel imaging microscopes and also not with modern electron spectrometers that acquire a certain energy and angular interval simultaneously. We present a novel type of polarimeter that can transport a full image by making use of k-parallel conservation in low-energy electron diffraction. We studied specular reflection from Ir (001) because this spin-filter crystal provides a high analyzing power combined with a “lifetime” in UHV of a full day. One good working point is centered at 39 eV scattering energy with a broad maximum of 5 eV usable width. A second one at about 10 eV shows a narrower profile but much higher FoM. A relativistic layer-KKR SPLEED calculation shows good agreement with measurements. - Highlights: • Novel type of spin polarimeter can transport a full image by making use of k{sup →}{sub ||} conservation in LEED. • When combined with a hemispherical analyzer, it acquires a certain energy and angular interval simultaneously. • Ir (001) based spin-filter provides a high analyzing power combined with a “lifetime” in UHV of a full day. • Parallel spin detection improves spin polarimeter efficiency by orders of magnitude. • A relativistic layer-KKR SPLEED calculation shows good agreement with measurements.

  8. Radio Spectral Imaging of Reflective MHD Waves during the Impulsive Phase of a Solar Flare

    Science.gov (United States)

    Yu, S.; Chen, B.; Reeves, K.

    2017-12-01

    We report a new type of coherent radio bursts observed by the Karl G. Jansky Very Large Array (VLA) in 1-2 GHz during the impulsive phase of a two-ribbon flare on 2014 November 1, which we interpret as MHD waves reflected near the footpoint of flaring loops. In the dynamic spectrum, this burst starts with a positive frequency drift toward higher frequencies until it slows down near its highest-frequency boundary. Then it turns over and drifts toward lower frequencies. The frequency drift rate in its descending and ascending branch is between 50-150 MHz/s, which is much slower than type III radio bursts associated with fast electron beams but close to the well-known intermediate drift bursts, or fiber bursts, which are usually attributed to propagating whistler or Alfvenic waves. Thanks to VLA's unique capability of imaging with spectrometer-like temporal and spectral resolution (50 ms and 2 MHz), we are able to obtain an image of the radio source at every time and frequency in the dynamic spectrum where the burst is present and trace its spatial evolution. From the imaging results, we find that the radio source firstly moves downward toward one of the flaring ribbons before it "bounces off" at the lowest height (corresponding to the turnover frequency in the dynamic spectrum) and moves upward again. The measured speed in projection is at the order of 1-2 Mm/s, which is characteristic of Alfvenic or fast-mode MHD waves in the low corona. We conclude that the radio burst is emitted by trapped nonthermal electrons in the flaring loop carried along by a large-scale MHD wave. The waves are probably launched during the eruption of a magnetic flux rope in the flare impulsive phase.

  9. Analysis of Properties of Reflectance Reference Targets for Permanent Radiometric Test Sites of High Resolution Airborne Imaging Systems

    Directory of Open Access Journals (Sweden)

    Eero Ahokas

    2010-08-01

    Full Text Available Reliable and optimal exploitation of rapidly developing airborne imaging methods requires geometric and radiometric quality assurance of production systems in operational conditions. Permanent test sites are the most promising approach for cost-efficient performance assessment. Optimal construction of permanent radiometric test sites for high resolution airborne imaging systems is an unresolved issue. The objective of this study was to assess the performance of commercially available gravels and painted and unpainted concrete targets for permanent, open-air radiometric test sites under sub-optimal climate conditions in Southern Finland. The reflectance spectrum and reflectance anisotropy and their stability were characterized during the summer of 2009. The management of reflectance anisotropy and stability were shown to be the key issues for better than 5% reflectance accuracy.

  10. Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy

    Science.gov (United States)

    Fukunaga, K.; Cortes, E.; Cosentino, A.; Stã¼nkel, I.; Leona, M.; Duling, N.; Mininberg, D. T.

    2011-08-01

    This paper reports the first use of terahertz time domain reflection imaging involving textiles on part of a complete human mummy, still in original wrapping. X-ray technique has been used extensively to investigate anatomical features, since X-ray pass through the wrapping. Terahertz waves, on the other hand, can penetrate into non-metallic materials and its reflection depends on the refractive index of materials at the interface, such as textiles and the air. The mummy of Kharushere (ca. 945-712 B.C.) was examined by using Terahertz time domain reflection imaging in the Egyptian galleries of The Metropolitan Museum of Art. Experimental results suggest that the Terahetz imaging is a promising technique for probing the fabric layers surrounding Egyptian mummies, although it is still very limited in its current state. In the future it could become a useful complement to CT scanning when materials with low radiographic density and contrast are being investigated

  11. High-resolution optical coherence tomography, autofluorescence, and infrared reflectance imaging in Sjögren reticular dystrophy.

    Science.gov (United States)

    Schauwvlieghe, Pieter-Paul; Torre, Kara Della; Coppieters, Frauke; Van Hoey, Anneleen; De Baere, Elfride; De Zaeytijd, Julie; Leroy, Bart P; Brodie, Scott E

    2013-01-01

    To describe the phenotype of three cases of Sjögren reticular dystrophy in detail, including high-resolution optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. Two unrelated teenagers were independently referred for ophthalmologic evaluation. Both underwent a full ophthalmologic workup, including electrophysiologic and extensive imaging with spectral-domain optical coherence tomography, autofluorescence imaging, and near-infrared reflectance imaging. In addition, mutation screening of ABCA4, PRPH2, and the mitochondrial tRNA gene was performed in Patient 1. Subsequently, the teenage sister of Patient 2 was examined. Strikingly similar phenotypes were present in these three patients. Fundoscopy showed bilateral foveal pigment alterations, and a lobular network of deep retinal, pigmented deposits throughout the posterior pole, tapering toward the midperiphery, with relative sparing of the immediate perifoveal macula and peripapillary area. This network is mildly to moderately hyperautofluorescent on autofluorescence and bright on near-infrared reflectance imaging. Optical coherence tomography showed abnormalities of the retinal pigment epithelium-Bruch membrane complex, photoreceptor outer segments, and photoreceptor inner/outer segment interface. The results of retinal function test were entirely normal. No molecular cause was detected in Patient 1. Imaging suggested that the lobular network of deep retinal deposits in Sjögren reticular dystrophy is the result of accumulation of both pigment and lipofuscin between photoreceptors and retinal pigment epithelium, as well as within the retinal pigment epithelium.

  12. Seismic imaging of sandbox experiments – laboratory hardware setup and first reflection seismic sections

    Directory of Open Access Journals (Sweden)

    C. M. Krawczyk

    2013-02-01

    Full Text Available With the study and technical development introduced here, we combine analogue sandbox simulation techniques with seismic physical modelling of sandbox models. For that purpose, we designed and developed a new mini-seismic facility for laboratory use, comprising a seismic tank, a PC-driven control unit, a positioning system, and piezoelectric transducers used here for the first time in an array mode. To assess the possibilities and limits of seismic imaging of small-scale structures in sandbox models, different geometry setups were tested in the first 2-D experiments that also tested the proper functioning of the device and studied the seismo-elastic properties of the granular media used. Simple two-layer models of different materials and layer thicknesses as well as a more complex model comprising channels and shear zones were tested using different acquisition geometries and signal properties. We suggest using well sorted and well rounded grains with little surface roughness (glass beads. Source receiver-offsets less than 14 cm for imaging structures as small as 2.0–1.5 mm size have proven feasible. This is the best compromise between wide beam and high energy output, and is applicable with a consistent waveform. Resolution of the interfaces of layers of granular materials depends on the interface preparation rather than on the material itself. Flat grading of interfaces and powder coverage yields the clearest interface reflections. Finally, sandbox seismic sections provide images of high quality showing constant thickness layers as well as predefined channel structures and indications of the fault traces from shear zones. Since these were artificially introduced in our test models, they can be regarded as zones of disturbance rather than tectonic shear zones characterized by decompaction. The multiple-offset surveying introduced here, improves the quality with respect to S / N ratio and source signature even more; the maximum depth

  13. Comparative study between fundus autofluorescence and red reflectance imaging of choroidal nevi using ultra-wide-field scanning laser ophthalmoscopy.

    Science.gov (United States)

    Zapata, Miguel Angel; Leila, Mahmoud; Teixidor, Teresa; Garcia-Arumi, Jose

    2015-06-01

    To explore the utility of fundus autofluorescence (FAF) and red reflectance (RR) imaging using ultra-wide-field scanning laser ophthalmoscope in choroidal nevi. Retrospective observational case study reviewing clinical data, color, FAF, and RR images of patients with choroidal nevi and comparing the findings. The ultra-wide-field scanning laser ophthalmoscope uses green laser 532 nm and red laser 633 nm that enabled FAF and RR imaging, respectively in separate channels. Superimposition of both images yielded a composite color image. The study included 46 eyes of 45 patients. Nevi were unilateral in 44 patients (98%). Forty-one nevi (89.1%) were located temporally between the macula and the equator. All nevi (100%) were deeply pigmented. The most frequent surface changes were lipofuscin pigments, zones of retinal pigment epithelium atrophy, and retinal pigment epithelium pigment clumps in 31 (67.3%), 18 (39.1%), and 8 eyes (17.3%), respectively. Color photographs were superior to FAF in detecting nevus boundaries and surface changes. Red reflectance correlated strongly with color images, although the nevus boundaries and surface changes were better delineated in RR mode. Red reflectance was superior to FAF in delineating the boundaries and surface changes of the nevus; clear visibility (3+) for RR versus no or poor visibility (0/1+) for FAF. Nevertheless, the areas of retinal pigment epithelium atrophy were better delineated in FAF mode; clear visibility (3+) for FAF versus poor visibility (1+) for FAF. Red reflectance imaging is more sensitive than conventional photography for follow-up of choroidal nevi. Fundus autofluorescence should be considered only as a complementary tool to RR imaging.

  14. Infrared Imaging of Cotton Fiber Bundles Using a Focal Plane Array Detector and a Single Reflectance Accessory

    Directory of Open Access Journals (Sweden)

    Michael Santiago Cintrón

    2016-11-01

    Full Text Available Infrared imaging is gaining attention as a technique used in the examination of cotton fibers. This type of imaging combines spectral analysis with spatial resolution to create visual images that examine sample composition and distribution. Herein, we report on the use of an infrared instrument equipped with a reflection accessory and an array detector system for the examination of cotton fiber bundles. Cotton vibrational spectra and chemical images were acquired by grouping pixels in the detector array. This technique reduced spectral noise and was employed to visualize cell wall development in cotton fibers bundles. Fourier transform infrared spectra reveal band changes in the C–O bending region that matched previous studies. Imaging studies were quick, relied on small amounts of sample and provided a distribution of the cotton fiber cell wall composition. Thus, imaging of cotton bundles with an infrared detector array has potential for use in cotton fiber examinations.

  15. On-line, continuous monitoring in solar cell and fuel cell manufacturing using spectral reflectance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, Bhushan; Rupnowski, Przemyslaw; Ulsh, Michael

    2016-01-12

    A monitoring system 100 comprising a material transport system 104 providing for the transportation of a substantially planar material 102, 107 through the monitoring zone 103 of the monitoring system 100. The system 100 also includes a line camera 106 positioned to obtain multiple line images across a width of the material 102, 107 as it is transported through the monitoring zone 103. The system 100 further includes an illumination source 108 providing for the illumination of the material 102, 107 transported through the monitoring zone 103 such that light reflected in a direction normal to the substantially planar surface of the material 102, 107 is detected by the line camera 106. A data processing system 110 is also provided in digital communication with the line camera 106. The data processing system 110 is configured to receive data output from the line camera 106 and further configured to calculate and provide substantially contemporaneous information relating to a quality parameter of the material 102, 107. Also disclosed are methods of monitoring a quality parameter of a material.

  16. Characterization of NPP Visible/Infrared Imager Radiometer Suite (VIIRS) Reflective Solar Bands Dual Gain Anomaly

    Science.gov (United States)

    Lee, Shihyan; McIntire, Jeff; Oudari, Hassan

    2012-01-01

    The Visible/Infrared Imager Radiometer Suite (VIIRS) contains six dual gain bands in the reflective solar spectrum. The dual gain bands are designed to switch gain mode at pre-defined thresholds to achieve high resolution at low radiances while maintaining the required dynamic range for science. During pre-launch testing, an anomaly in the electronic response before transitioning from high to low gain was discovered and characterized. On-orbit, the anomaly was confirmed using MODIS data collected during Simultaneous Nadir Overpasses (SNOs). The analysis of the Earth scene data shows that dual gain anomaly can be determined at the orbital basis. To characterize the dual gain anomaly, the anomaly region and electronic offsets were tracked per week during the first 8 month of VIIRS operation. The temporal analysis shows the anomaly region can drift 20 DN and is impacted by detectors DC Restore. The estimated anomaly flagging regions cover 2.5 % of the high gain dynamic range and are consistent with prelaunch and on-orbit LUT. The prelaunch results had a smaller anomaly range (30-50 DN) and are likely the results of more stable electronics from the shorter data collection time. Finally, this study suggests future calibration efforts to focus on the anomaly's impact on science products and possible correction method to reduce uncertainties.

  17. Echo intensity obtained from ultrasonography images reflecting muscle strength in elderly men

    Directory of Open Access Journals (Sweden)

    Watanabe Y

    2013-07-01

    Full Text Available Yuya Watanabe,1 Yosuke Yamada,1,2 Yoshihiro Fukumoto,3 Tatsuro Ishihara,4 Keiichi Yokoyama,1 Tsukasa Yoshida,1 Motoko Miyake,1 Emi Yamagata,5 Misaka Kimura1 1Laboratory of Sports and Health Science, Kyoto Prefectural University of Medicine, Kyoto, Japan; 2Research Fellow, Japan Society for the Promotion of Science, Tokyo, Japan; 3Faculty of Rehabilitation, Kobe Gakuin University, Kobe, Japan; 4Faculty of Health and Sports Science, Doshisha University, Kyoto, Japan; 5Laboratory of Gerontological Nursing, Kyoto Prefectural University of Medicine, Kyoto, Japan Background: It is well known that loss of muscle mass (quantitative change is a major change that occurs with aging. Qualitative changes in skeletal muscle, such as increased intramuscular fat, also occur as one ages. Enhanced echo intensity (EI on ultrasonography images of skeletal muscle is believed to reflect muscle quality. Recent studies evaluating the quality of skeletal muscle using computer-aided gray scale analysis showed that EI is associated with muscle strength independently of age or muscle size in middle-aged and elderly women. The aim of the present study was to investigate whether muscle quality based on EI is associated with muscle strength independently of muscle size for elderly men. Methods: A total of 184 elderly men (65–91 years living independently in Kyoto, Japan, participated in this study. The EI, muscle thickness (MT, and subcutaneous fat thickness (FT of the anterior compartment of the right thigh were determined by assessing ultrasonography images. The maximum isometric torque of knee extension at a knee angle of 90° was measured. Results: The EI showed a significant negative correlation with muscle strength (r = -0.333, P < 0.001. Multivariate regression analysis revealed that the MT and EI of the knee extensor muscle were independently associated with maximum isometric knee extension strength. Even when partial correlation analysis was performed with age

  18. Total internal reflection fluorescence (TIRF) microscopy for real-time imaging of nanoparticle-cell plasma membrane interaction

    DEFF Research Database (Denmark)

    Parhamifar, Ladan; Moghimi, Seyed Moien

    2012-01-01

    Nanoparticulate systems are widely used for site-specific drug and gene delivery as well as for medical imaging. The mode of nanoparticle-cell interaction may have a significant effect on the pathway of nanoparticle internalization and subsequent intracellular trafficking. Total internal reflection...

  19. Bild, Bildung and the 'Romance of the Soul': Reflections upon the Image of Meister Eckhart

    Science.gov (United States)

    Hedley, Douglas

    2018-01-01

    In this article, the "Bild" or image of the sculptor used by Plotinus and adapted by his Christian follower Meister Eckhart forms the basis of a reflection on the religious or otherworldly dimension in ethics (as opposed to a reductionist or functionalist conception of ethics with its focus on human happiness in the sense of worldly…

  20. Image potential effect on the specular reflection coefficient of alkali ions scattered from a nickel surface at low energy

    International Nuclear Information System (INIS)

    Zemih, R.; Boudjema, M.; Benazeth, C.; Boudouma, Y.; Chami, A.C.

    2002-01-01

    The resonant charge exchange in the incoming path of alkali ions scattered at low energy from a polycrystalline nickel surface is studied by using the image effect occurring at glancing incidence (2-10 deg. from the surface plane) and for specular reflection. The part of the experimental artefacts (geometrical factor, surface roughness ...) is extracted from the reflection coefficient of almost completely neutralised projectiles (He + or Ne + ) compared with the coefficient obtained from numerical simulations (TRIM and MARLOWE codes). The present model explains very well the lowering of the reflection coefficient measured at grazing incidence (below 4 deg.). Furthermore, the optimised values of the charge fraction in the incoming path and the image potential are in agreement with the theoretical calculations in the case of Na + /Ni at 4 keV

  1. Darkfield adapter for whole slide imaging: adapting a darkfield internal reflection illumination system to extend WSI applications.

    Directory of Open Access Journals (Sweden)

    Yoshihiro Kawano

    Full Text Available We present a new method for whole slide darkfield imaging. Whole Slide Imaging (WSI, also sometimes called virtual slide or virtual microscopy technology, produces images that simultaneously provide high resolution and a wide field of observation that can encompass the entire section, extending far beyond any single field of view. For example, a brain slice can be imaged so that both overall morphology and individual neuronal detail can be seen. We extended the capabilities of traditional whole slide systems and developed a prototype system for darkfield internal reflection illumination (DIRI. Our darkfield system uses an ultra-thin light-emitting diode (LED light source to illuminate slide specimens from the edge of the slide. We used a new type of side illumination, a variation on the internal reflection method, to illuminate the specimen and create a darkfield image. This system has four main advantages over traditional darkfield: (1 no oil condenser is required for high resolution imaging (2 there is less scatter from dust and dirt on the slide specimen (3 there is less halo, providing a more natural darkfield contrast image, and (4 the motorized system produces darkfield, brightfield and fluorescence images. The WSI method sometimes allows us to image using fewer stains. For instance, diaminobenzidine (DAB and fluorescent staining are helpful tools for observing protein localization and volume in tissues. However, these methods usually require counter-staining in order to visualize tissue structure, limiting the accuracy of localization of labeled cells within the complex multiple regions of typical neurohistological preparations. Darkfield imaging works on the basis of light scattering from refractive index mismatches in the sample. It is a label-free method of producing contrast in a sample. We propose that adapting darkfield imaging to WSI is very useful, particularly when researchers require additional structural information without the

  2. Quality image analysis and radiation protection in dental radiodiagnosis in Sobral city, BA, Brazil

    International Nuclear Information System (INIS)

    Menezes, Francisca L.; Ferreira, Fernanda C.L.; Paschoal, Cinthia M.M.; Belinato, Walmir

    2015-01-01

    The radiographic processing is one of the steps to acquire radiographic images and requires appropriate quality control. The image should allow an accurate diagnosis and avoid repetition of examinations, which is consistent with the principles of radiation protection. This study aimed to verify the quality of periapical radiographic imaging and to investigate the suitability of dental X-ray equipment on the principles of radiation protection established by the Health Ministry Decree 453/98, by applying radiation field test and application questionnaires to dentists professionals. The result showed that it takes greater care professionals about the treatment radiographic and radiation protection, requiring that inspection agencies require compliance with the rules so that there is maintaining the quality of dental diagnostic radiology services. (author)

  3. Single view reflectance capture using multiplexed scattering and time-of-flight imaging

    OpenAIRE

    Zhao, Shuang; Velten, Andreas; Raskar, Ramesh; Bala, Kavita; Naik, Nikhil Deepak

    2011-01-01

    This paper introduces the concept of time-of-flight reflectance estimation, and demonstrates a new technique that allows a camera to rapidly acquire reflectance properties of objects from a single view-point, over relatively long distances and without encircling equipment. We measure material properties by indirectly illuminating an object by a laser source, and observing its reflected light indirectly using a time-of-flight camera. The configuration collectively acquires dense angular, but l...

  4. Non-Destructive Quality Evaluation of Pepper (Capsicum annuum L. Seeds Using LED-Induced Hyperspectral Reflectance Imaging

    Directory of Open Access Journals (Sweden)

    Changyeun Mo

    2014-04-01

    Full Text Available In this study, we developed a viability evaluation method for pepper (Capsicum annuum L. seeds based on hyperspectral reflectance imaging. The reflectance spectra of pepper seeds in the 400–700 nm range are collected from hyperspectral reflectance images obtained using blue, green, and red LED illumination. A partial least squares–discriminant analysis (PLS-DA model is developed to classify viable and non-viable seeds. Four spectral ranges generated with four types of LEDs (blue, green, red, and RGB, which were pretreated using various methods, are investigated to develop the classification models. The optimal PLS-DA model based on the standard normal variate for RGB LED illumination (400–700 nm yields discrimination accuracies of 96.7% and 99.4% for viable seeds and nonviable seeds, respectively. The use of images based on the PLS-DA model with the first-order derivative of a 31.5-nm gap for red LED illumination (600–700 nm yields 100% discrimination accuracy for both viable and nonviable seeds. The results indicate that a hyperspectral imaging technique based on LED light can be potentially applied to high-quality pepper seed sorting.

  5. Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle SpectroPolarimetric Imager

    Directory of Open Access Journals (Sweden)

    David J. Diner

    2012-12-01

    Full Text Available Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument’s bands (470, 660, and 865 nm. A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof, possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.

  6. Reflection groups

    International Nuclear Information System (INIS)

    Eggermont, G.

    2006-01-01

    In 2005, PISA organised proactive meetings of reflection groups on involvement in decision making, expert culture and ethical aspects of radiation protection.All reflection group meetings address particular targeted audiences while the output publication in book form is put forward

  7. Robust image obfuscation for privacy protection in Web 2.0 applications

    Science.gov (United States)

    Poller, Andreas; Steinebach, Martin; Liu, Huajian

    2012-03-01

    We present two approaches to robust image obfuscation based on permutation of image regions and channel intensity modulation. The proposed concept of robust image obfuscation is a step towards end-to-end security in Web 2.0 applications. It helps to protect the privacy of the users against threats caused by internet bots and web applications that extract biometric and other features from images for data-linkage purposes. The approaches described in this paper consider that images uploaded to Web 2.0 applications pass several transformations, such as scaling and JPEG compression, until the receiver downloads them. In contrast to existing approaches, our focus is on usability, therefore the primary goal is not a maximum of security but an acceptable trade-off between security and resulting image quality.

  8. Security protection of DICOM medical images using dual-layer reversible watermarking with tamper detection capability.

    Science.gov (United States)

    Tan, Chun Kiat; Ng, Jason Changwei; Xu, Xiaotian; Poh, Chueh Loo; Guan, Yong Liang; Sheah, Kenneth

    2011-06-01

    Teleradiology applications and universal availability of patient records using web-based technology are rapidly gaining importance. Consequently, digital medical image security has become an important issue when images and their pertinent patient information are transmitted across public networks, such as the Internet. Health mandates such as the Health Insurance Portability and Accountability Act require healthcare providers to adhere to security measures in order to protect sensitive patient information. This paper presents a fully reversible, dual-layer watermarking scheme with tamper detection capability for medical images. The scheme utilizes concepts of public-key cryptography and reversible data-hiding technique. The scheme was tested using medical images in DICOM format. The results show that the scheme is able to ensure image authenticity and integrity, and to locate tampered regions in the images.

  9. Survey of Compliance with Radiation Protection Standards in Diagnostic Imaging Centers of Khuzestan Province in 2015

    Directory of Open Access Journals (Sweden)

    farshid mahmoudi

    2017-03-01

    rooms in 32 diagnostic imaging centers in Khuzestan Province, Iran, 2015. The centers were chosen through random cluster sampling method. The data were obtained using open-ended interview and a checklist designed based on the recommendations of the International Commission for Radiation Protection and Atomic Energy Organization of Iran. Results: The compliance rates with regard to radiology room, radiology equipment, darkroom, and radiographer’s protection were 80.76%, 80.47%, 69.28%, and 93.12%, respectively. Maximum and minimum rates of compliance with the standards were related to performance of the cassette tray (100% and hopper status (25%, respectively. Comparison of public and private imaging centers in terms of safety standards showed no significant differences (P>0.05.Conclusion: The observance of the radiation protection standards in Khuzestan Province was in a relativly desirable condition. However, there are some shortcomings in compliance with the principles of protection in the darkroom. In this regard, with recommend adopting protection measures such as timelyreplacement of processing solution, appropriate ventilation of darkroom, provisionof protection equipment and appliances, and protection training required for entering the darkroom.

  10. Reflective photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lentine, Anthony L.; Nielson, Gregory N.; Cruz-Campa, Jose Luis; Okandan, Murat; Goeke, Ronald S.

    2018-03-06

    A photovoltaic module includes colorized reflective photovoltaic cells that act as pixels. The colorized reflective photovoltaic cells are arranged so that reflections from the photovoltaic cells or pixels visually combine into an image on the photovoltaic module. The colorized photovoltaic cell or pixel is composed of a set of 100 to 256 base color sub-pixel reflective segments or sub-pixels. The color of each pixel is determined by the combination of base color sub-pixels forming the pixel. As a result, each pixel can have a wide variety of colors using a set of base colors, which are created, from sub-pixel reflective segments having standard film thicknesses.

  11. Autofluorescence Imaging With Near-Infrared Excitation:Normalization by Reflectance to Reduce Signal From Choroidal Fluorophores

    Science.gov (United States)

    Cideciyan, Artur V.; Swider, Malgorzata; Jacobson, Samuel G.

    2015-01-01

    Purpose. We previously developed reduced-illuminance autofluorescence imaging (RAFI) methods involving near-infrared (NIR) excitation to image melanin-based fluorophores and short-wavelength (SW) excitation to image lipofuscin-based flurophores. Here, we propose to normalize NIR-RAFI in order to increase the relative contribution of retinal pigment epithelium (RPE) fluorophores. Methods. Retinal imaging was performed with a standard protocol holding system parameters invariant in healthy subjects and in patients. Normalized NIR-RAFI was derived by dividing NIR-RAFI signal by NIR reflectance point-by-point after image registration. Results. Regions of RPE atrophy in Stargardt disease, AMD, retinitis pigmentosa, choroideremia, and Leber congenital amaurosis as defined by low signal on SW-RAFI could correspond to a wide range of signal on NIR-RAFI depending on the contribution from the choroidal component. Retinal pigment epithelium atrophy tended to always correspond to high signal on NIR reflectance. Normalizing NIR-RAFI reduced the choroidal component of the signal in regions of atrophy. Quantitative evaluation of RPE atrophy area showed no significant differences between SW-RAFI and normalized NIR-RAFI. Conclusions. Imaging of RPE atrophy using lipofuscin-based AF imaging has become the gold standard. However, this technique involves bright SW lights that are uncomfortable and may accelerate the rate of disease progression in vulnerable retinas. The NIR-RAFI method developed here is a melanin-based alternative that is not absorbed by opsins and bisretinoid moieties, and is comfortable to view. Further development of this method may result in a nonmydriatic and comfortable imaging method to quantify RPE atrophy extent and its expansion rate. PMID:26024124

  12. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    Science.gov (United States)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction

  13. An analysis of Richard Prince's "Lake Resort Nurse": using an image to expose and critically reflect on stereotypes in nursing.

    Science.gov (United States)

    Holmes, Vicki C

    2012-01-01

    Our interactions with images, created and viewed within contexts, are a significant means through which we construct and interpret our values and beliefs. Nurses' efforts at monitoring images to encourage accurate portrayals of nurses' work have had little influence on the way nurses are represented or the inherent ability of images to shape perceptions of nurses' work. One explanation for this lack of influence is that viewers do not closely attend to the ways in which we make meaning of everyday images. This inattention creates passive viewers, vulnerable to and more likely to internalize messages (G. Dines & J. Humez, 2011). Misunderstandings about nursing leave nurses vulnerable to contexts and influence the outcomes of at least 2 issues, the nursing shortage and the provision of quality care. Prince, in his painting "Lake Resort Nurse," utilizes the artistic strategies of expressionism, appropriation, and reflexivity to expose stereotypes and provides an opportunity for reflection on the potential impact these stereotypes have on the profession. He provides a means through which we can recognize that images are significant contributors to how understandings of nursing and nurses are shaped. New understandings of nursing, gained through reflection and dialog, subsequently influences perceptions of the value of nurses' work and their contribution to health care. Copyright © 2012 Elsevier Inc. All rights reserved.

  14. Sub-wavelength imaging by depolarization in a reflection near-field optical microscope using an uncoated fiber probe

    DEFF Research Database (Denmark)

    Madsen, Steen; Bozhevolnyi, Sergey I.; Hvam, Jørn Märcher

    1998-01-01

    We present a reflection scanning near-field optical microscope utilizing counter-directional light propagation in an uncoated fiber probe, cross-polarized detection and shear-force feedback. Topographical and near-field optical imaging with a scanning speed of up to 10 mu m/s and a lateral...... resolution better than 40 nm are demonstrated with a latex projection test sample. Determination of the optical resolution as well as correlation between topographical and near-field optical images are discussed. (C) 1998 Elsevier Science B.V....

  15. Infrared images of reflection nebulae and Orion's bar: Fluorescent molecular hydrogen and the 3.3 micron feature

    International Nuclear Information System (INIS)

    Burton, M.G.; Moorhouse, A.; Brand, P.W.J.L.; Roche, P.F.; Geballe, T.R.

    1989-01-01

    Images were obtained of the (fluorescent) molecular hydrogen 1-0 S(1) line, and of the 3.3 micron emission feature, in Orion's Bar and three reflection nebulae. The emission from these species appears to come from the same spatial locations in all sources observed. This suggests that the 3.3 micron feature is excited by the same energetic UV-photons which cause the molecular hydrogen to fluoresce

  16. Analysis of In-Situ Spectral Reflectance of Sago and Other Palms: Implications for Their Detection in Optical Satellite Images

    Science.gov (United States)

    Rendon Santillan, Jojene; Makinano-Santillan, Meriam

    2018-04-01

    We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa) to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345-1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2). Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.

  17. ANALYSIS OF IN-SITU SPECTRAL REFLECTANCE OF SAGO AND OTHER PALMS: IMPLICATIONS FOR THEIR DETECTION IN OPTICAL SATELLITE IMAGES

    Directory of Open Access Journals (Sweden)

    J. R. Santillan

    2018-04-01

    Full Text Available We present a characterization, comparison and analysis of in-situ spectral reflectance of Sago and other palms (coconut, oil palm and nipa to ascertain on which part of the electromagnetic spectrum these palms are distinguishable from each other. The analysis also aims to reveal information that will assist in selecting which band to use when mapping Sago palms using the images acquired by these sensors. The datasets used in the analysis consisted of averaged spectral reflectance curves of each palm species measured within the 345–1045 nm wavelength range using an Ocean Optics USB4000-VIS-NIR Miniature Fiber Optic Spectrometer. This in-situ reflectance data was also resampled to match the spectral response of the 4 bands of ALOS AVNIR-2, 3 bands of ASTER VNIR, 4 bands of Landsat 7 ETM+, 5 bands of Landsat 8, and 8 bands of Worldview-2 (WV2. Examination of the spectral reflectance curves showed that the near infra-red region, specifically at 770, 800 and 875 nm, provides the best wavelengths where Sago palms can be distinguished from other palms. The resampling of the in-situ reflectance spectra to match the spectral response of optical sensors made possible the analysis of the differences in reflectance values of Sago and other palms in different bands of the sensors. Overall, the knowledge learned from the analysis can be useful in the actual analysis of optical satellite images, specifically in determining which band to include or to exclude, or whether to use all bands of a sensor in discriminating and mapping Sago palms.

  18. VIIRSN Level-3 Standard Mapped Image, Remote Sensing Reflectance at 671 nm, 8 Day, 4km

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA CoastWatch distributes Remote sensing reflectance (671 nm) data from the NPP-suomi spacecraft. Measurements are gathered by the VIIRS instrument carried aboard...

  19. Preliminary investigations into macroscopic attenuated total reflection-fourier transform infrared imaging of intact spherical domains: spatial resolution and image distortion.

    Science.gov (United States)

    Everall, Neil J; Priestnall, Ian M; Clarke, Fiona; Jayes, Linda; Poulter, Graham; Coombs, David; George, Michael W

    2009-03-01

    This paper describes preliminary investigations into the spatial resolution of macro attenuated total reflection (ATR) Fourier transform infrared (FT-IR) imaging and the distortions that arise when imaging intact, convex domains, using spheres as an extreme example. The competing effects of shallow evanescent wave penetration and blurring due to finite spatial resolution meant that spheres within the range 20-140 microm all appeared to be approximately the same size ( approximately 30-35 microm) when imaged with a numerical aperture (NA) of approximately 0.2. A very simple model was developed that predicted this extreme insensitivity to particle size. On the basis of these studies, it is anticipated that ATR imaging at this NA will be insensitive to the size of intact highly convex objects. A higher numerical aperture device should give a better estimate of the size of small spheres, owing to superior spatial resolution, but large spheres should still appear undersized due to the shallow sampling depth. An estimate of the point spread function (PSF) was required in order to develop and apply the model. The PSF was measured by imaging a sharp interface; assuming an Airy profile, the PSF width (distance from central maximum to first minimum) was estimated to be approximately 20 and 30 microm for IR bands at 1600 and 1000 cm(-1), respectively. This work has two significant limitations. First, underestimation of domain size only arises when imaging intact convex objects; if surfaces are prepared that randomly and representatively section through domains, the images can be analyzed to calculate parameters such as domain size, area, and volume. Second, the model ignores reflection and refraction and assumes weak absorption; hence, the predicted intensity profiles are not expected to be accurate; they merely give a rough estimate of the apparent sphere size. Much further work is required to place the field of quantitative ATR-FT-IR imaging on a sound basis.

  20. SA72. Neural Correlates of Self-Reflection in Schizophrenia: A Functional Magnetic Resonance Imaging Study

    Science.gov (United States)

    Hiremath, Chaitra; Dey, Avyarthana

    2017-01-01

    Abstract Background: Self-reflection is the process of conscious evaluation of one’s traits, abilities, and attitudes. Deficient self-reflective processes might underlie lack of insight into schizophrenia. The limited research literature on the neural correlates of self-reflection in schizophrenia is inconclusive. In this study, we investigated the neural correlates of self-reflection in schizophrenia patients attending a tertiary care hospital in India. Methods: Nineteen male schizophrenia patients (mean age = 32.68 ± 7.11, mean years of education =15.21 ± 1.93) and 19 male healthy controls (mean age = 26.96 ± 4.67, mean years of education = 18.11 ± 3.13) participated in the study. Participants performed a previously validated self-reflection task while undergoing functional magnetic resonance imaging (fMRI; 3-Tesla). The task comprised of 144 words subdivided into 4 domains: Self-reflection, Other-reflection, Affect labeling, and Perceptual. The task was presented as 3 runs of 8 blocks each. The images were preprocessed and analyzed using SPM-12. After preprocessing, contrasts comparing Self-reflection with the other domains were modeled at the individual subject level. In second-level analysis, the first-level contrasts were entered into a 2-sample t test to compare patient and healthy control groups. The results were thresholded at P Self-reflection > Other-reflection contrast, schizophrenia patients demonstrated greater activation of right and left superior parietal lobules (BA 5 and 7), right inferior parietal lobule (BA 39), left parahippocampal gyrus (BA 36), and left premotor cortex (BA 6). For the Self-reflection > Affect labeling contrast, patients showed greater activation of precuneus (BA 7) and right inferior occipital gyrus (BA 19), and lesser activation of left inferior frontal gyrus (BA 45 and 47). And for the Self-reflection > Perceptual contrast, patients showed greater activation of left middle frontal gyrus (BA 10

  1. Reflection terahertz time-domain imaging for analysis of an 18th century neoclassical easel painting

    DEFF Research Database (Denmark)

    Dandolo, Corinna Ludovica Koch; Filtenborg, Troels; Fukunaga, Kaori

    2015-01-01

    Terahertz time-domain imaging (THz-TDI) has been applied for imaging a hidden portrait and other subsurfacecomposition layers of an 18th century (18C) easel painting by Nicolai Abildgaard, the most important 18CDanish neoclassical painter of historical and mythological subjects. For the first time...

  2. Histogram-based automatic thresholding for bruise detection of apples by structured-illumination reflectance imaging

    Science.gov (United States)

    Thresholding is an important step in the segmentation of image features, and the existing methods are not all effective when the image histogram exhibits a unimodal pattern, which is common in defect detection of fruit. This study was aimed at developing a general automatic thresholding methodology ...

  3. A comparison of hyperspectral reflectance and fluorescence imaging techniques for detection of contaminants on leafy greens

    Science.gov (United States)

    Ensuring the supply of safe, contaminant free fresh fruit and vegetables is of importance to consumers, suppliers and governments worldwide. In this study, three hyperspectral imaging (HSI) configurations coupled with two multivariate image analysis techniques are compared for detection of fecal con...

  4. Ethical reflection on multi-disciplinarity and confidentiality of information in medical imaging through new information and communication technologies

    International Nuclear Information System (INIS)

    Beranger, J.; Le Coz, P.

    2012-01-01

    Technological advances in medical imaging has resulted in the exponential increase of the number of images per examination, caused the irreversible decline of the silver film and imposed digital imaging. This digitization is a concept whose levels of development are multiple, reflecting the complexity of this process of technological change. Under these conditions, the use of medical information via new information and communication technologies is at the crossroads of several scientific approaches and several disciplines (medicine, ethics, law, economics, psychology, etc.) surrounding the information systems in health, doctor-patient relationship and concepts that are associated. Each day, these new information and communication technologies open up new horizons and the space of possibilities, spectacularly developing access to information and knowledge. In this perspective of digital technology emergence impacting the multidisciplinary use of health information systems, the ethical questions are numerous, especially on the preservation of privacy, confidentiality and security of medical data, and their accessibility and integrity. (authors)

  5. Classification and Discrimination of Different Fungal Diseases of Three Infection Levels on Peaches Using Hyperspectral Reflectance Imaging Analysis

    Directory of Open Access Journals (Sweden)

    Ye Sun

    2018-04-01

    Full Text Available Peaches are susceptible to infection from several postharvest diseases. In order to control disease and avoid potential health risks, it is important to identify suitable treatments for each disease type. In this study, the spectral and imaging information from hyperspectral reflectance (400~1000 nm was used to evaluate and classify three kinds of common peach disease. To reduce the large dimensionality of the hyperspectral imaging, principal component analysis (PCA was applied to analyse each wavelength image as a whole, and the first principal component was selected to extract the imaging features. A total of 54 parameters were extracted as imaging features for one sample. Three decayed stages (slight, moderate and severe decayed peaches were considered for classification by deep belief network (DBN and partial least squares discriminant analysis (PLSDA in this study. The results showed that the DBN model has better classification results than the classification accuracy of the PLSDA model. The DBN model based on integrated information (494 features showed the highest classification results for the three diseases, with accuracies of 82.5%, 92.5%, and 100% for slightly-decayed, moderately-decayed and severely-decayed samples, respectively. The successive projections algorithm (SPA was used to select the optimal features from the integrated information; then, six optimal features were selected from a total of 494 features to establish the simple model. The SPA-PLSDA model showed better results which were more feasible for industrial application. The results showed that the hyperspectral reflectance imaging technique is feasible for detecting different kinds of diseased peaches, especially at the moderately- and severely-decayed levels.

  6. A Quantitative Diffuse Reflectance Imaging (QDRI) System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins.

    Science.gov (United States)

    Nichols, Brandon S; Schindler, Christine E; Brown, Jonathon Q; Wilke, Lee G; Mulvey, Christine S; Krieger, Marlee S; Gallagher, Jennifer; Geradts, Joseph; Greenup, Rachel A; Von Windheim, Jesko A; Ramanujam, Nirmala

    2015-01-01

    In an ongoing effort to address the clear clinical unmet needs surrounding breast conserving surgery (BCS), our group has developed a next-generation multiplexed optical-fiber-based tool to assess breast tumor margin status during initial surgeries. Specifically detailed in this work is the performance and clinical validation of a research-grade intra-operative tool for margin assessment based on diffuse optical spectroscopy. Previous work published by our group has illustrated the proof-of-concept generations of this device; here we incorporate a highly optimized quantitative diffuse reflectance imaging (QDRI) system utilizing a wide-field (imaging area = 17 cm(2)) 49-channel multiplexed fiber optic probe, a custom raster-scanning imaging platform, a custom dual-channel white LED source, and an astronomy grade imaging CCD and spectrograph. The system signal to noise ratio (SNR) was found to be greater than 40 dB for all channels. Optical property estimation error was found to be less than 10%, on average, over a wide range of absorption (μa = 0-8.9 cm(-1)) and scattering (μs' = 7.0-9.7 cm(-1)) coefficients. Very low inter-channel and CCD crosstalk was observed (2% max) when used on turbid media (including breast tissue). A raster-scanning mechanism was developed to achieve sub-pixel resolution and was found to be optimally performed at an upsample factor of 8, affording 0.75 mm spatially resolved diffuse reflectance images (λ = 450-600 nm) of an entire margin (area = 17 cm(2)) in 13.8 minutes (1.23 cm(2)/min). Moreover, controlled pressure application at the probe-tissue interface afforded by the imaging platform reduces repeated scan variability, providing operative time scales with improved sensitivity to regions of focal disease that may otherwise be overlooked.

  7. Identifying fecal matter contamination in produce fields using multispectral reflectance imaging under ambient solar illumination

    Science.gov (United States)

    Everard, Colm D.; Kim, Moon S.; Lee, Hoonsoo; O'Donnell, Colm P.

    2016-05-01

    An imaging device to detect fecal contamination in fresh produce fields could allow the producer avoid harvesting fecal contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil, and spinach leaves are compared. A common aperture imager designed with two identical monochromatic cameras, a beam splitter, and optical filters was used to simultaneously capture two-spectral images of leaves contaminated with both fecal matter and soil. The optical filters where 10 nm full width half maximum bandpass filters, one at 690 nm and the second at 710 nm. These were mounted in front of the object lenses. New images were created using the ratio of these two spectral images on a pixel by pixel basis. Image analysis results showed that the fecal matter contamination could be distinguished from soil and leaf on the ratio images. The use of this technology has potential to allow detection of fecal contamination in produce fields which can be a source of foodbourne illnesses. It has the added benefit of mitigating cross-contamination during harvesting and processing.

  8. Magnetic resonance imaging reflects cartilage proteoglycan degradation in the rabbit knee

    International Nuclear Information System (INIS)

    Paul, P.K.; O'Byrne, E.; Blancuzzi, V.; Wilson, D.; Gunson, D.; Douglas, F.L.; Wang Jinzhao; Mezrich, R.S.

    1991-01-01

    Cartilage degeneration in osteoarthritis is initiated by a loss of proteoglycan. Intra-articular injection of papain causes a reversible loss of proteoglycan in rabbit knees. Rabbits were scanned with magnetic resonance imaging (MRI), using a 1.5T Signa superconducting magnet with 3 inch surface coil. Spin echo sequences were performed in the coronal and sagittal planes at 0, 24, 48, and 72 h after intra-articular injection of papain to abtain T 1 , proton density, and T 2 -weighted images. Cartilage proteoglycan content was measured biochemically and histochemically. Reduced articular cartilage thickness in the MR images of papain-treated knees corresponded to changes in cartilage proteoglycan content. (orig.)

  9. Watermarking-based protection of remote sensing images: requirements and possible solutions

    Science.gov (United States)

    Barni, Mauro; Bartolini, Franco; Cappellini, Vito; Magli, Enrico; Olmo, Gabriella

    2001-12-01

    Earth observation missions have recently attracted ag rowing interest form the scientific and industrial communities, mainly due to the large number of possible applications capable to exploit remotely sensed data and images. Along with the increase of market potential, the need arises for the protection of the image products from non-authorized use. Such a need is a very crucial one even because the Internet and other public/private networks have become preferred means of data exchange. A crucial issue arising when dealing with digital image distribution is copyright protection. Such a problem has been largely addressed by resorting to watermarking technology. A question that obviously arises is whether the requirements imposed by remote sensing imagery are compatible with existing watermarking techniques. On the basis of these motivations, the contribution of this work is twofold: i) assessment of the requirements imposed by the characteristics of remotely sensed images on watermark-based copyright protection ii) analysis of the state-of-the-art, and performance evaluation of existing algorithms in terms of the requirements at the previous point.

  10. Mapping reflectance anisotropy of a potato canopy using aerial images acquired with an unmanned aerial vehicle

    NARCIS (Netherlands)

    Roosjen, Peter; Suomalainen, Juha; Bartholomeus, Harm; Kooistra, Lammert; Clevers, Jan

    2017-01-01

    Viewing and illumination geometry has a strong influence on optical measurements of natural surfaces due to their anisotropic reflectance properties. Typically, cameras on-board unmanned aerial vehicles (UAVs) are affected by this because of their relatively large field of view (FOV) and thus large

  11. Reflection imaging of the Moon's interior using deep-moonquake seismic interferometry

    NARCIS (Netherlands)

    Nishitsuji, Y.; Rowe, CA; Wapenaar, C.P.A.; Draganov, D.S.

    2016-01-01

    The internal structure of the Moon has been investigated over many years using a variety of seismic methods, such as travel time analysis, receiver functions, and tomography. Here we propose to apply body-wave seismic interferometry to deep moonquakes in order to retrieve zero-offset reflection

  12. Intercultural Reflection through the "Autobiography of Intercultural Encounters": Students' Accounts of Their Images of Alterity

    Science.gov (United States)

    Méndez García, María del Carmen

    2017-01-01

    The Council of Europe's "Autobiography of Intercultural Encounter" (AIE) is a tool to develop intercultural competence (IC) in education by encouraging users to reflect upon and learn from momentous intercultural encounters they have experienced face to face. Its parallel resource, the "Autobiography of Intercultural Encounters…

  13. Deep Learning-Based Banknote Fitness Classification Using the Reflection Images by a Visible-Light One-Dimensional Line Image Sensor

    Directory of Open Access Journals (Sweden)

    Tuyen Danh Pham

    2018-02-01

    Full Text Available In automatic paper currency sorting, fitness classification is a technique that assesses the quality of banknotes to determine whether a banknote is suitable for recirculation or should be replaced. Studies on using visible-light reflection images of banknotes for evaluating their usability have been reported. However, most of them were conducted under the assumption that the denomination and input direction of the banknote are predetermined. In other words, a pre-classification of the type of input banknote is required. To address this problem, we proposed a deep learning-based fitness-classification method that recognizes the fitness level of a banknote regardless of the denomination and input direction of the banknote to the system, using the reflection images of banknotes by visible-light one-dimensional line image sensor and a convolutional neural network (CNN. Experimental results on the banknote image databases of the Korean won (KRW and the Indian rupee (INR with three fitness levels, and the Unites States dollar (USD with two fitness levels, showed that our method gives better classification accuracy than other methods.

  14. Deep Learning-Based Banknote Fitness Classification Using the Reflection Images by a Visible-Light One-Dimensional Line Image Sensor.

    Science.gov (United States)

    Pham, Tuyen Danh; Nguyen, Dat Tien; Kim, Wan; Park, Sung Ho; Park, Kang Ryoung

    2018-02-06

    In automatic paper currency sorting, fitness classification is a technique that assesses the quality of banknotes to determine whether a banknote is suitable for recirculation or should be replaced. Studies on using visible-light reflection images of banknotes for evaluating their usability have been reported. However, most of them were conducted under the assumption that the denomination and input direction of the banknote are predetermined. In other words, a pre-classification of the type of input banknote is required. To address this problem, we proposed a deep learning-based fitness-classification method that recognizes the fitness level of a banknote regardless of the denomination and input direction of the banknote to the system, using the reflection images of banknotes by visible-light one-dimensional line image sensor and a convolutional neural network (CNN). Experimental results on the banknote image databases of the Korean won (KRW) and the Indian rupee (INR) with three fitness levels, and the Unites States dollar (USD) with two fitness levels, showed that our method gives better classification accuracy than other methods.

  15. Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Difference Vegetation Index Land Reflectance Global Binned Data

    Data.gov (United States)

    National Aeronautics and Space Administration — MODIS (or Moderate Resolution Imaging Spectroradiometer) is a key instrument aboard the Terra (EOS AM) and Aqua (EOS PM) satellites. Terra's orbit around the Earth...

  16. Live Imaging of Cellular Internalization of Single Colloidal Particle by Combined Label-Free and Fluorescence Total Internal Reflection Microscopy.

    Science.gov (United States)

    Byrne, Gerard D; Vllasaliu, Driton; Falcone, Franco H; Somekh, Michael G; Stolnik, Snjezana

    2015-11-02

    In this work we utilize the combination of label-free total internal reflection microscopy and total internal reflectance fluorescence (TIRM/TIRF) microscopy to achieve a simultaneous, live imaging of single, label-free colloidal particle endocytosis by individual cells. The TIRM arm of the microscope enables label free imaging of the colloid and cell membrane features, while the TIRF arm images the dynamics of fluorescent-labeled clathrin (protein involved in endocytosis via clathrin pathway), expressed in transfected 3T3 fibroblasts cells. Using a model polymeric colloid and cells with a fluorescently tagged clathrin endocytosis pathway, we demonstrate that wide field TIRM/TIRF coimaging enables live visualization of the process of colloidal particle interaction with the labeled cell structure, which is valuable for discerning the membrane events and route of colloid internalization by the cell. We further show that 500 nm in diameter model polystyrene colloid associates with clathrin, prior to and during its cellular internalization. This association is not apparent with larger, 1 μm in diameter colloids, indicating an upper particle size limit for clathrin-mediated endocytosis.

  17. The Advantages of an Attenuated Total Internal Reflection Infrared Microspectroscopic Imaging Technique for the Analysis of Polymer Laminates.

    Science.gov (United States)

    Ling, Chen; Sommer, André J

    2015-06-01

    Until recently, the analysis of polymer laminates using infrared microspectroscopy involved the painstaking separation of individual layers by dissection or by obtaining micrometer thin cross-sections. The latter usually requires the expertise of an individual trained in microtomy and even then, the very structure of the laminate could affect the outcome of the spectral results. The recent development of attenuated total internal reflection (ATR) infrared microspectroscopy imaging has provided a new avenue for the analysis of these multilayer structures. This report compares ATR infrared microspectroscopy imaging with conventional transmission infrared microspectroscopy imaging. The results demonstrate that the ATR method offers improved spatial resolution, eliminates a variety of competing optical processes, and requires minimal sample preparation relative to transmission measurements. These advantages were illustrated using a polymer laminate consisting of 11 different layers whose thickness ranged in size from 4-20 μm. The spatial resolution achieved by using an ATR-FTIR (Fourier transform infrared spectroscopy) imaging technique was diffraction limited. Contrast in the ATR images was enhanced by principal component analysis.

  18. GEOMETRIC AND REFLECTANCE SIGNATURE CHARACTERIZATION OF COMPLEX CANOPIES USING HYPERSPECTRAL STEREOSCOPIC IMAGES FROM UAV AND TERRESTRIAL PLATFORMS

    Directory of Open Access Journals (Sweden)

    E. Honkavaara

    2016-06-01

    Full Text Available Light-weight hyperspectral frame cameras represent novel developments in remote sensing technology. With frame camera technology, when capturing images with stereoscopic overlaps, it is possible to derive 3D hyperspectral reflectance information and 3D geometric data of targets of interest, which enables detailed geometric and radiometric characterization of the object. These technologies are expected to provide efficient tools in various environmental remote sensing applications, such as canopy classification, canopy stress analysis, precision agriculture, and urban material classification. Furthermore, these data sets enable advanced quantitative, physical based retrieval of biophysical and biochemical parameters by model inversion technologies. Objective of this investigation was to study the aspects of capturing hyperspectral reflectance data from unmanned airborne vehicle (UAV and terrestrial platform with novel hyperspectral frame cameras in complex, forested environment.

  19. Reflections from a Creative Community-Based Participatory Research Project Exploring Health and Body Image with First Nations Girls

    Directory of Open Access Journals (Sweden)

    Jennifer M. Shea PhD

    2013-02-01

    Full Text Available In Canada, Aboriginal peoples often experience a multitude of inequalities when compared with the general population, particularly in relation to health (e.g., increased incidence of diabetes. These inequalities are rooted in a negative history of colonization. Decolonizing methodologies recognize these realities and aim to shift the focus from communities being researched to being collaborative partners in the research process. This article describes a qualitative community-based participatory research project focused on health and body image with First Nations girls in a Tribal Council region in Western Canada. We discuss our project design and the incorporation of creative methods (e.g., photovoice to foster integration and collaboration as related to decolonizing methodology principles. This article is both descriptive and reflective as it summarizes our project and discusses lessons learned from the process, integrating evaluations from the participating girls as well as our reflections as researchers.

  20. Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Chi Kook; Cho, Byoung Kwan [College of Agriculture and Life Science, Chungnam National University, Daejeon (Korea, Republic of); Mo, Chang Yeon [National Acadamy of Agricultural Science, Daejeon (Korea, Republic of); Kim, Moon S. [Environmental Microbial and Food Safety Laboratory, Animal and Natural Resources Institute, Agricultural Research Service, United States Department of Agriculture, Washington (United States)

    2012-10-15

    In this study, the feasibility of hyperspectral reflectance imaging technique was investigated for the discrimination of viable and non-viable lettuce seeds. The spectral data of hyperspectral reflectance images with the spectral range between 750 nm and 1000 nm were used to develop PLS-DA model for the classification of viable and non-viable lettuce seeds. The discrimination accuracy of the calibration set was 81.6% and that of the test set was 81.2%. The image analysis method was developed to construct the discriminant images of non-viable seeds with the developed PLS-DA model. The discrimination accuracy obtained from the resultant image were 91%, which showed the feasibility of hyperspectral reflectance imaging technique for the mass discrimination of non-viable lettuce seeds from viable ones.

  1. Study on Development of Non-Destructive Measurement Technique for Viability of Lettuce Seed (Lactuca sativa L) Using Hyperspectral Reflectance Imaging

    International Nuclear Information System (INIS)

    Ahn, Chi Kook; Cho, Byoung Kwan; Mo, Chang Yeon; Kim, Moon S.

    2012-01-01

    In this study, the feasibility of hyperspectral reflectance imaging technique was investigated for the discrimination of viable and non-viable lettuce seeds. The spectral data of hyperspectral reflectance images with the spectral range between 750 nm and 1000 nm were used to develop PLS-DA model for the classification of viable and non-viable lettuce seeds. The discrimination accuracy of the calibration set was 81.6% and that of the test set was 81.2%. The image analysis method was developed to construct the discriminant images of non-viable seeds with the developed PLS-DA model. The discrimination accuracy obtained from the resultant image were 91%, which showed the feasibility of hyperspectral reflectance imaging technique for the mass discrimination of non-viable lettuce seeds from viable ones.

  2. Protection Heater Design Validation for the LARP Magnets Using Thermal Imaging

    CERN Document Server

    Marchevsky, M; Cheng, D W; Felice, H; Sabbi, G; Salmi, T; Stenvall, A; Chlachidze, G; Ambrosio, G; Ferracin, P; Izquierdo Bermudez, S; Perez, J C; Todesco, E

    2016-01-01

    Protection heaters are essential elements of a quench protection scheme for high-field accelerator magnets. Various heater designs fabricated by LARP and CERN have been already tested in the LARP high-field quadrupole HQ and presently being built into the coils of the high-field quadrupole MQXF. In order to compare the heat flow characteristics and thermal diffusion timescales of different heater designs, we powered heaters of two different geometries in ambient conditions and imaged the resulting thermal distributions using a high-sensitivity thermal video camera. We observed a peculiar spatial periodicity in the temperature distribution maps potentially linked to the structure of the underlying cable. Two-dimensional numerical simulation of heat diffusion and spatial heat distribution have been conducted, and the results of simulation and experiment have been compared. Imaging revealed hot spots due to a current concentration around high curvature points of heater strip of varying cross sections and visuali...

  3. Close up and From Afar: Clues for Reflecting on Image and Geography

    Directory of Open Access Journals (Sweden)

    Ana Maria Daou

    2011-12-01

    Full Text Available This article discusses the use of the image in Geography and in particular photography with regard to the role given to visual experience in the constitution of the discipline. In addition to the literature on the importance of image in the production, dissemination and teaching of geographical knowledge, a dialogue is established with authors who question the use of photography in the context of fieldwork and research in Social Sciences. The discussion from the perspective of the use of images suggests a tension that permeates Geography, whose research procedures vary from completely controlling sensory experience at one extreme to giving priority to distinct experiences related to space at the other extreme.

  4. MR imaging reflects cartilage proteoglycan degradation in the rabbit knee joint

    International Nuclear Information System (INIS)

    Paul, P.K.; O'Byrne, E.M.; Blancuzzi, V.; Wilson, D.; Douglas, F.L.; Mezrich, R.S.

    1989-01-01

    Depletion of proteoglycan (PG) from articular cartilage is an early feature of osteoarthritis (OA). Noninvasive assessment of joint morphology corresponding to changes in cartilage PG is crucial for early diagnosis of OA and for demonstration of efficacy of drugs for OA. Intraarticular injection of papain causes a reversible loss of cartilage PG in intact joints. Both knees of NZW rabbits were scanned with a 1.5-T Signa MR imager with a 3-inch surface coil. A spin-echo technique was used, and coronal and sagittal MR images were obtained at 0, 24, 48, and 72 hours after injection of 5 U papain. An 8-cm field of view, a 3-mm section thickness, and a 128 x 256 matrix was used to obtain T1-, proton density-, and T2-weighted images. Cartilage was dissected from the femur for measurement of PG with 1,9-dimethylmethylene blue. Results are presented

  5. Application of Sol-Gel Method as a Protective Layer on a Specular Reflective Surface for Secondary Reflector in a Solar Receiver

    Energy Technology Data Exchange (ETDEWEB)

    Afrin, Samia; Dagdelen, John; Ma, Zhiwen; Kumar, Vinod

    2017-01-01

    Highly-specular reflective surfaces that can withstand elevated-temperatures are desirable for many applications including reflective heat shielding in solar receivers and secondary reflectors, which can be used between primary concentrators and heat collectors. A high-efficiency, high-temperature solar receiver design based on arrays of cavities needs a highly-specular reflective surface on its front section to help sunlight penetrate into the absorber tubes for effective flux spreading. Since this application is for high-temperature solar receivers, this surface needs to be durable and to maintain its optical properties through the usable life. Degradation mechanisms associated with elevated temperatures and thermal cycling, which include cracking, delamination, corrosion/oxidation, and environmental effects, could cause the optical properties of surfaces to degrade rapidly in these conditions. Protected mirror surfaces for these applications have been tested by depositing a thin layer of SiO2 on top of electrodeposited silver by means of the sol-gel method. To obtain an effective thin film structure, this sol-gel procedure has been investigated extensively by varying process parameters that affect film porosity and thickness. Endurance tests have been performed in a furnace at 150 degrees C for thousands of hours. This paper presents the sol-gel process for intermediate-temperature specular reflective coatings and provides the long-term reliability test results of sol-gel protected silver-coated surfaces.

  6. Identifying fecal matter contamination in produce fields using multispectral reflectance imaging under ambient solar illumination

    Science.gov (United States)

    An imaging device to detect fecal contamination in fresh produce fields could allow the producer to avoid harvesting fecal-contaminated produce. E.coli O157:H7 outbreaks have been associated with fecal-contaminated leafy greens. In this study, in-field spectral profiles of bovine fecal matter, soil,...

  7. Quantitative image variables reflect the intratumoral pathologic heterogeneity of lung adenocarcinoma.

    Science.gov (United States)

    Choi, E-Ryung; Lee, Ho Yun; Jeong, Ji Yun; Choi, Yoon-La; Kim, Jhingook; Bae, Jungmin; Lee, Kyung Soo; Shim, Young Mog

    2016-10-11

    We aimed to compare quantitative radiomic parameters from dual-energy computed tomography (DECT) of lung adenocarcinoma and pathologic complexity.A total 89 tumors with clinical stage I/II lung adenocarcinoma were prospectively included. Fifty one radiomic features were assessed both from iodine images and non-contrast images of DECT datasets. Comprehensive histologic subtyping was evaluated with all surgically resected tumors. The degree of pathologic heterogeneity was assessed using pathologic index and the number of mixture histologic subtypes in a tumor. Radiomic parameters were correlated with pathologic index. Tumors were classified as three groups according to the number of mixture histologic subtypes and radiomic parameters were compared between the three groups.Tumor density and 50th through 97.5th percentile Hounsfield units (HU) of histogram on non-contrast images showed strong correlation with the pathologic heterogeneity. Radiomic parameters including 75th and 97.5th percentile HU of histogram, entropy, and inertia on 1-, 2- and 3 voxel distance on non-contrast images showed incremental changes while homogeneity showed detrimental change according to the number of mixture histologic subtypes (all Ps heterogeneity, which may help in the prediction of intratumoral heterogeneity of the whole tumor.

  8. Segmentation of 3D ultrasound computer tomography reflection images using edge detection and surface fitting

    Science.gov (United States)

    Hopp, T.; Zapf, M.; Ruiter, N. V.

    2014-03-01

    An essential processing step for comparison of Ultrasound Computer Tomography images to other modalities, as well as for the use in further image processing, is to segment the breast from the background. In this work we present a (semi-) automated 3D segmentation method which is based on the detection of the breast boundary in coronal slice images and a subsequent surface fitting. The method was evaluated using a software phantom and in-vivo data. The fully automatically processed phantom results showed that a segmentation of approx. 10% of the slices of a dataset is sufficient to recover the overall breast shape. Application to 16 in-vivo datasets was performed successfully using semi-automated processing, i.e. using a graphical user interface for manual corrections of the automated breast boundary detection. The processing time for the segmentation of an in-vivo dataset could be significantly reduced by a factor of four compared to a fully manual segmentation. Comparison to manually segmented images identified a smoother surface for the semi-automated segmentation with an average of 11% of differing voxels and an average surface deviation of 2mm. Limitations of the edge detection may be overcome by future updates of the KIT USCT system, allowing a fully-automated usage of our segmentation approach.

  9. Spatiotemporal closure of fractional laser-ablated channels imaged by optical coherence tomography and reflectance confocal microscopy

    DEFF Research Database (Denmark)

    Banzhaf, Christina A.; Wind, Bas S.; Mogensen, Mette

    2016-01-01

    Background and Objective Optical coherence tomography (OCT) and reflectance confocal microscopy (RCM) offer high-resolution optical imaging of the skin, which may provide benefit in the context of laser-assisted drug delivery. We aimed to characterize postoperative healing of ablative fractional...... laser (AFXL)-induced channels and dynamics in their spatiotemporal closure using in vivo OCT and RCM techniques. Study design/Materials and Methods The inner forearm of healthy subjects (n = 6) was exposed to 10,600 nm fractional CO2 laser using 5 and 25% densities, 120 μm beam diameter, 5, 15, and 25 m......J/microbeam. Treatment sites were scanned with OCT to evaluate closure of AFXL-channels and RCM to evaluate subsequent re-epithelialization. Results OCT and RCM identified laser channels in epidermis and upper dermis as black, ablated tissue defects surrounded by characteristic hyper-and hyporeflective zones. OCT imaged...

  10. Fast Focal Point Correction in Prism-Coupled Total Internal Reflection Scanning Imager Using an Electronically Tunable Lens

    Directory of Open Access Journals (Sweden)

    Chenggang Zhu

    2018-02-01

    Full Text Available Total internal reflection (TIR is useful for interrogating physical and chemical processes that occur at the interface between two transparent media. Yet prism-coupled TIR imaging microscopes suffer from limited sensing areas due to the fact that the interface (the object plane is not perpendicular to the optical axis of the microscope. In this paper, we show that an electrically tunable lens can be used to rapidly and reproducibly correct the focal length of an oblique-incidence scanning microscope (OI-RD in a prism-coupled TIR geometry. We demonstrate the performance of such a correction by acquiring an image of a protein microarray over a scan area of 4 cm2 with an effective resolution of less than 20 microns. The electronic focal length tuning eliminates the mechanical movement of the illumination lens in the scanning microscope and in turn the noise and background drift associated with the motion.

  11. Pre- and postprandial variation in implicit attention to food images reflects appetite and sensory-specific satiety.

    Science.gov (United States)

    Davidson, Graeme R; Giesbrecht, Timo; Thomas, Anna M; Kirkham, Tim C

    2018-06-01

    Implicit attentional processes are biased toward food-related stimuli, with the extent of that bias reflecting relative motivation to eat. These interactions have typically been investigated by comparisons between fasted and sated individuals. In this study, temporal changes in implicit attention to food were assessed in relation to natural, spontaneous changes in appetite occurring before and after an anticipated midday meal. Non-fasted adults performed an emotional blink of attention (EBA) task at intervals, before and after consuming preferred, pre-selected sandwiches to satiety. Participants were required to detect targets within a rapid visual stream, presented after task-irrelevant food (preferred or non-preferred sandwiches, or desserts) or non-food distractor images. All categories of food distractor preferentially captured attention even when appetite levels were low, but became more distracting as appetite increased preprandially, reducing task accuracy maximally as hunger peaked before lunch. Postprandially, attentional capture was markedly reduced for images of the specific sandwich type consumed and, to a lesser extent, for images of other sandwich types that had not been eaten. Attentional capture by images of desserts was unaffected by satiation. These findings support an important role of selective visual attention in the guidance of motivated behaviour. Naturalistic, meal-related changes in appetite are accompanied by changes in implicit attention to visual food stimuli that are easily detected using the EBA paradigm. Preprandial enhancement of attention capture by food cues likely reflects increases in the incentive motivational value of all food stimuli, perhaps providing an implicit index of wanting. Postprandial EBA responses confirm that satiation on a particular food results in relative inattention to that food, supporting an important attentional component in the operation of sensory-specific satiety. Copyright © 2018 The Authors. Published

  12. Mathematical Foundation Based Inter-Connectivity modelling of Thermal Image processing technique for Fire Protection

    Directory of Open Access Journals (Sweden)

    Sayantan Nath

    2015-09-01

    Full Text Available In this paper, integration between multiple functions of image processing and its statistical parameters for intelligent alarming series based fire detection system is presented. The proper inter-connectivity mapping between processing elements of imagery based on classification factor for temperature monitoring and multilevel intelligent alarm sequence is introduced by abstractive canonical approach. The flow of image processing components between core implementation of intelligent alarming system with temperature wise area segmentation as well as boundary detection technique is not yet fully explored in the present era of thermal imaging. In the light of analytical perspective of convolutive functionalism in thermal imaging, the abstract algebra based inter-mapping model between event-calculus supported DAGSVM classification for step-by-step generation of alarm series with gradual monitoring technique and segmentation of regions with its affected boundaries in thermographic image of coal with respect to temperature distinctions is discussed. The connectedness of the multifunctional operations of image processing based compatible fire protection system with proper monitoring sequence is presently investigated here. The mathematical models representing the relation between the temperature affected areas and its boundary in the obtained thermal image defined in partial derivative fashion is the core contribution of this study. The thermal image of coal sample is obtained in real-life scenario by self-assembled thermographic camera in this study. The amalgamation between area segmentation, boundary detection and alarm series are described in abstract algebra. The principal objective of this paper is to understand the dependency pattern and the principles of working of image processing components and structure an inter-connected modelling technique also for those components with the help of mathematical foundation.

  13. A Protective Eye Shield for Prevention of Media Opacities during Small Animal Ocular Imaging

    Science.gov (United States)

    Bell, Brent A.; Kaul, Charles; Hollyfield, Joe G.

    2014-01-01

    Optical coherence tomography (OCT), scanning laser ophthalmoscopy (SLO) and other non-invasive imaging techniques are increasingly used in eye research to document disease-related changes in rodent eyes. Corneal dehydration is a major contributor to the formation of ocular opacities that can limit the repeated application of these techniques to individual animals. General anesthesia is usually required for imaging, which is accompanied by the loss of the blink reflex. As a consequence, the tear film cannot be maintained, drying occurs and the cornea becomes dehydrated. Without supplemental hydration, structural damage to the cornea quickly follows. Soon thereafter, anterior lens opacities can also develop. Collectively these changes ultimately compromise image quality, especially for studies involving repeated use of the same animal over several weeks or months. To minimize these changes, a protective shield was designed for mice and rats that prevent ocular dehydration during anesthesia. The eye shield, along with a semi-viscous ophthalmic solution, is placed over the corneas as soon as the anesthesia immobilizes the animal. Eye shields are removed for only the brief periods required for imaging and then reapplied before the fellow eye is examined. As a result, the corneal surface of each eye is exposed only for the time required for imaging. The device and detailed methods described here minimize the corneal and lens changes associated with ocular surface desiccation. When these methods are used consistently, high quality images can be obtained repeatedly from individual animals. PMID:25245081

  14. Protective aprons in imaging departments: manufacturer stated lead equivalence values require validation

    International Nuclear Information System (INIS)

    Finnerty, M.; Brennan, P.C.

    2005-01-01

    The composition of protective aprons worn by X-ray personnel to shield against secondary radiation is changing. Lead is being replaced by either lead-free or composite (lead with other high atomic numbered elements) materials. These newer aprons are categorised by manufacturers in terms of lead equivalent values, but it is unclear how these stated values compare with actual lead equivalent values. In this work, the actual lead equivalence of 41 protective aprons from four manufacturers, all specified as having 0.25 mm lead equivalence, were investigated with transmission experiments at 70 and 100 kVp. All aprons were in current use. The aprons were screened for defects, and age, weight and design was recorded along with details of associated quality assurance (QA). Out of the 41 protective aprons examined for actual lead equivalence, 73% were outside tolerance levels, with actual levels in some aprons demonstrating less than half of the nominal values. The lack of compatibility between actual and nominal lead equivalent values was demonstrated by aprons from three of the four manufacturers investigated. The area of the defects found on screening of the protective aprons were within recommendations. The results highlight the need for acceptancy and ongoing checks of protective aprons to ensure that radiation exposure of imaging personnel is kept to a minimum. (orig.)

  15. Using Image Texture and Spectral Reflectance Analysis to Detect Yellowness and Esca in Grapevines at Leaf-Level

    Directory of Open Access Journals (Sweden)

    Hania Al-Saddik

    2018-04-01

    Full Text Available Plant diseases are one of the main reasons behind major economic and production losses in the agricultural field. Current research activities enable large fields monitoring and plant disease detection using innovative and robust technologies. French grapevines have a reputation for producing premium quality wines, however, these major fruit crops are susceptible to many diseases, including Esca, Downy mildew, Powdery mildew, Yellowing, and many others. In this study, we focused on two main infections (Esca and Yellowing, and data were gathered from fields that were located in Aquitaine and Burgundy regions, France. Since plant diseases can be diagnosed from the properties of the leaf, we acquired both Red-Green-Blue (RGB digital image and hyperspectral reflectance data from infected and healthy leaves. Biophysical parameters that were produced by the PROSPECT model inversion together with texture parameters compiled from the literature were deduced. Then we investigated their relationship to damage caused by Yellowing and Esca. This study examined whether spectral and textural data can identify the two diseases through the use of Neural Networks. We obtained an overall accuracy of 99% for both of the diseases when textural and spectral data are combined. These results suggest that, first, biophysical parameters present a valid dimension reduction tool that could replace the use of complete hyperspectral data. Second, remote sensing using spectral reflectance and digital images can make an overall nondestructive, rapid, cost-effective, and reproducible technique to determine diseases in grapevines with a good level of accuracy.

  16. Concurrent Reflectance Confocal Microscopy and Laser Doppler Flowmetry to Improve Skin Cancer Imaging: A Monte Carlo Model and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Alireza Mowla

    2016-09-01

    Full Text Available Optical interrogation of suspicious skin lesions is standard care in the management of skin cancer worldwide. Morphological and functional markers of malignancy are often combined to improve expert human diagnostic power. We propose the evaluation of the combination of two independent optical biomarkers of skin tumours concurrently. The morphological modality of reflectance confocal microscopy (RCM is combined with the functional modality of laser Doppler flowmetry, which is capable of quantifying tissue perfusion. To realize the idea, we propose laser feedback interferometry as an implementation of RCM, which is able to detect the Doppler signal in addition to the confocal reflectance signal. Based on the proposed technique, we study numerical models of skin tissue incorporating two optical biomarkers of malignancy: (i abnormal red blood cell velocities and concentrations and (ii anomalous optical properties manifested through tissue confocal reflectance, using Monte Carlo simulation. We also conduct a laboratory experiment on a microfluidic channel containing a dynamic turbid medium, to validate the efficacy of the technique. We quantify the performance of the technique by examining a signal to background ratio (SBR in both the numerical and experimental models, and it is shown that both simulated and experimental SBRs improve consistently using this technique. This work indicates the feasibility of an optical instrument, which may have a role in enhanced imaging of skin malignancies.

  17. Detecting Historical Vegetation Changes in the Dunhuang Oasis Protected Area Using Landsat Images

    Directory of Open Access Journals (Sweden)

    Xiuxia Zhang

    2017-09-01

    Full Text Available Abstract: Given its proximity to an artificial oasis, the Donghu Nature Reserve in the Dunhuang Oasis has faced environmental pressure and vegetation disturbances in recent decades. Satellite vegetation indices (VIs can be used to detect such changes in vegetation if the satellite images are calibrated to surface reflectance (SR values. The aim of this study was to select a suitable VI based on the Landsat Climate Data Record (CDR products and the absolute radiation-corrected results of Landsat L1T images to detect the spatio-temporal changes in vegetation for the Donghu Reserve during 1986–2015. The results showed that the VI difference (ΔVI images effectively reduced the changes in the source images. Compared with the other VIs, the soil-adjusted vegetation index (SAVI displayed greater robustness to atmospheric effects in the two types of SR images and was more responsive to vegetation changes caused by human factors. From 1986 to 2015, the positive changes in vegetation dominated the overall change trend, with changes in vegetation in the reserve decreasing during 1990–1995, increasing until 2005–2010, and then decreasing again. The vegetation changes were mainly distributed at the edge of the artificial oasis outside the reserve. The detected changes in vegetation in the reserve highlight the increased human pressure on the reserve.

  18. A Quantitative Diffuse Reflectance Imaging (QDRI System for Comprehensive Surveillance of the Morphological Landscape in Breast Tumor Margins.

    Directory of Open Access Journals (Sweden)

    Brandon S Nichols

    Full Text Available In an ongoing effort to address the clear clinical unmet needs surrounding breast conserving surgery (BCS, our group has developed a next-generation multiplexed optical-fiber-based tool to assess breast tumor margin status during initial surgeries. Specifically detailed in this work is the performance and clinical validation of a research-grade intra-operative tool for margin assessment based on diffuse optical spectroscopy. Previous work published by our group has illustrated the proof-of-concept generations of this device; here we incorporate a highly optimized quantitative diffuse reflectance imaging (QDRI system utilizing a wide-field (imaging area = 17 cm(2 49-channel multiplexed fiber optic probe, a custom raster-scanning imaging platform, a custom dual-channel white LED source, and an astronomy grade imaging CCD and spectrograph. The system signal to noise ratio (SNR was found to be greater than 40 dB for all channels. Optical property estimation error was found to be less than 10%, on average, over a wide range of absorption (μa = 0-8.9 cm(-1 and scattering (μs' = 7.0-9.7 cm(-1 coefficients. Very low inter-channel and CCD crosstalk was observed (2% max when used on turbid media (including breast tissue. A raster-scanning mechanism was developed to achieve sub-pixel resolution and was found to be optimally performed at an upsample factor of 8, affording 0.75 mm spatially resolved diffuse reflectance images (λ = 450-600 nm of an entire margin (area = 17 cm(2 in 13.8 minutes (1.23 cm(2/min. Moreover, controlled pressure application at the probe-tissue interface afforded by the imaging platform reduces repeated scan variability, providing <1% variation across repeated scans of clinical specimens. We demonstrate the clinical utility of this device through a pilot 20-patient study of high-resolution optical parameter maps of the ratio of the β-carotene concentration to the reduced scattering coefficient. An empirical cumulative

  19. Designing an efficient LT-code with unequal error protection for image transmission

    Science.gov (United States)

    S. Marques, F.; Schwartz, C.; Pinho, M. S.; Finamore, W. A.

    2015-10-01

    The use of images from earth observation satellites is spread over different applications, such as a car navigation systems and a disaster monitoring. In general, those images are captured by on board imaging devices and must be transmitted to the Earth using a communication system. Even though a high resolution image can produce a better Quality of Service, it leads to transmitters with high bit rate which require a large bandwidth and expend a large amount of energy. Therefore, it is very important to design efficient communication systems. From communication theory, it is well known that a source encoder is crucial in an efficient system. In a remote sensing satellite image transmission, this efficiency is achieved by using an image compressor, to reduce the amount of data which must be transmitted. The Consultative Committee for Space Data Systems (CCSDS), a multinational forum for the development of communications and data system standards for space flight, establishes a recommended standard for a data compression algorithm for images from space systems. Unfortunately, in the satellite communication channel, the transmitted signal is corrupted by the presence of noise, interference signals, etc. Therefore, the receiver of a digital communication system may fail to recover the transmitted bit. Actually, a channel code can be used to reduce the effect of this failure. In 2002, the Luby Transform code (LT-code) was introduced and it was shown that it was very efficient when the binary erasure channel model was used. Since the effect of the bit recovery failure depends on the position of the bit in the compressed image stream, in the last decade many e orts have been made to develop LT-code with unequal error protection. In 2012, Arslan et al. showed improvements when LT-codes with unequal error protection were used in images compressed by SPIHT algorithm. The techniques presented by Arslan et al. can be adapted to work with the algorithm for image compression

  20. Reflective optics

    CERN Document Server

    Korsch, Dietrich

    1991-01-01

    This is the first book dedicated exclusively to all-reflective imaging systems. It is a teaching tool as well as a practical design tool for anyone who specializes in optics, particularly for those interested in telescopes, infrared, and grazing-incidence systems. The first part of the book describes a unified geometric optical theory of all-reflective imaging systems (from near-normal to grazing incidence) developed from basic principles. The second part discusses correction methods and a multitude of closed-form solutions of well-corrected systems, supplemented with many conventional and unc

  1. Measurement techniques and safety culture in radiation protection -reflections after 37 years of occupation with measuring instruments

    International Nuclear Information System (INIS)

    Maushart, R.

    1994-01-01

    Safety Culture in radiation use and radiation protection implies primarily knowledge and competence of the decision makers. As the measuring techniques are basic for practical radiation protection, only such person can be called competent who has sufficient expertise on measuring techniques, and is able to evaluate its application and results. Safety Culture also implies the readiness to expose errors, and to learn from them. ''Believing in infallibility'' excludes Safety Culture. Therefore, correctly applied measuring technique contributes to recognize weak points early. How far it is used consciously and actively to prevent undesirable developments and exceeding of limits, can be considered outright as a yardstick for a high-ranking safety culture. Safety Culture as a whole, however, needs more than more measuring techniques. It requires its own and adequate Measurement Culture, presupposing also motivation and determination to measure. Therefore, education, training, knowledge and consciousness of safety of the people who are responsible for measurements are decisive for successful radiation protection. (orig.) [de

  2. Creation, Identity and Reflection

    Directory of Open Access Journals (Sweden)

    Alina Beatrice Cheşcă

    2015-05-01

    Full Text Available The paper “Creation, Identity and Reflection” approaches the identification in the “mirror” of reality with creation, in other words seeking the authors’ identity in the reflected images. Reflection means attempting to find oneself, the mirror being the main principle of creation. Many characters become interesting only when they step into the world beyond the mirror, when their faces are doubled by the other self or when their selves are returned by other characters. The narcissistic concept of the mirror, i.e. the reflection in the mirror and the representation of the mirror itself, is a recurrent one in literature, but the reflection of the self which is not the self (as it is a reflection does not necessarily appear in a mirror or in a photograph or portrait. Sometimes, the not-self is returned to the self by another person or character. As far as Oscar Wilde’s theories are concerned, the main idea is that people are interesting for their masks, not for their inner nature. What Wilde calls “inner nature” is the characters’ un-reflected self and the mask is the reflection, the self in the mirror. Some characters’ relationships develop within a fiction that they dramatically try to preserve and protect with the risk of suffering. They refuse to take off the masks which define them in the others’ minds and hearts; the narcissistic individuals (both artists and characters seek and love their own image which they project upon facts, thus creating a fictive realm.

  3. High-resolution imaging of basal cell carcinoma: a comparison between multiphoton microscopy with fluorescence lifetime imaging and reflectance confocal microscopy.

    Science.gov (United States)

    Manfredini, Marco; Arginelli, Federica; Dunsby, Christopher; French, Paul; Talbot, Clifford; König, Karsten; Pellacani, Giovanni; Ponti, Giovanni; Seidenari, Stefania

    2013-02-01

    The aim of this study was to compare morphological aspects of basal cell carcinoma (BCC) as assessed by two different imaging methods: in vivo reflectance confocal microscopy (RCM) and multiphoton tomography with fluorescence lifetime imaging implementation (MPT-FLIM). The study comprised 16 BCCs for which a complete set of RCM and MPT-FLIM images were available. The presence of seven MPT-FLIM descriptors was evaluated. The presence of seven RCM equivalent parameters was scored in accordance to their extension. Chi-squared test with Fisher's exact test and Spearman's rank correlation coefficient were determined between MPT-FLIM scores and adjusted-RCM scores. MPT-FLIM and RCM descriptors of BCC were coupled to match the descriptors that define the same pathological structures. The comparison included: Streaming and Aligned elongated cells, Streaming with multiple directions and Double alignment, Palisading (RCM) and Palisading (MPT-FLIM), Typical tumor islands, and Cell islands surrounded by fibers, Dark silhouettes and Phantom islands, Plump bright cells and Melanophages, Vessels (RCM), and Vessels (MPT-FLIM). The parameters that were significantly correlated were Melanophages/Plump Bright Cells, Aligned elongated cells/Streaming, Double alignment/Streaming with multiple directions, and Palisading (MPT-FLIM)/Palisading (RCM). According to our data, both methods are suitable to image BCC's features. The concordance between MPT-FLIM and RCM is high, with some limitations due to the technical differences between the two devices. The hardest difficulty when comparing the images generated by the two imaging modalities is represented by their different field of view. © 2012 John Wiley & Sons A/S.

  4. Hyperspectral Reflectance Imaging Technique for Visualization of Moisture Distribution in Cooked Chicken Breast

    Directory of Open Access Journals (Sweden)

    Byoung-Kwan Cho

    2013-09-01

    Full Text Available Spectroscopy has proven to be an efficient tool for measuring the properties of meat. In this article, hyperspectral imaging (HSI techniques are used to determine the moisture content in cooked chicken breast over the VIS/NIR (400–1,000 nm spectral range. Moisture measurements were performed using an oven drying method. A partial least squares regression (PLSR model was developed to extract a relationship between the HSI spectra and the moisture content. In the full wavelength range, the PLSR model possessed a maximum  of 0.90 and an SEP of 0.74%. For the NIR range, the PLSR model yielded an  of 0.94 and an SEP of 0.71%. The majority of the absorption peaks occurred around 760 and 970 nm, representing the water content in the samples. Finally, PLSR images were constructed to visualize the dehydration and water distribution within different sample regions. The high correlation coefficient and low prediction error from the PLSR analysis validates that HSI is an effective tool for visualizing the chemical properties of meat.

  5. A Robust Blind Quantum Copyright Protection Method for Colored Images Based on Owner's Signature

    Science.gov (United States)

    Heidari, Shahrokh; Gheibi, Reza; Houshmand, Monireh; Nagata, Koji

    2017-08-01

    Watermarking is the imperceptible embedding of watermark bits into multimedia data in order to use for different applications. Among all its applications, copyright protection is the most prominent usage which conceals information about the owner in the carrier, so as to prohibit others from assertion copyright. This application requires high level of robustness. In this paper, a new blind quantum copyright protection method based on owners's signature in RGB images is proposed. The method utilizes one of the RGB channels as indicator and two remained channels are used for embedding information about the owner. In our contribution the owner's signature is considered as a text. Therefore, in order to embed in colored image as watermark, a new quantum representation of text based on ASCII character set is offered. Experimental results which are analyzed in MATLAB environment, exhibit that the presented scheme shows good performance against attacks and can be used to find out who the real owner is. Finally, the discussed quantum copyright protection method is compared with a related work that our analysis confirm that the presented scheme is more secure and applicable than the previous ones currently found in the literature.

  6. Imaging near-subsurface subrosion structures and faults using SH-wave reflection seismics

    Science.gov (United States)

    Wadas, Sonja; Polom, Ulrich; Buness, Hermann; Krawczyk, Charlotte

    2016-04-01

    Subrosion is a term for underground leaching of soluble rocks and is a global phenomenon. It involves dissolution of evaporites due to the presence of unsaturated water, fractures and faults. Fractures and faults are pathways for water to circulate and to generate subsurface cavities. Depending on the leached material and the parameters of the generation process, especially the dissolution rate, different kinds of subrosion structures evolve in the subsurface. The two end members are collapse and depression structures. Subrosion is a natural process, but it can be enhanced by anthropogenic factors like manipulation of the aquifer system and groundwater flow and by e.g. extraction of saline water. The formation of sinkholes and depressions are a dangerous geohazard, especially if they occur in urban areas, which often leads to building and infrastructural damage and life-threatening situations. For this reason investigations of the processes that induce subrosion and a detailed analysis of the resulting structures are of importance. To develop a comprehensive model of near-subsurface subrosion structures, reflection seismics is one of the methods used by the Leibniz Institute for Applied Geophysics. The study area is located in the city of Bad Frankenhausen in northern Thuringia, Germany. Most of the geological underground of Thuringia is characterized by Permian deposits. Bad Frankenhausen is situated directly south of the Kyffhäuser mountain range at the Kyffhäuser Southern Margin Fault. This major fault is one of the main pathways for the circulating ground- and meteoric waters that leach the Permian deposits, especially the Leine-, Staßfurt- and Werra Formations. 2014 and 2015 eight shear wave reflection seismic profiles were carried out in the urban area of Bad Frankenhausen and three profiles in the countrified surroundings. Altogether ca. 3.6 km were surveyed using a landstreamer as receiver and an electro-dynamic vibrator as source. The surveys were

  7. A copyright protection scheme for digital images based on shuffled singular value decomposition and visual cryptography.

    Science.gov (United States)

    Devi, B Pushpa; Singh, Kh Manglem; Roy, Sudipta

    2016-01-01

    This paper proposes a new watermarking algorithm based on the shuffled singular value decomposition and the visual cryptography for copyright protection of digital images. It generates the ownership and identification shares of the image based on visual cryptography. It decomposes the image into low and high frequency sub-bands. The low frequency sub-band is further divided into blocks of same size after shuffling it and then the singular value decomposition is applied to each randomly selected block. Shares are generated by comparing one of the elements in the first column of the left orthogonal matrix with its corresponding element in the right orthogonal matrix of the singular value decomposition of the block of the low frequency sub-band. The experimental results show that the proposed scheme clearly verifies the copyright of the digital images, and is robust to withstand several image processing attacks. Comparison with the other related visual cryptography-based algorithms reveals that the proposed method gives better performance. The proposed method is especially resilient against the rotation attack.

  8. Imaging Shallow Aquitard Breaches with P waves: Results from a Walk-away test and a Reflection Survey at two Sites in Memphis, Tennessee, USA

    Science.gov (United States)

    Ge, J.; Magnani, M.; Waldron, B. A.

    2006-12-01

    We present the results of two seismic reflection experiments conducted in the Great Memphis area in April and July 2006. The two experiments consisted in a walk-away test and in the acquisition of a 1 km seismic reflection profile. The acquisition of the seismic data is part of a larger effort aimed at imaging the lateral continuity of the Upper Claiborne confining clay that separates the Memphis aquifer, the region's primary drinking water source, from the upper unconfined aquifer and protects the drinking aquifer from exposure to potential contamination. During the walk-away test, four P-wave sources, a 7.5 kg sledge hammer, a 20 kg weight drop, a 12-gauge Buffalo gun, and a Minivibe source were tested at two sites with the goal of selecting the best P-wave seismic source and acquisition parameters for shallow reflection surveys. Boreholes nearby both sites encountered the Upper Claiborne unit at a depth ranging from 10 m to 40 m. One site is located within a 100-meter length of road median that can be considered an urban environment. The second site is located at Shelby Farms within the City of Memphis yet reflects a rural setting with minimal noise and no subsurface infrastructure. Performing identical walk-away tests at both sites, the results indicate that the energy source selection is site dependent. At the urban site, the energy generated by the weight drop source is more coherent and can be interpreted with more confidence on the recorded data. However the Shelby Farms site the 12-gauge shotgun produced the strongest recorded energy, the highest dominant frequency and the broadest frequency band (6- 110 Hz). Strong attenuations are observed at both sites with a much higher attenuation in the urban road median site, where the near surface materials consisted of gravels, sands, clays, and pebbles. For both sites, surface waves and refractions dominate the seismic recordings. Filtering and gain of the data revealed the presence of shallow reflections related

  9. Influence of physical parameters on radiation protection and image quality in intra-oral radiology

    Science.gov (United States)

    Belinato, W.; Souza, D. N.

    2011-10-01

    In the world of diagnostic imaging, radiography is an important supplementary method for dental diagnosis. In radiology, special attention must be paid to the radiological protection of patients and health professionals, and also to image quality for correct diagnosis. In Brazil, the national rules governing the operation of medical and dental radiology were specified in 1998 by the National Sanitary Surveillance Agency, complemented in 2005 by the guide "Medical radiology: security and performance of equipment." In this study, quality control tests were performed in public clinics with dental X-ray equipment in the State of Sergipe, Brazil, with consideration of the physical parameters that influence radiological protection and also the quality of images taken in intra-oral radiography. The accuracy of the exposure time was considered acceptable for equipment with digital timers. Exposure times and focal-spot size variations can lead to increased entrance dose. Increased dose has also been associated with visual processing of radiographic film, which often requires repeating the radiographic examination.

  10. Influence of physical parameters on radiation protection and image quality in intra-oral radiology

    International Nuclear Information System (INIS)

    Belinato, W.; Souza, D.N.

    2011-01-01

    In the world of diagnostic imaging, radiography is an important supplementary method for dental diagnosis. In radiology, special attention must be paid to the radiological protection of patients and health professionals, and also to image quality for correct diagnosis. In Brazil, the national rules governing the operation of medical and dental radiology were specified in 1998 by the National Sanitary Surveillance Agency, complemented in 2005 by the guide 'Medical radiology: security and performance of equipment.' In this study, quality control tests were performed in public clinics with dental X-ray equipment in the State of Sergipe, Brazil, with consideration of the physical parameters that influence radiological protection and also the quality of images taken in intra-oral radiography. The accuracy of the exposure time was considered acceptable for equipment with digital timers. Exposure times and focal-spot size variations can lead to increased entrance dose. Increased dose has also been associated with visual processing of radiographic film, which often requires repeating the radiographic examination.

  11. Influence of physical parameters on radiation protection and image quality in intra-oral radiology

    Energy Technology Data Exchange (ETDEWEB)

    Belinato, W. [Instituto Federal de Ensino Basico, Tecnico e Tecnologico da Bahia, Av. Amazonas, 1350-45030-220, Zabele, Vitoria da Conquista, BA (Brazil); Departamento de Fisica, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 Rosa Elze, Sao Cristovao, SE (Brazil); Souza, D.N., E-mail: divanizi@ufs.br [Departamento de Fisica, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 Rosa Elze, Sao Cristovao, SE (Brazil)

    2011-10-01

    In the world of diagnostic imaging, radiography is an important supplementary method for dental diagnosis. In radiology, special attention must be paid to the radiological protection of patients and health professionals, and also to image quality for correct diagnosis. In Brazil, the national rules governing the operation of medical and dental radiology were specified in 1998 by the National Sanitary Surveillance Agency, complemented in 2005 by the guide 'Medical radiology: security and performance of equipment.' In this study, quality control tests were performed in public clinics with dental X-ray equipment in the State of Sergipe, Brazil, with consideration of the physical parameters that influence radiological protection and also the quality of images taken in intra-oral radiography. The accuracy of the exposure time was considered acceptable for equipment with digital timers. Exposure times and focal-spot size variations can lead to increased entrance dose. Increased dose has also been associated with visual processing of radiographic film, which often requires repeating the radiographic examination.

  12. Effective signaling of surface boundaries by L-vertices reflect the consistency of their contrast in natural images.

    Science.gov (United States)

    Vessel, Edward A; Biederman, Irving; Subramaniam, Suresh; Greene, Michelle R

    2016-07-01

    An L-vertex, the point at which two contours coterminate, provides highly reliable evidence that a surface terminates at that vertex, thus providing the strongest constraint on the extraction of shape from images (Guzman, 1968). Such vertices are pervasive in our visual world but the importance of a statistical regularity about them has been underappreciated: The contours defining the vertex are (almost) always of the same direction of contrast with respect to the background (i.e., both darker or both lighter). Here we show that when the two contours are of different directions of contrast, the capacity of the L-vertex to signal the termination of a surface, as reflected in object recognition, is markedly reduced. Although image statistics have been implicated in determining the connectivity in the earliest cortical visual stage (V1) and in grouping during visual search, this finding provides evidence that such statistics are involved in later stages where object representations are derived from two-dimensional images.

  13. Identification and Quantification of Microplastics in Wastewater Using Focal Plane Array-Based Reflectance Micro-FT-IR Imaging.

    Science.gov (United States)

    Tagg, Alexander S; Sapp, Melanie; Harrison, Jesse P; Ojeda, Jesús J

    2015-06-16

    Microplastics (microplastics in these matrices has not been investigated. Although efficient methods for the analysis of microplastics in sediment samples and marine organisms have been published, no methods have been developed for detecting these pollutants within organic-rich wastewater samples. In addition, there is no standardized method for analyzing microplastics isolated from environmental samples. In many cases, part of the identification protocol relies on visual selection before analysis, which is open to bias. In order to address this, a new method for the analysis of microplastics in wastewater was developed. A pretreatment step using 30% hydrogen peroxide (H2O2) was employed to remove biogenic material, and focal plane array (FPA)-based reflectance micro-Fourier-transform (FT-IR) imaging was shown to successfully image and identify different microplastic types (polyethylene, polypropylene, nylon-6, polyvinyl chloride, polystyrene). Microplastic-spiked wastewater samples were used to validate the methodology, resulting in a robust protocol which was nonselective and reproducible (the overall success identification rate was 98.33%). The use of FPA-based micro-FT-IR spectroscopy also provides a considerable reduction in analysis time compared with previous methods, since samples that could take several days to be mapped using a single-element detector can now be imaged in less than 9 h (circular filter with a diameter of 47 mm). This method for identifying and quantifying microplastics in wastewater is likely to provide an essential tool for further research into the pathways by which microplastics enter the environment.

  14. [Ethical reflection on multidisciplinarity and confidentiality of information in medical imaging through new information and communication technologies].

    Science.gov (United States)

    Béranger, J; Le Coz, P

    2012-05-01

    Technological advances in medical imaging has resulted in the exponential increase of the number of images per examination, caused the irreversible decline of the silver film and imposed digital imaging. This digitization is a concept whose levels of development are multiple, reflecting the complexity of this process of technological change. Under these conditions, the use of medical information via new information and communication technologies is at the crossroads of several scientific approaches and several disciplines (medicine, ethics, law, economics, psychology, etc.) surrounding the information systems in health, doctor-patient relationship and concepts that are associated. Each day, these new information and communication technologies open up new horizons and the space of possibilities, spectacularly developing access to information and knowledge. In this perspective of digital technology emergence impacting the multidisciplinary use of health information systems, the ethical questions are numerous, especially on the preservation of privacy, confidentiality and security of medical data, and their accessibility and integrity. Copyright © 2012 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights reserved.

  15. Exploring the effects of transducer models when training convolutional neural networks to eliminate reflection artifacts in experimental photoacoustic images

    Science.gov (United States)

    Allman, Derek; Reiter, Austin; Bell, Muyinatu

    2018-02-01

    We previously proposed a method of removing reflection artifacts in photoacoustic images that uses deep learning. Our approach generally relies on using simulated photoacoustic channel data to train a convolutional neural network (CNN) that is capable of distinguishing sources from artifacts based on unique differences in their spatial impulse responses (manifested as depth-based differences in wavefront shapes). In this paper, we directly compare a CNN trained with our previous continuous transducer model to a CNN trained with an updated discrete acoustic receiver model that more closely matches an experimental ultrasound transducer. These two CNNs were trained with simulated data and tested on experimental data. The CNN trained using the continuous receiver model correctly classified 100% of sources and 70.3% of artifacts in the experimental data. In contrast, the CNN trained using the discrete receiver model correctly classified 100% of sources and 89.7% of artifacts in the experimental images. The 19.4% increase in artifact classification accuracy indicates that an acoustic receiver model that closely mimics the experimental transducer plays an important role in improving the classification of artifacts in experimental photoacoustic data. Results are promising for developing a method to display CNN-based images that remove artifacts in addition to only displaying network-identified sources as previously proposed.

  16. Diffusion-weighted magnetic resonance imaging in carotid angioplasty and stenting with balloon embolic protection devices

    International Nuclear Information System (INIS)

    Asakura, Fumio; Kawaguchi, Kenji; Sakaida, Hiroshi; Toma, Naoki; Matsushima, Satoshi; Kuraishi, Keita; Tanemura, Hiroshi; Miura, Yoichi; Taki, Waro; Maeda, Masayuki

    2006-01-01

    We compared the results of two procedures to protect against distal embolism caused by embolic debris from carotid angioplasty with stent deployment (CAS) using diffusion-weighted magnetic resonance imaging (MRI). The study group comprised 39 men and 3 women (42 and 3 CAS procedures, respectively) with severe carotid stenosis (average age 70.0±6.6 years). During 20 CAS procedures the internal carotid artery was protected with a single balloon. A PercuSurge GuardWire was used for temporary occlusion. During 25 CAS procedures the internal and external carotid arteries were simultaneously temporarily occluded with a PercuSurge GuardWire and a Sentry balloon catheter, respectively. Diffusion-weighted MRI was performed 1 to 3 days after CAS. Data from 26 patients undergoing conventional angiography for diagnosis of cerebral ischemic disease, cerebral aneurysm or brain tumors were included as controls. Diffusion-weighted MRI after conventional diagnostic angiography showed ischemic spots in 3 of the 26 controls (11.5%). Ischemic spots were observed during 11 of 20 CAS procedures with the internal carotid artery protected with a single balloon (55.0%), and were observed during 9 of 25 CAS procedures with both the internal and external carotid arteries protected (36.0%). This difference was significant (P=0.0068). Ischemic lesions appeared not only ipsilateral to the carotid stenosis but also in the contralateral carotid artery (31.9%) and vertebrobasilar territory (25.3%). Better protection was obtained with simultaneous double occlusion of both the internal and external carotid artery than with single protection of the internal carotid artery during CAS. (orig.)

  17. Protective effects of flavanol-rich dark chocolate on endothelial function and wave reflection during acute hyperglycemia.

    Science.gov (United States)

    Grassi, Davide; Desideri, Giovambattista; Necozione, Stefano; Ruggieri, Fabrizio; Blumberg, Jeffrey B; Stornello, Michele; Ferri, Claudio

    2012-09-01

    Nitric oxide plays a pivotal role in regulating vascular tone. Different studies show endothelial function is impaired during hyperglycemia. Dark chocolate increases flow-mediated dilation in healthy and hypertensive subjects with and without glucose intolerance; however, the effect of pretreatment with dark chocolate on endothelial function and other vascular responses to hyperglycemia has not been examined. Therefore, we aimed to investigate the effects of flavanol-rich dark chocolate administration on (1) flow-mediated dilation and wave reflections; (2) blood pressure, endothelin-1 and oxidative stress, before and after oral glucose tolerance test (OGTT). Twelve healthy volunteers (5 males, 28.2±2.7 years) randomly received either 100 g/d dark chocolate or flavanol-free white chocolate for 3 days. After 7 days washout period, volunteers were switched to the other treatment. Flow-mediated dilation, stiffness index, reflection index, peak-to-peak time, blood pressure, endothelin-1 and 8-iso-PGF(2α) were evaluated after each treatment phase and OGTT. Compared with white chocolate, dark chocolate ingestion improved flow-mediated dilation (P=0.03), wave reflections, endothelin-1 and 8-iso-PGF(2α) (Pwave reflections, blood pressure, and endothelin-1 and 8-iso-PGF(2α) increased after OGTT. OGTT causes acute, transient impairment of endothelial function and oxidative stress, which is attenuated by flavanol-rich dark chocolate. These results suggest cocoa flavanols may contribute to vascular health by reducing the postprandial impairment of arterial function associated with the pathogenesis of atherosclerosis.

  18. Growth Simulation and Discrimination of Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum Using Hyperspectral Reflectance Imaging.

    Directory of Open Access Journals (Sweden)

    Ye Sun

    Full Text Available This research aimed to develop a rapid and nondestructive method to model the growth and discrimination of spoilage fungi, like Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum, based on hyperspectral imaging system (HIS. A hyperspectral imaging system was used to measure the spectral response of fungi inoculated on potato dextrose agar plates and stored at 28°C and 85% RH. The fungi were analyzed every 12 h over two days during growth, and optimal simulation models were built based on HIS parameters. The results showed that the coefficients of determination (R2 of simulation models for testing datasets were 0.7223 to 0.9914, and the sum square error (SSE and root mean square error (RMSE were in a range of 2.03-53.40×10(-4 and 0.011-0.756, respectively. The correlation coefficients between the HIS parameters and colony forming units of fungi were high from 0.887 to 0.957. In addition, fungi species was discriminated by partial least squares discrimination analysis (PLSDA, with the classification accuracy of 97.5% for the test dataset at 36 h. The application of this method in real food has been addressed through the analysis of Botrytis cinerea, Rhizopus stolonifer and Colletotrichum acutatum inoculated in peaches, demonstrating that the HIS technique was effective for simulation of fungal infection in real food. This paper supplied a new technique and useful information for further study into modeling the growth of fungi and detecting fruit spoilage caused by fungi based on HIS.

  19. Potential of near-infrared hyperspectral reflectance imaging for screening of farm feed contamination

    Science.gov (United States)

    Wang, Wenbo; Paliwal, Jitendra

    2005-09-01

    With the outbreak of Bovine Spongiform Encephalopathy (BSE) (commonly known as mad cow disease) in 1987 in the United Kingdom and a recent case discovered in Alberta, more and more emphasis is placed on food and farm feed quality and safety issues internationally. The disease is believed to be spread through farm feed contamination by animal byproducts in the form of meat-and-bone-meal (MBM). The paper reviewed the available techniques necessary to the enforcement of legislation concerning the feed safety issues. The standard microscopy method, although highly sensitive, is laborious and costly. A method to routinely screen farm feed contamination certainly helps to reduce the complexity of safety inspection. A hyperspectral imaging system working in the near-infrared wavelength region of 1100-1600 nm was used to study the possibility of detection of ground broiler feed contamination by ground pork. Hyperspectral images of raw broiler feed, ground broiler feed, ground pork, and contaminated feed samples were acquired. Raw broiler feed samples were found to possess comparatively large spectral variations due to light scattering effect. Ground feed adulterated with 1%, 3%, 5%, and 10% of ground pork was tested to identify feed contamination. Discriminant analysis using Mahalanobis distance showed that the model trained using pure ground feed samples and pure ground pork samples resulted in 100% false negative errors for all test replicates of contaminated samples. A discriminant model trained with pure ground feed samples and 10% contamination level samples resulted in 12.5% false positive error and 0% false negative error.

  20. Aerial 3D display by use of a 3D-shaped screen with aerial imaging by retro-reflection (AIRR)

    Science.gov (United States)

    Kurokawa, Nao; Ito, Shusei; Yamamoto, Hirotsugu

    2017-06-01

    The purpose of this paper is to realize an aerial 3D display. We design optical system that employs a projector below a retro-reflector and a 3D-shaped screen. A floating 3D image is formed with aerial imaging by retro-reflection (AIRR). Our proposed system is composed of a 3D-shaped screen, a projector, a quarter-wave retarder, a retro-reflector, and a reflective polarizer. Because AIRR forms aerial images that are plane-symmetric of the light sources regarding the reflective polarizer, the shape of the 3D screen is inverted from a desired aerial 3D image. In order to expand viewing angle, the 3D-shaped screen is surrounded by a retro-reflector. In order to separate the aerial image from reflected lights on the retro- reflector surface, the retro-reflector is tilted by 30 degrees. A projector is located below the retro-reflector at the same height of the 3D-shaped screen. The optical axis of the projector is orthogonal to the 3D-shaped screen. Scattered light on the 3D-shaped screen forms the aerial 3D image. In order to demonstrate the proposed optical design, a corner-cube-shaped screen is used for the 3D-shaped screen. Thus, the aerial 3D image is a cube that is floating above the reflective polarizer. For example, an aerial green cube is formed by projecting a calculated image on the 3D-shaped screen. The green cube image is digitally inverted in depth by our developed software. Thus, we have succeeded in forming aerial 3D image with our designed optical system.

  1. Modeling soil parameters using hyperspectral image reflectance in subtropical coastal wetlands

    Science.gov (United States)

    Anne, Naveen J. P.; Abd-Elrahman, Amr H.; Lewis, David B.; Hewitt, Nicole A.

    2014-12-01

    Developing spectral models of soil properties is an important frontier in remote sensing and soil science. Several studies have focused on modeling soil properties such as total pools of soil organic matter and carbon in bare soils. We extended this effort to model soil parameters in areas densely covered with coastal vegetation. Moreover, we investigated soil properties indicative of soil functions such as nutrient and organic matter turnover and storage. These properties include the partitioning of mineral and organic soil between particulate (>53 μm) and fine size classes, and the partitioning of soil carbon and nitrogen pools between stable and labile fractions. Soil samples were obtained from Avicennia germinans mangrove forest and Juncus roemerianus salt marsh plots on the west coast of central Florida. Spectra corresponding to field plot locations from Hyperion hyperspectral image were extracted and analyzed. The spectral information was regressed against the soil variables to determine the best single bands and optimal band combinations for the simple ratio (SR) and normalized difference index (NDI) indices. The regression analysis yielded levels of correlation for soil variables with R2 values ranging from 0.21 to 0.47 for best individual bands, 0.28 to 0.81 for two-band indices, and 0.53 to 0.96 for partial least-squares (PLS) regressions for the Hyperion image data. Spectral models using Hyperion data adequately (RPD > 1.4) predicted particulate organic matter (POM), silt + clay, labile carbon (C), and labile nitrogen (N) (where RPD = ratio of standard deviation to root mean square error of cross-validation [RMSECV]). The SR (0.53 μm, 2.11 μm) model of labile N with R2 = 0.81, RMSECV= 0.28, and RPD = 1.94 produced the best results in this study. Our results provide optimism that remote-sensing spectral models can successfully predict soil properties indicative of ecosystem nutrient and organic matter turnover and storage, and do so in areas with dense

  2. Training courses for radiological technicians: radiation protection of the patient and control of image quality

    International Nuclear Information System (INIS)

    Mateus Yoshimura, Elisabeth; Costa, Paulo Roberto; Furquim, Tania Aparecida; Freitas, Marcelo Baptista de; Valente, Marcelo; Cerri, Giovanni Guido

    2008-01-01

    Full text: As in other countries, life expectancy is increasing in Brazil, and the number of radiological examinations tends to increase. Old equipment and high technology ones cohabit, radiology technicians are not well prepared to conduct practices, images and doses to patients are not optimized. Digital techniques that began to be introduced in the last years are also an important issue, because, as it is possible to modify the image digitally, there is less concern about the choice of equipment parameters that produce the best-image/lowest-dose compromise. Pediatric radiology, CT and fluoroscopy require attention too, as they are of dosimetric interest or because the patient ages imply higher risks or because the techniques deliver higher doses than the conventional ones. In our opinion, the most important role that we can play is educating and forming people to work in this area: training programs and refreshing courses are a way of facing the problem. This way, we are organizing, in a technical cooperation with IAEA, two training courses in quality assurance and radiation protection in radiology, one designed to physicists (60 h), and the radiological technicians (40 h). An important cooperation with a paediatric and a general hospital made it possible to offer courses with 50% practical lessons, performed both in the University and in hospital equipment. Both courses cover a basic Radiation Physics program, radiation protection, image formation and quality control in conventional and digital equipment, and patient dosimetry. Equipment donated by IAEA facilitate the practical QA and dosimetry lessons. The rationale of our project is making it sustainable through the formation of physicists that will go on in the education process of technicians in technical schools. We present the results of the first two courses (physicists and technicians), considering the selection process, the development of the activities, and the assessment both of the students enrolled

  3. Facial Phenotyping by Quantitative Photography Reflects Craniofacial Morphology Measured on Magnetic Resonance Imaging in Icelandic Sleep Apnea Patients

    Science.gov (United States)

    Sutherland, Kate; Schwab, Richard J.; Maislin, Greg; Lee, Richard W.W.; Benedikstdsottir, Bryndis; Pack, Allan I.; Gislason, Thorarinn; Juliusson, Sigurdur; Cistulli, Peter A.

    2014-01-01

    Study Objectives: (1) To determine whether facial phenotype, measured by quantitative photography, relates to underlying craniofacial obstructive sleep apnea (OSA) risk factors, measured with magnetic resonance imaging (MRI); (2) To assess whether these associations are independent of body size and obesity. Design: Cross-sectional cohort. Setting: Landspitali, The National University Hospital, Iceland. Participants: One hundred forty patients (87.1% male) from the Icelandic Sleep Apnea Cohort who had both calibrated frontal and profile craniofacial photographs and upper airway MRI. Mean ± standard deviation age 56.1 ± 10.4 y, body mass index 33.5 ± 5.05 kg/m2, with on-average severe OSA (apnea-hypopnea index 45.4 ± 19.7 h-1). Interventions: N/A. Measurements and Results: Relationships between surface facial dimensions (photos) and facial bony dimensions and upper airway soft-tissue volumes (MRI) was assessed using canonical correlation analysis. Photo and MRI craniofacial datasets related in four significant canonical correlations, primarily driven by measurements of (1) maxillary-mandibular relationship (r = 0.8, P photography and MRI. This study confirms that facial photographic phenotype reflects underlying aspects of craniofacial skeletal abnormalities associated with OSA. Therefore, facial photographic phenotyping may be a useful tool to assess intermediate phenotypes for OSA, particularly in large-scale studies. Citation: Sutherland K, Schwab RJ, Maislin G, Lee RW, Benedikstdsottir B, Pack AI, Gislason T, Juliusson S, Cistulli PA. Facial phenotyping by quantitative photography reflects craniofacial morphology measured on magnetic resonance imaging in icelandic sleep apnea patients. SLEEP 2014;37(5):959-968. PMID:24790275

  4. Is the hijab protective? An investigation of body image and related constructs among British Muslim women.

    Science.gov (United States)

    Swami, Viren; Miah, Jusnara; Noorani, Nazerine; Taylor, Donna

    2014-08-01

    Previous studies have reported equivocal findings concerning the impact of wearing a hijab, or Islamic head- and body-cover, on Muslim women's body image. Here, we sought to examine that impact using a larger sample of Muslim women than has been relied upon and a wider range of body image measures. A total of 587 British Muslim women completed a battery of scales assessing their frequency and conservativeness of hijab use, body image variables, attitudes towards the media and beauty ideals, importance of appearance, and religiosity. Preliminary results indicated that 218 women never used the hijab and 369 women used some form of the hijab at least rarely. Controlling for religiosity, women who wore the hijab had more positive body image, lower internalization of media messages about beauty standards, and placed less importance on appearance than women who did not wear the hijab. Among women who wore the hijab, hijab use significantly predicted weight discrepancy and body appreciation over and above religiosity. These results are discussed in terms of the possible protective impact among British Muslim women of wearing the hijab. © 2013 The British Psychological Society.

  5. High-resolution seismic-reflection imaging 25 years of change in I-70 sinkhole, Russell County, Kansas

    Science.gov (United States)

    Miller, R.D.; Steeples, D.W.; Lambrecht, J.L.; Croxton, N.

    2006-01-01

    Time-lapse seismic reflection imaging improved our understanding of the consistent, gradual surface subsidence ongoing at two sinkholes in the Gorham Oilfield discovered beneath a stretch of Interstate Highway 70 through Russell and Ellis Counties in Kansas in 1966. With subsidence occurring at a rate of around 10 cm per year since discovery, monitoring has been beneficial to ensure public safety and optimize maintenance. A miniSOSIE reflection survey conducted in 1980 delineated the affected subsurface and successfully predicted development of a third sinkhole at this site. In 2004 and 2005 a high-resolution vibroseis survey was completed to ascertain current conditions of the subsurface, rate and pattern of growth since 1980, and potential for continued growth. With time and improved understanding of the salt dissolution affected subsurface in this area it appears that these features represent little risk to the public from catastrophic failure. However, from an operational perspective the Kansas Department of Transportation should expect continued subsidence, with future increases in surface area likely at a slightly reduced vertical rate. Seismic characteristics appear empirically consistent with gradual earth material compaction/settling. ?? 2005 Society of Exploration Geophysicists.

  6. Non-contact hematoma damage and healing assessment using reflectance photoplethysmographic imaging

    Science.gov (United States)

    Amelard, Robert; Pfisterer, Kaylen J.; Clausi, David A.; Wong, Alexander

    2016-03-01

    Impact trauma may cause a hematoma, which is the leakage of venous blood into surrounding tissues. Large hematomas can be dangerous as they may inhibit local blood ow. Hematomas are often diagnosed visually, which may be problematic if the hematoma leaks deeper than the visible penetration depth. Furthermore, vascular wound healing is often monitored at home without the aid of a clinician. We therefore investigated the use of near infrared (NIR) re ectance photoplethysmographic imaging (PPGI) to assess vascular damage resulting from a hematoma, and monitor the healing process. In this case study, the participant experienced internal vascular damage in the form of a hematoma. Using a PPGI system with dual-mode temporally coded illumination for ambient-agnostic data acquisition and mounted optical elements, the tissue was illuminated with a spatially uniform irradiance pattern of 850 nm wavelength light for increased tissue penetration and high oxy-to-deoxyhemoglobin absorption ratio. Initial and follow-up PPGI data collection was performed to assess vascular damage and healing. The tissue PPGI sequences were spectrally analyzed, producing spectral maps of the tissue area. Experimental results show that spatial differences in spectral information can be observed around the damaged area. In particular, the damaged site exhibited lower pulsatility than the surrounding healthy tissue. This pulsatility was largely restored in the follow-up data, suggesting that the tissue had undergone vascular healing. These results indicate that hematomas can be assessed and monitored in a non-contact visual manner, and suggests that PPGI can be used for tissue health assessment, with potential extensions to peripheral vascular disease.

  7. Quantum dot imaging in the second near-infrared optical window: studies on reflectance fluorescence imaging depths by effective fluence rate and multiple image acquisition

    Science.gov (United States)

    Jung, Yebin; Jeong, Sanghwa; Nayoun, Won; Ahn, Boeun; Kwag, Jungheon; Geol Kim, Sang; Kim, Sungjee

    2015-04-01

    Quantum dot (QD) imaging capability was investigated by the imaging depth at a near-infrared second optical window (SOW; 1000 to 1400 nm) using time-modulated pulsed laser excitations to control the effective fluence rate. Various media, such as liquid phantoms, tissues, and in vivo small animals, were used and the imaging depths were compared with our predicted values. The QD imaging depth under excitation of continuous 20 mW/cm2 laser was determined to be 10.3 mm for 2 wt% hemoglobin phantom medium and 5.85 mm for 1 wt% intralipid phantom, which were extended by more than two times on increasing the effective fluence rate to 2000 mW/cm2. Bovine liver and porcine skin tissues also showed similar enhancement in the contrast-to-noise ratio (CNR) values. A QD sample was inserted into the abdomen of a mouse. With a higher effective fluence rate, the CNR increased more than twofold and the QD sample became clearly visualized, which was completely undetectable under continuous excitation. Multiple acquisitions of QD images and averaging process pixel by pixel were performed to overcome the thermal noise issue of the detector in SOW, which yielded significant enhancement in the imaging capability, showing up to a 1.5 times increase in the CNR.

  8. Accounting for surface reflectance in the derivation of vertical column densities of NO2 from airborne imaging DOAS

    Science.gov (United States)

    Meier, Andreas Carlos; Schönhardt, Anja; Richter, Andreas; Bösch, Tim; Seyler, André; Constantin, Daniel Eduard; Shaiganfar, Reza; Merlaud, Alexis; Ruhtz, Thomas; Wagner, Thomas; van Roozendael, Michel; Burrows, John. P.

    2016-04-01

    Nitrogen oxides, NOx (NOx = NO + NO2) play a key role in tropospheric chemistry. In addition to their directly harmful effects on the respiratory system of living organisms, they influence the levels of tropospheric ozone and contribute to acid rain and eutrophication of ecosystems. As they are produced in combustion processes, they can serve as an indicator for anthropogenic air pollution. In the late summers of 2014 and 2015, two extensive measurement campaigns were conducted in Romania by several European research institutes, with financial support from ESA. The AROMAT / AROMAT-2 campaigns (Airborne ROmanian Measurements of Aerosols and Trace gases) were dedicated to measurements of air quality parameters utilizing newly developed instrumentation at state-of-the-art. The experiences gained will help to calibrate and validate the measurements taken by the upcoming Sentinel-S5p mission scheduled for launch in 2016. The IUP Bremen contributed to these campaigns with its airborne imaging DOAS (Differential Optical Absorption Spectroscopy) instrument AirMAP (Airborne imaging DOAS instrument for Measurements of Atmospheric Pollution). AirMAP allows retrieving spatial distributions of trace gas columns densities in a stripe below the aircraft. The measurements have a high spatial resolution of approximately 30 x 80 m2 (along x across track) at a typical flight altitude of 3000 m. Supported by the instrumental setup and the large swath, gapless maps of trace gas distributions above a large city, like Bucharest or Berlin, can be acquired within a time window of approximately two hours. These properties make AirMAP a valuable tool for the validation of trace gas measurements from space. DOAS retrievals yield the density of absorbers integrated along the light path of the measurement. The light path is altered with a changing surface reflectance, leading to enhanced / reduced slant column densities of NO2 depending on surface properties. This effect must be considered in

  9. Constraining mass-diameter relations from hydrometeor images and cloud radar reflectivities in tropical continental and oceanic convective anvils

    Science.gov (United States)

    Fontaine, E.; Schwarzenboeck, A.; Delanoë, J.; Wobrock, W.; Leroy, D.; Dupuy, R.; Gourbeyre, C.; Protat, A.

    2014-10-01

    In this study the density of ice hydrometeors in tropical clouds is derived from a combined analysis of particle images from 2-D-array probes and associated reflectivities measured with a Doppler cloud radar on the same research aircraft. Usually, the mass-diameter m(D) relationship is formulated as a power law with two unknown coefficients (pre-factor, exponent) that need to be constrained from complementary information on hydrometeors, where absolute ice density measurement methods do not apply. Here, at first an extended theoretical study of numerous hydrometeor shapes simulated in 3-D and arbitrarily projected on a 2-D plan allowed to constrain the exponent βof the m(D) relationship from the exponent σ of the surface-diameterS(D)relationship, which is likewise written as a power law. Since S(D) always can be determined for real data from 2-D optical array probes or other particle imagers, the evolution of the m(D) exponent can be calculated. After that, the pre-factor α of m(D) is constrained from theoretical simulations of the radar reflectivities matching the measured reflectivities along the aircraft trajectory. The study was performed as part of the Megha-Tropiques satellite project, where two types of mesoscale convective systems (MCS) were investigated: (i) above the African continent and (ii) above the Indian Ocean. For the two data sets, two parameterizations are derived to calculate the vertical variability of m(D) coefficients α and β as a function of the temperature. Originally calculated (with T-matrix) and also subsequently parameterized m(D) relationships from this study are compared to other methods (from literature) of calculating m(D) in tropical convection. The significant benefit of using variable m(D) relations instead of a single m(D) relationship is demonstrated from the impact of all these m(D) relations on Z-CWC (Condensed Water Content) and Z-CWC-T-fitted parameterizations.

  10. Body image in emerging adults: The protective role of self-compassion.

    Science.gov (United States)

    Rodgers, Rachel F; Franko, Debra L; Donovan, Elizabeth; Cousineau, Tara; Yates, Kayla; McGowan, Kayla; Cook, Elizabeth; Lowy, Alice S

    2017-09-01

    Self-compassion is thought to protect from body image concerns. However, the mechanisms of this effect remain unclear. This study examined three positive dimensions of self-compassion as moderators of the mediated relationship between perceived overweight status, appearance comparison, and appearance esteem. A sample of 232 youth aged 13-18 years, mean=18.36 (SD=1.5) years, reported on appearance esteem, appearance comparison, perceived weight status, and self-compassion dimensions including self-kindness, common humanity, and mindfulness. Among boys, mindfulness and common humanity moderated the perceived weight status to appearance comparison pathway of the mediation (ps=.01), such that this relationship was weaker among boys with higher levels of these dimensions of self-compassion. These findings were not replicated among girls. None of the self-compassion dimensions moderated the appearance comparison to appearance esteem pathway. Self-compassion dimensions that decrease the focus on the self may protect against body image concerns among boys. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Observation and visualization: reflections on the relationship between science, visual arts, and the evolution of the scientific image.

    Science.gov (United States)

    Kolijn, Eveline

    2013-10-01

    The connections between biological sciences, art and printed images are of great interest to the author. She reflects on the historical relevance of visual representations for science. She argues that the connection between art and science seems to have diminished during the twentieth century. However, this connection is currently growing stronger again through digital media and new imaging methods. Scientific illustrations have fuelled art, while visual modeling tools have assisted scientific research. As a print media artist, she explores the relationship between art and science in her studio practice and will present this historical connection with examples related to evolution, microbiology and her own work. Art and science share a common source, which leads to scrutiny and enquiry. Science sets out to reveal and explain our reality, whereas art comments and makes connections that don't need to be tested by rigorous protocols. Art and science should each be evaluated on their own merit. Allowing room for both in the quest to understand our world will lead to an enriched experience.

  12. Reflecting on law, morality and communal mores (with particular reference to the protection of pre-natal life

    Directory of Open Access Journals (Sweden)

    Lourens M. du Plessis

    1991-03-01

    Full Text Available This article deals with the relationship between law, morality and communal mores with particular reference to the protection of pre-natal life in South Africa. It is argued that personal, moral choice influences communal mores and that these mores can, in turn, be transformed into legal norms, thus becoming part of the legal system. It is pointed out that South African law lends insufficient protection tofoetal life - especially in situations where it stands to be destroyed as a result of abortion. It is then suggested that the legal subjectivity of the foetus should be recognized and that every application for an abortion should be heard by a court of law or, alternatively, a specialist tribunal. The foetus should be represented at these proceedings by a curator ad litem. It is finally argued that the proposed arrangement will not unduly encroach on the moral freedom of the individual and that personal, moral choice and communal mores will still be of decisive significance in regulating 'bio-ethical' morality.

  13. An assessment of thin cloud detection by applying bidirectional reflectance distribution function model-based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea

    Science.gov (United States)

    Kim, Hye-Won; Yeom, Jong-Min; Shin, Daegeun; Choi, Sungwon; Han, Kyung-Soo; Roujean, Jean-Louis

    2017-08-01

    In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model-based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle-dependent geostationary sensor geometry. For quantitative validation, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35).

  14. New calculation of derived limits for the 1960 radiation protection guides reflecting updated models for dosimetry and biological transport

    International Nuclear Information System (INIS)

    Eckerman, K.F.; Watson, S.B.; Nelson, C.B.; Nelson, D.R.; Richardson, A.C.B.; Sullivan, R.E.

    1984-12-01

    This report presents revised values for the radioactivity concentration guides (RCGs), based on the 1960 primary radiation protection guides (RPGs) for occupational exposure (FRC 1960) and for underground uranium miners (EPA 1971a) using the updated dosimetric models developed to prepare ICRP Publication 30. Unlike the derived quantities presented in Publication 30, which are based on limitation of the weighted sum of doses to all irradiated tissues, these RCGs are based on the ''critical organ'' approach of the 1960 guidance, which was a single limit for the most critically irradiated organ or tissue. This report provides revised guides for the 1960 Federal guidance which are consistent with current dosimetric relationships. 2 figs., 4 tabs

  15. Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar

    Science.gov (United States)

    Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.

    2017-12-01

    Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater

  16. In vivo imaging of induction of heat-shock protein-70 gene expression with fluorescence reflectance imaging and intravital confocal microscopy following brain ischaemia in reporter mice.

    Science.gov (United States)

    de la Rosa, Xavier; Santalucía, Tomàs; Fortin, Pierre-Yves; Purroy, Jesús; Calvo, Maria; Salas-Perdomo, Angélica; Justicia, Carles; Couillaud, Franck; Planas, Anna M

    2013-02-01

    Stroke induces strong expression of the 72-kDa heat-shock protein (HSP-70) in the ischaemic brain, and neuronal expression of HSP-70 is associated with the ischaemic penumbra. The aim of this study was to image induction of Hsp-70 gene expression in vivo after brain ischaemia using reporter mice. A genomic DNA sequence of the Hspa1b promoter was used to generate an Hsp70-mPlum far-red fluorescence reporter vector. The construct was tested in cellular systems (NIH3T3 mouse fibroblast cell line) by transient transfection and examining mPlum and Hsp-70 induction under a challenge. After construct validation, mPlum transgenic mice were generated. Focal brain ischaemia was induced by transient intraluminal occlusion of the middle cerebral artery and the mice were imaged in vivo with fluorescence reflectance imaging (FRI) with an intact skull, and with confocal microscopy after opening a cranial window. Cells transfected with the Hsp70-mPlum construct showed mPlum fluorescence after stimulation. One day after induction of ischaemia, reporter mice showed a FRI signal located in the HSP-70-positive zone within the ipsilateral hemisphere, as validated by immunohistochemistry. Live confocal microscopy allowed brain tissue to be visualized at the cellular level. mPlum fluorescence was observed in vivo in the ipsilateral cortex 1 day after induction of ischaemia in neurons, where it is compatible with penumbra and neuronal viability, and in blood vessels in the core of the infarction. This study showed in vivo induction of Hsp-70 gene expression in ischaemic brain using reporter mice. The fluorescence signal showed in vivo the induction of Hsp-70 in penumbra neurons and in the vasculature within the ischaemic core.

  17. Optimization of patient protection using rare earth screen in conventional imaging procedure

    International Nuclear Information System (INIS)

    Inkoom, S.; Schandorf, C.; Fletcher, J.J.

    2008-01-01

    The purpose of this study was to optimize patient protection using rare earth screen of speed 400 in place of conventional screen-film of speed 200. The entrance surface dose (ESD) for the two screen-film systems was determined for patients undergoing simple radiographic examinations (chest, lumbar spine and pelvis series). The determination of the ESD included backscatter factors. The ESD was the optimizing parameter and its trade off with the image quality assessment, which was surveyed based on the information obtained through standardized questionnaire. The estimated ESDs were compared with reference levels set by the Community of European Commission (CEC) for a standard adult patient. For chest PA, ESD estimates were lower than the CEC reference levels whilst that of lumbar spine AP and LAT and pelvis AP were high. Upon the adoption of rare earth screen of speed 400, a dose reduction of 33% for chest, 17% for lumbar spine and 28% for pelvis examinations was achieved. From the observations made from this study, some corrective actions such as equipment quality control of parameters that affect patient dose and image quality like kVp accuracy and consistency, mAs accuracy and consistency, optimal film processing conditions, regular film reject analysis to detect and minimize the root causes and contributory factors to poor image quality and periodic training of staff on dose reduction techniques must be undertaken. Regular assessment of patient dose and image quality, equipment quality control, adoption of faster rare earth screens and optimum radiographic technique are therefore recommended in order to achieve optimization goals. (author)

  18. Patients radiation protection in medical imaging. Conference proceedings; Radioprotection des patients en imagerie medicale. Recueil des presentations

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-12-15

    This document brings together the available presentations given at the conference organised by the French society of radiation protection about patients radiation protection in medical imaging. Twelve presentations (slides) are compiled in this document and deal with: 1 - Medical exposure of the French population: methodology and results (Bernard Aubert, IRSN); 2 - What indicators for the medical exposure? (Cecile Etard, IRSN); 3 - Guidebook of correct usage of medical imaging examination (Philippe Grenier, Pitie-Salpetriere hospital); 4 - Radiation protection optimization in pediatric imaging (Hubert Ducou-Le-Pointe, Aurelien Bouette (Armand-Trousseau children hospital); 5 - Children's exposure to image scanners: epidemiological survey (Marie-Odile Bernier, IRSN); 6 - Management of patient's irradiation: from image quality to good practice (Thierry Solaire, General Electric); 7 - Dose optimization in radiology (Cecile Salvat (Lariboisiere hospital); 8 - Cancer detection in the breast cancer planned screening program - 2004-2009 era (Agnes Rogel, InVS); 9 - Mammographic exposures - radiobiological effects - radio-induced DNA damages (Catherine Colin, Lyon Sud hospital); 10 - Breast cancer screening program - importance of non-irradiating techniques (Anne Tardivon, Institut Curie); 11 - Radiation protection justification for the medical imaging of patients over the age of 50 (Michel Bourguignon, ASN); 12 - Search for a molecular imprint for the discrimination between radio-induced and sporadic tumors (Sylvie Chevillard, CEA)

  19. Semi-automated algorithm for localization of dermal/epidermal junction in reflectance confocal microscopy images of human skin

    Science.gov (United States)

    Kurugol, Sila; Dy, Jennifer G.; Rajadhyaksha, Milind; Gossage, Kirk W.; Weissmann, Jesse; Brooks, Dana H.

    2011-03-01

    The examination of the dermis/epidermis junction (DEJ) is clinically important for skin cancer diagnosis. Reflectance confocal microscopy (RCM) is an emerging tool for detection of skin cancers in vivo. However, visual localization of the DEJ in RCM images, with high accuracy and repeatability, is challenging, especially in fair skin, due to low contrast, heterogeneous structure and high inter- and intra-subject variability. We recently proposed a semi-automated algorithm to localize the DEJ in z-stacks of RCM images of fair skin, based on feature segmentation and classification. Here we extend the algorithm to dark skin. The extended algorithm first decides the skin type and then applies the appropriate DEJ localization method. In dark skin, strong backscatter from the pigment melanin causes the basal cells above the DEJ to appear with high contrast. To locate those high contrast regions, the algorithm operates on small tiles (regions) and finds the peaks of the smoothed average intensity depth profile of each tile. However, for some tiles, due to heterogeneity, multiple peaks in the depth profile exist and the strongest peak might not be the basal layer peak. To select the correct peak, basal cells are represented with a vector of texture features. The peak with most similar features to this feature vector is selected. The results show that the algorithm detected the skin types correctly for all 17 stacks tested (8 fair, 9 dark). The DEJ detection algorithm achieved an average distance from the ground truth DEJ surface of around 4.7μm for dark skin and around 7-14μm for fair skin.

  20. Orientation guide for imaging examinations. Recommendation of the radiation protection commission. 2. rev. ed.

    International Nuclear Information System (INIS)

    2012-01-01

    Due to the wide range of medical diagnostic method that include partially high radiation exposures of the patients (for instance CT examinations) the mean radiation exposure of the public is increasing in Germany. In 2006 the German Strahlenschutzkommission (radiation protection commission) has published a catalogue for the different diagnostic questions including recommendations for the best imaging technique. This orientation guide was actualized in 2012. The catalogue is aimed to avoid unnecessary radiation exposure and to simultaneously improve the medical diagnostics. Nevertheless the applying physician has to justify and document the selected diagnostic technique for the individual case. The guide covers the following issues: head, neck, spinal cord, skeleton and muscles, cardiovascular system, thorax, digestive system, urogenital tract, gynecology, mammary glands, trauma, oncology, pediatrics, interventional radiology.

  1. Pathology Image-Sharing on Social Media: Recommendations for Protecting Privacy While Motivating Education.

    Science.gov (United States)

    Crane, Genevieve M; Gardner, Jerad M

    2016-08-01

    There is a rising interest in the use of social media by pathologists. However, the use of pathology images on social media has been debated, particularly gross examination, autopsy, and dermatologic condition photographs. The immediacy of the interactions, increased interest from patients and patient groups, and fewer barriers to public discussion raise additional considerations to ensure patient privacy is protected. Yet these very features all add to the power of social media for educating other physicians and the nonmedical public about disease and for creating better understanding of the important role of pathologists in patient care. The professional and societal benefits are overwhelmingly positive, and we believe the potential for harm is minimal provided common sense and routine patient privacy principles are utilized. We lay out ethical and practical guidelines for pathologists who use social media professionally. © 2016 American Medical Association. All Rights Reserved.

  2. My Body Looks Like That Girl’s: Body Mass Index Modulates Brain Activity during Body Image Self-Reflection among Young Women

    Science.gov (United States)

    Wen, Xin; She, Ying; Vinke, Petra Corianne; Chen, Hong

    2016-01-01

    Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress

  3. My Body Looks Like That Girl's: Body Mass Index Modulates Brain Activity during Body Image Self-Reflection among Young Women.

    Science.gov (United States)

    Gao, Xiao; Deng, Xiao; Wen, Xin; She, Ying; Vinke, Petra Corianne; Chen, Hong

    2016-01-01

    Body image distress or body dissatisfaction is one of the most common consequences of obesity and overweight. We investigated the neural bases of body image processing in overweight and average weight young women to understand whether brain regions that were previously found to be involved in processing self-reflective, perspective and affective components of body image would show different activation between two groups. Thirteen overweight (O-W group, age = 20.31±1.70 years) and thirteen average weight (A-W group, age = 20.15±1.62 years) young women underwent functional magnetic resonance imaging while performing a body image self-reflection task. Among both groups, whole-brain analysis revealed activations of a brain network related to perceptive and affective components of body image processing. ROI analysis showed a main effect of group in ACC as well as a group by condition interaction within bilateral EBA, bilateral FBA, right IPL, bilateral DLPFC, left amygdala and left MPFC. For the A-W group, simple effect analysis revealed stronger activations in Thin-Control compared to Fat-Control condition within regions related to perceptive (including bilateral EBA, bilateral FBA, right IPL) and affective components of body image processing (including bilateral DLPFC, left amygdala), as well as self-reference (left MPFC). The O-W group only showed stronger activations in Fat-Control than in Thin-Control condition within regions related to the perceptive component of body image processing (including left EBA and left FBA). Path analysis showed that in the Fat-Thin contrast, body dissatisfaction completely mediated the group difference in brain response in left amygdala across the whole sample. Our data are the first to demonstrate differences in brain response to body pictures between average weight and overweight young females involved in a body image self-reflection task. These results provide insights for understanding the vulnerability to body image distress

  4. Pneumodissection for skin protection in image-guided cryoablation of superficial musculoskeletal tumours.

    Science.gov (United States)

    Maybody, Majid; Tang, Peter Q; Moskowitz, Chaya S; Hsu, Meier; Yarmohammadi, Hooman; Boas, F Edward

    2017-03-01

    Pneumodissection is described as a simple method for preventing skin injury during cryoablation of superficial musculoskeletal tumours. Superficial tumour cryoablations performed from 2009 to 2015 were retrospectively reviewed. Pneumodissection was performed in 13 patients when the shortest tumour-skin distance was less than 25 mm. Indications were pain palliation (n = 9) and local tumour control (n = 4). Patients, target tumours, technical characteristics and complications up to 60 days post ablation were reviewed. The ice ball-skin distances with and without pneumodissection were compared by a paired t-test and further assessed for association with covariates using ANCOVA. Technical success for ablation was 12 of 13. The mean shortest tumour-skin distance was 15.0 mm (3.2-24.5 mm). The mean thickness of pneumodissection was 9.6 mm (5.2-16.6 mm) resulting in mean elevation of skin of 3.4 mm (1.2-5.3 mm). Mean shortest ice ball-skin distance after pneumodissection was 10.5 mm (4.2-19.7 mm). No infection or systemic air embolism was noted. No intraprocedural frostbite was observed. Pneumodissection is feasible, effective and safe in protecting the skin during image-guided cryoablation of superficial tumours. • Frostbite during image-guided cryoablation of superficial tumours is commonly under-reported. • Frostbites are painful and may introduce infection into the superficial ablation zone. • Warm compress, saline and CO 2 have shortcomings in protecting the skin. • Pneumodissection is free, readily available, easy to use and safe and effective.

  5. Protective

    Directory of Open Access Journals (Sweden)

    Wessam M. Abdel-Wahab

    2013-10-01

    Full Text Available Many active ingredients extracted from herbal and medicinal plants are extensively studied for their beneficial effects. Antioxidant activity and free radical scavenging properties of thymoquinone (TQ have been reported. The present study evaluated the possible protective effects of TQ against the toxicity and oxidative stress of sodium fluoride (NaF in the liver of rats. Rats were divided into four groups, the first group served as the control group and was administered distilled water whereas the NaF group received NaF orally at a dose of 10 mg/kg for 4 weeks, TQ group was administered TQ orally at a dose of 10 mg/kg for 5 weeks, and the NaF-TQ group was first given TQ for 1 week and was secondly administered 10 mg/kg/day NaF in association with 10 mg/kg TQ for 4 weeks. Rats intoxicated with NaF showed a significant increase in lipid peroxidation whereas the level of reduced glutathione (GSH and the activity of superoxide dismutase (SOD, catalase (CAT, glutathione S-transferase (GST and glutathione peroxidase (GPx were reduced in hepatic tissues. The proper functioning of the liver was also disrupted as indicated by alterations in the measured liver function indices and biochemical parameters. TQ supplementation counteracted the NaF-induced hepatotoxicity probably due to its strong antioxidant activity. In conclusion, the results obtained clearly indicated the role of oxidative stress in the induction of NaF toxicity and suggested hepatoprotective effects of TQ against the toxicity of fluoride compounds.

  6. Recognition of Banknote Fitness Based on a Fuzzy System Using Visible Light Reflection and Near-infrared Light Transmission Images.

    Science.gov (United States)

    Kwon, Seung Yong; Pham, Tuyen Danh; Park, Kang Ryoung; Jeong, Dae Sik; Yoon, Sungsoo

    2016-06-11

    Fitness classification is a technique to assess the quality of banknotes in order to determine whether they are usable. Banknote classification techniques are useful in preventing problems that arise from the circulation of substandard banknotes (such as recognition failures, or bill jams in automated teller machines (ATMs) or bank counting machines). By and large, fitness classification continues to be carried out by humans, and this can cause the problem of varying fitness classifications for the same bill by different evaluators, and requires a lot of time. To address these problems, this study proposes a fuzzy system-based method that can reduce the processing time needed for fitness classification, and can determine the fitness of banknotes through an objective, systematic method rather than subjective judgment. Our algorithm was an implementation to actual banknote counting machine. Based on the results of tests on 3856 banknotes in United States currency (USD), 3956 in Korean currency (KRW), and 2300 banknotes in Indian currency (INR) using visible light reflection (VR) and near-infrared light transmission (NIRT) imaging, the proposed method was found to yield higher accuracy than prevalent banknote fitness classification methods. Moreover, it was confirmed that the proposed algorithm can operate in real time, not only in a normal PC environment, but also in an embedded system environment of a banknote counting machine.

  7. Recognition of Banknote Fitness Based on a Fuzzy System Using Visible Light Reflection and Near-infrared Light Transmission Images

    Directory of Open Access Journals (Sweden)

    Seung Yong Kwon

    2016-06-01

    Full Text Available Fitness classification is a technique to assess the quality of banknotes in order to determine whether they are usable. Banknote classification techniques are useful in preventing problems that arise from the circulation of substandard banknotes (such as recognition failures, or bill jams in automated teller machines (ATMs or bank counting machines. By and large, fitness classification continues to be carried out by humans, and this can cause the problem of varying fitness classifications for the same bill by different evaluators, and requires a lot of time. To address these problems, this study proposes a fuzzy system-based method that can reduce the processing time needed for fitness classification, and can determine the fitness of banknotes through an objective, systematic method rather than subjective judgment. Our algorithm was an implementation to actual banknote counting machine. Based on the results of tests on 3856 banknotes in United States currency (USD, 3956 in Korean currency (KRW, and 2300 banknotes in Indian currency (INR using visible light reflection (VR and near-infrared light transmission (NIRT imaging, the proposed method was found to yield higher accuracy than prevalent banknote fitness classification methods. Moreover, it was confirmed that the proposed algorithm can operate in real time, not only in a normal PC environment, but also in an embedded system environment of a banknote counting machine.

  8. Reflection seismic imaging of the upper crystalline crust for characterization of potential repository sites: Fine tuning the seismic source

    Energy Technology Data Exchange (ETDEWEB)

    Juhlin, C.; Palm, H.; Bergman, B. [Uppsala Univ. (Sweden). Dept. of Earth Sciences

    2001-09-01

    SKB is currently carrying out studies to determine which seismic techniques, and how, they will be used for investigations prior to and during the building of a high-level nuclear waste repository. Active seismic methods included in these studies are refraction seismics, reflection seismics, and vertical seismic profiling (VSP). The main goal of the active seismic methods is to locate fracture zones in the crystalline bedrock. Plans are to use longer reflection seismic profiles (3.4 km) in the initial stages of the site investigations. The target depth for these seismic profiles is 100-1500 m. Prior to carrying out the seismic surveys over actual candidate waste repository sites it has been necessary to carry out a number of tests to determine the optimum acquisition parameters. This report constitutes a summary of the tests carried out by Uppsala University. In addition, recommended acquisition and processing parameters are presented at the end of the report. A major goal in the testing has been to develop a methodology for acquiring high-resolution reflection seismic data over crystalline rock in as a cost effective manner as possible. Since the seismic source is generally a major cost in any survey, significant attention has been given to reducing the cost of the source. It was agreed upon early in the study that explosives were the best source from a data quality perspective and, therefore, only explosive source methods have been considered in this study. The charge size and shot hole dimension required to image the upper 1-1.5 km of bedrock is dependent upon the conditions at the surface. In this study two types of shot hole drilling methods have been employed depending upon whether the thickness of the loose sediments at the surface is greater or less than 0.5 m. The charge sizes and shot hole dimensions required are: Loose sediment thickness less than 0.5 m: 15 g in 90 cm deep 12 mm wide uncased shot holes. Loose sediment thickness greater than 0.5 m: 75 g

  9. Use of a Reflective Ultraviolet Imaging System (RUVIS) on Two-Dimensional Dust Impressions Created with Footwear on Multiple Substrates

    Science.gov (United States)

    Engelson, Brian Aaron

    Footwear impression evidence in dust is often difficult to locate in ambient light and is a fragile medium that both collection and enhancement techniques can destroy or distort. The collection of footwear impression evidence always begins with non-destructive photographic techniques; however, current methods are limited to oblique lighting of the impression followed by an attempt to photograph in situ. For the vast majority of footwear impressions, an interactive collection method, and thus a potentially destructive procedure, is subsequently carried out to gather the evidence. Therefore, alternative non-destructive means for the preservation and enhancement of footwear impressions in dust merits further attention. Previous research performed with reflected ultraviolet (UV) photography and reflected ultraviolet imaging systems (RUVIS) has shown that there are additional non-destructive methodologies that can be applied to the search for and documentation of footwear impressions in dust. Unfortunately, these prior studies did not include robust comparisons to traditional oblique white light, instead choosing to focus on different UV wavelengths. This study, however, seeks to evaluate the use of a RUVIS device paired with a 254 nanometer (nm) UV light source to locate 2-D footwear impressions in dust on multiple substrates against standard oblique white light techniques and assess the visibility of the impression and amount of background interference present. The optimal angle of incident UV light for each substrate was also investigated. Finally, this study applied an image enhancement technique in order to evaluate its usefulness when looking at the visibility of a footwear impression and the amount of background interference present for enhanced white light and RUVIS pictures of footwear impressions in dust. A collection of eight different substrate types was gathered for investigation, including vinyl composition tile (VCT), ceramic tile, marble tile, magazine

  10. Reflecting reflection in supervision

    DEFF Research Database (Denmark)

    Lystbæk, Christian Tang

    associated with reflection and an exploration of alternative conceptions that view reflection within the context of settings which have a more group- and team-based orientation. Drawing on an action research project on health care supervision, the paper questions whether we should reject earlier views...... of reflection, rehabilitate them in order to capture broader connotations or move to new ways of regarding reflection that are more in keeping with not only reflective but also emotive, normative and formative views on supervision. The paper presents a critical perspective on supervision that challenge...... the current reflective paradigm I supervision and relate this to emotive, normative and formative views supervision. The paper is relevant for Nordic educational research into the supervision and guidance...

  11. The Geologic History of Lake of the Woods, Minnesota, Reconstructed Using Seismic-Reflection Imaging and Sediment Core Analysis

    Science.gov (United States)

    Hougardy, Devin D.

    only near the margins of the basin, suggesting that water occupied much of the middle of the southern basin after lake level drawdown. The reflection character and configuration of SU-C and SU-D are genetically different indicating that the depositional environment had changed following the formation of UNCF-2. Piston-type sediment cores collected from the southern basin of LOTW at depths that correspond to the middle of SU-D contain high amounts of organic material and charcoal fragments and sediment that are probably not related to Lake Agassiz. Instead, they were likely deposited during a transitional phase between when Lake Agassiz left the LOTW basin (UNCF-2) and inundation of LOTW from the northern basin due to differential isostatic rebound (UNCF-3). All sediment cores collected from the southern basin of LOTW record the uppermost unconformity, analogous in depth to UNCF-3 in the seismic images, which separates modern sediments from mid to late-Holocene sediments. The lithology of sediments below this unconformity varies across the basin from gray clay to laminated silt and clay. Radiocarbon ages from two peat layers immediately below the unconformity indicate that subaerial conditions had existed prior to the formation of UNCF-1, at about 7.75 ka cal BP. The timing correlates well with other lakes in the upper Midwest that record a prolonged dry climate during the mid-Holocene. UNCF-3 is planar and erosional across the entire survey area but erosion is greatest in the northern part of the basin as the result of a southward transgressing wave base driven by differential isostatic rebound. Deposition in the southern basin probably resumed around 3.3 ka cal BP, though no radiocarbon dates were collected directly above UNCF-3. The lithology of sediment above UNCF-3 is highly uniform across the basin and represents modern sedimentation. Late-Holocene sedimentation rates were calculated at about 0.9 mm year-1 and are roughly double the sedimentation rates in the NW

  12. Evaluation of drought and UV radiation impacts on above-ground biomass of mountain grassland by spectral reflectance and thermal imaging techniques

    Czech Academy of Sciences Publication Activity Database

    Novotná, Kateřina; Klem, Karel; Holub, Petr; Rapantová, Barbora; Urban, Otmar

    2016-01-01

    Roč. 9, 1-2 (2016), s. 21-30 ISSN 1803-2451 R&D Projects: GA MŠk(CZ) LO1415 Institutional support: RVO:67179843 Keywords : above-ground biomass * drought stress * grassland * UV radiation * precipitation * spectral reflectance * thermal imaging Subject RIV: EH - Ecology, Behaviour

  13. An Evaluation of the Instruction Carried out with Printed Laboratory Materials Designed in Accordance with 5E Model: Reflection of Light and Image on a Plane Mirror

    Science.gov (United States)

    Ayvaci, Hakan Sevki; Yildiz, Mehmet; Bakirci, Hasan

    2015-01-01

    This study employed a print laboratory material based on 5E model of constructivist learning approach to teach reflection of light and Image on a Plane Mirror. The effect of the instruction which conducted with the designed print laboratory material on academic achievements of prospective science and technology teachers and their attitudes towards…

  14. The media image of the relationship between nature protection and socio-economic development in selected protected landscape areas

    Czech Academy of Sciences Publication Activity Database

    Kušová, Drahomíra; Těšitel, Jan; Bartoš, Michael

    2005-01-01

    Roč. 11, 2-3 (2005), s. 123-133 ISSN 1211-7420 R&D Projects: GA MŽP(CZ) SM/610/3/03 Institutional research plan: CEZ:AV0Z6087904 Keywords : nature protection * socio-economic development * content analysis Subject RIV: AE - Management ; Administration

  15. Can the acute magnetic resonance imaging features reflect neurologic prognosis in patients with cervical spinal cord injury?

    Science.gov (United States)

    Matsushita, Akinobu; Maeda, Takeshi; Mori, Eiji; Yuge, Itaru; Kawano, Osamu; Ueta, Takayoshi; Shiba, Keiichiro

    2017-09-01

    diameter of T2 high-intensity changed area in MR images and neurologic outcome in these two groups. This study does not contain any conflict of interest. In the group admitted at 0-1 day after injury, there was a relationship between the vertical diameter of T2 high-intensity area in MR image and the ASIA motor score at admission and at discharge, but correlation coefficient was low (0.3766 at admission and 0.4239 at discharge). On the other hand, in the group admitted at 2-3 days after injury, there was a significant relationship between the vertical diameter of T2 high-intensity area in MR image and the ASIA motor score at admission and at discharge, and correlation coefficient was very high (0.6840 at admission and 0.5293 at discharge). In the group admitted at 2-3 days after injury, a total of 17 patients (68%) recovered to walk with or without a cane. Receiver operating characteristic (ROC) curve analysis demonstrated that the optimal vertical diameter of T2 high-intensity area cutoffvalue for patients who were able to walk at discharge was 45.8 mm. If the vertical diameter of T2 high-intensity area cutoff value was 45 mm, there was a significant positive correlation with being able to walk at discharge (pinjury, a significant relationship was observed between the vertical diameter of T2 high-intensity area and the neurologic prognosis at discharge. Zero to 1 day after injury, the relationship between the vertical diameter of T2 high-intensity area and the neurologic prognosis at discharge was weak. Neurologic prognosis is more correlated with MRI after 2-3 days after the injury. If the vertical diameter of T2 high-intensity area was <45 mm, the patients were able to walk with or without a cane at discharge. T2 high-intensity changed area can reflect the neurologic prognosis in patients with CSCI. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Reflective Packaging

    Science.gov (United States)

    1994-01-01

    The aluminized polymer film used in spacecraft as a radiation barrier to protect both astronauts and delicate instruments has led to a number of spinoff applications. Among them are aluminized shipping bags, food cart covers and medical bags. Radiant Technologies purchases component materials and assembles a barrier made of layers of aluminized foil. The packaging reflects outside heat away from the product inside the container. The company is developing new aluminized lines, express mailers, large shipping bags, gel packs and insulated panels for the building industry.

  17. Reflections concerning radiation protection philosophy

    International Nuclear Information System (INIS)

    Seelentag, W.

    1981-01-01

    Critical philosophy also includes observations of the technical amplified senses make, i.e. the application of accessory instruments, measuring instruments and statistic methods. The application of this philosophy is, among other things, referred to when taking the linear dose response relationship for stochastic radiation effects as an example. (DG) [de

  18. X-ray anatomy - radiological imaging, radiation protection. For auxiliary medical personnel, technicians, physicists. 3. rev. and enlarged ed. Roentgenanatomie - radiologische Darstellung, Strahlenschutz. Fuer aerztliches Hilfspersonal, Techniker, Physiker

    Energy Technology Data Exchange (ETDEWEB)

    Frik, W; Goering, U

    1988-01-01

    This third edition as the result of a complete revision of the second edition reflects the current state of the art and includes topical information on a variety of advances hitherto achieved, as for instance information on novel imaging techniques in diagnostic radiology that have been included in the chapters on physical fundamentals or examination methods, as well as in all chapters discussing the anatomy and the relevant radiological imaging methods. As practice has shown that the application of the latest standards on radiation doses and units still poses problems, the authors decided to add a section explaining dose concepts, terminology and units. The two chapters dealing with contrast media and with radiological examination methods have been updated and supplemented. The anatomy chapters, written for readers who are not doctors, and the survey of the relevant diagnostic radiology still form the core of the book, but all in all this third edition now puts equal emphasis on all three aspects concerned, namely X-ray anatomy, radiological imaging, and radiation protection. (orig./MG) With 96 figs.

  19. Real-time bioluminescence imaging of macroencapsulated fibroblasts reveals allograft protection in rhesus monkeys (Macaca mulatta).

    Science.gov (United States)

    Tarantal, Alice F; Lee, C Chang I; Itkin-Ansari, Pamela

    2009-07-15

    Encapsulation of cells has the potential to eliminate the need for immunosuppression for cellular transplantation. Recently, the TheraCyte device was shown to provide long-term immunoprotection of murine islets in a mouse model of diabetes. In this report, translational studies were undertaken using skin fibroblasts from an unrelated rhesus monkey donor that were transduced with an HIV-1-derived lentiviral vector expressing firefly luciferase permitting the use of bioluminescence imaging (BLI) to monitor cell survival over time and in a noninvasive manner. Encapsulated cells were transplanted subcutaneously (n=2), or cells were injected without encapsulation (n=1) and outcomes compared. BLI was performed to monitor cell survival. The BLI signal from the encapsulated cells remained robust postinsertion and in one animal persisted for up to 1 year. In contrast, the control animal that received unencapsulated cells exhibited a complete loss of cell signal within 14 days. These data demonstrate that TheraCyte encapsulation of allogeneic cells provides robust immune protection in transplanted rhesus monkeys.

  20. Analysis of X-band radar images for the detection of the reflected and diffracted waves in coastal zones

    Science.gov (United States)

    Ludeno, Giovanni; Natale, Antonio; Soldovieri, Francesco; Vicinanza, Diego; Serafino, Francesco

    2014-05-01

    The observation of nearshore waves and the knowledge of the sea state parameters can play a crucial role for the safety of harbors and ocean engineering. In the last two decades, different algorithms for the estimation of sea state parameters, surface currents and bathymetry from X-band radar data have been developed and validated [1, 2]. The retrieval of ocean wave parameters such as significant height, period, direction and wavelength of the dominant wave is based on the spectral analysis of data sequences collected by nautical X-band radars [3]. In particular, the reconstruction of the wave motion is carried out through the inversion procedure explained in [1-3], which exploits the dispersion relationship to define a band pass filter used to separate the energy associated with the ocean waves from the background noise. It is worth to note that the shape of such a band pass filter depends upon the value of both the surface currents and bathymetry; in our reconstruction algorithm these parameters are estimated through the (Normalized Scalar Product) procedure [1], which outperforms other existing methods (e.g., the Least Squares) [4]. From the reconstructed wave elevation sequences we can get the directional spectrum that provides useful information (i.e., wavelength, period, direction and amplitude) relevant to the main waves contributing to the wave motion. Of course, in coastal zones a number of diffraction and reflection phenomena can be observed, due to sea-waves impinging obstacles as jetties, breakwaters and boats. In the present paper we want to show the capability to detect reflected and diffracted sea-waves offered by the processing of X-band radar data. Further details relevant to the obtained results will be provided in the full paper and at the conference time. References [1] F. Serafino, C. Lugni, F. Soldovieri, "A novel strategy for the surface current determination from marine X-Band radar data", IEEE Geosci. and Remote Sensing Letters, vol. 7, no

  1. The impact of thin idealized media images on body satisfaction: does body appreciation protect women from negative effects?

    Science.gov (United States)

    Halliwell, Emma

    2013-09-01

    This article examines whether positive body image can protect women from negative media exposure effects. University women (N=112) were randomly allocated to view advertisements featuring ultra-thin models or control images. Women who reported high levels of body appreciation did not report negative media exposure effects. Furthermore, the protective role of body appreciation was also evident among women known to be vulnerable to media exposure. Women high on thin-ideal internalization and low on body appreciation reported appearance-discrepancies that were more salient and larger when they viewed models compared to the control group. However, women high on thin-ideal internalization and also high on body appreciation rated appearance-discrepancies as less important and no difference in size than the control group. The results support the notion that positive body image protects women from negative environmental appearance messages and suggests that promoting positive body image may be an effective intervention strategy. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Low-dose CT of the paranasal sinuses with eye lens protection: effect on image quality and radiation dose

    Energy Technology Data Exchange (ETDEWEB)

    Hein, Eike; Rogalla, Patrik; Klingebiel, Randolph; Hamm, Bernd [Department of Diagnostic and Interventional Radiology, Charite Hospital, Humboldt-Universitaet zu Berlin (Germany)

    2002-07-01

    The purpose of the study was to assess the effect of lens protection on image quality and radiation dose to the eye lenses in CT of the paranasal sinuses. In 127 patients referred to rule out sinusitis, an axial spiral CT with a lens protection placed on the patients eyes was obtained (1.5/2/1, 50 mAs, 120 kV). Coronal views were reconstructed at 5-mm interval. To quantify a subjective impression of image quality, three regions of interest within the eyeball were plotted along a line perpendicular to the protection at 2, 5, and 9 mm beneath skin level on the axial images. Additionally, dose reduction of a bismuth-containing latex shield was measured using a film-dosimetry technique. The average eyeball density was 17.97 HU (SD 3.7 HU). The relative increase in CT density was 180.6 (17.7), 103.3 (11.7), and 53.6 HU (9.2), respectively. There was no diagnostic information loss on axial and coronal views observed. Artifacts were practically invisible on images viewed in a bone window/level setting. The use of the shield reduced skin radiation from 7.5 to 4.5 mGy. The utilization of a radioprotection to the eye lenses in paranasal CT is a suitable and effective means of reducing skin radiation by 40%. (orig.)

  3. Low-dose CT of the paranasal sinuses with eye lens protection: effect on image quality and radiation dose

    International Nuclear Information System (INIS)

    Hein, Eike; Rogalla, Patrik; Klingebiel, Randolph; Hamm, Bernd

    2002-01-01

    The purpose of the study was to assess the effect of lens protection on image quality and radiation dose to the eye lenses in CT of the paranasal sinuses. In 127 patients referred to rule out sinusitis, an axial spiral CT with a lens protection placed on the patients eyes was obtained (1.5/2/1, 50 mAs, 120 kV). Coronal views were reconstructed at 5-mm interval. To quantify a subjective impression of image quality, three regions of interest within the eyeball were plotted along a line perpendicular to the protection at 2, 5, and 9 mm beneath skin level on the axial images. Additionally, dose reduction of a bismuth-containing latex shield was measured using a film-dosimetry technique. The average eyeball density was 17.97 HU (SD 3.7 HU). The relative increase in CT density was 180.6 (17.7), 103.3 (11.7), and 53.6 HU (9.2), respectively. There was no diagnostic information loss on axial and coronal views observed. Artifacts were practically invisible on images viewed in a bone window/level setting. The use of the shield reduced skin radiation from 7.5 to 4.5 mGy. The utilization of a radioprotection to the eye lenses in paranasal CT is a suitable and effective means of reducing skin radiation by 40%. (orig.)

  4. Reflectance conversion methods for the VIS/NIR imaging spectrometer aboard the Chang'E-3 lunar rover: based on ground validation experiment data

    International Nuclear Information System (INIS)

    Liu Bin; Liu Jian-Zhong; Zhang Guang-Liang; Zou Yong-Liao; Ling Zong-Cheng; Zhang Jiang; He Zhi-Ping; Yang Ben-Yong

    2013-01-01

    The second phase of the Chang'E Program (also named Chang'E-3) has the goal to land and perform in-situ detection on the lunar surface. A VIS/NIR imaging spectrometer (VNIS) will be carried on the Chang'E-3 lunar rover to detect the distribution of lunar minerals and resources. VNIS is the first mission in history to perform in-situ spectral measurement on the surface of the Moon, the reflectance data of which are fundamental for interpretation of lunar composition, whose quality would greatly affect the accuracy of lunar element and mineral determination. Until now, in-situ detection by imaging spectrometers was only performed by rovers on Mars. We firstly review reflectance conversion methods for rovers on Mars (Viking landers, Pathfinder and Mars Exploration rovers, etc). Secondly, we discuss whether these conversion methods used on Mars can be applied to lunar in-situ detection. We also applied data from a laboratory bidirectional reflectance distribution function (BRDF) using simulated lunar soil to test the availability of this method. Finally, we modify reflectance conversion methods used on Mars by considering differences between environments on the Moon and Mars and apply the methods to experimental data obtained from the ground validation of VNIS. These results were obtained by comparing reflectance data from the VNIS measured in the laboratory with those from a standard spectrometer obtained at the same time and under the same observing conditions. The shape and amplitude of the spectrum fits well, and the spectral uncertainty parameters for most samples are within 8%, except for the ilmenite sample which has a low albedo. In conclusion, our reflectance conversion method is suitable for lunar in-situ detection.

  5. Synthetic Image Generator Model; Application of View Angle Dependent Reflectivity Components and Performance Evaluation in the Visible Region

    Science.gov (United States)

    1993-02-01

    3.1.2. Modeling of Environment ....................... 6 3.1.3. Ray Tracing and Radiosity ..................... 8 3.2. Reflectivity Review...SIG modeling is dependent on proper treatment of its effects. 3.1.3 Ray Tracing and Radiosity Prior to reviewing reflectivity, a brief look is made of...methods of applying complex theoretical energy propagation algorithms. Two such methods are ray tracing and radiosity (Goral, et al, 1984). Ray tracing is a

  6. SPP-assisted sub-wavelength reflection-type THz imaging with THz time-domain spectrometer

    Science.gov (United States)

    Lai, Senfeng; Wu, Yanghui; Wu, Wen; Gu, Wenhua

    2017-08-01

    THz imaging has become a hot research topic in recent years, thanks to its merits of non-contact, strong penetration, immunity to hostile environments, and nondestructive detection. However, its spatial resolution is limited by the relatively long wavelength, so the location and measurement precision can only reach the level of the imaging wavelength, which has become a severe limitation of THz imaging. A simple way using surface plasmonic polartons (SPPs) to improve the location and measurement precision of THz by one order of magnitude was proposed in this manuscript, which can realize subwavelength THz imaging.

  7. Reflected Glory

    Science.gov (United States)

    2011-02-01

    The nebula Messier 78 takes centre stage in this image taken with the Wide Field Imager on the MPG/ESO 2.2-metre telescope at the La Silla Observatory in Chile, while the stars powering the bright display take a backseat. The brilliant starlight ricochets off dust particles in the nebula, illuminating it with scattered blue light. Igor Chekalin was the overall winner of ESO's Hidden Treasures 2010 astrophotography competition with his image of this stunning object. Messier 78 is a fine example of a reflection nebula. The ultraviolet radiation from the stars that illuminate it is not intense enough to ionise the gas to make it glow - its dust particles simply reflect the starlight that falls on them. Despite this, Messier 78 can easily be observed with a small telescope, being one of the brightest reflection nebulae in the sky. It lies about 1350 light-years away in the constellation of Orion (The Hunter) and can be found northeast of the easternmost star of Orion's belt. This new image of Messier 78 from the MPG/ESO 2.2-metre telescope at the La Silla Observatory is based on data selected by Igor Chekalin in his winning entry to the Hidden Treasures competition [1]. The pale blue tint seen in the nebula in this picture is an accurate representation of its dominant colour. Blue hues are commonly seen in reflection nebulae because of the way the starlight is scattered by the tiny dust particles that they contain: the shorter wavelength of blue light is scattered more efficiently than the longer wavelength red light. This image contains many other striking features apart from the glowing nebula. A thick band of obscuring dust stretches across the image from the upper left to the lower right, blocking the light from background stars. In the bottom right corner, many curious pink structures are also visible, which are created by jets of material being ejected from stars that have recently formed and are still buried deep in dust clouds. Two bright stars, HD 38563A and

  8. Radiation protection actions at Swedish nuclear power plants 1994-2002 and some reflections about the near future; Straalskydd vid svenska kaernkraftverk under perioden 1994-2002, samt reflexioner om kommande utveckling

    Energy Technology Data Exchange (ETDEWEB)

    Erixon, Stig; Godaas, Tommy; Hofvander, Peter; Lund, Ingmar; Malmqvist, Lars; Thimgren, Ingela; Oelander-Guer, Hanna

    2003-12-01

    This report provides a summary of radiation protection experiences over the years 1994-2002 in the Swedish nuclear power industry. Actions to reduce radiation levels in reactor systems, occupational exposure results and some reflections about the near future are presented.

  9. The Impact of an Educational Intervention to Protect Women against the Influence of Media Images

    Science.gov (United States)

    Ogden, Jane; Smith, Lauren; Nolan, Helen; Moroney, Rachel; Lynch, Hannah

    2011-01-01

    Purpose: Media images of unrealistic beauty have been identified as a determinant of women's body dissatisfaction. This experimental study aims to explore whether the negative impact of such images could be reduced by a one-time educational intervention consisting of a presentation and discussion, teaching women to be critical of media images.…

  10. High-resolution wave-theory-based ultrasound reflection imaging using the split-step fourier and globally optimized fourier finite-difference methods

    Science.gov (United States)

    Huang, Lianjie

    2013-10-29

    Methods for enhancing ultrasonic reflection imaging are taught utilizing a split-step Fourier propagator in which the reconstruction is based on recursive inward continuation of ultrasonic wavefields in the frequency-space and frequency-wave number domains. The inward continuation within each extrapolation interval consists of two steps. In the first step, a phase-shift term is applied to the data in the frequency-wave number domain for propagation in a reference medium. The second step consists of applying another phase-shift term to data in the frequency-space domain to approximately compensate for ultrasonic scattering effects of heterogeneities within the tissue being imaged (e.g., breast tissue). Results from various data input to the method indicate significant improvements are provided in both image quality and resolution.

  11. Scanning tunnel microscopic image of tungsten (100) and (110) real surfaces and nature of conduction electron reflection

    International Nuclear Information System (INIS)

    Pryadkin, S.L.; Tsoj, V.S.

    1988-01-01

    The electrically polished (100) and (110) surfaces of tungsten are studied with the aid of a scanning tunnel microscope at atmospheric pressure. The (110) surface consists of a large number of atomically plane terraces whereas the (100) surface is faceted. The scanning tunnel microscope data can explain such results of experiments on transverse electron focussing as the strong dependence of the probability for specular reflection of conduction electrons scattered by the (100) surface on the electron de Broglie wavelength and the absence of a dependence of the probability for specular reflection on the wavelength for the (110) surface

  12. Circulating AMH reflects ovarian morphology by magnetic resonance imaging and 3D ultrasound in 121 healthy girls

    DEFF Research Database (Denmark)

    Hagen, Casper P; Mouritsen, Annette; Mieritz, Mikkel G

    2015-01-01

    aimed to evaluate whether serum levels of AMH reflects ovarian morphology in healthy girls. DESIGN AND SETTING: This was a population-based cohort study involving the general community. PARTICIPANTS: Included in the study were 121 healthy girls 9.8-14.7 years of age. MAIN OUTCOME MEASURES: Clinical...... volume, follicles ≥1 mm. Circulating levels of AMH, inhibin B, estradiol, FSH, and LH were assessed by immunoassays; T and androstenedione were assessed by liquid chromatography-tandem mass spectrometry. RESULTS: AMH reflected the number of small (MRI 2-3 mm) and medium (4-6 mm) follicles (Pearson's Rho...

  13. How a Small Family Run Business Adopted Critical Reflection Action Learning Using Hand Drawn Images to Initiate Organisational Change

    Science.gov (United States)

    Shepherd, Gary

    2016-01-01

    In this account of practice I would like to share my experiences of facilitating a Critical Reflection Action Learning (CRAL) set with a small family run business, struggling to make change and expand their services due to the problems they encountered in separating their business lives from their family lives. The account I present here is based…

  14. Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients

    Science.gov (United States)

    Fei, Baowei; Lu, Guolan; Wang, Xu; Zhang, Hongzheng; Little, James V.; Patel, Mihir R.; Griffith, Christopher C.; El-Diery, Mark W.; Chen, Amy Y.

    2017-08-01

    A label-free, hyperspectral imaging (HSI) approach has been proposed for tumor margin assessment. HSI data, i.e., hypercube (x,y,λ), consist of a series of high-resolution images of the same field of view that are acquired at different wavelengths. Every pixel on an HSI image has an optical spectrum. In this pilot clinical study, a pipeline of a machine-learning-based quantification method for HSI data was implemented and evaluated in patient specimens. Spectral features from HSI data were used for the classification of cancer and normal tissue. Surgical tissue specimens were collected from 16 human patients who underwent head and neck (H&N) cancer surgery. HSI, autofluorescence images, and fluorescence images with 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl)amino]-D-glucose (2-NBDG) and proflavine were acquired from each specimen. Digitized histologic slides were examined by an H&N pathologist. The HSI and classification method were able to distinguish between cancer and normal tissue from the oral cavity with an average accuracy of 90%±8%, sensitivity of 89%±9%, and specificity of 91%±6%. For tissue specimens from the thyroid, the method achieved an average accuracy of 94%±6%, sensitivity of 94%±6%, and specificity of 95%±6%. HSI outperformed autofluorescence imaging or fluorescence imaging with vital dye (2-NBDG or proflavine). This study demonstrated the feasibility of label-free, HSI for tumor margin assessment in surgical tissue specimens of H&N cancer patients. Further development of the HSI technology is warranted for its application in image-guided surgery.

  15. 7-Tesla Magnetic Resonance Imaging Precisely and Noninvasively Reflects Inflammation and Remodeling of the Skeletal Muscle in a Mouse Model of Antisynthetase Syndrome

    Directory of Open Access Journals (Sweden)

    Clara Sciorati

    2014-01-01

    Full Text Available Inflammatory myopathies comprise heterogeneous disorders. Their etiopathogenesis is poorly understood, because of the paucity of informative experimental models and of approaches for the noninvasive study of inflamed tissues. Magnetic resonance imaging (MRI provides information about the state of the skeletal muscle that reflects various facets of inflammation and remodeling. This technique has been scarcely used in experimental models of inflammatory myopathies. We characterized the performance of MRI in a well-established mouse model of myositis and the antisynthetase syndrome, based on the immunization of wild-type mice with the amino-terminal fragment of histidyl-tRNA synthetase (HisRS. Over an eight-week period following myositis induction, MRI enabled precise identification of pathological events taking place in muscle tissue. Areas of edema and of active inflammation identified by histopathology paralleled muscle modifications detected noninvasively by MRI. Muscles changes were chronologically associated with the establishment of autoimmunity, as reflected by the development of anti-HisRS antibodies in the blood of immunized mice. MR imaging easily appreciated muscle damage and remodeling even if actual disruption of myofiber integrity (as assessed by serum concentrations of creatinine phosphokinase was limited. Thus, MR imaging represents an informative and noninvasive analytical tool for studying in vivo immune-mediated muscle involvement.

  16. 7-Tesla Magnetic Resonance Imaging Precisely and Noninvasively Reflects Inflammation and Remodeling of the Skeletal Muscle in a Mouse Model of Antisynthetase Syndrome

    Science.gov (United States)

    Sciorati, Clara; Esposito, Antonio; Campana, Lara; Canu, Tamara; Monno, Antonella; Palmisano, Anna; De Cobelli, Francesco; Del Maschio, Alessandro; Ascheman, Dana P.; Manfredi, Angelo A.; Rovere-Querini, Patrizia

    2014-01-01

    Inflammatory myopathies comprise heterogeneous disorders. Their etiopathogenesis is poorly understood, because of the paucity of informative experimental models and of approaches for the noninvasive study of inflamed tissues. Magnetic resonance imaging (MRI) provides information about the state of the skeletal muscle that reflects various facets of inflammation and remodeling. This technique has been scarcely used in experimental models of inflammatory myopathies. We characterized the performance of MRI in a well-established mouse model of myositis and the antisynthetase syndrome, based on the immunization of wild-type mice with the amino-terminal fragment of histidyl-tRNA synthetase (HisRS). Over an eight-week period following myositis induction, MRI enabled precise identification of pathological events taking place in muscle tissue. Areas of edema and of active inflammation identified by histopathology paralleled muscle modifications detected noninvasively by MRI. Muscles changes were chronologically associated with the establishment of autoimmunity, as reflected by the development of anti-HisRS antibodies in the blood of immunized mice. MR imaging easily appreciated muscle damage and remodeling even if actual disruption of myofiber integrity (as assessed by serum concentrations of creatinine phosphokinase) was limited. Thus, MR imaging represents an informative and noninvasive analytical tool for studying in vivo immune-mediated muscle involvement. PMID:24895622

  17. Coupled Retrieval of Aerosol Properties and Surface Reflection Using the Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI)

    Science.gov (United States)

    Xu, F.; van Harten, G.; Kalashnikova, O. V.; Diner, D. J.; Seidel, F. C.; Garay, M. J.; Dubovik, O.

    2016-12-01

    The Airborne Multi-angle SpectroPolarimetric Imager (AirMSPI) [1] has been flying aboard the NASA ER-2 high altitude aircraft since October 2010. In step-and-stare operation mode, AirMSPI acquires radiance and polarization data at 355, 380, 445, 470*, 555, 660*, 865*, and 935 nm (* denotes polarimetric bands). The imaged area covers about 10 km by 10 km and is observed from 9 view angles between ±67° off of nadir. We have developed an efficient and flexible code that uses the information content of AirMSPI data for a coupled retrieval of aerosol properties and surface reflection. The retrieval was built based on the multi-pixel optimization concept [2], with the use of a hybrid radiative transfer model [3] that combines the Markov Chain [4] and adding/doubling methods [5]. The convergence and robustness of our algorithm is ensured by applying constraints on (a) the spectral variation of the Bidirectional Polarization Distribution Function (BPDF) and angular shape of the Bidirectional Reflectance Distribution Function (BRDF); (b) the spectral variation of aerosol optical properties; and (c) the spatial variation of aerosol parameters across neighboring image pixels. Our retrieval approach has been tested using over 20 AirMSPI datasets having low to moderately high aerosol loadings ( 0.02550-nmSpace Sci. Rev. 16, 527 (1974).

  18. IAEA calls for enhanced radiation protection of patients. Safety specialists warn against overuse of new imaging devices

    International Nuclear Information System (INIS)

    2009-01-01

    Advances in medical imaging techniques are allowing doctors to detect hidden diseases and make ever more accurate diagnoses. But radiation safety experts at the International Atomic Energy Agency (IAEA) say that overuse of high-tech scanning procedures may unnecessarily expose patients to increased radiation levels. The IAEA, in collaboration with other international organizations, is developing a series of measures aimed at strengthening patient protection. The focus of recent efforts is a Smart Card project, to log how much radiation a person receives in the course of a lifetime. Concern surrounds procedures such as computed tomography (CT) scans because they deliver higher doses of radiation to patients in comparison to conventional X-rays (radiographs). It's been estimated that the average radiation dose of one CT scan is equal to roughly 500 chest X-rays. And that can increase a patient's lifetime risk of cancer, particularly if CT scans are repeated. The IAEA is one of the key international players in the field of patient radiation protection. A unit dedicated to the Radiological Protection of Patients (RPoP) was established in 2001. The IAEA's activities in radiation protection of patients include training, knowledge sharing and capacity building in the medical use of radiation. Extensive, up-to-date training material for health professionals is freely available on the RPoP website. An International Action Plan on the Radiological Protection of Patients that has been established together with leading international organizations such as the World Health Organization (WHO), UNSCEAR, the International Commission on Radiological Protection (ICRP) and others to identify strategies for strengthening radiation protection of patients. Coordinating and managing technical cooperation projects with Member States on patient dose assessment. The aim is to identify the factors that contribute to unnecessary radiation dose to patients, provide guidance on dealing with

  19. Do the SRS-22 self-image and mental health domain scores reflect the degree of asymmetry of the back in adolescent idiopathic scoliosis?

    Science.gov (United States)

    Cheshire, James; Gardner, Adrian; Berryman, Fiona; Pynsent, Paul

    2017-01-01

    Patient-reported outcomes are becoming increasingly recognised in the management of patients with adolescent idiopathic scoliosis (AIS). Integrated Shape Imaging System 2 (ISIS2) surface topography is a validated tool to assess AIS. Previous studies have failed to demonstrate strong correlations between AIS and patient-reported outcomes highlighting the need for additional objective surface parameters to define the deformities associated with AIS. The aim of this study was to examine whether the Scoliosis Research Society-22 (SRS-22) outcome questionnaire reflects the degree of measurable external asymmetry of the back in AIS and thus is a measure of patient outcome for external appearance. A total of 102 pre-operative AIS patients were identified retrospectively. Objective parameters were measured using ISIS2 surface topography. The associations between these parameters and the self-image and mental health domains of the SRS-22 questionnaire were investigated using correlation coefficients. All correlations between the parameters of asymmetry and SRS-22 self-image score were of weak strength. Similarly, all correlations between the parameters of asymmetry and SRS-22 mental health score were of weak strength. The SRS-22 mental health and self-image domains correlate poorly with external measures of deformity. This demonstrates that the assessment of mental health and self-image by the SRS-22 has little to do with external torso shape. Whilst the SRS-22 assesses the patient as a whole, it provides little information about objective measures of deformity over which a surgeon has control.

  20. The near infrared imaging system for the real-time protection of the JET ITER-like wall

    Science.gov (United States)

    Huber, A.; Kinna, D.; Huber, V.; Arnoux, G.; Balboa, I.; Balorin, C.; Carman, P.; Carvalho, P.; Collins, S.; Conway, N.; McCullen, P.; Jachmich, S.; Jouve, M.; Linsmeier, Ch; Lomanowski, B.; Lomas, P. J.; Lowry, C. G.; Maggi, C. F.; Matthews, G. F.; May-Smith, T.; Meigs, A.; Mertens, Ph; Nunes, I.; Price, M.; Puglia, P.; Riccardo, V.; Rimini, F. G.; Sergienko, G.; Tsalas, M.; Zastrow, K.-D.; contributors, JET

    2017-12-01

    This paper describes the design, implementation and operation of the near infrared (NIR) imaging diagnostic system of the JET ITER-like wall (JET-ILW) plasma experiment and its integration into the existing JET protection architecture. The imaging system comprises four wide-angle views, four tangential divertor views, and two top views of the divertor covering 66% of the first wall and up to 43% of the divertor. The operation temperature ranges which must be observed by the NIR protection cameras are, for the materials used on JET: Be 700 °C-1400 °C W coating 700 °C-1370 °C W bulk 700 °C-1400 °C. The Real-Time Protection system operates routinely since 2011 and successfully demonstrated its capability to avoid the overheating of the main chamber beryllium wall as well as of the divertor W and W-coated carbon fibre composite (CFC) tiles. During this period, less than 0.5% of the terminated discharges were aborted by a malfunction of the system. About 2%-3% of the discharges were terminated due to the detection of actual hot spots.

  1. DEM RECONSTRUCTION USING LIGHT FIELD AND BIDIRECTIONAL REFLECTANCE FUNCTION FROM MULTI-VIEW HIGH RESOLUTION SPATIAL IMAGES

    Directory of Open Access Journals (Sweden)

    F. de Vieilleville

    2016-06-01

    Full Text Available This paper presents a method for dense DSM reconstruction from high resolution, mono sensor, passive imagery, spatial panchromatic image sequence. The interest of our approach is four-fold. Firstly, we extend the core of light field approaches using an explicit BRDF model from the Image Synthesis community which is more realistic than the Lambertian model. The chosen model is the Cook-Torrance BRDF which enables us to model rough surfaces with specular effects using specific material parameters. Secondly, we extend light field approaches for non-pinhole sensors and non-rectilinear motion by using a proper geometric transformation on the image sequence. Thirdly, we produce a 3D volume cost embodying all the tested possible heights and filter it using simple methods such as Volume Cost Filtering or variational optimal methods. We have tested our method on a Pleiades image sequence on various locations with dense urban buildings and report encouraging results with respect to classic multi-label methods such as MIC-MAC, or more recent pipelines such as S2P. Last but not least, our method also produces maps of material parameters on the estimated points, allowing us to simplify building classification or road extraction.

  2. Synchrotron-based multiple-beam FTIR chemical imaging of a multi-layered polymer in transmission and reflection: towards cultural heritage applications

    Science.gov (United States)

    Unger, Miriam; Mattson, Eric; Schmidt Patterson, Catherine; Alavi, Zahrasadet; Carson, David; Hirschmugl, Carol J.

    2013-04-01

    IRENI (infrared environmental imaging) is a recently commissioned Fourier transform infrared (FTIR) chemical imaging beamline at the Synchrotron Radiation Center in Madison, WI, USA. This novel beamline extracts 320 mrad of radiation, horizontally, from one bending magnet. The optical transport separates and recombines the beam into 12 parallel collimated beams to illuminate a commercial FTIR microspectrometer (Bruker Hyperion 3000) equipped with a focal plane array detector where single pixels in the detector image a projected sample area of either 0.54×0.54 μm2 or 2×2 μm2, depending in the measurement geometry. The 12 beams are partially overlapped and defocused, similar to wide-field microscopy, homogeneously illuminating a relatively large sample area compared to single-beam arrangements. Both transmission and reflection geometries are used to examine a model cross section from a layered polymer material. The compromises for sample preparation and measurement strategies are discussed, and the chemical composition and spatial definition of the layers are distinguished in chemical images generated from data sets. Deconvolution methods that may allow more detailed data analysis are also discussed.

  3. Depth imaging system for seismic reflection data. Part 1. Outline of system; Hanshaho jishin tansa data no tame no shindo imaging system. 1. System no gaiyo

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, N [Japex Jeoscience Institute, Tokyo (Japan); Matsuoka, T [Japan Petroleum Exploration Corp., Tokyo (Japan); Tsuru, T [Japan National Oil Corp., Tokyo (Japan)

    1996-10-01

    Structures of oil and gas fields to be recently explored have changed from simple structures represented by anticline into more complicated and more delicate structures in the deeper underground. In order to discover and develop prospective oil and gas fields among such geological structures, it is indispensable to construct a system which can treat seismic exploration date collectively before stacking and can easily perform imaging of underground structures accurately. Based on the advancement of hardware, Japan National Oil Corporation and Japan Petroleum Exploration Co., Ltd. have developed a depth imaging system as an interactive tool for constructing underground structures accurately through a cooperation of highly accurate imaging technology. Using this system, two-dimensional underground structure models can be easily given and modified by interactively referring to results of depth migration velocity analysis and stacking velocity analysis, well data, cross sections after depth transform, etc. 1 fig.

  4. Diffusion-weighted imaging features of breast tumours and the surrounding stroma reflect intrinsic heterogeneous characteristics of molecular subtypes in breast cancer

    KAUST Repository

    Fan, Ming

    2017-12-16

    Breast cancer heterogeneity is the main obstacle preventing the identification of patients with breast cancer with poor prognoses and treatment responses; however, such heterogeneity has not been well characterized. The purpose of this retrospective study was to reveal heterogeneous patterns in the apparent diffusion coefficient (ADC) signals in tumours and the surrounding stroma to predict molecular subtypes of breast cancer. A dataset of 126 patients with breast cancer, who underwent preoperative diffusion-weighted imaging (DWI) on a 3.0-T image system, was collected. Breast images were segmented into regions comprising the tumour and surrounding stromal shells in which features that reflect heterogeneous ADC signal distribution were extracted. For each region, imaging features were computed, including the mean, minimum, variance, interquartile range (IQR), range, skewness, kurtosis and entropy of ADC values. Univariate and stepwise multivariate logistic regression modelling was performed to identify the magnetic resonance imaging features that optimally discriminate luminal A, luminal B, human epidermal growth factor 2 (HER2)-enriched and basal-like molecular subtypes. The performance of the predictive models was evaluated using the area under the receiver operating characteristic curve (AUC). Univariate logistic regression analysis showed that the skewness in the tumour boundary achieved an AUC of 0.718 for discrimination between luminal A and non-luminal A tumours, whereas the IQR of the ADC value in the tumour boundary had an AUC of 0.703 for classification of the HER2-enriched subtype. Imaging features in the tumour boundary and the proximal peritumoral stroma corresponded to a higher overall prediction performance than those in other regions. A multivariate logistic regression model combining features in all the regions achieved an overall AUC of 0.800 for the classification of the four tumour subtypes. These findings suggest that features in the tumour

  5. Diffusion-weighted imaging features of breast tumours and the surrounding stroma reflect intrinsic heterogeneous characteristics of molecular subtypes in breast cancer

    KAUST Repository

    Fan, Ming; He, Ting; Zhang, Peng; Cheng, Hu; Zhang, Juan; Gao, Xin; Li, Lihua

    2017-01-01

    Breast cancer heterogeneity is the main obstacle preventing the identification of patients with breast cancer with poor prognoses and treatment responses; however, such heterogeneity has not been well characterized. The purpose of this retrospective study was to reveal heterogeneous patterns in the apparent diffusion coefficient (ADC) signals in tumours and the surrounding stroma to predict molecular subtypes of breast cancer. A dataset of 126 patients with breast cancer, who underwent preoperative diffusion-weighted imaging (DWI) on a 3.0-T image system, was collected. Breast images were segmented into regions comprising the tumour and surrounding stromal shells in which features that reflect heterogeneous ADC signal distribution were extracted. For each region, imaging features were computed, including the mean, minimum, variance, interquartile range (IQR), range, skewness, kurtosis and entropy of ADC values. Univariate and stepwise multivariate logistic regression modelling was performed to identify the magnetic resonance imaging features that optimally discriminate luminal A, luminal B, human epidermal growth factor 2 (HER2)-enriched and basal-like molecular subtypes. The performance of the predictive models was evaluated using the area under the receiver operating characteristic curve (AUC). Univariate logistic regression analysis showed that the skewness in the tumour boundary achieved an AUC of 0.718 for discrimination between luminal A and non-luminal A tumours, whereas the IQR of the ADC value in the tumour boundary had an AUC of 0.703 for classification of the HER2-enriched subtype. Imaging features in the tumour boundary and the proximal peritumoral stroma corresponded to a higher overall prediction performance than those in other regions. A multivariate logistic regression model combining features in all the regions achieved an overall AUC of 0.800 for the classification of the four tumour subtypes. These findings suggest that features in the tumour

  6. Optic nerve sheath diameter on fat-saturated T2-weighted orbital MR imaging reflects intracranial pressure

    International Nuclear Information System (INIS)

    Watanabe, Arata; Kinouchi, Hiroyuki; Horikoshi, Toru; Uchida, Mikito; Sakatsume, Satoshi

    2009-01-01

    Although dilated optic nerve sheath (ONS) is observed in the setting of increased intracranial pressure (ICP) such as idiopathic intracranial hypertension or hydrocephalus, the relationship between ONS diameter and ICP is unclear. We analyzed the relationship between subdural pressure measured during surgery in patients with chronic subdural fluid collections and ONS diameter measured on MR images. Orbital thin slice fat-saturated MR images were obtained within 24 hours before surgery and ONS diameters were measured just behind the optic globe. Subdural pressure was measured using a manometer before opening the dura mater during surgery. Significant correlation was found between the ONS diameter and subdural pressure (y=0.0618x+4.8219. y: ONS diameter (mm), x: subdural pressure (cmH 2 O), correlation coefficient: 0.505). The ONS diameter before surgery (6.1±0.7 mm) was significantly reduced after surgery (4.8±0.9 mm, p=0.003). Increased ONS diameter on MR images is a strong indicator of increased ICP we propose 6 mm as the normal limit of diameter just behind the eyeball because this value corresponds to the upper normal limit of ICP of around 20 cmH 2 O with above mentioned approximate curve. (author)

  7. Mapping hydrothermally altered rocks at Cuprite, Nevada, using the advanced spaceborne thermal emission and reflection radiometer (Aster), a new satellite-imaging system

    Science.gov (United States)

    Rowan, L.C.; Hook, S.J.; Abrams, M.J.; Mars, J.C.

    2003-01-01

    The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) is a 14-band multispectral instrument on board the Earth Observing System (EOS), TERRA. The three bands between 0.52 and 0.86 ??m and the six bands from 1.60 and 2.43 ??m, which have 15- and 30-m spatial resolution, respectively, were selected primarily for making remote mineralogical determinations. The Cuprite, Nevada, mining district comprises two hydrothermal alteration centers where Tertiary volcanic rocks have been hydrothermally altered mainly to bleached silicified rocks and opalized rocks, with a marginal zone of limonitic argilized rocks. Country rocks are mainly Cambrian phyllitic siltstone and limestone. Evaluation of an ASTER image of the Cuprite district shows that spectral reflectance differences in the nine bands in the 0.52 to 2.43 ??m region provide a basis for identifying and mapping mineralogical components which characterize the main hydrothermal alteration zones: opal is the spectrally dominant mineral in the silicified zone; whereas, alunite and kaolinite are dominant in the opalized zone. In addition, the distribution of unaltered country rocks was mapped because of the presence of spectrally dominant muscovite in the siltstone and calcite in limestone, and the tuffaceous rocks and playa deposits were distinguishable due to their relatively flat spectra and weak absorption features at 2.33 and 2.20 ??m, respectively. An Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) image of the study area was processed using a similar methodology used with the ASTER data. Comparison of the ASTER and AVIRIS results shows that the results are generally similar, but the higher spectral resolution of AVIRIS (224 bands) permits identification of more individual minerals, including certain polymorphs. However, ASTER has recorded images of more than 90 percent of the Earth's land surface with less than 20 percent cloud cover, and these data are available at nominal or no cost

  8. A protection system for the JET ITER-like wall based on imaging diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Arnoux, G.; Balboa, I.; Balshaw, N.; Beldishevski, M.; Cramp, S.; Felton, R.; Goodyear, A.; Horton, A.; Kinna, D.; McCullen, P.; Obrejan, K.; Patel, K.; Lomas, P. J.; Rimini, F.; Stamp, M.; Stephen, A.; Thomas, P. D.; Williams, J.; Wilson, J.; Zastrow, K.-D. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); and others

    2012-10-15

    The new JET ITER-like wall (made of beryllium and tungsten) is more fragile than the former carbon fiber composite wall and requires active protection to prevent excessive heat loads on the plasma facing components (PFC). Analog CCD cameras operating in the near infrared wavelength are used to measure surface temperature of the PFCs. Region of interest (ROI) analysis is performed in real time and the maximum temperature measured in each ROI is sent to the vessel thermal map. The protection of the ITER-like wall system started in October 2011 and has already successfully led to a safe landing of the plasma when hot spots were observed on the Be main chamber PFCs. Divertor protection is more of a challenge due to dust deposits that often generate false hot spots. In this contribution we describe the camera, data capture and real time processing systems. We discuss the calibration strategy for the temperature measurements with cross validation with thermal IR cameras and bi-color pyrometers. Most importantly, we demonstrate that a protection system based on CCD cameras can work and show examples of hot spot detections that stop the plasma pulse. The limits of such a design and the associated constraints on the operations are also presented.

  9. The quality assurance in diagnostic radiology and their effect in the quality image and radiological protection of the patient

    International Nuclear Information System (INIS)

    Gaona, Enrique

    2002-01-01

    The quality assurance in diagnostic radiology in Mexico before 1997 was virtually nonexistent except in few academic institutions and hospitals. The purpose of this study was to carry out an exploratory survey of the issue of quality control parameters of general and fluoroscopy x-ray systems in the Mexican Republic and their effects in the quality image and radiological protection of the patient. A general result of the survey is that there is not significant difference in the observed frequencies among public and private radiology departments for α = 0.05, then the results are valid for both departments. 37% of x-ray systems belong to public radiology departments. In the radiology departments that didn't agree with the Mexican regulations in: light field to mach the x-ray field, light field intensity, kV, time and output. In those cases, we found a repeat rate of radiography studies >30% with non necessary dose to patient, low quality image and high operating costs of the radiology service. We found in x-ray fluoroscopy systems that 62% had a low quality image due to electronic noise in the television chain. In general the x-ray systems that didn't agree with Mexican regulations are 35% and they can affect in a way or other the quality image and the dose to patient

  10. New High-Resolution Multibeam Mapping and Seismic Reflection Imaging of Mudflows on the Mississippi River Delta Front

    Science.gov (United States)

    Chaytor, J. D.; Baldwin, W. E.; Danforth, W. W.; Bentley, S. J.; Miner, M. D.; Damour, M.

    2017-12-01

    Mudflows (channelized and unconfined debris flows) on the Mississippi River Delta Front (MRDF) are a recognized hazard to oil and gas infrastructure in the shallow Gulf of Mexico. Preconditioning of the seafloor for failure results from high sedimentation rates coupled with slope over-steepening, under-consolidation, and abundant biogenic gas production. Cyclical loading of the seafloor by waves from passing major storms appears to be a primary trigger, but the role of smaller (more frequent) storms and background oceanographic processes are largely unconstrained. A pilot high-resolution seafloor mapping and seismic imaging study was carried out across portions of the MRDF aboard the R/V Point Sur from May 19-26, 2017, as part of a multi-agency/university effort to characterize mudflow hazards in the area. The primary objective of the cruise was to assess the suitability of seafloor mapping and shallow sub-surface imaging tools in the challenging environmental conditions found across delta fronts (e.g., variably-distributed water column stratification and wide-spread biogenic gas in the shallow sub-surface). More than 600 km of multibeam bathymetry/backscatter/water column data, 425 km of towed chirp data, and > 500 km of multi-channel seismic data (boomer/mini-sparker sources, 32-channel streamer) were collected. Varied mudflow (gully, lobe), pro-delta morphologies, and structural features, some of which have been surveyed more than once, were imaged in selected survey areas from Pass a Loutre to Southwest Pass. The present location of the SS Virginia, which has been moving with one of the mudflow lobes since it was sunk in 1942, was determined and found to be 60 m SW of its 2006 position, suggesting movement not linked to hurricane-induced wave triggering of mudflows. Preliminary versions these data were used to identify sediment sampling sites visited on a cruise in early June 2017 led by scientists from LSU and other university/agency partners.

  11. Development of Standard Process for Private Information Protection of Medical Imaging Issuance

    International Nuclear Information System (INIS)

    Park, Bum Jin; Jeong, Jae Ho; Son, Gi Gyeong Son; Kang, Hee Doo; Yoo, Beong Gyu; Lee, Jong Seok

    2009-01-01

    The medical imaging issuance is changed from conventional film method to Digital Compact Disk solution because of development on IT technology. However other medical record department's are undergoing identification check through and through whereas medical imaging department cannot afford to do that. So, we examine present applicant's recognition of private intelligence safeguard, and medical imaging issuance condition by CD and DVD medium toward various medical facility and then perform comparative analysis associated with domestic and foreign law and recommendation, lastly suggest standard for medical imaging issuance and process relate with internal environment. First, we surveyed issuance process and required documents when situation of medical image issuance in the metropolitan medical facility by wire telephone between 2008.6.-12008.7.1. in accordance with the medical law Article 21clause 2, suggested standard through applicant's required documents occasionally - (1) in the event of oneself verifying identification, (2) in the event of family verifying applicant identification and family relations document (health insurance card, attested copy, and so on), (3) third person or representative verifying applicant identification and letter of attorney and certificate of one's seal impression. Second, also checked required documents of applicant in accordance with upper standard when situation of medical image issuance in Kyung-hee university medical center during 3 month 2008.5.-12008.7.31. Third, developed a work process by triangular position of issuance procedure for situation when verifying required documents and management of unpreparedness. Look all over the our manufactured output in the hospital - satisfy the all conditions 4 place(12%), possibly request everyone 4 place(12%), and apply in the clinic section 9 place(27%) that does not medical imaging issuance office, so we don't know about required documents condition. and look into whether meet or not

  12. Improving diagnostic sensitivity of combined dermoscopy and reflectance confocal microscopy imaging through double reader concordance evaluation in telemedicine settings: A retrospective study of 1000 equivocal cases.

    Directory of Open Access Journals (Sweden)

    A M Witkowski

    Full Text Available Reflectance confocal microscopy (RCM is an imaging device that permits non-invasive visualization of cellular morphology and has been shown to improve diagnostic accuracy of dermoscopically equivocal cutaneous lesions. The application of double reader concordance evaluation of dermoscopy-RCM image sets in retrospective settings and its potential application to telemedicine evaluation has not been tested in a large study population.To improve diagnostic sensitivity of RCM image diagnosis using a double reader concordance evaluation approach; to reduce mismanagement of equivocal cutaneous lesions in retrospective consultation and telemedicine settings.1000 combined dermoscopy-RCM image sets were evaluated in blind by 10 readers with advanced training and internship in dermoscopy and RCM evaluation. We compared sensitivity and specificity of single reader evaluation versus double reader concordance evaluation as well as the effect of diagnostic confidence on lesion management in a retrospective setting.Single reader evaluation resulted in an overall sensitivity of 95.2% and specificity of 76.3%, with misdiagnosis of 8 melanomas, 4 basal cell carcinomas and 2 squamous cell carcinomas. Combined double reader evaluation resulted in an overall sensitivity of 98.3% and specificity of 65.5%, with misdiagnosis of 1 in-situ melanoma and 2 basal cell carcinomas.Evaluation of dermoscopy-RCM image sets of cutaneous lesions by single reader evaluation in retrospective settings is limited by sensitivity levels that may result in potential mismanagement of malignant lesions. Double reader blind concordance evaluation may improve the sensitivity of diagnosis and management safety. The use of a second check can be implemented in telemedicine settings where expert consultation and second opinions may be required.

  13. Reflective type objective based spectral-domain phase-sensitive optical coherence tomography for high-sensitive structural and functional imaging of cochlear microstructures through intact bone of an excised guinea pig cochlea

    Science.gov (United States)

    Subhash, Hrebesh M.; Wang, Ruikang K.; Chen, Fangyi; Nuttall, Alfred L.

    2013-03-01

    Most of the optical coherence tomographic (OCT) systems for high resolution imaging of biological specimens are based on refractive type microscope objectives, which are optimized for specific wave length of the optical source. In this study, we present the feasibility of using commercially available reflective type objective for high sensitive and high resolution structural and functional imaging of cochlear microstructures of an excised guinea pig through intact temporal bone. Unlike conventional refractive type microscopic objective, reflective objective are free from chromatic aberrations due to their all-reflecting nature and can support a broadband of spectrum with very high light collection efficiency.

  14. Sun protection

    Science.gov (United States)

    ... sun exposure. The start of summer is when UV rays can cause the most skin damage. Use sun protection, even on cloudy days. Clouds and haze don't protect you from the sun. Avoid surfaces that reflect light, such as water, sand, concrete, snow, and areas ...

  15. Reflection by Porro Prisms

    Science.gov (United States)

    Greenslade, Thomas B.

    2010-04-01

    Students all know that reflection from a plane mirror produces an image that is reversed right to left and so cannot be read by anyone but Leonardo da Vinci, who kept his notes in mirror writing. A useful counter-example is the Porro prism, which produces an image that is not reversed.

  16. The Reflective Learning Continuum: Reflecting on Reflection

    Science.gov (United States)

    Peltier, James W.; Hay, Amanda; Drago, William

    2005-01-01

    The importance of reflection to marketing educators is increasingly recognized. However, there is a lack of empirical research that considers reflection within the context of both the marketing and general business education literature. This article describes the use of an instrument that can be used to measure four identified levels of a…

  17. Exploring the potential of using stories about diverse scientists and reflective activities to enrich primary students' images of scientists and scientific work

    Science.gov (United States)

    Sharkawy, Azza

    2012-06-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15 -week period. My analysis of pre-and post audio-taped interview transcripts, draw-a-scientist-tests (Chambers 1983), participant observations and student work suggest that the stories about scientists and follow-up reflective activities provided resources for students that helped them: (a) acquire images of scientists from less dominant socio-cultural backgrounds; (b) enrich their views of scientific work from predominantly hands-on/activity-oriented views to ones that includes cognitive and positive affective dimensions. One of the limitations of using stories as a tool to extend students' thinking about science is highlighted in a case study of a student who expresses resistance to some of the counter-stereotypic images presented in the stories. I also present two additional case studies that illustrate how shifts in student' views of the nature of scientific work can change their interest in future participation in scientific work.

  18. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy

    Directory of Open Access Journals (Sweden)

    Li T

    2015-06-01

    Full Text Available Tianyuzi Li,1 Howard E Gendelman,1,2 Gang Zhang,1 Pavan Puligujja,1 JoEllyn M McMillan,1 Tatiana K Bronich,2 Benson Edagwa,1 Xin-Ming Liu,1,2 Michael D Boska3 1Department of Pharmacology and Experimental Neuroscience, 2Department of Pharmaceutical Sciences, 3Department of Radiology, University of Nebraska Medical Center, Omaha, NE, USA Abstract: Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART. Our laboratory’s development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK, pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO] particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery. Keywords: folic acid, decorated nanoparticles, magnetite, theranostics, magnetic resonance imaging

  19. A Marked Poisson Process Driven Latent Shape Model for 3D Segmentation of Reflectance Confocal Microscopy Image Stacks of Human Skin

    Science.gov (United States)

    Ghanta, Sindhu; Jordan, Michael I.; Kose, Kivanc; Brooks, Dana H.; Rajadhyaksha, Milind; Dy, Jennifer G.

    2016-01-01

    Segmenting objects of interest from 3D datasets is a common problem encountered in biological data. Small field of view and intrinsic biological variability combined with optically subtle changes of intensity, resolution and low contrast in images make the task of segmentation difficult, especially for microscopy of unstained living or freshly excised thick tissues. Incorporating shape information in addition to the appearance of the object of interest can often help improve segmentation performance. However, shapes of objects in tissue can be highly variable and design of a flexible shape model that encompasses these variations is challenging. To address such complex segmentation problems, we propose a unified probabilistic framework that can incorporate the uncertainty associated with complex shapes, variable appearance and unknown locations. The driving application which inspired the development of this framework is a biologically important segmentation problem: the task of automatically detecting and segmenting the dermal-epidermal junction (DEJ) in 3D reflectance confocal microscopy (RCM) images of human skin. RCM imaging allows noninvasive observation of cellular, nuclear and morphological detail. The DEJ is an important morphological feature as it is where disorder, disease and cancer usually start. Detecting the DEJ is challenging because it is a 2D surface in a 3D volume which has strong but highly variable number of irregularly spaced and variably shaped “peaks and valleys”. In addition, RCM imaging resolution, contrast and intensity vary with depth. Thus a prior model needs to incorporate the intrinsic structure while allowing variability in essentially all its parameters. We propose a model which can incorporate objects of interest with complex shapes and variable appearance in an unsupervised setting by utilizing domain knowledge to build appropriate priors of the model. Our novel strategy to model this structure combines a spatial Poisson process

  20. [Physician's role in "medical drama" pitfall? Reflection of stereotypical images of doctors in context of contemporary doctor's series].

    Science.gov (United States)

    Köhler, M; Grabsch, C; Zellner, M; Noll-Hussong, M

    2014-04-17

    In contemporary U.S. doctor's series, the characters are usually represented by good-looking or typical character actors. The aim of our pilot study was to investigate whether the long-term impact of this format on German television viewers could have an influence on the choice of doctor in Germany. Two different groups of people anticipating TV consumption patterns were questioned: a first group of younger adults who knew theTV series was asked to judge their doctor choice using a web-based survey tool with respect to three criteria (sympathy, expertise and own treatment preference). The second group of adults beyond the 40th year of life who need not know theTV series were shown photos of the serial figures. Study participants should select the "doctor" of which they would most likely want to be treated and this based on two predetermined reasons (sympathy or expertise). Our results indicate that stereotypical images of doctors found high approval only in the first group of people, while the participants in the second group decided in majorityfora more realistic representation of average appearance.

  1. Magnetic resonance imaging of folic acid-coated magnetite nanoparticles reflects tissue biodistribution of long-acting antiretroviral therapy.

    Science.gov (United States)

    Li, Tianyuzi; Gendelman, Howard E; Zhang, Gang; Puligujja, Pavan; McMillan, JoEllyn M; Bronich, Tatiana K; Edagwa, Benson; Liu, Xin-Ming; Boska, Michael D

    2015-01-01

    Regimen adherence, systemic toxicities, and limited drug penetrance to viral reservoirs are obstacles limiting the effectiveness of antiretroviral therapy (ART). Our laboratory's development of the monocyte-macrophage-targeted long-acting nanoformulated ART (nanoART) carriage provides a novel opportunity to simplify drug-dosing regimens. Progress has nonetheless been slowed by cumbersome, but required, pharmacokinetic (PK), pharmacodynamics, and biodistribution testing. To this end, we developed a small magnetite ART (SMART) nanoparticle platform to assess antiretroviral drug tissue biodistribution and PK using magnetic resonance imaging (MRI) scans. Herein, we have taken this technique a significant step further by determining nanoART PK with folic acid (FA) decorated magnetite (ultrasmall superparamagnetic iron oxide [USPIO]) particles and by using SMART particles. FA nanoparticles enhanced the entry and particle retention to the reticuloendothelial system over nondecorated polymers after systemic administration into mice. These data were seen by MRI testing and validated by comparison with SMART particles and direct evaluation of tissue drug levels after nanoART. The development of alendronate (ALN)-coated magnetite thus serves as a rapid initial screen for the ability of targeting ligands to enhance nanoparticle-antiretroviral drug biodistribution, underscoring the value of decorated magnetite particles as a theranostic tool for improved drug delivery.

  2. A methodological approach to study the stability of selected watercolours for painting reintegration, through reflectance spectrophotometry, Fourier transform infrared spectroscopy and hyperspectral imaging

    Science.gov (United States)

    Pelosi, Claudia; Capobianco, Giuseppe; Agresti, Giorgia; Bonifazi, Giuseppe; Morresi, Fabio; Rossi, Sara; Santamaria, Ulderico; Serranti, Silvia

    2018-06-01

    The aim of this work is to investigate the stability to simulated solar radiation of some paintings samples through a new methodological approach adopting non-invasive spectroscopic techniques. In particular, commercial watercolours and iron oxide based pigments were used, these last ones being prepared for the experimental by gum Arabic in order to propose a possible substitute for traditional reintegration materials. Reflectance spectrophotometry in the visible range and Hyperspectral Imaging in the short wave infrared were chosen as non-invasive techniques for evaluation the stability to irradiation of the chosen pigments. These were studied before and after artificial ageing procedure performed in Solar Box chamber under controlled conditions. Data were treated and elaborated in order to evaluate the sensitivity of the chosen techniques in identifying the variations on paint layers, induced by photo-degradation, before they could be observed by eye. Furthermore a supervised classification method for monitoring the painted surface changes adopting a multivariate approach was successfully applied.

  3. Fast imaging employing steady-state acquisition (FIESTA) MRI to investigate cerebrospinal fluid (CSF) within dural reflections of posterior fossa cranial nerves.

    Science.gov (United States)

    Noble, David J; Scoffings, Daniel; Ajithkumar, Thankamma; Williams, Michael V; Jefferies, Sarah J

    2016-11-01

    There is no consensus approach to covering skull base meningeal reflections-and cerebrospinal fluid (CSF) therein-of the posterior fossa cranial nerves (CNs VII-XII) when planning radiotherapy (RT) for medulloblastoma and ependymoma. We sought to determine whether MRI and specifically fast imaging employing steady-state acquisition (FIESTA) sequences can answer this anatomical question and guide RT planning. 96 posterior fossa FIESTA sequences were reviewed. Following exclusions, measurements were made on the following scans for each foramen respectively (left, right); internal acoustic meatus (IAM) (86, 84), jugular foramen (JF) (83, 85) and hypoglossal canal (HC) (42, 45). A protocol describes measurement procedure. Two observers measured distances for five cases and agreement was assessed. One observer measured all the remaining cases. IAM and JF measurement interobserver variability was compared. Mean measurement difference between observers was -0.275 mm (standard deviation 0.557). IAM and JF measurements were normally distributed. Mean IAM distance was 12.2 mm [95% confidence interval (CI) 8.8-15.6]; JF was 7.3 mm (95% CI 4.0-10.6). The HC was difficult to visualize on many images and data followed a bimodal distribution. Dural reflections of posterior fossa CNs are well demonstrated by FIESTA MRI. Measuring CSF extension into these structures is feasible and robust; mean CSF extension into IAM and JF was measured. We plan further work to assess coverage of these structures with photon and proton RT plans. Advances in knowledge: We have described CSF extension beyond the internal table of the skull into the IAM, JF and HC. Oncologists planning RT for patients with medulloblastoma and ependymoma may use these data to guide contouring.

  4. Near-infrared diffuse reflectance imaging of infarct core and peri-infarct depolarization in a rat middle cerebral artery occlusion model

    Science.gov (United States)

    Kawauchi, Satoko; Nishidate, Izumi; Nawashiro, Hiroshi; Sato, Shunichi

    2014-03-01

    To understand the pathophysiology of ischemic stroke, in vivo imaging of the brain tissue viability and related spreading depolarization is crucial. In the infarct core, impairment of energy metabolism causes anoxic depolarization (AD), which considerably increases energy consumption, accelerating irreversible neuronal damage. In the peri-infarct penumbra region, where tissue is still reversible despite limited blood flow, peri-infarct depolarization (PID) occurs, exacerbating energy deficit and hence expanding the infarct area. We previously showed that light-scattering signal, which is sensitive to cellular/subcellular structural integrity, was correlated with AD and brain tissue viability in a rat hypoxia-reoxygenation model. In the present study, we performed transcranial NIR diffuse reflectance imaging of the rat brain during middle cerebral artery (MCA) occlusion and examined whether the infarct core and PIDs can be detected. Immediately after occluding the left MCA, light scattering started to increase focally in the occlusion site and a bright region was generated near the occlusion site and spread over the left entire cortex, which was followed by a dark region, showing the occurrence of PID. The PID was generated repetitively and the number of times of occurrence in a rat ranged from four to ten within 1 hour after occlusion (n=4). The scattering increase in the occlusion site was irreversible and the area with increased scattering expanded with increasing the number of PIDs, indicating an expansion of the infarct core. These results suggest the usefulness of NIR diffuse reflectance signal to visualize spatiotemporal changes in the infarct area and PIDs.

  5. Noninvasive Assessment of Gastric Emptying by Near-Infrared Fluorescence Reflectance Imaging in Mice: Pharmacological Validation with Tegaserod, Cisapride, and Clonidine

    Directory of Open Access Journals (Sweden)

    Hans-Ulrich Gremlich

    2004-10-01

    Full Text Available Noninvasive near-infrared fluorescence reflectance imaging (FRI is an in vivo technique to assess physiological and molecular processes in the intact organism. Here we describe a method to assess gastric emptying in mice. TentaGel™ beads with covalently bound cyanine dye (Cy5.5 conjugates as fluorescent probe were administered by oral gavage. The amount of intragastric beads/label was derived from the fluorescence signal intensity measured in a region of interest corresponding to the mouse stomach. The FRI signal intensity decreased as a function of time reflecting gastric emptying. In control mice, the gastric half-emptying time was in agreement with literature data. Pharmacological modulation of gastric motility allowed the evaluation of the sensitivity of the FRI-based method. Gastric emptying was either stimulated or inhibited by treatment with the 5-HT4 receptor agonists tegaserod (Zelnorm® and cisapride or the α2-receptor agonist clonidine, respectively. Tegaserod and cisapride dose-dependently accelerated gastric emptying. In contrast, clonidine dose-dependently delayed gastric emptying. In conclusion, FRI using fluorescently labeled beads allows the reliable determination of gastric emptying as well as the assessment of pharmacological interventions. The technique thus offers the potential to characterize molecular targets and pathways involved in physiological regulation and pharmacological modulation of gastric emptying.

  6. A novel technique using potassium permanganate and reflectance confocal microscopy to image biofilm extracellular polymeric matrix reveals non-eDNA networks in Pseudomonas aeruginosa biofilms.

    Science.gov (United States)

    Swearingen, Matthew C; Mehta, Ajeet; Mehta, Amar; Nistico, Laura; Hill, Preston J; Falzarano, Anthony R; Wozniak, Daniel J; Hall-Stoodley, Luanne; Stoodley, Paul

    2016-02-01

    Biofilms are etiologically important in the development of chronic medical and dental infections. The biofilm extracellular polymeric substance (EPS) determines biofilm structure and allows bacteria in biofilms to adapt to changes in mechanical loads such as fluid shear. However, EPS components are difficult to visualize microscopically because of their low density and molecular complexity. Here, we tested potassium permanganate, KMnO4, for use as a non-specific EPS contrast-enhancing stain using confocal laser scanning microscopy in reflectance mode. We demonstrate that KMnO4 reacted with EPS components of various strains of Pseudomonas, Staphylococcus and Streptococcus, yielding brown MnO2 precipitate deposition on the EPS, which was quantifiable using data from the laser reflection detector. Furthermore, the MnO2 signal could be quantified in combination with fluorescent nucleic acid staining. COMSTAT image analysis indicated that KMnO4 staining increased the estimated biovolume over that determined by nucleic acid staining alone for all strains tested, and revealed non-eDNA EPS networks in Pseudomonas aeruginosa biofilm. In vitro and in vivo testing indicated that KMnO4 reacted with poly-N-acetylglucosamine and Pseudomonas Pel polysaccharide, but did not react strongly with DNA or alginate. KMnO4 staining may have application as a research tool and for diagnostic potential for biofilms in clinical samples. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Experimental and Monte Carlo investigation of visible diffuse-reflectance imaging sensitivity to diffusing particle size changes in an optical model of a bladder wall

    Science.gov (United States)

    Kalyagina, N.; Loschenov, V.; Wolf, D.; Daul, C.; Blondel, W.; Savelieva, T.

    2011-11-01

    We have investigated the influence of scatterer size changes on the laser light diffusion, induced by collimated monochromatic laser irradiation, in tissue-like optical phantoms using diffuse-reflectance imaging. For that purpose, three-layer optical phantoms were prepared, in which nano- and microsphere size varied in order to simulate the scattering properties of healthy and cancerous urinary bladder walls. The informative areas of the surface diffuse-reflected light distributions were about 15×18 pixels for the smallest scattering particles of 0.05 μm, about 21×25 pixels for the medium-size particles of 0.53 μm, and about 25×30 pixels for the largest particles of 5.09 μm. The computation of the laser spot areas provided useful information for the analysis of the light distribution with high measurement accuracy of up to 92%. The minimal stability of 78% accuracy was observed for superficial scattering signals on the phantoms with the largest particles. The experimental results showed a good agreement with the results obtained by the Monte Carlo simulations. The presented method shows a good potential to be useful for a tissue-state diagnosis of the urinary bladder.

  8. Apparent Diffusion Coefficient (ADC value: a potential imaging biomarker that reflects the biological features of rectal cancer.

    Directory of Open Access Journals (Sweden)

    Yiqun Sun

    Full Text Available OBJECTIVE: We elected to analyze the correlation between the pre-treatment apparent diffusion coefficient (ADC and the clinical, histological, and immunohistochemical status of rectal cancers. MATERIALS AND METHODS: Forty-nine rectal cancer patients who received surgical resection without neoadjuvant therapy were selected that underwent primary MRI and diffusion-weighted imaging (DWI. Tumor ADC values were determined and analyzed to identify any correlations between these values and pre-treatment CEA or CA19-9 levels, and/or the histological and immunohistochemical properties of the tumor. RESULTS: Inter-observer agreement of confidence levels from two separate observers was suitable for ADC measurement (k  =  0.775. The pre-treatment ADC values of different T stage tumors were not equal (p  =  0.003. The overall trend was that higher T stage values correlated with lower ADC values. ADC values were also significantly lower for the following conditions: tumors with the presence of extranodal tumor deposits (p  =  0.006 and tumors with CA19-9 levels ≥ 35 g/ml (p  =  0.006. There was a negative correlation between Ki-67 LI and the ADC value (r  =  -0.318, p  =  0.026 and between the AgNOR count and the ADC value (r  =  -0.310, p  =  0.030. CONCLUSION: Significant correlations were found between the pre-treatment ADC values and T stage, extranodal tumor deposits, CA19-9 levels, Ki-67 LI, and AgNOR counts in our study. Lower ADC values were associated with more aggressive tumor behavior. Therefore, the ADC value may represent a useful biomarker for assessing the biological features and possible relationship to the status of identified rectal cancers.

  9. Implementation of PSF engineering in high-resolution 3D microscopy imaging with a LCoS (reflective) SLM

    Science.gov (United States)

    King, Sharon V.; Doblas, Ana; Patwary, Nurmohammed; Saavedra, Genaro; Martínez-Corral, Manuel; Preza, Chrysanthe

    2014-03-01

    Wavefront coding techniques are currently used to engineer unique point spread functions (PSFs) that enhance existing microscope modalities or create new ones. Previous work in this field demonstrated that simulated intensity PSFs encoded with a generalized cubic phase mask (GCPM) are invariant to spherical aberration or misfocus; dependent on parameter selection. Additional work demonstrated that simulated PSFs encoded with a squared cubic phase mask (SQUBIC) produce a depth invariant focal spot for application in confocal scanning microscopy. Implementation of PSF engineering theory with a liquid crystal on silicon (LCoS) spatial light modulator (SLM) enables validation of WFC phase mask designs and parameters by manipulating optical wavefront properties with a programmable diffractive element. To validate and investigate parameters of the GCPM and SQUBIC WFC masks, we implemented PSF engineering in an upright microscope modified with a dual camera port and a LCoS SLM. We present measured WFC PSFs and compare them to simulated PSFs through analysis of their effect on the microscope imaging system properties. Experimentally acquired PSFs show the same intensity distribution as simulation for the GCPM phase mask, the SQUBIC-mask and the well-known and characterized cubic-phase mask (CPM), first applied to high NA microscopy by Arnison et al.10, for extending depth of field. These measurements provide experimental validation of new WFC masks and demonstrate the use of the LCoS SLM as a WFC design tool. Although efficiency improvements are needed, this application of LCoS technology renders the microscope capable of switching among multiple WFC modes.

  10. Apparent Diffusion Coefficient (ADC) value: a potential imaging biomarker that reflects the biological features of rectal cancer.

    Science.gov (United States)

    Sun, Yiqun; Tong, Tong; Cai, Sanjun; Bi, Rui; Xin, Chao; Gu, Yajia

    2014-01-01

    We elected to analyze the correlation between the pre-treatment apparent diffusion coefficient (ADC) and the clinical, histological, and immunohistochemical status of rectal cancers. Forty-nine rectal cancer patients who received surgical resection without neoadjuvant therapy were selected that underwent primary MRI and diffusion-weighted imaging (DWI). Tumor ADC values were determined and analyzed to identify any correlations between these values and pre-treatment CEA or CA19-9 levels, and/or the histological and immunohistochemical properties of the tumor. Inter-observer agreement of confidence levels from two separate observers was suitable for ADC measurement (k  =  0.775). The pre-treatment ADC values of different T stage tumors were not equal (p  =  0.003). The overall trend was that higher T stage values correlated with lower ADC values. ADC values were also significantly lower for the following conditions: tumors with the presence of extranodal tumor deposits (p  =  0.006) and tumors with CA19-9 levels ≥ 35 g/ml (p  =  0.006). There was a negative correlation between Ki-67 LI and the ADC value (r  =  -0.318, p  =  0.026) and between the AgNOR count and the ADC value (r  =  -0.310, p  =  0.030). Significant correlations were found between the pre-treatment ADC values and T stage, extranodal tumor deposits, CA19-9 levels, Ki-67 LI, and AgNOR counts in our study. Lower ADC values were associated with more aggressive tumor behavior. Therefore, the ADC value may represent a useful biomarker for assessing the biological features and possible relationship to the status of identified rectal cancers.

  11. Image processing of worn and unworn protective coatings of TiAlN and TiN on 100Cr6 steel

    DEFF Research Database (Denmark)

    Rasmussen, Inge Lise; Guibert, M.; Martin, J.M.

    by a reciprocating wear process in a linear tribo-meter with up to 105 repetitive cycles, leaving the embedded TiN signal layers uncovered at the bottom the wear scars. The worn surfaces were characterized by subsequent image processing. A color detection, by a simple optical imaging system, of the wear scar......-coating to the TiN signal layer. The two different methods, image processing and laser reflectance measurements, lead thus to identical results, showing that image processing by means of color detection or monitoring and laser reflectance are potential techniques for intelligent determination of residual thickness......A model system, consisting of a titanium aluminum nitride (TiAlN) coating on top of an ‘optical’ titanium nitride (TiN) signal layer deposited on 100Cr6 steel substrates, was exposed to an extremely abrasive wear process. The TiAlN top-coatings, of thicknesses of up to 3 µm, were removed...

  12. Near-vertical seismic reflection image using a novel acquisition technique across the Vrancea Zone and Foscani Basin, south-eastern Carpathians (Romania)

    Science.gov (United States)

    Panea, I.; Stephenson, R.; Knapp, C.; Mocanu, V.; Drijkoningen, G.; Matenco, L.; Knapp, J.; Prodehl, K.

    2005-12-01

    The DACIA PLAN (Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics) deep seismic sounding survey was performed in August-September 2001 in south-eastern Romania, at the same time as the regional deep refraction seismic survey VRANCEA 2001. The main goal of the experiment was to obtain new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea zone, including the Focsani Basin. The seismic reflection line had a WNW-ESE orientation, running from internal East Carpathians units, across the mountainous south-eastern Carpathians, and the foreland Focsani Basin towards the Danube Delta. There were 131 shot points along the profile, with about 1 km spacing, and data were recorded with stand-alone RefTek-125s (also known as "Texans"), supplied by the University Texas at El Paso and the PASSCAL Institute. The entire line was recorded in three deployments, using about 340 receivers in the first deployment and 640 receivers in each of the other two deployments. The resulting deep seismic reflection stacks, processed to 20 s along the entire profile and to 10 s in the eastern Focsani Basin, are presented here. The regional architecture of the latter, interpreted in the context of abundant independent constraint from exploration seismic and subsurface data, is well imaged. Image quality within and beneath the thrust belt is of much poorer quality. Nevertheless, there is good evidence to suggest that a thick (˜10 km) sedimentary basin having the structure of a graben and of indeterminate age underlies the westernmost part of the Focsani Basin, in the depth range 10-25 km. Most of the crustal depth seismicity observed in the Vrancea zone (as opposed to the more intense upper mantle seismicity) appears to be associated with this sedimentary basin. The sedimentary successions within this basin and other horizons

  13. Consideraciones sobre el diagnóstico por imágenes de las masas selares Reflection on imaging diagnosis of sellar masses

    Directory of Open Access Journals (Sweden)

    José Arturo Hernández Yero

    2005-12-01

    Full Text Available Con el propósito de hacer un llamado de atención sobre una temática de importancia y tomando en consideración que con los avances en la imagenología moderna se aportan elementos distintivos y de gran utilidad en el diagnóstico por imágenes de un grupo de masas en la región de la silla turca, se hacen determinadas valoraciones al respecto, con precisión de algunas de las características de las principales masas selares y su apariencia en la resonancia magnética nuclear. Se destacan detalles en cuanto a la intensidad de la señal en los adenomas pituitarios, craneofaringiomas, quistes de la bolsa de Rathke, hiperplasia hipofisaria y el denominado síndrome de la silla turca vacía, entre otras causas de cambios anatómicos en la región selar. Se concluye que la imagen por resonancia magnética nuclear sería el método idóneo para un mejor diagnóstico de las masas selares aunque, en ausencia de esta, la tomografía contrastada puede resultar de utilidad si se realiza con cortes menores de 2 mm. Se resalta la importancia de integrar un equipo multidisciplinario entre clínicos, endocrinólogos, imagenólogos, neurocirujanos y anatomopatólogos, para obtener diagnósticos más precisos y resultados terapéuticos adecuados.Some reflections were made on imaging diagnosis of sellar masses, specifying some characteristics of the main sellar masses and their appearance in magnetic resonance imaging. The purpose was to call the attention on this important issue on the basis that modern imaging advances offer very useful distinctive elements in the diagnosis of a group of masses located in the sella turcica region. The paper underlined details of signal intensity in pituitary adenomas, craniopharyngiomas, Rathke´s pouch cysts, hypophysial hyperplasia and the so-called empty sella syndrome, among other causes of anatomical changes in sellar region. It was concluded that magnetic resonance imaging would be the ideal method for a better

  14. Lumbo-pelvic joint protection against antigravity forces: motor control and segmental stiffness assessed with magnetic resonance imaging.

    Science.gov (United States)

    Richardson, C A; Hides, J A; Wilson, S; Stanton, W; Snijders, C J

    2004-07-01

    The antigravity muscles of the lumbo-pelvic region, especially transversus abdominis (TrA), are important for the protection and support of the weightbearing joints. Measures of TrA function (the response to the postural cue of drawing in the abdominal wall) have been developed and quantified using magnetic resonance imaging (MRI). Cross-sections through the trunk allowed muscle contraction as well as the large fascial attachments of the TrA to be visualized. The cross sectional area (CSA) of the deep musculo-fascial system was measured at rest and in the contracted state, using static images as well as a cine sequence. In this developmental study, MRI measures were undertaken on a small sample of low back pain (LBP) and non LBP subjects. Results demonstrated that, in non LBP subjects, the draw in action produced a symmetrical deep musculo-fascial "corset" which encircles the abdomen. This study demonstrated a difference in this "corset" measure between subjects with and without LBP. These measures may also prove useful to quantify the effect of unloading in bedrest and microgravity exposure.

  15. Contribution of the french society of radiological protection to the current reflections on the possible improvement of the radiological risk management system

    International Nuclear Information System (INIS)

    Lecomte, J.F.; Schieber, C.

    2000-01-01

    Following the invitation by IRPA to comment the article by Prof. R. Clarke entitled 'Control of Low Level Radiation Exposures: Time for a Change?', the Board of the French Radiological Protection Society (SFRP) has decided to set up a specific Working Group. This Group consists of some twenty members representing the stakeholders involved in radiological protection in France. Its goal is, starting from an analysis of R. Clarke's text, to formulate questions and proposals to assist ICRP in making its radiological protection system more understandable and more efficient. The aim of this review is not to restart from scratch but to consolidate and improve the existing system. The Working Group has therefore focused its thoughts on the following four points: 1. The basis of the radiological risk management system. In the absence of scientific certainty as to the effects of low doses of radiation, a prudent attitude has been adopted as to the manner of managing the radiological risk, based on the hypothesis that the dose-effect relationship is linear with no threshold. The Group discusses this basic assumption and its implications on the elaboration of the objectives of the radiological risk management system. 2. Exposure situations. Exposure situations are multifarious and the existing system divides them into categories for management purpose (e.g. practice/intervention; natural/artificial; medical/public/occupational; actual exposure/potential exposure; etc.). Some of these divisions are pertinent but some are less so and the Group examines if another way of conceptualising exposures situations could be more efficient. 3. Risk management indicators and tools. The radiological protection system provides the professionals with a series of indicators and tools, enabling them to manage exposure situations (dose, dose limit, dose constraint, individual dose, collective dose, investigation level, action level, interventional level, exemption level, clearance level

  16. Personal Reflections

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education. Personal Reflections. Articles in Resonance – Journal of Science Education. Volume 6 Issue 3 March 2001 pp 90-93 Personal Reflections. Why did I opt for Career in Science? Jayant V Narlikar · More Details Fulltext PDF. Volume 9 Issue 8 August 2004 pp 89-89 ...

  17. Reflection ciphers

    DEFF Research Database (Denmark)

    Boura, Christina; Canteaut, Anne; Knudsen, Lars Ramkilde

    2017-01-01

    study the necessary properties for this coupling permutation. Special care has to be taken of some related-key distinguishers since, in the context of reflection ciphers, they may provide attacks in the single-key setting.We then derive some criteria for constructing secure reflection ciphers...

  18. Developing Atmospheric Retrieval Methods for Direct Imaging Spectroscopy of Gas Giants in Reflected Light I: Methane Abundances and Basic Cloud Properties

    Science.gov (United States)

    Lupu, R. E.; Marley, M. S.; Lewis, N.; Line, M.; Traub, W.; Zahnle, K.

    2016-01-01

    Reflected light spectroscopy and photometry of cool, directly imaged extrasolar giant planets are expected to be performed in the next decade by space-based telescopes equipped with optical wavelength coronagraphs and integral field spectrographs, such as the Wide-Field Infrared Survey Telescope (WFIRST). We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs an albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler (emcee) and a multimodal nested sampling algorithm (MultiNest) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model, and highlights possible discrepancies in the likelihood maps. Here we apply this methodology to simulated spectra of cool giant planets. As a proof-of-concept, our current atmospheric model contains 1 or 2 cloud layers, methane as a major absorber, and a H2-He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise, in the presence of spectral noise correlations. After internal validation, the method is applied to realistic reflected-light spectra of Jupiter, Saturn, and HD 99492 c, a likely observing target. We find that the presence or absence of clouds and methane can be determined with high accuracy, while parameters uncertainties are model-dependent.

  19. Quantifying Reflection

    DEFF Research Database (Denmark)

    Alcock, Gordon Lindsay

    2013-01-01

    ´ These are all based on Blooms taxonomy and levels of competence and form a major part of individual student and group learning portfolios. Key Words :Project-Based learning, Reflective Portfolios, Self assessment, Defining learning gains, Developing learning strategies , Reflections on and for learning....... It contrasts the students’ self-assessment in a range of ‘product’ skills such as Revit, Structural Design, Mathematics of construction, Technical Installations; as well as ‘process’ competencies such as ‘Working in a team’, Sharing knowledge, Maintaining a portfolio and Reflecting ON learning and FOR learning......This paper documents 1st semester student reflections on “learning to learn” in a team-based PBL environment with quantitative and qualitative student reflective feedback on the learning gains of 60 Architectural Technology and Construction Management students at VIA University College, Denmark...

  20. Optimization of the radiological protection of patients: Image quality and dose in mammography (co-ordinated research in Europe). Results of the coordinated research project on optimization of protection mammography in some eastern European States

    International Nuclear Information System (INIS)

    2005-05-01

    Mammography is an extremely useful non-invasive imaging technique with unparalleled advantages for the detection of breast cancer. It has played an immense role in the screening of women above a certain age or with a family history of breast cancer. The IAEA has a statutory responsibility to establish standards for the protection of people against exposure to ionizing radiation and to provide for the worldwide application of those standards. A fundamental requirement of the International Basic Safety Standards for Protection Against Ionizing Radiation (BSS) and for the Safety of Radiation Sources, issued by the IAEA and co-sponsored by FAO, ILO, WHO, PAHO and NEA, is the optimization of radiological protection of patients undergoing medical exposure. In keeping with its responsibility on the application of standards, the IAEA programme on Radiological Protection of Patients attempts to reduce radiation doses to patients while balancing quality assurance considerations. IAEA-TECDOC-796, Radiation Doses in Diagnostic Radiology and Methods for Dose Reduction (1995), addresses this aspect. The related IAEA-TECDOC-1423 on Optimization of the Radiological Protection of Patients undergoing Radiography, Fluoroscopy and Computed Tomography, (2004) constitutes the final report of the coordinated research in Africa, Asia and eastern Europe. The preceding publications do not explicitly consider mammography. Mindful of the importance of this imaging technique, the IAEA launched a Coordinated Research Project on Optimization of Protection in Mammography in some eastern European States. The present publication is the outcome of this project: it is aimed at evaluating the situation in a number of countries, identifying variations in the technique, examining the status of the equipment and comparing performance in the light of the norms established by the European Commission. A number of important aspects are covered, including: - quality control of mammography equipment; - imaging

  1. DEVELOPING ATMOSPHERIC RETRIEVAL METHODS FOR DIRECT IMAGING SPECTROSCOPY OF GAS GIANTS IN REFLECTED LIGHT. I. METHANE ABUNDANCES AND BASIC CLOUD PROPERTIES

    Energy Technology Data Exchange (ETDEWEB)

    Lupu, Roxana E. [BAER Institute/NASA Ames Research Center, Moffet Field, CA 94035 (United States); Marley, Mark S.; Zahnle, Kevin [NASA Ames Research Center, Moffet Field, CA 94035 (United States); Lewis, Nikole [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Line, Michael [Univ. California at Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Traub, Wesley A., E-mail: Roxana.E.Lupu@nasa.gov [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-12-01

    Upcoming space-based coronagraphic instruments in the next decade will perform reflected light spectroscopy and photometry of cool directly imaged extrasolar giant planets. We are developing a new atmospheric retrieval methodology to help assess the science return and inform the instrument design for such future missions, and ultimately interpret the resulting observations. Our retrieval technique employs a geometric albedo model coupled with both a Markov chain Monte Carlo Ensemble Sampler ( emcee ) and a multimodal nested sampling algorithm ( MultiNest ) to map the posterior distribution. This combination makes the global evidence calculation more robust for any given model and highlights possible discrepancies in the likelihood maps. As a proof of concept, our current atmospheric model contains one or two cloud layers, methane as a major absorber, and a H{sub 2}–He background gas. This 6-to-9 parameter model is appropriate for Jupiter-like planets and can be easily expanded in the future. In addition to deriving the marginal likelihood distribution and confidence intervals for the model parameters, we perform model selection to determine the significance of methane and cloud detection as a function of expected signal-to-noise ratio in the presence of spectral noise correlations. After internal validation, the method is applied to realistic spectra of Jupiter, Saturn, and HD 99492c, a model observing target. We find that the presence or absence of clouds and methane can be determined with high confidence, while parameter uncertainties are model dependent and correlated. Such general methods will also be applicable to the interpretation of direct imaging spectra of cloudy terrestrial planets.

  2. IMAGING OF A TRANSITIONAL DISK GAP IN REFLECTED LIGHT: INDICATIONS OF PLANET FORMATION AROUND THE YOUNG SOLAR ANALOG LkCa 15

    International Nuclear Information System (INIS)

    Thalmann, C.; Goto, M.; Henning, T.; Carson, J.; Brandner, W.; Feldt, M.; Grady, C. A.; Wisniewski, J. P.; Janson, M.; Fukagawa, M.; Honda, M.; Mulders, G. D.; Min, M.; Moro-MartIn, A.; McElwain, M. W.; Hodapp, K. W.; Abe, L.; Egner, S.; Golota, T.; Fukue, T.

    2010-01-01

    We present H- and K s -band imaging data resolving the gap in the transitional disk around LkCa 15, revealing the surrounding nebulosity. We detect sharp elliptical contours delimiting the nebulosity on the inside as well as the outside, consistent with the shape, size, ellipticity, and orientation of starlight reflected from the far-side disk wall, whereas the near-side wall is shielded from view by the disk's optically thick bulk. We note that forward scattering of starlight on the near-side disk surface could provide an alternate interpretation of the nebulosity. In either case, this discovery provides confirmation of the disk geometry that has been proposed to explain the spectral energy distributions of such systems, comprising an optically thick disk with an inner truncation radius of ∼46 AU enclosing a largely evacuated gap. Our data show an offset of the nebulosity contours along the major axis, likely corresponding to a physical pericenter offset of the disk gap. This reinforces the leading theory that dynamical clearing by at least one orbiting body is the cause of the gap. Based on evolutionary models, our high-contrast imagery imposes an upper limit of 21 M Jup on companions at separations outside of 0.''1 and of 13 M Jup outside of 0.''2. Thus, we find that a planetary system around LkCa 15 is the most likely explanation for the disk architecture.

  3. Whole Tumor Histogram-profiling of Diffusion-Weighted Magnetic Resonance Images Reflects Tumorbiological Features of Primary Central Nervous System Lymphoma.

    Science.gov (United States)

    Schob, Stefan; Münch, Benno; Dieckow, Julia; Quäschling, Ulf; Hoffmann, Karl-Titus; Richter, Cindy; Garnov, Nikita; Frydrychowicz, Clara; Krause, Matthias; Meyer, Hans-Jonas; Surov, Alexey

    2018-04-01

    Diffusion weighted imaging (DWI) quantifies motion of hydrogen nuclei in biological tissues and hereby has been used to assess the underlying tissue microarchitecture. Histogram-profiling of DWI provides more detailed information on diffusion characteristics of a lesion than the standardly calculated values of the apparent diffusion coefficient (ADC)-minimum, mean and maximum. Hence, the aim of our study was to investigate, which parameters of histogram-profiling of DWI in primary central nervous system lymphoma can be used to specifically predict features like cellular density, chromatin content and proliferative activity. Pre-treatment ADC maps of 21 PCNSL patients (8 female, 13 male, 28-89 years) from a 1.5T system were used for Matlab-based histogram profiling. Results of histopathology (H&E staining) and immunohistochemistry (Ki-67 expression) were quantified. Correlations between histogram-profiling parameters and neuropathologic examination were calculated using SPSS 23.0. The lower percentiles (p10 and p25) showed significant correlations with structural parameters of the neuropathologic examination (cellular density, chromatin content). The highest percentile, p90, correlated significantly with Ki-67 expression, resembling proliferative activity. Kurtosis of the ADC histogram correlated significantly with cellular density. Histogram-profiling of DWI in PCNSL provides a comprehensible set of parameters, which reflect distinct tumor-architectural and tumor-biological features, and hence, are promising biomarkers for treatment response and prognosis. Copyright © 2018. Published by Elsevier Inc.

  4. Diffusion-weighted magnetic resonance imaging reflects activation of signal transducer and activator of transcription 3 during focal cerebral ischemia/reperfusion

    Directory of Open Access Journals (Sweden)

    Wen-juan Wu

    2017-01-01

    Full Text Available Signal transducer and activator of transcription (STAT is a unique protein family that binds to DNA, coupled with tyrosine phosphorylation signaling pathways, acting as a transcriptional regulator to mediate a variety of biological effects. Cerebral ischemia and reperfusion can activate STATs signaling pathway, but no studies have confirmed whether STAT activation can be verified by diffusion-weighted magnetic resonance imaging (DWI in rats after cerebral ischemia/reperfusion. Here, we established a rat model of focal cerebral ischemia injury using the modified Longa method. DWI revealed hyperintensity in parts of the left hemisphere before reperfusion and a low apparent diffusion coefficient. STAT3 protein expression showed no significant change after reperfusion, but phosphorylated STAT3 expression began to increase after 30 minutes of reperfusion and peaked at 24 hours. Pearson correlation analysis showed that STAT3 activation was correlated positively with the relative apparent diffusion coefficient and negatively with the DWI abnormal signal area. These results indicate that DWI is a reliable representation of the infarct area and reflects STAT phosphorylation in rat brain following focal cerebral ischemia/reperfusion.

  5. Image-producing procedures for non-medical applications. Benefits, risks, radiation protection; Bildgebende Verfahren im nicht medizinischen Bereich. Nutzen, Risiken, Strahlenschutz

    Energy Technology Data Exchange (ETDEWEB)

    Czarwinski, Renate [Bundesamt fuer Strahlenschutz, Berlin (Germany); Estier, Sybille [Bundesamt fuer Gesundheit (BAG), Liebefeld (Switzerland). Direktionsbereich Verbraucherschutz; Huhn, Walter [Ministerium fuer Arbeit, Integration und Soziales NRW, Duesseldorf (Germany); Lorenz, Bernd [Lorenz Consulting, Essen (Germany); Vahlbruch, Jan [Hannover Univ. (Germany). Inst. fuer Radiooekologie und Strahlenschutz (IRS); Henning, Ulrich; Michel, Rolf

    2016-05-01

    A survey is given of image-producing procedures for non-medical applications, and this under technical, juridical and radiation protection aspects. The historical development of these procedures is also described. An example is given for today's practical application.

  6. Transcription coupled repair deficiency protects against human mutagenesis and carcinogenesis: Personal Reflections on the 50th anniversary of the discovery of xeroderma pigmentosum.

    Science.gov (United States)

    Cleaver, James E

    2017-10-01

    Xeroderma pigmentosum (XP) patients who lack the main damage recognition protein for global genome repair (GGR), XPC, have greatly increased skin cancer rates and elevated mutation frequencies originating from unrepaired ultraviolet photoproducts in the nontranscribed regions of the genome and in nontranscribed strands of expressed genes. But they show no increased mutations in transcribed strands. In contrast, cancer is absent from Cockayne syndrome (CS) patients that have defective transcription coupled repair (TCR) despite severe photosensitivity, CS patients remarkably show no elevation of UV induced mutagenesis implying that defective TCR may be protective against mutagenesis and carcinogenesis. Mutation avoidance in CS is postulated to occur through arrested transcription that generates a tripled stranded R loop consisting of DNA double strands and a nascent mRNA strand. R loops result in S phase apoptosis or activation of ATM kinase that causes a delay in DNA replication until TCR, or transcript cleavage by TFIIS or RNAaseH, relieves the transcription block. Resumption of replication then occurs on repaired DNA without concomitant mutagenesis. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. What Do We Need to Protect, at All Costs, During the 21st Century? Reflections From a Curated, Interactive Co-Created Intellectual Jazz Performance.

    Science.gov (United States)

    Jadad, Alejandro R; Davis, Dave

    2016-01-01

    The question that forms the title of this article, "What do we need to protect, at all costs, during the 21st century?," speaks to the sizable changes in health care systems and settings that surround the continuing professional development (CPD) provider, and the need to establish a core set of principles and practices as the field moves forward from both theoretical and practical aspects. It also provided the focus for one of the five keynote lectures presented during the 2016 World Congress on Continuing Professional Development. As the planners of this keynote session, we sought to evoke answers to the question, not from the speaker, but from the audience itself, a process enabled by a highly engaging presentation style and powered by interactive digital technologies. Further, we believed that the session would not directly lead to suggestions to improve the theory and practice of CPD, but rather to create the biopsychosocial context-a sort of platform-on which such discussions can occur.

  8. Development of real time system imaging software for the protection of plasma facing components(PFCs) in Wendelstein 7-X

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Adnan; Jakubowski, Marcin; Sunn Pedersen, Thomas; Rodatos, Alexander [Max-Planck-Institute for Plasma Physics, Greifswald (Germany); Greuner, Henri [Max-Planck-Institute for Plasma Physics, Garching (Germany)

    2016-07-01

    One of the main aims of Wendelstein 7-X, an advanced stellarator in Greifswald, is the investigation of quasi-steady state operation of magnetic fusion devices, for which power exhaust is a very important issue. The predominant fraction of the energy lost from the confined plasma region will be removed by 10 so-called island divertors, which can sustain up to 10 MW/Sq-m. In order to protect the divertor elements from overheating and to monitor power deposition onto the divertor elements, 10 state-of-the-art infrared endoscopes will be installed at W7-X and software is under development for real-time analysis of automatic detection of the hot spots and other abnormal events. The pre-defined algorithms designed for early detection of defects e.g. hotspots, surface layers and delaminations during the discharge are being implemented into the software acquiring the images from the infrared cameras and broadcast them to the main Discharge Control System(DCS). This allows for automatic control of the scenario of the discharge in order to assure safe operation of W7-X. The first online tests of the software will soon be performed at GLADIS in Garching.

  9. [Does aesthetic surgery form part of mainstream surgery or is it an entirely separate sector? Reflections and proposals for better protection of the public].

    Science.gov (United States)

    Gréco, J M

    1993-11-01

    In contempt of the laws and regulations in force, several thousand unqualified practitioners carry out aesthetic surgery although only a mere few hundred are legally entitled to practice this surgical specialty. We are aware, in the present system which has no efficient control systems, that the public is no longer able to identify this small group of charlatans and incompetents. We call on massive concerted effort by the responsible public authorities to ensure that the general public receives the necessary protection. Amongst others, we demand that: The ministry of health, integrates all medical products and medical devices aimed at the aesthetic sector into the list of medical products and medical devices to marketing authorization (authorization de mise sur le marché--AMM) or to endorsement in compliance with the Huriet Law of 10.12.1988. The conseil national de l'ordre des medecins, (national council of doctors advisory board), ensures that the laws and regulations in force governing the value of diplomas, qualifications and competences are respected, be aware of the obsolescence of the general nature of the medical degree, inapplicable due to the efficiency and thus the dangerous nature of modern medicine. The ministry of justice, clearly defines the nature of the informed consent demanded from the patient prior to any therapeutic treatment, ensures the conditions required for legitimate compensation for prejudices caused by therapeutic risks, specifies the doctor's responsibility without malpractice conditions, be aware of the perverse effects caused by the abandonment of the obligation of means and its replacement by an obligation of results demanded from the doctor, to correct the unjust and anomalous situation which opposes the ten year responsibility of the medical product or medical devices manufacturer with the thirty year responsibility of the doctor using these products or equipment.

  10. Reflectance Modeling

    Science.gov (United States)

    Smith, J. A.; Cooper, K.; Randolph, M.

    1984-01-01

    A classical description of the one dimensional radiative transfer treatment of vegetation canopies was completed and the results were tested against measured prairie (blue grama) and agricultural canopies (soybean). Phase functions are calculated in terms of directly measurable biophysical characteristics of the canopy medium. While the phase functions tend to exhibit backscattering anisotropy, their exact behavior is somewhat more complex and wavelength dependent. A Monte Carlo model was developed that treats soil surfaces with large periodic variations in three dimensions. A photon-ray tracing technology is used. Currently, the rough soil surface is described by analytic functions and appropriate geometric calculations performed. A bidirectional reflectance distribution function is calculated and, hence, available for other atmospheric or canopy reflectance models as a lower boundary condition. This technique is used together with an adding model to calculate several cases where Lambertian leaves possessing anisotropic leaf angle distributions yield non-Lambertian reflectance; similar behavior is exhibited for simulated soil surfaces.

  11. Coral reef ecosystem marine protected area monitoring in Fagamalo, American Samoa: benthic images collected during belt transect surveys in 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2010 the village of Fagamalo, Tutuila, American Samoa, designated a no-take Marine Protected Area that sees the protection of 2.25 square kilometers of ocean....

  12. Cerebral ischemic lesions detected with diffusion-weighted magnetic resonance imaging after carotid artery stenting. Comparison of several anti-embolic protection devices

    International Nuclear Information System (INIS)

    Taha, M.M.; Maeda, Masayuki; Sakaida, Hiroshi

    2009-01-01

    Distal embolism is an important periprocedural technical complication with carotid angioplasty and carotid artery stenting (CAS). We evaluated the safety and efficacy of protection devices used during CAS by detecting new cerebral ischemic lesions using diffusion-weighted magnetic resonance imaging in 95 patients who underwent 98 CAS procedures: 34 using single PercuSurge GuardWire, 31 using double balloon protection, 15 using proximal flow reverse protection devices, 14 using Naviballoon, and 4 using filter anti-embolic devices. Diffusion-weighted imaging was performed preoperatively and postoperatively to evaluate the presence of any new embolic cerebral lesions. Postoperative diffusion-weighted imaging revealed 117 new ischemic lesions. Three patients had new ischemic stroke, two minor and one major, all ipsilateral to the treated carotid artery. The remaining patients had clinically silent ischemia. The incidence of new embolic lesions was lower using the proximal flow reverse protection device than with the double balloon protection (33% vs. 48.4%), but the volume of ipsilateral new ischemic lesions per patient was 136.6 mm 3 vs. 86.9 mm 3 , respectively. Neuroprotection with Naviballoon yielded ipsilateral lesions of large volume (86.6 mm 3 ) and higher number (5.7 lesions per patient) than using the filter anti-embolic device (34.8 mm 3 and 1 lesion per patient). New cerebral ischemic lesions after neuroprotected CAS are usually silent. The lower incidence of distal ischemia using proximal flow reverse and double balloon protection devices is limited by the larger volume and higher number of ischemic lesions. (author)

  13. Cerebral ischemic lesions detected with diffusion-weighted magnetic resonance imaging after carotid artery stenting: Comparison of several anti-embolic protection devices.

    Science.gov (United States)

    Taha, Mahmoud M; Maeda, Masayuki; Sakaida, Hiroshi; Kawaguchi, Kenji; Toma, Naoki; Yamamoto, Akitaka; Hirose, Tomofumi; Miura, Youichi; Fujimoto, Masashi; Matsushima, Satoshi; Taki, Waro

    2009-09-01

    Distal embolism is an important periprocedural technical complication with carotid angioplasty and carotid artery stenting (CAS). We evaluated the safety and efficacy of protection devices used during CAS by detecting new cerebral ischemic lesions using diffusion-weighted magnetic resonance imaging in 95 patients who underwent 98 CAS procedures: 34 using single PercuSurge GuardWire, 31 using double balloon protection, 15 using proximal flow reverse protection devices, 14 using Naviballoon, and 4 using filter anti-embolic devices. Diffusion-weighted imaging was performed preoperatively and postoperatively to evaluate the presence of any new embolic cerebral lesions. Postoperative diffusion-weighted imaging revealed 117 new ischemic lesions. Three patients had new ischemic stroke, two minor and one major, all ipsilateral to the treated carotid artery. The remaining patients had clinically silent ischemia. The incidence of new embolic lesions was lower using the proximal flow reverse protection device than with the double balloon protection (33% vs. 48.4%), but the volume of ipsilateral new ischemic lesions per patient was 136.6 mm(3) vs. 86.9 mm(3), respectively. Neuroprotection with Naviballoon yielded ipsilateral lesions of large volume (86.6 mm(3)) and higher number (5.7 lesions per patient) than using the filter anti-embolic device (34.8 mm(3) and 1 lesion per patient). New cerebral ischemic lesions after neuroprotected CAS are usually silent. The lower incidence of distal ischemia using proximal flow reverse and double balloon protection devices is limited by the larger volume and higher number of ischemic lesions.

  14. A pilot study investigating whether focusing on body functionality can protect women from the potential negative effects of viewing thin-ideal media images.

    Science.gov (United States)

    Alleva, Jessica M; Veldhuis, Jolanda; Martijn, Carolien

    2016-06-01

    This pilot study explored whether focusing on body functionality (i.e., everything the body can do) can protect women from potential harmful effects of exposure to thin-ideal images. Seventy women (Mage=20.61) completed an assignment wherein they either described the functionality of their body or the routes that they often travel (control). Afterward, participants were exposed to a series of thin-ideal images. Appearance and functionality satisfaction were measured before the assignment; appearance and functionality satisfaction, self-objectification, and body appreciation were measured after exposure. Results showed that participants who focused on body functionality experienced greater functionality satisfaction and body appreciation compared to control participants. Therefore, focusing on body functionality could be a beneficial individual-level technique that women can use to protect and promote a positive body image in the face of thin-ideal images. Research including a condition wherein participants are exposed to (product-only) control images is necessary to draw firmer conclusions. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Reflective Efficacy

    Directory of Open Access Journals (Sweden)

    Carla Bagnoli

    2018-04-01

    Full Text Available The purpose of this paper is to highlight some difficulties of Neil Sinhababu’s Humean theory of agency, which depend on his radically reductivist approach, rather than to his Humean sympathies. The argument is that Sinhababu’s theory builds upon a critique of reflective agency which is based on equivocation and misunderstandings of the Kantian approach. Ultimately, the objection is that his reductivist view is unequipped to address the rclassical problems of rational deliberation and agential authority.

  16. In-vessel calibration of the imaging diagnostics for the real-time protection of the JET ITER-like wall

    Energy Technology Data Exchange (ETDEWEB)

    Huber, V., E-mail: V.Huber@fz-juelich.de [Forschungszentrum Jülich GmbH, Supercomputing Centre, 52425 Jülich (Germany); Huber, A.; Mertens, Ph.; Sergienko, G. [Forschungszentrum Jülich GmbH, Institut für Energie- und Klimaforschung—Plasmaphysik, Partner of the Trilateral Euregio Cluster (TEC), 52425 Jülich (Germany); Kinna, D.; Balboa, I.; Collins, S.; Conway, N.; Maggi, C. F.; Matthews, G. F.; Meigs, A. G.; Price, M.; Silburn, S.; Zastrow, K.-D. [CCFE, Culham Science Centre, Abingdon OX14 3DB (United Kingdom); Drewelow, P. [MPI für Plasmaphysik, Greifswald (Germany); Wynn, A. [York Plasma Institute, University of York, Heslington, York YO10 5DD (United Kingdom)

    2016-11-15

    The in situ absolute calibration of the JET real-time protection imaging system has been performed for the first time by means of radiometric light source placed inside the JET vessel and operated by remote handling. High accuracy of the calibration is confirmed by cross-validation of the near infrared (NIR) cameras against each other, with thermal IR cameras, and with the beryllium evaporator, which lead to successful protection of the JET first wall during the last campaign. The operation temperature ranges of NIR protection cameras for the materials used on JET are Be 650-1600 °C, W coating 600-1320 °C, and W 650-1500 °C.

  17. On Reflection

    DEFF Research Database (Denmark)

    Blasco, Maribel

    2012-01-01

    produces: that the self is accessible and transcendable, that reflexivity is universal across space and time, and that the self can act as its own remedial change agent or ‘inner consultant.’ I argue that because reflexivity is understood in many different ways, attention to definition is crucial, both...... on the concepts of selfhood that prevail and how notions of difference are constructed. First, I discuss how the dominant usages of reflexivity in intercultural education reflect and reproduce a Cartesian view of the self that shapes how ICC is conceptualized and taught. I discuss three assumptions that this view...

  18. Inspiring Reflections

    DEFF Research Database (Denmark)

    Muchie, Mammo

    2011-01-01

    A numberof Chris Freeman's colleagues were asked to reflect on what they thought describes his life and work in a few words. Some of the colleagues replied including former SPRU students that were taught or supervised by Chris Freeman. Their views on what they thought were Chris Freeman's defining...... life is not free from fluctuations, cycles, disruptions, crises and destructions both human and ecological. Innovation research ought to position itself to address environmental, financial and economic crises. The third is innovation research for development by addressing not only poverty erdaication...

  19. Reflective Writing

    DEFF Research Database (Denmark)

    Ahrenkiel Jørgensen, Andriette

    2016-01-01

    In Breve fra min Have (Letters from my Garden), the Swedish landscape architect, Sven-Ingvar Andersson, produces dialogues about his garden to a wide circle of friends, colleagues, deceased and still living acquaintances such as Karen Blixen, Gertrude Stein, C. Th. Sørensen, Albrecht Dürer, Peter...... Høeg etetera. The dialogues work as a tool of reflection in terms of providing opportunity to examine his own beliefs, to explore the possible reasons for engaging in a particular activity. On the basis of Sven-Ingvar Andersson’s book a teaching program at the Aarhus School of Architecture provides...

  20. Social media literacy protects against the negative impact of exposure to appearance ideal social media images in young adult women but not men.

    Science.gov (United States)

    Tamplin, Natalie C; McLean, Siân A; Paxton, Susan J

    2018-05-25

    Frequent exposure to appearance ideal social media is associated with body dissatisfaction. We hypothesised that commercial and peer social media literacy would protect against the negative impact of exposure to social media appearance ideal images on young adults' body image. The study was presented as an investigation of alcohol promotion on social media. Participants were 187 women (M age  = 24.6, SD = 3.7) and 187 men (M age  = 22.8, SD = 3.9) who viewed gender-matched alcohol-related appearance ideal social media images or control images containing alcohol only. Social media literacy was assessed prior to image exposure and body satisfaction measured before and after exposure. A negative effect of ideal image exposure on body satisfaction was observed in both women and men. In women only, commercial-social media literacy moderated the negative effect of exposure, independent of internalization or body comparison. Inclusion of social media literacy skills in prevention interventions is supported. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. Neutron reflectivity

    Directory of Open Access Journals (Sweden)

    Cousin Fabrice

    2015-01-01

    Full Text Available The specular neutron reflectivity is a technique enabling the measurement of neutron scattering length density profile perpendicular to the plane of a surface or an interface, and thereby the profile of chemical composition. The characteristic sizes that are probed range from around 5 Å up 5000 Å. It is a scattering technique that averages information on the entire surface and it is therefore not possible to obtain information within the plane of the interface. The specific properties of neutrons (possibility of tuning the contrast by isotopic substitution, sensitivity to magnetism, negligible absorption, low energy of the incident neutrons makes it particularly interesting in the fields of soft matter, biophysics and magnetic thin films. This course is a basic introduction to the technique and does not address the magnetic reflectivity. It is composed of three parts describing respectively its principle and its formalism, the experimental aspects of the method (spectrometers, samples and two examples related to the materials for energy.

  2. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey.

    Science.gov (United States)

    Faggioni, Lorenzo; Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Caramella, Davide

    2017-01-01

    To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; Pradiological procedures was significantly worse among medical students than radiology residents and radiography students (Pradiology residents as to knowledge of radiation protection issues (PRadiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological examinations. Both undergraduate and postgraduate teaching needs to be effectively implemented with radiation safety courses. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  3. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey

    International Nuclear Information System (INIS)

    Faggioni, Lorenzo; Paolicchi, Fabio; Bastiani, Luca; Guido, Davide; Caramella, Davide

    2017-01-01

    Highlights: • Medical students tend to overstate their knowledge of radiation protection (RP). • Overall RP knowledge of young doctors and students is suboptimal. • RP teaching to undergraduates and postgraduates needs to be substantially improved. - Abstract: Purpose: To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. Material and methods: A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Results: Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; P < 0.05), with no cases of perceived excellent knowledge among radiography students. However, the actual knowledge of essential radiation protection topics such as regulations, patient and tissue susceptibility to radiation damage, professional radiation risk and dose optimisation, as well as of radiation doses delivered by common radiological procedures was significantly worse among medical students than radiology residents and radiography students (P < 0.05). Those latter significantly outperformed radiology residents as to knowledge of radiation protection issues (P < 0.01). Overall, less than 50% of survey respondents correctly answered all questions of the survey. Conclusions: Radiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological

  4. Awareness of radiation protection and dose levels of imaging procedures among medical students, radiography students, and radiology residents at an academic hospital: Results of a comprehensive survey

    Energy Technology Data Exchange (ETDEWEB)

    Faggioni, Lorenzo, E-mail: lfaggioni@sirm.org [Department of Diagnostic and Interventional Radiology, University of Pisa, Via Roma 67, 56100, Pisa (Italy); Paolicchi, Fabio [Department of Diagnostic and Interventional Radiology, University of Pisa, Via Roma 67, 56100, Pisa (Italy); Bastiani, Luca [Institute of Clinical Physiology, National Research Council, Via Moruzzi 1, 56124, Pisa (Italy); Guido, Davide [Unit of Biostatistics and Clinical Epidemiology, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Via Forlanini 2, 27100, Pavia (Italy); Caramella, Davide [Department of Diagnostic and Interventional Radiology, University of Pisa, Via Roma 67, 56100, Pisa (Italy)

    2017-01-15

    Highlights: • Medical students tend to overstate their knowledge of radiation protection (RP). • Overall RP knowledge of young doctors and students is suboptimal. • RP teaching to undergraduates and postgraduates needs to be substantially improved. - Abstract: Purpose: To evaluate the awareness of radiation protection issues and the knowledge of dose levels of imaging procedures among medical students, radiology residents, and radiography students at an academic hospital. Material and methods: A total of 159 young doctors and students (including 60 radiology residents, 56 medical students, and 43 radiography students) were issued a questionnaire consisting of 16 multiple choice questions divided into three separated sections (i.e., demographic data, awareness about radiation protection issues, and knowledge about radiation dose levels of common radiological examinations). Results: Medical students claimed to have at least a good knowledge of radiation protection issues more frequently than radiology residents and radiography students (94.4% vs 55% and 35.7%, respectively; P < 0.05), with no cases of perceived excellent knowledge among radiography students. However, the actual knowledge of essential radiation protection topics such as regulations, patient and tissue susceptibility to radiation damage, professional radiation risk and dose optimisation, as well as of radiation doses delivered by common radiological procedures was significantly worse among medical students than radiology residents and radiography students (P < 0.05). Those latter significantly outperformed radiology residents as to knowledge of radiation protection issues (P < 0.01). Overall, less than 50% of survey respondents correctly answered all questions of the survey. Conclusions: Radiology residents, radiography students and medical students have a limited awareness about radiation protection, with a specific gap of knowledge concerning real radiation doses of daily radiological

  5. Analysis of a 17C Panel Painting by Reflection Terahertz Time Domain-Imaging (THz-TDI): contribution of ultrafast optics to museum collections inspection

    DEFF Research Database (Denmark)

    Koch Dandolo, Corinna Ludovica; Filtenborg, Troels Folke; Uhd Jepsen, Peter

    2015-01-01

    THz-TDI has been applied for imaging an hidden painting and other subsurface composition layers of a 17C panel painting belonging to the National Gallery of Denmark. C- and B-scans realized by THz have been compared with images obtained by x-ray radiography, thus helping in a deep understanding...

  6. ICRP 2015. International symposium on the radiation protection system. Report and reflection on a significant symposium; ICRP 2015. 3. Internationales Symposium zum System des Strahlenschutzes. Bericht und Reflexion ueber ein bedeutsames Symposium

    Energy Technology Data Exchange (ETDEWEB)

    Lorenz, Bernd

    2016-08-01

    The ICRP international symposium on the radiation protection system provides always extensive information on new developments in radiation protection. The ICRP 2105 discussed the following issues: radiation effects of low dose irradiation, dose coefficients for internal and external exposures, radiation protection in nuclear medicine, application of ICRP recommendations, environmental protection, studies on existing exposure situations, medical radiation protection today, science behind radiation doses, new developments in radiation effects, and ethics in radiation protection.

  7. THE “VÍDEO PARTICIPATIVO” (PARTICIPATORY VIDEO AS A WAY TO REFLECT AND SELF-REFLECT ON IMAGE AND IDENTITY OF REEMERGENT INDIANS FROM BRAZIL’S NORTHEAST

    Directory of Open Access Journals (Sweden)

    Peter Anton Zoettl

    2011-12-01

    Full Text Available Crises and change have affected the Brazilian indigenous population for more than 500 years. While for centuries their struggle against colonialism and the dominant national society had resulted in an ever shrinking population, the last decades have seen an unfamiliar phenomenon: the rise of “new” indigenous tribes in areas which, by the state and public opinion, were long considered as “acculturated”. These “reemerging” Indians, in their pursuit of both legal and actual recognition by authorities and their fellow Non-Indian citizens, face and undergo a peculiar re-elaboration of their “image” as Indians, being torn between romantic ideas of Indianness, and the demands of full integration within national society. Drawing on recent fieldwork experience in northeastern Brazil, the paper discusses how the visual-anthropological method of “participatory video” can be used as a means of reflecting on, and catalyzing, processes of individual and group identity formation of minority groups within a local-global context.

  8. Repressive coping among British college women: A potential protective factor against body image concerns, drive for thinness, and bulimia symptoms.

    Science.gov (United States)

    Mohiyeddini, Changiz

    2017-09-01

    Repressive coping, as a means of preserving a positive self-image, has been widely explored in the context of dealing with self-evaluative cues. The current study extends this research by exploring whether repressive coping is associated with lower levels of body image concerns, drive for thinness, bulimic symptoms, and higher positive rational acceptance. A sample of 229 female college students was recruited in South London. Repressive coping was measured via the interaction between trait anxiety and defensiveness. The results of moderated regression analysis with simple slope analysis show that compared to non-repressors, repressors reported lower levels of body image concerns, drive for thinness, and bulimic symptoms while exhibiting a higher use of positive rational acceptance. These findings, in line with previous evidence, suggest that repressive coping may be adaptive particularly in the context of body image. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Spectral implementation of full waveform inversion based on reflections

    KAUST Repository

    Wu, Zedong; Alkhalifah, Tariq Ali

    2014-01-01

    Using the reflection imaging process as a source to model reflections for full waveform inversion (FWI), referred to as reflection FWI (RFWI), allows us to update the background component of the model, and avoid using the relatively costly migration

  10. The Hijab as a Protective Factor for Body Image and Disordered Eating: A Replication in French Muslim Women

    OpenAIRE

    Sevag, Kertechian; Viren, Swami

    2017-01-01

    We examined differences in body image and disordered eating between Muslim women who do and do not wear the hijab in France, a nation marked by religious-based sartorial censorship. In an online survey, 450 French Muslim women completed measures of hijab use, weight discrepancy, disordered eating, body image-related constructs, religiosity, perceived support from Allah, and perceived discrimination. Controlling for religiosity and support from Allah, women who wore the hijab reported signific...

  11. Knowledge in Radiation Protection: a Survey of Professionals in Medical Imaging, Radiation Therapy and Nuclear Medicine Units in Yaounde

    International Nuclear Information System (INIS)

    Ongolo-Zogo, P.; Nguehouo, M.B.; Yomi, J.; Nko'o Amven, S.

    2013-01-01

    Medical use of ionizing radiation is now the most common radiation source of the population at the global level. The knowledge and practices of health professionals working with X-rays determine the level and quality of implementation of internationally and nationally recommended measures for radiation protection of patients and workers. The level of implementation and enforcement of international recommendations in African countries is an issue of concern due to weak laws and regulations and regulatory bodies. We report the results of a cross-sectional survey of health professionals working with ionizing radiation in Yaounde, the capital city of Cameroon. More than 50% of these professionals have a moderate level of knowledge of the norms and principles of radiation protection and more than 80% have never attended a continuing professional development workshop on radiation protection. (authors)

  12. Measurement of the ferric diffusion coefficient in agarose and gelatine gels by utilization of the evolution of a radiation induced edge as reflected in relaxation rate images

    International Nuclear Information System (INIS)

    Pedersen, Torje V.; Olsen, Dag R.; Skretting, Arne

    1997-01-01

    A method has been developed to determine the diffusion coefficients of ferric ions in ferrous sulphate doped gels. A radiation induced edge was created in the gel, and two spin-echo sequences were used to acquire a pair of images of the gel at different points of time. For each of these image pairs, a longitudinal relaxation rate image was derived. From profiles through these images, the standard deviations of the Gaussian functions that characterize diffusion were determined. These data provided the basis for the determination of the ferric diffusion coefficients by two different methods. Simulations indicate that the use of single spin-echo images in this procedure may in some cases lead to a significant underestimation of the diffusion coefficient. The technique was applied to different agarose and gelatine gels that were prepared, irradiated and imaged simultaneously. The results indicate that the diffusion coefficient is lower in a gelatine gel than in an agarose gel. Addition of xylenol orange to a gelatine gel lowers the diffusion coefficient from 1.45 to 0.81 mm 2 h -1 , at the cost of significantly lower R 1 sensitivity. The addition of benzoic acid to the latter gel did not increase the R 1 sensitivity. (author) OK

  13. Comparative evaluation of image quality of various digital radiology systems and quality control and optimization of radiation protection at the Amiens university hospital

    International Nuclear Information System (INIS)

    Foro, Saturnin Didace L.

    2004-01-01

    This study was centered on two axes: the first is the comparative evaluation of image quality of various numerical radiology system, the second is the quality control and the optimization of protection against radiation. The publication of directive 97/43 Euratom from council of June 30, 1997 and consequently, the decree of February 12, 2004 founded a strict lawful framework that is engaged to respect the University Hospital of Amiens by the installation of a operational dosimetry system and the application of February 12, 2004 decree. (author) [fr

  14. Cerebral Ischemia Detected with Diffusion-Weighted MR Imaging after Protected Carotid Artery Stenting: Comparison of Distal Balloon and Filter Device

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Jung; Jeon, Pyoung [Sungkyunkwan University School of Medicine, Seoul (Korea, Republic of); Roh, Hong Gee [Konkuk University Hospital, Seoul (Korea, Republic of)] (and others)

    2007-08-15

    The aim of this study was to examine the incidence of ischemia during protected carotid artery stenting (CAS) as well as to compare the protective efficacy of the balloon and filter devices on diffusion-weighted MR imaging (DWI). Seventy-one consecutive protected CAS procedures in 70 patients with a severe (> 70%) or symptomatic moderate (> 50%) carotid artery stenosis were examined. A balloon device (PercuSurge GuardWire) and a filter device (FilterWire EX/EZ, Emboshield) was used in 33 cases (CAS-B group) and 38 cases (CAS-F group) to prevent distal embolization, respectively. All the patients underwent DWI within seven days before and after the procedures. The number of new cerebral ischemic lesions on the post-procedural DWI were counted and divided into ipsilateral and contralateral lesions according to the relationship with the stenting side. New cerebral ischemic lesions were detected in 13 (39.4%) out of the 33 CAS-Bs and in 15 (39.5%) out of the 38 CAS-Fs. The mean number of total, ipsilateral and contralateral new cerebral ischemic lesion was 2.39, 1.67 and 0.73 in the CAS-B group and 2.11, 1.32 and 0.79 in the CAS-F group, respectively. No statistical differences were found between the two groups (p = 0.96, 0.74 and 0.65, respectively). The embolic complications encountered included two retinal infarctions and one hemiparesis in the CAS-B group (9.09%), and one retinal infarction, one hemiparesis and one ataxia in the CAS-F group (7.89%). There was a similar incidence of embolic complications in the two groups (p 1.00). The type of distal protection device used such as a balloon and filter does not affect the incidence of cerebral embolization after protected CAS.

  15. A BAND SELECTION METHOD FOR SUB-PIXEL TARGET DETECTION IN HYPERSPECTRAL IMAGES BASED ON LABORATORY AND FIELD REFLECTANCE SPECTRAL COMPARISON

    Directory of Open Access Journals (Sweden)

    S. Sharifi hashjin

    2016-06-01

    Full Text Available In recent years, developing target detection algorithms has received growing interest in hyperspectral images. In comparison to the classification field, few studies have been done on dimension reduction or band selection for target detection in hyperspectral images. This study presents a simple method to remove bad bands from the images in a supervised manner for sub-pixel target detection. The proposed method is based on comparing field and laboratory spectra of the target of interest for detecting bad bands. For evaluation, the target detection blind test dataset is used in this study. Experimental results show that the proposed method can improve efficiency of the two well-known target detection methods, ACE and CEM.

  16. Sua Pan surface bidirectional reflectance: a validation experiment of the Multi-angle Imaging SpectroRadiometer (MISR) during SAFARI 2000

    Science.gov (United States)

    Abdou, Wedad A.; Pilorz, Stuart H.; Helmlinger, Mark C.; Diner, David J.; Conel, James E.; Martonchik, John V.; Gatebe, Charles K.; King, Michael D.; Hobbs, Peter V.

    2004-01-01

    The Southern Africa Regional Science Initiative (SAFARI 2000) dray deason campaign was carried out during August and September 2000 at the peak of biomass burning. The intensive ground-based and airborne measurements in this campaign provided a unique opportunity to validate space sensors, such as the Multi-angle Imaging SpectroRadiometer (MISR), onboard NASA's EOS Terra platform.

  17. Exploring the Potential of Using Stories about Diverse Scientists and Reflective Activities to Enrich Primary Students' Images of Scientists and Scientific Work

    Science.gov (United States)

    Sharkawy, Azza

    2012-01-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15-week…

  18. Comparing near-infrared conventional diffuse reflectance spectroscopy and hyperspectral imaging for determination of the bulk properties of solid samples by multivariate regression: determination of Mooney viscosity and plasticity indices of natural rubber.

    Science.gov (United States)

    Juliano da Silva, Carlos; Pasquini, Celio

    2015-01-21

    Conventional reflectance spectroscopy (NIRS) and hyperspectral imaging (HI) in the near-infrared region (1000-2500 nm) are evaluated and compared, using, as the case study, the determination of relevant properties related to the quality of natural rubber. Mooney viscosity (MV) and plasticity indices (PI) (PI0 - original plasticity, PI30 - plasticity after accelerated aging, and PRI - the plasticity retention index after accelerated aging) of rubber were determined using multivariate regression models. Two hundred and eighty six samples of rubber were measured using conventional and hyperspectral near-infrared imaging reflectance instruments in the range of 1000-2500 nm. The sample set was split into regression (n = 191) and external validation (n = 95) sub-sets. Three instruments were employed for data acquisition: a line scanning hyperspectral camera and two conventional FT-NIR spectrometers. Sample heterogeneity was evaluated using hyperspectral images obtained with a resolution of 150 × 150 μm and principal component analysis. The probed sample area (5 cm(2); 24,000 pixels) to achieve representativeness was found to be equivalent to the average of 6 spectra for a 1 cm diameter probing circular window of one FT-NIR instrument. The other spectrophotometer can probe the whole sample in only one measurement. The results show that the rubber properties can be determined with very similar accuracy and precision by Partial Least Square (PLS) regression models regardless of whether HI-NIR or conventional FT-NIR produce the spectral datasets. The best Root Mean Square Errors of Prediction (RMSEPs) of external validation for MV, PI0, PI30, and PRI were 4.3, 1.8, 3.4, and 5.3%, respectively. Though the quantitative results provided by the three instruments can be considered equivalent, the hyperspectral imaging instrument presents a number of advantages, being about 6 times faster than conventional bulk spectrometers, producing robust spectral data by ensuring sample

  19. Clinical application of 'Justification' and 'Optimization' principle of ALARA in pediatric CT imaging: "How many children can be protected from unnecessary radiation?".

    Science.gov (United States)

    Sodhi, Kushaljit S; Krishna, Satheesh; Saxena, Akshay K; Sinha, Anindita; Khandelwal, Niranjan; Lee, Edward Y

    2015-09-01

    Practice of ALARA (as low as reasonably achievable) principle in the developed world is currently well established. However, there is striking lack of published data regarding such experience in the developing countries. Therefore, the goal of this study is to prospectively evaluate CT request forms to assess how many children could be protected from harmful radiation exposure if 'Justification' and 'Optimization' principles of ALARA are applied before obtaining CT imaging in a developing country. This can save children from potential radiation risks including development of brain cancer and leukemia. Consecutive CT request forms over a six month study period (May 16, 2013 to November 15, 2013) in a tertiary pediatric children's hospital in India were prospectively reviewed by two pediatric radiologists before obtaining CT imaging. First, 'Justification' of CT was evaluated and then 'Optimization' was applied for evaluation of appropriateness of the requested CT studies. The number (and percentage) of CT studies avoided by applying 'Justification' and 'Optimization' principle of ALARA were calculated. The difference in number of declined and optimized CT requests between CT requests from inpatient and outpatient departments was compared using Chi-Square test. A total of 1302 consecutive CT request forms were received during the study period. Some of the request forms (n=86; 6.61%) had requests for more than one (multiple) anatomical regions, hence, a total of 1392 different anatomical CT requests were received. Based on evaluation of the CT request forms for 'Justification' and 'Optimization' principle of ALARA by pediatric radiology reviewers, 111 individual anatomic part CT requests from 105 pediatric patients were avoided. Therefore, 8.06% (105 out of 1302 pediatric patients) were protected from unnecessary or additional radiation exposure.The rates of declined or optimized CT requests from inpatient department was significantly higher than that from outpatient

  20. Do the SRS-22 self-image and mental health domain scores reflect the degree of asymmetry of the back in adolescent idiopathic scoliosis?

    OpenAIRE

    Cheshire, James; Gardner, Adrian; Berryman, Fiona; Pynsent, Paul

    2017-01-01

    Background Patient-reported outcomes are becoming increasingly recognised in the management of patients with adolescent idiopathic scoliosis (AIS). Integrated Shape Imaging System 2 (ISIS2) surface topography is a validated tool to assess AIS. Previous studies have failed to demonstrate strong correlations between AIS and patient-reported outcomes highlighting the need for additional objective surface parameters to define the deformities associated with AIS. The aim of this study was to exami...

  1. Radiation protection in image installations Preclinical Molecular; Protección radiológica en instalaciones de Imagen Molecular Preclínica

    Energy Technology Data Exchange (ETDEWEB)

    Martí-Climent, J. M.; Collantes, M.; Prieto, E.; Morán, V.; Ecay, M.; Peñuelas, I.

    2014-07-01

    The preclinical image includes several molecular imaging techniques using ionizing radiation, particularly the single photon emission computed tomography (SPECT), the positron emission tomography (PET) and the autoradiographic image. Each technique uses different probes which allow imaging of a variety of metabolic processes. Sometimes they are used together with X-ray equipment which can obtain anatomical images. Consequently, research performed in preclinical molecular imaging facilities should be done in a context in which radiation protection is applied. Within radiological risks to the staff operating such facilities, the irradiation produced to hands due to the administration of radiotracers and to animals manipulation should be of major concern; therefore training and shielding are important. The design of the radioactive facility will be determined by the various activities undertaken. In particular, it will depend on the various preclinical molecular imaging techniques that would be developed and on the functional relationship that the facility has with the institution in which it is placed; particularly the animal housing facility and radiopharmacy unit. [Spanish] La imagen preclínica engloba distintas técnicas de imagen molecular que utilizan radiaciones ionizantes, destacando la tomografía por emisión de fotón único (SPECT), la tomografía de emisión de positrones (PET) y la imagen autorradiográfica. Cada una de ellas utiliza distintas sondas que permiten obtener imágenes de una gran variedad de procesos metabólicos. En ocasiones se emplean junto a equipos de rayos X que permiten obtener imágenes anatómicas. En consecuencia, la investigación en las instalaciones de imagen molecular preclínica deberá realizarse en un contexto en el que se aplique la protección radiológica. De entre los riesgos radiológicos del personal que opera este tipo de instalaciones destaca la irradiación de las manos producida tanto por la administración de los

  2. Radiation protection

    International Nuclear Information System (INIS)

    Jain, Aman; Sharma, Shivam; Parasher, Abhishek

    2014-01-01

    Radiation dose measurement, field of radiobiology, is considered to be critical factor for optimizing radiation protection to the health care practitioners, patients and the public. This lead to equipment that has dose - area product meters permanently installed. In many countries and even institution, the range of equipment is vast and with the opportunity for radiation protection and dose recording varies considerably. Practitioners must move with the changed demands of radiation protection but in many cases without assistance of modern advancements in technology Keeping the three basic safety measures Time, Dose and Shielding we can say 'Optimum dose is safe dose' instead of 'No dose is safe dose'. The purpose enclosed within the title 'Radiation Protection'. The use of radiation is expanding widely everyday around the world and crossing boundaries of medical imaging, diagnostic and. The way to get the ''As low as reasonably achievable' is only achievable by using methodology of radiation protection and to bring the concern of general public and practitioners over the hazards of un-necessary radiation dose. Three basic principles of radiation protection are time, distance and shielding. By minimizing the exposure time increasing the distance and including the shielding we can reduce the optimum range of dose. The ability of shielding material to attenuate radiation is generally given as half value layer. This is the thickness of the material which will reduce the amount of radiation by 50%. Lab coat and gloves must be worn when handling radioactive material or when working in a labeled radiation work area. Safety glasses or other appropriate splash shields should be used when handling radioactive material. 1. Reached to low dose level to occupational workers, public as per prescribed dose limit. 2. By mean of ALARA principle we achieved the protection from radiation besides us using the radiation for our benefit

  3. From the Atlas to the Rif a Crustal seismic image across Morocco: The SIMA & RIFSEIS control source wide-angle seismic reflection data

    Science.gov (United States)

    Carbonell, Ramon; Ayarza, Puy; Gallart, Josep; Diaz, Jordi; Harnafi, Mimoun; Levander, Alan; Teixell, Antonio

    2014-05-01

    The velocity structure of the crust and the geometry of the Moho across Morocco has been the main target of two recently acquired wide-angle seismic reflection transects. One is the SIMA experiment which provided seismic constraints beneath the Atlas Mountains and the second has been the RIFSEIS experiment which sampled the RIF orogen. Jointly these controlled source wide-angle seismic reflection data results in an almost 700 km, seismic profile going from the the Sahara craton across the High and Middle Atlas and Rif Mountain till the Gibraltar-Arc (Alboran). Current work on the interpretation of the seismic data-set is based on forward modeling, ray-tracing, as well as low fold wide-angle stacking. The data has resulted in a detailed crustal structure and velocity model for the Atlas Mountains and a 700 km transect revealing the irregular topography of the Moho beneath these two mountain orogens. Results indicate that the High Atlas features a moderate crustal thickness and that shortening is resolved at depth through a crustal root where the Saharan crust under-thrusts below the Moroccan crust, defining a lower crust imbrication which locally places the Moho boundary at, approximately, 40 km depth. The P-wave velocity model is characterized, in averaged, by relatively low velocities. These low deep crustal velocities together with other geophysical observables such as: conductivity estimates derived from Mt measurements; moderate Bouguer gravity anomaly; surface exposures of recent alkaline volcanics; lead the interpretation to propose that partial melts are currently emplaced in the deep crustal levels and in the upper mantle. The Moho discontinuity defines a crust which is in average relatively thin beneath the Atlas which is almost a 4000 m high orogenic belt. The resulting model supports existence of mantle upwelling as a possible mechanism that contributes, significantly, to maintain the High Atlas topography.

  4. Imaging

    International Nuclear Information System (INIS)

    Kellum, C.D.; Fisher, L.M.; Tegtmeyer, C.J.

    1987-01-01

    This paper examines the advantages of the use of excretory urography for diagnosis. According to the authors, excretory urography remains the basic radiologic examination of the urinary tract and is the foundation for the evaluation of suspected urologic disease. Despite development of the newer diagnostic modalities such as isotope scanning, ultrasonography, CT, and magnetic resonsance imaging (MRI), excretory urography has maintained a prominent role in ruorradiology. Some indications have been altered and will continue to change with the newer imaging modalities, but the initial evaluation of suspected urinary tract structural abnormalities; hematuria, pyuria, and calculus disease is best performed with excretory urography. The examination is relatively inexpensive and simple to perform, with few contraindictions. Excretory urography, when properly performed, can provide valuable information about the renal parenchyma, pelvicalyceal system, ureters, and urinary bladder

  5. REFLECTION AND REFRACTION, VOLUME 2.

    Science.gov (United States)

    KLAUS, DAVID J.; AND OTHERS

    THIS VOLUME 2 OF A TWO-VOLUME SET PROVIDES AUTOINSTRUCTION IN PHYSICS. THE UNITS COVERED IN THIS VOLUME ARE (1) REFLECTION OF LIGHT, (2) PHOTOMETRY, (3) POLARIZATION, (4) REFRACTION OF LIGHT, (5) SNELL'S LAW, (6) LENSES, FOCUS, AND FOCAL POINTS, (7) IMAGE FORMATION, AND (8) ABERRATIONS, THE EYE, AND MAGNIFICATION. THE INTRODUCTION AND UNITS ON…

  6. Built-in hyperspectral camera for smartphone in visible, near-infrared and middle-infrared lights region (second report): sensitivity improvement of Fourier-spectroscopic imaging to detect diffuse reflection lights from internal human tissues for healthcare sensors

    Science.gov (United States)

    Kawashima, Natsumi; Hosono, Satsuki; Ishimaru, Ichiro

    2016-05-01

    We proposed the snapshot-type Fourier spectroscopic imaging for smartphone that was mentioned in 1st. report in this conference. For spectroscopic components analysis, such as non-invasive blood glucose sensors, the diffuse reflection lights from internal human skins are very weak for conventional hyperspectral cameras, such as AOTF (Acousto-Optic Tunable Filter) type. Furthermore, it is well known that the spectral absorption of mid-infrared lights or Raman spectroscopy especially in long wavelength region is effective to distinguish specific biomedical components quantitatively, such as glucose concentration. But the main issue was that photon energies of middle infrared lights and light intensities of Raman scattering are extremely weak. For improving sensitivity of our spectroscopic imager, the wide-field-stop & beam-expansion method was proposed. Our line spectroscopic imager introduced a single slit for field stop on the conjugate objective plane. Obviously to increase detected light intensities, the wider slit width of the field stop makes light intensities higher, regardless of deterioration of spatial resolutions. Because our method is based on wavefront-division interferometry, it becomes problems that the wider width of single slit makes the diffraction angle narrower. This means that the narrower diameter of collimated objective beams deteriorates visibilities of interferograms. By installing the relative inclined phaseshifter onto optical Fourier transform plane of infinity corrected optical systems, the collimated half flux of objective beams derived from single-bright points on objective surface penetrate through the wedge prism and the cuboid glass respectively. These two beams interfere each other and form the infererogram as spatial fringe patterns. Thus, we installed concave-cylindrical lens between the wider slit and objective lens as a beam expander. We successfully obtained the spectroscopic characters of hemoglobin from reflected lights from

  7. El manga, su imagen y lenguaje, reflejo de la sociedad japonesa = The Manga, its image and language, a reflection of the Japanese society

    Directory of Open Access Journals (Sweden)

    Marian de Cabo Baigorri

    2015-06-01

    Full Text Available La globalización cultural propia de nuestros tiempos produce un camino con doble sentido: no sólo Occidente exporta al resto del mundo sus modelos culturales, sino que el modo de hacer de otras culturas entra en Europa y EEUU. Y una de las culturas que más interés despierta en los últimos años es la cultura japonesa. Esto es, en parte, gracias a la excelente exportación que se ha realizado del manga. Al igual que el cómic occidental refleja los valores de la sociedad que lo crea, el cómic japonés es un reflejo de la sociedad japonesa. Se refleja en las historias que cuenta y en el modo que tiene de hacerlo. Como cualquier otro medio de expresión, el manga tiene su propio lenguaje icónico y textual, condicionado por los cánones estéticos y éticos de la cultura en la que se produce. Así, nos vamos a acercar a la sociedad japonesa por medio del manga, de su historia, su origen y desarrollo, y de sus cualidades estéticas y narrativas.Cultural globalization in our days creates a twofold road: not only have the West exported their cultural models to the rest of the world, but there is also an influence from other cultures in Europe and the USA. And one of the cultures that have attracted more interest is the Japanese culture. This is, in part, due to the great contribution made by Manga. In the same way that western comic is a reflection of the society that creates it, Japanese comic is a reflection of the Japanese society. This influence can be seen both in the stories told and the way to do so. As any other way of expression, Manga have its own iconic and textual language, influenced by the aesthetic and ethical canons from the culture where it comes from. Therefore, we will try to approach the Japanese society through Manga, its history, origin and development, and also its narrative and aesthetic qualities.

  8. Radiology preparedness in ebola virus disease: guidelines and challenges for disinfection of medical imaging equipment for the protection of staff and patients.

    Science.gov (United States)

    Mollura, Daniel J; Palmore, Tara N; Folio, Les R; Bluemke, David A

    2015-05-01

    The overlap of early Ebola virus disease (EVD) symptoms (eg, fever, headache, abdominal pain, diarrhea, emesis, and fatigue) with symptoms of other more common travel-related diseases (eg, malaria, typhoid fever, pneumonia, and meningococcemia) may result in delayed diagnosis of EVD before isolation of infected patients. Radiology departments should consider policies for and approaches to decontamination of expensive and potentially easily damaged radiology equipment. In addition, the protection of radiology personnel must be considered during the work-up phase of undiagnosed EVD patients presenting to emergency departments. The purpose of this article is to consider the effect of EVD on radiology departments and imaging equipment, with particular consideration of guidelines currently available from the Centers for Disease Control and Prevention that may be applicable to radiology. (©) RSNA, 2015.

  9. Orientation guide for imaging examinations. Recommendation of the radiation protection commission. 2. rev. ed.; Orientierungshilfe fuer bildgebende Untersuchungen. Empfehlung der Strahlenschutzkommission

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Due to the wide range of medical diagnostic method that include partially high radiation exposures of the patients (for instance CT examinations) the mean radiation exposure of the public is increasing in Germany. In 2006 the German Strahlenschutzkommission (radiation protection commission) has published a catalogue for the different diagnostic questions including recommendations for the best imaging technique. This orientation guide was actualized in 2012. The catalogue is aimed to avoid unnecessary radiation exposure and to simultaneously improve the medical diagnostics. Nevertheless the applying physician has to justify and document the selected diagnostic technique for the individual case. The guide covers the following issues: head, neck, spinal cord, skeleton and muscles, cardiovascular system, thorax, digestive system, urogenital tract, gynecology, mammary glands, trauma, oncology, pediatrics, interventional radiology.

  10. Digital imaging in diagnostic radiology. Image quality - radiation exposure

    International Nuclear Information System (INIS)

    Schmidt, T.; Stieve, F.E.

    1996-01-01

    The publication contains the 37 lectures of the symposium on digital imaging in diagnostic radiology, held in November 1995 at Kloster Seeon, as well as contributions enhancing the information presented in the lectures. The publication reflects the state of the art in this subject field, discusses future trends and gives recommendations and information relating to current practice in radiology. In-depth information is given about R and D activities for the digitalisation of X-ray pictures and the image quality required to meet the purposes of modern diagnostics. Further aspects encompass radiological protection and dose optimization as well as optimization of examination methods. (vhe) [de

  11. High-resolution 3D seismic reflection imaging across active faults and its impact on seismic hazard estimation in the Tokyo metropolitan area

    Science.gov (United States)

    Ishiyama, Tatsuya; Sato, Hiroshi; Abe, Susumu; Kawasaki, Shinji; Kato, Naoko

    2016-10-01

    We collected and interpreted high-resolution 3D seismic reflection data across a hypothesized fault scarp, along the largest active fault that could generate hazardous earthquakes in the Tokyo metropolitan area. The processed and interpreted 3D seismic cube, linked with nearby borehole stratigraphy, suggests that a monocline that deforms lower Pleistocene units is unconformably overlain by middle Pleistocene conglomerates. Judging from structural patterns and vertical separation on the lower-middle Pleistocene units and the ground surface, the hypothesized scarp was interpreted as a terrace riser rather than as a manifestation of late Pleistocene structural growth resulting from repeated fault activity. Devastating earthquake scenarios had been predicted along the fault in question based on its proximity to the metropolitan area, however our new results lead to a significant decrease in estimated fault length and consequently in the estimated magnitude of future earthquakes associated with reactivation. This suggests a greatly reduced seismic hazard in the Tokyo metropolitan area from earthquakes generated by active intraplate crustal faults.

  12. Perceived images of disability: the reflections of two undergraduate medical students in a university in South Africa on life in a wheelchair.

    Science.gov (United States)

    Amosun, Seyi L; Volmink, Lauren; Rosin, Rainer

    2005-08-19

    The purpose of this manuscript is to document the experiences of two undergraduate medical students at the University of Cape Town, South Africa, who registered for a 4-week special study module titled "Images of Disability", as part of the medical training programme. The objective of the module was to foster the development of positive attitudes toward persons with physical disability through role-playing. The special study module required that the students assumed they had mobility impairments and were physically confined to wheelchairs. The students were required to document their personal experiences of life in a wheelchair for five consecutive working days. The students had to deal with their perceptions of the attitudes of individuals they interacted with, which resulted in feeling of inferiority and lowered self-esteem. The students also identified obstacles in the environment which hindered integration. The students reported significant positive changes in their attitudes towards persons with disabilities.

  13. Challenging Narcissus, or Reflecting on Reflecting.

    Science.gov (United States)

    Achilles, C. M.

    The concept of reflective practice and teaching people to be reflective practitioners is examined. The document begins with a look at professional knowledge according to three prominent professionals in the educational administration field: Schon, Schein, and Achilles. "Reflective" strategies that could be incorporated into courses and…

  14. The Protective Effect of Human Umbilical Cord Blood CD34+ Cells and Estradiol against Focal Cerebral Ischemia in Female Ovariectomized Rat: Cerebral MR Imaging and Immunohistochemical Study.

    Directory of Open Access Journals (Sweden)

    Ching-Chung Liang

    Full Text Available Human umbilical cord blood derived CD34+ stem cells are reported to mediate therapeutic effects in stroke animal models. Estrogen was known to protect against ischemic injury. The present study wished to investigate whether the protective effect of CD34+ cells against ischemic injury can be reinforced with complemental estradiol treatment in female ovariectomized rat and its possible mechanism. Experiment 1 was to determine the best optimal timing of CD34+ cell treatment for the neuroprotective effect after 60-min middle cerebral artery occlusion (MCAO. Experiment 2 was to evaluate the adjuvant effect of 17β-estradiol on CD34+ cell neuroprotection after MCAO. Experiment 1 showed intravenous infusion with CD34+ cells before MCAO (pre-treatment caused less infarction size than those infused after MCAO (post-treatment on 7T magnetic resonance T2-weighted images. Experiment 2 revealed infarction size was most significantly reduced after CD34+ + estradiol pre-treatment. When compared with no treatment group, CD34+ + estradiol pre-treatment showed significantly less ADC reduction at 2 h and 2 d, less CBF reduction at 2 h and less hyperperfusion at 2 d. The immunoreactivity of c-Fos, c-Jun and GFAP was attenuated, and BDNF showed significant recovery from 2 h to 2 d after MCAO, especially after CD34+ + estradiol pre-treatment. The present study suggests pre-treatment with CD34+ cells with complemental estradiol can be most protective against ischemic injury, which may act through stabilization of cerebral hemodynamics and normalization of the expressions of immediate early genes and BDNF.

  15. Quality image analysis and radiation protection in dental radiodiagnosis in Sobral city, BA, Brazil; Analise da qualidade de imagem e da radioprotecao em radiodiagnostico odontologico na cidade de Sobral

    Energy Technology Data Exchange (ETDEWEB)

    Menezes, Francisca L. [Universidade Estadual Vale do Acarau (UVA), Sobral, CE (Brazil); Ferreira, Fernanda C.L. [Universidade Federal do Sul e Sudeste do Para, Maraba, PA (Brazil); Paschoal, Cinthia M.M. [Universidade da Integracao Internacional da Lusofonia Afro-Brasileira, Redencao, CE (Brazil); Belinato, Walmir [Instituto Federal da Bahia, Vitoria da Conquista, BA (Brazil)

    2015-08-15

    The radiographic processing is one of the steps to acquire radiographic images and requires appropriate quality control. The image should allow an accurate diagnosis and avoid repetition of examinations, which is consistent with the principles of radiation protection. This study aimed to verify the quality of periapical radiographic imaging and to investigate the suitability of dental X-ray equipment on the principles of radiation protection established by the Health Ministry Decree 453/98, by applying radiation field test and application questionnaires to dentists professionals. The result showed that it takes greater care professionals about the treatment radiographic and radiation protection, requiring that inspection agencies require compliance with the rules so that there is maintaining the quality of dental diagnostic radiology services. (author)

  16. Quasi-3-D Seismic Reflection Imaging and Wide-Angle Velocity Structure of Nearly Amagmatic Oceanic Lithosphere at the Ultraslow-Spreading Southwest Indian Ridge

    Science.gov (United States)

    Momoh, Ekeabino; Cannat, Mathilde; Watremez, Louise; Leroy, Sylvie; Singh, Satish C.

    2017-12-01

    We present results from 3-D processing of 2-D seismic data shot along 100 m spaced profiles in a 1.8 km wide by 24 km long box during the SISMOSMOOTH 2014 cruise. The study is aimed at understanding the oceanic crust formed at an end-member mid-ocean ridge environment of nearly zero melt supply. Three distinct packages of reflectors are imaged: (1) south facing reflectors, which we propose correspond to the damage zone induced by the active axial detachment fault: reflectors in the damage zone have dips up to 60° and are visible down to 5 km below the seafloor; (2) series of north dipping reflectors in the hanging wall of the detachment fault: these reflectors may correspond to damage zone inherited from a previous, north dipping detachment fault, or small offset recent faults, conjugate from the active detachment fault, that served as conduits for isolated magmatic dykes; and (3) discontinuous but coherent flat-lying reflectors at shallow depths (serpentinization and fracturation of the exhumed mantle-derived peridotites in the footwall of active and past detachment faults.

  17. MIRRORING THE CRITICAL BIOETHICS: THE REFLECTED IMAGE FROM THE VULNERABILITY OF PEOPLE LIVING WITH HIV/AIDS AND THE ONES INVOLVED WITH THEM

    Directory of Open Access Journals (Sweden)

    Onã Silva

    2013-09-01

    image from the society and reduce the vulnerabilities of those who live with HIV/Aids and the ones involved with them.

  18. A longitudinal observational study of brain atrophy rate reflecting four decades of multiple sclerosis: a comparison of serial 1D, 2D, and volumetric measurements from MRI images

    International Nuclear Information System (INIS)

    Martola, Juha; Zhang, Yi; Aspelin, Peter; Kristoffersen Wiberg, Maria; Bergstroem, Jakob; Fredrikson, Sten; Stawiarz, Leszek; Hillert, Jan; Flodmark, Olof; Lilja, Anders; Ekbom, Anders

    2010-01-01

    Multiple sclerosis (MS) has a variable progression with an early onset of atrophy. Individual longitudinal radiological evaluations (over decades) are difficult to perform due to the limited availability of magnetic resonance imaging (MRI) in the past, patients lost in follow-up, and the continuous updating of scanners. We studied a cohort with widespread disease duration at baseline. The observed individual atrophy rates over time of 10 years represented four decades of disease span. Thirty-seven MS patients (age range 24-65 years with disease duration 1-33 years) were consecutively selected and evaluated with MRI at baseline 1995 and in 1996. They were followed up for a decade (mean of 9.25 years, range 7.3-10 years) up to 2003-2005. Brain parenchymal volume and volumes of the supratentorial ventricles were analyzed with semi-automated volumetric measurements at three time points (1995, 1996, and 2003-2005). Volumetric differences were found over shorter periods of time (1-7 months); however, differences vanished by the end of follow-up. A uniform longitudinal decrease in brain volume and increase in ventricle volumes were found. Frontal horn width (1D) correlated strongest to 3D measures. No statistical differences of atrophy rates between MS courses were found. Supratentorial ventricular volumes were associated with disability and this association persisted during follow-up. Despite variable clinical courses, the degenerative effects of MS progression expressed in brain atrophy seem to uniformly progress over longer periods of time. These volumetric changes can be detected using 1D and 2D measurements performed on a routine PACS workstation. (orig.)

  19. THE VARIABLE REFLECTION NEBULA CEPHEUS A EAST

    International Nuclear Information System (INIS)

    Hodapp, Klaus W.; Bressert, Eli

    2009-01-01

    We report K'-band imaging observations of the reflection nebula associated with Cepheus A East covering the time interval from 1990 to 2004. Over this time the reflection nebula shows variations of flux distribution, which we interpret as the effect of inhomogeneous and varying extinction in the light path from the illuminating source HW2 to the reflection nebula. The obscuring material is located within typical distances of ∼ 10 AU from the illuminating source.

  20. Temporal reflectance changes in vegetables

    DEFF Research Database (Denmark)

    Dissing, Bjørn Skovlund; Clemmensen, Line Katrine Harder; Ersbøll, Bjarne Kjær

    2009-01-01

    Quality control in the food industry is often performed by measuring various chemical compounds of the food involved. We propose an imaging concept for acquiring high quality multispectral images to evaluate changes of carrots and celeriac over a period of 14 days. Properties originating...... in the surface chemistry of vegetables may be captured in an integrating sphere illumination which enables the creation of detailed surface chemistry maps with a good combination of spectral and spatial resolutions. Prior to multispectral image recording, the vegetables were prefried and frozen at -30Â......°C for four months. During the 14 days of image recording, the vegetables were kept at +5°C in refrigeration. In this period, surface changes and thereby reflectance properties were very subtle. To describe this small variation we employed advanced statistical techniques to search a large featurespace...

  1. Computer applications in radiation protection

    International Nuclear Information System (INIS)

    Cole, P.R.; Moores, B.M.

    1995-01-01

    Computer applications in general and diagnostic radiology in particular are becoming more widespread. Their application to the field of radiation protection in medical imaging, including quality control initiatives, is similarly becoming more widespread. Advances in computer technology have enabled departments of diagnostic radiology to have access to powerful yet affordable personal computers. The application of databases, expert systems and computer-based learning is under way. The executive information systems for the management of dose and QA data that are under way at IRS are discussed. An important consideration in developing these pragmatic software tools has been the range of computer literacy within the end user group. Using interfaces have been specifically designed to reflect the requirements of many end users who will have little or no computer knowledge. (Author)

  2. Impact of the cameras radiometric resolution on the accuracy of determining spectral reflectance coefficients

    Science.gov (United States)

    Orych, A.; Walczykowski, P.; Jenerowicz, A.; Zdunek, Z.

    2014-11-01

    Nowadays remote sensing plays a very important role in many different study fields, i.e. environmental studies, hydrology, mineralogy, ecosystem studies, etc. One of the key areas of remote sensing applications is water quality monitoring. Understanding and monitoring of the water quality parameters and detecting different water contaminants is an important issue in water management and protection of whole environment and especially the water ecosystem. There are many remote sensing methods to monitor water quality and detect water pollutants. One of the most widely used method for substance detection with remote sensing techniques is based on usage of spectral reflectance coefficients. They are usually acquired using discrete methods such as spectrometric measurements. These however can be very time consuming, therefore image-based methods are used more and more often. In order to work out the proper methodology of obtaining spectral reflectance coefficients from hyperspectral and multispectral images, it is necessary to verify the impact of cameras radiometric resolution on the accuracy of determination of them. This paper presents laboratory experiments that were conducted using two monochromatic XEVA video sensors (400-1700 nm spectral data registration) with two different radiometric resolutions (12 and 14 bits). In view of determining spectral characteristics from images, the research team used set of interferometric filters. All data collected with multispectral digital video cameras were compared with spectral reflectance coefficients obtained with spectroradiometer. The objective of this research is to find the impact of cameras radiometric resolution on reflectance values in chosen wavelength. The main topic of this study is the analysis of accuracy of spectral coefficients from sensors with different radiometric resolution. By comparing values collected from images acquired with XEVA sensors and with the curves obtained with spectroradiometer it

  3. Comparison of three techniques for evaluating skin erythemal response for determination of sun protection factors of sunscreens: high resolution laser Doppler imaging, colorimetry and visual scoring.

    Science.gov (United States)

    Wilhelm, K P; Kaspar, K; Funkel, O

    2001-04-01

    Sun protection factor (SPF) measurement is based on the determination of the minimal erythema dose (MED). The ratio of doses required to induce a minimal erythema between product-treated and untreated skin is defined as SPF. The aim of this study was to validate the conventionally used visual scoring with two non-invasive methods: high resolution laser Doppler imaging (HR-LDI) and colorimetry. Another goal was to check whether suberythemal reactions could be detected by means of HR-LDI measurements. Four sunscreens were selected. The measurements were made on the back of 10 subjects. A solar simulator SU 5000 (m.u.t., Wedel, Germany) served as radiation source. For the visual assessment, the erythema was defined according to COLIPA as the first perceptible, clearly defined unambiguous redness of the skin. For the colorimetric determination of the erythema, a Chromameter CR 300 (Minolta, Osaka, Japan) was used. The threshold for the colorimetry was chosen according to the COLIPA recommendation as an increase of the redness parameter delta a* = 2.5. For the non-contact perfusion measurements of skin blood flow, a two-dimensional high resolution laser Doppler imager (HR-LDI) (Lisca, Linköping, Sweden) was used. For the HR-LDI measurements, an optimal threshold perfusion needed to be established. For the HR-LDI measurements basal perfusion +1 standard deviation of all basal measurements was found to be a reliable threshold perfusion corresponding to the minimal erythema. Smaller thresholds, which would be necessary for detection of suberythemal responses, did not provide unambiguous data. All three methods, visual scoring, colorimetry and HR-LDI, produced similar SPFs for the test products with a variability of colorimetry are suitable, reliable and observer-independent methods for MED determination. However, they do not provide greater sensitivity and thus do not result in lower UV dose requirements for testing.

  4. [Cerebral protection].

    Science.gov (United States)

    Cattaneo, A D

    1993-09-01

    Cerebral protection means prevention of cerebral neuronal damage. Severe brain damage extinguishes the very "human" functions such as speech, consciousness, intellectual capacity, and emotional integrity. Many pathologic conditions may inflict injuries to the brain, therefore the protection and salvage of cerebral neuronal function must be the top priorities in the care of critically ill patients. Brain tissue has unusually high energy requirements, its stores of energy metabolites are small and, as a result, the brain is totally dependent on a continuous supply of substrates and oxygen, via the circulation. In complete global ischemia (cardiac arrest) reperfusion is characterized by an immediate reactive hyperemia followed within 20-30 min by a delayed hypoperfusion state. It has been postulated that the latter contributes to the ultimate neurologic outcome. In focal ischemia (stroke) the primary focus of necrosis is encircled by an area (ischemic penumbra) that is underperfused and contains neurotoxic substances such as free radicals, prostaglandins, calcium, and excitatory neurotransmitters. The variety of therapeutic effort that have addressed the question of protecting the brain reflects their limited success. 1) Barbiturates. After an initial enthusiastic endorsement by many clinicians and years of vigorous controversy, it can now be unequivocally stated that there is no place for barbiturate therapy following resuscitation from cardiac arrest. One presumed explanation for this negative statement is that cerebral metabolic suppression by barbiturates (and other anesthetics) is impossible in the absence of an active EEG. Conversely, in the event of incomplete ischemia EEG activity in usually present (albeit altered) and metabolic suppression and hence possibly protection can be induced with barbiturates. Indeed, most of the animal studies led to a number of recommendations for barbiturate therapy in man for incomplete ischemia. 2) Isoflurane. From a cerebral

  5. Transcriptome States Reflect Imaging of Aging States.

    Science.gov (United States)

    Eckley, D Mark; Coletta, Christopher E; Orlov, Nikita V; Wilson, Mark A; Iser, Wendy; Bastian, Paul; Lehrmann, Elin; Zhang, Yonqing; Becker, Kevin G; Goldberg, Ilya G

    2018-06-14

    In this study, we describe a morphological biomarker that detects multiple discrete subpopulations (or "age-states") at several chronological ages in a population of nematodes (Caenorhabditis elegans). We determined the frequencies of three healthy adult states and the timing of the transitions between them across the lifespan. We used short-lived and long-lived strains to confirm the general applicability of the state classifier and to monitor state progression. This exploration revealed healthy and unhealthy states, the former being favored in long-lived strains and the latter showing delayed onset. Short-lived strains rapidly transitioned through the putative healthy state. We previously found that age-matched animals in different age-states have distinct transcriptome profiles. We isolated animals at the beginning and end of each identified state and performed microarray analysis (principal component analysis, relative sample to sample distance measurements, and gene set enrichment analysis). In some comparisons, chronologically identical individuals were farther apart than morphologically identical individuals isolated on different days. The age-state biomarker allowed assessment of aging in a novel manner, complementary to chronological age progression. We found hsp70 and some small heat shock protein genes are expressed later in adulthood, consistent with the proteostasis collapse model.

  6. Investigating murals with terahertz reflective tomography

    Science.gov (United States)

    Yuan, Minjie; Sun, Wenfeng; Wang, Xinke; Wang, Sen; Zhang, Qunxi; Ye, Jiasheng; Zhang, Yan

    2015-08-01

    Terahertz time-domain spectroscopy (THz-TDS) imaging technology has been proposed to be used in the non-invasive detection of murals. THz-TDS images provide structural data of the sample that cannot be obtained with other complementary techniques. In this paper, two types of defects hidden in the plaster used to simulate the cases of defects in the murals, have been investigated by the terahertz reflected time domain spectroscopy imaging system. These preset defects include a leaf slice and a slit built in the plaster. With the terahertz reflective tomography, information about defects has been determined involving the thickness from the surface of sample to the built-in defect, the profile and distribution of the defect. With this THz tomography, different defects with the changes of optical thickness and their relative refractive index have been identified. The application of reflective pulsed terahertz imaging has been extended to the defect detection of the murals.

  7. Optical coherence tomography and autofluorescence findings in chronic phototoxic maculopathy secondary to snow-reflected solar radiation

    Directory of Open Access Journals (Sweden)

    Dhananjay Shukla

    2015-01-01

    Full Text Available A professional mountain trekker presented with gradual, moderate visual decline in one eye. The subnormal vision could not be explained by the examination of anterior and posterior segment of either eye, which was unremarkable. Optical coherence tomography and autofluorescence imaging revealed subtle defects in the outer retina, which correlated with the extent of visual disturbance. A novel presentation of retinal phototoxicity due to indirect solar radiation reflected from snow in inadequately protected eyes of a chronically exposed subject is reported.

  8. Optical coherence tomography and autofluorescence findings in chronic phototoxic maculopathy secondary to snow-reflected solar radiation.

    Science.gov (United States)

    Shukla, Dhananjay

    2015-05-01

    A professional mountain trekker presented with gradual, moderate visual decline in one eye. The subnormal vision could not be explained by the examination of anterior and posterior segment of either eye, which was unremarkable. Optical coherence tomography and autofluorescence imaging revealed subtle defects in the outer retina, which correlated with the extent of visual disturbance. A novel presentation of retinal phototoxicity due to indirect solar radiation reflected from snow in inadequately protected eyes of a chronically exposed subject is reported.

  9. Approaches to promotion and implementation of action on radiation protection for children

    International Nuclear Information System (INIS)

    Goske, M. J.; Applegate, K. E.; Bulas, D.; Butler, P. F.; Callahan, M. J.; Coley, B. D.; Don, S.; Farley, S.; Frush, D. P.; Hernanz-Schulman, M.; Kaste, S. C.; Morrison, G.; Sidhu, M.; Strauss, K. J.; Treves, S. T.

    2011-01-01

    The Radiation Protection in Medicine conference, reviewed in this journal supplement, outlined nine strategies to promote radiation protection for patients. The Alliance for Radiation Safety in Pediatric Imaging has focused its work on three of those areas: creating awareness of the need and opportunities for radiation protection for children; developing open-source educational materials for medical professionals and parents on this critical topic for improved patient safety and communication; and lastly, advocating on behalf of children with industry, government and regulatory bodies to improve equipment design and safety features, standardisation of nomenclature and displays of dose reports across vendor platforms that reflect the special considerations of children. (authors)

  10. Temperature-reflection I

    DEFF Research Database (Denmark)

    McGady, David A.

    2017-01-01

    -temperature path integrals for quantum field theories (QFTs) should be T-reflection invariant. Because multi-particle partition functions are equal to Euclidean path integrals for QFTs, we expect them to be T-reflection invariant. Single-particle partition functions though are often not invariant under T......In this paper, we revisit the claim that many partition functions are invariant under reflecting temperatures to negative values (T-reflection). The goal of this paper is to demarcate which partition functions should be invariant under T-reflection, and why. Our main claim is that finite...... that T-reflection is unrelated to time-reversal. Finally, we study the interplay between T-reflection and perturbation theory in the anharmonic harmonic oscillator in quantum mechanics and in Yang-Mills in four-dimensions. This is the first in a series of papers on temperature-reflections....

  11. Imaging spectroscopy for characterisation of grass swards

    NARCIS (Netherlands)

    Schut, A.G.T.

    2003-01-01

    Keywords: Imaging spectroscopy, imaging spectrometry, remote sensing, reflection, reflectance, grass sward, white clover, recognition, characterisation, ground cover, growth monitoring, stress detection, heterogeneity quantification

    The potential of imaging spectroscopy as a tool for

  12. Subsurface imaging in a sector of Cerro Prieto transform fault near to pull-apart basin, Mexicali Valley, Baja California, Mexico, based on crooked lines 2D seismic reflection.

    Science.gov (United States)

    Mares-Agüero, M. A.; González-Escobar, M.; Arregui, S.

    2016-12-01

    In the transition zone between San Andres continental transformation system and the coupled transform faults system and rifting of Gulf of California is located the Cerro Prieto pull-apart basin delimitated by Imperial fault (northeast) and Cerro Prieto fault (CPF) (southwest), this last, is the limit west of Cerro Prieto geothermic field (CPGF). Crooked lines 2D seismic reflection, covering a portion near the intersection of CPF and CPGF are processed and interpreted. The seismic data were obtained in the early 80's by Petróleos Mexicanos (PEMEX). By decades, technical and investigation works in Cerro Prieto geothermic field and its vicinity had mapped faults at several depths but do not stablish a clear limit where this faults and CPF interact due the complex hydrothermal effects imaging the subsurface. The profiles showing the presence of a zone of uplift effect due to CPF. Considering the proximity of the profiles to CPF, it is surprising almost total absence of faults. A strong reflector around 2 km of depth, it is present in all profiles. This seismic reflector is considered a layer of shale, result of the correlation with a well located in the same region.

  13. Liberating Moral Reflection

    Science.gov (United States)

    Horell, Harold D.

    2013-01-01

    The author argues that if we are to foster life-giving and liberating moral reflection, we must first liberate moral reflection from distortions; specifically, from the distorting effects of moral insensitivity, destructive moral relativism, and confusions resulting from a failure to understand the dynamics of moral reflection. The author proposes…

  14. An Access Control Framework for Reflective Middleware

    Institute of Scientific and Technical Information of China (English)

    Gang Huang; Lian-Shan Sun

    2008-01-01

    Reflective middleware opens up the implementation details of middleware platform and applications at runtime for improving the adaptability of middleware-based systems. However, such openness brings new challenges to access control of the middleware-based systems.Some users can access the system via reflective entities, which sometimes cannot be protected by access control mechanisms of traditional middleware. To deliver high adaptability securely, reflective middleware should be equipped with proper access control mechanisms for potential access control holes induced by reflection. One reason of integrating these mechanisms in reflective middleware is that one goal of reflective middleware is to equip applications with reflection capabilities as transparent as possible. This paper studies how to design a reflective J2EE middlewarePKUAS with access control in mind. At first, a computation model of reflective system is built to identify all possible access control points induced by reflection. Then a set of access control mechanisms, including the wrapper of MBeans and a hierarchy of Java class loaders, are equipped for controlling the identified access control points. These mechanisms together with J2EE access control mechanism form the access control framework for PKUAS. The paper evaluates the security and the performance overheads of the framework in quality and quantity.

  15. Spinal imaging and image analysis

    CERN Document Server

    Yao, Jianhua

    2015-01-01

    This book is instrumental to building a bridge between scientists and clinicians in the field of spine imaging by introducing state-of-the-art computational methods in the context of clinical applications.  Spine imaging via computed tomography, magnetic resonance imaging, and other radiologic imaging modalities, is essential for noninvasively visualizing and assessing spinal pathology. Computational methods support and enhance the physician’s ability to utilize these imaging techniques for diagnosis, non-invasive treatment, and intervention in clinical practice. Chapters cover a broad range of topics encompassing radiological imaging modalities, clinical imaging applications for common spine diseases, image processing, computer-aided diagnosis, quantitative analysis, data reconstruction and visualization, statistical modeling, image-guided spine intervention, and robotic surgery. This volume serves a broad audience as  contributions were written by both clinicians and researchers, which reflects the inte...

  16. Preparation of strongly fluorescent silica nanoparticles of polyelectrolyte-protected cadmium telluride quantum dots and their application to cell toxicity and imaging

    International Nuclear Information System (INIS)

    Tang Jianhua; Xie Lian; Zhang Bin; Qiu Ting; Qi Bin; Xie Hongping

    2012-01-01

    Graphical abstract: The staining effect of the control group (a), QDs-SiO 2 (b) and QDs-PDADMAC-SiO 2 (c). Highlights: ► The fluorescence intensity of QDs-PDADMAC-SiO 2 is stronger than that of QDs-SiO 2 . ► The fluorescence stability of QDs-PDADMAC-SiO 2 is better than that of QDs-SiO 2 . ► The cytotoxicity of QDs-PDADMAC-SiO 2 was lower than that of QDs-SiO 2 ► The staining effect of QDs-PDADMAC-SiO 2 was much better than that of QDs-SiO 2 . - Abstract: Based on the polyelectrolyte-protected CdTe quantum dots (QDs), which were prepared by self-assembling of QDs and poly-diallyldimethylammonium chloride (PDADMAC) in the help of electrostatic attraction, the strong fluorescence silica nanoparticles (QDs-PDADMAC-SiO 2 ) have been prepared via a water-in-oil reverse microemulsion method. Transmission electron microscopy and Zeta potential analysis were used to characterize the as-prepared nanoparticles. All of the particles were almost spherical and there is a uniform distribution of the particle size with the average diameter about 25 nm. There is a large Zeta potential of −35.07 mV which is necessary for good monodispersity of nanoparticles solution. As compared with the QDs coated by SiO 2 (QDs-SiO 2 ), the QDs-PDADMAC-SiO 2 nanoparticles have much stronger fluorescence, and their fluorescence stability could be obviously improved. Moreover, QDs-PDADMAC-SiO 2 exhibits good biological compatibility which promotes their application in cellular imaging.

  17. Solar collector overheating protection

    NARCIS (Netherlands)

    Slaman, M.J.; Griessen, R.P.

    Prismatic structures in a thermal solar collector are used as overheating protection. Such structures reflect incoming light efficiently back whenever less thermal power is extracted from the solar collector. Maximum thermal power is generated when the prismatic structure is surrounded by a

  18. In Vivo Phenotyping of Tumor Metabolism in a Canine Cancer Patient with Simultaneous 18F-FDG-PET and Hyperpolarized 13C-Pyruvate Magnetic Resonance Spectroscopic Imaging (hyperPET: Mismatch Demonstrates that FDG may not Always Reflect the Warburg Effect

    Directory of Open Access Journals (Sweden)

    Henrik Gutte

    2015-06-01

    Full Text Available In this communication the mismatch between simultaneous 18F-FDG-PET and a 13C-lactate imaging (hyperPET in a biopsy verified squamous cell carcinoma in the right tonsil of a canine cancer patient is shown. The results demonstrate that 18F-FDG-PET may not always reflect the Warburg effect in all tumors.

  19. In Vivo Phenotyping of Tumor Metabolism in a Canine Cancer Patient with Simultaneous (18)F-FDG-PET and Hyperpolarized (13)C-Pyruvate Magnetic Resonance Spectroscopic Imaging (hyperPET): Mismatch Demonstrates that FDG may not Always Reflect the Warburg Effect

    DEFF Research Database (Denmark)

    Gutte, Henrik; Hansen, Adam E; Larsen, Majbrit M E

    2015-01-01

    In this communication the mismatch between simultaneous (18)F-FDG-PET and a (13)C-lactate imaging (hyperPET) in a biopsy verified squamous cell carcinoma in the right tonsil of a canine cancer patient is shown. The results demonstrate that (18)F-FDG-PET may not always reflect the Warburg effect...

  20. Microdosimetry: Reflections on Harald Rossi

    International Nuclear Information System (INIS)

    Kellerer, A.M.

    2002-01-01

    This and twelve previous Symposia reflect the evolution of microdosimetry, a field of research that has determined major new developments in radiation research, radiation protection, and radiology during the past four decades. The concepts of microdosimetry and its techniques were developed almost single handedly by H.H. Rossi. This memorial lecture outlines some of the ideas and some of the work of Harald Rossi that led to microdosimetry. It describes its major impact on radiobiology and, especially, its impact on studies with fast neutrons and on risk assessment. Microdosimetry was primarily designed as a tool for the elucidation of basic mechanisms of radiation action, but it has found its most important applications in the dosimetric measurement techniques that have become indispensable in radiation protection and in the dosimetry for radiation therapy. The advances of molecular biology are now providing new possibilities for a quantitative application of microdosimetry to radiobiology along the lines that Harald Rossi defined. (author)

  1. Experience with the UHV box coater and the evaporation procedure for VUV reflective coatings on the HADES RICH mirror

    CERN Document Server

    Maier-Komor, P; Wieser, J; Ulrich, A

    1999-01-01

    An UHV box coater was set up for the deposition of highly reflective layers in the vacuum ultraviolet (VUV) wavelength range on large-area mirror substrates. The VUV mirrors are needed for the ring imaging Cherenkov (RICH) detector of the high-acceptance di-electron spectrometer (HADES). The complete dry vacuum system is described. The spatial deposition distribution from the evaporation sources was measured. The reflectivity of the Al mirror layer was optimized for the wavelength range of 145-210 nm by varying the thickness of the MgF sub 2 protective layer. The setup for measuring the reflectivity in the VUV range is described and reflectivity data are presented.

  2. Whistleblower Protection

    Science.gov (United States)

    The Whistleblower Protection Enhancement Act of 2012 (WPA) and the Whistleblower Protection Act of 1989 Enhanced by the Act of 2012 provides protection rights for Federal employees against retaliation for whistleblowing activities.

  3. Radiation protection

    International Nuclear Information System (INIS)

    Koelzer, W.

    1975-01-01

    Physical and radiological terms, quantities, and units. Basic principles of radiation protection (ICRP, IAEA, EURATOM, FRG). Biological effects of ionizing radiation. Objectives of practical radiation protection. (HP) [de

  4. Media for Reflection

    DEFF Research Database (Denmark)

    Knudsen, Morten

    2016-01-01

    This article develops the concept media for reflection in the interest of conceptualizing the interpretative frames that enable and limit reflection in management and leadership education. The concept ‘media for reflection’ allows us to conceptualize the social and cultural mediation of reflection...... without reducing reflection to an effect of the social structures and cultural norms in which it is embedded. Based on the developed theoretical framework, this article analyses how a renaissance ‘mirror for princes’ and contemporary research-based management education mediate reflection. The content...... of the mediations is analysed as well as the societal and organizational background. Furthermore, the means by which the two media enable and limit reflection in different ways is compared. Finally, the article discusses possible implications of the analysis in terms of management and leadership education....

  5. Single-particle characterization of summertime Antarctic aerosols collected at King George Island using quantitative energy-dispersive electron probe X-ray microanalysis and attenuated total reflection Fourier transform-infrared imaging techniques.

    Science.gov (United States)

    Maskey, Shila; Geng, Hong; Song, Young-Chul; Hwang, Heejin; Yoon, Young-Jun; Ahn, Kang-Ho; Ro, Chul-Un

    2011-08-01

    Single-particle characterization of Antarctic aerosols was performed to investigate the impact of marine biogenic sulfur species on the chemical compositions of sea-salt aerosols in the polar atmosphere. Quantitative energy-dispersive electron probe X-ray microanalysis was used to characterize 2900 individual particles in 10 sets of aerosol samples collected between March 12 and 16, 2009 at King Sejong Station, a Korean scientific research station located at King George Island in the Antarctic. Two size modes of particles, i.e., PM(2.5-10) and PM(1.0-2.5), were analyzed, and four types of particles were identified, with sulfur-containing sea-salt particles being the most abundant, followed by genuine sea-salt particles without sulfur species, iron-containing particles, and other species including CaCO(3)/CaMg(CO(3))(2), organic carbon, and aluminosilicates. When a sulfur-containing sea-salt particle showed an atomic concentration ratio of sulfur to sodium of >0.083 (seawater ratio), it is regarded as containing nonsea-salt sulfate (nss-SO(4)(2-)) and/or methanesulfonate (CH(3)SO(3)(-)), which was supported by attenuated total reflection Fourier transform-infrared imaging measurements. These internal mixture particles of sea-salt/CH(3)SO(3)(-)/SO(4)(2-) were very frequently encountered. As nitrate-containing particles were not encountered, and the air-masses for all of the samples originated from the Pacific Ocean (based on 5-day backward trajectories), the oxidation of dimethylsulfide (DMS) emitted from phytoplanktons in the ocean is most likely to be responsible for the formation of the mixed sea-salt/CH(3)SO(3)(-)/SO(4)(2-) particles.

  6. Light reflection models for computer graphics.

    Science.gov (United States)

    Greenberg, D P

    1989-04-14

    During the past 20 years, computer graphic techniques for simulating the reflection of light have progressed so that today images of photorealistic quality can be produced. Early algorithms considered direct lighting only, but global illumination phenomena with indirect lighting, surface interreflections, and shadows can now be modeled with ray tracing, radiosity, and Monte Carlo simulations. This article describes the historical development of computer graphic algorithms for light reflection and pictorially illustrates what will be commonly available in the near future.

  7. National synchrotron light source medical personnel protection interlock

    International Nuclear Information System (INIS)

    Buda, S.; Gmur, N.F.; Larson, R.; Thomlinson, W.

    1998-01-01

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated

  8. NATIONAL SYNCHROTRON LIGHT SOURCE MEDICAL PERSONNEL PROTECTION INTERLOCK

    Energy Technology Data Exchange (ETDEWEB)

    BUDA,S.; GMUR,N.F.; LARSON,R.; THOMLINSON,W.

    1998-11-03

    This report is founded on reports written in April 1987 by Robert Hettel for angiography operations at the Stanford Synchrotron Research Laboratory (SSRL) and a subsequent report covering angiography operations at the National Synchrotron Light Source (NSLS); BNL Informal Report 47681, June 1992. The latter report has now been rewritten in order to accurately reflect the design and installation of a new medical safety system at the NSLS X17B2 beamline Synchrotron Medical Research Facility (SMERF). Known originally as the Angiography Personnel Protection Interlock (APPI), this system has been modified to incorporate other medical imaging research programs on the same beamline and thus the name has been changed to the more generic Medical Personnel Protection Interlock (MPPI). This report will deal almost exclusively with the human imaging (angiography, bronchography, mammography) aspects of the safety system, but will briefly explain the modular aspects of the system allowing other medical experiments to be incorporated.

  9. Principles of neutron reflection

    International Nuclear Information System (INIS)

    Felcher, G.P.

    1988-08-01

    Neutron reflection is perhaps the most developed branch of slow neutrons optics, which in itself is a direct consequence of the undulatory nature of the neutron. After reviewing the basic types of interactions (nuclear and magnetic) between neutrons and matter, the formalism is introduced to calculate the reflectivity from a sample composed of stacked flat layers and, inversely, to calculate the stacking from reflectivity measurements. Finally, a brief survey of the applications of neutron reflection is given, both in technology and in fundamental research. 32 refs., 6 figs

  10. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water-reflected (i.e. surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established

  11. Image Right and Copyright Law in Europe: Divergences and Convergences

    OpenAIRE

    Tatiana Synodinou

    2014-01-01

    This paper analyses the multiplicity of image rights in Europe and the classical conflictual relationship between the right to one’s own image and copyright law. First, the paper analyses the main mechanisms of legal protection of a person’s image in selected jurisdictions, in both the civil law and the common law tradition. It is deduced that the civil law approach based on the right of privacy or the right of personality is expressed mainly either via a duality, reflecting the extra-patrimo...

  12. Physical protection

    International Nuclear Information System (INIS)

    Myers, D.A.

    1989-01-01

    Physical protection is defined and its function in relation to other functions of a State System of Accounting for and Control of Nuclear Materials is described. The need for a uniform minimum international standard for physical protection as well as the need for international cooperation in physical protection is emphasized. The IAEA's INFCIRC/225/Rev. 1 (Annex 1) is reviewed. The Convention on the Physical Protection of Nuclear Material (Annex 2) is discussed. Photographs show examples of typical physical protection technology (Annex 3)

  13. Diplomatic Protection

    OpenAIRE

    Režná, Jana

    2006-01-01

    Final thesis Topic: Diplomatic protection Thesis supervisor: JUDr. Vladimír Balaš, CSc. Student: Marek Čermák Thesis on the topic of diplomatic protection deals with the granting of exercise of diplomatic protection by the states and is divided into seven chapters which follow each other. The first chapter describes the diplomatic protection and its historical foundations. The second chapter focuses on the possibility of exercise of diplomatic protection in respect of natural persons and the ...

  14. Dissenting in Reflective Conversations

    DEFF Research Database (Denmark)

    Bjørn, Pernille; Boulus, Nina

    2011-01-01

    Reflective monitoring of research practices is essential. However, we often lack formal training in the practices of doing action research, and descriptions of actual inquiry practice are seldom included in publications. Our aim is to provide a glimpse of self-reflective practices based on our...

  15. Self-Reflection

    DEFF Research Database (Denmark)

    Fausing, Bent

    2016-01-01

    will take a look at the establishing of the modern self and possibilities of self-reflection, too. My examples will be from the so-called dark-selfies and from a new selfie form, which merge the present with the previous progressing into the future. I will discuss the media reflections as loos and/or gain...

  16. Reflection: A Socratic approach.

    Science.gov (United States)

    Van Seggelen-Damen, Inge C M; Van Hezewijk, René; Helsdingen, Anne S; Wopereis, Iwan G J H

    2017-12-01

    Reflection is a fuzzy concept. In this article we reveal the paradoxes involved in studying the nature of reflection. Whereas some scholars emphasize its discursive nature, we go further and underline its resemblance to the self-biased dialogue Socrates had with the slave in Plato's Meno . The individual and internal nature of the reflection process creates difficulty for studying it validly and reliably. We focus on methodological issues and use Hans Linschoten's view of coupled systems to identify, analyze, and interpret empirical research on reflection. We argue that researchers and research participants can take on roles in several possible system couplings. Depending on who controls the manipulation of the stimulus, who controls the measuring instrument, who interprets the measurement and the response, different types of research questions can be answered. We conclude that reflection may be validly studied by combining different couplings of experimenter, manipulation, stimulus, participant, measurement, and response.

  17. A integralidade numa rede de proteção social ao adolescente: uma reflexão a partir do pensamento de Giles Lipovetsky Integrality in a social protection network for adolescents: a reflection based on Giles Lipovetsky's thought

    Directory of Open Access Journals (Sweden)

    Sandro da Rocha Vieira

    2010-03-01

    Full Text Available O propósito deste artigo é apresentar uma discussão sobre a integralidade como um paradigma, uma ideia-referência, do campo de conhecimento da Saúde Pública. Para isso apresentamos a exploração empírica dos elementos discursivos coletados numa rede de proteção social voltada ao adolescente dos quais deriva parte importante da prática de agentes de saúde. As experiências colhidas em campo a partir da ação dos articuladores da Política Municipal de Atenção à Criança e ao Adolescente, no Município de Suzano-SP, foram analisadas sob o ponto de vista de Gilles Lipovetsky. Essa análise situou a integralidade como ideia-referência proposta pelo campo de conhecimento da saúde pública, que questiona e provoca mudanças nas práticas médicas e de saúde inseridas na sociedade contemporânea, sobretudo no que se refere à atenção psicossocial.The purpose of this article is to present a discussion about integrality as a paradigm, an idea/reference in the field of knowledge of Public Health. For that we introduce the empiric exploration of discursive elements collected in a social protection network targeted at adolescents. These elements represent an important part of the health agents' practice. The experiences collected in the field from the actions of the articulators of the Municipal Policy of Child and Adolescent Care, in the city of Suzano, State of São Paulo, were analyzed from Giles Lipovetsky's point of view. This analysis situated integrality as an idea/reference proposed by the knowledge field of Public Health, which questions and provokes changes in the medical and health practices inserted in contemporary society - above all, in psychosocial assistance.

  18. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water reflected (i.e., surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established. When evaluating arrays, it has become more common for analysts to use calculations to demonstrate the safety of the array configuration. In performing these calculations, the analyst has considerable freedom concerning the assumptions made for modeling the reflection of the array. Considerations are given for the physical layout of the array with little or no discussion (or demonstration) of what conditions are bounded by the assumed reflection conditions. For example, an array may be generically evaluated by placing it in a corner of a room in which the opposing walls are far away. Typically, it is believed that complete flooding of the room is incredible, so the array is evaluated for various levels of water mist interspersed among array containers. This paper discusses some assumptions that are made regarding storage array reflection

  19. The Reflective Foundation

    DEFF Research Database (Denmark)

    Lunde Jørgensen, Ida

    Private foundations and cultural philanthropy by élites is viewed with increasing skepticism in recent years, begging the question of the extent to which foundations reflect on their role vis a vis wider societal norms. Through the prism of the New Carlsberg Foundation, financed by the brewery...... Carlsberg A/S, the paper seeks to elucidate the way in which one culturally significant foundation from Denmark has reflected on - and legitimated - its work and investments at critical moments in the past decades. The paper indicates a foundation with a high degree of reflection on the wider societal...

  20. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization

    Science.gov (United States)

    Hakala, Teemu; Scott, Barry; Theocharous, Theo; Näsi, Roope; Suomalainen, Juha; Greenwell, Claire; Fox, Nigel

    2018-01-01

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK). PMID:29751560

  1. Direct Reflectance Measurements from Drones: Sensor Absolute Radiometric Calibration and System Tests for Forest Reflectance Characterization.

    Science.gov (United States)

    Hakala, Teemu; Markelin, Lauri; Honkavaara, Eija; Scott, Barry; Theocharous, Theo; Nevalainen, Olli; Näsi, Roope; Suomalainen, Juha; Viljanen, Niko; Greenwell, Claire; Fox, Nigel

    2018-05-03

    Drone-based remote sensing has evolved rapidly in recent years. Miniaturized hyperspectral imaging sensors are becoming more common as they provide more abundant information of the object compared to traditional cameras. Reflectance is a physically defined object property and therefore often preferred output of the remote sensing data capture to be used in the further processes. Absolute calibration of the sensor provides a possibility for physical modelling of the imaging process and enables efficient procedures for reflectance correction. Our objective is to develop a method for direct reflectance measurements for drone-based remote sensing. It is based on an imaging spectrometer and irradiance spectrometer. This approach is highly attractive for many practical applications as it does not require in situ reflectance panels for converting the sensor radiance to ground reflectance factors. We performed SI-traceable spectral and radiance calibration of a tuneable Fabry-Pérot Interferometer -based (FPI) hyperspectral camera at the National Physical Laboratory NPL (Teddington, UK). The camera represents novel technology by collecting 2D format hyperspectral image cubes using time sequential spectral scanning principle. The radiance accuracy of different channels varied between ±4% when evaluated using independent test data, and linearity of the camera response was on average 0.9994. The spectral response calibration showed side peaks on several channels that were due to the multiple orders of interference of the FPI. The drone-based direct reflectance measurement system showed promising results with imagery collected over Wytham Forest (Oxford, UK).

  2. Radiation Protection Dosimetry

    International Nuclear Information System (INIS)

    Kramer, H.M.; Schnuer, K.

    1992-01-01

    The contributions presented during the seminar provided clear evidence that radiation protection of the patient plays an increasingly important role for manufacturers of radiological equipment and for regulatory bodies, as well as for radiologists, doctors and assistants. The proceedings of this seminar reflect the activities and work in the field of radiation protection of the patient and initiate further action in order to harmonize dosimetric measurements and calculations, to ameliorate education and training, to improve the technical standards of the equipment and to give a push to a more effective use of ionising radiation in the medical sector

  3. Environmental protection

    International Nuclear Information System (INIS)

    Klinda, J.; Lieskovska, Z.

    1998-01-01

    In this chapter environmental protection in the Slovak Republic in 1997 are reviewed. The economics of environmental protection, state budget, Slovak state environmental fund, economic instruments, environmental laws, environmental impact assessment, environmental management systems, and environmental education are presented

  4. A climatology of visible surface reflectance spectra

    International Nuclear Information System (INIS)

    Zoogman, Peter; Liu, Xiong; Chance, Kelly; Sun, Qingsong; Schaaf, Crystal; Mahr, Tobias; Wagner, Thomas

    2016-01-01

    We present a high spectral resolution climatology of visible surface reflectance as a function of wavelength for use in satellite measurements of ozone and other atmospheric species. The Tropospheric Emissions: Monitoring of Pollution (TEMPO) instrument is planned to measure backscattered solar radiation in the 290–740 nm range, including the ultraviolet and visible Chappuis ozone bands. Observation in the weak Chappuis band takes advantage of the relative transparency of the atmosphere in the visible to achieve sensitivity to near-surface ozone. However, due to the weakness of the ozone absorption features this measurement is more sensitive to errors in visible surface reflectance, which is highly variable. We utilize reflectance measurements of individual plant, man-made, and other surface types to calculate the primary modes of variability of visible surface reflectance at a high spectral resolution, comparable to that of TEMPO (0.6 nm). Using the Moderate-resolution Imaging Spectroradiometer (MODIS) Bidirection Reflectance Distribution Function (BRDF)/albedo product and our derived primary modes we construct a high spatial resolution climatology of wavelength-dependent surface reflectance over all viewing scenes and geometries. The Global Ozone Monitoring Experiment–2 (GOME-2) Lambertian Equivalent Reflectance (LER) product provides complementary information over water and snow scenes. Preliminary results using this approach in multispectral ultraviolet+visible ozone retrievals from the GOME-2 instrument show significant improvement to the fitting residuals over vegetated scenes. - Highlights: • Our goals was visible surface reflectance for satellite trace gas measurements. • Captured the range of surface reflectance spectra through EOF analysis. • Used satellite surface reflectance products for each given scene to anchor EOFs. • Generated a climatology of time/geometry dependent surface reflectance spectra. • Demonstrated potential to

  5. Seasonal soybean crop reflectance

    Science.gov (United States)

    Lemaster, E. W. (Principal Investigator); Chance, J. E.

    1983-01-01

    Data are presented from field measurements of 1980 including 5 acquisitions of handheld radiometer reflectance measurements, 7 complete sets of parameters for implementing the Suits mode, and other biophysical parameters to characterize the soybean canopy. LANDSAT calculations on the simulated Brazilian soybean reflectance are included along with data collected during the summer and fall on 1981 on soybean single leaf optical parameters for three irrigation treatments. Tests of the Suits vegetative canopy reflectance model for the full hemisphere of observer directions as well as the nadir direction show moderate agreement for the visible channels of the MSS and poor agreement in the near infrared channel. Temporal changes in the spectral characteristics of the single leaves were seen to occur as a function of maturity which demonstrates that the absorptance of a soybean single leaf is more a function of thetransmittancee characteristics than the seasonally consistent single leaf reflectance.

  6. Ten years after the radiological accident of Goiania, a reflection

    International Nuclear Information System (INIS)

    Nouailhetas, Y.; Xavier, A.M.

    1998-01-01

    This work contains a reflection on the impact of the radiological protection measures taken in the city of Goiania in the aftermath of the accident involving caesium-137, along with a discussion on the biological foundation of these actions. (author)

  7. Wave reflections from breakwaters

    OpenAIRE

    Dickson, William S.

    1994-01-01

    A new method is presented for estimating the reflection of a random, multi-directional sea from a coastal structure. The technique is applicable to an array of wave gauges of arbitrary geometry deployed seaward of the reflector. An expansion for small oblique wave incidence angles is used to derive an approximate relationship between measured array cross-spectra and a small number of parameters that describe the incident wave properties and the reflectivity of the structure. Model tests with ...

  8. Reflective masks for extreme ultraviolet lithography

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Khanh Bao [Univ. of California, Berkeley, CA (United States)

    1994-05-01

    Extreme ultraviolet lithographic masks are made by patterning multilayer reflective coatings with high normal incidence reflectivity. Masks can be patterned by depositing a patterned absorber layer above the coating or by etching the pattern directly into the coating itself. Electromagnetic simulations showed that absorber-overlayer masks have superior imaging characteristics over etched masks (less sensitive to incident angles and pattern profiles). In an EUVL absorber overlayer mask, defects can occur in the mask substrate, reflective coating, and absorber pattern. Electromagnetic simulations showed that substrate defects cause the most severe image degradation. A printability study of substrate defects for absorber overlayer masks showed that printability of 25 nm high substrate defects are comparable to defects in optical lithography. Simulations also indicated that the manner in which the defects are covered by multilayer reflective coatings can affect printability. Coverage profiles that result in large lateral spreading of defect geometries amplify the printability of the defects by increasing their effective sizes. Coverage profiles of Mo/Si coatings deposited above defects were studied by atomic force microscopy and TEM. Results showed that lateral spread of defect geometry is proportional to height. Undercut at defect also increases the lateral spread. Reductions in defect heights were observed for 0.15 μm wide defect lines. A long-term study of Mo/Si coating reflectivity revealed that Mo/Si coatings with Mo as the top layer suffer significant reductions in reflectivity over time due to oxidation.

  9. Selectively reflective transparent sheets

    Science.gov (United States)

    Waché, Rémi; Florescu, Marian; Sweeney, Stephen J.; Clowes, Steven K.

    2015-08-01

    We investigate the possibility to selectively reflect certain wavelengths while maintaining the optical properties on other spectral ranges. This is of particular interest for transparent materials, which for specific applications may require high reflectivity at pre-determined frequencies. Although there exist currently techniques such as coatings to produce selective reflection, this work focuses on new approaches for mass production of polyethylene sheets which incorporate either additives or surface patterning for selective reflection between 8 to 13 μ m. Typical additives used to produce a greenhouse effect in plastics include particles such as clays, silica or hydroxide materials. However, the absorption of thermal radiation is less efficient than the decrease of emissivity as it can be compared with the inclusion of Lambertian materials. Photonic band gap engineering by the periodic structuring of metamaterials is known in nature for producing the vivid bright colors in certain organisms via strong wavelength-selective reflection. Research to artificially engineer such structures has mainly focused on wavelengths in the visible and near infrared. However few studies to date have been carried out to investigate the properties of metastructures in the mid infrared range even though the patterning of microstructure is easier to achieve. We present preliminary results on the diffuse reflectivity using FDTD simulations and analyze the technical feasibility of these approaches.

  10. Thoughts on Reflection (Editorial

    Directory of Open Access Journals (Sweden)

    Denise Koufogiannakis

    2010-06-01

    Full Text Available There has been some acknowledgement in the published literature that reflection is a crucial element of the evidence based library and information practice (EBLIP model we have adopted (Booth 2004, 2006; Grant 2007; Helliwell 2007. As we work through a problem and try to incorporate the best available evidence into our decision making, reflection is required at several stages, including the very identification of the problem through to our assessment of the process itself and what we have learned in order to inform future practice. However, reflection and reflective writing have not fully been integrated into the process we espouse, and very little has been done to look more closely at this element of the model and how it can be integrated into professional learning.In a recently published research article, Sen (2010 confirms the relationship between reflection and several aspects of professional practice. These include critical review and decision making, two aspects that are tied closely to the evidence based process. Sen notes: Students were more likely to show evidence of learning, self‐development, the ability to review issues crucially, awareness of their own mental functions, ability to make decision [sic] and being empowered when they had mastered the art of reflective practice and the more deeply analytical reflective writing. (p.84 EBLIP (the journal tries to incorporate elements of reflection within the articles we publish. While we clearly believe in the need for our profession to do quality research and publish that research so that it can be accessible to practitioners, we also know that research cannot be looked at in isolation. Our evidence summaries are one way of reflecting critically on previously published research, and in the same vein, our classics bring older research studies back to the foreground. This work needs to continue to be discussed and looked at for its impact on our profession.More directly, the Using

  11. ultrasound reflecting the morphological properties in soft tissue

    DEFF Research Database (Denmark)

    Lorentzen, Torben; Larsen, Torben; Court-Payen, Michel

    2014-01-01

    Ultrasound (US) is an image modality providing the examiner with real-time images which reflect the morphological properties in soft tissue. Different types of transducers are used for different kind of exams. US is cheap, fast, and safe. US is widely used in abdominal imaging including obstetrics...

  12. Optimisation in X-ray and Molecular Imaging 2015

    International Nuclear Information System (INIS)

    Baath, Magnus; Hoeschen, Christoph; Mattsson, Soeren; Mansson, Lars Gunnar

    2016-01-01

    This issue of Radiation Protection Dosimetry is based on contributions to Optimisation in X-ray and Molecular Imaging 2015 - the 4. Malmoe Conference on Medical Imaging (OXMI 2015). The conference was jointly organised by members of former and current research projects supported by the European Commission EURATOM Radiation Protection Research Programme, in cooperation with the Swedish Society for Radiation Physics. The conference brought together over 150 researchers and other professionals from hospitals, universities and industries with interests in different aspects of the optimisation of medical imaging. More than 100 presentations were given at this international gathering of medical physicists, radiologists, engineers, technicians, nurses and educational researchers. Additionally, invited talks were offered by world-renowned experts on radiation protection, spectral imaging and medical image perception, thus covering several important aspects of the generation and interpretation of medical images. The conference consisted of 13 oral sessions and a poster session, as reflected by the conference title connected by their focus on the optimisation of the use ionising radiation in medical imaging. The conference included technology-specific topics such as computed tomography and tomosynthesis, but also generic issues of interest for the optimisation of all medical imaging, such as image perception and quality assurance. Radiation protection was covered by e.g. sessions on patient dose benchmarking and occupational exposure. Technically-advanced topics such as modelling, Monte Carlo simulation, reconstruction, classification, and segmentation were seen taking advantage of recent developments of hardware and software, showing that the optimisation community is at the forefront of technology and adapts well to new requirements. These peer-reviewed proceedings, representing a continuation of a series of selected reports from meetings in the field of medical imaging

  13. Do not resuscitate: reflections on an ethical dilemma.

    Science.gov (United States)

    Jones, Jeannie

    This is a reflective account of an ethical dilemma encountered while on placement on a cardiology ward. Reflection is a process which allows practitioners to reveal and expose thoughts, behaviours and feelings that are present at a particular time. All reflective models are based on the principle that purposeful reflection results in a better understanding and awareness, thus enhancing clinical practice (Driscoll and Teh 2001). The Gibbs' Reflective Cycle has been selected for its simplicity and ease of use to aid personal development. The dilemma was identified and analysed from a professional, ethical and legal perspective. Pseudonyms are used to maintain confidentiality and protect the identities of all parties involved.

  14. Protective relay

    International Nuclear Information System (INIS)

    Lim, Mu Ji; Jung, Hae Sang

    1974-10-01

    This book is divided into two chapters, which deals with protective relay. The first chapter deals with the basic knowledge of relay on development of relay, classification of protective relay, rating of protective relay general structure of protective relay, detecting of ground protection, about point of contact, operating relay and trip relaying. The second chapter is about structure and explanation of relay on classification by structure such as motor type and moving-coil type, explanation of other relays over current relay, over voltage relay, short voltage relay, relay for power, relay for direction, test of over voltage relay, test of short voltage relay and test of directional circuit relay.

  15. Protecting knowledge

    DEFF Research Database (Denmark)

    Sofka, Wolfgang; de Faria, Pedro; Shehu, Edlira

    2018-01-01

    Most firms use secrecy to protect their knowledge from potential imitators. However, the theoretical foundations for secrecy have not been well explored. We extend knowledge protection literature and propose theoretical mechanisms explaining how information visibility influences the importance...... of secrecy as a knowledge protection instrument. Building on mechanisms from information economics and signaling theory, we postulate that secrecy is more important for protecting knowledge for firms that have legal requirements to reveal information to shareholders. Furthermore, we argue that this effect...... and a firm's investment in fixed assets. Our findings inform both academics and managers on how firms balance information disclosure requirements with the use of secrecy as a knowledge protection instrument....

  16. Shack-Hartmann reflective micro profilometer

    Science.gov (United States)

    Gong, Hai; Soloviev, Oleg; Verhaegen, Michel; Vdovin, Gleb

    2018-01-01

    We present a quantitative phase imaging microscope based on a Shack-Hartmann sensor, that directly reconstructs the optical path difference (OPD) in reflective mode. Comparing with the holographic or interferometric methods, the SH technique needs no reference beam in the setup, which simplifies the system. With a preregistered reference, the OPD image can be reconstructed from a single shot. Also, the method has a rather relaxed requirement on the illumination coherence, thus a cheap light source such as a LED is feasible in the setup. In our previous research, we have successfully verified that a conventional transmissive microscope can be transformed into an optical path difference microscope by using a Shack-Hartmann wavefront sensor under incoherent illumination. The key condition is that the numerical aperture of illumination should be smaller than the numerical aperture of imaging lens. This approach is also applicable to characterization of reflective and slightly scattering surfaces.

  17. Biology Reflective Assessment Curriculum

    Science.gov (United States)

    Bayley, Cheryl Ann

    Often students and educators view assessments as an obligation and finality for a unit. In the current climate of high-stakes testing and accountability, the balance of time, resources and emphasis on students' scores related to assessment have been slanted considerably toward the summative side. This tension between assessment for accountability and assessment to inform teaching strains instruction and educators' ability to use that information to design learning opportunities that help students develop deeper conceptual understanding. A substantive body of research indicates that formative and reflective assessment can significantly improve student learning. Biology Reflective Assessment Curriculum (BRAC) examines support provided for high school science students through assessment practices. This investigation incorporates the usage of reflective assessments as a guiding practice for differentiated instruction and student choice. Reflective assessment is a metacognitive strategy that promotes self-monitoring and evaluation. The goals of