WorldWideScience

Sample records for prospective mathematical scientists

  1. Introductory mathematics for earth scientists

    CERN Document Server

    Yang, Xin-She

    2009-01-01

    Any quantitative work in earth sciences requires mathematical analysis and mathematical methods are essential to the modelling and analysis of the geological, geophysical and environmental processes involved. This book provides an introduction to the fundamental mathematics that all earth scientists need.

  2. Mathematics for the Student Scientist

    Science.gov (United States)

    Lauten, A. Darien; Lauten, Gary N.

    1998-03-01

    The Earth Day:Forest Watch Program, introduces elementary, middle, and secondary students to field laboratory, and satellite-data analysis methods for assessing the health of Eastern White Pine ( Pinus strobus). In this Student-Scientist Partnership program, mathematics, as envisioned in the NCTM Standards, arises naturally and provides opportunities for science-mathematics interdisciplinary student learning. School mathematics becomes the vehicle for students to quantify, represent, analyze, and interpret meaningful, real data.

  3. Mathematical physics applied mathematics for scientists and engineers

    CERN Document Server

    Kusse, Bruce R

    2006-01-01

    What sets this volume apart from other mathematics texts is its emphasis on mathematical tools commonly used by scientists and engineers to solve real-world problems. Using a unique approach, it covers intermediate and advanced material in a manner appropriate for undergraduate students. Based on author Bruce Kusse's course at the Department of Applied and Engineering Physics at Cornell University, Mathematical Physics begins with essentials such as vector and tensor algebra, curvilinear coordinate systems, complex variables, Fourier series, Fourier and Laplace transforms, differential and integral equations, and solutions to Laplace's equations

  4. Analyzing prospective teachers' images of scientists using positive, negative and stereotypical images of scientists

    Science.gov (United States)

    Subramaniam, Karthigeyan; Esprívalo Harrell, Pamela; Wojnowski, David

    2013-04-01

    Background and purpose : This study details the use of a conceptual framework to analyze prospective teachers' images of scientists to reveal their context-specific conceptions of scientists. The conceptual framework consists of context-specific conceptions related to positive, stereotypical and negative images of scientists as detailed in the literature on the images, role and work of scientists. Sample, design and method : One hundred and ninety-six drawings of scientists, generated by prospective teachers, were analyzed using the Draw-A-Scientist-Test Checklist (DAST-C), a binary linear regression and the conceptual framework. Results : The results of the binary linear regression analysis revealed a statistically significant difference for two DAST-C elements: ethnicity differences with regard to drawing a scientist who was Caucasian and gender differences for indications of danger. Analysis using the conceptual framework helped to categorize the same drawings into positive, stereotypical, negative and composite images of a scientist. Conclusions : The conceptual framework revealed that drawings were focused on the physical appearance of the scientist, and to a lesser extent on the equipment, location and science-related practices that provided the context of a scientist's role and work. Implications for teacher educators include the need to understand that there is a need to provide tools, like the conceptual framework used in this study, to help prospective teachers to confront and engage with their multidimensional perspectives of scientists in light of the current trends on perceiving and valuing scientists. In addition, teacher educators need to use the conceptual framework, which yields qualitative perspectives about drawings, together with the DAST-C, which yields quantitative measure for drawings, to help prospective teachers to gain a holistic outlook on their drawings of scientists.

  5. Mathematics for natural scientists II advanced methods

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book covers the advanced mathematical techniques useful for physics and engineering students, presented in a form accessible to physics students, avoiding precise mathematical jargon and laborious proofs. Instead, all proofs are given in a simplified form that is clear and convincing for a physicist. Examples, where appropriate, are given from physics contexts. Both solved and unsolved problems are provided in each chapter. Mathematics for Natural Scientists II: Advanced Methods is the second of two volumes. It follows the first volume on Fundamentals and Basics.

  6. Using Mathematics Literature with Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Jett, Christopher C.

    2014-01-01

    Literature in mathematics has been found to foster positive improvements in mathematics learning. This manuscript reports on a mathematics teacher educator's use of literature via literature circles with 11 prospective secondary mathematics teachers in a mathematics content course. Using survey and reflection data, the author found that…

  7. Mathematics for natural scientists fundamentals and basics

    CERN Document Server

    Kantorovich, Lev

    2016-01-01

    This book, the first in a two part series, covers a course of mathematics tailored specifically for physics, engineering and chemistry students at the undergraduate level. It is unique in that it begins with logical concepts of mathematics first encountered at A-level and covers them in thorough detail, filling in the gaps in students' knowledge and reasoning. Then the book aids the leap between A-level and university-level mathematics, with complete proofs provided throughout and all complex mathematical concepts and techniques presented in a clear and transparent manner. Numerous examples and problems (with answers) are given for each section and, where appropriate, mathematical concepts are illustrated in a physics context. This text gives an invaluable foundation to students and a comprehensive aid to lecturers. Mathematics for Natural Scientists: Fundamentals and Basics is the first of two volumes. Advanced topics and their applications in physics are covered in the second volume.

  8. Prospective Secondary Mathematics Teachers' Perspectives and Mathematical Knowledge for Teaching

    Science.gov (United States)

    Karagöz-Akar, Gülseren

    2016-01-01

    This study investigated the relationship between prospective secondary mathematics teachers' perspectives and their mathematical knowledge for teaching in action. Data from two prospective teachers' practice-teachings, one in geometry and one in algebra, their lesson plans and self-reflections were analyzed with Teacher Perspectives and Knowledge…

  9. A course of mathematics for engineerings and scientists

    CERN Document Server

    Chirgwin, Brian H

    1984-01-01

    A Course of Mathematics for Engineers and Scientists, Volume 2 continues the course of pure and applied mathematics for undergraduate science and engineering students. It contains further examples and exercises from examination papers from Oxford University, Cambridge University, and the University of London. The topics covered in this book include differential equations, linear equations, matrices and determinants, vector algebra and coordinate geometry, and differentiation and integration of functions of two or more variables. This book is intended as a reference for students taking science

  10. Do Prospective Teachers Have Anxieties about Teaching Mathematics?

    Science.gov (United States)

    Yavuz, Günes

    2018-01-01

    The purpose of this study is to analyse the level of prospective classroom and mathematics teachers' anxieties about teaching mathematics. Freshman and junior prospective teachers from educational faculties of two different universities participated in this study. "Anxieties About Teaching Mathematics Scale" which was developed by Peker…

  11. Developing Mathematical Resilience of Prospective Math Teachers

    Science.gov (United States)

    Ariyanto, L.; Herman, T.; Sumarmo, U.; Suryadi, D.

    2017-09-01

    Prospective math teachers need to develop positive adaptive attitudes toward mathematics that will enable them to continue learning despite having to deal with obstacles and difficulties. This research focuses on the resilience improvement of the prospective mathematic teachers after being treated using problem-based learning based on their basic knowledge on mathematic and their overall knowledge on math. This research used only one group for pre-test and post-test. The result of this research shows that there is improvement on prospective teachers’ resilience after they were given treatment using problem-based learning. One of the factors causing the resilience improvement of the prospective mathematic teachers is the instructions on students’ work sheet. In the instructions, stud ents were asked to write difficulties in solving math problems as well as write down the solution they take to overcome them. This research can be used as a reference for other researchers who want to do the same research related on students’ resiliency o n math and or math lecturers to improve the resilience of prospective teachers to be resilient teachers on math in the future.

  12. Task Modification and Knowledge Utilization by Korean Prospective Mathematics Teachers.

    Directory of Open Access Journals (Sweden)

    Kyeong-Hwa Lee

    2016-11-01

    Full Text Available It has been asserted that mathematical tasks play a critical role in the teaching and learning of mathematics. Modification of tasks included in intended curriculum materials, such as textbooks, can be an effective activity for prospective teachers to understand the role of mathematical tasks in the teaching and learning of mathematics; designing of new tasks requires more knowledge and experience. This study aims to identify the patterns that Korean prospective mathematics teachers seem to follow when they modify the mathematical tasks in textbooks. Knowledge utilized by prospective teachers while they modify textbook tasks is identified and characterized in order to understand the possible factors that have an impact on Korean prospective mathematics teachers' modification of tasks.

  13. Course of mathematics for engineers and scientists v.1

    CERN Document Server

    Chirgwin, Brian H

    1961-01-01

    A Course of Mathematics for Engineers and Scientists, Volume 1 studies the various concepts in pure and applied mathematics, specifically the technique and applications of differentiation and integration of one variable, geometry of two dimensions, and complex numbers. The book is divided into seven chapters, wherein the first of which presents the introductory concepts, such as the functional notation and fundamental definitions; the roots of equations; and limits and continuity. The text then tackles the techniques and applications of differentiation and integration. Geometry of two dimensio

  14. Course of mathematics for engineerings and scientists v.5

    CERN Document Server

    Chirgwin, Brian H

    2013-01-01

    A Course of Mathematics for Engineers and Scientists, Volume 5 presents the solutions of differential equations by obtaining the results in different forms. This book discusses the significant branch of mathematics generalizing the elementary ideas of function, integration, and differentiation. Organized into four chapters, this volume begins with an overview of the use of Fourier series that leads to solutions consisting of infinite series. This text then discusses the fundamental advantage of Laplace and Fourier transformation. Other chapters consider the technique of obtaining the solutions

  15. Mathematics Courses for the Prospective Teacher.

    Science.gov (United States)

    Kistler, Barbara C.

    This paper suggests that faculty at two-year institutions need to become partners with colleges of education and K-12 teachers of mathematics in preparing future mathematics teachers. The paper presents the following: a summary of recommendations on programs for prospective teachers; a summary of recommendations about mathematics courses for…

  16. A National Study of Mathematics Requirements for Scientists and Engineers. Final Report.

    Science.gov (United States)

    Miller, G. H.

    The National Study of Mathematics Requirements for Scientists and Engineers is concerned with establishing the mathematics experiences desired for the many specializations in science and engineering, such as microbiology, organic chemistry, electrical engineering, and molecular physics. An instruction and course content sheet and a course…

  17. Prospective Mathematics Teachers' Opinions about Mathematical Modeling Method and Applicability of This Method

    Science.gov (United States)

    Akgün, Levent

    2015-01-01

    The aim of this study is to identify prospective secondary mathematics teachers' opinions about the mathematical modeling method and the applicability of this method in high schools. The case study design, which is among the qualitative research methods, was used in the study. The study was conducted with six prospective secondary mathematics…

  18. Understanding Prospective Teachers' Mathematical Modeling Processes in the Context of a Mathematical Modeling Course

    Science.gov (United States)

    Zeytun, Aysel Sen; Cetinkaya, Bulent; Erbas, Ayhan Kursat

    2017-01-01

    This paper investigates how prospective teachers develop mathematical models while they engage in modeling tasks. The study was conducted in an undergraduate elective course aiming to improve prospective teachers' mathematical modeling abilities, while enhancing their pedagogical knowledge for the integrating of modeling tasks into their future…

  19. The written mathematical communication profile of prospective math teacher in mathematical proving

    Science.gov (United States)

    Pantaleon, K. V.; Juniati, D.; Lukito, A.; Mandur, K.

    2018-01-01

    Written mathematical communication is the process of expressing mathematical ideas and understanding in writing. It is one of the important aspects that must be mastered by the prospective math teacher as tool of knowledge transfer. This research was a qualitative research that aimed to describe the mathematical communication profile of the prospective mathematics teacher in mathematical proving. This research involved 48 students of Mathematics Education Study Program; one of them with moderate math skills was chosen as the main subject. Data were collected through tests, assignments, and task-based interviews. The results of this study point out that in the proof of geometry, the subject explains what is understood, presents the idea in the form of drawing and symbols, and explains the content/meaning of a representation accurately and clearly, but the subject can not convey the argument systematically and logically. Whereas in the proof of algebra, the subject describes what is understood, explains the method used, and describes the content/meaning of a symbolic representation accurately, systematically, logically, but the argument presented is not clear because it is insufficient detailed and complete.

  20. Prospective Secondary Mathematics Teachers' Reflections on Teaching after Their First Teaching Experience

    Science.gov (United States)

    Yazgan-Sag, Gönül; Emre-Akdogan, Elçin; Argün, Ziya

    2016-01-01

    The aim of our study was to examine prospective secondary mathematics teachers' reflections about teaching after their first teaching experience. We carried out five interviews during the two semesters with four Turkish prospective secondary mathematics teachers. The data analysis suggests that prospective secondary mathematics teachers'…

  1. An instrument measuring prospective mathematics teacher self-regulated learning: validity and reliability

    Science.gov (United States)

    Nugroho, A. A.; Juniati, D.; Siswono, T. Y. E.

    2018-03-01

    Self Regulated Learning (SRL) is an individual's ability to achieve academic goals by controlling behavior, motivate yourself and use cognitive in learning, so it is important for a teacher especially teachers of mathematics related to the ability of management, design, implementation of learning and evaluation of learning outcomes. The purpose of the research is to develop an instrument to describe the SRL of a prospective mathematics teacher. Data were collected by (1) the study of the theory of SRL produced the indicator SRL used to design the questionnaire SRL; (2) analysis of the questionnaire SRL obtained from several References; and (3) development stage of the SRL questionnaire through validity test of content and empirical validation. The study involved 2 content experts in mathematics, 1 linguist, and 92 prospective mathematics teachers. The results of the research on content validity test based on Indonesian expert and 2 content experts indicate that the content can assess the indicator of the SRL and feasible to be used, in the test of legibility of two prospective mathematics teacher concluded that the instrument has a language that can be understood by the prospective teacher of mathematics and on empirical validation involving 92 prospective mathematics teacher generate data that of 65 statements there are 3 invalid statements. Reliability calculation shows high category that values 0,93. The conclusion is the SRL instrument developed for the prospective mathematics teacher.

  2. Prospective Turkish Primary Teachers' Views about the Use of Computers in Mathematics Education

    Science.gov (United States)

    Dogan, Mustafa

    2012-01-01

    The use of computers and technology in mathematics education affects students' learning, achievements, and affective dimensions. This study explores prospective Turkish primary mathematics teachers' views about the use of computers in mathematics education. The sample comprised of 129 fourth-year prospective primary mathematics teachers from two…

  3. Task Modification and Knowledge Utilization by Korean Prospective Mathematics Teachers

    Science.gov (United States)

    Lee, Kyeong-Hwa; Lee, Eun-Jung; Park, Min-Sun

    2016-01-01

    It has been asserted that mathematical tasks play a critical role in the teaching and learning of mathematics. Modification of tasks included in intended curriculum materials, such as textbooks, can be an effective activity for prospective teachers to understand the role of mathematical tasks in the teaching and learning of mathematics; designing…

  4. Designing Opportunities for Prospective Teachers to Facilitate Mathematics Discussions in Classrooms

    Science.gov (United States)

    Hunter, Roberta; Anthony, Glenda

    2012-01-01

    How prospective teachers can best be prepared to teach effectively in mathematics classrooms is a topic of current concern. In this paper, we describe our exploration of ways in which prospective teachers were supported to translate what they learnt in mathematics methods classes into pedagogical practice. We illustrate how the use of discourse…

  5. A Case Study on Mathematical Literacy of Prospective Elementary School Teachers

    Science.gov (United States)

    Suharta, I. Gusti Putu; Suarjana, I. Made

    2018-01-01

    The purpose of this study is to describe Mathematical Literacy (ML) of Prospective Elementary School Teachers with attention to aspects of mathematical skills and gender. The type of research is qualitative with the research design of Case Study. Respondents are assigned 12 Prospective Elementary School Teachers, consisting of 6 men and 6 women.…

  6. The Effects of Constructivist Learning Environment on Prospective Mathematics Teachers' Opinions

    Science.gov (United States)

    Narli, Serkan; Baser, Nes'e

    2010-01-01

    To explore the effects of constructivist learning environment on prospective teachers' opinions about "mathematics, department of mathematics, discrete mathematics, countable and uncountable infinity" taught under the subject of Cantorian Set Theory in discrete mathematics class, 60 first-year students in the Division of Mathematics…

  7. Prospective Mathematics Teachers' Ability to Identify Mistakes Related to Angle Concept of Sixth Grade Students

    Science.gov (United States)

    Arslan, Cigdem; Erbay, Hatice Nur; Guner, Pinar

    2017-01-01

    In the present study we try to highlight prospective mathematics teachers' ability to identify mistakes of sixth grade students related to angle concept. And also we examined prospective mathematics teachers' knowledge of angle concept. Study was carried out with 30 sixth-grade students and 38 prospective mathematics teachers. Sixth grade students…

  8. Gender differences in prospective teachers’ mathematical literacy: problem solving of occupational context on shipping company

    Science.gov (United States)

    Lestari, N. D. S.; Juniati, D.; Suwarsono, St.

    2018-04-01

    The purpose of this paper is to describe to what extent the prospective teachers can be considered as mathematically literate and how they communicate their reasoning in solving the problem based on the sex differences. Data were collected through mathematics literacy test on occupational context by 157 of prospective teachers from three universities in East Java, Indonesia. Their written responses were collected, organized based on the sex differences, analyzed and categorized to one of three levels of mathematical literacy. The examples of interesting students’ response altogether with the scoring are discussed to describe their characteristic on mathematical literacy and their communication. The result showed that in general the mathematical literacy of female prospective teachers tend to be better than male prospective math teachers. Female prospective teachers are more capable of logical reasoning, using concepts, facts and procedures and algebraic operations to draw conclusions; make an interpretations and evaluations. This study has an implication that gender differences in mathematical literacy of prospective math teachers do exist, therefore this issue should be given a serious concern from the development programs of the faculty.

  9. Prospective Mathematics Teachers' Perceptions on and Adaptation of Student-Centred Approach to Teaching

    Science.gov (United States)

    Osmanoglu, Aslihan; Dincer, Emrah Oguzhan

    2018-01-01

    The aim of this study was to investigate prospective secondary mathematics teachers' perceptions on and adaptation of student-centred approach to teaching. The study was conducted with 58 prospective secondary mathematics teachers who were the graduates from mathematics departments from different universities' Science and Literature faculties.…

  10. Creativity from Two Perspectives: Prospective Mathematics Teachers and Mathematician

    Science.gov (United States)

    Yazgan-Sag, Gönül; Emre-Akdogan, Elçin

    2016-01-01

    Although creativity plays a critical role in mathematics, it remains underestimated in the context of a mathematics classroom. This study aims to explore the views and differences creativity displays in prospective teachers and one of their lecturers with respect to the characteristics and practices of creative teachers and the characteristics of…

  11. Indicators that influence prospective mathematics teachers representational and reasoning abilities

    Science.gov (United States)

    Darta; Saputra, J.

    2018-01-01

    Representational and mathematical reasoning ability are very important ability as basic in mathematics learning process. The 2013 curriculum suggests that the use of a scientific approach emphasizes higher order thinking skills. Therefore, a scientific approach is required in mathematics learning to improve ability of representation and mathematical reasoning. The objectives of this research are: (1) to analyze representational and reasoning abilities, (2) to analyze indicators affecting the ability of representation and mathematical reasoning, (3) to analyze scientific approaches that can improve the ability of representation and mathematical reasoning. The subject of this research is the students of mathematics prospective teachers in the first semester at Private Higher Education of Bandung City. The research method of this research was descriptive analysis. The research data were collected using reasoning and representation tests on sixty-one students. Data processing was done by descriptive analysis specified based on the indicators of representation ability and mathematical reasoning that influenced it. The results of this first-year study showed that students still had many weaknesses in reasoning and mathematical representation that were influenced by the ability to understand the indicators of both capabilities. After observing the results of the first-year research, then in the second and third year, the development of teaching materials with a scientific approach in accordance with the needs of prospective students was planned.

  12. Investigation of Prospective Primary Mathematics Teachers' Perceptions and Images for Quadrilaterals

    Science.gov (United States)

    Turnuklu, Elif; Gundogdu Alayli, Funda; Akkas, Elif Nur

    2013-01-01

    The object of this study was to show how prospective elementary mathematics teachers define and classify the quadrilaterals and to find out their images. This research was a qualitative study. It was conducted with 36 prospective elementary mathematics teachers studying at 3rd and 4th years in an educational faculty. The data were collected by…

  13. Unpacking Personal Identities for Teaching Mathematics within the Context of Prospective Teacher Education

    Science.gov (United States)

    Hodges, Thomas E.; Hodge, Lynn Liao

    2017-01-01

    This article explores the personal identities of two prospective elementary teachers as they progressed from mathematics methods coursework into their capstone student teaching semester. Results indicate that both prospective teachers perceived contrasting obligations of effective mathematics teaching in the teacher education and student teaching…

  14. From the University to the Classroom: Prospective Elementary Mathematics Specialists' Pedagogical Shifts

    Science.gov (United States)

    Myers, Kayla D.; Swars, Susan L.; Smith, Stephanie Z.

    2016-01-01

    This project focuses on the development of prospective Elementary Mathematics Specialists (EMSs) in a K-5 Mathematics Endorsement Program. Program courses emphasized elementary mathematics content and pedagogy while providing opportunities for participants to evidence their learning through classroom teaching practice, all in an attempt to…

  15. Evidence of the Need to Prepare Prospective Teachers to Engage in Mathematics Consultations

    Science.gov (United States)

    van Ingen, Sarah; Eskelson, Samuel L.; Allsopp, David

    2016-01-01

    The mathematics consultation represents a powerful opportunity for mathematics teachers to leverage the knowledge base of special education professionals to advance equity for students with special education needs. Yet, most teacher preparation programs do not specifically prepare prospective teachers to engage in mathematics-specific…

  16. Reflective Learning and Prospective Teachers' Conceptual Understanding, Critical Thinking, Problem Solving, and Mathematical Communication Skills

    Science.gov (United States)

    Junsay, Merle L.

    2016-01-01

    This is a quasi-experimental study that explored the effects of reflective learning on prospective teachers' conceptual understanding, critical thinking, problem solving, and mathematical communication skills and the relationship of these variables. It involved 60 prospective teachers from two basic mathematics classes of an institution of higher…

  17. What Is Mathematical Modelling? Exploring Prospective Teachers' Use of Experiments to Connect Mathematics to the Study of Motion

    Science.gov (United States)

    Carrejo, David J.; Marshall, Jill

    2007-01-01

    This paper focuses on the construction, development, and use of mathematical models by prospective science and mathematics teachers enrolled in a university physics course. By studying their involvement in an inquiry-based, experimental approach to learning kinematics, we address a fundamental question about the meaning and role of abstraction in…

  18. Understanding the Influence of Two Mathematics Textbooks on Prospective Secondary Teachers' Knowledge

    Science.gov (United States)

    Davis, Jon D.

    2009-01-01

    This study examines the influence of reading and planning from two differently organized mathematics textbooks on prospective high school mathematics teachers' pedagogical content knowledge and content knowledge of exponential functions. The teachers completed a pretest and two posttests. On the pretest, the teachers possessed an incomplete…

  19. Profile of male-field dependent (FD) prospective teacher's reflective thinking in solving contextual mathematical problem

    Science.gov (United States)

    Agustan, S.; Juniati, Dwi; Siswono, Tatag Yuli Eko

    2017-08-01

    Reflective thinking is an important component in the world of education, especially in professional education of teachers. In learning mathematics, reflective thinking is one way to solve mathematical problem because it can improve student's curiosity when student faces a mathematical problem. Reflective thinking is also a future competence that should be taught to students to face the challenges and to respond of demands of the 21st century. There are many factors which give impact toward the student's reflective thinking when student solves mathematical problem. One of them is cognitive style. For this reason, reflective thinking and cognitive style are important things in solving contextual mathematical problem. This research paper describes aspect of reflective thinking in solving contextual mathematical problem involved solution by using some mathematical concept, namely linear program, algebra arithmetic operation, and linear equations of two variables. The participant, in this research paper, is a male-prospective teacher who has Field Dependent. The purpose of this paper is to describe aspect of prospective teachers' reflective thinking in solving contextual mathematical problem. This research paper is a descriptive by using qualitative approach. To analyze the data, the researchers focus in four main categories which describe prospective teacher's activities using reflective thinking, namely; (a) formulation and synthesis of experience, (b) orderliness of experience, (c) evaluating the experience and (d) testing the selected solution based on the experience.

  20. Our Prospective Mathematic Teachers Are Not Critical Thinkers Yet

    Science.gov (United States)

    As'ari, Abdur Rahman; Mahmudi, Ali; Nuerlaelah, Elah

    2017-01-01

    In order to help students develop their critical thinking skills, teachers need to model the critical thinking skills and dispositions in front of their students. Unfortunately, very rare studies investigating prospective teachers' readiness in critical thinking dispositions are available in the field of mathematics education. This study was…

  1. Turkish Prospective Middle School Mathematics Teachers' Beliefs and Perceived Self-Efficacy Beliefs Regarding the Use of Origami in Mathematics Education

    Science.gov (United States)

    Arslan, Okan; Isiksal-Bostan, Mine

    2016-01-01

    The purpose of this study was to investigate beliefs and perceived self-efficacy beliefs of Turkish prospective elementary mathematics teachers in using origami in mathematics education. Furthermore, gender differences in their beliefs and perceived self-efficacy beliefs were investigated. Data for the current study was collected via Origami in…

  2. Prospective elementary teachers' conceptions of multidigit number: exemplifying a replication framework for mathematics education

    Science.gov (United States)

    Jacobson, Erik; Simpson, Amber

    2018-04-01

    Replication studies play a critical role in scientific accumulation of knowledge, yet replication studies in mathematics education are rare. In this study, the authors replicated Thanheiser's (Educational Studies in Mathematics 75:241-251, 2010) study of prospective elementary teachers' conceptions of multidigit number and examined the main claim that most elementary pre-service teachers think about digits incorrectly at least some of the time. Results indicated no statistically significant difference in the distribution of conceptions between the original and replication samples and, moreover, no statistically significant differences in the distribution of sub-conceptions among prospective teachers with the most common conception. These results suggest confidence is warranted both in the generality of the main claim and in the utility of the conceptions framework for describing prospective elementary teachers' conceptions of multidigit number. The report further contributes a framework for replication of mathematics education research adapted from the field of psychology.

  3. Prospective Mathematics Teachers' Understanding of the Base Concept

    Science.gov (United States)

    Horzum, Tugba; Ertekin, Erhan

    2018-01-01

    The purpose of this study is to analyze what kind of conceptions prospective mathematics teachers (PMTs) have about the base concept (BC). One-hundred and thirty-nine PMTs participated in the study. In this qualitative research, data were obtained through open-ended questions, the semi-structured interviews and pictures of geometric figures drawn…

  4. Improving of prospective elementary teachers' reasoning: Learning geometry through mathematical investigation

    Science.gov (United States)

    Sumarna, Nana; Sentryo, Izlan

    2017-08-01

    This research applies mathematical investigation approach in teaching geometry to improve mathematical reasoning abilities of prospective elementary teachers. Mathematical investigation in this study involved non-routine tasks through a mathematical investigation process, namely through a series of activities as an attribute of mathematical investigation. Developing the ability of mathematical reasoning of research subjects obtained through capability of research subjects in the analysis, generalization, synthesis, justify, and resolve non-routine, which is operationally constructed as an indicator of research and is used as a criterion for measuring the ability of mathematical reasoning. Research design using Quasi-Experimental design. Based on this type, the researchers apply a pre-and posttest design, which is divided into two study groups: control group and the treatment group. The number of research subjects were 111 students consisting of 56 students in the experimental group and 55 students in the control group. The conclusion of this study stated that (1) Investigation of mathematics as an approach to learning is able to give a positive response to the increasing ability of mathematical reasoning, and (2) There is no interaction effect of the factors of learning and prior knowledge of mathematics to the increased ability of mathematical reasoning.

  5. Deepening Prospective Mathematics Teachers' Diagnostic Judgments: Interplay of Videos, Focus Questions and Didactic Categories

    Science.gov (United States)

    Prediger, Susanne; Zindel, Carina

    2017-01-01

    This article combines different conceptualizations of teachers' diagnostic competence in listening to students' mathematical thinking processes on the levels of general perspectives, noticed aspects and activated didactic categories. An empirical study of 159 prospective mathematics teachers' diagnostic judgments investigated how these levels are…

  6. Differential forms for scientists and engineers

    Science.gov (United States)

    Blair Perot, J.; Zusi, Christopher J.

    2014-01-01

    This paper is a review of a number of mathematical concepts from differential geometry and exterior calculus that are finding increasing application in the numerical solution of partial differential equations. The objective of the paper is to introduce the scientist/ engineer to some of these ideas via a number of concrete examples in 2, 3, and 4 dimensions. The goal is not to explain these ideas with mathematical precision but to present concrete examples and enable a physical intuition of these concepts for those who are not mathematicians. The objective of this paper is to provide enough context so that scientist/engineers can interpret, implement, and understand other works which use these elegant mathematical concepts.

  7. Mathematical challenges from theoretical/computational chemistry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The committee believes that this report has relevance and potentially valuable suggestions for a wide range of readers. Target audiences include: graduate departments in the mathematical and chemical sciences; federal and private agencies that fund research in the mathematical and chemical sciences; selected industrial and government research and development laboratories; developers of software and hardware for computational chemistry; and selected individual researchers. Chapter 2 of this report covers some history of computational chemistry for the nonspecialist, while Chapter 3 illustrates the fruits of some past successful cross-fertilization between mathematical scientists and computational/theoretical chemists. In Chapter 4 the committee has assembled a representative, but not exhaustive, survey of research opportunities. Most of these are descriptions of important open problems in computational/theoretical chemistry that could gain much from the efforts of innovative mathematical scientists, written so as to be accessible introductions to the nonspecialist. Chapter 5 is an assessment, necessarily subjective, of cultural differences that must be overcome if collaborative work is to be encouraged between the mathematical and the chemical communities. Finally, the report ends with a brief list of conclusions and recommendations that, if followed, could promote accelerated progress at this interface. Recognizing that bothersome language issues can inhibit prospects for collaborative research at the interface between distinctive disciplines, the committee has attempted throughout to maintain an accessible style, in part by using illustrative boxes, and has included at the end of the report a glossary of technical terms that may be familiar to only a subset of the target audiences listed above.

  8. A Capstone Mathematics Course for Prospective Secondary Mathematics Teachers

    Science.gov (United States)

    Artzt, Alice F.; Sultan, Alan; Curcio, Frances R.; Gurl, Theresa

    2012-01-01

    This article describes an innovative capstone mathematics course that links college mathematics with school mathematics and pedagogy. It describes how college juniors in a secondary mathematics teacher preparation program engage in leadership experiences that enable them to learn mathematics for teaching while developing student-centered…

  9. Manipulatives Implementation For Supporting Learning Of Mathematics For Prospective Teachers

    Science.gov (United States)

    Sulistyaningsih, D.; Mawarsari, V. D.; Hidayah, I.; Dwijanto

    2017-04-01

    Manipulatives are needed by teachers to facilitate students understand of mathematics which is abstract. As a prospective mathematics teacher, the student must have good skills in making manipulatives. Aims of this study is to describe the implementation of learning courses of manipulative workshop in mathematics education courses by lecturer at Universitas Muhammadiyah Semarang which includes the preparation of learning, general professional ability, the professional capacity specifically, ability of self-development, development class managing, planning and implementation of learning, a way of delivering the material, and evaluation of learning outcomes. Data collection techniques used were questionnaires, interviews, and observation. The research instrument consisted of a questionnaire sheet, sheet observation and interview guides. Validity is determined using data triangulation and triangulation methods. Data were analyzed using an interactive model. The results showed that the average value of activities in preparation for learning, fosters capabilities of general professional, specialized professional, self-development, manage the classroom, implementing the learning, how to deliver the material, and how to evaluate learning outcomes are 79%, 73%, 67%, 75%, 83%, 72%, 64%, and 54%, respectively

  10. Comparing Views of Primary School Mathematics Teachers and Prospective Mathematics Teachers about Instructional Technologies

    Directory of Open Access Journals (Sweden)

    Adnan Baki

    2009-11-01

    Full Text Available Technology is rapidly improving in both hardware and software side. As one of the contemporary needs people should acquire certain knowledge, skills, attitudes and habits to understand this technology, to adapt to it and to make use of its benefits. In addition, as in all domains of life, change and improvement is also unavoidable for educational field. As known, change and improvement in education depends on lots of factors. One of the most important factors is teacher. In order to disseminate educational reforms, teachers themselves should accept the innovation first (Hardy, 1998, Baki, 2002; Oral, 2004. There has been variety of studies investigating teacher and prospective teachers‟ competences, attitudes and opinions (Paprzychi, Vikovic & Pierson, 1994; Hardy, 1998; Kocasaraç, 2003; Lin, Hsiech and Pierson, 2004; Eliküçük, 2006; YeĢilyurt, 2006; Fendi, 2007; Teo, 2008; Arslan, Kutluca & Özpınar, 2009. As the common result of these studies indicate that teachers‟ interest towards using instructional technology have increased. Accordingly, most of the teachers began to think that using instructional technologies becomes inevitable for teachers. By reviewing the related literature, no studies have been come across comparing the opinions of teachers and teacher candidates about instructional technologies. In this study, it was aimed to investigate and compare the views of mathematics teachers with prospective mathematics teachers about ICT. It was considered that collecting opinions of teachers and teachers candidates about the instructional technologies, comparing and contrasting them will contribute to the field. To follow this research inquiry, a descriptive approach type; case study research design was applied. The reason for choosing such design is that the case study method permits studying one aspect of the problem in detail and in a short time (Yin, 2003; Çepni, 2007. The study was conducted with the total sample of 12. 3 of

  11. The Relationship between Doctoral Completion Time, Gender, and Future Salary Prospects for Physical Scientists

    Science.gov (United States)

    Potvin, Geoff; Tai, Robert H.

    2012-03-01

    Drawing from a national survey of Ph.D.-holding physical scientists, we present evidence that doctoral completion time is a strong predictor of future salary prospects: each additional year in graduate school corresponds to a substantially lower average salary. This is true even while controlling for typical measures of scientific merit (grant funding and publication rates) and several other structural and career factors expected to influence salaries. Extending this picture to include gender effects, we show that women earn significantly less than men overall and experience no effect of doctoral completion time on their salaries, while men see a significant gain in salary stemming from earlier completion times. Doctoral completion time is shown to be largely unconnected to measures of prior academic success, research independence, and scientific merit suggesting that doctoral completion time is, to a great extent, out of the control of individual graduate students. Nonetheless, it can be influential on an individual's future career prospects, as can gender-related effects.

  12. Characterization of Mathematics Instructional Practises for Prospective Elementary Teachers with Varying Levels of Self-Efficacy in Classroom Management and Mathematics Teaching

    Science.gov (United States)

    Lee, Carrie W.; Walkowiak, Temple A.; Nietfeld, John L.

    2017-01-01

    The purpose of this study was to investigate the relationship between prospective teachers' (PTs) instructional practises and their efficacy beliefs in classroom management and mathematics teaching. A sequential, explanatory mixed-methods design was employed. Results from efficacy surveys, implemented with 54 PTs were linked to a sample of…

  13. Identification of Prospective Science Teachers' Mathematical-Logical Structures in Reference to Magnetism

    Science.gov (United States)

    Yilmaz, Ismail

    2014-01-01

    This paper is a qualitative case study designed to identify prospective science teachers' mathematical-logical structures on the basis of their knowledge and achievement levels in magnetism. The study also made an attempt to reveal the effects of knowledge-level variables and procedural variables, which were considered to be potential…

  14. Canadian Mathematical Congress

    CERN Document Server

    1977-01-01

    For two weeks in August, 1975 more than 140 mathematicians and other scientists gathered at the Universite de Sherbrooke. The occasion was the 15th Biennial Seminar of the Canadian Mathematical Congress, entitled Mathematics and the Life Sciences. Participants in this inter­ disciplinary gathering included researchers and graduate students in mathematics, seven different areas of biological science, physics, chemistry and medical science. Geographically, those present came from the United States and the United Kingdom as well as from academic departments and government agencies scattered across Canada. In choosing this particular interdisciplinary topic the programme committee had two chief objectives. These were to promote Canadian research in mathematical problems of the life sciences, and to encourage co-operation and exchanges between mathematical scientists" biologists and medical re­ searchers. To accomplish these objective the committee assembled a stim­ ulating programme of lectures and talks. Six ...

  15. Before, During, and After Examination: Development of Prospective Preschool Teachers’ Mathematics-Related Enjoyment and Self-Efficacy

    OpenAIRE

    Blömeke, Sigrid; Thiel, Oliver; Jenssen, Lars

    2018-01-01

    This article examines the stability of Norwegian prospective preschool teachers’ enjoyment of mathematics and their mathematics-related self-efficacy before, during, and after a teacher-education examination. In addition, the stability of the two constructs across countries was examined through a comparison with Germany. The data revealed partial stability (technically speaking, metric invariance) of enjoyment but not of self-efficacy. Self-efficacy increased significantly before and after th...

  16. Using Video Analysis to Support Prospective K-8 Teachers' Noticing of Students' Multiple Mathematical Knowledge Bases

    Science.gov (United States)

    Roth McDuffie, Amy; Foote, Mary Q.; Bolson, Catherine; Turner, Erin E.; Aguirre, Julia M.; Bartell, Tonya Gau; Drake, Corey; Land, Tonia

    2014-01-01

    As part of a larger research project aimed at transforming preK-8 mathematics teacher preparation, the purpose of this study was to examine the extent to which prospective teachers notice children's competencies related to children's mathematical thinking, and children's community, cultural, and linguistic funds of knowledge or what…

  17. Model program for the recruitment and preparation of high ability elementary mathematics/science teachers: A collaborative project among scientists, teacher educators and classroom teachers

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    This teacher education program will provide a model for recruiting, educating and retaining high ability students to become mathematics and science lead teachers in elementary schools. The quality experiences and support provided these students will help them develop the knowledge and attitudes necessary to provide leadership for elementary mathematics and science programs. Students will have research experiences at the Ames Laboratory, high quality field experiences with nationally recognized mathematics and science teachers in local schools and opportunities to meaningfully connect these two experiences. This program, collaboratively designed and implemented by scientists, teacher educators and classroom teachers, should provide a replicatable model for other teacher education institutions. In addition, materials developed for the project should help other laboratories interface more effectively with K-8 schools and help other teacher education programs incorporate real science and mathematics experience into their curriculum.

  18. Mathematics without boundaries surveys in pure mathematics

    CERN Document Server

    Pardalos, Panos

    2014-01-01

    The contributions in this volume have been written by eminent scientists from the international mathematical community and present significant advances in several theories, methods and problems of Mathematical Analysis, Discrete Mathematics, Geometry and their Applications. The chapters focus on both old and recent developments in Functional Analysis, Harmonic Analysis, Complex Analysis, Operator Theory, Combinatorics, Functional Equations, Differential Equations as well as a variety of Applications. The book also contains some review works, which could prove particularly useful for a broader audience of readers in Mathematical Sciences, and especially to graduate students looking for the  latest information.

  19. Math for scientists refreshing the essentials

    CERN Document Server

    Maurits, Natasha

    2017-01-01

    Accessible and comprehensive, this guide is an indispensable tool for anyone in the sciences – new and established researchers, students and scientists – looking either to refresh their math skills or to prepare for the broad range of math, statistical and data-related challenges they are likely to encounter in their work or studies. In addition to helping scientists improve their knowledge of key mathematical concepts, this unique book will help readers: ·                     Read mathematical symbols ·                     Understand formulas, data or statistical information ·                     Determine medication equivalents ·                     Analyze neuroimaging  Mathematical concepts are presented alongside illustrative and useful real-world scien­tific examples and are further clarified through practical pen-and-paper exercises. Whether you are a student encountering high-level mathematics in your research or...

  20. Characterization of mathematics instructional practises for prospective elementary teachers with varying levels of self-efficacy in classroom management and mathematics teaching

    Science.gov (United States)

    Lee, Carrie W.; Walkowiak, Temple A.; Nietfeld, John L.

    2017-03-01

    The purpose of this study was to investigate the relationship between prospective teachers' (PTs) instructional practises and their efficacy beliefs in classroom management and mathematics teaching. A sequential, explanatory mixed-methods design was employed. Results from efficacy surveys, implemented with 54 PTs were linked to a sample of teachers' instructional practises during the qualitative phase. In this phase, video-recorded lessons were analysed based on tasks, representations, discourse, and classroom management. Findings indicate that PTs with higher levels of mathematics teaching efficacy taught lessons characterised by tasks of higher cognitive demand, extended student explanations, student-to-student discourse, and explicit connections between representations. Classroom management efficacy seems to bear influence on the utilised grouping structures. These findings support explicit attention to PTs' mathematics teaching and classroom management efficacy throughout teacher preparation and a need for formative feedback to inform development of beliefs about teaching practises.

  1. Mathematical methods for mathematicians, physical scientists and engineers

    CERN Document Server

    Dunning-Davies, J

    2003-01-01

    This practical introduction encapsulates the entire content of teaching material for UK honours degree courses in mathematics, physics, chemistry and engineering, and is also appropriate for post-graduate study. It imparts the necessary mathematics for use of the techniques, with subject-related worked examples throughout. The text is supported by challenging problem exercises (and answers) to test student comprehension. Index notation used in the text simplifies manipulations in the sections on vectors and tensors. Partial differential equations are discussed, and special functions introduced

  2. Technological pedagogical content knowledge of prospective mathematics teachers regarding evaluation and assessment

    Directory of Open Access Journals (Sweden)

    Ercan Atasoy

    2016-04-01

    Full Text Available The ‘technology integrated assessment process’ is an innovative method to capture and determine students’ understanding of mathematics. This assessment process is claimed to provide a singular dynamism for teaching and learning activities and it is also claimed to be of the most important elements of instruction in the educational system. In this sense, this study aims to investigate technological pedagogical content knowledge (TPACK of prospective mathematics teachers regarding the ‘evaluation’ and ‘assessment’ process. To achieve this aim, the method of qualitative research was conducted with 20 teachers. Video records and lesson plans were collected and a Mathematics Teacher TPACK Development Model was utilized to reveal themes and key features of the data. The findings revealed that, although the majority of teachers stated that they would like to use technology-integrated tools in the assessment and evaluation processes, they strongly preferred to use traditional assessment and evaluation techniques, such as pen and paper activities, multiple-choice questions in virtual environments, etc. Hence, the evidence suggests that teachers would be unable to use appropriately the technological assessment process in order to reveal students’ understanding of mathematics. As seen from the teachers’ lectures, they perceived that technology would be suitable for evaluation and assessment but in a limited way.

  3. Driven by History: Mathematics Education Reform

    Science.gov (United States)

    Permuth, Steve; Dalzell, Nicole

    2013-01-01

    The advancement of modern societies is fueled by mathematics, and mathematics education provides the foundation upon which future scientists and engineers will build. Society dictates how mathematics will be taught through the development and implementation of mathematics standards. When examining the progression of these standards, it is…

  4. Giving Reason to Prospective Mathematics Teachers

    Science.gov (United States)

    D'Ambrosio, Beatriz; Kastberg, Signe

    2012-01-01

    This article describes the development of the authors' understanding of the contradictions in their mathematics teacher education practice. This understanding emerged from contrasting analyses of the impact of the authors' practices in mathematics content courses versus mathematics methods courses. Examples of the authors' work with two students,…

  5. Space groups for solid state scientists

    CERN Document Server

    Glazer, Michael

    2013-01-01

    This comprehensively revised - essentially rewritten - new edition of the 1990 edition (described as ""extremely useful"" by MATHEMATICAL REVIEWS and as ""understandable and comprehensive"" by Scitech) guides readers through the dense array of mathematical information in the International Tables Volume A. Thus, most scientists seeking to understand a crystal structure publication can do this from this book without necessarily having to consult the International Tables themselves. This remains the only book aimed at non-crystallographers devoted to teaching them about crystallogr

  6. Calculus for cognitive scientists partial differential equation models

    CERN Document Server

    Peterson, James K

    2016-01-01

    This book shows cognitive scientists in training how mathematics, computer science and science can be usefully and seamlessly intertwined. It is a follow-up to the first two volumes on mathematics for cognitive scientists, and includes the mathematics and computational tools needed to understand how to compute the terms in the Fourier series expansions that solve the cable equation. The latter is derived from first principles by going back to cellular biology and the relevant biophysics.  A detailed discussion of ion movement through cellular membranes, and an explanation of how the equations that govern such ion movement leading to the standard transient cable equation are included. There are also solutions for the cable model using separation of variables, as well an explanation of why Fourier series converge and a description of the implementation of MatLab tools to compute the solutions. Finally, the standard Hodgkin - Huxley model is developed for an excitable neuron and is solved using MatLab.

  7. Applied mathematics

    CERN Document Server

    Logan, J David

    2013-01-01

    Praise for the Third Edition"Future mathematicians, scientists, and engineers should find the book to be an excellent introductory text for coursework or self-study as well as worth its shelf space for reference." -MAA Reviews Applied Mathematics, Fourth Edition is a thoroughly updated and revised edition on the applications of modeling and analyzing natural, social, and technological processes. The book covers a wide range of key topics in mathematical methods and modeling and highlights the connections between mathematics and the applied and nat

  8. Advanced mathematics for engineers and scientists

    CERN Document Server

    DuChateau, Paul

    2012-01-01

    This book can be used as either a primary text or a supplemental reference for courses in applied mathematics. Its core chapters are devoted to linear algebra, calculus, and ordinary differential equations. Additional topics include partial differential equations and approximation methods. Each chapter features an ample selection of solved problems. These problems were chosen to illustrate not only how to solve various algebraic and differential equations but also how to interpret the solutions in order to gain insight into the behavior of the system modeled by the equation. In addition to th

  9. The Mathematics Education Debates: Preparing Students to Become Professionally Active Mathematics Teachers

    Science.gov (United States)

    Munakata, Mika

    2010-01-01

    The Mathematics Education Debate is an assignment designed for and implemented in an undergraduate mathematics methods course for prospective secondary school mathematics teachers. For the assignment, students read and analyze current research and policy reports related to mathematics education, prepare and present their positions, offer…

  10. Prospective Middle-School Mathematics Teachers' Quantitative Reasoning and Their Support for Students' Quantitative Reasoning

    Science.gov (United States)

    Kabael, Tangul; Akin, Ayca

    2018-01-01

    The aim of this research is to examine prospective mathematics teachers' quantitative reasoning, their support for students' quantitative reasoning and the relationship between them, if any. The teaching experiment was used as the research method in this qualitatively designed study. The data of the study were collected through a series of…

  11. Mathematical Cultures : the London Meetings 2012-2014

    CERN Document Server

    2016-01-01

    This collection presents significant contributions from an international network project on mathematical cultures, including essays from leading scholars in the history and philosophy of mathematics and mathematics education. Mathematics has universal standards of validity. Nevertheless, there are local styles in mathematical research and teaching, and great variation in the place of mathematics in the larger cultures that mathematical practitioners belong to. The reflections on mathematical cultures collected in this book are of interest to mathematicians, philosophers, historians, sociologists, cognitive scientists and mathematics educators.

  12. Mathematical modelling techniques

    CERN Document Server

    Aris, Rutherford

    1995-01-01

    ""Engaging, elegantly written."" - Applied Mathematical ModellingMathematical modelling is a highly useful methodology designed to enable mathematicians, physicists and other scientists to formulate equations from a given nonmathematical situation. In this elegantly written volume, a distinguished theoretical chemist and engineer sets down helpful rules not only for setting up models but also for solving the mathematical problems they pose and for evaluating models.The author begins with a discussion of the term ""model,"" followed by clearly presented examples of the different types of mode

  13. Epistemological Beliefs of Prospective Preschool Teachers and Their Relation to Knowledge, Perception, and Planning Abilities in the Field of Mathematics: A Process Model

    Science.gov (United States)

    Dunekacke, Simone; Jenßen, Lars; Eilerts, Katja; Blömeke, Sigrid

    2016-01-01

    Teacher competence is a multi-dimensional construct that includes beliefs as well as knowledge. The present study investigated the structure of prospective preschool teachers' mathematics-related beliefs and their relation to content knowledge and pedagogical content knowledge. In addition, prospective preschool teachers' perception and planning…

  14. Investigating Plane Geometry Problem-Solving Strategies of Prospective Mathematics Teachers in Technology and Paper-and-Pencil Environments

    Science.gov (United States)

    Koyuncu, Ilhan; Akyuz, Didem; Cakiroglu, Erdinc

    2015-01-01

    This study aims to investigate plane geometry problem-solving strategies of prospective mathematics teachers using dynamic geometry software (DGS) and paper-and-pencil (PPB) environments after receiving an instruction with GeoGebra (GGB). Four plane geometry problems were used in a multiple case study design to understand the solution strategies…

  15. Prospective mathematics teachers' understanding of the base concept

    Science.gov (United States)

    Horzum, Tuğba; Ertekin, Erhan

    2018-02-01

    The purpose of this study is to analyze what kind of conceptions prospective mathematics teachers(PMTs) have about the base concept(BC). One-hundred and thirty-nine PMTs participated in the study. In this qualitative research, data were obtained through open-ended questions, the semi-structured interviews and pictures of geometric figures drawn by PMTs. As a result, it was determined that PMTs dealt with the BC in a broad range of seven different images. It was also determined that the base perception of PMTs was limited mostly to their usage in daily life and in this context, they have position-dependent and word-dependent images. It was also determined that PMTs named the base to explain the BC or paid attention to the naming of three-dimensional geometric figures through the statement: 'objects are named according to their bases'. At the same time, it was also determined that PMTs had more than one concept imageswhich were contradicting with each other. According to these findings, potential explanations and advices were given.

  16. Prediction of Prospective Mathematics Teachers' Academic Success in Entering Graduate Education by Using Back-Propagation Neural Network

    Science.gov (United States)

    Bahadir, Elif

    2016-01-01

    The purpose of this study is to examine a neural network based approach to predict achievement in graduate education for Elementary Mathematics prospective teachers. With the help of this study, it can be possible to make an effective prediction regarding the students' achievement in graduate education with Artificial Neural Networks (ANN). Two…

  17. Prospective elementary and secondary school mathematics teachers’ statistical reasoning

    Directory of Open Access Journals (Sweden)

    Rabia KARATOPRAK

    2015-04-01

    Full Text Available This study investigated prospective elementary (PEMTs and secondary (PSMTs school mathematics teachers’ statistical reasoning. The study began with the adaptation of the Statistical Reasoning Assessment (Garfield, 2003 test. Then, the test was administered to 82 PEMTs and 91 PSMTs in a metropolitan city of Turkey. Results showed that both groups were equally successful in understanding independence, and understanding importance of large samples. However, results from selecting appropriate measures of center together with the misconceptions assessing the same subscales showed that both groups selected mode rather than mean as an appropriate average. This suggested their lack of attention to the categorical and interval/ratio variables while examining data. Similarly, both groups were successful in interpreting and computing probability; however, they had equiprobability bias, law of small numbers and representativeness misconceptions. The results imply a change in some questions in the Statistical Reasoning Assessment test and that teacher training programs should include statistics courses focusing on studying characteristics of samples.

  18. Career Management for Scientists and Engineers

    Science.gov (United States)

    Borchardt, John K.

    2000-05-01

    This book will be an important resource for both new graduates and mid-career scientists, engineers, and technicians. Through taking stock of existing or desired skills and goals, it provides both general advice and concrete examples to help asses a current job situation or prospect, and to effectively pursue and attain new ones. Many examples of properly adapted resumes and interview techniques, as well as plenty of practical advice about adaptation to new workplace cultural paradigms, such as team-based management, make this book an invaluable reference for the professional scientist in today's volatile job market.

  19. Creators of mathematical and computational sciences

    CERN Document Server

    Agarwal, Ravi P

    2014-01-01

    The book records the essential discoveries of mathematical and computational scientists in chronological order, following the birth of ideas on the basis of prior ideas ad infinitum. The authors document the winding path of mathematical scholarship throughout history, and most importantly, the thought process of each individual that resulted in the mastery of their subject. The book implicitly addresses the nature and character of every scientist as one tries to understand their visible actions in both adverse and congenial environments. The authors hope that this will enable the reader to understand their mode of thinking, and perhaps even to emulate their virtues in life. … presents a picture of mathematics as a creation of the human imagination. … brings the history of mathematics to life by describing the contributions of the world’s greatest mathematicians. —Rex F. Gandy, Provost and Vice President for Academic Affairs, TAMUK   It starts with the explanation and history of numbers, arithmetic, ...

  20. ABC Problem in Elementary Mathematics Education: Arithmetic "before" Comprehension

    Science.gov (United States)

    Boote, Stacy K.; Boote, David N.

    2018-01-01

    Mathematical habits of prospective teachers affect problem comprehension and success and expose their beliefs about mathematics. Prospective elementary teachers (PSTs) (n = 121) engaged in a problem solving activity each week in class. Data were collected from PSTs enrolled in an undergraduate elementary mathematics methods course at a…

  1. An Interdisciplinary Approach to Designing Online Learning: Fostering Pre-Service Mathematics Teachers' Capabilities in Mathematical Modelling

    Science.gov (United States)

    Geiger, Vince; Mulligan, Joanne; Date-Huxtable, Liz; Ahlip, Rehez; Jones, D. Heath; May, E. Julian; Rylands, Leanne; Wright, Ian

    2018-01-01

    In this article we describe and evaluate processes utilized to develop an online learning module on mathematical modelling for pre-service teachers. The module development process involved a range of professionals working within the STEM disciplines including mathematics and science educators, mathematicians, scientists, in-service and pre-service…

  2. Thermodynamics for scientists and engineers

    International Nuclear Information System (INIS)

    Lim, Gyeong Hui

    2011-02-01

    This book deals with thermodynamics for scientists and engineers. It consists of 11 chapters, which are concept and background of thermodynamics, the first law of thermodynamics, the second law of thermodynamics and entropy, mathematics related thermodynamics, properties of thermodynamics on pure material, equilibrium, stability of thermodynamics, the basic of compound, phase equilibrium of compound, excess gibbs energy model of compound and activity coefficient model and chemical equilibrium. It has four appendixes on properties of pure materials and thermal mass.

  3. Handbook of mathematics

    CERN Document Server

    Bronshtein, I N; Musiol, Gerhard; Mühlig, Heiner

    2015-01-01

    This guide book to mathematics contains in handbook form the fundamental working knowledge of mathematics which is needed as an everyday guide for working scientists and engineers, as well as for students. Easy to understand, and convenient to use, this guide book gives concisely the information necessary to evaluate most problems which occur in concrete applications. In the newer editions emphasis was laid on those fields of mathematics that became more important for the formulation and modeling of technical and natural processes, namely Numerical Mathematics, Probability Theory and Statistics, as well as Information Processing. Besides many enhancements and  new paragraphs,  new sections on Geometric and Coordinate Transformations, Quaternions and Applications, and Lie Groups and Lie Algebras were added for the sixth edition.

  4. Mathematical geology studies of deposit prospect types

    International Nuclear Information System (INIS)

    Liu Guangping

    1998-08-01

    Exact certainty prospect type of uranium deposit, not only can assure the quality of deposit prospects, but also increase economic benefits. Based on the standard of geological prospect of uranium deposit, the author introduces a method of Fuzzy Synthetical Comment for dividing prospect type of uranium deposit. The practical applications demonstrate that the regression accuracy, discriminated by Zadeh operator, of 15 known deposits is 100%

  5. Orientations toward Mathematical Processes of Prospective Secondary Mathematics Teachers as Related to Work with Tasks

    Science.gov (United States)

    Cannon, Tenille

    2016-01-01

    Mathematics can be conceptualized in different ways. Policy documents such as the National Council of Teachers of Mathematics (NCTM) (2000) and the Common Core State Standards Initiative (CCSSI) (2010), classify mathematics in terms of mathematical content (e.g., quadratic functions, Pythagorean theorem) and mathematical activity in the form of…

  6. Exploring Native American Students' Perceptions of Scientists

    Science.gov (United States)

    Laubach, Timothy A.; Crofford, Geary Don; Marek, Edmund A.

    2012-07-01

    The purpose of this descriptive study was to explore Native American (NA) students' perceptions of scientists by using the Draw-A-Scientist Test and to determine if differences in these perceptions exist between grade level, gender, and level of cultural tradition. Data were collected for students in Grades 9-12 within a NA grant off-reservation boarding school. A total of 133 NA students were asked to draw a picture of a scientist at work and to provide a written explanation as to what the scientist was doing. A content analysis of the drawings indicated that the level of stereotype differed between all NA subgroups, but analysis of variance revealed that these differences were not significant between groups except for students who practised native cultural tradition at home compared to students who did not practise native cultural tradition at home (p educational and career science, technology, engineering, and mathematics paths in the future. The educational implication is that once initial perceptions are identified, researchers and teachers can provide meaningful experiences to combat the stereotypes.

  7. Cognitive science and mathematics education

    CERN Document Server

    Schoenfeld, Alan H

    1987-01-01

    This volume is a result of mathematicians, cognitive scientists, mathematics educators, and classroom teachers combining their efforts to help address issues of importance to classroom instruction in mathematics. In so doing, the contributors provide a general introduction to fundamental ideas in cognitive science, plus an overview of cognitive theory and its direct implications for mathematics education. A practical, no-nonsense attempt to bring recent research within reach for practicing teachers, this book also raises many issues for cognitive researchers to consider.

  8. Learning to Leverage Children's Multiple Mathematical Knowledge Bases in Mathematics Instruction

    Science.gov (United States)

    Turner, Erin E.; Foote, Mary Q.; Stoehr, Kathleen Jablon; McDuffie, Amy Roth; Aguirre, Julia Maria; Bartell, Tonya Gau; Drake, Corey

    2016-01-01

    In this article, the authors explore prospective elementary teachers' engagement with and reflection on activities they conducted to learn about a single child from their practicum classroom. Through these activities, prospective teachers learned about their child's mathematical thinking and the interests, competencies, and resources she or he…

  9. Why Is Statistics Perceived as Difficult and Can Practice during Training Change Perceptions? Insights from a Prospective Mathematics Teacher

    Science.gov (United States)

    Fitzmaurice, Olivia; Leavy, Aisling; Hannigan, Ailish

    2014-01-01

    An investigation into prospective mathematics/statistics teachers' (n = 134) conceptual understanding of statistics and attitudes to statistics carried out at the University of Limerick revealed an overall positive attitude to statistics but a perception that it can be a difficult subject, in particular that it requires a great deal of discipline…

  10. Lesson study in prospective mathematics teacher education: didactic and paradidactic technology in the post-lesson reflection

    DEFF Research Database (Denmark)

    Rasmussen, Klaus

    2016-01-01

    This paper presents a detailed analysis of the post-lesson reflection, carried out in the context of eight cases of lesson study conducted by teams of Danish, lower secondaryprospective teachers and their supervisors. The participants, representing different institutions, were all new to the less...... and concern to the whole profession of mathematics teachers and the analysis adds to our insight into the potential of lesson study in prospective education as a meeting place where pertinent actors contribute to the expansion and dissemination of shared professional knowledge......This paper presents a detailed analysis of the post-lesson reflection, carried out in the context of eight cases of lesson study conducted by teams of Danish, lower secondaryprospective teachers and their supervisors. The participants, representing different institutions, were all new to the lesson...... study format. Nevertheless, it is demonstrated how their interaction shape the development of discourse about mathematical learning. The anthropological theory of the didactic is employed as the theoretical approach to analyse the mathematical and primarily didactical praxeologies developed...

  11. A Brief Historical Development of Classical Mathematics before the Renaissance

    Science.gov (United States)

    Debnath, Lokenath

    2011-01-01

    This article deals with a short history of mathematics and mathematical scientists during the ancient and medieval periods. Included are some major developments of the ancient, Indian, Arabic, Egyptian, Greek and medieval mathematics and their significant impact on the Renaissance mathematics. Special attention is given to many results, theorems,…

  12. Scientists riff on fabric of the universe

    CERN Multimedia

    2008-01-01

    Their music may be the scourge of parents, but the thrashing guitars of heavy metal bands like Metallica and Iron Maiden could help explain the mysteries of the universe. The string vibrations from the frantic strumming of rock guitarists form the basis of String Theory, a mathematic theory that seeks to explain what the world is made of, says scientist Mark Lewney.

  13. Teaching Undergraduate Mathematics Using CAS Technology: Issues and Prospects

    Science.gov (United States)

    Tobin, Patrick C.; Weiss, Vida

    2016-01-01

    The use of handheld CAS technology in undergraduate mathematics courses in Australia is paradoxically shrinking under sustained disapproval or disdain from the professional mathematics community. Mathematics education specialists argue with their mathematics colleagues over a range of issues in course development and this use of CAS or even…

  14. Mathematics for physicists

    CERN Document Server

    Dennery, Philippe

    1967-01-01

    ""A fine example of how to present 'classical' physical mathematics."" - American ScientistWritten for advanced undergraduate and graduate students, this volume provides a thorough background in the mathematics needed to understand today's more advanced topics in physics and engineering. Without sacrificing rigor, the authors develop the theoretical material at length, in a highly readable, and, wherever possible, in an intuitive manner. Each abstract idea is accompanied by a very simple, concrete example, showing the student that the abstraction is merely a generalization from easily understo

  15. (Re)Envisioning Mathematics Education: Examining Equity and Social Justice in an Elementary Mathematics Methods Course

    Science.gov (United States)

    Koestler, Courtney

    2010-01-01

    In this dissertation, I present my attempts at designing an elementary mathematics methods course to support prospective teachers in developing an understanding of how to teach all students in learning powerful mathematics. To do this, I introduced them to teaching mathematics for equity and social justice by discussing ways to support students'…

  16. Establishing a mathematical Lesson Study culture in Danish teacher education

    DEFF Research Database (Denmark)

    Skott, Charlotte Krog; Østergaard, Camilla Hellsten

    Bridging theory and practice is a general challenge in mathematics teacher education. Research shows that Lesson Study (LS) is an effective way for prospective mathematics teachers to build relations between course work and field experiences......Bridging theory and practice is a general challenge in mathematics teacher education. Research shows that Lesson Study (LS) is an effective way for prospective mathematics teachers to build relations between course work and field experiences...

  17. Mathematics, substance and surmise views on the meaning and ontology of mathematics

    CERN Document Server

    Davis, Philip

    2015-01-01

    The seventeen thought-provoking and engaging essays in this collection present readers with a wide range of diverse perspectives on the ontology of mathematics. The essays address such questions as: What kind of things are mathematical objects? What kinds of assertions do mathematical statements make? How do people think and speak about mathematics?  How does society use mathematics? How have our answers to these questions changed over the last two millennia, and how might they change again in the future?   The authors include mathematicians, philosophers, computer scientists, cognitive psychologists, sociologists, educators, and mathematical historians; each brings their own expertise and insights to the discussion. Contributors to this volume: Jeremy Avigad Jody Azzouni David H. Bailey David Berlinski Jonathan M. Borwein Ernest Davis Philip J. Davis Donald Gillies Jeremy Gray Jesper Lützen Ursula Martin Kay L. O’Halloran Alison Pease Steven T. Piantadosi Lance J. Rips Micah T. Ross Nathalie Sinclair J...

  18. Teaching Mathematical Modelling for Earth Sciences via Case Studies

    Science.gov (United States)

    Yang, Xin-She

    2010-05-01

    Mathematical modelling is becoming crucially important for earth sciences because the modelling of complex systems such as geological, geophysical and environmental processes requires mathematical analysis, numerical methods and computer programming. However, a substantial fraction of earth science undergraduates and graduates may not have sufficient skills in mathematical modelling, which is due to either limited mathematical training or lack of appropriate mathematical textbooks for self-study. In this paper, we described a detailed case-study-based approach for teaching mathematical modelling. We illustrate how essential mathematical skills can be developed for students with limited training in secondary mathematics so that they are confident in dealing with real-world mathematical modelling at university level. We have chosen various topics such as Airy isostasy, greenhouse effect, sedimentation and Stokes' flow,free-air and Bouguer gravity, Brownian motion, rain-drop dynamics, impact cratering, heat conduction and cooling of the lithosphere as case studies; and we use these step-by-step case studies to teach exponentials, logarithms, spherical geometry, basic calculus, complex numbers, Fourier transforms, ordinary differential equations, vectors and matrix algebra, partial differential equations, geostatistics and basic numeric methods. Implications for teaching university mathematics for earth scientists for tomorrow's classroom will also be discussed. Refereces 1) D. L. Turcotte and G. Schubert, Geodynamics, 2nd Edition, Cambridge University Press, (2002). 2) X. S. Yang, Introductory Mathematics for Earth Scientists, Dunedin Academic Press, (2009).

  19. Mathematical literacy skills of students' in term of gender differences

    Science.gov (United States)

    Lailiyah, Siti

    2017-08-01

    Good mathematical literacy skills will hopefully help maximize the tasks and role of the prospective teacher in activities. Mathematical literacy focus on students' ability to analyze, justify, and communicate ideas effectively, formulate, solve and interpret mathematical problems in a variety of forms and situations. The purpose of this study is to describe the mathematical literacy skills of the prospective teacher in term of gender differences. This research used a qualitative approach with a case study. Subjects of this study were taken from two male students and two female students of the mathematics education prospective teacher who have followed Community Service Program (CSP) in literacy. Data were collected through methods think a loud and interviews. Four prospective teachers were asked to fill mathematical literacy test and video taken during solving this test. Students are required to convey loud what he was thinking when solving problems. After students get the solution, researchers grouped the students' answers and results think aloud. Furthermore, the data are grouped and analyzed according to indicators of mathematical literacy skills. Male students have good of each indicator in mathematical literacy skills (the first indicator to the sixth indicator). Female students have good of mathematical literacy skills (the first indicator, the second indicator, the third indicator, the fourth indicator and the sixth indicator), except for the fifth indicators that are enough.

  20. Technological Pedagogical Content Knowledge of Prospective Mathematics Teacher in Three Dimensional Material Based on Sex Differences

    Science.gov (United States)

    Aqib, M. A.; Budiarto, M. T.; Wijayanti, P.

    2018-01-01

    The effectiveness of learning in this era can be seen from 3 factors such as: technology, content, and pedagogy that covered in Technological Pedagogical Content Knowledge (TPCK). This research was a qualitative research which aimed to describe each domain from TPCK include Content Knowledge, Pedagogical Knowledge, Pedagogical Content Knowledge, Technological Knowledge, Technological Content Knowledge, Technological Pedagogical Knowledge and Technological, Pedagogical, and Content Knowledge. The subjects of this research were male and female mathematics college students at least 5th semester who has almost the same ability for some course like innovative learning, innovative learning II, school mathematics I, school mathematics II, computer applications and instructional media. Research began by spreading the questionnaire of subject then continued with the assignment and interview. The obtained data was validated by time triangulation.This research has result that male and female prospective teacher was relatively same for Content Knowledge and Pedagogical Knowledge domain. While it was difference in the Technological Knowledge domain. The difference in this domain certainly has an impact on other domains that has technology components on it. Although it can be minimized by familiarizing the technology.

  1. Learning higher mathematics

    CERN Document Server

    Pontrjagin, Lev Semenovič

    1984-01-01

    Lev Semenovic Pontrjagin (1908) is one of the outstanding figures in 20th century mathematics. In a long career he has made fundamental con­ tributions to many branches of mathematics, both pure and applied. He has received every honor that a grateful government can bestow. Though in no way constrained to do so, he has through the years taught mathematics courses at Moscow State University. In the year 1975 he set himself the task of writing a series of books on secondary school and beginning university mathematics. In his own words, "I wished to set forth the foundations of higher mathematics in a form that would have been accessible to myself as a lad, but making use of all my experience as a scientist and a teacher, ac­ cumulated over many years. " The present volume is a translation of the first two out of four moderately sized volumes on this theme planned by Pro­ fessor Pontrjagin. The book begins at the beginning of modern mathematics, analytic ge­ ometry in the plane and 3-dimensional space. Refin...

  2. Mathematical Problems in Biology : Victoria Conference

    CERN Document Server

    1974-01-01

    A conference on "Some Mathematical Problems in Biology" was held at the University of Victoria, Victoria, B. C. , Canada, from May 7 - 10, 1973. The participants and invited speakers were mathematicians interested in problems of a biological nature, and scientists actively engaged in developing mathematical models in biological fields. One aim of the conference was to attempt to assess what the recent rapid growth of mathematical interaction with the biosciences has accomplished and may accomplish in the near future. The conference also aimed to expose the problems of communication bet~",een mathematicians and biological scientists, and in doing so to stimulate the interchange of ideas. It was recognised that the topic spans an enormous breadth, and little attempt was made to balance the very diverse areas. Widespread active interest was shown in the conference, and just over one hundred people registered. The varied departments and institutions across North America from which the participants came made it bo...

  3. Effects of an Additional Mathematics Content Course on Elementary Teachers' Mathematical Beliefs and Knowledge for Teaching

    Science.gov (United States)

    Smith, Marvin E.; Swars, Susan L.; Smith, Stephanie Z.; Hart, Lynn C.; Haardorfer, Regine

    2012-01-01

    This longitudinal study examines the effects of changes in an elementary teacher preparation program on mathematics beliefs and content knowledge for teaching of two groups of prospective teachers (N = 276): (1) those who completed a program with three mathematics content courses and two mathematics methods courses and (2) those who completed a…

  4. How we understand mathematics conceptual integration in the language of mathematical description

    CERN Document Server

    Woźny, Jacek

    2018-01-01

    This volume examines mathematics as a product of the human mind and analyzes the language of "pure mathematics" from various advanced-level sources. Through analysis of the foundational texts of mathematics, it is demonstrated that math is a complex literary creation, containing objects, actors, actions, projection, prediction, planning, explanation, evaluation, roles, image schemas, metonymy, conceptual blending, and, of course, (natural) language. The book follows the narrative of mathematics in a typical order of presentation for a standard university-level algebra course, beginning with analysis of set theory and mappings and continuing along a path of increasing complexity. At each stage, primary concepts, axioms, definitions, and proofs will be examined in an effort to unfold the tell-tale traces of the basic human cognitive patterns of story and conceptual blending. This book will be of interest to mathematicians, teachers of mathematics, cognitive scientists, cognitive linguists, and anyone interested...

  5. Mathematics Anxiety: One Size Does Not Fit All

    Science.gov (United States)

    Stoehr, Kathleen Jablon

    2017-01-01

    Mathematics educators agree elementary teachers should possess confidence and competence in teaching mathematics. Many prospective elementary teachers (particularly women) pursue careers in elementary teaching despite personal repeated experiences of mathematics anxiety. Previous studies of mathematics anxiety have tended to focus on physical…

  6. Call for new OWSD Fellowships for Early Career Women Scientists ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2018-05-03

    May 3, 2018 ... Call for new OWSD Fellowships for Early Career Women Scientists now open ... or mathematics; and employed at an academic or scientific research ... research groups that will attract international visitors; and to develop links with ... opportunity to support Canadian-African research teams studying Ebola.

  7. Applied mathematics for science and engineering

    CERN Document Server

    Glasgow, Larry A

    2014-01-01

    Prepare students for success in using applied mathematics for engineering practice and post-graduate studies moves from one mathematical method to the next sustaining reader interest and easing the application of the techniques Uses different examples from chemical, civil, mechanical and various other engineering fields Based on a decade's worth of the authors lecture notes detailing the topic of applied mathematics for scientists and engineers Concisely writing with numerous examples provided including historical perspectives as well as a solutions manual for academic adopters

  8. Developing Understanding of Mathematical Modeling in Secondary Teacher Preparation

    Science.gov (United States)

    Anhalt, Cynthia Oropesa; Cortez, Ricardo

    2016-01-01

    This study examines the evolution of 11 prospective teachers' understanding of mathematical modeling through the implementation of a modeling module within a curriculum course in a secondary teacher preparation program. While the prospective teachers had not previously taken a course on mathematical modeling, they will be expected to include…

  9. Interactive conference of young scientists 2011. Posters

    International Nuclear Information System (INIS)

    2011-05-01

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in seven sections: (1) Cellular metabolism, physiology, molecular biology and genetics; (2) Biotechnology and food technology; (3) The use of instrumental methods in the analysis of biologically important substances; (4) Organic, bio-organic and pharmaceuticals chemistry, pharmacology; (5) Ecology and environmental science; (6) Biophysics, mathematic modelling, biostatistics; (7) Open section for students. Relevant posters were included into the database INIS.

  10. Mathematical and Scientific Foundations for an Integrative Engineering Curriculum.

    Science.gov (United States)

    Carr, Robin; And Others

    1995-01-01

    Describes the Mathematical and Scientific Foundations of Engineering curriculum which emphasizes the mathematical and scientific concepts common to all engineering fields. Scientists and engineers together devised topics and experiments that emphasize the relevance of theory to real-world applications. Presents material efficiently while building…

  11. Emeritus Scientists, Mathematicians and Engineers (ESME) program

    Energy Technology Data Exchange (ETDEWEB)

    Sharlin, H.I.

    1992-09-01

    The Emeritus Scientists, Mathematicians and Engineers (ESME) program matches retired scientists and engineers with wide experience with elementary school children in order to fuel the children's natural curiosity about the world in which they live. The long-range goal is to encourage students to maintain the high level of mathematical and science capability that they exhibit at an early age by introducing them to the fun and excitement of the world of scientific investigation and engineering problem solving. Components of the ESME program are the emeriti, established teacher-emeriti teams that work to produce a unit of 6 class hours of demonstration or hands-on experiments, and the encounter by students with the world of science/engineering through the classroom sessions and a field trip to a nearby plant or laboratory.

  12. Paths and Perspectives on Being a Data Scientist: Anatomy and Physiology

    Science.gov (United States)

    Fox, P. A.

    2015-12-01

    While many educators are trying to look forward and develop or adapt degree programs, curricula and even courses for prospective data scientists, not many are able to reflect on and draw from the long look back into their career path and choices related to data science. Given the considerable hype and co-opting of the term Data Science by business and government, its roots are in numerous scientific research fields. This contribution offers the author's path in data science, assessed and framed in terms of the anatomy and physiology of a data scientist; quite literally the "body" parts and functions and the function of the "body", or the data scientist as-a-whole. Pivoting to the prospectives for both data science research and education, course, curricula and degree programs are mapped to data science functions and how they work together. The conclusion is that data science must become embedded in all degree and continuing programs, lest it be misconstrued as a separate discipline. Ideas and experience on how this embedding may be accomplished are also offered for discussion.

  13. Mathematics and physics of emerging biomedical imaging

    National Research Council Canada - National Science Library

    Committee on the Mathematics and Physics of Emerging Dynamic Biomedical Imaging, National Research Council

    .... Incorporating input from dozens of biomedical researchers who described what they perceived as key open problems of imaging that are amenable to attack by mathematical scientists and physicists...

  14. Mathematical representations in science: a cognitive-historical case history.

    Science.gov (United States)

    Tweney, Ryan D

    2009-10-01

    The important role of mathematical representations in scientific thinking has received little attention from cognitive scientists. This study argues that neglect of this issue is unwarranted, given existing cognitive theories and laws, together with promising results from the cognitive historical analysis of several important scientists. In particular, while the mathematical wizardry of James Clerk Maxwell differed dramatically from the experimental approaches favored by Michael Faraday, Maxwell himself recognized Faraday as "in reality a mathematician of a very high order," and his own work as in some respects a re-representation of Faraday's field theory in analytic terms. The implications of the similarities and differences between the two figures open new perspectives on the cognitive role of mathematics as a learned mode of representation in science. Copyright © 2009 Cognitive Science Society, Inc.

  15. A systematic identification and analysis of scientists on Twitter.

    Directory of Open Access Journals (Sweden)

    Qing Ke

    Full Text Available Metrics derived from Twitter and other social media-often referred to as altmetrics-are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can identify scientists across many disciplines, without relying on external bibliographic data, and be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. We find that Twitter has been employed by scholars across the disciplinary spectrum, with an over-representation of social and computer and information scientists; under-representation of mathematical, physical, and life scientists; and a better representation of women compared to scholarly publishing. Analysis of the sharing of URLs reveals a distinct imprint of scholarly sites, yet only a small fraction of shared URLs are science-related. We find an assortative mixing with respect to disciplines in the networks between scientists, suggesting the maintenance of disciplinary walls in social media. Our work contributes to the literature both methodologically and conceptually-we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use of indicators on the basis of social media metrics.

  16. A systematic identification and analysis of scientists on Twitter

    Science.gov (United States)

    Ke, Qing; Ahn, Yong-Yeol; Sugimoto, Cassidy R.

    2017-01-01

    Metrics derived from Twitter and other social media—often referred to as altmetrics—are increasingly used to estimate the broader social impacts of scholarship. Such efforts, however, may produce highly misleading results, as the entities that participate in conversations about science on these platforms are largely unknown. For instance, if altmetric activities are generated mainly by scientists, does it really capture broader social impacts of science? Here we present a systematic approach to identifying and analyzing scientists on Twitter. Our method can identify scientists across many disciplines, without relying on external bibliographic data, and be easily adapted to identify other stakeholder groups in science. We investigate the demographics, sharing behaviors, and interconnectivity of the identified scientists. We find that Twitter has been employed by scholars across the disciplinary spectrum, with an over-representation of social and computer and information scientists; under-representation of mathematical, physical, and life scientists; and a better representation of women compared to scholarly publishing. Analysis of the sharing of URLs reveals a distinct imprint of scholarly sites, yet only a small fraction of shared URLs are science-related. We find an assortative mixing with respect to disciplines in the networks between scientists, suggesting the maintenance of disciplinary walls in social media. Our work contributes to the literature both methodologically and conceptually—we provide new methods for disambiguating and identifying particular actors on social media and describing the behaviors of scientists, thus providing foundational information for the construction and use of indicators on the basis of social media metrics. PMID:28399145

  17. Finding Meaningful Roles for Scientists in science Education Reform

    Science.gov (United States)

    Evans, Brenda

    Successful efforts to achieve reform in science education require the active and purposeful engagement of professional scientists. Working as partners with teachers, school administrators, science educators, parents, and other stakeholders, scientists can make important contributions to the improvement of science teaching and learning in pre-college classrooms. The world of a practicing university, corporate, or government scientist may seem far removed from that of students in an elementary classroom. However, the science knowledge and understanding of all future scientists and scientifically literate citizens begin with their introduction to scientific concepts and phenomena in childhood and the early grades. Science education is the responsibility of the entire scientific community and is not solely the responsibility of teachers and other professional educators. Scientists can serve many roles in science education reform including the following: (1) Science Content Resource, (2) Career Role Model, (3) Interpreter of Science (4) Validator for the Importance of Learning Science and Mathematics, (5) Champion of Real World Connections and Value of Science, (6) Experience and Access to Funding Sources, (7) Link for Community and Business Support, (8) Political Supporter. Special programs have been developed to assist scientists and engineers to be effective partners and advocates of science education reform. We will discuss the rationale, organization, and results of some of these partnership development programs.

  18. Handbook of mathematical methods in imaging

    CERN Document Server

    2015-01-01

    The Handbook of Mathematical Methods in Imaging provides a comprehensive treatment of the mathematical techniques used in imaging science. The material is grouped into two central themes, namely, Inverse Problems (Algorithmic Reconstruction) and Signal and Image Processing. Each section within the themes covers applications (modeling), mathematics, numerical methods (using a case example) and open questions. Written by experts in the area, the presentation is mathematically rigorous. This expanded and revised second edition contains updates to existing chapters and 16 additional entries on important mathematical methods such as graph cuts, morphology, discrete geometry, PDEs, conformal methods, to name a few. The entries are cross-referenced for easy navigation through connected topics. Available in both print and electronic forms, the handbook is enhanced by more than 200 illustrations and an extended bibliography. It will benefit students, scientists and researchers in applied mathematics. Engineers and com...

  19. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting

    OpenAIRE

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children?s stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology clas...

  20. Topics in mathematical analysis and applications

    CERN Document Server

    Tóth, László

    2014-01-01

    This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.

  1. Number sense how the mind creates mathematics

    CERN Document Server

    Dehaene, Stanislas

    2011-01-01

    Our understanding of how the human brain performs mathematical calculations is far from complete, but in recent years there have been many exciting breakthroughs by scientists all over the world. Now, in The Number Sense, Stanislas Dehaene offers a fascinating look at this recent research, in an enlightening exploration of the mathematical mind. Dehaene begins with the eye-opening discovery that animals--including rats, pigeons, raccoons, and chimpanzees--can perform simple mathematical calculations, and that human infants also have a rudimentary number sense. Dehaene suggests that this rudime

  2. Mathematical methods for physicists a comprehensive guide

    CERN Document Server

    Arfken, George B; Harris, Frank E

    2012-01-01

    Now in its 7th edition, Mathematical Methods for Physicists continues to provide all the mathematical methods that aspiring scientists and engineers are likely to encounter as students and beginning researchers. This bestselling text provides mathematical relations and their proofs essential to the study of physics and related fields. While retaining the key features of the 6th edition, the new edition provides a more careful balance of explanation, theory, and examples. Taking a problem-solving-skills approach to incorporating theorems with applications, the book's improved focus w

  3. Mathematical Modeling and Simulation Introduction for Scientists and Engineers

    CERN Document Server

    Velten, Kai

    2008-01-01

    This concise and clear introduction to the topic requires only basic knowledge of calculus and linear algebra—all other concepts and ideas are developed in the course of the book. Lucidly written so as to appeal to undergraduates and practitioners alike, it enables readers to set up simple mathematical models on their own and to interpret their results and those of others critically. To achieve this, many examples have been chosen from various fields, such as biology, ecology, economics, medicine, agricultural, chemical, electrical, mechanical and process engineering, which are subsequently di

  4. The mathematics of games

    CERN Document Server

    Beasley, John D

    2006-01-01

    ""Mind-exercising and thought-provoking.""-New ScientistIf playing games is natural for humans, analyzing games is equally natural for mathematicians. Even the simplest of games involves the fundamentals of mathematics, such as figuring out the best move or the odds of a certain chance event. This entertaining and wide-ranging guide demonstrates how simple mathematical analysis can throw unexpected light on games of every type-games of chance, games of skill, games of chance and skill, and automatic games.Just how random is a card shuffle or a throw of the dice? Is bluffing a valid poker strat

  5. Mathematical Topics in Population Biology, Morphogenesis and Neurosciences

    CERN Document Server

    Yumaguti, Masaya

    1987-01-01

    This volume represents the edited proceedings of the International Symposium on Mathematical Biology held in Kyoto, November 10-15, 1985. The symposium was or­ ganized by an international committee whose members are: E. Teramoto, M. Yamaguti, S. Amari, S.A. Levin, H. Matsuda, A. Okubo, L.M. Ricciardi, R. Rosen, and L.A. Segel. The symposium included technical sessions with a total of 11 invited papers, 49 contributed papers and a poster session where 40 papers were displayed. These Proceedings consist of selected papers from this symposium. This symposium was the second Kyoto meeting on mathematical topics in biology. The first was held in conjunction with the Sixth International Biophysics Congress in 1978. Since then this field of science has grown enormously, and the number of scientists in the field has rapidly increased. This is also the case in Japan. About 80 young japanese scientists and graduate students participated this time. . The sessions were divided into 4 ; , categories: 1) Mathematical Ecolo...

  6. The Implications of American Mathematics Graduates’ Career Development on the Career Planning of Chinese Mathematics Graduates

    Directory of Open Access Journals (Sweden)

    Zhang Shuntao

    2015-01-01

    Full Text Available This article starts with an careful analysis of the factors that cause Chinese mathematics graduate’s heavy pressure in job hunting and career development, followed by a detailed introduction of American mathematics graduates’ positive employment potential and their benign career development prospect. Finally the author puts forward that mathematics majors should plan their curriculum study in relation to their future career development, with the help of systematic, professional career development consultancy and guidance. Suggestions on how to improve mathematics majors employment competitiveness are also provided in this article.

  7. Scientists Involved in K-12 Education

    Science.gov (United States)

    Robigou, V.

    2004-12-01

    The publication of countless reports documenting the dismal state of science education in the 1980s, and the Third International Mathematics and Science Study (TIMMS) report (1996) called for a wider involvement of the scientific community in K-12 education and outreach. Improving science education will not happen without the collaboration of educators and scientists working in a coordinated manner and it requires a long-term, continuous effort. To contribute effectively to K-12 education all scientists should refer to the National Science Education Standards, a set of policies that guide the development of curriculum and assessment. Ocean scientists can also specifically refer to the COSEE recommendations (www.cosee.org) that led to the creation of seven regional Centers for Ocean Sciences Education Excellence. Scientists can get involved in K-12 education in a multitude of ways. They should select projects that will accommodate time away from their research and teaching obligations, their talent, and their interest but also contribute to the education reform. A few examples of effective involvement are: 1) collaborating with colleagues in a school of education that can lead to better education of all students and future teachers, 2) acting as a resource for a national program or a local science fair, 3) serving on the advisory board of a program that develops educational material, 4) speaking out at professional meetings about the value of scientists' involvement in education, 5) speaking enthusiastically about the teaching profession. Improving science education in addition to research can seem a large, overwhelming task for scientists. As a result, focusing on projects that will fit the scientist's needs as well as benefit the science reform is of prime importance. It takes an enormous amount of work and financial and personnel resources to start a new program with measurable impact on students. So, finding the right opportunity is a priority, and stepping

  8. The story of mathematics

    CERN Document Server

    Mankiewicz, Richard

    2000-01-01

    Questioning how mathematics has evolved over the centuries and for what reasons; how human endeavour and changes in the way we live have been dependent on mathematics, this book tells the story of the impact this intellectual activity has had across cultures and civilizations. It shows how, far from being just the obsession of an elite group of philosophers, priests and scientists, mathematics has in some shape or other entered every area of human activity. The mysterious tally sticks of prehistoric peoples and the terrestial maps used for trade, exploration and warfare; the perennial fascination with the motions of heavenly bodies and changing perspectives on the art and science of vision; all are testament to a mathematics at the heart of history. The path of this changing discipline is marked by a wealth of images, from medieval manuscripts to the unsettling art of Dali or Duchamp, from the austere beauty of Babylonian clay tablets to the delicate complexity of computer-generated images. The text encompass...

  9. International Conference on Advances in Applied Mathematics

    CERN Document Server

    Hammami, Mohamed; Masmoudi, Afif

    2015-01-01

    This contributed volume presents some recent theoretical advances in mathematics and its applications in various areas of science and technology.   Written by internationally recognized scientists and researchers, the chapters in this book are based on talks given at the International Conference on Advances in Applied Mathematics (ICAAM), which took place December 16-19, 2013, in Hammamet, Tunisia.  Topics discussed at the conference included spectral theory, operator theory, optimization, numerical analysis, ordinary and partial differential equations, dynamical systems, control theory, probability, and statistics.  These proceedings aim to foster and develop further growth in all areas of applied mathematics.

  10. Old Habits Die Hard: An Uphill Struggle against Rules without Reason in Mathematics Teacher Education

    Science.gov (United States)

    O'Meara, Niamh; Fitzmaurice, Olivia; Johnson, Patrick

    2017-01-01

    Mathematics teacher educators in the University of Limerick became aware of a lack of conceptual understanding of key mathematics concepts of prospective secondary mathematics teachers through observation on teaching placement and in pedagogy lectures. A pilot study to enhance the conceptual understanding of prospective teachers was carried out…

  11. Design of capability measurement instruments pedagogic content knowledge (PCK) for prospective mathematics teachers

    Science.gov (United States)

    Aminah, N.; Wahyuni, I.

    2018-05-01

    The purpose of this study is to find out how the process of designing a tool of measurement Pedagogical Content Knowledge (PCK) capabilities, especially for prospective mathematics teachers are valid and practical. The design study of this measurement appliance uses modified Plomp development step, which consists of (1) initial assessment stage, (2) design stage at this stage, the researcher designs the measuring grille of PCK capability, (3) realization stage that is making measurement tool ability of PCK, (4) test phase, evaluation, and revision that is testing validation of measurement tools conducted by experts. Based on the results obtained that the design of PCK capability measurement tool is valid as indicated by the assessment of expert validator, and the design of PCK capability measurement tool, shown based on the assessment of teachers and lecturers as users of states strongly agree the design of PCK measurement tools can be used.

  12. Fundamentals of linear systems for physical scientists and engineers

    CERN Document Server

    Puri, N N

    2009-01-01

    Thanks to the advent of inexpensive computing, it is possible to analyze, compute, and develop results that were unthinkable in the '60s. Control systems, telecommunications, robotics, speech, vision, and digital signal processing are but a few examples of computing applications. While there are many excellent resources available that focus on one or two topics, few books cover most of the mathematical techniques required for a broader range of applications. Fundamentals of Linear Systems for Physical Scientists and Engineers is such a resource. The book draws from diverse areas of engineering and the physical sciences to cover the fundamentals of linear systems. Assuming no prior knowledge of complex mathematics on the part of the reader, the author uses his nearly 50 years of teaching experience to address all of the necessary mathematical techniques. Original proofs, hundreds of examples, and proven theorems illustrate and clarify the material. An extensive table provides Lyapunov functions for differentia...

  13. An Exploration of the Preparation and Organization of Teaching Practice Exercise to Prospective Science and Mathematics Teachers toward Improving Teaching Profession at Morogoro Teachers' College

    Science.gov (United States)

    Mungure, Daudi Mika

    2016-01-01

    This paper explored the preparation and organization of teaching practice exercise to prospective science and mathematics teachers in Tanzania teachers college specifically Morogoro Teachers' College toward improving teaching profession. Due to the challenges stated by different scholars on preparation and organization of teaching practice…

  14. Mathematical tools for physicists

    International Nuclear Information System (INIS)

    Trigg, G.L.

    2005-01-01

    Mathematical Tools for Physisists is a unique collection of 18 review articles, each one written by a renowned expert of its field. Their professional style will be beneficial for advanced students as well as for the scientist at work. The first may find a comprehensive introduction while the latter use it as a quick reference. Great attention was paid to ensuring fast access to the information, and each carefully reviewed article includes a glossary of terms and a guide to further reading. The contributions range from fundamental methods right up to the latest applications, including: - Algebraic Methods - Analytic Methods - Fourier and Other Mathematical Transforms - Fractal Geometry - Geometrical Methods - Green's Functions - Group Theory - Mathematical Modeling - Monte Carlo Methods - Numerical Methods - Perturbation Methods - Quantum Computation - Quantum Logic - Special Functions - Stochastic Processes - Symmetries and Conservation Laws - Topology - Variational Methods. (orig.)

  15. Kristian Birkeland the first space scientist

    CERN Document Server

    Egeland, Alv

    2005-01-01

    At the beginning of the 20th century Kristian Birkeland (1867-1917), a Norwegian scientist of insatiable curiosity, addressed questions that had vexed European scientists for centuries. Why do the northern lights appear overhead when the Earth’s magnetic field is disturbed? How are magnetic storms connected to disturbances on the Sun? To answer these questions Birkeland interpreted his advance laboratory simulations and daring campaigns in the Arctic wilderness in the light of Maxwell’s newly discovered laws of electricity and magnetism. Birkeland’s ideas were dismissed for decades, only to be vindicated when satellites could fly above the Earth’s atmosphere. Faced with the depleting stocks of Chilean saltpeter and the consequent prospect of mass starvation, Birkeland showed his practical side, inventing the first industrial scale method to extract nitrogen-based fertilizers from the air. Norsk Hydro, one of modern Norway’s largest industries, stands as a living tribute to his genius. Hoping to demo...

  16. Interactive conference of young scientists 2012. Book of abstracts

    International Nuclear Information System (INIS)

    2012-01-01

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in six sections: (1) Cellular metabolism, physiology, molecular biology and genetics; (2) Biotechnology and food technology; (3) Utilization of instrumental methods in the analysis of biologically important substances; (4) Organic, bioorganic, pharmaceutical chemistry, pharmacology and toxicology. (5) Ecology and environmental science; (6) Biophysics, mathematical modeling, biostatistics; (7) Open section for students; Relevant papers were included into the database INIS.

  17. Interactive conference of young scientists 2011. Book of abstracts

    International Nuclear Information System (INIS)

    2011-05-01

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in seven sections: (1) Cellular metabolism, physiology, molecular biology and genetics; (2) Biotechnology and food technology; (3) The use of instrumental methods in the analysis of biologically important substances; (4) Organic, bio-organic and pharmaceuticals chemistry, pharmacology; (5) Ecology and environmental science; (6) Biophysics, mathematic modelling, biostatistics; (7) Open section for students. Relevant papers were included into the database INIS.

  18. Learning the Work of Ambitious Mathematics Teaching

    Science.gov (United States)

    Anthony, Glenda; Hunter, Roberta

    2013-01-01

    "Learning the Work of Ambitious Mathematics" project was developed to support prospective teachers learn the work of ambitious mathematics teaching. Building on the work of U.S. researchers in the "Learning in, from, and for Teaching Practice" project, we investigate new ways to make practice studyable within the university…

  19. Energy-related doctoral scientists and engineers in the United States, 1975

    Energy Technology Data Exchange (ETDEWEB)

    1977-11-01

    The pursuit of a vigorous research and development program to provide renewable and other resources to meet U. S. energy needs in the next century is an important objective of President Carter's National Energy Plan. A highly educated and motivated pool of engineers and scientists must be available for energy research and development if this objective is to be achieved. This report provides, for the first time, information about the number and characteristics of doctoral-level engineers and scientists in primarily energy-related activities. These data for the year 1975 will become part of the data base for a program of continuing studies on the employment and utilization of all scientists and engineers involved in energy-related activities. Information is provided for employment in the following fields: mathematics; physics/astronomy; chemistry; Earth, Environment, and Marine Sciences; Engineering; Life Sciences; Psychology; Social Sciences; Arts and Humanities; and Education and Business.

  20. Scientists and Science Education: Working at the Interface

    Science.gov (United States)

    DeVore, E. K.

    2004-05-01

    "Are we alone?" "Where did we come from?" "What is our future?" These questions lie at the juncture of astronomy and biology: astrobiology. It is intrinsically interdisciplinary in its study of the origin, evolution and future of life on Earth and beyond. The fundamental concepts of origin and evolution--of both living and non-living systems--are central to astrobiology, and provide powerful themes for unifying science teaching, learning, and appreciation in classrooms and laboratories, museums and science centers, and homes. Research scientists play a key role in communicating the nature of science and joy of scientific discovery with the public. Communicating the scientific discoveries with the public brings together diverse professionals: research scientists, graduate and undergraduate faculty, educators, journalists, media producers, web designers, publishers and others. Working with these science communicators, research scientists share their discoveries through teaching, popular articles, lectures, broadcast and print media, electronic publication, and developing materials for formal and informal education such as textbooks, museum exhibits and documentary television. There's lots of activity in science communication. Yet, the NSF and NASA have both identified science education as needing improvement. The quality of schools and the preparation of teachers receive national attention via "No Child Left Behind" requirements. The number of students headed toward careers in science, technology, engineering and mathematics (STEM) is not sufficient to meet national needs. How can the research community make a difference? What role can research scientists fulfill in improving STEM education? This talk will discuss the interface between research scientists and science educators to explore effective roles for scientists in science education partnerships. Astronomy and astrobiology education and outreach projects, materials, and programs will provide the context for

  1. International Conference on Applied Mathematics and Informatics

    CERN Document Server

    Vasilieva, Olga

    2015-01-01

    This book highlights recent compelling research results and trends in various aspects of contemporary mathematics, emphasizing applications to real-world situations. The chapters present exciting new findings and developments in situations where mathematical rigor is combined with common sense. A multi-disciplinary approach, both within each chapter and in the volume as a whole, leads to practical insights that may result in a more synthetic understanding of specific global issues—as well as their possible solutions. The volume will be of interest not only to experts in mathematics, but also to graduate students, scientists, and practitioners from other fields including physics, biology, geology, management, and medicine.

  2. International Conference on Mathematics and Computing

    CERN Document Server

    Giri, Debasis; Saxena, P; Srivastava, P

    2014-01-01

    This book discusses recent developments and contemporary research in mathematics, statistics and their applications in computing. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world. The conference has emerged as a powerful forum, offering researchers a venue to discuss, interact and collaborate, and stimulating the advancement of mathematics and its applications in computer science. The book will allow aspiring researchers to update their knowledge of cryptography, algebra, frame theory, optimizations, stochastic processes, compressive sensing, functional analysis, complex variables, etc. Educating future consumers, users, producers, developers and researchers in mathematics and computing is a challenging task and essential to the development of modern society. Hence, mathematics and its applications in computer science are of vital importance to a broad range of communities, including mathematicians and computing p...

  3. The music of reason experience the beauty of mathematics through quotations

    CERN Document Server

    Pappas, Theoni

    2015-01-01

    Learn what Alice in Wonderland, Albert Einstein, William Shakespeare, Mae West, Plato and others have to say about mathematics. In this collection of quotations about mathematics and its connections to the imagination, humor, arts, history, nature, etc. comes from a wide variety of mathematicians, writers, scientists, artists and celebrities. With each chapter of quotations, Pappas has written a short insightful essay about mathematics, and has created graphics which enhance the thoughts and quotations.

  4. Interactive conference of young scientists 2012. Posters and presentations

    International Nuclear Information System (INIS)

    2012-01-01

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in six sections: (1) Cellular metabolism, physiology, molecular biology and genetics; (2) Biotechnology and food technology; (3) Utilization of instrumental methods in the analysis of biologically important substances; (4) Organic, bioorganic, pharmaceutical chemistry, pharmacology and toxicology. (5) Ecology and environmental science; (6) Biophysics, mathematical modeling, biostatistics; (7) Open section for students; (8) Open section). Relevant posters and presentations were included into the database INIS.

  5. International Conference on Research and Education in Mathematics

    CERN Document Server

    Srivastava, Hari; Mursaleen, M; Majid, Zanariah

    2016-01-01

    This book features selected papers from The Seventh International Conference on Research and Education in Mathematics that was held in Kuala Lumpur, Malaysia from 25 - 27th August 2015. With chapters devoted to the most recent discoveries in mathematics and statistics and serve as a platform for knowledge and information exchange between experts from academic and industrial sectors, it covers a wide range of topics, including numerical analysis, fluid mechanics, operation research, optimization, statistics and game theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists, and provides an excellent overview of the latest research in mathematical sciences.

  6. Mathematical paradigms of climate science

    CERN Document Server

    Cannarsa, Piermarco; Jones, Christopher; Portaluri, Alessandro

    2016-01-01

    This book, featuring a truly interdisciplinary approach, provides an overview of cutting-edge mathematical theories and techniques that promise to play a central role in climate science. It brings together some of the most interesting overview lectures given by the invited speakers at an important workshop held in Rome in 2013 as a part of MPE2013 (“Mathematics of Planet Earth 2013”). The aim of the workshop was to foster the interaction between climate scientists and mathematicians active in various fields linked to climate sciences, such as dynamical systems, partial differential equations, control theory, stochastic systems, and numerical analysis. Mathematics and statistics already play a central role in this area. Likewise, computer science must have a say in the efforts to simulate the Earth’s environment on the unprecedented scale of petabytes. In the context of such complexity, new mathematical tools are needed to organize and simplify the approach. The growing importance of data assimilation te...

  7. Engineering mathematics pocket book

    CERN Document Server

    Bird, John

    2008-01-01

    This compendium of essential formulae, definitions, tables and general information provides the mathematical information required by students, technicians, scientists and engineers in day-to-day engineering practice. A practical and versatile reference source, now in its fourth edition, the layout has been changed and the book has been streamlined to ensure the information is even more quickly and readily available - making it a handy companion on-site, in the office as well as for academic study. It also acts as a practical revision guide for those undertaking BTEC Nationals, Higher Nationals and NVQs, where engineering mathematics is an underpinning requirement of the course.All the essentials of engineering mathematics - from algebra, geometry and trigonometry to logic circuits, differential equations and probability - are covered, with clear and succinct explanations and illustrated with over 300 line drawings and 500 worked examples based in real-world application. The emphasis throughout the book is on ...

  8. Python for scientists

    CERN Document Server

    Stewart, John M

    2017-01-01

    Scientific Python is a significant public domain alternative to expensive proprietary software packages. This book teaches from scratch everything the working scientist needs to know using copious, downloadable, useful and adaptable code snippets. Readers will discover how easy it is to implement and test non-trivial mathematical algorithms and will be guided through the many freely available add-on modules. A range of examples, relevant to many different fields, illustrate the language's capabilities. The author also shows how to use pre-existing legacy code (usually in Fortran77) within the Python environment, thus avoiding the need to master the original code. In this new edition, several chapters have been re-written to reflect the IPython notebook style. With an extended index, an entirely new chapter discussing SymPy and a substantial increase in the number of code snippets, researchers and research students will be able to quickly acquire all the skills needed for using Python effectively.

  9. International Conference on Mathematical Sciences and Statistics 2013 : Selected Papers

    CERN Document Server

    Leong, Wah; Eshkuvatov, Zainidin

    2014-01-01

    This volume is devoted to the most recent discoveries in mathematics and statistics. It also serves as a platform for knowledge and information exchange between experts from industrial and academic sectors. The book covers a wide range of topics, including mathematical analyses, probability, statistics, algebra, geometry, mathematical physics, wave propagation, stochastic processes, ordinary and partial differential equations, boundary value problems, linear operators, cybernetics and number and functional theory. It is a valuable resource for pure and applied mathematicians, statisticians, engineers and scientists.

  10. K-12 Students' Perceptions of Scientists: Finding a valid measurement and exploring whether exposure to scientists makes an impact

    Science.gov (United States)

    Hillman, Susan J.; Bloodsworth, Kylie H.; Tilburg, Charles E.; Zeeman, Stephan I.; List, Henrietta E.

    2014-10-01

    This study was launched from a National Science Foundation GK-12 grant in which graduate fellows in Science, Technology, Engineering, and Mathematics (STEM) are placed in classrooms to engage K-12 students in STEM activities. The investigation explored whether the STEM Fellows' presence impacted the K-12 students' stereotypical image of a scientist. Since finding a valid instrument is critical, the study involved (1) determining the validity of the commonly administered Draw-A-Scientist Test (DAST) against a newly designed six-question survey and (2) using a combination of both instruments to determine what stereotypes are currently held by children. A pretest-posttest design was used on 485 students, grades 3-11, attending 6 different schools in suburban and rural Maine communities. A significant but low positive correlation was found between the DAST and the survey; therefore, it is imperative that the DAST not be used alone, but corroboration with interviews or survey questions should occur. Pretest results revealed that the children held common stereotypes of scientists, but these stereotypes were neither as extensive nor did they increase with the grade level as past research has indicated, suggesting that a shift has occurred with children having a broader concept of who a scientist can be. Finally, the presence of an STEM Fellow corresponded with decreased stereotypes in middle school and high school, but no change in elementary age children. More research is needed to determine whether this reflects resiliency in elementary children's perceptions or limitations in either drawing or in writing out their responses.

  11. A synergistic effort among geoscience, physics, computer science and mathematics at Hunter College of CUNY as a Catalyst for educating Earth scientists.

    Science.gov (United States)

    Salmun, H.; Buonaiuto, F. S.

    2016-12-01

    The Catalyst Scholarship Program at Hunter College of The City University of New York (CUNY) was established with a four-year award from the National Science Foundation (NSF) to fund scholarships for academically talented but financially disadvantaged students majoring in four disciplines of science, technology, engineering and mathematics (STEM). Led by Earth scientists the Program awarded scholarships to students in their junior or senior years majoring in computer science, geosciences, mathematics and physics to create two cohorts of students that spent a total of four semesters in an interdisciplinary community. The program included mentoring of undergraduate students by faculty and graduate students (peer-mentoring), a sequence of three semesters of a one-credit seminar course and opportunities to engage in research activities, research seminars and other enriching academic experiences. Faculty and peer-mentoring were integrated into all parts of the scholarship activities. The one-credit seminar course, although designed to expose scholars to the diversity STEM disciplines and to highlight research options and careers in these disciplines, was thematically focused on geoscience, specifically on ocean and atmospheric science. The program resulted in increased retention rates relative to institutional averages. In this presentation we will discuss the process of establishing the program, from the original plans to its implementation, as well as the impact of this multidisciplinary approach to geoscience education at our institution and beyond. An overview of accomplishments, lessons learned and potential for best practices will be presented.

  12. Scientists in a Changed Institutional Environment: Subjective Adaptation and Social Responsibility Norms in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Gerber, T P; Ball, D Y

    2008-06-05

    How do scientists react when the institutional setting in which they conduct their work changes radically? How do long-standing norms regarding the social responsibility of scientists fare? What factors influence whether scientists embrace or reject the new institutions and norms? We examine these questions using data from a unique survey of 602 scientists in Russia, whose science system experienced a sustained crisis and sweeping changes in science institutions following the collapse of the Soviet Union. We develop measures of how respondents view financing based on grants and other institutional changes in the Russian science system, as well as measures of two norms regarding scientists social responsibility. We find that the majority of scientists have adapted, in the sense that they hold positive views of the new institutions, but a diversity of orientations remains. Social responsibility norms are common among Russian scientists, but far from universal. The main correlates of adaptation are age and current success at negotiating the new institutions, though prospective success, work context, and ethnicity have some of the hypothesized associations. As for social responsibility norms, the main source of variation is age: younger scientists are more likely to embrace individualistic rather than socially-oriented norms.

  13. International Conference on Applied Mathematics, Modeling and Computational Science & Annual meeting of the Canadian Applied and Industrial Mathematics

    CERN Document Server

    Bélair, Jacques; Kunze, Herb; Makarov, Roman; Melnik, Roderick; Spiteri, Raymond J

    2016-01-01

    Focusing on five main groups of interdisciplinary problems, this book covers a wide range of topics in mathematical modeling, computational science and applied mathematics. It presents a wealth of new results in the development of modeling theories and methods, advancing diverse areas of applications and promoting interdisciplinary interactions between mathematicians, scientists, engineers and representatives from other disciplines. The book offers a valuable source of methods, ideas, and tools developed for a variety of disciplines, including the natural and social sciences, medicine, engineering, and technology. Original results are presented on both the fundamental and applied level, accompanied by an ample number of real-world problems and examples emphasizing the interdisciplinary nature and universality of mathematical modeling, and providing an excellent outline of today’s challenges. Mathematical modeling, with applied and computational methods and tools, plays a fundamental role in modern science a...

  14. 2nd International Conference on Mathematics and Computing

    CERN Document Server

    Chowdhury, Dipanwita; Giri, Debasis

    2015-01-01

    This book discusses recent developments and contemporary research in mathematics, statistics and their applications in computing. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world. This is the second conference on mathematics and computing organized at Haldia Institute of Technology, India. The conference has emerged as a powerful forum, offering researchers a venue to discuss, interact and collaborate, and stimulating the advancement of mathematics and its applications in computer science. The book will allow aspiring researchers to update their knowledge of cryptography, algebra, frame theory, optimizations, stochastic processes, compressive sensing, functional analysis, complex variables, etc. Educating future consumers, users, producers, developers and researchers in mathematics and computing is a challenging task and essential to the development of modern society. Hence, mathematics and its applications in com...

  15. Birds and frogs in mathematics and physics

    Energy Technology Data Exchange (ETDEWEB)

    Dyson, Freeman J [Institute for Advanced Study, Princeton, NJ (United States)

    2010-11-15

    Some scientists are birds, others are frogs. Birds fly high in the air and survey broad vistas of mathematics out to the far horizon. They delight in concepts that unify our thinking and bring together diverse problems from different parts of the landscape. Frogs live in the mud below and see only the flowers that grow nearby. They delight in the details of particular objects, and they solve problems one at a time. A brief history of mathematics and its applications in physics is presented in this article. (from the history of physics)

  16. Birds and frogs in mathematics and physics

    International Nuclear Information System (INIS)

    Dyson, Freeman J

    2010-01-01

    Some scientists are birds, others are frogs. Birds fly high in the air and survey broad vistas of mathematics out to the far horizon. They delight in concepts that unify our thinking and bring together diverse problems from different parts of the landscape. Frogs live in the mud below and see only the flowers that grow nearby. They delight in the details of particular objects, and they solve problems one at a time. A brief history of mathematics and its applications in physics is presented in this article. (from the history of physics)

  17. Prospective and Current Secondary Mathematics Teachers' Criteria for Evaluating Mathematical Cognitive Technologies

    Science.gov (United States)

    Smith, Ryan C.; Shin, Dongjo; Kim, Somin

    2017-01-01

    As technology becomes more ubiquitous in the mathematics classroom, teachers are being asked to incorporate it into their lessons more than ever before. The amount of resources available online is staggering and teachers need to be able to analyse and identify resources that would be most appropriate and effective with their students. This study…

  18. The first Latin American workshop on professional skills for young female scientists

    Science.gov (United States)

    Ávila, A.; Meza-Montes, Lilia; Ponce-Dawson, Silvina

    2015-12-01

    To effectively build capacity for research and training in science, technology, engineering, and mathematics (STEM) across Latin America and the Caribbean, a gender perspective must be factored in. Working from an awareness of the gender situation as well as of the multiple personal challenges experienced due to gender disparity, a group of Latin American female scientists organized a workshop with the goal of empowering young female scientists and assessing the challenges they face. In this paper we summarize the outcomes of the workshop, highlighting the barriers that are common in the region. Among other aspects, the workshop stressed the need for resource platforms for finding technical and professional networks, jobs, and scholarships.

  19. International MultiConference of Engineers and Computer Scientists 2016

    CERN Document Server

    Kim, Haeng; Huang, Xu; Castillo, Oscar

    2017-01-01

    This volume contains selected revised and extended research articles written by prominent researchers who participated in the International MultiConference of Engineers and Computer Scientists 2016, held in Hong Kong, 16-18 March 2016. Topics covered include engineering physics, communications systems, control theory, automation, engineering mathematics, scientific computing, electrical engineering, and industrial applications. The book showcases the tremendous advances in engineering technologies and applications, and also serves as an excellent reference work for researchers and graduate students working on engineering technologies, physical sciences and their applications.

  20. Prospective Teachers' Understandings: Function and Composite Function.

    Science.gov (United States)

    Meel, David E.

    2003-01-01

    The current education reform efforts place greater emphasis on conceptual understanding and focus attention on teacher preparation, especially on the adequacy of teachers' mathematical knowledge of the material they will be teaching. This paper discusses the responses of 20 prospective elementary and special education mathematics specialists to…

  1. Improving the basic skills of teaching mathematics through learning with search-solve-create-share strategy

    Science.gov (United States)

    Rahayu, D. V.; Kusumah, Y. S.; Darhim

    2018-05-01

    This study examined to see the improvement of prospective teachers’ basic skills of teaching mathematics through search-solve-create-share learning strategy based on overall and Mathematical Prior Knowledge (MPK) and interaction of both. Quasi experiments with the design of this experimental-non-equivalent control group design involved 67 students at the mathematics program of STKIP Garut. The instrument used in this study included pre-test and post-test. The result of this study showed that: (1) The improvement and achievement of the basic skills of teaching mathematics of the prospective teachers who get the learning of search-solve-create-share strategy is better than the improvement and achievement of the prospective teachers who get the conventional learning as a whole and based on MPK; (2) There is no interaction between the learning used and MPK on improving and achieving basic skills of teaching mathematics.

  2. Placental Volumetry by 2-D Sonography with a New Mathematical Formula: Prospective Study on the Shell of a Spherical Sector Model.

    Science.gov (United States)

    Kozinszky, Zoltan; Surányi, Andrea; Péics, Hajnalka; Molnár, András; Pál, Attila

    2015-08-01

    The aim of this study was to determine the utility of a new mathematical model in volumetric assessment of the placenta using 2-D ultrasound. Placental volumetry was performed in a prospective cross-sectional survey by virtual organ computer-aided analysis (VOCAL) with the help of a shell-off method in 346 uncomplicated pregnancies according to STROBE (Strengthening the Reporting of Observational Studies in Epidemiology) guidelines. Furthermore, placental thickness, length and height were measured with the 2-D technique to estimate placental volume based on the mathematical formula for the volume of "the shell of the spherical sector." Fetal size was also assessed by 2-D sonography. The placental volumes measured by 2-D and 3-D techniques had a correlation of 0.86. In the first trimester, the correlation was 0.82, and later during pregnancy, it was 0.86. Placental volumetry using "the circle-shaped shell of the spherical sector" mathematical model with 2-D ultrasound technique may be introduced into everyday practice to screen for placental volume deviations associated with adverse pregnancy outcome. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  3. Improving Primary School Prospective Teachers' Understanding of the Mathematics Modeling Process

    Science.gov (United States)

    Bal, Aytgen Pinar; Doganay, Ahmet

    2014-01-01

    The development of mathematical thinking plays an important role on the solution of problems faced in daily life. Determining the relevant variables and necessary procedural steps in order to solve problems constitutes the essence of mathematical thinking. Mathematical modeling provides an opportunity for explaining thoughts in real life by making…

  4. The role of mathematical models in understanding pattern formation in developmental biology.

    Science.gov (United States)

    Umulis, David M; Othmer, Hans G

    2015-05-01

    In a Wall Street Journal article published on April 5, 2013, E. O. Wilson attempted to make the case that biologists do not really need to learn any mathematics-whenever they run into difficulty with numerical issues, they can find a technician (aka mathematician) to help them out of their difficulty. He formalizes this in Wilsons Principle No. 1: "It is far easier for scientists to acquire needed collaboration from mathematicians and statisticians than it is for mathematicians and statisticians to find scientists able to make use of their equations." This reflects a complete misunderstanding of the role of mathematics in all sciences throughout history. To Wilson, mathematics is mere number crunching, but as Galileo said long ago, "The laws of Nature are written in the language of mathematics[Formula: see text] the symbols are triangles, circles and other geometrical figures, without whose help it is impossible to comprehend a single word." Mathematics has moved beyond the geometry-based model of Galileo's time, and in a rebuttal to Wilson, E. Frenkel has pointed out the role of mathematics in synthesizing the general principles in science (Both point and counter-point are available in Wilson and Frenkel in Notices Am Math Soc 60(7):837-838, 2013). We will take this a step further and show how mathematics has been used to make new and experimentally verified discoveries in developmental biology and how mathematics is essential for understanding a problem that has puzzled experimentalists for decades-that of how organisms can scale in size. Mathematical analysis alone cannot "solve" these problems since the validation lies at the molecular level, but conversely, a growing number of questions in biology cannot be solved without mathematical analysis and modeling. Herein, we discuss a few examples of the productive intercourse between mathematics and biology.

  5. Modelling Mathematical Reasoning in Physics Education

    Science.gov (United States)

    Uhden, Olaf; Karam, Ricardo; Pietrocola, Maurício; Pospiech, Gesche

    2012-04-01

    Many findings from research as well as reports from teachers describe students' problem solving strategies as manipulation of formulas by rote. The resulting dissatisfaction with quantitative physical textbook problems seems to influence the attitude towards the role of mathematics in physics education in general. Mathematics is often seen as a tool for calculation which hinders a conceptual understanding of physical principles. However, the role of mathematics cannot be reduced to this technical aspect. Hence, instead of putting mathematics away we delve into the nature of physical science to reveal the strong conceptual relationship between mathematics and physics. Moreover, we suggest that, for both prospective teaching and further research, a focus on deeply exploring such interdependency can significantly improve the understanding of physics. To provide a suitable basis, we develop a new model which can be used for analysing different levels of mathematical reasoning within physics. It is also a guideline for shifting the attention from technical to structural mathematical skills while teaching physics. We demonstrate its applicability for analysing physical-mathematical reasoning processes with an example.

  6. "The Volunteer Monitor" Newsletter: A National Publication for Citizen Scientists (Invited)

    Science.gov (United States)

    Ely, E.

    2009-12-01

    Citizen scientists have many communication tools available, including listservs, blogs, websites, and online discussion groups. What is the role of traditional publications such as newsletters or journals in this new environment? This presentation will summarize lessons learned from the 20-year history of The Volunteer Monitor newsletter, a national publication that provides a networking and information-sharing forum for citizen scientists engaged in water quality monitoring. The presenter, who has been the editor of The Volunteer Monitor since 1990, will emphasize practical tips for editors or prospective editors. Topics will include defining the publication's mission and target audience, obtaining submissions, communicating with authors, and applying basic journalistic techniques to enhance the usefulness and readability of articles.

  7. 5th Conference on Advanced Mathematical and Computational Tools in Metrology

    CERN Document Server

    Cox, M G; Filipe, E; Pavese, F; Richter, D

    2001-01-01

    Advances in metrology depend on improvements in scientific and technical knowledge and in instrumentation quality, as well as on better use of advanced mathematical tools and development of new ones. In this volume, scientists from both the mathematical and the metrological fields exchange their experiences. Industrial sectors, such as instrumentation and software, will benefit from this exchange, since metrology has a high impact on the overall quality of industrial products, and applied mathematics is becoming more and more important in industrial processes.This book is of interest to people

  8. MATHEMATICS AND COMPUTERS IN SPORT - OVERVIEW

    Directory of Open Access Journals (Sweden)

    John Hammond

    2006-12-01

    Full Text Available MATHEMATICS AND COMPUTERS IN SPORT - OVERVIEW The first 17 papers in this (December issue of the Journal of Sports Science and Medicine are selected papers from the Eighth Australasian Conference on Mathematics and Computers in Sport, held in Queensland in July 2006. Of the first seven conferences, five were held at Bond University in Queensland, one at the University of Technology in Sydney during the year of the Sydney Olympics, and the last one was in New Zealand at Massey University. The emerging discipline of mathematics and computers in sport has developed under the auspices of the Australian and New Zealand Industrial and Applied Mathematics (ANZIAM Division of the Australian Mathematics Society through an interest group known as MathSport, bringing together sports scientists who are interested inmathematical and statistical modelling in sport, the use of computers in sport, the application of these to improve coaching and individual performance, and teaching that combines mathematics, computers and sport. This eighth conference in the series returned to Queensland but not at Bond University, because campus accommodation for conference participants was no longer available at that venue. Instead delegates gathered at the Greenmount Beach Resort, which has been used during the past decade for a number of Applied Mathematics Conferences. There were 33 papers presented during the 3 days, across topics that covered a variety of individual and team sports. Participants attended from the United Kingdom, France, Germany, India, New Zealand and Australia. These participants were drawn from those working in mainstream mathematics, statistics, computers science, sports science support, coaching and education.Professor Steve Clarke and Emeritus Professor Neville de Mestre have been to all eight conferences and this year delivered papers on Australian rules football and golf putting respectively. Tony Lewis, of the Duckworth-Lewis formula for

  9. Integrating Universal Design and Response to Intervention in Methods Courses for General Education Mathematics Teachers

    Science.gov (United States)

    Buchheister, Kelley; Jackson, Christa; Taylor, Cynthia E.

    2014-01-01

    Traditionally, teacher education programs have placed little emphasis on preparing mathematics teachers to work with students who struggle in mathematics. Therefore, it is crucial that mathematics teacher educators explicitly prepare prospective teachers to instruct students who struggle with mathematics by providing strategies and practices that…

  10. Handbook of exponential and related distributions for engineers and scientists

    CERN Document Server

    Pal, Nabendu; Lim, Wooi K

    2005-01-01

    The normal distribution is widely known and used by scientists and engineers. However, there are many cases when the normal distribution is not appropriate, due to the data being skewed. Rather than leaving you to search through journal articles, advanced theoretical monographs, or introductory texts for alternative distributions, the Handbook of Exponential and Related Distributions for Engineers and Scientists provides a concise, carefully selected presentation of the properties and principles of selected distributions that are most useful for application in the sciences and engineering.The book begins with all the basic mathematical and statistical background necessary to select the correct distribution to model real-world data sets. This includes inference, decision theory, and computational aspects including the popular Bootstrap method. The authors then examine four skewed distributions in detail: exponential, gamma, Weibull, and extreme value. For each one, they discuss general properties and applicabi...

  11. Journal of the Nigerian Association of Mathematical Physics ...

    African Journals Online (AJOL)

    This journal is aimed at any scientist who applies fairly rigorous mathematics to physics, chemistry, engineering or other sciences and also any mathematician ... Section Policies. Articles ... Browse By Category · Browse Alphabetically · Browse By Country · List All Titles · Free To Read Titles This Journal is Open Access.

  12. Applied data analysis and modeling for energy engineers and scientists

    CERN Document Server

    Reddy, T Agami

    2011-01-01

    ""Applied Data Analysis and Modeling for Energy Engineers and Scientists"" discusses mathematical models, data analysis, and decision analysis in modeling. The approach taken in this volume focuses on the modeling and analysis of thermal systems in an engineering environment, while also covering a number of other critical areas. Other material covered includes the tools that researchers and engineering professionals will need in order to explore different analysis methods, use critical assessment skills and reach sound engineering conclusions. The book also covers process and system design and

  13. Mathematical models for therapeutic approaches to control HIV disease transmission

    CERN Document Server

    Roy, Priti Kumar

    2015-01-01

    The book discusses different therapeutic approaches based on different mathematical models to control the HIV/AIDS disease transmission. It uses clinical data, collected from different cited sources, to formulate the deterministic as well as stochastic mathematical models of HIV/AIDS. It provides complementary approaches, from deterministic and stochastic points of view, to optimal control strategy with perfect drug adherence and also tries to seek viewpoints of the same issue from different angles with various mathematical models to computer simulations. The book presents essential methods and techniques for students who are interested in designing epidemiological models on HIV/AIDS. It also guides research scientists, working in the periphery of mathematical modeling, and helps them to explore a hypothetical method by examining its consequences in the form of a mathematical modelling and making some scientific predictions. The model equations, mathematical analysis and several numerical simulations that are...

  14. Student-Made Games to Learn the History of Mathematics

    Science.gov (United States)

    Huntley, Mary Ann; Flores, Alfinio

    2011-01-01

    In this article, the authors describe how prospective secondary mathematics teachers designed their own adaptations of popular board and computer games to learn the history of mathematics. They begin the article by describing some of the games students designed and used, and follow this with a discussion of factors for successful use of games in…

  15. Exploring Iconic Interpretation and Mathematics Teacher Development through Clinical Simulations

    Science.gov (United States)

    Dotger, Benjamin; Masingila, Joanna; Bearkland, Mary; Dotger, Sharon

    2015-01-01

    Field placements serve as the traditional "clinical" experience for prospective mathematics teachers to immerse themselves in the mathematical challenges of students. This article reports data from a different type of learning experience, that of a clinical simulation with a standardized individual. We begin with a brief background on…

  16. Applied Mathematics, Modelling and Computational Science

    CERN Document Server

    Kotsireas, Ilias; Makarov, Roman; Melnik, Roderick; Shodiev, Hasan

    2015-01-01

    The Applied Mathematics, Modelling, and Computational Science (AMMCS) conference aims to promote interdisciplinary research and collaboration. The contributions in this volume cover the latest research in mathematical and computational sciences, modeling, and simulation as well as their applications in natural and social sciences, engineering and technology, industry, and finance. The 2013 conference, the second in a series of AMMCS meetings, was held August 26–30 and organized in cooperation with AIMS and SIAM, with support from the Fields Institute in Toronto, and Wilfrid Laurier University. There were many young scientists at AMMCS-2013, both as presenters and as organizers. This proceedings contains refereed papers contributed by the participants of the AMMCS-2013 after the conference. This volume is suitable for researchers and graduate students, mathematicians and engineers, industrialists, and anyone who would like to delve into the interdisciplinary research of applied and computational mathematics ...

  17. A Community of Practice among Educators, Researchers and Scientists for Improving Science Teaching in Southern Mexico

    Science.gov (United States)

    Cisneros-Cohernour, Edith J.; Lopez-Avila, Maria T.; Barrera-Bustillos, Maria E.

    2007-01-01

    This paper presents findings of a project aimed to improve the quality of science education in Southeast Mexico by the creation of a community of practice among scientists, researchers and teachers, involved in the design, implementation and evaluation of a professional development program for mathematics, chemistry, biology and physics secondary…

  18. The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education.

    OpenAIRE

    Stoet, G; Geary, DC

    2018-01-01

    The underrepresentation of girls and women in science, technology, engineering, and mathematics (STEM) fields is a continual concern for social scientists and policymakers. Using an international database on adolescent achievement in science, mathematics, and reading ( N = 472,242), we showed that girls performed similarly to or better than boys in science in two of every three countries, and in nearly all countries, more girls appeared capable of college-level STEM study than had enrolled. P...

  19. 17th European Conference on Mathematics for Industry

    CERN Document Server

    Günther, Michael; Marheineke, Nicole

    2014-01-01

    This book contains the proceedings of the 17th European Conference on Mathematics for Industry, ECMI2012, held in Lund, Sweden, July 2012, at which ECMI celebrated its 25th anniversary. It covers mathematics in a wide range of applications and methods, from circuit and electromagnetic devices, environment, fibers, flow, medicine, robotics and automotive industry, further applications to methods and education. The book includes contributions from leading figures in business, science and academia who promote the application of mathematics to industry and emphasize industrial sectors that offer the most exciting opportunities. The contributions reinforce the role of mathematics as being a catalyst for innovation as well as an overarching resource for industry and business. The book features an accessible presentation of real-world problems in industry and finance, provides insight and tools for engineers and scientists which will help them to solve similar problems, and offers modeling and simulation techniques ...

  20. On the activities and perspective works of Soviet Scientist Committee for peace against nuclear hazard

    International Nuclear Information System (INIS)

    Velikhov, E.P.

    1986-01-01

    Activities of Soviet Scientists' Committee for peace against nuclear hazard established in May 1983 was considered. Committee efforts are directed at struggle for nuclear weapon destruction, for stopping of all kinds of its tests against disposition of nuclear waepon in space. Soviet scientist report on SDI says that such system may serve not only as defensive means but also as means of destruction of earth, air and other objects and represents the most serious danger. Together with american scientists the Committee investigated ecological consequencies of nuclear war which results strongly impressed all over the world. Attention is paid to prospects in the Committee work related to the development of nuclear weapon destribution procedures as well as procedures and means of controls for destruction and limitation of weapons

  1. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    Directory of Open Access Journals (Sweden)

    Jin-Qing Fang

    2013-01-01

    Full Text Available Nobelist TD Lee scientist cooperation network (TDLSCN and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scientist cooperation networks before. To demonstrate and explain this new finding, we propose a theoretical model for a nature scientist and his/her team innovation ability. The theoretical results are consistent with the empirical studies very well. This research demonstrates that the model has a certain universality and can be extended to estimate innovation ability for any nature scientist and his/her team. It is a better method for evaluating scientist innovation ability and his/her team for the academic profession and is of application potential.

  2. Mathematics in Junior and Senior High Schools of Japan: Present State and Prospects.

    Science.gov (United States)

    Miwa, Tatsuro

    1986-01-01

    The present status of mathematics education in Japanese schools is described, focusing on students and on ways to improve high school mathematics education. Data from the Second International Mathematics Study and a Japanese survey test are included, as well as information on student attitudes, improvement, and teaching methods. (MNS)

  3. Mathematical analysis and numerical methods for science and technology

    CERN Document Server

    Dautray, Robert

    These 6 volumes - the result of a 10 year collaboration between the authors, two of France's leading scientists and both distinguished international figures - compile the mathematical knowledge required by researchers in mechanics, physics, engineering, chemistry and other branches of application of mathematics for the theoretical and numerical resolution of physical models on computers. Since the publication in 1924 of the "Methoden der mathematischen Physik" by Courant and Hilbert, there has been no other comprehensive and up-to-date publication presenting the mathematical tools needed in applications of mathematics in directly implementable form. The advent of large computers has in the meantime revolutionised methods of computation and made this gap in the literature intolerable: the objective of the present work is to fill just this gap. Many phenomena in physical mathematics may be modeled by a system of partial differential equations in distributed systems: a model here means a set of equations, which ...

  4. Structural and Conceptual Interweaving of Mathematics Methods Coursework and Field Practica

    Science.gov (United States)

    Bahr, Damon L.; Monroe, Eula Ewing; Eggett, Dennis

    2014-01-01

    This paper describes a study of observed relationships between the design of a preservice elementary mathematics methods course with accompanying field practicum and changes in the extent to which participating prospective teachers identified themselves with the mathematics reform movement after becoming practicing teachers. The curriculum of the…

  5. Quantum field theory I: Basics in mathematics and physics. A bridge between mathematicians and physicists

    International Nuclear Information System (INIS)

    Zeidler, Eberhard

    2009-01-01

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics. (orig.)

  6. Quantum field theory I: Basics in mathematics and physics. A bridge between mathematicians and physicists

    Energy Technology Data Exchange (ETDEWEB)

    Zeidler, Eberhard [Max-Planck-Institut fuer Mathematik in den Naturwissenschaften, Leipzig (Germany)

    2009-07-01

    This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics. (orig.)

  7. Mathematical Methods for Engineers and Scientists 2 Vector Analysis, Ordinary Differential Equations and Laplace Transforms

    CERN Document Server

    Tang, Kwong-Tin

    2007-01-01

    Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student-oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.

  8. Mathematical Methods for Engineers and Scientists 3 Fourier Analysis, Partial Differential Equations and Variational Methods

    CERN Document Server

    Tang, Kwong-Tin

    2007-01-01

    Pedagogical insights gained through 30 years of teaching applied mathematics led the author to write this set of student oriented books. Topics such as complex analysis, matrix theory, vector and tensor analysis, Fourier analysis, integral transforms, ordinary and partial differential equations are presented in a discursive style that is readable and easy to follow. Numerous clearly stated, completely worked out examples together with carefully selected problem sets with answers are used to enhance students' understanding and manipulative skill. The goal is to make students comfortable and confident in using advanced mathematical tools in junior, senior, and beginning graduate courses.

  9. A Guided Tour of Mathematical Methods - 2nd Edition

    Science.gov (United States)

    Snieder, Roel

    2004-09-01

    Mathematical methods are essential tools for all physical scientists. This second edition provides a comprehensive tour of the mathematical knowledge and techniques that are needed by students in this area. In contrast to more traditional textbooks, all the material is presented in the form of problems. Within these problems the basic mathematical theory and its physical applications are well integrated. The mathematical insights that the student acquires are therefore driven by their physical insight. Topics that are covered include vector calculus, linear algebra, Fourier analysis, scale analysis, complex integration, Green's functions, normal modes, tensor calculus, and perturbation theory. The second edition contains new chapters on dimensional analysis, variational calculus, and the asymptotic evaluation of integrals. This book can be used by undergraduates, and lower-level graduate students in the physical sciences. It can serve as a stand-alone text, or as a source of problems and examples to complement other textbooks. All the material is presented in the form of problems Mathematical insights are gained by getting the reader to develop answers themselves Many applications of the mathematics are given

  10. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting

    Science.gov (United States)

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children’s stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander–Serving Institution. We examined the reliability and validity of the survey, and characterized students’ comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. PMID:26338318

  11. Quality in mathematics teachers training syllabuses

    OpenAIRE

    Rico, Luis; Gil, Francisco; Moreno, María Francisca; Romero, Isabel; González, María José; Gómez, Pedro; Lupiáñez, José Luis

    2004-01-01

    The purpose of this study is to design instruments to measure the quality of prospective mathematics teachers training plans, within the Spanish context. We conceive the quality of a syllabus as a multidimensional concept that can be articulated by means of dimensions and competences.

  12. A Special Assignment from NASA: Understanding Earth's Atmosphere through the Integration of Science and Mathematics

    Science.gov (United States)

    Fox, Justine E.; Glen, Nicole J.

    2012-01-01

    Have your students ever wondered what NASA scientists do? Have they asked you what their science and mathematics lessons have to do with the real world? This unit about Earth's atmosphere can help to answer both of those questions. The unit described here showcases "content specific integration" of science and mathematics in that the lessons meet…

  13. SunBlock '99: Young Scientists Investigate the Sun

    Science.gov (United States)

    Walsh, R. W.; Pike, C. D.; Mason, H.; Young, P.; Ireland, J.; Galsgaard, K.

    1999-10-01

    SunBlock `99 is a Web-based Public Understanding of Science and educational project which seeks to present the very latest solar research as seen through the eyes of young British scientists. These ``solar guides'' discuss not only their scientific interests, but also their extra-curricular activities and the reasons they chose scientific careers; in other words the human face of scientific research. The SunBlock '99 pages gather a range of solar images and movies from current solar space observatories and discuss the underlying physics and its relationship to the school curriculum. The instructional level is pitched at UK secondary school children (aged 13-16 years). It is intended that the material should not only provide a visually appealing introduction to the study of the Sun, but that it should help bridge the often wide gap between classroom science lessons and the research scientist `out in the field'. SunBlock '99 is managed by a team from the Rutherford Appleton Laboratory and the Universities of St Andrews and Cambridge, together with educational consultants. The production has, in part, been sponsored by PPARC and the Millennium Mathematics Project. Web site addresss: http://www.sunblock99.org.uk

  14. The Oratorical Scientist: A Guide for Speechcraft and Presentation for Scientists

    Science.gov (United States)

    Lau, G. E.

    2015-12-01

    Public speaking organizations are highly valuable for individuals seeking to improve their skills in speech development and delivery. The methodology of such groups usually focuses on repetitive, guided practice. Toastmasters International, for instance, uses a curriculum based on topical manuals that guide their members through some number of prepared speeches with specific goals for each speech. I have similarly developed a public speaking manual for scientists with the intention of guiding scientists through the development and presentation of speeches that will help them hone their abilities as public speakers. I call this guide The Oratorical Scientist. The Oratorical Scientist will be a free, digital publication that is meant to guide scientists through five specific types of speech that the scientist may be called upon to deliver during their career. These five speeches are: The Coffee Talk, The Educational Talk, Research Talks for General Science Audiences, Research Talks for Specific Subdiscipline Audiences, and Taking the Big Stage (talks for public engagement). Each section of the manual focuses on speech development, rehearsal, and presentation for each of these specific types of speech. The curriculum was developed primarily from my personal experiences in public engagement. Individuals who use the manual may deliver their prepared speeches to groups of their peers (e.g. within their research group) or through video sharing websites like Youtube and Vimeo. Speeches that are broadcast online can then be followed and shared through social media networks (e.g. #OratoricalScientist), allowing a larger audience to evaluate the speech and to provide criticism. I will present The Oratorical Scientist, a guide for scientists to become better public speakers. The process of guided repetitive practice of scientific talks will improve the speaking capabilities of scientists, in turn benefitting science communication and public engagement.

  15. The importance of Pappus for the development of mathematics

    Science.gov (United States)

    Wanner, Gerhard

    2012-09-01

    The author came from Numerical Geometric Integration (see [1], in collaboration with Christian Lubich and Ernst Hairer) to Geometry, on which he had the occasion to write, in collaboration with Alexander Ostermann, a recent text-book [2]. During this work he realized more and more the importance of Pappus. Pappus, who lived about 300 A. D. in Alexandria, was the last of the great Greek mathematicians. His Collection [3] was one of the very rare documents on later Greek mathematical achievements which had survived the long centuries of darkness, before mathematical research had again been taken up by the Arabs and the Renaissance scientist. As a consequence, his influence on today's mathematics is enormous. This talk attempts to give some examples.

  16. International Conference Organized on the Occasion of the Silver Jubilee of the Indian Society of Industrial and Applied Mathematics (ISIAM)

    CERN Document Server

    Lozi, René; Siddiqi, Abul

    2017-01-01

    The book discusses essential topics in industrial and applied mathematics such as image processing with a special focus on medical imaging, biometrics and tomography. Applications of mathematical concepts to areas like national security, homeland security and law enforcement, enterprise and e-government services, personal information and business transactions, and brain-like computers are also highlighted. These contributions – all prepared by respected academicians, scientists and researchers from across the globe – are based on papers presented at the international conference organized on the occasion of the Silver Jubilee of the Indian Society of Industrial and Applied Mathematics (ISIAM) held from 29 to 31 January 2016 at Sharda University, Greater Noida, India. The book will help young scientists and engineers grasp systematic developments in those areas of mathematics that are essential to properly understand challenging contemporary problems.

  17. Teacher-Scientist-Communicator-Learner Partnerships: Reimagining Scientists in the Classroom.

    Science.gov (United States)

    Noel-Storr, Jacob; Terwilliger, Michael; InsightSTEM Teacher-Scientist-Communicator-Learner Partnerships Team

    2016-01-01

    We present results of our work to reimagine Teacher-Scientist partnerships to improve relationships and outcomes. We describe our work in implementing Teacher-Scientist partnerships that are expanded to include a communicator, and the learners themselves, as genuine members of the partnership. Often times in Teacher-Scientist partnerships, the scientist can often become more easily described as a special guest into the classroom, rather than a genuine partner in the learning experience. We design programs that take the expertise of the teacher and the scientist fully into account to develop practical and meaningful partnerships, that are further enhanced by using an expert in communications to develop rich experiences for and with the learners. The communications expert may be from a broad base of backgrounds depending on the needs and desires of the partners -- the communicators include, for example: public speaking gurus; journalists; web and graphic designers; and American Sign Language interpreters. Our partnership programs provide online support and professional development for all parties. Outcomes of the program are evaluated in terms of not only learning outcomes for the students, but also attitude, behavior, and relationship outcomes for the teachers, scientists, communicators and learners alike.

  18. Constructing Contracts: Making Discrete Mathematics Relevant to Beginning Programmers

    Science.gov (United States)

    Gegg-Harrison, Timothy S.

    2005-01-01

    Although computer scientists understand the importance of discrete mathematics to the foundations of their field, computer science (CS) students do not always see the relevance. Thus, it is important to find a way to show students its relevance. The concept of program correctness is generally taught as an activity independent of the programming…

  19. Mathematical modeling and optimization of complex structures

    CERN Document Server

    Repin, Sergey; Tuovinen, Tero

    2016-01-01

    This volume contains selected papers in three closely related areas: mathematical modeling in mechanics, numerical analysis, and optimization methods. The papers are based upon talks presented  on the International Conference for Mathematical Modeling and Optimization in Mechanics, held in Jyväskylä, Finland, March 6-7, 2014 dedicated to Prof. N. Banichuk on the occasion of his 70th birthday. The articles are written by well-known scientists working in computational mechanics and in optimization of complicated technical models. Also, the volume contains papers discussing the historical development, the state of the art, new ideas, and open problems arising in  modern continuum mechanics and applied optimization problems. Several papers are concerned with mathematical problems in numerical analysis, which are also closely related to important mechanical models. The main topics treated include:  * Computer simulation methods in mechanics, physics, and biology;  * Variational problems and methods; minimiz...

  20. Topics in the mathematical physics of E-infinity theory

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2006-01-01

    This is the fourth contribution in a series of papers aimed at directing the attention of the prospective E-infinity researcher to the most important mathematical background and sources needed for an easy understanding and successful application of this theory. The present paper is mainly concerned with the mathematical physics relevant to E-infinity theory with emphasis on super Yang-Mills theory and superstrings

  1. International MultiConference of Engineers and Computer Scientists 2015

    CERN Document Server

    Ao, Sio-Iong; Huang, Xu; Castillo, Oscar

    2016-01-01

    This volume comprises selected extended papers written by prominent researchers participating in the International MultiConference of Engineers and Computer Scientists 2015, Hong Kong, 18-20 March 2015. The conference served as a platform for discussion of frontier topics in theoretical and applied engineering and computer science, and subjects covered include communications systems, control theory and automation, bioinformatics, artificial intelligence, data mining, engineering mathematics, scientific computing, engineering physics, electrical engineering, and industrial applications. The book describes the state-of-the-art in engineering technologies and computer science and its applications, and will serve as an excellent reference for industrial and academic researchers and graduate students working in these fields.

  2. Learning Mathematics with Creative Drama

    Directory of Open Access Journals (Sweden)

    Baki Şahin

    2018-04-01

    Full Text Available In this study, a mathematics activity that used creative drama method to teach the fifth grade standard “Expresses a position with respect to another point using direction and unit” under geometry and measurement was implemented. Twenty students attending the fifth grade of a public school participated in the study. The lesson plan involved four activities in warm-up, role-play, and evaluation stages. Activities include processes that will ensure active participation of students. The activity lasted two lesson hours. Two prospective mathematics teachers and a mathematics teacher were available in the class during the activity to observe student participation and reactions. Additionally, 10 students were interviewed to learn their views about the lesson. Comments of the observers and the responses of the students to the interview questions indicate that the lesson was successful.

  3. An approach critical in mathematics education: Opportunities and interaction theory-practice-through critical mathematics education

    Directory of Open Access Journals (Sweden)

    Itamar Miranda da Silva

    2011-06-01

    Full Text Available This paper discusses the possibilities of articulation of theory-and-practice in the teaching, by means of critical mathematics education as a proposal for the teacher facing the challenges of daily life in the classroom. The discussion is based on the literature through which was estudied and analyzed several books, articles and dissertations on the subject, as well as our experiences and reflections resulting from the process of teacher education we experienced. From the readings and analysis was possible to construct a teaching proposal that suggests to address critical mathematics education as an alternative link between theory and practice and to assign to the teaching of mathematics a greater dynamism, with the prospect of developing knowledge and pedagogical practices that contribute to a broader training, which prepares for citizenship and for being critical students and teachers in the training process. Conjectures were raised about possible contributions of critical mathematics education as a differentiated alternative as opposed to reproductivist teaching. We believe therefore that this article could help with the reflections on the importance of mathematics education in teacher education which enables the realization that beyond disciplinary knowledge (content, are necessary pedagogical knowledge, curriculum and experiential to address the problems that relate to the teaching of mathematics

  4. Using drawings to bridge the transition from student to future teacher of mathematics

    Directory of Open Access Journals (Sweden)

    Ji-Eun Lee

    2014-03-01

    Full Text Available This study examines a group of prospective teachers’ reflections upon the way they were taught (Set 1 and the way they want to teach (Set 2 through drawings which respectively describe their past learning experiences as students and their future plans as teachers. The purpose of this study is to identify: (a the emerging themes that appear in each set of drawing data, (b the possible factors that influence prospective teachers’ drawings, and (c the implications for mathematics teacher educators. Overall, prospective teachers showed predominantly negative or mixed feelings about their past experiences as mathematics students. In response to their own past negative experiences and struggles, the prospective teachers tended to highlight emotionally supportive classroom environment and versatile instructional teaching strategies in their future plans. This study suggests that this activity of reflecting past experience and planning future teaching assimilates prospective teachers’ identities as math students and math teachers and provides a window into the thinking of others.

  5. Using Drawings to Bridge the Transition from Student to Future Teacher of Mathematics

    Directory of Open Access Journals (Sweden)

    Ji-Eun LEE

    2014-03-01

    Full Text Available This study examines a group of prospective teachers’ reflections upon the way they were taught (Set 1 and the way they want to teach (Set 2 through drawings which respectively describe their past learning experiences as students and their future plans as teachers. The purpose of this study is to identify: (a the emerging themes that appear in each set of drawing data, (b the possible factors that influence prospective teachers’ drawings, and (c the implications for mathematics teacher educators. Overall, prospective teachers showed predominantly negative or mixed feelings about their past experiences as mathematics students. In response to their own past negative experiences and struggles, the prospective teachers tended to highlight emotionally supportive classroom environment and versatile instructional teaching strategies in their future plans. This study suggests that this activity of reflecting past experience and planning future teaching assimilates prospective teachers’ identities as math students and math teachers and provides a window into the thinking of others.

  6. Mathematical and statistical applications in life sciences and engineering

    CERN Document Server

    Adhikari, Mahima; Chaubey, Yogendra

    2017-01-01

    The book includes articles from eminent international scientists discussing a wide spectrum of topics of current importance in mathematics and statistics and their applications. It presents state-of-the-art material along with a clear and detailed review of the relevant topics and issues concerned. The topics discussed include message transmission, colouring problem, control of stochastic structures and information dynamics, image denoising, life testing and reliability, survival and frailty models, analysis of drought periods, prediction of genomic profiles, competing risks, environmental applications and chronic disease control. It is a valuable resource for researchers and practitioners in the relevant areas of mathematics and statistics.

  7. Ten mathematical essays on approximation in analysis and topology

    CERN Document Server

    López-Gómez, J; Ruiz del Portal, F R

    2005-01-01

    This book collects 10 mathematical essays on approximation in Analysis and Topology by some of the most influent mathematicians of the last third of the 20th Century. Besides the papers contain the very ultimate results in each of their respective fields, many of them also include a series of historical remarks about the state of mathematics at the time they found their most celebrated results, as well as some of their personal circumstances originating them, which makes particularly attractive the book for all scientist interested in these fields, from beginners to experts. These gem pieces

  8. PREVEDA 2013: Interactive conference of young scientists 2013. Book of abstracts

    International Nuclear Information System (INIS)

    2013-01-01

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in six sections: (1) Biophysics, mathematic modelling, biostatistics; (2) Biotechnology and food technology; (3) Cellular metabolism, physiology, molecular biology and genetics; (4) Biotechnology and food technology; (5) Cellular metabolism, physiology, molecular biology and genetics (clinical studies); (6) Ecology and environmental science; (7) Organic, bioorganic, pharmaceutical chemistry, pharmacology; (7) Open section; (8) Open section for students; (9) Utilization of instrumental methods in the analysis of biologically important substances. Relevant papers were included into the database INIS.

  9. Scientists: Engage the Public!

    OpenAIRE

    Shugart, Erika C.; Racaniello, Vincent R.

    2015-01-01

    ABSTRACT Scientists must communicate about science with public audiences to promote an understanding of complex issues that we face in our technologically advanced society. Some scientists may be concerned about a social stigma or ?Sagan effect? associated with participating in public communication. Recent research in the social sciences indicates that public communication by scientists is not a niche activity but is widely done and can be beneficial to a scientist?s career. There are a varie...

  10. Can Pedagogical Concerns Eclipse Mathematical Knowledge?

    Science.gov (United States)

    Creager, Mark A.; Jacobson, Erik; Aydeniz, Fetiye

    2016-01-01

    Mathematical knowledge for teaching (MKT) is often thought of as a transformed, mutually-influencing mixture of content and pedagogy. However when individuals' MKT does not integrate content and pedagogy, one type of knowledge can supersede the other, sometimes unconsciously. We exemplify this with Emma, a prospective elementary teacher, whose…

  11. Developing and Sustaining a Career as a Transdisciplinary Nurse Scientist.

    Science.gov (United States)

    Hickey, Kathleen T

    2018-01-01

    The purpose of this article is to provide an overview of strategies to build and sustain a career as a nurse scientist. This article examines how to integrate technologies and precision approaches into clinical practice, research, and education of the next generation of nursing scholars. This article presents information for shaping a sustainable transdisciplinary career. Programs of research that utilize self-management to improve quality of life are discussed throughout the article. The ongoing National Institute of Nursing Research-funded (R01 grant) iPhone Helping Evaluate Atrial Fibrillation Rhythm through Technology (iHEART) study is the first prospective, randomized controlled trial to evaluate whether electrocardiographic monitoring with the AliveCor™ device in the real-world setting will improve the time to detection and treatment of recurrent atrial fibrillation over a 6-month period as compared to usual cardiac care. Opportunities to sustain a career as a nurse scientist and build programs of transdisciplinary research are identified. These opportunities are focused within the area of research and precision medicine. Nurse scientists have the potential and ability to shape their careers and become essential members of transdisciplinary partnerships. Exposure to clinical research, expert mentorship, and diverse training opportunities in different areas are essential to ensure that contributions to nursing science are visible through publications and presentations as well as through securing grant funding to develop and maintain programs of research. Transcending boundaries and different disciplines, nurses are essential members of many diverse teams. Nurse scientists are strengthening research approaches, clinical care, and communication and improving health outcomes while also building and shaping the next generation of nurse scientists. © 2017 Sigma Theta Tau International.

  12. The Conceptualization of the Mathematical Modelling Process in Technology-Aided Environment

    Science.gov (United States)

    Hidiroglu, Çaglar Naci; Güzel, Esra Bukova

    2017-01-01

    The aim of the study is to conceptualize the technology-aided mathematical modelling process in the frame of cognitive modelling perspective. The grounded theory approach was adopted in the study. The research was conducted with seven groups consisting of nineteen prospective mathematics teachers. The data were collected from the video records of…

  13. Using Long-Distance Scientist Involvement to Enhance NASA Volunteer Network Educational Activities

    Science.gov (United States)

    Ferrari, K.

    2012-12-01

    Since 1999, the NASA/JPL Solar System Ambassadors (SSA) and Solar System Educators (SSEP) programs have used specially-trained volunteers to expand education and public outreach beyond the immediate NASA center regions. Integrating nationwide volunteers in these highly effective programs has helped optimize agency funding set aside for education. Since these volunteers were trained by NASA scientists and engineers, they acted as "stand-ins" for the mission team members in communities across the country. Through the efforts of these enthusiastic volunteers, students gained an increased awareness of NASA's space exploration missions through Solar System Ambassador classroom visits, and teachers across the country became familiarized with NASA's STEM (Science, Technology, Engineering and Mathematics) educational materials through Solar System Educator workshops; however the scientist was still distant. In 2003, NASA started the Digital Learning Network (DLN) to bring scientists into the classroom via videoconferencing. The first equipment was expensive and only schools that could afford the expenditure were able to benefit; however, recent advancements in software allow classrooms to connect to the DLN via personal computers and an internet connection. Through collaboration with the DLN at NASA's Jet Propulsion Laboratory and the Goddard Spaceflight Center, Solar System Ambassadors and Solar System Educators in remote parts of the country are able to bring scientists into their classroom visits or workshops as guest speakers. The goals of this collaboration are to provide special elements to the volunteers' event, allow scientists opportunities for education involvement with minimal effort, acquaint teachers with DLN services and enrich student's classroom learning experience.;

  14. A Teacher Research Experience: Immersion Into the World of Practicing Ocean Scientists

    Science.gov (United States)

    Payne, D. L.

    2006-12-01

    Professional development standards for science teachers encourage opportunities for intellectual professional growth, including participation in scientific research (NRC, 1996). Strategies to encourage the professional growth of teachers of mathematics and science include partnerships with scientists and immersion into the world of scientists and mathematicians (Loucks-Horsley, Love, Stiles, Mundry, & Hewson, 2003). A teacher research experience (TRE) can often offer a sustained relationship with scientists over a prolonged period of time. Research experiences are not a new method of professional development (Dubner, 2000; Fraser-Abder & Leonhardt, 1996; Melear, 1999; Raphael et al., 1999). Scientists serve as role models and "coaches" for teachers a practice which has been shown to dramatically increase the transfer of knowledge, skill and application to the classroom (Joyce & Showers, 2002). This study investigated if and how secondary teachers' beliefs about science, scientific research and science teaching changed as a result of participation in a TRE. Six secondary science teachers participated in a 12 day research cruise. Teachers worked with scientists, the ships' crew and other teachers conducting research and designing lessons for use in the classroom. Surveys were administered pre and post TRE to teachers and their students. Additionally, teachers were interviewed before, during and after the research experience, and following classroom observations before and after the research cruise. Teacher journals and emails, completed during the research cruise, were also analyzed. Results of the study highlight the use of authentic research experiences to retain and renew science teachers, the impact of the teachers' experience on students, and the successes and challenges of implementing a TRE during the academic year.

  15. Connecting Biology and Mathematics: First Prepare the Teachers

    Science.gov (United States)

    2010-01-01

    Developing the connection between biology and mathematics is one of the most important ways to shift the paradigms of both established science disciplines. However, adding some mathematic content to biology or biology content to mathematics is not enough but must be accompanied by development of suitable pedagogical models. I propose a model of pedagogical mathematical biological content knowledge as a feasible starting point for connecting biology and mathematics in schools and universities. The process of connecting these disciplines should start as early as possible in the educational process, in order to produce prepared minds that will be able to combine both disciplines at graduate and postgraduate levels of study. Because teachers are a crucial factor in introducing innovations in education, the first step toward such a goal should be the education of prospective and practicing elementary and secondary school teachers. PMID:20810951

  16. Connecting biology and mathematics: first prepare the teachers.

    Science.gov (United States)

    Sorgo, Andrej

    2010-01-01

    Developing the connection between biology and mathematics is one of the most important ways to shift the paradigms of both established science disciplines. However, adding some mathematic content to biology or biology content to mathematics is not enough but must be accompanied by development of suitable pedagogical models. I propose a model of pedagogical mathematical biological content knowledge as a feasible starting point for connecting biology and mathematics in schools and universities. The process of connecting these disciplines should start as early as possible in the educational process, in order to produce prepared minds that will be able to combine both disciplines at graduate and postgraduate levels of study. Because teachers are a crucial factor in introducing innovations in education, the first step toward such a goal should be the education of prospective and practicing elementary and secondary school teachers.

  17. Mathematical Practice as Sculpture of Utopia: Models, Ignorance, and the Emancipated Spectator

    Science.gov (United States)

    Appelbaum, Peter

    2012-01-01

    This article uses Ranciere's notion of the ignorant schoolmaster and McElheny's differentiation of artist's models from those of the architect and scientist to propose the reconceptualization of mathematics education as the support of emancipated spectators and sculptors of utopia.

  18. IMPROVEMENT OF MATHEMATICAL MODELS FOR ESTIMATION OF TRAIN DYNAMICS

    Directory of Open Access Journals (Sweden)

    L. V. Ursulyak

    2017-12-01

    Full Text Available Purpose. Using scientific publications the paper analyzes the mathematical models developed in Ukraine, CIS countries and abroad for theoretical studies of train dynamics and also shows the urgency of their further improvement. Methodology. Information base of the research was official full-text and abstract databases, scientific works of domestic and foreign scientists, professional periodicals, materials of scientific and practical conferences, methodological materials of ministries and departments. Analysis of publications on existing mathematical models used to solve a wide range of problems associated with the train dynamics study shows the expediency of their application. Findings. The results of these studies were used in: 1 design of new types of draft gears and air distributors; 2 development of methods for controlling the movement of conventional and connected trains; 3 creation of appropriate process flow diagrams; 4 development of energy-saving methods of train driving; 5 revision of the Construction Codes and Regulations (SNiP ΙΙ-39.76; 6 when selecting the parameters of the autonomous automatic control system, created in DNURT, for an auxiliary locomotive that is part of a connected train; 7 when creating computer simulators for the training of locomotive drivers; 8 assessment of the vehicle dynamic indices characterizing traffic safety. Scientists around the world conduct numerical experiments related to estimation of train dynamics using mathematical models that need to be constantly improved. Originality. The authors presented the main theoretical postulates that allowed them to develop the existing mathematical models for solving problems related to the train dynamics. The analysis of scientific articles published in Ukraine, CIS countries and abroad allows us to determine the most relevant areas of application of mathematical models. Practicalvalue. The practical value of the results obtained lies in the scientific validity

  19. An Earth System Scientist Network for Student and Scientist Partnerships

    Science.gov (United States)

    Ledley, T. S.

    2001-05-01

    Successful student and scientist partnerships require that there is a mutual benefit from the partnership. This means that the scientist needs to be able to see the advantage of having students work on his/her project, and the students and teachers need to see that the students contribute to the project and develop the skills in inquiry and the content knowledge in the geosciences that are desired. Through the Earth System Scientist Network (ESSN) for Student and Scientist Partnerships project we are working toward developing scientific research projects for the participation of high school students. When these research projects are developed they will be posted on the ESSN web site that will appear in the Digital Library for Earth System Education (DLESE). In DLESE teachers and students who are interested in participating in a research program will be able to examine the criteria for each project and select the one that matches their needs and situation. In this paper we will report on how the various ESSN research projects are currently being developed to assure that both the scientist and the students benefit from the partnership. The ESSN scientists are working with a team of scientists and educators to 1) completely define the research question that the students will be addressing, 2) determine what role the students will have in the project, 3) identify the data that the students and teachers will work with, 4) map out the scientific protocols that the students will follow, and 5) determine the background and support materials needed to facilitate students successfully participating in the project. Other issues that the team is addressing include 1) identifying the selection criteria for the schools, 2) identifying rewards and recognition for the students and teacher by the scientist, and 3) identifying issues in Earth system science, relevant to the scientists data, that the students and teachers could use as a guide help develop students investigative

  20. Role of mathematics in cancer research: attitudes and training of Japanese mathematicians.

    Science.gov (United States)

    Kudô, A

    1979-01-01

    An extensive survey of attitude towards scientific information of scientists in Japan was conducted in Japan. It was published in a technical report, and this survey is reviewed in this paper, with the hope that this will furnish findings important in working out the plan for promoting exploitation of mathematical talent in biomedical research. Findings are concordant with the impression of foreign visitors: (1) pure mathematicians tend to concentrate on mathematics only; (2) applied mathematics and statistics are heavily oriented toward industry; (3) mathematicians and pharmacologists are very different in their attitudes to scientific information. Based on the personal experience of the author, difficulties to be circumvented in utilizing aptitudes for mathematics and/or statistics in biomedical research are discussed. PMID:540605

  1. Role of mathematics in cancer research: attitudes and training of Japanese mathematicians.

    Science.gov (United States)

    Kudô, A

    1979-10-01

    An extensive survey of attitude towards scientific information of scientists in Japan was conducted in Japan. It was published in a technical report, and this survey is reviewed in this paper, with the hope that this will furnish findings important in working out the plan for promoting exploitation of mathematical talent in biomedical research. Findings are concordant with the impression of foreign visitors: (1) pure mathematicians tend to concentrate on mathematics only; (2) applied mathematics and statistics are heavily oriented toward industry; (3) mathematicians and pharmacologists are very different in their attitudes to scientific information. Based on the personal experience of the author, difficulties to be circumvented in utilizing aptitudes for mathematics and/or statistics in biomedical research are discussed.

  2. The golden section, secrets of the Egyptian civilization and harmony mathematics

    Energy Technology Data Exchange (ETDEWEB)

    Stakhov, Alexey [International Club of the Golden Section, 6 McCreary Trail, Bolton, Ont., L7E 2C8 (Canada)]. E-mail: goldenmuseum@rogers.com

    2006-10-15

    The main goal of the present article is to consider the harmony mathematics from the point of view of the sacral geometry and to show how it can be used in this field. We also consider some secrets of the Egyptian civilization that have relation to the golden section and platonic solids. Briefly, this is considered to be the main concepts involved in harmony mathematics and its application to the sacral geometry. (Religiousness of a scientist is in his enthusiastic worship for laws of harmony. Albert Einstein)

  3. The golden section, secrets of the Egyptian civilization and harmony mathematics

    International Nuclear Information System (INIS)

    Stakhov, Alexey

    2006-01-01

    The main goal of the present article is to consider the harmony mathematics from the point of view of the sacral geometry and to show how it can be used in this field. We also consider some secrets of the Egyptian civilization that have relation to the golden section and platonic solids. Briefly, this is considered to be the main concepts involved in harmony mathematics and its application to the sacral geometry. (Religiousness of a scientist is in his enthusiastic worship for laws of harmony. Albert Einstein)

  4. The motivation of lifelong mathematics learning

    Science.gov (United States)

    Hashim Ali, Siti Aishah

    2013-04-01

    As adults, we have always learned throughout our life, but this learning is informal. Now, more career-switchers and career-upgraders who are joining universities for further training are becoming the major group of adult learners. This current situation requires formal education in courses with controlled output. Hence, lifelong learning is seen as a necessity and an opportunity for these adult learners. One characteristic of adult education is that the learners tend to bring with them life experience from their past, especially when learning mathematics. Most of them associate mathematics with the school subjects and unable to recognize the mathematics in their daily practice as mathematics. They normally place a high value on learning mathematics because of its prominent role in their prospective careers, but their learning often requires overcoming personal experience and motivating themselves to learn mathematics again. This paper reports on the study conducted on a group of adult learners currently pursuing their study. The aim of this study is to explore (i) the motivation of the adult learners continuing their study; and (ii) the perception and motivation of these learners in learning mathematics. This paper will take this into account when we discuss learners' perception and motivation to learning mathematics, as interrelated phenomena. Finding from this study will provide helpful insights in understanding the learning process and adaption of adult learners to formal education.

  5. Mathematical handbook for scientists and engineers definitions, theorems, and formulas for reference and review

    CERN Document Server

    Korn, Granino A

    2000-01-01

    A reliable source of definitions, theorems, and formulas, this authoritative handbook provides convenient access to information from every area of mathematics. Coverage includes Fourier transforms, Z transforms, linear and nonlinear programming, calculus of variations, random-process theory, special functions, combinatorial analysis, numerical methods, game theory, and much more.

  6. Kristian Birkeland, The First Space Scientist

    Science.gov (United States)

    Egeland, A.; Burke, W. J.

    2005-05-01

    At the beginning of the 20th century Kristian Birkeland (1867-1917), a Norwegian scientist of insatiable curiosity, addressed questions that had vexed European scientists for centuries. Why do the northern lights appear overhead when the Earth's magnetic field is disturbed? How are magnetic storms connected to disturbances on the Sun? To answer these questions Birkeland interpreted his advance laboratory simulations and daring campaigns in the Arctic wilderness in the light of Maxwell's newly discovered laws of electricity and magnetism. Birkeland's ideas were dismissed for decades, only to be vindicated when satellites could fly above the Earth's atmosphere. Faced with the depleting stocks of Chilean saltpeter and the consequent prospect of mass starvation, Birkeland showed his practical side, inventing the first industrial scale method to extract nitrogen-based fertilizers from the air. Norsk Hydro, one of modern Norway's largest industries, stands as a living tribute to his genius. Hoping to demonstrate what we now call the solar wind, Birkeland moved to Egypt in 1913. Isolated from his friends by the Great War, Birkeland yearned to celebrate his 50th birthday in Norway. The only safe passage home, via the Far East, brought him to Tokyo where in the late spring of 1917 he passed away. Link: http://www.springeronline.com/sgw/cda/frontpage/0,11855,5-10100-22-39144987-0,00.html?changeHeader=true

  7. CASCADE-IMEI: A learning environment of realistic mathematics for student teachers in Indonesia

    NARCIS (Netherlands)

    Zulkardi, Z.; Nieveen, N.M.

    2001-01-01

    This paper reports on the second phase of a four-year study which aims to develop a learning environment that supports prospective mathematics teachers learning realistic mathematics education (RME) in teacher education in Indonesia. The results suggest that by giving student teachers experiences in

  8. Scientists as writers

    Science.gov (United States)

    Yore, Larry D.; Hand, Brian M.; Prain, Vaughan

    2002-09-01

    This study attempted to establish an image of a science writer based on a synthesis of writing theory, models, and research literature on academic writing in science and other disciplines and to contrast this image with an actual prototypical image of scientists as writers of science. The synthesis was used to develop a questionnaire to assess scientists' writing habits, beliefs, strategies, and perceptions about print-based language. The questionnaire was administered to 17 scientists from science and applied science departments of a large Midwestern land grant university. Each respondent was interviewed following the completion of the questionnaire with a custom-designed semistructured protocol to elaborate, probe, and extend their written responses. These data were analyzed in a stepwise fashion using the questionnaire responses to establish tentative assertions about the three major foci (type of writing done, criteria of good science writing, writing strategies used) and the interview responses to verify these assertions. Two illustrative cases (a very experienced, male physical scientist and a less experienced, female applied biological scientist) were used to highlight diversity in the sample. Generally, these 17 scientists are driven by the academy's priority of publishing their research results in refereed, peer-reviewed journals. They write their research reports in isolation or as a member of a large research team, target their writing to a few journals that they also read regularly, use writing in their teaching and scholarship to inform and persuade science students and other scientists, but do little border crossing into other discourse communities. The prototypical science writer found in this study did not match the image based on a synthesis of the writing literature in that these scientists perceived writing as knowledge telling not knowledge building, their metacognition of written discourse was tacit, and they used a narrow array of genre

  9. Stochastic modeling and mathematical statistics a text for statisticians and quantitative scientists

    CERN Document Server

    Samaniego, Francisco J

    2014-01-01

    ""Stochastic Modeling and Mathematical Statistics is a new and welcome addition to the corpus of undergraduate statistical textbooks in the market. The singular thing that struck me when I initially perused the book was its lucid and endearing conversational tone, which pervades the entire text. It radiated warmth. … In my course at the University of Michigan, I rely primarily on my own lecture notes and have used Rice as supplementary material. Having gone through this text, I am strongly inclined to add this to the supplementary list as well. I have little doubt that this book will be very s

  10. Scientists Shaping the Discussion

    Science.gov (United States)

    Abraham, J. A.; Weymann, R.; Mandia, S. A.; Ashley, M.

    2011-12-01

    Scientific studies which directly impact the larger society require an engagement between the scientists and the larger public. With respect to research on climate change, many third-party groups report on scientific findings and thereby serve as an intermediary between the scientist and the public. In many cases, the third-party reporting misinterprets the findings and conveys inaccurate information to the media and the public. To remedy this, many scientists are now taking a more active role in conveying their work directly to interested parties. In addition, some scientists are taking the further step of engaging with the general public to answer basic questions related to climate change - even on sub-topics which are unrelated to scientists' own research. Nevertheless, many scientists are reluctant to engage the general public or the media. The reasons for scientific reticence are varied but most commonly are related to fear of public engagement, concern about the time required to properly engage the public, or concerns about the impact to their professional reputations. However, for those scientists who are successful, these engagement activities provide many benefits. Scientists can increase the impact of their work, and they can help society make informed choices on significant issues, such as mitigating global warming. Here we provide some concrete steps that scientists can take to ensure that their public engagement is successful. These steps include: (1) cultivating relationships with reporters, (2) crafting clear, easy to understand messages that summarize their work, (3) relating science to everyday experiences, and (4) constructing arguments which appeal to a wide-ranging audience. With these steps, we show that scientists can efficiently deal with concerns that would otherwise inhibit their public engagement. Various resources will be provided that allow scientists to continue work on these key steps.

  11. ECNS '99 - Young scientists forum

    DEFF Research Database (Denmark)

    Ceretti, M.; Janssen, S.; McMorrow, D.F.

    2000-01-01

    The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups, they disc......The Young Scientists Forum is a new venture for ECNS and follows the established tradition of an active participation by young scientists in these conferences. At ECNS '99 the Young Scientists Forum brought together 30 young scientists from 13 European countries. In four working groups......, they discussed emerging scientific trends in their areas of expertise and the instrumentation required to meet the scientific challenges. The outcome was presented in the Young Scientists Panel on the final day of ECNS '99. This paper is a summary of the four working group reports prepared by the Group Conveners...

  12. Forensic scientists' conclusions: how readable are they for non-scientist report-users?

    Science.gov (United States)

    Howes, Loene M; Kirkbride, K Paul; Kelty, Sally F; Julian, Roberta; Kemp, Nenagh

    2013-09-10

    Scientists have an ethical responsibility to assist non-scientists to understand their findings and expert opinions before they are used as decision-aids within the criminal justice system. The communication of scientific expert opinion to non-scientist audiences (e.g., police, lawyers, and judges) through expert reports is an important but under-researched issue. Readability statistics were used to assess 111 conclusions from a proficiency test in forensic glass analysis. The conclusions were written using an average of 23 words per sentence, and approximately half of the conclusions were expressed using the active voice. At an average Flesch-Kincaid Grade level of university undergraduate (Grade 13), and Flesch Reading Ease score of difficult (42), the conclusions were written at a level suitable for people with some tertiary education in science, suggesting that the intended non-scientist readers would find them difficult to read. To further analyse the readability of conclusions, descriptive features of text were used: text structure; sentence structure; vocabulary; elaboration; and coherence and unity. Descriptive analysis supported the finding that texts were written at a level difficult for non-scientists to read. Specific aspects of conclusions that may pose difficulties for non-scientists were located. Suggestions are included to assist scientists to write conclusions with increased readability for non-scientist readers, while retaining scientific integrity. In the next stage of research, the readability of expert reports in their entirety is to be explored. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  13. How to Grow Project Scientists: A Systematic Approach to Developing Project Scientists

    Science.gov (United States)

    Kea, Howard

    2011-01-01

    The Project Manager is one of the key individuals that can determine the success or failure of a project. NASA is fully committed to the training and development of Project Managers across the agency to ensure that highly capable individuals are equipped with the competencies and experience to successfully lead a project. An equally critical position is that of the Project Scientist. The Project Scientist provides the scientific leadership necessary for the scientific success of a project by insuring that the mission meets or exceeds the scientific requirements. Traditionally, NASA Goddard project scientists were appointed and approved by the Center Science Director based on their knowledge, experience, and other qualifications. However the process to obtain the necessary knowledge, skills and abilities was not documented or done in a systematic way. NASA Goddard's current Science Director, Nicholas White saw the need to create a pipeline for developing new projects scientists, and appointed a team to develop a process for training potential project scientists. The team members were Dr. Harley Thronson, Chair, Dr. Howard Kea, Mr. Mark Goldman, DACUM facilitator and the late Dr. Michael VanSteenberg. The DACUM process, an occupational analysis and evaluation system, was used to produce a picture of the project scientist's duties, tasks, knowledge, and skills. The output resulted in a 3-Day introductory course detailing all the required knowledge, skills and abilities a scientist must develop over time to be qualified for selections as a Project Scientist.

  14. Entrepreneurship for Creative Scientists

    Science.gov (United States)

    Parker, Dawood; Raghu, Surya; Brooks, Richard

    2018-05-01

    Through patenting and commercialization, scientists today can develop their work beyond a publication in a learned journal. Indeed, universities and governments are encouraging today's scientists and engineers to break their research out of the laboratory and into the commercial world. However, doing so is complicated and can be daunting for those more used to a research seminar than a board room. This book, written by experienced scientists and entrepreneurs, deals with businesses started by scientists based on innovation and sets out to clarify for scientists and engineers the steps necessary to take an idea along the path to commercialization and maximise the potential for success, regardless of the path taken.

  15. Prospective Elementary Teachers' Conceptions of Unitizing with Whole Numbers and Fractions

    Science.gov (United States)

    Tobias, Jennifer M.; Roy, George J.; Safi, Farshid

    2015-01-01

    This article examines prospective elementary teachers' conceptions of unitizing with whole numbers and fraction concepts and operations throughout a semester-long mathematics content course. Student work samples and classroom conversations are used to illustrate the types of unitizing understandings that prospective teachers bring to teacher…

  16. An update on hormone therapy in postmenopausal women: mini-review for the basic scientist.

    Science.gov (United States)

    Miller, Virginia M; Harman, S Mitchell

    2017-11-01

    The worlds of observational, clinical, and basic science collided in 2002 with the publication of results of the Women's Health Initiative (WHI), a large-scale, prospective, blinded, randomized-controlled trial designed to provide evidence regarding use of hormone treatment to prevent cardiovascular disease in menopausal women. The results of the WHI dramatically changed clinical practice, negatively impacted funding for hormone research, and left scientists to unravel the "why" of the results. Now over a decade and a half since the initial publication of the WHI results, basic and clinical scientists often do not interpret the results of the WHI with the precision needed to move the science forward. This review will 1 ) describe the historical background leading up to the WHI, 2 ) list the outcomes from the WHI, and put them in perspective with results of subsequent analysis of the WHI data and results from other prospective menopausal hormone treatment trials addressing cardiovascular effects of menopausal hormone use, and 3 ) articulate how the collective results are influencing current clinical care with the intent to provide guidance for designing and evaluating relevant new hormonal studies. Copyright © 2017 the American Physiological Society.

  17. Bringing Space Scientists, Teachers, and Students Together With The CINDI E/PO Program

    Science.gov (United States)

    Urquhart, M.; Hairston, M.

    2007-12-01

    We will report on the activities, challenges, and successes of the ongoing collaboration between the William B. Hanson Center for Space Sciences (CSS) and the Department of Science/Mathematics Education (SME) at the University of Texas at Dallas. At the core of our partnership is the Education and Public Outreach program for the Coupled Ion / Neutral Dynamics Investigation (CINDI) instrument. CINDI is a NASA-funded program on the Air Force's Communication / Navigation Outage Forecast Satellite (C/NOFS) which will be launched in summer 2008. The CSS faculty and research scientists and the SME faculty and students have created a dynamic program that brings scientists and K-12 teachers together. Our activities include middle and high school curriculum development, teachers workshops, graduate course work for teachers, creation of the popular "Cindi in Space" educational comic book, and bringing K-12 teachers and students to work and/or visit with the CINDI scientists. We will present the outcomes of this collaborative effort as well as our recent experience of having a physics teacher from a local high school as our Teacher in Residence at CSS in summer 2007.

  18. The war of guns and mathematics mathematical practices and communities in France and its Western allies around World War I

    CERN Document Server

    Aubin, David

    2014-01-01

    For a long time, World War I has been shortchanged by the historiography of science. Until recently, World War II was usually considered as the defining event for the formation of the modern relationship between science and society. In this context, the effects of the First World War, by contrast, were often limited to the massive deaths of promising young scientists. By focusing on a few key places (Paris, Cambridge, Rome, Chicago, and others), the present book gathers studies representing a broad spectrum of positions adopted by mathematicians about the conflict, from militant pacifism to military, scientific, or ideological mobilization. The use of mathematics for war is thoroughly examined. This book suggests a new vision of the long-term influence of World War I on mathematics and mathematicians. Continuities and discontinuities in the structure and organization of the mathematical sciences are discussed, as well as their images in various milieux. Topics of research and the values with which they were d...

  19. Handbook of mathematical formulas and integrals

    CERN Document Server

    Jeffrey, Alan

    2003-01-01

    The updated Handbook is an essential reference for researchers and students in applied mathematics, engineering, and physics. It provides quick access to important formulas, relations, and methods from algebra, trigonometric and exponential functions, combinatorics, probability, matrix theory, calculus and vector calculus, ordinary and partial differential equations, Fourier series, orthogonal polynomials, and Laplace transforms. Many of the entries are based upon the updated sixth edition of Gradshteyn and Ryzhik''s Table of Integrals, Series, and Products and other important reference works.The Third Edition has new chapters covering solutions of elliptic, parabolic and hyperbolic equations and qualitative properties of the heat and Laplace equation.Key Features: * Comprehensive coverage of frequently used integrals, functions and fundamental mathematical results * Contents selected and organized to suit the needs of students, scientists, and engineers * Contains tables of Laplace and Fourier transfor...

  20. Drawings of Scientists

    Science.gov (United States)

    experiment can be reduplicated. He/she must check and double-check all of his/her work. A scientist is very , environment, nutrition, and other aspects of our daily and future life." . . . Marisa The scientists

  1. Pioneering space research in the USSR and mathematical modeling of large problems of radiation transfer

    International Nuclear Information System (INIS)

    Sushkevich, T.A.

    2011-01-01

    This review is to remind scientists of the older generation of some memorable historical pages and of many famous researchers, teachers and colleagues. For the younger researchers and foreign colleagues it will be useful to get to know about pioneer advancements of the Soviet scientists in the field of information and mathematical supply for cosmonautic problems on the eve of the space era. Main attention is paid to the scientific experiments conducted on the piloted space vehicles and the research teams who created the information and mathematical tools for the first space projects. The role of Mstislav Vsevolodovich Keldysh, the Major Theoretician of cosmonautics, is particularly emphasized. He determined for the most part the basic directions of development of space research and remote sensing of the Earth and planets that are shortly called remote sensing

  2. Nobelist TD LEE Scientist Cooperation Network and Scientist Innovation Ability Model

    OpenAIRE

    Fang, Jin-Qing; Liu, Qiang

    2013-01-01

    Nobelist TD Lee scientist cooperation network (TDLSCN) and their innovation ability are studied. It is found that the TDLSCN not only has the common topological properties both of scale-free and small-world for a general scientist cooperation networks, but also appears the creation multiple-peak phenomenon for number of published paper with year evolution, which become Nobelist TD Lee’s significant mark distinguished from other scientists. This new phenomenon has not been revealed in the scie...

  3. The Teaching of Mathematics in Secondary Schools as a Tool for Self-Reliance and Re-Branding Process in Nigeria

    Science.gov (United States)

    Jonah, Tali D.; Caleb, Mbwas .L.; Stephen, Abe A.

    2012-01-01

    Mathematics teaching is an interaction between the teacher and the learners that leads to acquisition of desirable mathematical knowledge, ideas and skills necessary for applicability in our everyday life. This paper therefore looks at the concept of self-reliance, the concept of mathematics teaching, problems and prospects of mathematics teaching…

  4. A Longitudinal Study on Mathematics Teaching Efficacy: Which Factors (Un)Support the Development?

    Science.gov (United States)

    Isiksal-Bostan, Mine

    2016-01-01

    The aim of this longitudinal study was to examine prospective teachers' mathematics teaching efficacy belief during their enrollment in teacher education program and at the end of their first year of teaching. In addition, the factors that enhance or inhibit participants' efficacy belief and how these factors affect their mathematics teaching…

  5. Uncovering Hidden Mathematics of the Multiplication Table Using Spreadsheets

    Directory of Open Access Journals (Sweden)

    Sergei Abramovich

    2007-05-01

    Full Text Available This paper reveals a number of learning activities emerging from a spreadsheetgenerated multiplication table. These activities are made possible by using such features of the software as conditional formatting, circular referencing, calculation through iteration, scroll bars, and graphing. The paper is a reflection on a mathematics content course designed for prospective elementary teachers using the hidden mathematics curriculum framework. It is written in support of standards for teaching and recommendations for teachers in North America.

  6. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... Scientists Must Speak: Bringing Presentations to Life helps readers do just that. At some point in their careers, the majority of scientists have to stand up in front of an inquisitive audience or board and present information...

  7. Scientists feature their work in Arctic-focused short videos by FrontierScientists

    Science.gov (United States)

    Nielsen, L.; O'Connell, E.

    2013-12-01

    Whether they're guiding an unmanned aerial vehicle into a volcanic plume to sample aerosols, or documenting core drilling at a frozen lake in Siberia formed 3.6 million years ago by a massive meteorite impact, Arctic scientists are using video to enhance and expand their science and science outreach. FrontierScientists (FS), a forum for showcasing scientific work, produces and promotes radically different video blogs featuring Arctic scientists. Three- to seven- minute multimedia vlogs help deconstruct researcher's efforts and disseminate stories, communicating scientific discoveries to our increasingly connected world. The videos cover a wide range of current field work being performed in the Arctic. All videos are freely available to view or download from the FrontierScientists.com website, accessible via any internet browser or via the FrontierScientists app. FS' filming process fosters a close collaboration between the scientist and the media maker. Film creation helps scientists reach out to the public, communicate the relevance of their scientific findings, and craft a discussion. Videos keep audience tuned in; combining field footage, pictures, audio, and graphics with a verbal explanation helps illustrate ideas, allowing one video to reach people with different learning strategies. The scientists' stories are highlighted through social media platforms online. Vlogs grant scientists a voice, letting them illustrate their own work while ensuring accuracy. Each scientific topic on FS has its own project page where easy-to-navigate videos are featured prominently. Video sets focus on different aspects of a researcher's work or follow one of their projects into the field. We help the scientist slip the answers to their five most-asked questions into the casual script in layman's terms in order to free the viewers' minds to focus on new concepts. Videos are accompanied by written blogs intended to systematically demystify related facts so the scientists can focus

  8. Mathematical models of blast induced TBI: current status, challenges and prospects

    Directory of Open Access Journals (Sweden)

    Raj K Gupta

    2013-05-01

    Full Text Available Blast induced traumatic brain injury (TBI has become a signature wound of recent military activities and is the leading cause of death and long-term disability among U.S. soldiers. The current limited understanding of brain injury mechanisms impedes the development of protection, diagnostic and treatment strategies. We believe mathematical models of blast wave brain injury biomechanics and neurobiology, complemented with in vitro and in vivo experimental studies, will enable a better understanding of injury mechanisms and accelerate the development of both protective and treatment strategies. The goal of this paper is to review the current state of the art in mathematical and computational modeling of blast induced TBI, identify research gaps and recommend future developments. A brief overview of blast wave physics, injury biomechanics and the neurobiology of brain injury is used as a foundation for a more detailed discussion of multiscale mathematical models of primary biomechanics and secondary injury and repair mechanisms. The paper also presents a discussion of model development strategies, experimental approaches to generate benchmark data for model validation and potential applications of the model for prevention and protection against blast wave TBI.

  9. Scientists in the public sphere: Interactions of scientists and journalists in Brazil.

    Science.gov (United States)

    Massarani, Luisa; Peters, Hans P

    2016-06-07

    In order to map scientists' views on media channels and explore their experiences interacting with journalists, the authors conducted a survey of about 1,000 Brazilian scientists. Results indicate that scientists have clear and high expectations about how journalists should act in reporting scientific information in the media, but such expectations, in their opinion, do not always seem to be met. Nonetheless, the results show that surveyed scientists rate their relation with the media positively: 67% say that having their research covered by media has a positive impact on their colleagues. One quarter of the respondents expressed that talking to the media can facilitate acquisition of more funds for research. Moreover, 38% of the total respondents believe that writing about an interesting topic for release on media channels can also facilitate research publication in a scientific journal. However, 15% of the respondents outright agree that research reported in the media beforehand can threaten acceptance for publication by a scientific journal. We hope that these results can foster some initiatives for improving awareness of the two cultures, scientists and journalists; increasing the access of journalists to Brazilian scientific endeavors; stimulating scientists to communicate with the public via social networks.

  10. Learning at the Boundaries: Collaboration between Mathematicians and Mathematics Educators within and across Institutions

    Science.gov (United States)

    Bennison, Anne; Goos, Merrilyn

    2016-01-01

    Collaboration between mathematicians and mathematics educators may provide a means of improving the quality of pre-service teacher education for prospective teachers of mathematics. Some preliminary findings of a project that investigates this type of interdisciplinary collaboration, both within and across institutions, are reported on in this…

  11. The Knowledge Base of Subject Matter Experts in Teaching: A Case Study of a Professional Scientist as a Beginning Teacher

    Science.gov (United States)

    Diezmann, Carmel M.; Watters, James J.

    2015-01-01

    One method of addressing the shortage of science and mathematics teachers is to train scientists and other science-related professionals to become teachers. Advocates argue that as discipline experts these career changers can relate the subject matter knowledge to various contexts and applications in teaching. In this paper, through interviews and…

  12. Emeritus Scientists, Mathematicians and Engineers (ESME) program. Summary of activities for school year 1991--1992

    Energy Technology Data Exchange (ETDEWEB)

    Sharlin, H.I.

    1992-09-01

    The Emeritus Scientists, Mathematicians and Engineers (ESME) program matches retired scientists and engineers with wide experience with elementary school children in order to fuel the children`s natural curiosity about the world in which they live. The long-range goal is to encourage students to maintain the high level of mathematical and science capability that they exhibit at an early age by introducing them to the fun and excitement of the world of scientific investigation and engineering problem solving. Components of the ESME program are the emeriti, established teacher-emeriti teams that work to produce a unit of 6 class hours of demonstration or hands-on experiments, and the encounter by students with the world of science/engineering through the classroom sessions and a field trip to a nearby plant or laboratory.

  13. International Conference on Recent Trends in Mathematical Analysis and its Applications 2014

    CERN Document Server

    Mohapatra, R; Singh, Uaday; Srivastava, H

    2015-01-01

    This book discusses recent developments in and the latest research on mathematics, statistics and their applications. All contributing authors are eminent academics, scientists, researchers and scholars in their respective fields, hailing from around the world. The book presents roughly 60 unpublished, high-quality and peer-reviewed research papers that cover a broad range of areas including approximation theory, harmonic analysis, operator theory, fixed-point theory, functional differential equations, dynamical and control systems, complex analysis, special functions, function spaces, summability theory, Fourier and wavelet analysis, and numerical analysis – all of which are topics of great interest to the research community – while further papers highlight important applications of mathematical analysis in science, engineering and related areas. This conference aims at bringing together experts and young researchers in mathematics from all over the world to discuss the latest advances in mathematical an...

  14. An Investigation of Prospective Secondary Mathematics Teachers' Conceptual Knowledge of and Attitudes Towards Statistics

    Science.gov (United States)

    Hannigan, Ailish; Gill, Olivia; Leavy, Aisling M.

    2013-01-01

    The development of statistical literacy is fast becoming the focus of a large part of mathematics instruction at primary, secondary and tertiary levels. This broadening of the mathematics curriculum to encompass a focus on statistics makes considerable demands on teachers. Most mathematics teachers acknowledge the practical importance of…

  15. Grade 7 teachers' and prospective teachers' content knowledge of ...

    African Journals Online (AJOL)

    Erna Kinsey

    and media with which instruction and assessment are carried out (cur- ricular knowledge). .... school mathematics teachers and prospective elementary school ma- thematics ..... behavioural and social sciences and education. Washington, DC ...

  16. Professional Competencies of (Prospective) Mathematics Teachers--Cognitive versus Situated Approaches

    Science.gov (United States)

    Kaiser, Gabriele; Blömeke, Sigrid; König, Johannes; Busse, Andreas; Döhrmann, Martina; Hoth, Jessica

    2017-01-01

    Recent research on the professional competencies of mathematics teachers, which has been carried out during the last decade, is characterized by different theoretical approaches on the conceptualization and evaluation of teachers' professional competencies, namely cognitive versus situated approaches. Building on the international IEA Teacher…

  17. Mathematics for Water and Wastewater Treatment Plant Operators. Water and Wastewater Training Program.

    Science.gov (United States)

    South Dakota Dept. of Environmental Protection, Pierre.

    This booklet is intended to aid the prospective waste treatment plant operator or drinking water plant operator in learning to solve mathematical problems, which is necessary for Class I certification. It deals with the basic mathematics which a Class I operator may require in accomplishing day-to-day tasks. The book also progresses into problems…

  18. Not going it alone: scientists and their work featured online at FrontierScientists

    Science.gov (United States)

    O'Connell, E. A.; Nielsen, L.

    2015-12-01

    Science outreach demystifies science, and outreach media gives scientists a voice to engage the public. Today scientists are expected to communicate effectively not only with peers but also with a braod public audience, yet training incentiives are sometimes scarce. Media creation training is even less emphasized. Editing video to modern standards takes practice; arrangling light and framing shots isn't intuitive. While great tutorials exist, learning videography, story boarding, editing and sharing techniques will always require a commitment of time and effort. Yet ideally sharing science should be low-hanging fruit. FrontierScientists, a science-sharing website funded by the NSF, seeks to let scientists display their breakthroughs and share their excitement for their work with the public by working closely yet non-exhaustively with a professional media team. A director and videographer join scientists to film first-person accounts in the field or lab. Pictures and footage with field site explanations give media creators raw material. Scientists communicate efficiently and retain editorial control over the project, but a small team of media creators craft the public aimed content. A series of engaging short videos with narrow focuses illuminate the science. Written articles support with explanations. Social media campaigns spread the word, link content, welcome comments and keep abreast of changing web requirements. All FrontierScientists featured projects are aggregated to one mobile-friendly site available online or via an App. There groupings of Arctic-focused science provide a wealth of topics and content to explore. Scientists describe why their science is important, what drew them to it, and why the average American should care. When scientists share their work it's wonderful; a team approach is a schedule-friendly way that lets them serve as science communicators without taking up a handful of extra careers.

  19. Birth of prominent scientists.

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; González Brambila, Claudia N; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star.

  20. Birth of prominent scientists

    Science.gov (United States)

    Reyes Gonzalez, Leonardo; Veloso, Francisco

    2018-01-01

    This paper analyzes the influence key scientists have in the development of a science and technology system. In particular, this work appraises the influence that star scientists have on the productivity and impact of young faculty, as well as on the likelihood that these young researchers become a leading personality in science. Our analysis confirms previous results that eminent scientist have a prime role in the development of a scientific system, especially within the context of an emerging economy like Mexico. In particular, in terms of productivity and visibility, this work shows that between 1984 and 2001 the elite group of physicists in Mexico (approximate 10% of all scientists working in physics and its related fields) published 42% of all publications, received 50% of all citations and bred 18% to 26% of new entrants. In addition our work shows that scientists that enter the system by the hand of a highly productive researcher increased their productivity on average by 28% and the ones that did it by the hand of a highly visible scientist received on average 141% more citations, vis-à-vis scholars that did not published their first manuscripts with an eminent scientist. Furthermore, scholars that enter the system by the hand of a highly productive researcher were on average 2.5 more likely to also become a star. PMID:29543855

  1. Impact of a Scientist-Teacher Collaborative Model on Students, Teachers, and Scientists

    Science.gov (United States)

    Shein, Paichi Pat; Tsai, Chun-Yen

    2015-09-01

    Collaborations between the K-12 teachers and higher education or professional scientists have become a widespread approach to science education reform. Educational funding and efforts have been invested to establish these cross-institutional collaborations in many countries. Since 2006, Taiwan initiated the High Scope Program, a high school science curriculum reform to promote scientific innovation and inquiry through an integration of advanced science and technology in high school science curricula through partnership between high school teachers and higher education scientists and science educators. This study, as part of this governmental effort, a scientist-teacher collaborative model (STCM) was constructed by 8 scientists and 4 teachers to drive an 18-week high school science curriculum reform on environmental education in a public high school. Partnerships between scientists and teachers offer opportunities to strengthen the elements of effective science teaching identified by Shulman and ultimately affect students' learning. Mixed methods research was used for this study. Qualitative methods of interviews were used to understand the impact on the teachers' and scientists' science teaching. A quasi-experimental design was used to understand the impact on students' scientific competency and scientific interest. The findings in this study suggest that the use of the STCM had a medium effect on students' scientific competency and a large effect on students' scientific individual and situational interests. In the interviews, the teachers indicated how the STCM allowed them to improve their content knowledge and pedagogical content knowledge (PCK), and the scientists indicated an increased knowledge of learners, knowledge of curriculum, and PCK.

  2. PREVEDA 2013: Interactive conference of young scientists 2013. Book of presentations and posters

    International Nuclear Information System (INIS)

    2013-01-01

    This interactive conference of young scientists was realised on the Internet. Conference proceeded in six sections: (1) Biophysics, mathematic modelling, biostatistics; (2) Biotechnology and food technology; (3) Cellular metabolism, physiology, molecular biology and genetics; (4) Biotechnology and food technology; (5) Cellular metabolism, physiology, molecular biology and genetics (clinical studies); (6) Ecology and environmental science; (7) Organic, bioorganic, pharmaceutical chemistry, pharmacology; (7) Open section; (8) Open section for students; (9) Utilization of instrumental methods in the analysis of biologically important substances. Relevant papers were included into the database INIS.

  3. Vignettes from the field of mathematical biology: the application of mathematics to biology and medicine.

    Science.gov (United States)

    Murray, J D

    2012-08-06

    The application of mathematical models in biology and medicine has a long history. From the sparse number of papers in the first half of the twentieth century with a few scientists working in the field it has become vast with thousands of active researchers. We give a brief, and far from definitive history, of how some parts of the field have developed and how the type of research has changed. We describe in more detail just two examples of specific models which are directly related to real biological problems, namely animal coat patterns and the growth and image enhancement of glioblastoma brain tumours.

  4. An introduction to the mathematics of biology with computer algebra models

    CERN Document Server

    Yeargers, Edward K; Herod, James V

    1996-01-01

    Biology is a source of fascination for most scientists, whether their training is in the life sciences or not. In particular, there is a special satisfaction in discovering an understanding of biology in the context of another science like mathematics. Fortunately there are plenty of interesting (and fun) problems in biology, and virtually all scientific disciplines have become the richer for it. For example, two major journals, Mathematical Biosciences and Journal of Mathematical Biology, have tripled in size since their inceptions 20-25 years ago. The various sciences have a great deal to give to one another, but there are still too many fences separating them. In writing this book we have adopted the philosophy that mathematical biology is not merely the intrusion of one science into another, but has a unity of its own, in which both the biology and the math­ ematics should be equal and complete, and should flow smoothly into and out of one another. We have taught mathematical biology with this philosophy...

  5. Crystallography and surface structure an introduction for surface scientists and nanoscientists

    CERN Document Server

    Hermann, Klaus

    2017-01-01

    A valuable learning tool as well as a reference, this book provides students and researchers in surface science and nanoscience with the theoretical crystallographic foundations, which are necessary to understand local structure and symmetry of bulk crystals, including ideal and real single crystal surfaces. The author deals with the subject at an introductory level, providing numerous graphic examples to illustrate the mathematical formalism. The book brings together and logically connects many seemingly disparate structural issues and notations used frequently by surface scientists and nanoscientists. Numerous exercises of varying difficulty, ranging from simple questions to small research projects, are included to stimulate discussions about the different subjects.

  6. Everyone Knows What a Scientist Looks Like: The Image of a Modern Scientist

    Science.gov (United States)

    Enevoldsen, A. A. G.

    2008-11-01

    Children are inspired to follow career paths when they can imagine themselves there. Seeing pictures of adult individuals who look like them working in a given career can provide this spark to children's imaginations. Most (though not all) of the current available posters of scientists are of Einstein, and Einstein-like scientists. This is not representative of the current face of science. To change this, Pacific Science Center will host a photography exhibit: photographs of real, current scientists from all races, genders, beliefs, and walks of life. Photos will be taken and short biographies written by Discovery Corps Interns (Pacific Science Center's youth development program) to increase the amount of direct contact between students and scientists, and to give the exhibit an emotional connection for local teachers and families. We plan to make the photographs from this exhibit available to teachers for use in their classrooms, in addition to being displayed at Pacific Science Center during the International Year of Astronomy. The objectives of this project are to fill a need for representative photographs of scientists in the world community and to meet two of the goals of the International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by under-represented minorities in scientific and engineering careers.

  7. The Impact of Scientist-Educator Collaborations: an early-career scientist's perspective

    Science.gov (United States)

    Roop, H. A.

    2017-12-01

    A decade ago, a forward-thinking faculty member exposed a group of aspiring scientists to the impacts and career benefits of working directly with K-12 students and educators. Ten years later, as one of those young scientists, it is clear that the relationships born out of this early experience can transform a researcher's impact and trajectory in science. Connections with programs like the NSF-funded PolarTREC program, the teacher-led Scientists in the Classroom effort, and through well-coordinated teacher training opportunities there are clear ways in which these partnerships can a) transform student learning; b) serve as a powerful and meaningful way to connect students to authentic research and researchers; and c) help researchers become more effective communicators by expanding their ability to connect their work to society. The distillation of science to K-12 students, with the expert eye of educators, makes scientists better at their work with tangible benefits to skills that matter in academia - securing funding, writing and communicating clearly and having high-value broader impacts. This invited abstract is submitted as part of this session's panel discussion and will explore in detail, with concrete examples, the mutual benefits of educator-scientist partnerships and how sustained engagement can transform the reach, connection and application of research science.

  8. Foundations of mathematics and physics one century after Hilbert new perspectives

    CERN Document Server

    2018-01-01

    This book explores the rich and deep interplay between mathematics and physics one century after David Hilbert’s works from 1891 to 1933, published by Springer in six volumes. The most prominent scientists in various domains of these disciplines contribute to this volume providing insight to their works, and analyzing the impact of the breakthrough and the perspectives of their own contributions. The result is a broad journey through the most recent developments in mathematical physics, such as string theory, quantum gravity, noncommutative geometry, twistor theory, Gauge and Quantum fields theories, just to mention a few. The reader, accompanied on this journey by some of the fathers of these theories, explores some far reaching interfaces where mathematics and theoretical physics interact profoundly and gets a broad and deep understanding of subjects which are at the core of recent developments in mathematical physics. The journey is not confined to the present state of the art, but sheds light on future ...

  9. International School and Workshop on Nonlinear Mathematical Physics and Natural Hazards

    CERN Document Server

    Kouteva-Guentcheva, Mihaela

    2015-01-01

    This book is devoted to current advances in the field of nonlinear mathematical physics and modeling of critical phenomena that can lead to catastrophic events. Pursuing a multidisciplinary approach, it gathers the work of scientists who are developing mathematical and computational methods for the study and analysis of nonlinear phenomena and who are working actively to apply these tools and create conditions to mitigate and reduce the negative consequences of natural and socio-economic disaster risk. This book summarizes the contributions of the International School and Workshop on Nonlinear Mathematical Physics and Natural Hazards, organized within the framework of the South East Europe Network in Mathematical and Theoretical Physics (SEENET MTP) and supported by UNESCO. It was held at the Bulgarian Academy of Sciences from November 28 to December 2, 2013. The contributions are divided into two major parts in keeping with the scientific program of the meeting. Among the topics covered in Part I (Nonlinear...

  10. Mathematics without boundaries surveys in interdisciplinary research

    CERN Document Server

    Rassias, Themistocles

    2014-01-01

    This volume consists of chapters written by eminent scientists and engineers from the international community and presents significant advances in several theories, and applications of an interdisciplinary research. These contributions focus on both old and recent developments of Global Optimization Theory, Convex Analysis, Calculus of Variations, and Discrete Mathematics and Geometry, as well as several applications to a large variety of concrete problems, including  applications of computers  to the study of smoothness and analyticity of functions, applications to epidemiological diffusion, networks, mathematical models of elastic and piezoelectric fields, optimal algorithms, stability of neutral type vector functional differential equations, sampling and rational interpolation for non-band-limited signals, recurrent neural network for convex optimization problems, and experimental design.  The book also contains some review works, which could prove particularly useful for a broader audience of readers i...

  11. Research in progress in applied mathematics, numerical analysis, fluid mechanics, and computer science

    Science.gov (United States)

    1994-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1993 through March 31, 1994. The major categories of the current ICASE research program are: (1) applied and numerical mathematics, including numerical analysis and algorithm development; (2) theoretical and computational research in fluid mechanics in selected areas of interest to LaRC, including acoustics and combustion; (3) experimental research in transition and turbulence and aerodynamics involving LaRC facilities and scientists; and (4) computer science.

  12. Collection of proceedings of the international conference on programming and mathematical methods for solution of physical problems

    International Nuclear Information System (INIS)

    1994-01-01

    Traditional International Conference on programming and mathematical methods for solution of physical problems took place in Dubna in Jun, 14-19, 1993. More than 160 scientists from 14 countries participated in the Conference. They presented about 120 reports, the range of problems including computerized information complexes, experimental data acquisition and processing systems, mathematical simulation and calculation experiment in physics, analytical and numerical methods for solution of physical problems

  13. Attitudes of agricultural scientists in Indonesia towards genetically modified foods.

    Science.gov (United States)

    Februhartanty, Judhiastuty; Widyastuti, Tri Nisa; Iswarawanti, Dwi Nastiti

    2007-01-01

    Conflicting arguments and partial truths on genetically modified (GM) foods have left confusion. Although studies of consumer acceptance of GM foods are numerous, the study of scientists is limited. Therefore, the main objective of this study was to assess the attitudes of scientists towards GM foods. The study was a cross sectional study. A total of 400 scientists (involved in at least one of teaching, research and consultancy) in the Bogor Agricultural Institute, Indonesia were selected randomly from its faculties of agriculture, veterinary, fishery, animal husbandry, forestry, agricultural technology, mathematics and science, and the post graduate department. Data collection was done by face-to-face interview using a structured questionnaire and self-administered questionnaire. The result showed that the majority (72.8%) of the respondents were favorably disposed towards GM foods, 14.8% were neutral, and only 12.5% were against them. The majority (78.3%) stated that they would try GM food if offered. Most (71%) reported that they were aware of the term "GM foods". Only half of the respondents felt that they had a basic understanding about GM foods. However, based on a knowledge test, 69.8% had a good knowledge score. Nearly 50% indicated that they were more exposed to news which supported GM foods. Over 90% said that there should be some form of labeling to distinguish food containing GM ingredients from non-GM foods. Attitudes were significantly associated with willingness to try GM foods if offered, restrictions on GM foods, and exposure to media reports about the pros and cons of GM foods.

  14. Examining Development of Curriculum Knowledge of Prospective Mathematics Teachers

    Science.gov (United States)

    Sahin, Ömer; Soylu, Yasin

    2017-01-01

    Explanatory-confirmatory research design, one of the mixed methods research designs, was used in this study to investigate Curriculum Knowledge developments of prospective teachers regarding algebra. Cross-sectional study method, as a type of descriptive research and one of the non-experimental research designs, was used to collect quantitative…

  15. The first scientist Anaximander and his legacy

    CERN Document Server

    Rovelli, Carlo

    2011-01-01

    Carlo Rovelli, a leading theoretical physicist, uses the figure of Anaximander as the starting point for an examination of scientific thinking itself: its limits, its strengths, its benefits to humankind, and its controversial relationship with religion. Anaximander, the sixth-century BC Greek philosopher, is often called the first scientist because he was the first to explain that order in the world was due to natural forces, not supernatural ones. He is the first person known to rnunderstand that the Earth floats in space; to believe that the sun, the moon, and the stars rotate around it--seven centuries before Ptolemy; to argue that all animals came from the sea and evolved; and to posit that universal laws rncontrol all change in the world. Anaximander taught Pythagoras, who would build on Anaximander's scientific theories by applying mathematical laws to natural phenomena. rnrnIn the award-winning Anaximander and the Birth of Scientific Thought, Rovelli restores Anaximander to his place in the history of...

  16. Scientist impact factor (SIF): a new metric for improving scientists' evaluation?

    Science.gov (United States)

    Lippi, Giuseppe; Mattiuzzi, Camilla

    2017-08-01

    The publication of scientific research is the mainstay for knowledge dissemination, but is also an essential criterion of scientists' evaluation for recruiting funds and career progression. Although the most widespread approach for evaluating scientists is currently based on the H-index, the total impact factor (IF) and the overall number of citations, these metrics are plagued by some well-known drawbacks. Therefore, with the aim to improve the process of scientists' evaluation, we developed a new and potentially useful indicator of recent scientific output. The new metric scientist impact factor (SIF) was calculated as all citations of articles published in the two years following the publication year of the articles, divided by the overall number of articles published in that year. The metrics was then tested by analyzing data of the 40 top scientists of the local University. No correlation was found between SIF and H-index (r=0.15; P=0.367) or 2 years H-index (r=-0.01; P=0.933), whereas the H-index and 2 years H-index values were found to be highly correlated (r=0.57; Particles published in one year and the total number of citations to these articles in the two following years (r=0.62; Pscientists, wherein the SIF reflects the scientific output over the past two years thus increasing their chances to apply to and obtain competitive funding.

  17. Uncovering Scientist Stereotypes and Their Relationships with Student Race and Student Success in a Diverse, Community College Setting.

    Science.gov (United States)

    Schinske, Jeffrey; Cardenas, Monica; Kaliangara, Jahana

    2015-01-01

    A number of studies have identified correlations between children's stereotypes of scientists, their science identities, and interest or persistence in science, technology, engineering, and mathematics. Yet relatively few studies have examined scientist stereotypes among college students, and the literature regarding these issues in predominantly nonwhite and 2-yr college settings is especially sparse. We piloted an easy-to-analyze qualitative survey of scientist stereotypes in a biology class at a diverse, 2-yr, Asian American and Native American Pacific Islander-Serving Institution. We examined the reliability and validity of the survey, and characterized students' comments with reference to previous research on stereotypes. Positive scientist stereotypes were relatively common in our sample, and negative stereotypes were rare. Negative stereotypes appeared to be concentrated within certain demographic groups. We found that students identifying nonstereotypical images of scientists at the start of class had higher rates of success in the course than their counterparts. Finally, evidence suggested many students lacked knowledge of actual scientists, such that they had few real-world reference points to inform their stereotypes of scientists. This study augments the scant literature regarding scientist stereotypes in diverse college settings and provides insights for future efforts to address stereotype threat and science identity. © 2015 J. Schinske et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  18. Robust Scientists

    DEFF Research Database (Denmark)

    Gorm Hansen, Birgitte

    their core i nterests, 2) developing a selfsupply of industry interests by becoming entrepreneurs and thus creating their own compliant industry partner and 3) balancing resources within a larger collective of researchers, thus countering changes in the influx of funding caused by shifts in political...... knowledge", Danish research policy seems to have helped develop politically and economically "robust scientists". Scientific robustness is acquired by way of three strategies: 1) tasting and discriminating between resources so as to avoid funding that erodes academic profiles and push scientists away from...

  19. Conference on "Mathematical Technology of Networks"

    CERN Document Server

    2015-01-01

    Bringing together leading researchers in the fields of functional analysis, mathematical physics and graph theory, as well as natural scientists using networks as a tool in their own research fields, such as neuroscience and machine learning, this volume presents recent advances in functional, analytical, probabilistic, and spectral aspects in the study of graphs, quantum graphs, and complex networks. The contributors to this volume explore the interplay between theoretical and applied aspects of discrete and continuous graphs. Their work helps to close the gap between different avenues of research on graphs, including metric graphs and ramified structures. All papers were presented at the conference "Mathematical Technology of Networks," held December 4–7, 2013 at the Zentrum für interdisziplinäre Forschung (ZiF) in Bielefeld, Germany, and are supplemented with detailed figures illustrating both abstract concepts as well as their real-world applications. Dynamical models on graphs or random graphs a...

  20. Mathematical modeling of infectious disease dynamics

    Science.gov (United States)

    Siettos, Constantinos I.; Russo, Lucia

    2013-01-01

    Over the last years, an intensive worldwide effort is speeding up the developments in the establishment of a global surveillance network for combating pandemics of emergent and re-emergent infectious diseases. Scientists from different fields extending from medicine and molecular biology to computer science and applied mathematics have teamed up for rapid assessment of potentially urgent situations. Toward this aim mathematical modeling plays an important role in efforts that focus on predicting, assessing, and controlling potential outbreaks. To better understand and model the contagious dynamics the impact of numerous variables ranging from the micro host–pathogen level to host-to-host interactions, as well as prevailing ecological, social, economic, and demographic factors across the globe have to be analyzed and thoroughly studied. Here, we present and discuss the main approaches that are used for the surveillance and modeling of infectious disease dynamics. We present the basic concepts underpinning their implementation and practice and for each category we give an annotated list of representative works. PMID:23552814

  1. Dreaming of mathematical neuroscience for half a century.

    Science.gov (United States)

    Amari, Shun-ichi

    2013-01-01

    Theoreticians have been enchanted by the secrets of the brain for many years: how and why does it work so well? There has been a long history of searching for its mechanisms. Theoretical or even mathematical scientists have proposed various models of neural networks which has led to the birth of a new field of research. We can think of the 'pre-historic' period of Rashevski and Wiener, and then the period of perceptrons which is the beginning of learning machines, neurodynamics approaches, and further connectionist approaches. Now is currently the period of computational neuroscience. I have been working in this field for nearly half a century, and have experienced its repeated rise and fall. Now having reached very old age, I would like to state my own endeavors on establishing mathematical neuroscience for half a century, from a personal, even biased, point of view. It would be my pleasure if my experiences could encourage young researchers to participate in mathematical neuroscience. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Iris Runge a life at the crossroads of mathematics, science, and industry

    CERN Document Server

    Tobies, Renate

    2012-01-01

    This book concerns the origins of mathematical problem solving at the internationally active Osram and Telefunken Corporations during the golden years of broadcasting and electron tube research. The woman scientist Iris Runge, who received an interdisciplinary education at the University of Göttingen, was long employed as the sole mathematical authority at these companies in Berlin. It will be shown how mathematical connections were made between statistics and quality control, and between physical-chemical models and the actual problems of mass production. The organization of industrial laboratories, the relationship between theoretical and experimental work, and the role of mathematicians in these settings will also be explained. By investigating the social, economic, and political conditions that unfolded from the time of the German Empire until the end of the Second World War, the book hopes to build a bridge between specialized fields – mathematics and engineering – and the general culture of a parti...

  3. Frontier Scientists use Modern Media

    Science.gov (United States)

    O'connell, E. A.

    2013-12-01

    Engaging Americans and the international community in the excitement and value of Alaskan Arctic discovery is the goal of Frontier Scientists. With a changing climate, resources of polar regions are being eyed by many nations. Frontier Scientists brings the stories of field scientists in the Far North to the public. With a website, an app, short videos, and social media channels; FS is a model for making connections between the public and field scientists. FS will demonstrate how academia, web content, online communities, evaluation and marketing are brought together in a 21st century multi-media platform, how scientists can maintain their integrity while engaging in outreach, and how new forms of media such as short videos can entertain as well as inspire.

  4. Radiation protection. A guide for scientists and physicians

    International Nuclear Information System (INIS)

    Shapiro, J.

    1972-01-01

    This manual was written for individuals who wish to become qualified in radiation protection as an adjunct to working with sources of ionizing radiation or using radionuclides in the field of medicine. It provides the radiation user with information needed to protect himself and others and to understand and comply with governmental and institutional regulations regarding the use of radionuclides and radiation machines. It is designed for a wide spectrum of users, including physicians, research scientists, engineers, and technicians. It should be useful also to radiation safety officers, members of radiation safety committees, and others who are responsible for the proper use of radiation sources, although they may not be working with the sources directly. The presentation in this manual is designed to obviate the need for reviews of atomic and radiation physics, and the mathematics has been limited to elementary arithmetical and algebraic operations

  5. Global Conference on Applied Physics and Mathematics

    CERN Document Server

    2016-01-01

    The Global Conference on Applied Physics and Mathematics is organized by academics and researchers belonging to different scientific areas of the C3i/Polytechnic Institute of Portalegre (Portugal) and the University of Extremadura (Spain) with the technical support of ScienceKnow Conferences. The event has the objective of creating an international forum for academics, researchers and scientists from worldwide to discuss worldwide results and proposals regarding to the soundest issues related to Applied Physics and Mathematics. This event will include the participation of renowned keynote speakers, oral presentations, posters sessions and technical conferences related to the topics dealt with in the Scientific Program as well as an attractive social and cultural program. The papers will be published in the Proceedings e-books. The proceedings of the conference will be sent to possible indexing on Thomson Reuters (selective by Thomson Reuters, not all-inclusive) and Google Scholar. Those communications con...

  6. Musings on multiplication tables and associated mathematics and teaching practices

    Directory of Open Access Journals (Sweden)

    Faaiz Gierdien

    2009-09-01

    Full Text Available This paper is based on my reflections on a deceptively simple tabular representation of a combined 12×12 multiplication table showing multiplier and multiplicand,starting at a time when I taught mathematics full time at a primary (elementary school through to my presentteaching of mathematics education modules to prospective teachers. A historically–motivated framework on the importance of tables as expressions of complex information in two–dimensional form is used to gain insight into and understand multiplication tables. Through this framework it is shown that the modal practice of “knowing one’s tables” in the primary grade levels is really about knowing sequenced and separated lists of whole number multiplications. In contrast, tabular multiplication sequences in a combined multiplication table can, through appropriate teaching practices, enable the discovery of multiple relationships beyond multiplication or arithmetic, resulting in significant mathematics that spans the grade levels. Implications for mathematics teacher education practice with its current focus mathematical knowledge for teaching, are considered.

  7. 11th Biennial Conference on Emerging Mathematical Methods, Models and Algorithms for Science and Technology

    CERN Document Server

    Manchanda, Pammy; Bhardwaj, Rashmi

    2015-01-01

    The present volume contains invited talks of 11th biennial conference on “Emerging Mathematical Methods, Models and Algorithms for Science and Technology”. The main message of the book is that mathematics has a great potential to analyse and understand the challenging problems of nanotechnology, biotechnology, medical science, oil industry and financial technology. The book highlights all the features and main theme discussed in the conference. All contributing authors are eminent academicians, scientists, researchers and scholars in their respective fields, hailing from around the world.

  8. How Scientists Can Become Entrepreneurs.

    Science.gov (United States)

    Thon, Jonathan N; Karlsson, Sven

    2017-05-01

    Translating basic research discoveries through entrepreneurship must be scientist driven and institutionally supported to be successful (not the other way around). Here, we describe why scientists should engage in entrepreneurship, where institutional support for scientist-founders falls short, and how these challenges can be overcome. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. An Analysis of the Impact of Student-Scientist Interaction in a Technology Design Activity, Using the Expectancy-Value Model of Achievement Related Choice

    Science.gov (United States)

    Masson, Anne-Lotte; Klop, Tanja; Osseweijer, Patricia

    2016-01-01

    Many education initiatives in science and technology education aim to create enthusiasm among young people to pursue a career in Science, Technology, Engineering, and Mathematics (STEM). Research suggests that personal interaction between secondary school students and scientists could be a success factor, but there is a need for more in-depth…

  10. Young Scientist Wetenschapskalender 2018

    NARCIS (Netherlands)

    van Dalen-Oskam, K.H.; van Zundert, Joris J.; Koolen, Corina

    2017-01-01

    Bijdragen scheurkalender Young Scientist Wetenschapskalender 2018. Karina van Dalen-Oskam, Belangrijk woord: Wat is het belangrijkste woord in de Nederlandse taal? In: Young Scientist Wetenschapskalender 2018, 1 september Corina Koolen, Op naar het boekenbal: Hoe wordt je beroemd als schrijver? In:

  11. Bridging the Gap Between Scientists and Classrooms: Scientist Engagement in the Expedition Earth and Beyond Program

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K. J.; Runco, S.

    2012-01-01

    Teachers in today s classrooms need to find creative ways to connect students with science, technology, engineering, mathematics (STEM) experts. These STEM experts can serve as role models and help students think about potential future STEM careers. They can also help reinforce academic knowledge and skills. The cost of transportation restricts teachers ability to take students on field trips exposing them to outside experts and unique learning environments. Additionally, arranging to bring in guest speakers to the classroom seems to happen infrequently, especially in schools in rural areas. The Expedition Earth and Beyond (EEAB) Program [1], facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate Education Program at the NASA Johnson Space Center has created a way to enable teachers to connect their students with STEM experts virtually. These virtual connections not only help engage students with role models, but are also designed to help teachers address concepts and content standards they are required to teach. Through EEAB, scientists are able to actively engage with students across the nation in multiple ways. They can work with student teams as mentors, participate in virtual student team science presentations, or connect with students through Classroom Connection Distance Learning (DL) Events.

  12. The Celebrity Scientists

    OpenAIRE

    Fahy, Declan

    2010-01-01

    This collective case study examines how four contemporary British scientists and popular science writers, Stephen Hawking, Richard Dawkins, Susan Greenfield and James Lovelock, are portrayed in mass media as celebrities. It finds that the scientists’ private and public lives merge in their representations, their images commodified and marketed by the cultural industries, their mediated personae embodying abstract ideas of truth and reason. The celebrity scientists base their authority on thei...

  13. Are Graduate Students Rational? Evidence from the Market for Biomedical Scientists

    Science.gov (United States)

    Blume-Kohout, Margaret E.; Clack, John W.

    2013-01-01

    The U.S. National Institutes of Health (NIH) budget expansion from 1998 through 2003 increased demand for biomedical research, raising relative wages and total employment in the market for biomedical scientists. However, because research doctorates in biomedical sciences can often take six years or more to complete, the full labor supply response to such changes in market conditions is not immediate, but rather is observed over a period of several years. Economic rational expectations models assume that prospective students anticipate these future changes, and also that students take into account the opportunity costs of their pursuing graduate training. Prior empirical research on student enrollment and degree completions in science and engineering (S&E) fields indicates that “cobweb” expectations prevail: that is, at least in theory, prospective graduate students respond to contemporaneous changes in market wages and employment, but do not forecast further changes that will arise by the time they complete their degrees and enter the labor market. In this article, we analyze time-series data on wages and employment of biomedical scientists versus alternative careers, on completions of S&E bachelor's degrees and biomedical sciences PhDs, and on research expenditures funded both by NIH and by biopharmaceutical firms, to examine the responsiveness of the biomedical sciences labor supply to changes in market conditions. Consistent with previous studies, we find that enrollments and completions in biomedical sciences PhD programs are responsive to market conditions at the time of students' enrollment. More striking, however, is the close correspondence between graduate student enrollments and completions, and changes in availability of NIH-funded traineeships, fellowships, and research assistantships. PMID:24376573

  14. Career Advancement Outcomes in Academic Science, Technology, Engineering and Mathematics (STEM): Gender, Mentoring Resources, and Homophily

    Science.gov (United States)

    Lee, Sang Eun

    2017-01-01

    This dissertation examines gender differences in career advancement outcomes among academic science, technology, engineering and mathematics (STEM) scientists. In particular, this research examines effects of gender, PhD advisors and postdoctoral supervisors mentoring resources and gender homophily in the mentoring dyads on the career advancement…

  15. Licensure tests for special education teachers: how well they assess knowledge of reading instruction and mathematics.

    Science.gov (United States)

    Stotsky, Sandra

    2009-01-01

    To determine the extent to which knowledge of evidence-based reading instruction and mathematics is assessed on licensure tests for prospective special education teachers, this study drew on information provided by Educational Testing Service (ETS), the American Board for Certification of Teacher Excellence, and National Evaluation Systems (now Evaluation Systems group of Pearson). It estimated the percentage of test items on phonemic awareness, phonics, and vocabulary knowledge and on mathematics content. It also analyzed descriptions of ETS's tests of "principles of teaching and learning." Findings imply that prospective special education teachers should be required to take both a dedicated test of evidence-based reading instructional knowledge, as in California, Massachusetts, and Virginia, and a test of mathematical knowledge, as in Massachusetts. States must design their own tests of teaching principles to assess knowledge of evidence-based educational theories.

  16. Preparing Planetary Scientists to Engage Audiences

    Science.gov (United States)

    Shupla, C. B.; Shaner, A. J.; Hackler, A. S.

    2017-12-01

    While some planetary scientists have extensive experience sharing their science with audiences, many can benefit from guidance on giving presentations or conducting activities for students. The Lunar and Planetary Institute (LPI) provides resources and trainings to support planetary scientists in their communication efforts. Trainings have included sessions for students and early career scientists at conferences (providing opportunities for them to practice their delivery and receive feedback for their poster and oral presentations), as well as separate communication workshops on how to engage various audiences. LPI has similarly begun coaching planetary scientists to help them prepare their public presentations. LPI is also helping to connect different audiences and their requests for speakers to planetary scientists. Scientists have been key contributors in developing and conducting activities in LPI education and public events. LPI is currently working with scientists to identify and redesign short planetary science activities for scientists to use with different audiences. The activities will be tied to fundamental planetary science concepts, with basic materials and simple modifications to engage different ages and audience size and background. Input from the planetary science community on these efforts is welcome. Current results and resources, as well as future opportunities will be shared.

  17. Making Lists, Enlisting Scientists

    DEFF Research Database (Denmark)

    Jensen, Casper Bruun

    2011-01-01

    was the indicator conceptualised? How were notions of scientific knowledge and collaboration inscribed and challenged in the process? The analysis shows a two-sided process in which scientists become engaged in making lists but which is simultaneously a way for research policy to enlist scientists. In conclusion...

  18. Equations in mathematical physics a practical course

    CERN Document Server

    Pikulin, Victor P

    2001-01-01

    This handbook is addressed to students of technology institutf's where a course on mathematical physics of relatively reduced volume is offered, as well as to engineers and scientists. The aim of the handbook is to treat (demonstrate) the basic methods for solving the simplest problems of classical mathematical physics. The most basic among the methods considered hrre i8 the superposition method. It allows one, based on particular linearly indepmdent HolutionH (solution "atoms"), to obtain the solution of a given problem. To that end the "Hupply" of solution atoms must be complete. This method is a development of the well-known method of particular solutions from the theory of ordinar~' differelltial equations. In contrast to the case of ordinary differential equations, where the number of linearly independent 80lutions is always finite, for a linear partial differrntial equation a complete "supply" of solution atoms is always infinite. This infinite set of Holutions may be discrete (for example, for regular ...

  19. Equations in mathematical physics a practical course

    CERN Document Server

    Pikulin, Victor P

    2001-01-01

    Many physical processes in fields such as mechanics, thermodynamics, electricity, magnetism or optics are described by means of partial differential equations. The aim of the present book is to demonstrate the basic methods for solving the classical linear problems in mathematical physics of elliptic, parabolic and hyperbolic type. In particular, the methods of conformal mappings, Fourier analysis and Green`s functions are considered, as well as the perturbation method and integral transformation method, among others. Every chapter contains concrete examples with a detailed analysis of their solution. The book is intended as a textbook for students in mathematical physics, but will also serve as a handbook for scientists and engineers.   ------------ [A] manual for future engineers must strongly differ from the textbook for pure mathematicians, and the book by Pikulin and Pohozaev is the good example. (…) The purpose (…)  is to offer quick access to the principal facts (…) This well written book is a...

  20. An analysis of scientific poverty line of Iranian researchers and compared with top scientists of Islamic countries

    Directory of Open Access Journals (Sweden)

    Faramarz Soheili

    2014-02-01

    Full Text Available To study the scholarly production of Iran in the basic sciences and identify the place of the country among Islamic countries and the world, and also comparing the different disciplines in this field of knowledge, help to plan properly to provide necessary facilities for the advancement in these areas. The purpose of this study is the analysis of scientific poverty line of Iranian scientists and comparing them to the scientists of the superior Islamic countries. This is an applied research. Data were gathered and analyzed with the descriptive approach. In this study data collected from ISI during 1990 to 2011. Five disciplines of basic sciences, including mathematics, physics, chemistry, biology and earth science were studied. Yi and Xi and Sx scientometrics indicators were used. Based on the findings of this research, Iran with 35542 documents, academic ability 0.509 % and the relative performance of 0.468% is in the first place among the Islamic countries. Iran also is in the first place in physics, chemistry, earth science and mathematics and in second place in biology among the Islamic countries. Despite Iran's ranking first among Muslim countries, it is below the scientific poverty line in terms of Xi and Sx indicators. So it seems necessary to pay more attention to production and distribution of basic science especially in biology. The weaknesses and barriers also should be recognized.

  1. The pupils of L.P. Ginsburg - The graduates of the faculty of mathematics and mechanics of Leningrad State University

    Science.gov (United States)

    Matveev, S. K.; Arkhangelskaya, L. A.; Akimov, G. A.

    2018-05-01

    Isaak Pavlovich Ginzburg (1910-1979) was a professor at the hydroaeromechanics department of Leningrad State University, a prominent scientist, an outstanding organizer and a brilliant educator, who had trained more than one generation of specialists in the field of fluid, gas and plasma mechanics. Many of his students became major scientists and organizers of science. The present paper is devoted to the students of I.P. Ginzburg graduated from the Mathematics and Mechanics Faculty of Leningrad State University.

  2. Effective Mathematics Teaching in Finnish and Swedish Teacher Education Discourses

    Science.gov (United States)

    Hemmi, Kirsti; Ryve, Andreas

    2015-01-01

    This article explores effective mathematics teaching as constructed in Finnish and Swedish teacher educators' discourses. Based on interview data from teacher educators as well as data from feedback discussions between teacher educators and prospective teachers in Sweden and Finland, the analysis shows that several aspects of the recent…

  3. Code of conduct for scientists (abstract)

    International Nuclear Information System (INIS)

    Khurshid, S.J.

    2011-01-01

    The emergence of advanced technologies in the last three decades and extraordinary progress in our knowledge on the basic Physical, Chemical and Biological properties of living matter has offered tremendous benefits to human beings but simultaneously highlighted the need of higher awareness and responsibility by the scientists of 21 century. Scientist is not born with ethics, nor science is ethically neutral, but there are ethical dimensions to scientific work. There is need to evolve an appropriate Code of Conduct for scientist particularly working in every field of Science. However, while considering the contents, promulgation and adaptation of Codes of Conduct for Scientists, a balance is needed to be maintained between freedom of scientists and at the same time some binding on them in the form of Code of Conducts. The use of good and safe laboratory procedures, whether, codified by law or by common practice must also be considered as part of the moral duties of scientists. It is internationally agreed that a general Code of Conduct can't be formulated for all the scientists universally, but there should be a set of 'building blocks' aimed at establishing the Code of Conduct for Scientists either as individual researcher or responsible for direction, evaluation, monitoring of scientific activities at the institutional or organizational level. (author)

  4. Modeling the Activities of Scientists: Prospective Science Teachers' Poster Presentations in An STS Course

    Science.gov (United States)

    Dogan, Alev; Kaya, Osman Nafiz; Kilic, Ziya; Kilic, Esma; Aydogdu, Mustafa

    2004-01-01

    In this study, prospective science teachers' (PSTs) views about their poster presentations were investigated. These posters were developed through PSTs' online and library research and scientific mini-symposiums in chemistry related topics in the framework of science, technology and society course (STS). During the first four weeks of STS course,…

  5. Career Issues and Laboratory Climates: Different Challenges and Opportunities for Women Engineers and Scientists (survey of Fiscal Year 1997 Powre Awardees)

    Science.gov (United States)

    Rosser, Sue V.; Zieseniss, Mireille

    A survey of fiscal year 1997 POWRE (Professional Opportunities for Women in Research and Education) awardees from the National Science Foundation revealed that women engineers and scientists face similar issues, challenges, and opportunities and think that the laboratory climate has similar impacts on their careers. Separating responses of women scientists from those of women engineers revealed that 70% of both groups listed balancing work with family responsibilities as the most difficult issue. Discrepancies in percentages of women, coupled with differences among disciplinary and subdisciplinary cultures within science, engineering, mathematics, and technology fields, complicate work climates and their impact on women's careers. More frequently than women scientists, women engineers listed issues such as (a) low numbers of women leading to isolation, (b) lack of camaraderie and mentoring, (c) gaining credibility/respect from peers and administrators, (d) time management, (e) prioritizing responsibilities due to disproportionate demands, and (f) learning the rules of the game to survive in a male-dominated environment. Women engineers also listed two positive issues more frequently than women scientists: active recruitment/more opportunities for women and impact of successful women in the profession. The small number of women engineers may explain these results and suggests that it may be inappropriate to group them with other women scientists for analysis, programs, and policies.

  6. Mathematical modeling of earth's dynamical systems a primer

    CERN Document Server

    Slingerland, Rudy

    2011-01-01

    Mathematical Modeling of Earth's Dynamical Systems gives earth scientists the essential skills for translating chemical and physical systems into mathematical and computational models that provide enhanced insight into Earth's processes. Using a step-by-step method, the book identifies the important geological variables of physical-chemical geoscience problems and describes the mechanisms that control these variables. This book is directed toward upper-level undergraduate students, graduate students, researchers, and professionals who want to learn how to abstract complex systems into sets of dynamic equations. It shows students how to recognize domains of interest and key factors, and how to explain assumptions in formal terms. The book reveals what data best tests ideas of how nature works, and cautions against inadequate transport laws, unconstrained coefficients, and unfalsifiable models. Various examples of processes and systems, and ample illustrations, are provided. Students using this text should be f...

  7. Gender Attributions of Science and Academic Attributes: AN Examination of Undergraduate Science, Mathematics, and Technology Majors

    Science.gov (United States)

    Hughes, W. Jay

    Questionnaire data (n = 297) examined the relationship between gender attributions of science and academic attributes for undergraduate science, mathematics, and technology majors from the perspective of gender schema theory. Female and male respondents perceived that (a) the role of scientist was sex typed as masculine, (b) their majors were more valuable for members of their gender than for those of the opposite gender, (c) their majors were more valuable for themselves than for members of their gender in general. Androgynous attributions of scientists and the value of one's major for women predicted value for oneself, major confidence, and career confidence, and masculine attributions of scientists predicted class participation for female respondents. Feminine attributions of scientists predicted graduate school intent; value for women predicted major confidence and subjective achievement, and value for men predicted value for oneself, course confidence, and career confidence for male respondents.

  8. The Increase of Critical Thinking Skills through Mathematical Investigation Approach

    Science.gov (United States)

    Sumarna, N.; Wahyudin; Herman, T.

    2017-02-01

    Some research findings on critical thinking skills of prospective elementary teachers, showed a response that is not optimal. On the other hand, critical thinking skills will lead a student in the process of analysis, evaluation and synthesis in solving a mathematical problem. This study attempts to perform an alternative solution with a focus on mathematics learning conditions that is held in the lecture room through mathematical investigation approach. This research method was Quasi-Experimental design with pre-test post-test design. Data analysis using a mixed method with Embedded design. Subjects were regular students enrolled in 2014 at the study program of education of primary school teachers. The number of research subjects were 111 students consisting of 56 students in the experimental group and 55 students in the control group. The results of the study showed that (1) there is a significant difference in the improvement of critical thinking ability of students who receive learning through mathematical investigation approach when compared with students studying through expository approach, and (2) there is no interaction effect between prior knowledge of mathematics and learning factors (mathematical investigation and expository) to increase of critical thinking skills of students.

  9. Using Mathematics, Mathematical Applications, Mathematical Modelling, and Mathematical Literacy: A Theoretical Study

    Science.gov (United States)

    Mumcu, Hayal Yavuz

    2016-01-01

    The purpose of this theoretical study is to explore the relationships between the concepts of using mathematics in the daily life, mathematical applications, mathematical modelling, and mathematical literacy. As these concepts are generally taken as independent concepts in the related literature, they are confused with each other and it becomes…

  10. IPY Progress and Prospects

    Science.gov (United States)

    Carlson, D.

    2008-12-01

    We can summarize the IPY goals as: (a) make major advances in polar knowledge and understanding; (b) leave a legacy of new or enhanced observational systems, facilities and infrastructure; (c) excite a new generation of polar scientists and engineers, and (d) elicit exceptional interest and participation from polar residents, schoolchildren, the general public, and decision-makers, worldwide. This talk reports on the progress and prospects in each of those areas from an overall international view; separate talks will describe details of future researcher and the IPY outreach efforts. To achieve major advances in knowledge, IPY has entrained the intellectual resources of thousands of scientists, many more than expected, often from 'non- polar' nations, and representing an unprecedented breadth of scientific specialties; integration of those efforts across disciplines to achieve integrated system-level understanding remains a substantial challenge. Many national and international organizations prepare plans to sustain new and improved observational systems, but clear outcomes and the necessary resources remain elusive. International outreach networks gradually build breadth and strength, largely through IPY Polar Science Days and other internationally- coordinated IPY events. A new Association of Polar Early Career Scientists (APECS) devotes talent and energy to shaping the future of polar research. These activities and networks may, with time and with continued international coordination, achieve an exceptional level of interest and participation. In all areas, much work remains.

  11. Scientist Spotlight Homework Assignments Shift Students’ Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments (“Scientist Spotlights”) that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. PMID:27587856

  12. Marketing for scientists

    CERN Document Server

    Kuchner, Marc J

    2012-01-01

    It's a tough time to be a scientist: universities are shutting science departments, funding organisations are facing flat budgets, and many newspapers have dropped their science sections altogether. But according to Marc Kuchner, this anti-science climate doesn't have to equal a career death knell - it just means scientists have to be savvier about promoting their work and themselves. In "Marketing for Scientists", he provides clear, detailed advice about how to land a good job, win funding, and shape the public debate. As an astrophysicist at NASA, Kuchner knows that "marketing" can seem like a superficial distraction, whether your daily work is searching for new planets or seeking a cure for cancer. In fact, he argues, it's a critical component of the modern scientific endeavour, not only advancing personal careers but also society's knowledge. Kuchner approaches marketing as a science in itself. He translates theories about human interaction and sense of self into methods for building relationships - one o...

  13. Relational Analysis of Prospective Teachers' Emotions about Teaching, Emotional Styles, and Professional Plans about Teaching

    Science.gov (United States)

    Eren, Altay

    2014-01-01

    The present study examined the mediating roles of prospective teachers' emotional styles in the relationships between their emotions about teaching and professional plans about teaching. A total of 684 prospective teachers, majoring in computer education and instructional technology teaching, mathematics teaching, preschool teaching, special…

  14. Mathematical Footprints Discovering Mathematics Everywhere

    CERN Document Server

    Pappas, Theoni

    1999-01-01

    MATHEMATICAL FOOTPRINTS takes a creative look at the role mathematics has played since prehistoric times, and will play in the future, and uncovers mathematics where you least expect to find it from its many uses in medicine, the sciences, and its appearance in art to its patterns in nature and its central role in the development of computers. Pappas presents mathematical ideas in a readable non-threatening manner. MATHEMATICAL FOOTPRINTS is another gem by the creator of THE MATHEMATICS CALENDAR and author of THE JOY OF MATHEMATICS. "Pappas's books have been gold mines of mathematical ent

  15. Scientists Like Me: Faces of Discovery

    Science.gov (United States)

    Enevoldsen, A. A. G.; Culp, S.; Trinh, A.

    2010-08-01

    During the International Year of Astronomy, Pacific Science Center is hosting a photography exhibit: Scientists Like Me: Faces of Discovery. The exhibit contains photographs of real, current astronomers and scientists working in astronomy and aerospace-related fields from many races, genders, cultural affiliations and walks of life. The photographs were taken and posters designed by Alyssa Trinh and Sarah Culp, high school interns in Discovery Corps, Pacific Science Center's youth development program. The direct contact between the scientists and the interns helps the intended audience of teachers and families personally connect with scientists. The finished posters from this exhibit are available online (http://pacificsciencecenter.org/scientists) for teachers to use in their classrooms, in addition to being displayed at Pacific Science Center and becoming part of Pacific Science Center's permanent art rotation. The objective of this project was to fill a need for representative photographs of scientists in the world community. It also met two of the goals of International Year of Astronomy: to provide a modern image of science and scientists, and to improve the gender-balanced representation of scientists at all levels and promote greater involvement by all people in scientific and engineering careers. We would like to build on the success of this project and create an annual summer internship, with different interns, focusing on creating posters for different fields of science.

  16. Essential Mathematics for the Physical Sciences; Volume I: Homogeneous boundary value problems, Fourier methods, and special functions

    Science.gov (United States)

    Borden, Brett; Luscombe, James

    2017-10-01

    Physics is expressed in the language of mathematics; it is deeply ingrained in how physics is taught and how it's practiced. A study of the mathematics used in science is thus a sound intellectual investment for training as scientists and engineers. This first volume of two is centered on methods of solving partial differential equations and the special functions introduced. This text is based on a course offered at the Naval Postgraduate School (NPS) and while produced for NPS needs, it will serve other universities well.

  17. Prospective elementary school teachers’ ways of making sense of mathematical problem posing (Modos en que futuros profesores de primaria dan sentido a la invención de problemas matemáticos

    Directory of Open Access Journals (Sweden)

    Olive Chapman

    2012-06-01

    Full Text Available The study tackled prospective teachers’ sense-making of mathematical problem posing and the impact of posing different contextual problems on their learning. Focus was on the generation of new problems and reformulation of given problems. Participants were 40 prospective elementary teachers. The findings provide insights into possible ways these teachers could make sense of problem posing of contextual mathematical problems and the learning afforded by posing diverse problems. Highlighted are five perspectives and nine categories of problem posing tasks to support development of proficiency in problem-posing knowledge for teaching. El estudio indagó sobre los modos en que futuros profesores de primaria dan sentido a la invención de problemas matemáticos y el impacto de plantear diferentes problemas contextualizados en su aprendizaje. El foco fue la invención de nuevos problemas y la reformulación de otros dados. Los participantes fueron 40 futuros maestros de primaria. Los resultados proporcionan elementos sobre posibles modos en que estos maestros dan sentido a la invención de problemas matemáticos y el aprendizaje que ofrece plantear diversos problemas. Se destacan cinco perspectivas y nueve categorías de tareas en la invención de problemas para apoyar el desarrollo de la competencia de plantear problemas en la enseñanza.

  18. Data Prospecting Framework - a new approach to explore "big data" in Earth Science

    Science.gov (United States)

    Ramachandran, R.; Rushing, J.; Lin, A.; Kuo, K.

    2012-12-01

    Due to advances in sensors, computation and storage, cost and effort required to produce large datasets have been significantly reduced. As a result, we are seeing a proliferation of large-scale data sets being assembled in almost every science field, especially in geosciences. Opportunities to exploit the "big data" are enormous as new hypotheses can be generated by combining and analyzing large amounts of data. However, such a data-driven approach to science discovery assumes that scientists can find and isolate relevant subsets from vast amounts of available data. Current Earth Science data systems only provide data discovery through simple metadata and keyword-based searches and are not designed to support data exploration capabilities based on the actual content. Consequently, scientists often find themselves downloading large volumes of data, struggling with large amounts of storage and learning new analysis technologies that will help them separate the wheat from the chaff. New mechanisms of data exploration are needed to help scientists discover the relevant subsets We present data prospecting, a new content-based data analysis paradigm to support data-intensive science. Data prospecting allows the researchers to explore big data in determining and isolating data subsets for further analysis. This is akin to geo-prospecting in which mineral sites of interest are determined over the landscape through screening methods. The resulting "data prospects" only provide an interaction with and feel for the data through first-look analytics; the researchers would still have to download the relevant datasets and analyze them deeply using their favorite analytical tools to determine if the datasets will yield new hypotheses. Data prospecting combines two traditional categories of data analysis, data exploration and data mining within the discovery step. Data exploration utilizes manual/interactive methods for data analysis such as standard statistical analysis and

  19. Teaching Prospective Teachers about Fractions: Historical and Pedagogical Perspectives

    Science.gov (United States)

    Park, Jungeun; Gucler, Beste; McCrory, Raven

    2013-01-01

    Research shows that students, and sometimes teachers, have trouble with fractions, especially conceiving of fractions as numbers that extend the whole number system. This paper explores how fractions are addressed in undergraduate mathematics courses for prospective elementary teachers (PSTs). In particular, we explore how, and whether, the…

  20. International Summer School on Mathematical Systems Theory and Economics

    CERN Document Server

    Szegö, G

    1969-01-01

    The International Summer School on Mathematical Systems Theory and Economics was held at the Villa Monastero in Varenna, Italy, from June 1 through June 12, 1967. The objective of this Summer School was to review the state of the art and the prospects for the application of the mathematical theory of systems to the study and the solution of economic problems. Particular emphasis was given to the use of the mathematical theory of control for the solution of problems in economics. It was felt that the publication of a volume collecting most of the lectures given at the school would show the current status of the application of these methods. The papers are organized into four sections arranged into two volumes: basic theories and optimal control of economic systems which appear in the first volume, and special mathematical problems and special applications which are contained in the second volume. Within each section the papers follow in alphabetical order by author. The seven papers on basic theories are a rat...

  1. Engaging Scientists in NASA Education and Public Outreach: Tools for Scientist Engagement

    Science.gov (United States)

    Buxner, Sanlyn; Meinke, B. K.; Hsu, B.; Shupla, C.; Grier, J. A.; E/PO Community, SMD

    2014-01-01

    The NASA Science Education and Public Outreach Forums support the NASA Science Mission Directorate (SMD) and its education and public outreach (E/PO) community through a coordinated effort to enhance the coherence and efficiency of SMD-funded E/PO programs. The Forums foster collaboration between scientists with content expertise and educators with pedagogy expertise. We present tools and resources to support astronomers’ engagement in E/PO efforts. Among the tools designed specifically for scientists are a series of one-page E/PO-engagement Tips and Tricks guides, a sampler of electromagnetic-spectrum-related activities, and NASA SMD Scientist Speaker’s Bureau (http://www.lpi.usra.edu/education/speaker). Scientists can also locate resources for interacting with diverse audiences through a number of online clearinghouses, including: NASA Wavelength, a digital collection of peer-reviewed Earth and space science resources for educators of all levels (http://nasawavelength.org), and EarthSpace (http://www.lpi.usra.edu/earthspace), a community website where faculty can find and share teaching resources for the undergraduate Earth and space sciences classroom. Learn more about the opportunities to become involved in E/PO and to share your science with students, educators, and the general public at http://smdepo.org.

  2. Helping Young People Engage with Scientists

    Science.gov (United States)

    Leggett, Maggie; Sykes, Kathy

    2014-01-01

    There can be multiple benefits of scientists engaging with young people, including motivation and inspiration for all involved. But there are risks, particularly if scientists do not consider the interests and needs of young people or listen to what they have to say. We argue that "dialogue" between scientists, young people and teachers…

  3. Prospects of Cloud Computing as Safe Haven for Improving Mathematics Education in Nigeria Tertiary Institutions

    OpenAIRE

    Iji, Clement Onwu; Abah, Joshua Abah

    2016-01-01

    International audience; Historically, mathematics education has been bedeviled by the deployment of instructional strategies that seriously stunt the growth of students. Methodologies and approaches of instructional delivery in tertiary institutions have raised the need for technological augmentation for both students and mathematics educators. Cloud computing yield itself to this quest by strengthening individualized learning via unrestricted access to infrastructure, platforms, content, and...

  4. Mathematical Systems Theory : from Behaviors to Nonlinear Control

    CERN Document Server

    Julius, A; Pasumarthy, Ramkrishna; Rapisarda, Paolo; Scherpen, Jacquelien

    2015-01-01

    This treatment of modern topics related to mathematical systems theory forms the proceedings of a workshop, Mathematical Systems Theory: From Behaviors to Nonlinear Control, held at the University of Groningen in July 2015. The workshop celebrated the work of Professors Arjan van der Schaft and Harry Trentelman, honouring their 60th Birthdays. The first volume of this two-volume work covers a variety of topics related to nonlinear and hybrid control systems. After giving a detailed account of the state of the art in the related topic, each chapter presents new results and discusses new directions. As such, this volume provides a broad picture of the theory of nonlinear and hybrid control systems for scientists and engineers with an interest in the interdisciplinary field of systems and control theory. The reader will benefit from the expert participants’ ideas on exciting new approaches to control and system theory and their predictions of future directions for the subject that were discussed at the worksho...

  5. Professional Ethics for Climate Scientists

    Science.gov (United States)

    Peacock, K.; Mann, M. E.

    2014-12-01

    Several authors have warned that climate scientists sometimes exhibit a tendency to "err on the side of least drama" in reporting the risks associated with fossil fuel emissions. Scientists are often reluctant to comment on the implications of their work for public policy, despite the fact that because of their expertise they may be among those best placed to make recommendations about such matters as mitigation and preparedness. Scientists often have little or no training in ethics or philosophy, and consequently they may feel that they lack clear guidelines for balancing the imperative to avoid error against the need to speak out when it may be ethically required to do so. This dilemma becomes acute in cases such as abrupt ice sheet collapse where it is easier to identify a risk than to assess its probability. We will argue that long-established codes of ethics in the learned professions such as medicine and engineering offer a model that can guide research scientists in cases like this, and we suggest that ethical training could be regularly incorporated into graduate curricula in fields such as climate science and geology. We recognize that there are disanalogies between professional and scientific ethics, the most important of which is that codes of ethics are typically written into the laws that govern licensed professions such as engineering. Presently, no one can legally compel a research scientist to be ethical, although legal precedent may evolve such that scientists are increasingly expected to communicate their knowledge of risks. We will show that the principles of professional ethics can be readily adapted to define an ethical code that could be voluntarily adopted by scientists who seek clearer guidelines in an era of rapid climate change.

  6. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class.

    Science.gov (United States)

    Schinske, Jeffrey N; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical examples of scientists in an introductory biology class at a diverse community college. Scientist Spotlights additionally served as tools for content coverage, as scientists were selected to match topics covered each week. We analyzed beginning- and end-of-course essays completed by students during each of five courses with Scientist Spotlights and two courses with equivalent homework assignments that lacked connections to the stories of diverse scientists. Students completing Scientist Spotlights shifted toward counterstereotypical descriptions of scientists and conveyed an enhanced ability to personally relate to scientists following the intervention. Longitudinal data suggested these shifts were maintained 6 months after the completion of the course. Analyses further uncovered correlations between these shifts, interest in science, and course grades. As Scientist Spotlights require very little class time and complement existing curricula, they represent a promising tool for enhancing science identity, shifting stereotypes, and connecting content to issues of equity and diversity in a broad range of STEM classrooms. © 2016 J. N. Schinske et al. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  7. Gifted and Talented Students’ Images of Scientists

    Directory of Open Access Journals (Sweden)

    Sezen Camcı-Erdoğan

    2013-06-01

    Full Text Available The purpose of this study was to investigate gifted students’ images of scientists. The study involved 25 students in grades 7 and 8. The Draw-a-Scientist Test (DAST (Chamber, 183 was used to collect data. Drawings were eval-uated using certain criterion such as a scien-tist’s appearance and investigation, knowledge and technology symbols and gender and working style, place work, expressions, titles-captions-symbols and alternative images and age. The results showed that gifted students’ perceptions about scientists were stereotypical, generally with glasses and laboratory coats and working with experiment tubes, beakers indoors and using books, technological tools and dominantly lonely males. Most gifted stu-dents drew male scientists. Although females drew male scientists, none of the boys drew female scientist.

  8. A numerical library in Java for scientists and engineers

    CERN Document Server

    Lau, Hang T

    2003-01-01

    At last researchers have an inexpensive library of Java-based numeric procedures for use in scientific computation. The first and only book of its kind, A Numeric Library in Java for Scientists and Engineers is a translation into Java of the library NUMAL (NUMerical procedures in ALgol 60). This groundbreaking text presents procedural descriptions for linear algebra, ordinary and partial differential equations, optimization, parameter estimation, mathematical physics, and other tools that are indispensable to any dynamic research group. The book offers test programs that allow researchers to execute the examples provided; users are free to construct their own tests and apply the numeric procedures to them in order to observe a successful computation or simulate failure. The entry for each procedure is logically presented, with name, usage parameters, and Java code included. This handbook serves as a powerful research tool, enabling the performance of critical computations in Java. It stands as a cost-effi...

  9. Prospective Teachers’ Tendencies to Utilize From the Facilities of Contemporary Educational Technology

    Directory of Open Access Journals (Sweden)

    Gizem SAYGILI

    2016-07-01

    Full Text Available In terms of effectiveness and efficiency, it is important to determine the views of prospective teachers related to taking advantage of the facilities of contemporary educational technology. This study which aims to identify prospective teachers’ attitudes towards computer-assisted learning was conducted with 140 prospective teachers (86 female, 54 male who have been attending pedagogical formation education at Süleyman Demirel University in the 2013 academic year. In this study, in eight different fields of prospective teachers' attitudes towards computer assisted education were examined with different variables such as gender, major and graduation year. As a data collection tool, the "Computer Assisted Education Attitude Scale" was used in order to determine the tendencies of prospective teachers towards the use of computer-assisted learning in different fields such as physical sciences, social sciences, health sciences, fine arts, theology, mathematics and Turkish language. In the statistical analysis, frequency analysis, descriptive statistics, nonparametric statistical technics were used. As a result of the analysis it was identified that teachers participating our study exhibited substandard attitudes towards computer-assisted education. In computer-assisted education, female prospective teachers had higher attitude level than men prospective teachers. In addition, attitude scores of participants of mathematics, health sciences, fine arts and science was higher than the participants of the Turkish language, foreign languages, social sciences and theology departments. There were statistically significant difference between attitude scores of participants of different disciplines. Results of the research findings are expected to contribute to the widespread use of instructional technology, and are expected to lead to applications in other fields.Keywords: Teaching Profession, Education, Technology, Computer-Assisted Education, Attitude

  10. The physician-scientists: rare species in Africa.

    Science.gov (United States)

    Adefuye, Anthonio Oladele; Adeola, Henry Ademola; Bezuidenhout, Johan

    2018-01-01

    There is paucity of physician-scientists in Africa, resulting in overt dependence of clinical practice on research findings from advanced "first world" countries. Physician-scientists include individuals with a medical degree alone or combined with other advanced degrees (e.g. MD/MBChB and PhD) with a career path in biomedical/ translational and patient-oriented/evaluative science research. The paucity of clinically trained research scientists in Africa could result in dire consequences as exemplified in the recent Ebola virus epidemic in West Africa, where shortage of skilled clinical scientists, played a major role in disease progression and mortality. Here we contextualise the role of physician-scientist in health care management, highlight factors limiting the training of physician-scientist in Africa and proffer implementable recommendations to address these factors.

  11. ICT integration in mathematics initial teacher training and its impact on visualization: the case of GeoGebra

    Science.gov (United States)

    Dockendorff, Monika; Solar, Horacio

    2018-01-01

    This case study investigates the impact of the integration of information and communications technology (ICT) in mathematics visualization skills and initial teacher education programmes. It reports on the influence GeoGebra dynamic software use has on promoting mathematical learning at secondary school and on its impact on teachers' conceptions about teaching and learning mathematics. This paper describes how GeoGebra-based dynamic applets - designed and used in an exploratory manner - promote mathematical processes such as conjectures. It also refers to the changes prospective teachers experience regarding the relevance visual dynamic representations acquire in teaching mathematics. This study observes a shift in school routines when incorporating technology into the mathematics classroom. Visualization appears as a basic competence associated to key mathematical processes. Implications of an early integration of ICT in mathematics initial teacher training and its impact on developing technological pedagogical content knowledge (TPCK) are drawn.

  12. Михайло Васильович Остроградський та його творчий спадок у галузі механіки

    OpenAIRE

    Струтинський, Василь; Саленко, Олександр

    2013-01-01

    The article was considered the mains scientific achievements of outstanding scientist M. V. Ostrogradsky (1801–1861). Given a short list of his works in the field of mathematics and mechanics. Indicated work that was performed for the first time in the world of science. Confirmed the relevance of many works for today and their developmentnt prospect.

  13. The complex thinking and prospect of actions of future doctors

    Directory of Open Access Journals (Sweden)

    Patrícia Segtowich

    2011-12-01

    Full Text Available This paper aims at discussing prospects of actions manifested by future doctors in the beginning of their doctoral training. The research started through my involvement in the ambit of doctoral education in the curriculum component Epistemological Basis of Research on Education in Science and Mathematics, offered in the Postgraduate Course in Science and Mathematics Education, at Federal University of Pori (UFPA in 2010 academic year. At these meetings, the teachers trainers requested the doctoral students, in pairs, to elaborate three questions about the following positioning: "HOW DO I SEE MYSELF AS A DOCTOR?" These questions were discussed by all the doctoral students and subsequently reduced to five to be answered by all individually. The responses to this questionnaire provided the data for this research. The answers revealed that doctoral students are not tied to methodologies or unique processes, this positioning being demonstrated through prospects of performance in ways that were diverse and interactive

  14. Chinese Scientists | Women in Science | Initiatives | Indian Academy ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Chinese Scientists. Chinese Scientists. One third Chinese scientists are women [What about India?] ... scientists, at a young age of 52, after a valiant battle with cancer, today on 29th March 2016 in Delhi.

  15. Responsability of scientists

    CERN Document Server

    Harigel, G G

    1997-01-01

    This seminar is intended to give some practical help for CERN guides,who are confronted with questions from visitors concerning the purpose of research in general and - in paticular - of the work in our laboratory, its possible application and benefits.The dual use of scientific results will be emphasised by examples across natural sciences. Many investigations were neutral,others aimed at peaceful and beneficial use for humanity, a few were made for destructive purposes. Researchers have no or very little influence on the application of their results. The interplay between natural scientists ,social scientists,politicians,and their dependence on economic factors will be discussed.

  16. Investigating Primary School Mathematics Teachers’ Deductive Reasoning Ability through Varignon’s Theorem

    Science.gov (United States)

    Jupri, A.

    2017-09-01

    The responsibility to promote the growth of deductive reasoning ability of school students through learning mathematics is in the hand of mathematics teachers and particularly primary school mathematics teachers. However, how we can make sure whether teachers are able to do so. To investigate this issue, we conducted a three-step of an exploratory survey study. First, we designed tasks from the Varignon’s theorem. Second, we administered an individual written test involving twenty master students of primary education program, in which they are prospective of and primary school mathematics teachers. Finally, we address the results in the light of Van Hiele theory. The results showed that participated students lack of deductive reasoning ability in the context of geometry. For further research, we wonder whether the designed tasks are also applicable to assess student deductive reasoning ability if the students have acquired appropriate teaching.

  17. Assessing Key Epistemic Features of Didactic-Mathematical Knowledge of Prospective Teachers: The Case of The Derivative

    Science.gov (United States)

    Pino-Fan, Luis R.; Godino, Juan D.; Font, Vicenç

    2018-01-01

    In recent years, there has been a growing interest in studying the knowledge that mathematics teachers require in order for their teaching to be effective. However, only a few studies have focused on the design and application of instruments that are capable of exploring different aspects of teachers' didactic-mathematical knowledge about specific…

  18. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-efficacy Beliefs towards Mathematics and Mathematics Teaching

    OpenAIRE

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships betweenself-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacybeliefs toward mathematics teaching, mathematics teaching anxiety variables andtesting the relationships between these variables with structural equationmodel. The sample of the research, which was conducted in accordance withrelational survey model, consists of 380 university students, who studied atthe department of Elementary Mathematics Educ...

  19. The Effects of an Undergraduate Algebra Course on Prospective Middle School Teachers' Understanding of Functions, Especially Quadratic Functions

    Science.gov (United States)

    Duarte, Jonathan T.

    2010-01-01

    Although current reform movements have stressed the importance of developing prospective middle school mathematics teachers' subject matter knowledge and understandings, there is a dearth of research studies with regard to prospective middle school teachers' confidence and knowledge with respect to quadratic functions. This study was intended to…

  20. Scientists Discover Sugar in Space

    Science.gov (United States)

    2000-06-01

    The prospects for life in the Universe just got sweeter, with the first discovery of a simple sugar molecule in space. The discovery of the sugar molecule glycolaldehyde in a giant cloud of gas and dust near the center of our own Milky Way Galaxy was made by scientists using the National Science Foundation's 12 Meter Telescope, a radio telescope on Kitt Peak, Arizona. "The discovery of this sugar molecule in a cloud from which new stars are forming means it is increasingly likely that the chemical precursors to life are formed in such clouds long before planets develop around the stars," said Jan M. Hollis of the NASA Goddard Space Flight Center in Greenbelt, MD. Hollis worked with Frank J. Lovas of the University of Illinois and Philip R. Jewell of the National Radio Astronomy Observatory (NRAO) in Green Bank, WV, on the observations, made in May. The scientists have submitted their results to the Astrophysical Journal Letters. "This discovery may be an important key to understanding the formation of life on the early Earth," said Jewell. Conditions in interstellar clouds may, in some cases, mimic the conditions on the early Earth, so studying the chemistry of interstellar clouds may help scientists understand how bio-molecules formed early in our planet's history. In addition, some scientists have suggested that Earth could have been "seeded" with complex molecules by passing comets, made of material from the interstellar cloud that condensed to form the Solar System. Glycolaldehyde, an 8-atom molecule composed of carbon, oxygen and hydrogen, can combine with other molecules to form the more-complex sugars Ribose and Glucose. Ribose is a building block of nucleic acids such as RNA and DNA, which carry the genetic code of living organisms. Glucose is the sugar found in fruits. Glycolaldehyde contains exactly the same atoms, though in a different molecular structure, as methyl formate and acetic acid, both of which were detected previously in interstellar clouds

  1. Methods of Mathematical and Computational Physics for Industry, Science, and Technology

    Science.gov (United States)

    Melnik, Roderick V. N.; Voss, Frands

    2006-11-01

    Many industrial problems provide scientists with important and challenging problems that need to be solved today rather than tomorrow. The key role of mathematical physics, modelling, and computational methodologies in addressing such problems continues to increase. Science has never been exogenous to applied research. Gigantic ships and steam engines, repeating catapult of Dionysius and the Antikythera `computer' invented around 80BC are just a few examples demonstrating a profound link between theoretical and applied science in the ancient world. Nowadays, many industrial problems are typically approached by groups of researchers who are working as a team bringing their expertise to the success of the entire enterprise. Since the late 1960s several groups of European mathematicians and scientists have started organizing regular meetings, seeking new challenges from industry and contributing to the solution of important industrial problems. In particular, this often took the format of week-long workshops originally initiated by the Oxford Study Groups with Industry in 1968. Such workshops are now held in many European countries (typically under the auspices of the European Study Groups with Industry - ESGI), as well as in Australia, Canada, the United States, and other countries around the world. Problems given by industrial partners are sometimes very difficult to complete within a week. However, during a week of brainstorming activities these problems inevitably stimulate developing fruitful new ideas, new approaches, and new collaborations. At the same time, there are cases where as soon as the problem is formulated mathematically, it is relatively easy to solve. Hence, putting the industrial problem into a mathematical framework, based on physical laws, often provides a key element to the success. In addition to this important first step, the value in such cases is the real, practical applicability of the results obtained for an industrial partner who presents

  2. Nature's longest threads new frontiers in the mathematics and physics of information in biology

    CERN Document Server

    Sreekantan, B V

    2014-01-01

    Organisms endowed with life show a sense of awareness, interacting with and learning from the universe in and around them. Each level of interaction involves transfer of information of various kinds, and at different levels. Each thread of information is interlinked with the other, and woven together, these constitute the universe — both the internal self and the external world — as we perceive it. They are, figuratively speaking, Nature's longest threads. This volume reports inter-disciplinary research and views on information and its transfer at different levels of organization by reputed scientists working on the frontier areas of science. It is a frontier where physics, mathematics and biology merge seamlessly, binding together specialized streams such as quantum mechanics, dynamical systems theory, and mathematics. The topics would interest a broad cross-section of researchers in life sciences, physics, cognition, neuroscience, mathematics and computer science, as well as interested amateurs, familia...

  3. Bohmian mechanics. The physics and mathematics of quantum theory

    International Nuclear Information System (INIS)

    Duerr, Detlef; Teufel, Stefan

    2009-01-01

    Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schroedinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. (orig.)

  4. Bohmian mechanics. The physics and mathematics of quantum theory

    Energy Technology Data Exchange (ETDEWEB)

    Duerr, Detlef [Muenchen Univ. (Germany). Fakultaet Mathematik; Teufel, Stefan [Tuebingen Univ. (Germany). Mathematisches Inst.

    2009-07-01

    Bohmian Mechanics was formulated in 1952 by David Bohm as a complete theory of quantum phenomena based on a particle picture. It was promoted some decades later by John S. Bell, who, intrigued by the manifestly nonlocal structure of the theory, was led to his famous Bell's inequalities. Experimental tests of the inequalities verified that nature is indeed nonlocal. Bohmian mechanics has since then prospered as the straightforward completion of quantum mechanics. This book provides a systematic introduction to Bohmian mechanics and to the mathematical abstractions of quantum mechanics, which range from the self-adjointness of the Schroedinger operator to scattering theory. It explains how the quantum formalism emerges when Boltzmann's ideas about statistical mechanics are applied to Bohmian mechanics. The book is self-contained, mathematically rigorous and an ideal starting point for a fundamental approach to quantum mechanics. It will appeal to students and newcomers to the field, as well as to established scientists seeking a clear exposition of the theory. (orig.)

  5. Frederic Joliot-Curie, a tormented scientist

    International Nuclear Information System (INIS)

    Pinault, M.

    2000-01-01

    This article is a short biography of the French scientist Frederic Joliot-Curie. His fight for a peaceful use of atomic energy, his responsibilities as nuclear physicist and as the first director of the French atomic commission (CEA) have led him to face contradictions very difficult to manage. All along his career as a scientist and as a high ranked civil servant, F.Joliot-Curie tried to find an ethical way for scientists in modern societies. (A.C.)

  6. Predicting Relationships between Mathematics Anxiety, Mathematics Teaching Anxiety, Self-Efficacy Beliefs towards Mathematics and Mathematics Teaching

    Science.gov (United States)

    Unlu, Melihan; Ertekin, Erhan; Dilmac, Bulent

    2017-01-01

    The purpose of the research is to investigate the relationships between self-efficacy beliefs toward mathematics, mathematics anxiety and self-efficacy beliefs toward mathematics teaching, mathematics teaching anxiety variables and testing the relationships between these variables with structural equation model. The sample of the research, which…

  7. Do scientists trace hot topics?

    Science.gov (United States)

    Wei, Tian; Li, Menghui; Wu, Chensheng; Yan, Xiao-Yong; Fan, Ying; Di, Zengru; Wu, Jinshan

    2013-01-01

    Do scientists follow hot topics in their scientific investigations? In this paper, by performing analysis to papers published in the American Physical Society (APS) Physical Review journals, it is found that papers are more likely to be attracted by hot fields, where the hotness of a field is measured by the number of papers belonging to the field. This indicates that scientists generally do follow hot topics. However, there are qualitative differences among scientists from various countries, among research works regarding different number of authors, different number of affiliations and different number of references. These observations could be valuable for policy makers when deciding research funding and also for individual researchers when searching for scientific projects.

  8. Science Education and the Emergence of the Specialized Scientist in Nineteenth Century Greece

    Science.gov (United States)

    Tampakis, Konstantinos

    2013-04-01

    In this paper, I describe the strong and reciprocal relations between the emergence of the specialized expert in the natural sciences and the establishment of science education, in early Modern Greece. Accordingly, I show how science and public education interacted within the Greek state from its inception in the early 1830, to the first decade of the twentieth century, when the University of Athens established an autonomous Mathematics and Physics School. Several factors are taken into account, such as the negotiations of Western educational theories and practices within a local context, the discourses of the science savants of the University of Athens, the role of the influential Greek pedagogues of the era, the state as an agent which imposed restrictions or facilitated certain developments and finally the intellectual and cultural aspirations of the nation itself. Science education is shown to be of fundamental importance for Greek scientists. The inclusion of science within the school system preceded and promoted the appearance of a scientific community and the institution of science courses was instrumental for the emergence of the first trained Greek scientists. Thus, the conventional narrative that would have science appearing in the classrooms as an aftermath of the emergence of a scientific community is problematized.

  9. Preparing tomorrow's behavioral medicine scientists and practitioners: a survey of future directions for education and training.

    Science.gov (United States)

    Goldstein, Carly M; Minges, Karl E; Schoffman, Danielle E; Cases, Mallory G

    2017-02-01

    Behavioral medicine training is due for an overhaul given the rapid evolution of the field, including a tight funding climate, changing job prospects, and new research and industry collaborations. The purpose of the present study was to collect responses from trainee and practicing members of a multidisciplinary professional society about their perceptions of behavioral medicine training and their suggestions for changes to training for future behavioral medicine scientists and practitioners. A total of 162 faculty and 110 students (total n = 272) completed a web-based survey on strengths of their current training programs and ideas for changes. Using a mixed-methods approach, the survey findings are used to highlight seven key areas for improved preparation of the next generation of behavioral medicine scientists and practitioners, which are grant writing, interdisciplinary teamwork, advanced statistics and methods, evolving research program, publishable products from coursework, evolution and use of theory, and non-traditional career paths.

  10. The invention of physical science intersections of mathematics, theology and natural philosophy since the seventeenth century : essays in honor of Erwin N. Hiebert

    CERN Document Server

    Richards, Joan L; Stuewer, Roger H

    1992-01-01

    Modern physical science is constituted by specialized scientific fields rooted in experimental laboratory work and in rational and mathematical representations. Contemporary scientific explanation is rigorously differentiated from religious interpretation, although, to be sure, scientists sometimes do the philosophical work of interpreting the metaphysics of space, time, and matter. However, it is rare that either theologians or philosophers convincingly claim that they are doing the scientific work of physical scientists and mathematicians. The rigidity of these divisions and differentiations is relatively new. Modern physical science was invented slowly and gradually through interactions of the aims and contents of mathematics, theology, and natural philosophy since the seventeenth century. In essays ranging in focus from seventeenth-century interpretations of heavenly comets to twentieth-century explanations of tracks in bubble chambers, ten historians of science demonstrate metaphysical and theological th...

  11. Methods for constructing exact solutions of partial differential equations mathematical and analytical techniques with applications to engineering

    CERN Document Server

    Meleshko, Sergey V

    2005-01-01

    Differential equations, especially nonlinear, present the most effective way for describing complex physical processes. Methods for constructing exact solutions of differential equations play an important role in applied mathematics and mechanics. This book aims to provide scientists, engineers and students with an easy-to-follow, but comprehensive, description of the methods for constructing exact solutions of differential equations.

  12. Operations research, engineering, and cyber security trends in applied mathematics and technology

    CERN Document Server

    Rassias, Themistocles

    2017-01-01

    Mathematical methods and theories with interdisciplinary applications are presented in this book. The eighteen contributions presented in this Work have been written by eminent scientists; a few papers are based on talks which took place at the International Conference at the Hellenic Artillery School in May 2015. Each paper evaluates possible solutions to long-standing problems such as the solvability of the direct electromagnetic scattering problem, geometric approaches to cyber security, ellipsoid targeting with overlap, non-equilibrium solutions of dynamic networks, measuring ballistic dispersion, elliptic regularity theory for the numerical solution of variational problems, approximation theory for polynomials on the real line and the unit circle, complementarity and variational inequalities in electronics, new two-slope parameterized achievement scalarizing functions for nonlinear multiobjective optimization, and strong and weak convexity of closed sets in a Hilbert space. Graduate students, scientists,...

  13. Mathematics related anxiety: Mathematics bogeyman or not?

    Directory of Open Access Journals (Sweden)

    Videnović Marina

    2011-01-01

    Full Text Available Data of the PISA 2003 survey indicate high levels of mathematics anxiety of students in Serbia. More than half of our students worry whether they will have difficulties in mathematics class or whether they will earn poor marks. Aims of this study therefore are: examining relationship between math anxiety and achievement at mathematics literacy scale; establishing possible predictors of math anxiety and identification of students' groups in relations to their relationship towards mathematics as a subject. Mathematics anxiety is statistically negatively correlated with school achievement and achievement at mathematics literacy scale. Socio-demographic factors, motivational and cognitive aspects related to learning mathematics, perception of school and classroom climate explain 40% variance of mathematics anxiety. Based on students' relationship towards mathematics they cam be divided into three groups; while dimensions that apart them are uninterested-interested in mathematics and presence-absence of anxiety. The group displaying anxiety scores lowest among the three. Applying qualitative analysis students' and teachers' attitudes on specific issues related to teaching and learning mathematics was examined.

  14. Teachers' Mathematics as Mathematics-at-Work

    Science.gov (United States)

    Bednarz, Nadine; Proulx, Jérôme

    2017-01-01

    Through recognising mathematics teachers as professionals who use mathematics in their workplace, this article traces a parallel between the mathematics enacted by teachers in their practice and the mathematics used in workplaces found in studies of professionals (e.g. nurses, engineers, bankers). This parallel is developed through the five…

  15. Scientists' coping strategies in an evolving research system: the case of life scientists in the UK

    NARCIS (Netherlands)

    Morris, Norma; Rip, Arie

    2006-01-01

    Scientists in academia have struggled to adjust to a policy climate of uncertain funding and loss of freedom from direction and control. How UK life scientists have negotiated this challenge, and with what consequences for their research and the research system, is the empirical entrance point of

  16. Prospects and limitations of mathematical methods for decision making in nonlinear complex systems

    DEFF Research Database (Denmark)

    Starke, Jens; Berkemer, Rainer

    2007-01-01

    This report discusses the art of scientific modeling in general. Different modeling approaches and their investigation are outlined. The final issue is to elaborate on the preconditions for utilizing mathematical models for decision making. We are very much indebted to the participants of the wor...

  17. Reciprocal Engagement Between a Scientist and Visual Displays

    Science.gov (United States)

    Nolasco, Michelle Maria

    In this study the focus of investigation was the reciprocal engagement between a professional scientist and the visual displays with which he interacted. Visual displays are considered inextricable from everyday scientific endeavors and their interpretation requires a "back-and-forthness" between the viewers and the objects being viewed. The query that drove this study was: How does a scientist engage with visual displays during the explanation of his understanding of extremely small biological objects? The conceptual framework was based in embodiment where the scientist's talk, gesture, and body position were observed and microanalyzed. The data consisted of open-ended interviews that positioned the scientist to interact with visual displays when he explained the structure and function of different sub-cellular features. Upon microanalyzing the scientist's talk, gesture, and body position during his interactions with two different visual displays, four themes were uncovered: Naming, Layering, Categorizing, and Scaling . Naming occurred when the scientist added markings to a pre-existing, hand-drawn visual display. The markings had meaning as stand-alone label and iconic symbols. Also, the markings transformed the pre-existing visual display, which resulted in its function as a new visual object. Layering occurred when the scientist gestured over images so that his gestures aligned with one or more of the image's features, but did not touch the actual visual display. Categorizing occurred when the scientist used contrasting categories, e.g. straight vs. not straight, to explain his understanding about different characteristics that the small biological objects held. Scaling occurred when the scientist used gesture to resize an image's features so that they fit his bodily scale. Three main points were drawn from this study. First, the scientist employed a variety of embodied strategies—coordinated talk, gesture, and body position—when he explained the structure

  18. Examining Fourth-Grade Mathematics Writing: Features of Organization, Mathematics Vocabulary, and Mathematical Representations

    Science.gov (United States)

    Hebert, Michael A.; Powell, Sarah R.

    2016-01-01

    Increasingly, students are expected to write about mathematics. Mathematics writing may be informal (e.g., journals, exit slips) or formal (e.g., writing prompts on high-stakes mathematics assessments). In order to develop an effective mathematics-writing intervention, research needs to be conducted on how students organize mathematics writing and…

  19. Media and the making of scientists

    Science.gov (United States)

    O'Keeffe, Moira

    This dissertation explores how scientists and science students respond to fictional, visual media about science. I consider how scientists think about images of science in relation to their own career paths from childhood onwards. I am especially interested in the possibility that entertainment media can inspire young people to learn about science. Such inspiration is badly needed, as schools are failing to provide it. Science education in the United States is in a state of crisis. Studies repeatedly find low levels of science literacy in the U.S. This bleak situation exists during a boom in the popularity of science-oriented television shows and science fiction movies. How might entertainment media play a role in helping young people engage with science? To grapple with these questions, I interviewed a total of fifty scientists and students interested in science careers, representing a variety of scientific fields and demographic backgrounds, and with varying levels of interest in science fiction. Most respondents described becoming attracted to the sciences at a young age, and many were able to identify specific sources for this interest. The fact that interest in the sciences begins early in life, demonstrates a potentially important role for fictional media in the process of inspiration, perhaps especially for children without access to real-life scientists. One key aspect to the appeal of fiction about science is how scientists are portrayed as characters. Scientists from groups traditionally under-represented in the sciences often sought out fictional characters with whom they could identify, and viewers from all backgrounds preferred well-rounded characters to the extreme stereotypes of mad or dorky scientists. Genre is another aspect of appeal. Some respondents identified a specific role for science fiction: conveying a sense of wonder. Visual media introduce viewers to the beauty of science. Special effects, in particular, allow viewers to explore the

  20. Science and scientists from the children point of view, an overlook from drawings

    Science.gov (United States)

    D'Addezio, Giuliana; Marsili, Antonella; Rubbia, Giuliana; Carosi, Alessandro

    2013-04-01

    The Istituto Nazionale di Geofisica e Vulcanologia (INGV) is currently the largest European scientific institution dealing with Earth Sciences research and real-time surveillance, early warning, and forecast activities in geophysics and volcanology. The Laboratorio Didattica e Divulgazione Scientifica of INGV organizes every year educational and outreach activities with schools of different levels and with general public to convey scientific knowledge and to promote the Research on Earth Science, focusing on volcanic and seismic hazard. Among the most successful initiatives is the creation of a calendar designed for the schools and realized based on a competition devoted to children of primary school. The intent is to provide a pleasant stimulus for discussion for teachers and students. Schools participate with enthusiasm by sending drawings made by children on a specified theme, different each year, chosen among geophysics and earth sciences arguments. For 2011, the theme was selected also with the aims to investigate on the image the young generations have of the Research and on its potential and future prospective. The title was "Scienziato anche io! La Scienza e gli scienziati visti dai bambini" (I'm a scientist too! Science and scientists from the children point of view), with the purpose of give a shape to the image children have of the world of science, its potential and the figure of the scientists. We asked the children to realized a draw suggesting some possible arguments between: 1. How do you imagine a scientist? How do you imagine the daily activities of a researcher? 2. What is the invention you consider the most important among all those you know? 3. What would you invent? The 986 drawings realized by 6 up to 10 years old boys and girls from 48 schools distributed throughout the Italian territory, report us a generally positive picture of the work of scientists and also highlight a great level of confidence in the potential of science, capable to

  1. Teaching Mathematical Modeling in Mathematics Education

    Science.gov (United States)

    Saxena, Ritu; Shrivastava, Keerty; Bhardwaj, Ramakant

    2016-01-01

    Mathematics is not only a subject but it is also a language consisting of many different symbols and relations. Taught as a compulsory subject up the 10th class, students are then able to choose whether or not to study mathematics as a main subject. The present paper discusses mathematical modeling in mathematics education. The article provides…

  2. Involvement of scientists in the NASA Office of Space Science education and public outreach program

    International Nuclear Information System (INIS)

    Beck-Winchatz, Bernhard

    2005-01-01

    Since the mid-1990's NASA's Office of Space Science (OSS) has embarked on an astronomy and space science education and public outreach (E/PO) program. Its goals are to share the excitement of space science discoveries with the public, and to enhance the quality of science, mathematics and technology education, particularly at the precollege level. A key feature of the OSS program is the direct involvement of space scientists. The majority of the funding for E/PO is allocated to flight missions, which spend 1%-2% of their total budget on E/PO, and to individual research grants. This paper presents an overview of the program's goals, objectives, philosophy, and infrastructure

  3. A study of the Teachers` Academy for Mathematics and Science

    Energy Technology Data Exchange (ETDEWEB)

    Brett, B.; Scheirer, M.A.; Raizen, S.

    1994-09-15

    The Teachers` Academy for Mathematics and Science in Chicago (TAMS) is a freestanding institution founded in 1989 by scientists and a variety of other stakeholders, to advance the systemic reform of mathematics and science education in Chicago`s public schools. It focuses on the ``re-tooling`` of its elementary level teachers. The TAMS program, which has been funded in part by the DOE, contributes to strategic goals two through five of the Office of University and Science Education (OUSE). This evaluation of TAMS by the National Center for Improving Science Education is primarily a qualitative study that summarizes the history and current status of the organization and its programs. Data was obtained through extensive interviews, observations, and document review, using a framework of templates to guide data collection and analyses. The findings are organized around a series of lessons learned from the first three years of TAMS and conclusions about its current status.

  4. Developing Mathematical Knowledge for Teaching in a Methods Course: The Case of Function

    Science.gov (United States)

    Steele, Michael D.; Hillen, Amy F.; Smith, Margaret S.

    2013-01-01

    This study describes teacher learning in a teaching experiment consisting of a content-focused methods course involving the mathematical knowledge for teaching function. Prospective and practicing teachers in the course showed growth in their ability to define function, to provide examples of functions and link them to the definition, in the…

  5. Mathematical Modeling and Pure Mathematics

    Science.gov (United States)

    Usiskin, Zalman

    2015-01-01

    Common situations, like planning air travel, can become grist for mathematical modeling and can promote the mathematical ideas of variables, formulas, algebraic expressions, functions, and statistics. The purpose of this article is to illustrate how the mathematical modeling that is present in everyday situations can be naturally embedded in…

  6. History and Outcomes of 50 Years of Physician-Scientist Training in Medical Scientist Training Programs.

    Science.gov (United States)

    Harding, Clifford V; Akabas, Myles H; Andersen, Olaf S

    2017-10-01

    Physician-scientists are needed to continue the great pace of recent biomedical research and translate scientific findings to clinical applications. MD-PhD programs represent one approach to train physician-scientists. MD-PhD training started in the 1950s and expanded greatly with the Medical Scientist Training Program (MSTP), launched in 1964 by the National Institute of General Medical Sciences (NIGMS) at the National Institutes of Health. MD-PhD training has been influenced by substantial changes in medical education, science, and clinical fields since its inception. In 2014, NIGMS held a 50th Anniversary MSTP Symposium highlighting the program and assessing its outcomes. In 2016, there were over 90 active MD-PhD programs in the United States, of which 45 were MSTP supported, with a total of 988 trainee slots. Over 10,000 students have received MSTP support since 1964. The authors present data for the demographic characteristics and outcomes for 9,683 MSTP trainees from 1975-2014. The integration of MD and PhD training has allowed trainees to develop a rigorous foundation in research in concert with clinical training. MSTP graduates have had relative success in obtaining research grants and have become prominent leaders in many biomedical research fields. Many challenges remain, however, including the need to maintain rigorous scientific components in evolving medical curricula, to enhance research-oriented residency and fellowship opportunities in a widening scope of fields targeted by MSTP graduates, to achieve greater racial diversity and gender balance in the physician-scientist workforce, and to sustain subsequent research activities of physician-scientists.

  7. Mathematics and Statistics Research Department progress report for period ending June 30, 1978

    International Nuclear Information System (INIS)

    Gardiner, D.A.; Lever, W.E.; Shepherd, D.E.; Ward, R.C.; Wilson, D.G.

    1978-09-01

    This report is the twenty-first of a series of annual reports dating back to the February 28, 1957, report of the ORNL Mathematics Panel. The current report is divided into five parts: Mathematical and Statistical Research, Statistical and Mathematical Collaboration, Educational Activities, Presentations of Research Results, and Professional Activities. The section entitled Mathematical and Statistical Research contains summaries of the research conducted on Moving Boundary Problems, Multivariate Multipopulation Classification, Numerical Linear Algebra, Statistical Model Development and Evaluation, Materials Science Applications, Biomedical and Environmental Applications, and Complementary Areas. Recorded under Statistical and Mathematical Collaboration are brief accounts of consulting and collaboration with other scientists and engineers in the Nuclear Division of Union Carbide Corporation. These are in the areas of Analytical Chemistry, Biology, Chemistry and Physics, Engineering, Environmental Sciences, Materials Sciences, Security and Communication, and Uranium Resource Evaluation. The Educational Activities section contains descriptions of symposia, workshops, seminar series, short courses, lectures, and student and faculty participation in which the staff was engaged during the report period. The last two parts of the report list the staff's publications and oral presentations as well as its participation in the activities of professional societies and academic institutions. The summaries given here are quite brief; completed work is published in journals or reports as appropriate. 7 figures, 8 tables

  8. PREFACE: Algebra, Geometry, and Mathematical Physics 2010

    Science.gov (United States)

    Stolin, A.; Abramov, V.; Fuchs, J.; Paal, E.; Shestopalov, Y.; Silvestrov, S.

    2012-02-01

    This proceedings volume presents results obtained by the participants of the 6th Baltic-Nordic workshop 'Algebra, Geometry, and Mathematical Physics (AGMP-6)' held at the Sven Lovén Centre for Marine Sciences in Tjärnö, Sweden on October 25-30, 2010. The Baltic-Nordic Network AGMP 'Algebra, Geometry, and Mathematical Physics' http://www.agmp.eu was created in 2005 on the initiative of two Estonian universities and two Swedish universities: Tallinn University of Technology represented by Eugen Paal (coordinator of the network), Tartu University represented by Viktor Abramov, Lund University represented by Sergei Silvestrov, and Chalmers University of Technology and the University of Gothenburg represented by Alexander Stolin. The goal was to promote international and interdisciplinary cooperation between scientists and research groups in the countries of the Baltic-Nordic region in mathematics and mathematical physics, with special emphasis on the important role played by algebra and geometry in modern physics, engineering and technologies. The main activities of the AGMP network consist of a series of regular annual international workshops, conferences and research schools. The AGMP network also constitutes an important educational forum for scientific exchange and dissimilation of research results for PhD students and Postdocs. The network has expanded since its creation, and nowadays its activities extend beyond countries in the Baltic-Nordic region to universities in other European countries and participants from elsewhere in the world. As one of the important research-dissimilation outcomes of its activities, the network has a tradition of producing high-quality research proceedings volumes after network events, publishing them with various international publishers. The PDF also contains the following: List of AGMP workshops and other AGMP activities Main topics discussed at AGMP-6 Review of AGMP-6 proceedings Acknowledgments List of Conference Participants

  9. The Local-Cosmopolitan Scientist

    Directory of Open Access Journals (Sweden)

    Barney G. Glaser, Ph.D., Hon. Ph.D.

    2011-12-01

    Full Text Available In contrast to previous discussions in the literature treating cosmopolitan and local as two distinct groups of scientists, this paperi demonstrates the notion of cosmopolitan and local as a dual orientation of highly motivated scientists. This dual orientation is derived from institutional motivation, which is a determinant of both high quality basic research and accomplishment of non-research organizational activities. The dual orientation arises in a context of similarity of the institutional goal of science with the goal of the organization; the distinction between groups of locals and cosmopolitans derives from a conflict between two goals.

  10. Entry to medical schools with 'A' level in mathematics rather than biology.

    Science.gov (United States)

    Spurgin, C B

    1975-09-01

    The majority of British medical schools now accept for their shortest courses students who have mathematics at A level in place of the former requirement of biology A level. Only a small fraction of the entry, less than one-fifth, enters this way, in spite of statements by most medical schools that they make no distinction between those with mathematics and those with biology when making conditional offers of places. There is no evidence that those without biology are at a disadvantage in the courses. If the prospects of entry without A level biology were better publicized medical schools would have a wider field of possibly abler entrants, and pupils entering sixth forms could defer for a year a choice between a medical (or dental) career and one involving physical science, engineering, or other mathematics-based university education.

  11. Chinese, US scientists find new particle

    CERN Multimedia

    2003-01-01

    "Chinese and US scientists have discovered a new particle at the Beijing Electron Position Collider, which is hard to be explained with any known particles, according to scientists from the Institute of High Energy Physics under the Chinese Academy of Sciences Wednesday" (1/2 page).

  12. Preface for the special issue of Mathematical Biosciences and Engineering, BIOCOMP 2012.

    Science.gov (United States)

    Buonocore, Aniello; Di Crescenzo, Antonio; Hastings, Alan

    2014-04-01

    The International Conference "BIOCOMP2012 - Mathematical Modeling and Computational Topics in Biosciences'', was held in Vietri sul Mare (Italy), June 4-8, 2012. It was dedicated to the Memory of Professor Luigi M. Ricciardi (1942-2011), who was a visionary and tireless promoter of the 3 previous editions of the BIOCOMP conference series. We thought that the best way to honor his memory was to continue the BIOCOMP program. Over the years, this conference promoted scientific activities related to his wide interests and scientific expertise, which ranged in various areas of applications of mathematics, probability and statistics to biosciences and cybernetics, also with emphasis on computational problems. We are pleased that many of his friends and colleagues, as well as many other scientists, were attracted by the goals of this recent event and offered to contribute to its success.

  13. The Rehabilitation Medicine Scientist Training Program

    Science.gov (United States)

    Whyte, John; Boninger, Michael; Helkowski, Wendy; Braddom-Ritzler, Carolyn

    2016-01-01

    Physician scientists are seen as important in healthcare research. However, the number of physician scientists and their success in obtaining NIH funding have been declining for many years. The shortage of physician scientists in Physical Medicine and Rehabilitation is particularly severe, and can be attributed to many of the same factors that affect physician scientists in general, as well as to the lack of well developed models for research training. In 1995, the Rehabilitation Medicine Scientist Training Program (RMSTP) was funded by a K12 grant from the National Center of Medical Rehabilitation Research (NCMRR), as one strategy for increasing the number of research-productive physiatrists. The RMSTP's structure was revised in 2001 to improve the level of preparation of incoming trainees, and to provide a stronger central mentorship support network. Here we describe the original and revised structure of the RMSTP and review subjective and objective data on the productivity of the trainees who have completed the program. These data suggest that RMSTP trainees are, in general, successful in obtaining and maintaining academic faculty positions and that the productivity of the cohort trained after the revision, in particular, shows impressive growth after about 3 years of training. PMID:19847126

  14. Linking Preservice Teachers' Mathematics Self-Efficacy and Mathematics Teaching Efficacy to Their Mathematical Performance

    Science.gov (United States)

    Bates, Alan B.; Latham, Nancy; Kim, Jin-ah

    2011-01-01

    This study examined preservice teachers' mathematics self-efficacy and mathematics teaching efficacy and compared them to their mathematical performance. Participants included 89 early childhood preservice teachers at a Midwestern university. Instruments included the Mathematics Self-Efficacy Scale (MSES), Mathematics Teaching Efficacy Beliefs…

  15. Exploring Scientists' Working Timetable: A Global Survey

    OpenAIRE

    Wang, Xianwen; Peng, Lian; Zhang, Chunbo; Xu, Shenmeng; Wang, Zhi; Wang, Chuanli; Wang, Xianbing

    2013-01-01

    In our previous study (Wang et al., 2012), we analyzed scientists' working timetable of 3 countries, using realtime downloading data of scientific literatures. In this paper, we make a through analysis about global scientists' working habits. Top 30 countries/territories from Europe, Asia, Australia, North America, Latin America and Africa are selected as representatives and analyzed in detail. Regional differences for scientists' working habits exists in different countries. Besides differen...

  16. Contrasts in Mathematical Challenges in A-Level Mathematics and Further Mathematics, and Undergraduate Mathematics Examinations

    Science.gov (United States)

    Darlington, Ellie

    2014-01-01

    This article describes part of a study which investigated the role of questions in students' approaches to learning mathematics at the secondary-tertiary interface, focussing on the enculturation of students at the University of Oxford. Use of the Mathematical Assessment Task Hierarchy taxonomy revealed A-level Mathematics and Further Mathematics…

  17. Elements of ethics for physical scientists

    CERN Document Server

    Greer, Sandra C

    2017-01-01

    This book offers the first comprehensive guide to ethics for physical scientists and engineers who conduct research. Written by a distinguished professor of chemistry and chemical engineering, the book focuses on the everyday decisions about right and wrong faced by scientists as they do research, interact with other people, and work within society. The goal is to nurture readers’ ethical intelligence so that they know an ethical issue when they see one, and to give them a way to think about ethical problems. After introductions to the philosophy of ethics and the philosophy of science, the book discusses research integrity, with a unique emphasis on how scientists make mistakes and how they can avoid them. It goes on to cover personal interactions among scientists, including authorship, collaborators, predecessors, reviewers, grantees, mentors, and whistle-blowers. It considers underrepresented groups in science as an ethical issue that matters not only to those groups but also to the development of scien...

  18. Constructing knowledge for teaching secondary mathematics tasks to enhance prospective and practicing teacher learning

    CERN Document Server

    Zaslavsky, Orit

    2010-01-01

    This book offers a unifed approach to tasks used in the education of secondary mathematics teachers, based on broad goals such as adaptability, identifying similarities, productive disposition, overcoming barriers, micro simulations, choosing tools, and more.

  19. The Dilemma of Scientists in the Nuclear Age

    International Nuclear Information System (INIS)

    Broda, E.

    1982-01-01

    Scientists have made possible the nuclear arms race. The cases of some of the individual scientists are discussed. Most scientists on military work were and are not only justifying their work, but they are enjoying their lives. A general strike of the military scientists against the arms race is an illusion. A pragmatic approach to the problem is need. In any case it is imperative that concerned scientists concentrate on the struggle against the threat of nuclear war. They must interact with the people at large, especially the people in the mass organizations, and help them to judge the situation and to evolve suitable countermeasures. A few words are said about the possibility of world government. (author)

  20. Scientists must speak

    National Research Council Canada - National Science Library

    Walters, D. Eric; Walters, Gale Climenson

    2011-01-01

    .... This can be a stressful experience for many. For scientists, the experience may be further complicated by the specialist nature of the data and the fact that most self-help books are aimed at business or social situations...

  1. Scientists as role models in space science outreach

    Science.gov (United States)

    Alexander, D.

    The direct participation of scientists significantly enhances the impact of any E/PO effort. This is particularly true when the scientists come from minority or traditionally under-represented groups and, consequently, become role models for a large number of students while presenting positive counter-examples to the usual stereotypes. In this paper I will discuss the impact of scientists as role models through the successful implementation of a set of space physics games and activities, called Solar Week. Targetted at middle-school girls, the key feature of Solar Week is the "Ask a Scientist" section enabling direct interaction between participating students and volunteer scientists. All of the contributing scientists are women, serving as experts in their field and providing role models to whom the students can relate. Solar Week has completed four sessions with a total of some 140 edcuators and 12,000+ students in over 28 states and 9 countries. A major success of the Solar Week program has been the ability of the students to learn more about the scientists as people, through online biographies, and to discuss a variety of topics ranging from science, to careers and common hobbies.

  2. Building the Next Generation of Earth Scientists: the Deep Carbon Observatory Early Career Scientist Workshops

    Science.gov (United States)

    Pratt, K.; Fellowes, J.; Giovannelli, D.; Stagno, V.

    2016-12-01

    Building a network of collaborators and colleagues is a key professional development activity for early career scientists (ECS) dealing with a challenging job market. At large conferences, young scientists often focus on interacting with senior researchers, competing for a small number of positions in leading laboratories. However, building a strong, international network amongst their peers in related disciplines is often as valuable in the long run. The Deep Carbon Observatory (DCO) began funding a series of workshops in 2014 designed to connect early career researchers within its extensive network of multidisciplinary scientists. The workshops, by design, are by and for early career scientists, thus removing any element of competition and focusing on peer-to-peer networking, collaboration, and creativity. The successful workshops, organized by committees of early career deep carbon scientists, have nucleated a lively community of like-minded individuals from around the world. Indeed, the organizers themselves often benefit greatly from the leadership experience of pulling together an international workshop on budget and on deadline. We have found that a combination of presentations from all participants in classroom sessions, professional development training such as communication and data management, and field-based relationship building and networking is a recipe for success. Small groups within the DCO ECS network have formed; publishing papers together, forging new research directions, and planning novel and ambitious field campaigns. Many DCO ECS also have come together to convene sessions at major international conferences, including the AGU Fall Meeting. Most of all, there is a broad sense of camaraderie and accessibility within the DCO ECS Community, providing the foundation for a career in the new, international, and interdisciplinary field of deep carbon science.

  3. Scientists' Prioritization of Communication Objectives for Public Engagement.

    Directory of Open Access Journals (Sweden)

    Anthony Dudo

    Full Text Available Amid calls from scientific leaders for their colleagues to become more effective public communicators, this study examines the objectives that scientists' report drive their public engagement behaviors. We explore how scientists evaluate five specific communication objectives, which include informing the public about science, exciting the public about science, strengthening the public's trust in science, tailoring messages about science, and defending science from misinformation. We use insights from extant research, the theory of planned behavior, and procedural justice theory to identify likely predictors of scientists' views about these communication objectives. Results show that scientists most prioritize communication designed to defend science from misinformation and educate the public about science, and least prioritize communication that seeks to build trust and establish resonance with the public. Regression analyses reveal factors associated with scientists who prioritize each of the five specific communication objectives. Our findings highlight the need for communication trainers to help scientists select specific communication objectives for particular contexts and audiences.

  4. Fractions as a Foundation for Algebra within a Sample of Prospective Teachers

    Science.gov (United States)

    Zientek, Linda Reichwein; Younes, Rayya; Nimon, Kim; Mittag, Kathleen Cage; Taylor, Sharon

    2013-01-01

    Improving the mathematical skills of the next generation of students will require that elementary and middle school teachers are competent and confident in their abilities to perform fraction operations and to solve algebra equations The present study was conducted to (a) quantify relationships between prospective teachers' abilities to perform…

  5. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    Science.gov (United States)

    Graff, P. V.; Stefanov, W. L.; Willis, K.; Runco, S.

    2012-12-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  6. Inspiring the Next Generation of Explorers: Scientist Involvement in the Expedition Earth and Beyond Program

    Science.gov (United States)

    Graff, Paige; Stefanov, William; Willis, Kim; Runco, Susan

    2012-01-01

    Scientists, science experts, graduate and even undergraduate student researchers have a unique ability to inspire the next generation of explorers. These science, technology, engineering, and mathematics (STEM) experts can serve as role models for students and can help inspire them to consider future STEM-related careers. They have an exceptional ability to instill a sense of curiosity and fascination in the minds of students as they bring science to life in the classroom. Students and teachers are hungry for opportunities to interact with scientists. They feel honored when these experts take time out of their busy day to share their science, their expertise, and their stories. The key for teachers is to be cognizant of opportunities to connect their students with scientists. For scientists, the key is to know how to get involved, to have options for participation that involve different levels of commitment, and to work with educational specialists who can help facilitate their involvement. The Expedition Earth and Beyond (EEAB) Program, facilitated by the Astromaterials Research and Exploration Science (ARES) Directorate at the NASA Johnson Space Center, is an Earth and planetary science education program designed to inspire, engage, and educate teachers and students by getting them actively involved with NASA exploration, discovery, and the process of science. One of the main goals of the program is to facilitate student research in the classroom. The program uses astronaut photographs, provided through the ARES Crew Earth Observations (CEO) payload on the International Space Station (ISS) as the hook to help students gain an interest in a research topic. Student investigations can focus on Earth or involve comparative planetology. Student teams are encouraged to use additional imagery and data from Earth or planetary orbital spacecraft, or ground-based data collection tools, to augment the astronaut photography dataset. A second goal of the program is to provide

  7. The beginning of the space age: information and mathematical aspect. To the 60th anniversary of the launch of the first sputnik

    Science.gov (United States)

    Sushkevich, T. A.

    2017-11-01

    60 years ago, on 4 October 1957, the USSR successfully launched into space the FIRST SPUTNIK (artificial Earth satellite). From this date begins the countdown of the space age. Information and mathematical software is an integral component of any space project. Discusses the history and future of space exploration and the role of mathematics and computers. For illustration, presents a large list of publications. It is important to pay attention to the role of mathematics and computer science in space projects and research, remote sensing problems, the evolution of the Earth's environment and climate, where the theory of radiation transfer plays a key role, and the achievements of Russian scientists at the dawn of the space age.

  8. [Academician Vladas Lasas -- distinguished Lithuanian scientist, organizer and educator].

    Science.gov (United States)

    Padegimas, Bernardas; Abraitis, Romualdas

    2002-01-01

    The material of this publication is dedicated to the memory of Professor Vladas Lasas, honored scientist of Lithuania, member of Lithuanian Academy of Sciences and corresponding member of the Academy of Medicine of the USSR. V. Lasas was born on January 13th, 1892, on a farmstead in Rokiskis region, Lithuania. He died on January 2nd, 1966 in Kaunas. V. Lasas studied medicine at the Faculty of Medicine of Tartu (Dorpat) University and graduated from it in 1918. In 1921 he was invited to deliver lectures on physiology at the newly organized Higher Courses in Kaunas. During 1920-1924 he attended higher educational establishments of Prague, Berlin, Lausanne and Paris. In 1924 V. Lasas worked on probation in Lausanne under supervision of famous scientist M. Arthus, the founder of experimental allergy--anaphylaxis, in the field of experimental anaphylaxis, desensibilization, enteral sensibilization and resorption of native albumins, transfer of allergic state from mother to fetus, the role of interoceptors and biologically active substances in the formation and development of anaphylaxis. Over 40 scientific papers were published and 12 doctoral these were maintained, dealing with these problems. From 1924 to 1940 and from 1944 to 1946 V. Lasas acted as dean of the Faculty of Medicine at Kaunas University. During this period he displayed great organizational talent, and on his initiative three basic clinical buildings were built for the Faculty of Medicine. In 1946 V. Lasas was elected as academician and appointed as secretary-in-charge of natural mathematical and applied science of the Academy of Sciences of Lithuania. V. Lasas was the founder and longstanding chairman of the Lithuanian Physiological Society. Alone and with coauthors he has published 16 original textbooks. The list of his bibliography accounts to 229 publications.

  9. Mathematical models for lymphatic filariasis transmission and control: Challenges and prospects

    Directory of Open Access Journals (Sweden)

    Kaliannagounder Krishnamoorthy

    2008-02-01

    Full Text Available Abstract Background Mathematical models developed for describing the dynamics of transmission, infection, disease and control of lymphatic filariasis (LF gained momentum following the 1997 World Health Assembly resolution and the launching of the Global Programme to Eliminate Lymphatic Filariasis (GPELF in 2000. Model applications could provide valuable inputs for making decisions while implementing large scale programmes. However these models need to be evaluated at different epidemiological settings for optimization and fine-tuning with new knowledge and understanding on infection/disease dynamics. Discussion EPIFIL and LYMFASIM are the two mathematical simulation models currently available for lymphatic filariasis transmission and control. Both models have been used for prediction and evaluation of control programmes under research settings. Their widespread application in evaluating large-scale elimination programmes warrants validation of assumptions governing the dynamics of infection and disease in different epidemiological settings. Furthermore, the predictive power of the models for decision support can be enhanced by generating knowledge on some important issues that pose challenges and incorporating such knowledge into the models. We highlight factors related to the efficacy of the drugs of choice, their mode of action, and the possibility that drug resistance may develop; the role of vector-parasite combinations; the magnitude of transmission thresholds; host-parasite interactions and their effects on the dynamics of infection and immunity; parasite biology, and progression to LF-associated disease. Summary The two mathematical models developed offer potential decision making tools for transmission and control of LF. In view of the goals of the GPELF, the predictive power of these models needs to be enhanced for their wide-spread application in large scale programmes. Assimilation and translation of new information into the models is

  10. Desegregating undergraduate mathematics and biology--interdisciplinary instruction with emphasis on ongoing biomedical research.

    Science.gov (United States)

    Robeva, Raina

    2009-01-01

    The remarkable advances in the field of biology in the last decade, specifically in the areas of biochemistry, genetics, genomics, proteomics, and systems biology, have demonstrated how critically important mathematical models and methods are in addressing questions of vital importance for these disciplines. There is little doubt that the need for utilizing and developing mathematical methods for biology research will only grow in the future. The rapidly increasing demand for scientists with appropriate interdisciplinary skills and knowledge, however, is not being reflected in the way undergraduate mathematics and biology courses are structured and taught in most colleges and universities nationwide. While a number of institutions have stepped forward and addressed this need by creating and offering interdisciplinary courses at the juncture of mathematics and biology, there are still many others at which there is little, if any, interdisciplinary interaction between the curricula. This chapter describes an interdisciplinary course and a textbook in mathematical biology developed collaboratively by faculty from Sweet Briar College and the University of Virginia School of Medicine. The course and textbook are designed to provide a bridge between the mathematical and biological sciences at the lower undergraduate level. The course is developed for and is being taught in a liberal arts setting at Sweet Briar College, Virginia, but some of the advanced modules are used in a course at the University of Virginia for advanced undergraduate and beginning graduate students. The individual modules are relatively independent and can be used as stand-alone projects in conventional mathematics and biology courses. Except for the introductory material, the course and textbook topics are based on current biomedical research.

  11. Doing Mathematics with Purpose: Mathematical Text Types

    Science.gov (United States)

    Dostal, Hannah M.; Robinson, Richard

    2018-01-01

    Mathematical literacy includes learning to read and write different types of mathematical texts as part of purposeful mathematical meaning making. Thus in this article, we describe how learning to read and write mathematical texts (proof text, algorithmic text, algebraic/symbolic text, and visual text) supports the development of students'…

  12. Annual Perspectives in Mathematics Education 2016: Mathematical Modeling and Modeling Mathematics

    Science.gov (United States)

    Hirsch, Christian R., Ed.; McDuffie, Amy Roth, Ed.

    2016-01-01

    Mathematical modeling plays an increasingly important role both in real-life applications--in engineering, business, the social sciences, climate study, advanced design, and more--and within mathematics education itself. This 2016 volume of "Annual Perspectives in Mathematics Education" ("APME") focuses on this key topic from a…

  13. Improving Communication Skills in Early Career Scientists

    Science.gov (United States)

    Saia, S. M.

    2013-12-01

    The AGU fall meeting is a time for scientists to share what we have been hard at work on for the past year, to share our trials and tribulations, and of course, to share our science (we hope inspirational). In addition to sharing, the AGU fall meeting is also about collaboration as it brings old and new colleagues together from diverse communities across the planet. By sharing our ideas and findings, we build new relationships with the potential to cross boundaries and solve complex and pressing environmental issues. With ever emerging and intensifying water scarcity, extreme weather, and water quality issues across the plant, it is especially important that scientists like us share our ideas and work together to put these ideas into action. My vision of the future of water sciences embraces this fact. I believe that better training is needed to help early career scientists, like myself, build connections within and outside of our fields. First and foremost, more advanced training in effective storytelling concepts and themes may improve our ability to provide context for our research. Second, training in the production of video for internet-based media (e.g. YouTube) may help us bring our research to audiences in a more personalized way. Third, opportunities to practice presenting at highly visible public events such as the AGU fall meeting, will serve to prepare early career scientists for a variety of audiences. We hope this session, ';Water Sciences Pop-Ups', will provide the first steps to encourage and train early career scientists as they share and collaborate with scientists and non-scientists around the world.

  14. Mathematics and Statistics Research Department progress report for period ending June 30, 1978. [ORNL

    Energy Technology Data Exchange (ETDEWEB)

    Gardiner, D.A.; Lever, W.E.; Shepherd, D.E.; Ward, R.C.; Wilson, D.G. (comps.)

    1978-09-01

    This report is the twenty-first of a series of annual reports dating back to the February 28, 1957, report of the ORNL Mathematics Panel. The current report is divided into five parts: Mathematical and Statistical Research, Statistical and Mathematical Collaboration, Educational Activities, Presentations of Research Results, and Professional Activities. The section entitled Mathematical and Statistical Research contains summaries of the research conducted on Moving Boundary Problems, Multivariate Multipopulation Classification, Numerical Linear Algebra, Statistical Model Development and Evaluation, Materials Science Applications, Biomedical and Environmental Applications, and Complementary Areas. Recorded under Statistical and Mathematical Collaboration are brief accounts of consulting and collaboration with other scientists and engineers in the Nuclear Division of Union Carbide Corporation. These are in the areas of Analytical Chemistry, Biology, Chemistry and Physics, Engineering, Environmental Sciences, Materials Sciences, Security and Communication, and Uranium Resource Evaluation. The Educational Activities section contains descriptions of symposia, workshops, seminar series, short courses, lectures, and student and faculty participation in which the staff was engaged during the report period. The last two parts of the report list the staff's publications and oral presentations as well as its participation in the activities of professional societies and academic institutions. The summaries given here are quite brief; completed work is published in journals or reports as appropriate. 7 figures, 8 tables.

  15. Medical biochemistry in Macedonia: a profession for physicians and natural scientists.

    Science.gov (United States)

    Traikovska, S; Dzhekova-Stojkova, S

    2001-06-01

    Medical biochemistry or clinical chemistry in its roots is an interdisciplinary science between natural sciences and medicine. The largest part of medical biochemistry is natural science (chemistry, biochemistry, biology, physics, mathematics), which is very well integrated in deduction of medical problems. Medical biochemistry throughout the world, including Macedonia, should be a professional field open to both physicians and natural scientists, according to its historical development, theoretical characteristics and applied practice. Physicians and natural scientists follow the same route in clinical chemistry during the postgraduate training of specialization in medical biochemistry/clinical chemistry. However, in Macedonia the specialization in medical biochemistry/clinical chemistry is today regulated by law only for physicians and pharmacists. The study of clinical chemistry in Europe has shown its interdisciplinary character. In most European countries different professions, such as physicians, chemists/biochemists, pharmacists, biologists and others could specialize in clinical chemistry. The question for the next generation of specialists in Macedonia is whether to accept the present conditions or to attempt to change the law to include chemists/biochemists and biologists as well. The latter used to be a practice in Macedonia 20 years ago, and still is in many European countries. Such change in law would also result in changes in the postgraduate educational program in medical biochemistry in Macedonia. The new postgraduate program has to follow the European Syllabus, recommended by EC4. To obtain sufficient knowledge in clinical chemistry, the duration of vocational training (undergraduate and postgraduate) for all trainees (physicians, pharmaceutics, chemists/biochemists and biologists) should be 8 years.

  16. The Gender-Equality Paradox in Science, Technology, Engineering, and Mathematics Education.

    Science.gov (United States)

    Stoet, Gijsbert; Geary, David C

    2018-04-01

    The underrepresentation of girls and women in science, technology, engineering, and mathematics (STEM) fields is a continual concern for social scientists and policymakers. Using an international database on adolescent achievement in science, mathematics, and reading ( N = 472,242), we showed that girls performed similarly to or better than boys in science in two of every three countries, and in nearly all countries, more girls appeared capable of college-level STEM study than had enrolled. Paradoxically, the sex differences in the magnitude of relative academic strengths and pursuit of STEM degrees rose with increases in national gender equality. The gap between boys' science achievement and girls' reading achievement relative to their mean academic performance was near universal. These sex differences in academic strengths and attitudes toward science correlated with the STEM graduation gap. A mediation analysis suggested that life-quality pressures in less gender-equal countries promote girls' and women's engagement with STEM subjects.

  17. Scientists want more children.

    Science.gov (United States)

    Ecklund, Elaine Howard; Lincoln, Anne E

    2011-01-01

    Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows) who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  18. Scientists want more children.

    Directory of Open Access Journals (Sweden)

    Elaine Howard Ecklund

    Full Text Available Scholars partly attribute the low number of women in academic science to the impact of the science career on family life. Yet, the picture of how men and women in science--at different points in the career trajectory--compare in their perceptions of this impact is incomplete. In particular, we know little about the perceptions and experiences of junior and senior scientists at top universities, institutions that have a disproportionate influence on science, science policy, and the next generation of scientists. Here we show that having fewer children than wished as a result of the science career affects the life satisfaction of science faculty and indirectly affects career satisfaction, and that young scientists (graduate students and postdoctoral fellows who have had fewer children than wished are more likely to plan to exit science entirely. We also show that the impact of science on family life is not just a woman's problem; the effect on life satisfaction of having fewer children than desired is more pronounced for male than female faculty, with life satisfaction strongly related to career satisfaction. And, in contrast to other research, gender differences among graduate students and postdoctoral fellows disappear. Family factors impede talented young scientists of both sexes from persisting to research positions in academic science. In an era when the global competitiveness of US science is at risk, it is concerning that a significant proportion of men and women trained in the select few spots available at top US research universities are considering leaving science and that such desires to leave are related to the impact of the science career on family life. Results from our study may inform university family leave policies for science departments as well as mentoring programs in the sciences.

  19. A mathematical medley fifty easy pieces on mathematics

    CERN Document Server

    Szpiro, George G

    2010-01-01

    Szpiro's book provides a delightful, well-written, eclectic selection of mathematical tidbits that makes excellent airplane reading for anyone with an interest in mathematics, regardless of their mathematical background. Excellent gift material. -Keith Devlin, Stanford University, author of The Unfinished Game and The Language of Mathematics It is great to have collected in one volume the many varied, insightful and often surprising mathematical stories that George Szpiro has written in his mathematical columns for the newspapers through the years. -Marcus du Sautoy, Oxford University, author

  20. What will it take? Pathways, time and funding: Australian medical students' perspective on clinician-scientist training.

    Science.gov (United States)

    Eley, Diann S; Jensen, Charmaine; Thomas, Ranjeny; Benham, Helen

    2017-12-08

    Clinician-scientists are in decline worldwide. They represent a unique niche in medicine by bridging the gap between scientific discovery and patient care. A national, integrated approach to training clinician-scientists, typically programs that comprise a comprehensive MD-PhD pathway, are customary. Such a pathway is lacking in Australia. The objective was to gather perceptions from Australian medical students on factors they perceive would influence their decision to pursue clinician-scientist training. A cross-sectional mixed methods design used quantitative and qualitative questions in an online self-report survey with medical students from a four-year MD program. Quantitative measures comprised scaled response questions regarding prior experience and current involvement in research, and short- and long-term opinions about factors that influence their decisions to undertake a research higher degree (RHD) during medical school. Qualitative questions gathered broader perceptions of what a career pathway as a clinician-scientist would include and what factors are most conducive to a medical student's commitment to MD-PhD training. Respondents (N = 418; 51% female) indicated Time, Funding and Pathway as the major themes arising from the qualitative data, highlighting negative perceptions rather than possible benefits to RHD training. The lack of an evident Pathway was inter-related to Time and Funding. Themes were supported by the quantitative data. Sixty percent of students have previous research experience of varying forms, and 90% report a current interest, mainly to improve their career prospects. The data emphasise the need for an MD-PhD pathway in Australia. A model that provides an early, integrated, and exclusive approach to research training pathways across all stages of medical education is suggested as the best way to rejuvenate the clinician-scientist. A national pathway that addresses factors influencing career decision making throughout the

  1. Development and Field Test of the Modified Draw-a-Scientist Test and the Draw-a-Scientist Rubric

    Science.gov (United States)

    Farland-Smith, Donna

    2012-01-01

    Even long before children are able to verbalize which careers may be interesting to them, they collect and store ideas about scientists. For these reasons, asking children to draw a scientist has become an accepted method to provide a glimpse into how children represent and identify with those in the science fields. Years later, these…

  2. The Relationship among Elementary Teachers’ Mathematics Anxiety, Mathematics Instructional Practices, and Student Mathematics Achievement

    OpenAIRE

    Hadley, Kristin M.; Dorward, Jim

    2011-01-01

    Many elementary teachers have been found to have high levels of mathematics anxiety but the impact on student achievement was unknown. Elementary teachers (N = 692) completed the modified Mathematics Anxiety Rating Scale-Revised (Hopko, 2003) along with a questionnaire probing anxiety about teaching mathematics and current mathematics instructional practices. Student mathematics achievement data were collected for the classrooms taught by the teachers. A positive relationship was found betwee...

  3. Exploring Prospective Teachers’ Reflections in the Context of Conducting Clinical Interviews

    Directory of Open Access Journals (Sweden)

    Rukiye Didem Taylan

    2018-04-01

    Full Text Available This study investigated prospective mathematics teachers’ reflections on the experience of designing and conducting one-to-one clinical interviews with middle school students in the context of an elective course on use of video in teacher learning. Prospective teachers were asked to write about weaknesses and strengths in student understanding as well as their own performance as an interviewer in terms of asking questions and responding to student thinking in their reflections on conducting clinical interviews. Furthermore, prospective teachers were also asked to reflect on what they would do differently in order to conduct better clinical interviews. Nature of prospective teachers’ reflections were analyzed by using existing frameworks (through constructs of reflection-on-action and reflection-for-action and by using thematic analysis. Results of data analyses revealed that prospective teachers had more difficulties in providing meaningful reflection-for-action which was related to alternative decisions and planning for future similar interviews. Thematic analysis results revealed prospective teachers’ learning were grouped under three categories: conducting clinical interviews as part of being a teacher, complexity of conducting clinical interviews, and personal theories about middle school students. There are implications for both teacher learning and research.

  4. The language of mathematics telling mathematical tales

    CERN Document Server

    Barton, Bill

    2008-01-01

    Everyday mathematical ideas are expressed differently in different languages. This book probes those differences and explores their implications for mathematics education, arguing for alternatives to how we teach and learn mathematics.

  5. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Information Optical Illusions Printables Ask a Scientist Video Series Why can’t you see colors well in ... and more with our Ask a Scientist video series. Dr. Sheldon Miller answers questions about color blindness, ...

  6. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Listen All About Vision About the Eye Ask a Scientist Video Series ... Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun ...

  7. Managing scientists leadership strategies in research and development

    CERN Document Server

    Sapienza, Alice M

    1995-01-01

    Managing Scientists Leadership Strategies in Research and Development Alice M. Sapienza "I found ...this book to be exciting ...Speaking as someone who has spent 30 years grappling with these issues, I certainly would be a customer." -Robert I. Taber, PhD Senior Vice President of Research & Development Synaptic Pharmaceutical Corporation In today's climate of enormous scientific and technologic competition, it is more crucial than ever that scientists involved in research and development be managed well. Often trained as individual researchers, scientists can find integration into teams difficult. Managers, from both scientific and nonscientific backgrounds, who are responsible for these teams frequently find effective team building a long and challenging process. Managing Scientists offers strategies for fostering communication and collaboration among scientists. It shows how to build cohesive, productive, and focused teams to succeed in the competitive research and development marketplace. This book wil...

  8. WebQuest on Conic Sections as a Learning Tool for Prospective Teachers

    Science.gov (United States)

    Kurtulus, Aytac; Ada, Tuba

    2012-01-01

    WebQuests incorporate technology with educational concepts through integrating online resources with student-centred and activity-based learning. In this study, we describe and evaluate a WebQuest based on conic sections, which we have used with a group of prospective mathematics teachers. The WebQuest entitled: "Creating a Carpet Design Using…

  9. Education and Outreach: Advice to Young Scientists

    Science.gov (United States)

    Lopes, R. M. C.

    2005-08-01

    Carl Sagan set an example to all scientists when he encouraged us to reach out to the public and share the excitement of discovery and exploration. The prejudice that ensued did not deter Sagan and, with the passing of years, more and more scientists have followed his example. Although at present scientists at all ranks are encouraged by their institutions to do outreach, the balancing of a successful scientific career with teaching and outreach is often not an easy one. Young scientists, in particular, may worry about how their outreach efforts are viewed in the community and how they will find the time and energy for these efforts. This talk will offer suggestions on how to balance an active science research program with outreach activities, the many different ways to engage in education and public outreach, and how the rewards are truly priceless.

  10. Mathematical Modelling Approach in Mathematics Education

    Science.gov (United States)

    Arseven, Ayla

    2015-01-01

    The topic of models and modeling has come to be important for science and mathematics education in recent years. The topic of "Modeling" topic is especially important for examinations such as PISA which is conducted at an international level and measures a student's success in mathematics. Mathematical modeling can be defined as using…

  11. Metaphysics and mathematics: Perspectives on reality

    Directory of Open Access Journals (Sweden)

    Gideon J. Kühn

    2017-08-01

    Full Text Available The essence of number was regarded by the ancient Greeks as the root cause of the existence of the universe, but it was only towards the end of the 19th century that mathematicians initiated an in-depth study of the nature of numbers. The resulting unavoidable actuality of infinities in the number system led mathematicians to rigorously investigate the foundations of mathematics. The formalist approach to establish mathematical proof was found to be inconclusive: Gödel showed that there existed true propositions that could not be proved to be true within the natural number universe. This result weighed heavily on proposals in the mid-20th century for digital models of the universe, inspired by the emergence of the programmable digital computer, giving rise to the branch of philosophy recognised as digital philosophy. In this article, the models of the universe presented by physicists, mathematicians and theoretical computer scientists are reviewed and their relation to the natural numbers is investigated. A quantum theory view that at the deepest level time and space may be discrete suggests a profound relation between natural numbers and reality of the cosmos. The conclusion is that our perception of reality may ultimately be traced to the ontology and epistemology of the natural numbers.

  12. Women Young Scientists of INSA | Women in Science | Initiatives ...

    Indian Academy of Sciences (India)

    Home; Initiatives; Women in Science; Women Young Scientists of INSA. Women Young Scientists of INSA. INSA - Indian National Science Academy .... Charusita Chakravarty, one of the stars of our community of women scientists, at a young ...

  13. Mathematics Underground

    Science.gov (United States)

    Luther, Kenneth H.

    2012-01-01

    Mathematical modeling of groundwater flow is a topic at the intersection of mathematics and geohydrology and is rarely encountered in undergraduate mathematics. However, this subject is full of interesting and meaningful examples of truly "applied" mathematics accessible to undergraduates, from the pre-calculus to advanced mathematics levels. This…

  14. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series Why can’ ... a scientist? Click to Watch What is an optical illusion? Click to Watch What is color blindness? Click ...

  15. Mathematical bridges

    CERN Document Server

    Andreescu, Titu; Tetiva, Marian

    2017-01-01

    Building bridges between classical results and contemporary nonstandard problems, Mathematical Bridges embraces important topics in analysis and algebra from a problem-solving perspective. Blending old and new techniques, tactics and strategies used in solving challenging mathematical problems, readers will discover numerous genuine mathematical gems throughout that will heighten their appreciation of the inherent beauty of mathematics. Most of the problems are original to the authors and are intertwined in a well-motivated exposition driven by representative examples. The book is structured to assist the reader in formulating and proving conjectures, as well as devising solutions to important mathematical problems by making connections between various concepts and ideas from different areas of mathematics. Instructors and educators teaching problem-solving courses or organizing mathematics clubs, as well as motivated mathematics students from high school juniors to college seniors, will find Mathematical Bri...

  16. Exploring mathematics anxiety and attitude: Mathematics students' experiences

    Science.gov (United States)

    Sahri, Nurul Ashikin; Kamaruzaman, Wan Nur Farahdalila Wan; Jamil, Jastini Mohd.; Shaharanee, Izwan Nizal Mohd.

    2017-11-01

    A quantitative and correlational, survey methods were used to investigate the relationships among mathematical anxiety and attitude toward student's mathematics performance. Participants were 100 students volunteer to enroll in undergraduate Industrial Statistics, Decision Sciences and Business Mathematics at one of northern university in Malaysia. Survey data consisted of demographic items and Likert scale items. The collected data was analyzed by using the idea of correlation and regression analysis. The results indicated that there was a significant positive relationship between students' attitude and mathematics anxiety. Results also indicated that a substantial positive effect of students' attitude and mathematics anxiety in students' achievement. Further study can be conducted on how mathematical anxiety and attitude toward mathematics affects can be used to predict the students' performance in the class.

  17. Isotopes: technologies, materials and application. II International scientific conference of young scientists, post-graduate students and students. Book of abstracts

    International Nuclear Information System (INIS)

    2015-01-01

    The collection contains materials of abstracts of the conference participants to sum up the experience of research and development in the field of isotope production technologies, the use of compounds specified isotopic composition in different sectors of the economy, as well as the disposal and storage technology of the isotope production wastes. Advanced ideas produce isotopes of rare elements for medicine, microelectronics and nuclear industries are presented. Prospectively projects of scientists of Tomsk Polytechnic University in isotope modifying substances are discussed [ru

  18. Increasing both the public health potential of basic research and the scientist satisfaction. An international survey of bio-scientists.

    Science.gov (United States)

    Sorrentino, Carmen; Boggio, Andrea; Confalonieri, Stefano; Hemenway, David; Scita, Giorgio; Ballabeni, Andrea

    2016-01-01

    Basic scientific research generates knowledge that has intrinsic value which is independent of future applications. Basic research may also lead to practical benefits, such as a new drug or diagnostic method. Building on our previous study of basic biomedical and biological researchers at Harvard, we present findings from a new survey of similar scientists from three countries. The goal of this study was to design policies to enhance both the public health potential and the work satisfaction and test scientists' attitudes towards these factors. The present survey asked about the scientists' motivations, goals and perspectives along with their attitudes concerning  policies designed to increase both the practical (i.e. public health) benefits of basic research as well as their own personal satisfaction. Close to 900 basic investigators responded to the survey; results corroborate the main findings from the previous survey of Harvard scientists. In addition, we find that most bioscientists disfavor present policies that require a discussion of the public health potential of their proposals in grants but generally favor softer policies aimed at increasing the quality of work and the potential practical benefits of basic research. In particular, bioscientists are generally supportive of those policies entailing the organization of more meetings between scientists and the general public, the organization of more academic discussion about the role of scientists in the society, and the implementation of a "basic bibliography" for each new approved drug.

  19. On Mathematical Understanding: Perspectives of Experienced Chinese Mathematics Teachers

    Science.gov (United States)

    Cai, Jinfa; Ding, Meixia

    2017-01-01

    Researchers have long debated the meaning of mathematical understanding and ways to achieve mathematical understanding. This study investigated experienced Chinese mathematics teachers' views about mathematical understanding. It was found that these mathematics teachers embrace the view that understanding is a web of connections, which is a result…

  20. Hands-On Mathematics: Two Cases from Ancient Chinese Mathematics

    Science.gov (United States)

    Wang, Youjun

    2009-01-01

    In modern mathematical teaching, it has become increasingly emphasized that mathematical knowledge should be taught by problem-solving, hands-on activities, and interactive learning experiences. Comparing the ideas of modern mathematical education with the development of ancient Chinese mathematics, we find that the history of mathematics in…

  1. Scientists, government, and nuclear power

    International Nuclear Information System (INIS)

    Katz, J.E.

    1982-01-01

    Scientists in less-developed countries (LDCs) that undertake nuclear programs become involved in political decisions on manpower and resource allocations that will preclude other options. Controversy over the adoption of sophisticated technology has put those who see science as the servant of society in conflict with those who see the pursuit of science as a social service. The role model which LDC scientists present in this issue has given them increasing power, which can be either in accord with or in conflict with the perceived national interest. 29 references

  2. Topics in quantum groups and finite-type invariants mathematics at the independent University of Moscow

    CERN Document Server

    Arkhipov, S M; Odesskii, A V; Feigin, B; Vassiliev, V

    1998-01-01

    This volume presents the first collection of articles consisting entirely of work by faculty and students of the Higher Mathematics College of the Independent University of Moscow (IUM). This unique institution was established to train elite students to become research scientists. Covered in the book are two main topics: quantum groups and low-dimensional topology. The articles were written by participants of the Feigin and Vassiliev seminars, two of the most active seminars at the IUM.

  3. Theoretical Mathematics

    Science.gov (United States)

    Stöltzner, Michael

    Answering to the double-faced influence of string theory on mathematical practice and rigour, the mathematical physicists Arthur Jaffe and Frank Quinn have contemplated the idea that there exists a `theoretical' mathematics (alongside `theoretical' physics) whose basic structures and results still require independent corroboration by mathematical proof. In this paper, I shall take the Jaffe-Quinn debate mainly as a problem of mathematical ontology and analyse it against the backdrop of two philosophical views that are appreciative towards informal mathematical development and conjectural results: Lakatos's methodology of proofs and refutations and John von Neumann's opportunistic reading of Hilbert's axiomatic method. The comparison of both approaches shows that mitigating Lakatos's falsificationism makes his insights about mathematical quasi-ontology more relevant to 20th century mathematics in which new structures are introduced by axiomatisation and not necessarily motivated by informal ancestors. The final section discusses the consequences of string theorists' claim to finality for the theory's mathematical make-up. I argue that ontological reductionism as advocated by particle physicists and the quest for mathematically deeper axioms do not necessarily lead to identical results.

  4. Exploring Differential Effects of Mathematics Courses on Mathematics Achievement

    Science.gov (United States)

    Ma, Xin; McIntyre, Laureen J.

    2005-01-01

    Using data from the Longitudinal Study of Mathematics Participation (N = 1,518 students from 34 schools), we investigated the effects of pure and applied mathematics courses on mathematics achievement, controlling for prior mathematics achievement. Results of multilevel modelling showed that the effects of pure mathematics were significant after…

  5. Scientists' Perceptions of Communicating During Crises

    Science.gov (United States)

    Dohaney, J. A.; Hudson-Doyle, E.; Brogt, E.; Wilson, T. M.; Kennedy, B.

    2015-12-01

    To further our understanding of how to enhance student science and risk communication skills in natural hazards and earth science courses, we conducted a pilot study to assess the different perceptions of expert scientists and risk communication practitioners versus the perceptions of students. These differences will be used to identify expert views on best practice, and improve the teaching of communication skills at the University level. In this pilot study, a perceptions questionnaire was developed and validated. Within this, respondents (geoscientists, engineers, and emergency managers; n=44) were asked to determine their agreement with the use and effectiveness of specific communication strategies (within the first 72 hours after a devastating earthquake) when communicating to the public. In terms of strategies and information to the public, the respondents were mostly in agreement, but there were several statements which elicited large differences between expert responses: 1) the role and purpose of the scientific communication during crises (to persuade people to care, to provide advice, to empower people to take action); 2) the scientist's delivery (showing the scientists emotions and enthusiasm for scientific concepts they are discussing); and 3) the amount of data that is discussed (being comprehensive versus 'only the important' data). The most disagreed upon dimension was related to whether to disclose any political influence on the communication. Additionally, scientists identified that being an effective communicator was an important part of their job, and agreed that it is important to practice these skills. Respondents generally indicated that while scientists should be accountable for the science advice provided, they should not be held liable.

  6. Mathematics Curriculum, the Philosophy of Mathematics and its ...

    African Journals Online (AJOL)

    It is my observation that the current school mathematics curriculum in Ethiopia is not producing competent mathematics students. Many mathematicians in Ethiopia and other part of the world have often expressed grief that the majority of students do not understand mathematical concepts, or do not see why mathematical ...

  7. Photonics4All Crossword: Light Scientist

    OpenAIRE

    Dr. Adam, Aurèle

    2015-01-01

    Photonics4All developed the quiz “The Optics Scientist“. It tests our knowledge regarding famous people in optics & photonics. 14 famous scientists you should know, if you consider yourself a photoncis experts, are presented! For instance: Do you know the Dutch scientist who lived in Delft and invented the microscope? …find our more & test yourself, your friends, co-workers, students or family members!

  8. Women scientists reflections, challenges, and breaking boundaries

    CERN Document Server

    Hargittai, Magdolna

    2015-01-01

    Magdolna Hargittai uses over fifteen years of in-depth conversation with female physicists, chemists, biomedical researchers, and other scientists to form cohesive ideas on the state of the modern female scientist. The compilation, based on sixty conversations, examines unique challenges that women with serious scientific aspirations face. In addition to addressing challenges and the unjustifiable underrepresentation of women at the higher levels of academia, Hargittai takes a balanced approach by discussing how some of the most successful of these women have managed to obtain professional success and personal happiness. Women Scientists portrays scientists from different backgrounds, different geographical regions-eighteen countries from four continents-and leaders from a variety of professional backgrounds, including eight Nobel laureate women. The book is divided into three sections: "Husband and Wife Teams," "Women at the Top," and "In High Positions." Hargittai uses her own experience to introduce her fi...

  9. Mathematics, the Computer, and the Impact on Mathematics Education.

    Science.gov (United States)

    Tooke, D. James

    2001-01-01

    Discusses the connection between mathematics and the computer; mathematics curriculum; mathematics instruction, including teachers learning to use computers; and the impact of the computer on learning mathematics. (LRW)

  10. Scientist Spotlight Homework Assignments Shift Students' Stereotypes of Scientists and Enhance Science Identity in a Diverse Introductory Science Class

    Science.gov (United States)

    Schinske, Jeffrey N.; Perkins, Heather; Snyder, Amanda; Wyer, Mary

    2016-01-01

    Research into science identity, stereotype threat, and possible selves suggests a lack of diverse representations of scientists could impede traditionally underserved students from persisting and succeeding in science. We evaluated a series of metacognitive homework assignments ("Scientist Spotlights") that featured counterstereotypical…

  11. Finite Mathematics and Discrete Mathematics: Is There a Difference?

    Science.gov (United States)

    Johnson, Marvin L.

    Discrete mathematics and finite mathematics differ in a number of ways. First, finite mathematics has a longer history and is therefore more stable in terms of course content. Finite mathematics courses emphasize certain particular mathematical tools which are useful in solving the problems of business and the social sciences. Discrete mathematics…

  12. Teaching science and mathematics to students with visual impairments: Reflections of a visually impaired technician.

    Science.gov (United States)

    Maguvhe, Mbulaheni

    2015-01-01

    This study reports on factors that limit the participation of blind and partially sighted learners in mathematics and science education. Since the teacher, still remains one of the most crucial factors in any education system, the researcher deemed it important to investigate the role of the teacher as understood by a blind technician in promoting the participation of blind and partially sighted learners in mathematics and science subjects, which few of these learners take beyond primary school. A case study was conducted interrogating a blind technician, who regards himself as an unqualified scientist, in his understanding of various school factors that could entice blind and partially sighted learners to participate in mathematics and science education, and to promote their retention in related professions. The participant thus drew from his own experiences of the school environment and wider concentric social institutions. A semi-structured interview schedule was followed and the responses were recorded by mutual consent. Analysis was conducted based on questions put to the participant. The study revealed that teacher motivation and mentorship in mathematics and science methodologies and the use of tools for learner empowerment are lacking. It further revealed that teachers lack the requisite skills in special education to harness learner potential in mathematics and science. This situation necessitates government action in teacher training and development.

  13. Mathematical Intelligence and Mathematical Creativity: A Causal Relationship

    Science.gov (United States)

    Tyagi, Tarun Kumar

    2017-01-01

    This study investigated the causal relationship between mathematical creativity and mathematical intelligence. Four hundred thirty-nine 8th-grade students, age ranged from 11 to 14 years, were included in the sample of this study by random cluster technique on which mathematical creativity and Hindi adaptation of mathematical intelligence test…

  14. Prospective Teachers Proportional Reasoning and Presumption of Student Work

    Directory of Open Access Journals (Sweden)

    Mujiyem Sapti

    2015-08-01

    Full Text Available This study aimed to describe the proportional reasoning of prospective teachers and their predictions about students' answers. Subjects were 4 prospective teacher  7th semester Department of Mathematics Education, Muhammadiyah University of Purworejo. Proportional reasoning task used to obtain research data. Subjects were asked to explain their reasoning and write predictions of student completion. Data was taken on October 15th, 2014. Interviews were conducted after the subjects completed the task and recorded with audio media. The research data were subject written work and interview transcripts. Data were analyzed using qualitative analysis techniques. In solving the proportional reasoning task, subjects using the cross product. However, they understand the meaning of the cross product. Subject also could predict students' reasoning on the matter.

  15. Logical studies of paraconsistent reasoning in science and mathematics

    CERN Document Server

    Verdée, Peter

    2016-01-01

    This book covers work written by leading scholars from different schools within the research area of paraconsistency. The authors critically investigate how contemporary paraconsistent logics can be used to better understand human reasoning in science and mathematics. Offering a variety of perspectives, they shed a new light on the question of whether paraconsistent logics can function as the underlying logics of inconsistent but useful scientific and mathematical theories. The great variety of paraconsistent logics gives rise to various, interrelated questions, such as what are the desiderata a paraconsistent logic should satisfy, is there prospect of a universal approach to paraconsistent reasoning with axiomatic theories, and to what extent is reasoning about sets structurally analogous to reasoning about truth. Furthermore, the authors consider paraconsistent logic’s status as either a normative or descriptive discipline (or one which falls in between) and which inconsistent but non-trivial axiomatic th...

  16. Developing a Questionnaire to Assess the Probability Content Knowledge of Prospective Primary School Teachers

    Science.gov (United States)

    Gómez-Torres, Emilse; Batanero, Carmen; Díaz, Carmen; Contreras, José Miguel

    2016-01-01

    In this paper we describe the development of a questionnaire designed to assess the probability content knowledge of prospective primary school teachers. Three components of mathematical knowledge for teaching and three different meanings of probability (classical, frequentist and subjective) are considered. The questionnaire content is based on…

  17. Exploring the Potential of Using Stories about Diverse Scientists and Reflective Activities to Enrich Primary Students' Images of Scientists and Scientific Work

    Science.gov (United States)

    Sharkawy, Azza

    2012-01-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15-week…

  18. Assessing scientists for hiring, promotion, and tenure.

    Science.gov (United States)

    Moher, David; Naudet, Florian; Cristea, Ioana A; Miedema, Frank; Ioannidis, John P A; Goodman, Steven N

    2018-03-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process.

  19. Assessing scientists for hiring, promotion, and tenure

    Science.gov (United States)

    Naudet, Florian; Cristea, Ioana A.; Miedema, Frank; Ioannidis, John P. A.; Goodman, Steven N.

    2018-01-01

    Assessment of researchers is necessary for decisions of hiring, promotion, and tenure. A burgeoning number of scientific leaders believe the current system of faculty incentives and rewards is misaligned with the needs of society and disconnected from the evidence about the causes of the reproducibility crisis and suboptimal quality of the scientific publication record. To address this issue, particularly for the clinical and life sciences, we convened a 22-member expert panel workshop in Washington, DC, in January 2017. Twenty-two academic leaders, funders, and scientists participated in the meeting. As background for the meeting, we completed a selective literature review of 22 key documents critiquing the current incentive system. From each document, we extracted how the authors perceived the problems of assessing science and scientists, the unintended consequences of maintaining the status quo for assessing scientists, and details of their proposed solutions. The resulting table was used as a seed for participant discussion. This resulted in six principles for assessing scientists and associated research and policy implications. We hope the content of this paper will serve as a basis for establishing best practices and redesigning the current approaches to assessing scientists by the many players involved in that process. PMID:29596415

  20. Pathways for impact: scientists' different perspectives on agricultural innovation

    NARCIS (Netherlands)

    Röling, N.G.

    2009-01-01

    This paper takes the viewpoint of a social scientist and looks at agricultural scientists' pathways for science impact. Awareness of these pathways is increasingly becoming part and parcel of the professionalism of the agricultural scientist, now that the pressure is on to mobilize smallholders and

  1. Thinking like a scientist: innateness as a case study.

    Science.gov (United States)

    Knobe, Joshua; Samuels, Richard

    2013-01-01

    The concept of innateness appears in systematic research within cognitive science, but it also appears in less systematic modes of thought that long predate the scientific study of the mind. The present studies therefore explore the relationship between the properly scientific uses of this concept and its role in ordinary folk understanding. Studies 1-4 examined the judgments of people with no specific training in cognitive science. Results showed (a) that judgments about whether a trait was innate were not affected by whether or not the trait was learned, but (b) such judgments were impacted by moral considerations. Study 5 looked at the judgments of both non-scientists and scientists, in conditions that encouraged either thinking about individual cases or thinking about certain general principles. In the case-based condition, both non-scientists and scientists showed an impact of moral considerations but little impact of learning. In the principled condition, both non-scientists and scientists showed an impact of learning but little impact of moral considerations. These results suggest that both non-scientists and scientists are drawn to a conception of innateness that differs from the one at work in contemporary scientific research but that they are also both capable of 'filtering out' their initial intuitions and using a more scientific approach. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. International Conference on Modern Mathematical Methods and High Performance Computing in Science and Technology

    CERN Document Server

    Srivastava, HM; Venturino, Ezio; Resch, Michael; Gupta, Vijay

    2016-01-01

    The book discusses important results in modern mathematical models and high performance computing, such as applied operations research, simulation of operations, statistical modeling and applications, invisibility regions and regular meta-materials, unmanned vehicles, modern radar techniques/SAR imaging, satellite remote sensing, coding, and robotic systems. Furthermore, it is valuable as a reference work and as a basis for further study and research. All contributing authors are respected academicians, scientists and researchers from around the globe. All the papers were presented at the international conference on Modern Mathematical Methods and High Performance Computing in Science & Technology (M3HPCST 2015), held at Raj Kumar Goel Institute of Technology, Ghaziabad, India, from 27–29 December 2015, and peer-reviewed by international experts. The conference provided an exceptional platform for leading researchers, academicians, developers, engineers and technocrats from a broad range of disciplines ...

  3. Taking the Scientist's Perspective - The Nonfiction Narrative Engages Episodic Memory to Enhance Students' Understanding of Scientists and Their Practices

    Science.gov (United States)

    Larison, Karen D.

    2018-03-01

    The Next Generation Science Standards (NGSS Lead States 2013) mandates that schools provide students an understanding of the skills and knowledge that scientists use to engage in scientific practices. In this article, I argue that one of the best ways to accomplish this goal is to have students take the perspective of the scientist by reading nonfiction narratives written by scientists and science writers. I explore the anthropological and neurological evidence that suggests that perspective-taking is an essential component in the learning process. It has been shown that by around age 4, the human child begins to be able to take the perspective of others—a process that neuroscientists have shown engages episodic memory, a memory type that some neurocognitive scientists believe is central in organizing human cognition. Neuroscientists have shown that the brain regions in which episodic memory resides undergo pronounced anatomical changes during adolescence, suggesting that perspective-taking assumes an even greater role in cognition during adolescence and young adulthood. Moreover, I argue that the practice of science itself is narrative in nature. With each new observation and experiment, the scientist is acting to reveal an emerging story. It is the story-like nature of science that motivates the scientist to push onward with new experiments and new observations. It is also the story-like nature of the practice of science that can potentially engage the student. The classroom studies that I review here confirm the power of the narrative in increasing students' understanding of science.

  4. Taking the Scientist's Perspective. The Nonfiction Narrative Engages Episodic Memory to Enhance Students' Understanding of Scientists and Their Practices

    Science.gov (United States)

    Larison, Karen D.

    2018-03-01

    The Next Generation Science Standards (NGSS Lead States 2013) mandates that schools provide students an understanding of the skills and knowledge that scientists use to engage in scientific practices. In this article, I argue that one of the best ways to accomplish this goal is to have students take the perspective of the scientist by reading nonfiction narratives written by scientists and science writers. I explore the anthropological and neurological evidence that suggests that perspective-taking is an essential component in the learning process. It has been shown that by around age 4, the human child begins to be able to take the perspective of others—a process that neuroscientists have shown engages episodic memory, a memory type that some neurocognitive scientists believe is central in organizing human cognition. Neuroscientists have shown that the brain regions in which episodic memory resides undergo pronounced anatomical changes during adolescence, suggesting that perspective-taking assumes an even greater role in cognition during adolescence and young adulthood. Moreover, I argue that the practice of science itself is narrative in nature. With each new observation and experiment, the scientist is acting to reveal an emerging story. It is the story-like nature of science that motivates the scientist to push onward with new experiments and new observations. It is also the story-like nature of the practice of science that can potentially engage the student. The classroom studies that I review here confirm the power of the narrative in increasing students' understanding of science.

  5. How Scientists Develop Competence in Visual Communication

    Science.gov (United States)

    Ostergren, Marilyn

    2013-01-01

    Visuals (maps, charts, diagrams and illustrations) are an important tool for communication in most scientific disciplines, which means that scientists benefit from having strong visual communication skills. This dissertation examines the nature of competence in visual communication and the means by which scientists acquire this competence. This…

  6. Learning Mathematics for Teaching Mathematics: Non-Specialist Teachers' Mathematics Teacher Identity

    Science.gov (United States)

    Crisan, Cosette; Rodd, Melissa

    2017-01-01

    A non-specialist teacher of mathematics is a school teacher who qualified to teach in a subject other than mathematics yet teaches mathematics to students in secondary school. There is an emerging interest internationally in this population, a brief report of which is given in the paper. Because of concerns about the quality of non-specialists'…

  7. Scientists vs. the administration

    CERN Multimedia

    2004-01-01

    Article denouncing the supposed impartiality of signatories of a report released by the Union of Concerned Scientists (UCS), which accused the Bush administration of systemically suborning objective science to a political agenda (1 page).

  8. The future of mathematical communication. Final technical report

    Energy Technology Data Exchange (ETDEWEB)

    Christy, J.

    1994-12-31

    One of the first fruits of cooperation with LBL was the use of the MBone (Multi-Cast Backbone) to broadcast the Conference on the Future of Mathematical Communication, held at MSRI November 30--December 3, 1994. Late last fall, MSRI brought together more than 150 mathematicians, librarians, software developers, representatives of scholarly societies, and both commercial and not-for-profit publishers to discuss the revolution in scholarly communication brought about by digital technology. The conference was funded by the Department of Energy, the National Science Foundation, and the Paul and Gabriella Rosenbaum Foundation. It focused on the impact of the technological revolution on mathematics, but necessarily included issues of a much wider scope. There were talks on electronic publishing, collaboration across the Internet, economic and intellectual property issues, and various new technologies which promise to carry the revolution forward. There were panel discussions of electronic documents in mathematics, the unique nature of electronic journals, technological tools, and the role of scholarly societies. There were focus groups on Developing Countries, K-12 Education, Libraries, and Te{sub X}. The meeting also embodied the promises of the revolution; it was multicast over the MBone channel of the Internet to hundreds of sites around the world and much information on the conference will be available on their World Wide Web server at the URL http://www.msri.org/fmc. The authors have received many comments about the meeting indicating that it has had a profound impact on how the community thinks about how scientists can communicate and make their work public.

  9. Prospects of application structural mathematical constructs as bases tool conceptualization the subject domain of sociology (statement of a problem

    Directory of Open Access Journals (Sweden)

    E. V. Maslennikov

    2016-01-01

    Full Text Available In article the approach to the decision of a problem of conceptual integration of sociology as the set of theoretical knowledge belonging to type - conceptually difficult - the big theories. Development of theoretical sociology with use of forms of the mathematical theory is considered as a private problem in relation to more general problem of development of theoretical knowledge with use of forms of the mathematical theory. Development the theoretical sociology is offered to carry out with use of forms of the mathematical theory on the basis of properties structural mathematical constructs and with application the mathematical methods developed in a scientific direction “The Conceptual analysis and designing”[40] . In the given direction it is used not only a paradigm of structuralism, but also a principle of an ascention from abstract to concrete in the knowledge, realized in procedure of synthesis of formal theories with use of the device of structural mathematics. The system analysis, the theory of systems and the theory of structures of N. Burbaki concerns to sources of occurrence of a method of the conceptual analysis. The method is intended for the analysis of subject domains of a high level of complexity, realization of conceptual modeling of objects from these subject domains and reception of new knowledge about essence of subject domains and their relations. Conceptual complexity of phenomena is understood as complexity of the structures expressing the relations and interrelations between concepts, describing interesting area from the point of view of solved tasks. For a subject domain conceptual complexity is potentially established by quantity of basic sets on which scales of sets and the steps belonging to them representing definitions of developed theory of a subject domain are constructed. In article is exposed to the analysis role structural mathematical constructs device in expansion integrating tool conceptualization

  10. 7 CFR 91.18 - Financial interest of a scientist.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Financial interest of a scientist. 91.18 Section 91.18 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (Standards... SERVICES AND GENERAL INFORMATION Laboratory Service § 91.18 Financial interest of a scientist. No scientist...

  11. THE RELATIONSHIP BETWEEN PEDAGOGICAL FORMATION TRAINING CERTIFICATE PROGRAM PROSPECTIVE TEACHERS' CRITICAL THINKING ATTITUDES AND THEIR PERCEPTIONS ON PROFESSIONAL ETHICAL PRINCIPLES

    OpenAIRE

    Birsel Aybek; Serkan Aslan

    2017-01-01

    This research aims to analyze the relationship between pedagogical formation training certificate program prospective teachers’ critical thinking attitudes and their perceptions on professional ethical principles. The study used relational screening model and convenience sampling method which is one of the purposeful sampling methods. The participants consisted of 393 prospective teachers from different majors such as mathematics, physics, chemistry, health, biology, philosophy, religious cul...

  12. Tens of Romanian scientists work at CERN

    CERN Multimedia

    Silian, Sidonia

    2007-01-01

    "The figures regarding the actual number of Romanian scientists working at the European Center for Nuclear Research, or CERN, differ. The CERN data base lists some 30 Romanians on its payroll, while the scientists with the Nuclear Center at Magurele, Romania, say they should be around 50." (1 page)

  13. Student Pugwash Conference Probes Scientists' Individual Responsibility.

    Science.gov (United States)

    Seltzer, Richard J.

    1985-01-01

    Students from 25 nations and senior scientists examined ethical and social dimensions of decision making about science and technology during the 1985 Student Pugwash Conference on scientists' individual responsibilities. Working groups focused on toxic wastes, military uses of space, energy and poverty, genetic engineering, and individual rights.…

  14. How Middle Schoolers Draw Engineers and Scientists

    Science.gov (United States)

    Fralick, Bethany; Kearn, Jennifer; Thompson, Stephen; Lyons, Jed

    2009-01-01

    The perceptions young students have of engineers and scientists are often populated with misconceptions and stereotypes. Although the perceptions that young people have of engineers and of scientists have been investigated separately, they have not been systematically compared. The research reported in this paper explores the question "How are…

  15. Ask a Scientist: What is Color Blindness?

    Medline Plus

    Full Text Available ... Ask a Scientist Video Series Glossary The Visual System Your Eyes’ Natural Defenses Eye Health and Safety First Aid Tips Healthy Vision Tips Protective Eyewear Sports and Your Eyes Fun Stuff Cool Eye Tricks Links to More Information Optical Illusions Printables Ask a Scientist Video Series ...

  16. Crossroads in the History of Mathematics and Mathematics Education. The Montana Mathematics Enthusiast: Monograph Series in Mathematics Education

    Science.gov (United States)

    Sriraman, Bharath, Ed.

    2012-01-01

    The interaction of the history of mathematics and mathematics education has long been construed as an esoteric area of inquiry. Much of the research done in this realm has been under the auspices of the history and pedagogy of mathematics group. However there is little systematization or consolidation of the existing literature aimed at…

  17. Discrete Mathematics

    DEFF Research Database (Denmark)

    Sørensen, John Aasted

    2011-01-01

    The objectives of Discrete Mathematics (IDISM2) are: The introduction of the mathematics needed for analysis, design and verification of discrete systems, including the application within programming languages for computer systems. Having passed the IDISM2 course, the student will be able...... to accomplish the following: -Understand and apply formal representations in discrete mathematics. -Understand and apply formal representations in problems within discrete mathematics. -Understand methods for solving problems in discrete mathematics. -Apply methods for solving problems in discrete mathematics......; construct a finite state machine for a given application. Apply these concepts to new problems. The teaching in Discrete Mathematics is a combination of sessions with lectures and students solving problems, either manually or by using Matlab. Furthermore a selection of projects must be solved and handed...

  18. Prospect theory, reference points, and health decisions

    Directory of Open Access Journals (Sweden)

    Alan Schwartz

    2008-02-01

    Full Text Available In preventative health decisions, such as the decision to undergo an invasive screening test or treatment, people may be deterred from selecting the test because its perceived disutility relative to not testing is greater than the utility associated with prevention of possible disease. The prospect theory editing operation, by which a decision maker's reference point is determined, can have important effects on the disutility of the test. On the basis of the prospect theory value function, this paper develops two approaches to reducing disutility by directing the decision maker's attention to either (actual past or (expected future losses that result in shifted reference points. After providing a graphical description of the approaches and a mathematical proof of the direction of their effect on judgment, we briefly illustrate the potential value of these approaches with examples from qualitative research on prostate cancer treatment decisions.

  19. Overcoming the obstacles: Life stories of scientists with learning disabilities

    Science.gov (United States)

    Force, Crista Marie

    Scientific discovery is at the heart of solving many of the problems facing contemporary society. Scientists are retiring at rates that exceed the numbers of new scientists. Unfortunately, scientific careers still appear to be outside the reach of most individuals with learning disabilities. The purpose of this research was to better understand the methods by which successful learning disabled scientists have overcome the barriers and challenges associated with their learning disabilities in their preparation and performance as scientists. This narrative inquiry involved the researcher writing the life stories of four scientists. These life stories were generated from extensive interviews in which each of the scientists recounted their life histories. The researcher used narrative analysis to "make sense" of these learning disabled scientists' life stories. The narrative analysis required the researcher to identify and describe emergent themes characterizing each scientist's life. A cross-case analysis was then performed to uncover commonalities and differences in the lives of these four individuals. Results of the cross-case analysis revealed that all four scientists had a passion for science that emerged at an early age, which, with strong drive and determination, drove these individuals to succeed in spite of the many obstacles arising from their learning disabilities. The analysis also revealed that these scientists chose careers based on their strengths; they actively sought mentors to guide them in their preparation as scientists; and they developed coping techniques to overcome difficulties and succeed. The cross-case analysis also revealed differences in the degree to which each scientist accepted his or her learning disability. While some demonstrated inferior feelings about their successes as scientists, still other individuals revealed feelings of having superior abilities in areas such as visualization and working with people. These individuals revealed

  20. Mathematical Literacy: A new literacy or a new mathematics?

    Directory of Open Access Journals (Sweden)

    Renuka Vithal

    2006-10-01

    Full Text Available Mathematical Literacy is a ‘hot’ topic at present in most countries, whether it is referred to by that name, or in some cases as Numeracy, or Quantitative Literacy, or Matheracy, or as some part of Ethnomathematics, or related to Mathematics in Society. Questions continue to be asked about what is meant by mathematics in any concept of Mathematical Literacy and the use of the very word ‘Literacy’ in its association with Mathematics has been challenged. Its importance, however, lies in changing our perspective on mathematics teaching, away from the elitism so often associated with much mathematics education, and towards a more equitable, accessible and genuinely educational ideal.

  1. The Relationship of Mathematics Anxiety and Mathematical Knowledge to the Learning of Mathematical Pedagogy by Preservice Elementary Teachers.

    Science.gov (United States)

    Battista, Michael T.

    1986-01-01

    Examined how preservice elementary teachers' (N=38) mathematical knowledge and mathematics anxiety affect their success in a mathematics methods course. Also examined the hypothesis that a mathematics methods course can reduce the mathematics anxiety of these teachers. One finding is that mathematics anxiety does not inhibit their learning of…

  2. The Relationships among Mathematics Teaching Efficacy, Mathematics Self-Efficacy, and Mathematical Beliefs for Elementary Pre-Service Teachers

    Science.gov (United States)

    Briley, Jason S.

    2012-01-01

    Ninety-five elementary pre-service teachers enrolled in a mathematics content course for elementary school teachers completed 3 surveys to measure mathematics teaching efficacy, mathematics self-efficacy, and mathematical beliefs. The pre-service teachers who reported stronger beliefs in their capabilities to teach mathematics effectively were…

  3. Communicating Like a Scientist with Multimodal Writing

    Science.gov (United States)

    McDermott, Mark; Kuhn, Mason

    2012-01-01

    If students are to accurately model how scientists use written communication, they must be given opportunities to use creative means to describe science in the classroom. Scientists often integrate pictures, diagrams, charts, and other modes within text and students should also be encouraged to use multiple modes of communication. This article…

  4. Model-Based Policymaking: A Framework to Promote Ethical “Good Practice” in Mathematical Modeling for Public Health Policymaking

    Science.gov (United States)

    Boden, Lisa A.; McKendrick, Iain J.

    2017-01-01

    Mathematical models are increasingly relied upon as decision support tools, which estimate risks and generate recommendations to underpin public health policies. However, there are no formal agreements about what constitutes professional competencies or duties in mathematical modeling for public health. In this article, we propose a framework to evaluate whether mathematical models that assess human and animal disease risks and control strategies meet standards consistent with ethical “good practice” and are thus “fit for purpose” as evidence in support of policy. This framework is derived from principles of biomedical ethics: independence, transparency (autonomy), beneficence/non-maleficence, and justice. We identify ethical risks associated with model development and implementation and consider the extent to which scientists are accountable for the translation and communication of model results to policymakers so that the strengths and weaknesses of the scientific evidence base and any socioeconomic and ethical impacts of biased or uncertain predictions are clearly understood. We propose principles to operationalize a framework for ethically sound model development and risk communication between scientists and policymakers. These include the creation of science–policy partnerships to mutually define policy questions and communicate results; development of harmonized international standards for model development; and data stewardship and improvement of the traceability and transparency of models via a searchable archive of policy-relevant models. Finally, we suggest that bespoke ethical advisory groups, with relevant expertise and access to these resources, would be beneficial as a bridge between science and policy, advising modelers of potential ethical risks and providing overview of the translation of modeling advice into policy. PMID:28424768

  5. Gender Equality in Public Higher Education Institutions of Ethiopia: The Case of Science, Technology, Engineering, and Mathematics

    Science.gov (United States)

    Egne, Robsan Margo

    2014-01-01

    Ensuring gender equality in higher education system is high on the agenda worldwide particularly in science disciplines. This study explores the problems and prospects of gender equality in public higher education institutions of Ethiopia, especially in science, technology, engineering, and mathematics. Descriptive survey and analytical research…

  6. Mathematical modelling

    DEFF Research Database (Denmark)

    Blomhøj, Morten

    2004-01-01

    Developing competences for setting up, analysing and criticising mathematical models are normally seen as relevant only from and above upper secondary level. The general belief among teachers is that modelling activities presuppose conceptual understanding of the mathematics involved. Mathematical...... roots for the construction of important mathematical concepts. In addition competences for setting up, analysing and criticising modelling processes and the possible use of models is a formative aim in this own right for mathematics teaching in general education. The paper presents a theoretical...... modelling, however, can be seen as a practice of teaching that place the relation between real life and mathematics into the centre of teaching and learning mathematics, and this is relevant at all levels. Modelling activities may motivate the learning process and help the learner to establish cognitive...

  7. Scientific Research Competencies of Prospective Teachers and their Attitu des toward Scientific Research

    Directory of Open Access Journals (Sweden)

    Hasan Hüseyin Şahan

    2015-09-01

    Full Text Available Present study has been constructed to determine scientific research competencies of prospective teachers and identify the extent of effect of prospective teachers’ attitudes toward scientific research and scientific research methods course on their research skills and attitudes towards research. This study has two dimensions: it is a descriptive study by virtue of identifying prospective teachers’ research skills and attitudes toward research, also an experimental study by virtue of determining the effect of scientificresearch methods course on prospective teachers’ skills and their attitudes toward research. In order to obtain the data related to identified sub-problems “Scale for Identifying Scientific Research Competencies” and “Scale for Identifying the Attitude toward Research” have been utilized. Data collection tools were applied to 445 prospective teachers. It has thus been concluded in this study that scientific research methods course had no significant effect in gaining scientific research competencies to prospective teachers and that this effect demonstrated no differentiation with respect to departments. On the other hand it has been explored that scientific research methods course had a negative effect onthe attitudes of prospective teachers toward research and that there was a differentiation to the disadvantage of prospective teachers studying at Primary Education Mathematics Teaching Department.

  8. Scientists planning new internet

    CERN Multimedia

    Cookson, C

    2000-01-01

    British scientists are preparing to build the next generation internet - 'The Grid'. The government is expected to announce about 100 million pounds of funding for the project, to be done in collaboration with CERN (1/2 p).

  9. Discrete Mathematics and the Secondary Mathematics Curriculum.

    Science.gov (United States)

    Dossey, John

    Discrete mathematics, the mathematics of decision making for finite settings, is a topic of great interest in mathematics education at all levels. Attention is being focused on resolving the diversity of opinion concerning the exact nature of the subject, what content the curriculum should contain, who should study that material, and how that…

  10. U.S. Directory of Marine Scientists 1982

    Science.gov (United States)

    1982-01-01

    Processes & Engineering. MACLEAN, SHARON A, Fishery Biologist. FINKELSTEIN, KENNETH, Coastal Geologist. Zooplankton; Crustacea. Sedimentology; Stratigraphy... SHARON T, Aszt Scientist. Pasadena, CA 91109 Taxonomy and Systematics; Zooplankton. HOWEY, TERRY W, Scientist. CHELTON, DUDLEY BOYD, JR, Senior...Oceanography. Monterey, CA 93940 Optics; Descriptive Physical Oceanography, Instrumentation Engineering. BOURKE , ROBERT H, Assoc Professor of VON SCHWIND

  11. Exploring the potential of using stories about diverse scientists and reflective activities to enrich primary students' images of scientists and scientific work

    Science.gov (United States)

    Sharkawy, Azza

    2012-06-01

    The purpose of this qualitative study was to explore the potential of using stories about diverse scientists to broaden primary students' images of scientists and scientific work. Stories featuring scientists from diverse socio-cultural backgrounds (i.e., physical ability, gender, ethnicity) were presented to 11 grade one students over a 15 -week period. My analysis of pre-and post audio-taped interview transcripts, draw-a-scientist-tests (Chambers 1983), participant observations and student work suggest that the stories about scientists and follow-up reflective activities provided resources for students that helped them: (a) acquire images of scientists from less dominant socio-cultural backgrounds; (b) enrich their views of scientific work from predominantly hands-on/activity-oriented views to ones that includes cognitive and positive affective dimensions. One of the limitations of using stories as a tool to extend students' thinking about science is highlighted in a case study of a student who expresses resistance to some of the counter-stereotypic images presented in the stories. I also present two additional case studies that illustrate how shifts in student' views of the nature of scientific work can change their interest in future participation in scientific work.

  12. Scientist's Perceptions of Uncertainty During Discussions of Global Climate

    Science.gov (United States)

    Romanello, S.; Fortner, R.; Dervin, B.

    2003-04-01

    This research examines the nature of disagreements between natural and social scientists during discussions of global climate change. In particular, it explores whether the disagreements between natural and social scientists are related to the ontological, epistemological, or methodological nature of the uncertainty of global climate change during these discussions. A purposeful sample of 30 natural and social scientists recognized as experts in global climate change by the United States Global Change Research Program (USGCRP) and National Academies Committee on Global Change were interviewed to elicit their perceptions of disagreements during their three most troublesome discussions on global climate change. A mixed-method (qualitative plus quantitative research) approach with three independent variables was used to explore nature of uncertainty as a mediating variable in the relationships between academic training, level of sureness, level of knowledge, and position on global climate change, and the nature of disagreements and bridging strategies of natural and social scientists (Patton, 1997; Frechtling et al., 1997). This dissertation posits that it is the differences in the nature of uncertainty communicated by natural and social scientists and not sureness, knowledge, and position on global climate change that causes disagreements between the groups. By describing the nature of disagreements between natural and social scientists and illuminating bridging techniques scientists use during these disagreements, it is hoped that information collected from this research will create a better dialogue between the scientists studying global climate change by providing communication strategies which will allow those versed in one particular area to speak to non-experts whether they be other scientists, media officials, or the public. These tangible strategies can then be used by government agencies to create better communications and education plans, which can

  13. Increasing retention of early career female atmospheric scientists

    Science.gov (United States)

    Edwards, L. M.; Hallar, A. G.; Avallone, L. M.; Thiry, H.

    2010-12-01

    Atmospheric Science Collaborations and Enriching NeTworks (ASCENT) is a workshop series designed to bring together early career female scientists in the field of atmospheric science and related disciplines. ASCENT uses a multi-faceted approach to provide junior scientists with tools that will help them meet the challenges in their research and teaching career paths and will promote their retention in the field. During the workshop, senior women scientists discuss their career and life paths. They also lead seminars on tools, resources and methods that can help early career scientists to be successful and prepared to fill vacancies created by the “baby boomer” retirees. Networking is a significant aspect of ASCENT, and many opportunities for both formal and informal interactions among the participants (of both personal and professional nature) are blended in the schedule. The workshops are held in Steamboat Springs, Colorado, home of a high-altitude atmospheric science laboratory, Storm Peak Laboratory, which also allows for nearby casual outings and a pleasant environment for participants. Near the conclusion of each workshop, junior and senior scientists are matched in mentee-mentor ratios of two junior scientists per senior scientist. Post-workshop reunion events are held at national scientific meetings to maintain connectivity among each year’s participants, and for collaborating among participants of all workshops held to date. Evaluations of the two workshop cohorts thus far conclude that the workshops have been successful in achieving the goals of establishing and expanding personal and research-related networks, and that seminars have been useful in creating confidence and sharing resources for such things as preparing promotion and tenure packages, interviewing and negotiating job offers, and writing successful grant proposals.

  14. Science experiences of citizen scientists in entomology research

    Science.gov (United States)

    Lynch, Louise I.

    Citizen science is an increasingly popular collaboration between members of the public and the scientific community to pursue current research questions. In addition to providing researchers with much needed volunteer support, it is a unique and promising form of informal science education that can counter declining public science literacy, including attitudes towards and understanding of science. However, the impacts of citizen science programs on participants' science literacy remains elusive. The purpose of this study was to balance the top-down approach to citizen science research by exploring how adult citizen scientists participate in entomology research based on their perceptions and pioneer mixed methods research to investigate and explain the impacts of citizen science programs. Transference, in which citizen scientists transfer program impacts to people around them, was uncovered in a grounded theory study focused on adults in a collaborative bumble bee research program. Most of the citizen scientists involved in entomology research shared their science experiences and knowledge with people around them. In certain cases, expertise was attributed to the individual by others. Citizen scientists then have the opportunity to acquire the role of expert to those around them and influence knowledge, attitudinal and behavioral changes in others. An intervention explanatory sequential mixed methods design assessed how entomology-based contributory citizen science affects science self-efficacy, self-efficacy for environmental action, nature relatedness and attitude towards insects in adults. However, no statistically significant impacts were evident. A qualitative follow-up uncovered a discrepancy between statistically measured changes and perceived influences reported by citizen scientists. The results have important implications for understanding how citizen scientists learn, the role of citizen scientists in entomology research, the broader program impacts and

  15. Science Teachers' Views and Stereotypes of Religion, Scientists and Scientific Research: A call for scientist-science teacher partnerships to promote inquiry-based learning

    Science.gov (United States)

    Mansour, Nasser

    2015-07-01

    Despite a growing consensus regarding the value of inquiry-based learning (IBL) for students' learning and engagement in the science classroom, the implementation of such practices continues to be a challenge. If science teachers are to use IBL to develop students' inquiry practices and encourage them to think and act as scientists, a better understanding of factors that influence their attitudes towards scientific research and scientists' practices is very much needed. Within this context there is a need to re-examine the science teachers' views of scientists and the cultural factors that might have an impact on teachers' views and pedagogical practices. A diverse group of Egyptian science teachers took part in a quantitative-qualitative study using a questionnaire and in-depth interviews to explore their views of scientists and scientific research, and to understand how they negotiated their views of scientists and scientific research in the classroom, and how these views informed their practices of using inquiry in the classroom. The findings highlighted how the teachers' cultural beliefs and views of scientists and scientific research had constructed idiosyncratic pedagogical views and practices. The study suggested implications for further research and argued for teacher professional development based on partnerships with scientists.

  16. The Normative Orientations of Climate Scientists.

    Science.gov (United States)

    Bray, Dennis; von Storch, Hans

    2017-10-01

    In 1942 Robert K. Merton tried to demonstrate the structure of the normative system of science by specifying the norms that characterized it. The norms were assigned the abbreviation CUDOs: Communism, Universalism, Disinterestedness, and Organized skepticism. Using the results of an on-line survey of climate scientists concerning the norms of science, this paper explores the climate scientists' subscription to these norms. The data suggests that while Merton's CUDOs remain the overall guiding moral principles, they are not fully endorsed or present in the conduct of climate scientists: there is a tendency to withhold results until publication, there is the intention of maintaining property rights, there is external influence defining research and the tendency to assign the significance of authored work according to the status of the author rather than content of the paper. These are contrary to the norms of science as proposed by Robert K. Merton.

  17. Scientists warn DOE of dwindling funding

    International Nuclear Information System (INIS)

    Anon.

    1994-01-01

    Fusion scientists have raised their voices to let the Department of Energy know that they are concerned about the DOE's commitment to fusion research. In a letter dated February 28, 1994, 37 scientists from 21 institutions noted that open-quotes US funding for fusion has steadily decreased: It is now roughly half its level of 1980. This peculiar and painful circumstance has forced the program to contract drastically, losing skilled technical personnel, even as it faces its most exciting opportunities.close quotes The letter was addressed to Martha Krebs, the DOE's director of the Office of Energy Research, and N. Anne Davies, associated director for fusion energy. The scientists wanted to make two points. The first was that fusion energy research, only midway between concept and commercialization, deserves major reinvestment. The second was that basic scientific knowledge in the area of fusion, not just applied engineering, must remain a priority

  18. Meeting in mathematics

    DEFF Research Database (Denmark)

    Mogensen, Arne; Georgiev, Vladimir; Ulovec, Andreas

    To encourage many more young people to appreciate the real nature and spirit of mathematics and possibly to be enrolled in mathematics study it is important to involve them in doing mathematics (not just learning about mathematics). This goal could be achieved if mathematics teachers are prepared...... to identify and work with mathematically gifted students (without loosing the rest). The book offers chapters on gifted students, mathematical competences and other issues....

  19. Professional identity in clinician-scientists: brokers between care and science.

    Science.gov (United States)

    Kluijtmans, Manon; de Haan, Else; Akkerman, Sanne; van Tartwijk, Jan

    2017-06-01

    Despite increasing numbers of publications, science often fails to significantly improve patient care. Clinician-scientists, professionals who combine care and research activities, play an important role in helping to solve this problem. However, despite the ascribed advantages of connecting scientific knowledge and inquiry with health care, clinician-scientists are scarce, especially amongst non-physicians. The education of clinician-scientists can be complex because they must form professional identities at the intersection of care and research. The successful education of clinician-scientists requires insight into how these professionals view their professional identity and how they combine distinct practices. This study sought to investigate how recently trained nurse- and physiotherapist-scientists perceive their professional identities and experience the crossing of boundaries between care and research. Semi-structured interviews were conducted with 14 nurse- and physiotherapist-scientists at 1 year after they had completed MSc research training. Interviews were thematically analysed using insights from the theoretical frameworks of dialogical self theory and boundary crossing. After research training, the initial professional identity, of clinician, remained important for novice clinician-scientists, whereas the scientist identity was experienced as additional and complementary. A meta-identity as broker, referred to as a 'bridge builder', seemed to mediate competing demands or tensions between the two positions. Obtaining and maintaining a dual work position were experienced as logistically demanding; nevertheless, it was considered beneficial for crossing the boundaries between care and research because it led to reflection on the health profession, knowledge integration, inquiry and innovation in care, improved data collection, and research with a focus on clinical applicability. Novice clinician-scientists experience dual professional identities as care

  20. Assessing the bibliometric productivity of forest scientists in Italy

    Directory of Open Access Journals (Sweden)

    Francesca Giannetti

    2016-07-01

    Full Text Available Since 2010, the Italian Ministry of University and Research issued new evaluation protocols to select candidates for University professorships and assess the bibliometric productivity of Universities and Research Institutes based on bibliometric indicators, i.e. scientific paper and citation numbers and the h-index. Under this framework, the objective of this study was to quantify the bibliometric productivity of the Italian forest research community during the 2002-2012 period. We examined the following productivity parameters: (i the bibliometric productivity under the Forestry subject category at the global level; (ii compared the aggregated bibliometric productivity of Italian forest scientists with scientists from other countries; (iii analyzed publication and citation temporal trends of Italian forest scientists and their international collaborations; and (iv characterized productivity distribution among Italian forest scientists at different career levels. Results indicated the following: (i the UK is the most efficient country based on the ratio between Gross Domestic Spending (GDS on Research and Development (R&D and bibliometric productivity under the Forestry subject category, followed by Italy; (ii Italian forest scientist productivity exhibited a significant positive time trend, but was characterized by high inequality across authors; (iii one-half of the Italian forest scientist publications were written in collaboration with foreign scientists; (iv a strong relationship exists between bibliometric indicators calculated by WOS and SCOPUS, suggesting these two databases have the same potential to evaluate the forestry research community; and (v self-citations did not significantly affect the rank of Italian forest scientists.

  1. The main directions of prospective cohort study of population living around the Semipalatinsk nuclear test site

    OpenAIRE

    ZHUNUSSOVA T.; GROSCHE B.; APSALIKOV K.; BELIKHINA T.; PIVINA L.; MULDAGALIEV T.

    2014-01-01

    In the paper we have presented the possibilities of prospective cohort study of health status in the radiation exposed population living around the Semipalatinsk nuclear test site. It was substantiated the necessity of international cooperation of scientists from Kazakhstan, Europe, Japan and the United States for long-term study of radiation effects for the people and the environment.

  2. Women scientists joining Rokkasho women to sciences

    Energy Technology Data Exchange (ETDEWEB)

    Aratani, Michi [Office of Regional Collaboration, Institute for Environmental Sciences, Rokkasho, Aomori (Japan); Sasagawa, Sumiko

    1999-09-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  3. Women scientists joining Rokkasho women to sciences

    International Nuclear Information System (INIS)

    Aratani, Michi; Sasagawa, Sumiko

    1999-01-01

    Women scientists generally play a great role in the public acceptance (PA) for the national policy of atomic energy developing in Japan. The reason may be that, when a woman scientist stands in the presence of women audience, she will be ready to be accepted by them as a person with the same gender, emotion and thought to themselves. A case of interchange between the Rokkasho women and the women scientists either resident at the nuclear site of Rokkasho or staying for a short time at Rokkasho by invitation has been described from the viewpoint of PA for the national policy of atomic energy developing, and more fundamentally, for promotion of science education. (author)

  4. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil’s Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children’s LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions. PMID:26090806

  5. International note: Are Emirati parents' attitudes toward mathematics linked to their adolescent children's attitudes toward mathematics and mathematics achievement?

    Science.gov (United States)

    Areepattamannil, Shaljan; Khine, Myint Swe; Melkonian, Michael; Welch, Anita G; Al Nuaimi, Samira Ahmed; Rashad, Fatimah F

    2015-10-01

    Drawing on data from the 2012 Program for International Student Assessment (PISA) and employing multilevel modeling as an analytic strategy, this study examined the relations of adolescent children's perceptions of their parents' attitudes towards mathematics to their own attitudes towards mathematics and mathematics achievement among a sample of 5116 adolescents from 384 schools in the United Arab Emirates. The results of this cross-sectional study revealed that adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children not only to study but also for their career tended to report higher levels of intrinsic and instrumental motivation to learn mathematics, mathematics self-concept and self-efficacy, and mathematics work ethic. Moreover, adolescents who perceived that their parents liked mathematics and considered mathematics was important for their children's career tended to report positive intentions and behaviors toward mathematics. However, adolescents who perceived that their parents considered mathematics was important for their children's career tended to report higher levels of mathematics anxiety. Finally, adolescents who perceived that their parents considered mathematics was important for their children to study performed significantly better on the mathematics assessment than did their peers whose parents disregarded the importance of learning mathematics. Copyright © 2015 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  6. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Directory of Open Access Journals (Sweden)

    Yinghui Lai

    Full Text Available Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA and mathematical metacognition on word problem solving (WPS. We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56 with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA, typical achieving (TA, low achieving (LA, and mathematical learning difficulty (MLD. Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA than the TA and HA children, but not in mathematical evaluation anxiety (MEA. MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  7. Effects of Mathematics Anxiety and Mathematical Metacognition on Word Problem Solving in Children with and without Mathematical Learning Difficulties.

    Science.gov (United States)

    Lai, Yinghui; Zhu, Xiaoshuang; Chen, Yinghe; Li, Yanjun

    2015-01-01

    Mathematics is one of the most objective, logical, and practical academic disciplines. Yet, in addition to cognitive skills, mathematical problem solving also involves affective factors. In the current study, we first investigated effects of mathematics anxiety (MA) and mathematical metacognition on word problem solving (WPS). We tested 224 children (116 boys, M = 10.15 years old, SD = 0.56) with the Mathematics Anxiety Scale for Children, the Chinese Revised-edition Questionnaire of Pupil's Metacognitive Ability in Mathematics, and WPS tasks. The results indicated that mathematical metacognition mediated the effect of MA on WPS after controlling for IQ. Second, we divided the children into four mathematics achievement groups including high achieving (HA), typical achieving (TA), low achieving (LA), and mathematical learning difficulty (MLD). Because mathematical metacognition and MA predicted mathematics achievement, we compared group differences in metacognition and MA with IQ partialled out. The results showed that children with MLD scored lower in self-image and higher in learning mathematics anxiety (LMA) than the TA and HA children, but not in mathematical evaluation anxiety (MEA). MLD children's LMA was also higher than that of their LA counterparts. These results provide insight into factors that may mediate poor WPS performance which emerges under pressure in mathematics. These results also suggest that the anxiety during learning mathematics should be taken into account in mathematical learning difficulty interventions.

  8. The Relationships among Pre-Service Mathematics Teachers' Beliefs about Mathematics, Mathematics Teaching, and Use of Technology in China

    Science.gov (United States)

    Yang, Xinrong; Leung, Frederick K. S.

    2015-01-01

    This paper investigated pre-service mathematics teachers' mathematics beliefs, beliefs about information and communication technology (ICT), and their relationships. 787 pre-service mathematics teachers in China completed a survey questionnaire measuring their beliefs about the nature of mathematics, beliefs about mathematics learning and…

  9. Pre-Service Teachers' Mathematics Self-Efficacy and Mathematics Teaching Self-Efficacy

    Science.gov (United States)

    Zuya, Habila Elisha; Kwalat, Simon Kevin; Attah, Bala Galle

    2016-01-01

    Pre-service mathematics teachers' mathematics self-efficacy and mathematics teaching self-efficacy were investigated in this study. The purpose was to determine the confidence levels of their self-efficacy in mathematics and mathematics teaching. Also, the study was aimed at finding whether their mathematics self-efficacy and teaching…

  10. The Current Situation of Female Scientists in Argentina

    Science.gov (United States)

    Llois, Ana María; Dawson, Silvina Ponce

    2009-04-01

    We report the changes that have taken place recently regarding the situation of female scientists in Argentina. We comment on the rules for maternity leave that have been passed recently for research scholars doing their PhDs and on the number of women scientists that occupy decision making-positions in science. We also present some evidence that seems to indicate that, among young scientists, women are more willing to occupy leadership positions and that the Argentinean society is more accepting of this new role.

  11. Mathematics Teachers' Perceptions of Their Students' Mathematical Competence: Relations to Mathematics Achievement, Affect, and Engagement in Singapore and Australia

    Science.gov (United States)

    Areepattamannil, Shaljan; Kaur, Berinderjeet

    2013-01-01

    This study, drawing on data from the Trends in International Mathematics and Science Study (TIMSS) 2011, examined whether mathematics teachers' perceptions of their students' mathematical competence were related to mathematics achievement, affect toward mathematics, and engagement in mathematics lessons among Grade 8 students in Singapore and…

  12. Mathematics education a spectrum of work in mathematical sciences departments

    CERN Document Server

    Hsu, Pao-sheng; Pollatsek, Harriet

    2016-01-01

    Many in the mathematics community in the U.S. are involved in mathematics education in various capacities. This book highlights the breadth of the work in K-16 mathematics education done by members of US departments of mathematical sciences. It contains contributions by mathematicians and mathematics educators who do work in areas such as teacher education, quantitative literacy, informal education, writing and communication, social justice, outreach and mentoring, tactile learning, art and mathematics, ethnomathematics, scholarship of teaching and learning, and mathematics education research. Contributors describe their work, its impact, and how it is perceived and valued. In addition, there is a chapter, co-authored by two mathematicians who have become administrators, on the challenges of supporting, evaluating, and rewarding work in mathematics education in departments of mathematical sciences. This book is intended to inform the readership of the breadth of the work and to encourage discussion of its val...

  13. Developing teaching material based on realistic mathematics andoriented to the mathematical reasoning and mathematical communication

    Directory of Open Access Journals (Sweden)

    Fitria Habsah

    2017-05-01

    Full Text Available This research aims to produce mathematics textbook for grade VII junior high school students based on realistic mathematics and oriented to the mathematical reasoning and mathematical communication. The quality is determined based on Nieveen criteria, including validity, practicality, and effectiveness.This study was a research and development and used Borg & Gall model. The subject of this research were the students of SMPN 2 Pujon-Kabupaten Malang, that is 30 students in an experimental class (using the developed textbook and 29 students in a control class (using BSE book from the government. The teaching material was categorized valid if the expert's judgment at least is categorized as “good”. The teaching material was categorized practical if both of teachers and students assessment at least categorized as “good”. The teaching material was categorized effectively if minimum 75% of student scores at least is categorized as “good” for the mathematical reasoning test and mathematical communication test. This research resulted in a valid, practical, and effective teaching material. The resulted of the validation show that material teaching is valid. The resulted of teachers and students assessment show that the product is practical. The tests scores show that the product is effective. Percentage of students who categorized at least as “good” is 83,33% for the mathematical reasoning and 86,67% for the mathematical communication. The resulted of statistic test shows that the product more effective than the BSE book from the government in terms of mathematical reasoning and mathematical communication.

  14. From Local to EXtreme Environments (FLEXE) Student-Scientist Online Forums: hypothesis-based research examining ways to involve scientists in effective science education

    Science.gov (United States)

    Goehring, L.; Carlsen, W.; Fisher, C. R.; Kerlin, S.; Trautmann, N.; Petersen, W.

    2011-12-01

    Science education reform since the mid-1990's has called for a "new way of teaching and learning about science that reflects how science itself is done, emphasizing inquiry as a way of achieving knowledge and understanding about the world" (NRC, 1996). Scientists and engineers, experts in inquiry thinking, have been called to help model these practices for students and demonstrate scientific habits of mind. The question, however, is "how best to involve these experts?" given the very real challenges of limited availability of scientists, varying experience with effective pedagogy, widespread geographic distribution of schools, and the sheer number of students involved. Technology offers partial solutions to enable Student-Scientist Interactions (SSI). The FLEXE Project has developed online FLEXE Forums to support efficient, effective SSIs, making use of web-based and database technology to facilitate communication between students and scientists. More importantly, the FLEXE project has approached this question of "how best to do this?" scientifically, combining program evaluation with hypothesis-based research explicitly testing the effects of such SSIs on student learning and attitudes towards science. FLEXE Forums are designed to showcase scientific practices and habits of mind through facilitated interaction between students and scientists. Through these Forums, students "meet" working scientists and learn about their research and the environments in which they work. Scientists provide students with intriguing "real-life" datasets and challenge students to analyze and interpret the data through guiding questions. Students submit their analyses to the Forum, and scientists provide feedback and connect the instructional activity with real-life practice, showcasing their activities in the field. In the FLEXE project, Forums are embedded within inquiry-based instructional units focused on essential learning concepts, and feature the deep-sea environment in contrast

  15. Mathematical Modeling in Mathematics Education: Basic Concepts and Approaches

    Science.gov (United States)

    Erbas, Ayhan Kürsat; Kertil, Mahmut; Çetinkaya, Bülent; Çakiroglu, Erdinç; Alacaci, Cengiz; Bas, Sinem

    2014-01-01

    Mathematical modeling and its role in mathematics education have been receiving increasing attention in Turkey, as in many other countries. The growing body of literature on this topic reveals a variety of approaches to mathematical modeling and related concepts, along with differing perspectives on the use of mathematical modeling in teaching and…

  16. AN ENVIRON-ECONOMICAL MATHEMATICAL MODELING OF WATER POLLUTION IMPACT ASSESSMENT IN REFERENCE TO INDIAN SCENARIO

    Directory of Open Access Journals (Sweden)

    Hemant PATHAK

    2013-06-01

    Full Text Available This paper presents the application of the mathematical modeling to such a specific area as environ-economical interaction in prospect of big countries like India. A model of mutual interaction of dirty drinking water resulting water borne diseases, badly affected economy is proposed. For the description of some of these models illustrates drinking water resources, incapable municipal water treatment consequently expansion of diseases, World Bank loan, affected biggest labour forces (mankind and ultimate results in the form of decrease in GDP. These mathematical models may be used in the solving of similar type problems exist in south and eastern Asian economies.

  17. Topics in mathematical economics and game theory essays in honor of Robert J. Aumann

    CERN Document Server

    Wooders, Myrna H

    1999-01-01

    Since the publication of Theory of Games and Economic Behavior by von Neumann and Morgenstern, the concept of games has played an increasing role in economics. It also plays a role of growing importance in other sciences, including biology, political science, and psychology. Many scientists have made seminal advances and continue to be leaders in the field, including Harsanyi, Shapley, Shubik, and Selten. Professor Robert Aumann, in addition to his important contributions to game theory and economics, made a number of significant contributions to mathematics. This volume provides a collection

  18. Has ADVANCE Affected Senior Compared to Junior Women Scientists Differently?

    Science.gov (United States)

    Rosser, Sue

    2015-01-01

    Substantial evidence exists to demonstrate that the NSF ADVANCE Inititiative has made a positive impact upon institutions. Since it began in 2001, ADVANCE has changed the conversation, policies, and practices in ways to remove obstacles and systemic barriers preventing success for academic women scientists and engineers. Results from ADVANCE projects on campuses have facilitated consensus nationally about policies and practices that institutions may implement to help to alleviate issues, particularly for junior women scientists.Although getting women into senior and leadership positions in STEM constituted an initial impetus for ADVANCE, less emphasis was placed upon the needs of senior women scientists. Surveys of academic women scientists indicate that the issues faced by junior and senior women scientists differ significantly. The focus of ADVANCE on junior women in many ways seemed appropriate--the senior cohort of women scinetists is fed by the junior cohort of scientists; senior women serve as mentors, role models, and leaders for the junior colleagues, while continuing to struggle to achieve full status in the profession. This presentation will center on the differences in issues faced by senior compared to junior women scientists to explore whether a next step for ADVANCE should be to address needs of senior academic women scientists.

  19. Using Mathematics in Science: Working with Your Mathematics Department

    Science.gov (United States)

    Lyon, Steve

    2014-01-01

    Changes to the mathematics and science curriculums are designed to increase rigour in mathematics, and place greater emphasis on mathematical content in science subjects at key stages 3, 4 and 5 (ages 11-18). One way to meet the growing challenge of providing increased emphasis on mathematics in the science curriculum is greater collaboration…

  20. The mentoring of male and female scientists during their doctoral studies

    Science.gov (United States)

    Filippelli, Laura Ann

    The mentoring relationships of male and female scientists during their doctoral studies were examined. Male and female biologists, chemists, engineers and physicists were compared regarding the importance of doctoral students receiving career enhancing and psychosocial mentoring from their doctoral chairperson and student colleagues. Scientists' satisfaction with their chairperson and colleagues as providers of these mentoring functions was also investigated. In addition, scientists identified individuals other than their chairperson and colleagues who were positive influencers on their professional development as scientists and those who hindered their development. A reliable instrument, "The Survey of Accomplished Scientists' Doctoral Experiences," was developed to assess career enhancing and psychosocial mentoring of doctoral chairpersons and student colleagues based on the review of literature, interviews with scientists and two pilot studies. Surveys were mailed to a total of 400 men and women scientists with earned doctorates, of which 209 were completed and returned. The findings reveal that female scientists considered the doctoral chairperson furnishing career enhancing mentoring more important than did the men, while both were in accordance with the importance of them providing psychosocial mentoring. In addition, female scientists were not as satisfied as men with their chairperson providing most of the career enhancing and psychosocial mentoring functions. For doctoral student colleagues, female scientists, when compared to men, indicated that they considered student colleagues more important in providing career enhancing and psychosocial mentoring. However, male and female scientists were equally satisfied with their colleagues as providers of these mentoring functions. Lastly, the majority of male scientists indicated that professors served as a positive influencer, while women revealed that spouses and friends positively influenced their professional