Protograph based LDPC codes with minimum distance linearly growing with block size
Divsalar, Dariush; Jones, Christopher; Dolinar, Sam; Thorpe, Jeremy
2005-01-01
We propose several LDPC code constructions that simultaneously achieve good threshold and error floor performance. Minimum distance is shown to grow linearly with block size (similar to regular codes of variable degree at least 3) by considering ensemble average weight enumerators. Our constructions are based on projected graph, or protograph, structures that support high-speed decoder implementations. As with irregular ensembles, our constructions are sensitive to the proportion of degree-2 variable nodes. A code with too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code with too many such nodes tends to not exhibit a minimum distance that grows linearly in block length. In this paper we also show that precoding can be used to lower the threshold of regular LDPC codes. The decoding thresholds of the proposed codes, which have linearly increasing minimum distance in block size, outperform that of regular LDPC codes. Furthermore, a family of low to high rate codes, with thresholds that adhere closely to their respective channel capacity thresholds, is presented. Simulation results for a few example codes show that the proposed codes have low error floors as well as good threshold SNFt performance.
The Changeable Block Distance System Analysis
Lewiński, Andrzej; Toruń, Andrzej
The paper treats about efficiency analysis in Changeable Block Distance (CBD) System connected with wireless positioning and control of train. The analysis is based on modeling of typical ERTMS line and comparison with actual and future traffic. The calculations are related to assumed parameters of railway traffic corresponding to real time - table of distance Psary - Góra Włodowska from CMK line equipped in classic, ETCS Level 1 and ETCS with CBD systems.
LDPC Codes with Minimum Distance Proportional to Block Size
Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel; Thorpe, Jeremy
2009-01-01
Low-density parity-check (LDPC) codes characterized by minimum Hamming distances proportional to block sizes have been demonstrated. Like the codes mentioned in the immediately preceding article, the present codes are error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels. The previously mentioned codes have low decoding thresholds and reasonably low error floors. However, the minimum Hamming distances of those codes do not grow linearly with code-block sizes. Codes that have this minimum-distance property exhibit very low error floors. Examples of such codes include regular LDPC codes with variable degrees of at least 3. Unfortunately, the decoding thresholds of regular LDPC codes are high. Hence, there is a need for LDPC codes characterized by both low decoding thresholds and, in order to obtain acceptably low error floors, minimum Hamming distances that are proportional to code-block sizes. The present codes were developed to satisfy this need. The minimum Hamming distances of the present codes have been shown, through consideration of ensemble-average weight enumerators, to be proportional to code block sizes. As in the cases of irregular ensembles, the properties of these codes are sensitive to the proportion of degree-2 variable nodes. A code having too few such nodes tends to have an iterative decoding threshold that is far from the capacity threshold. A code having too many such nodes tends not to exhibit a minimum distance that is proportional to block size. Results of computational simulations have shown that the decoding thresholds of codes of the present type are lower than those of regular LDPC codes. Included in the simulations were a few examples from a family of codes characterized by rates ranging from low to high and by thresholds that adhere closely to their respective channel capacity thresholds; the simulation results from these examples showed that the codes in question have low
Directory of Open Access Journals (Sweden)
Cláudio Primo Delanoy
2015-12-01
Full Text Available This paper aims to explain a teaching proposal of production of dissertative-argumentative texts, based on concepts and principles of the Theory of Argumentation within Language (ADL of Ducrot (1990, 2009, and above all in tools made available by the Theory of Semantic Blocks (TBS, Carel (1995, 2005, and Carel and Ducrot (2005. In order to do so, first, the text production proposal of Enem 2012 is analyzed, so as to find the basic semantic units of its motivational texts, which, by being associated to argumentative aspects of semantic blocks that originate those semantic units, may guide effective argumentative routes to be realized in dissertative argumentative text from semantic relations within the same block. It is verified, also, to what extent argumentative transgressive chaining are presented in argumentative essays as more convincing than the normative argumentative ones. As a result, this work may provide theoretical and methodological support for teachers that have been working directly with the teaching of reading and writing, in basic or superior education levels.
Representation of Block-Based Image Features in a Multi-Scale Framework for Built-Up Area Detection
Directory of Open Access Journals (Sweden)
Zhongwen Hu
2016-02-01
Full Text Available The accurate extraction and mapping of built-up areas play an important role in many social, economic, and environmental studies. In this paper, we propose a novel approach for built-up area detection from high spatial resolution remote sensing images, using a block-based multi-scale feature representation framework. First, an image is divided into small blocks, in which the spectral, textural, and structural features are extracted and represented using a multi-scale framework; a set of refined Harris corner points is then used to select blocks as training samples; finally, a built-up index image is obtained by minimizing the normalized spectral, textural, and structural distances to the training samples, and a built-up area map is obtained by thresholding the index image. Experiments confirm that the proposed approach is effective for high-resolution optical and synthetic aperture radar images, with different scenes and different spatial resolutions.
Nikitin, P. V.; Savinov, A. N.; Bazhenov, R. I.; Sivandaev, S. V.
2018-05-01
The article describes the method of identifying a person in distance learning systems based on a keyboard rhythm. An algorithm for the organization of access control is proposed, which implements authentication, identification and verification of a person using the keyboard rhythm. Authentication methods based on biometric personal parameters, including those based on the keyboard rhythm, due to the inexistence of biometric characteristics without a particular person, are able to provide an advanced accuracy and inability to refuse authorship and convenience for operators of automated systems, in comparison with other methods of conformity checking. Methods of permanent hidden keyboard monitoring allow detecting the substitution of a student and blocking the key system.
Directory of Open Access Journals (Sweden)
Ruslan Sobolevskyi
2018-01-01
Full Text Available This research focuses on patterns of change in the dimension stone commodity blocks quality production on previously identiﬁ ed and measured geometrical parameters of natural cracks, modelling and planning out the ﬁ nal dimension of stone products and ﬁ nished products based on the proposed digital photogrammetric techniques. The optimal parameters of surveying are investigated and the inﬂ uence of surveying distance to length and crack area is estimated. Rational technological parameters of dimension stone blocks production are taken into account.
Application of Sensor Technology for the Efficient Positioningand Assembling of Ship Blocks
Directory of Open Access Journals (Sweden)
Sangdon Lee
2010-09-01
Full Text Available This paper proposes the application of sensor technology to assemble ship blocks efficiently. A sensor-based monitoring system is designed and implemented to improve shipbuilding productivity by reducing the labor cost for the adjustment of adequate positioning between ship blocks during pre-erection or erection stage. For the real-time remote monitoring of relative distances between two ship blocks, sensor nodes are applied to measure the distances between corresponding target points on the blocks. Highly precise positioning data can be transferred to a monitoring server via wireless network, and analyzed to support the decision making which needs to determine the next construction process; further adjustment or seam welding between the ship blocks. The developed system is expected to put to practical use, and increase the productivity during ship blocks assembly.
Hardware realization of chaos based block cipher for image encryption
Barakat, Mohamed L.; Radwan, Ahmed G.; Salama, Khaled N.
2011-01-01
Unlike stream ciphers, block ciphers are very essential for parallel processing applications. In this paper, the first hardware realization of chaotic-based block cipher is proposed for image encryption applications. The proposed system is tested for known cryptanalysis attacks and for different block sizes. When implemented on Virtex-IV, system performance showed high throughput and utilized small area. Passing successfully in all tests, our system proved to be secure with all block sizes. © 2011 IEEE.
Hardware realization of chaos based block cipher for image encryption
Barakat, Mohamed L.
2011-12-01
Unlike stream ciphers, block ciphers are very essential for parallel processing applications. In this paper, the first hardware realization of chaotic-based block cipher is proposed for image encryption applications. The proposed system is tested for known cryptanalysis attacks and for different block sizes. When implemented on Virtex-IV, system performance showed high throughput and utilized small area. Passing successfully in all tests, our system proved to be secure with all block sizes. © 2011 IEEE.
Distance-Based Opportunistic Mobile Data Offloading.
Lu, Xiaofeng; Lio, Pietro; Hui, Pan
2016-06-15
Cellular network data traffic can be offload onto opportunistic networks. This paper proposes a Distance-based Opportunistic Publish/Subscribe (DOPS) content dissemination model, which is composed of three layers: application layer, decision-making layer and network layer. When a user wants new content, he/she subscribes on a subscribing server. Users having the contents decide whether to deliver the contents to the subscriber based on the distance information. If in the meantime a content owner has traveled further in the immediate past time than the distance between the owner and the subscriber, the content owner will send the content to the subscriber through opportunistic routing. Simulations provide an evaluation of the data traffic offloading efficiency of DOPS.
Distance-Based Opportunistic Mobile Data Offloading
Directory of Open Access Journals (Sweden)
Xiaofeng Lu
2016-06-01
Full Text Available Cellular network data traffic can be offload onto opportunistic networks. This paper proposes a Distance-based Opportunistic Publish/Subscribe (DOPS content dissemination model, which is composed of three layers: application layer, decision-making layer and network layer. When a user wants new content, he/she subscribes on a subscribing server. Users having the contents decide whether to deliver the contents to the subscriber based on the distance information. If in the meantime a content owner has traveled further in the immediate past time than the distance between the owner and the subscriber, the content owner will send the content to the subscriber through opportunistic routing. Simulations provide an evaluation of the data traffic offloading efficiency of DOPS.
Probabilistic Decision Based Block Partitioning for Future Video Coding
Wang, Zhao
2017-11-29
In the latest Joint Video Exploration Team development, the quadtree plus binary tree (QTBT) block partitioning structure has been proposed for future video coding. Compared to the traditional quadtree structure of High Efficiency Video Coding (HEVC) standard, QTBT provides more flexible patterns for splitting the blocks, which results in dramatically increased combinations of block partitions and high computational complexity. In view of this, a confidence interval based early termination (CIET) scheme is proposed for QTBT to identify the unnecessary partition modes in the sense of rate-distortion (RD) optimization. In particular, a RD model is established to predict the RD cost of each partition pattern without the full encoding process. Subsequently, the mode decision problem is casted into a probabilistic framework to select the final partition based on the confidence interval decision strategy. Experimental results show that the proposed CIET algorithm can speed up QTBT block partitioning structure by reducing 54.7% encoding time with only 1.12% increase in terms of bit rate. Moreover, the proposed scheme performs consistently well for the high resolution sequences, of which the video coding efficiency is crucial in real applications.
Multi-image acquisition-based distance sensor using agile laser spot beam.
Riza, Nabeel A; Amin, M Junaid
2014-09-01
We present a novel laser-based distance measurement technique that uses multiple-image-based spatial processing to enable distance measurements. Compared with the first-generation distance sensor using spatial processing, the modified sensor is no longer hindered by the classic Rayleigh axial resolution limit for the propagating laser beam at its minimum beam waist location. The proposed high-resolution distance sensor design uses an electronically controlled variable focus lens (ECVFL) in combination with an optical imaging device, such as a charged-coupled device (CCD), to produce and capture different laser spot size images on a target with these beam spot sizes different from the minimal spot size possible at this target distance. By exploiting the unique relationship of the target located spot sizes with the varying ECVFL focal length for each target distance, the proposed distance sensor can compute the target distance with a distance measurement resolution better than the axial resolution via the Rayleigh resolution criterion. Using a 30 mW 633 nm He-Ne laser coupled with an electromagnetically actuated liquid ECVFL, along with a 20 cm focal length bias lens, and using five spot images captured per target position by a CCD-based Nikon camera, a proof-of-concept proposed distance sensor is successfully implemented in the laboratory over target ranges from 10 to 100 cm with a demonstrated sub-cm axial resolution, which is better than the axial Rayleigh resolution limit at these target distances. Applications for the proposed potentially cost-effective distance sensor are diverse and include industrial inspection and measurement and 3D object shape mapping and imaging.
Ship Block Transportation Scheduling Problem Based on Greedy Algorithm
Directory of Open Access Journals (Sweden)
Chong Wang
2016-05-01
Full Text Available Ship block transportation problems are crucial issues to address in reducing the construction cost and improving the productivity of shipyards. Shipyards aim to maximize the workload balance of transporters with time constraint such that all blocks should be transported during the planning horizon. This process leads to three types of penalty time: empty transporter travel time, delay time, and tardy time. This study aims to minimize the sum of the penalty time. First, this study presents the problem of ship block transportation with the generalization of the block transportation restriction on the multi-type transporter. Second, the problem is transformed into the classical traveling salesman problem and assignment problem through a reasonable model simplification and by adding a virtual node to the proposed directed graph. Then, a heuristic algorithm based on greedy algorithm is proposed to assign blocks to available transporters and sequencing blocks for each transporter simultaneously. Finally, the numerical experiment method is used to validate the model, and its result shows that the proposed algorithm is effective in realizing the efficient use of the transporters in shipyards. Numerical simulation results demonstrate the promising application of the proposed method to efficiently improve the utilization of transporters and to reduce the cost of ship block logistics for shipyards.
Error Concealment using Neural Networks for Block-Based Image Coding
Directory of Open Access Journals (Sweden)
M. Mokos
2006-06-01
Full Text Available In this paper, a novel adaptive error concealment (EC algorithm, which lowers the requirements for channel coding, is proposed. It conceals errors in block-based image coding systems by using neural network. In this proposed algorithm, only the intra-frame information is used for reconstruction of the image with separated damaged blocks. The information of pixels surrounding a damaged block is used to recover the errors using the neural network models. Computer simulation results show that the visual quality and the MSE evaluation of a reconstructed image are significantly improved using the proposed EC algorithm. We propose also a simple non-neural approach for comparison.
Construction of Protograph LDPC Codes with Linear Minimum Distance
Divsalar, Dariush; Dolinar, Sam; Jones, Christopher
2006-01-01
A construction method for protograph-based LDPC codes that simultaneously achieve low iterative decoding threshold and linear minimum distance is proposed. We start with a high-rate protograph LDPC code with variable node degrees of at least 3. Lower rate codes are obtained by splitting check nodes and connecting them by degree-2 nodes. This guarantees the linear minimum distance property for the lower-rate codes. Excluding checks connected to degree-1 nodes, we show that the number of degree-2 nodes should be at most one less than the number of checks for the protograph LDPC code to have linear minimum distance. Iterative decoding thresholds are obtained by using the reciprocal channel approximation. Thresholds are lowered by using either precoding or at least one very high-degree node in the base protograph. A family of high- to low-rate codes with minimum distance linearly increasing in block size and with capacity-approaching performance thresholds is presented. FPGA simulation results for a few example codes show that the proposed codes perform as predicted.
A new block cipher based on chaotic map and group theory
International Nuclear Information System (INIS)
Yang Huaqian; Liao Xiaofeng; Wong Kwokwo; Zhang Wei; Wei Pengcheng
2009-01-01
Based on the study of some existing chaotic encryption algorithms, a new block cipher is proposed. In the proposed cipher, two sequences of decimal numbers individually generated by two chaotic piecewise linear maps are used to determine the noise vectors by comparing the element of the two sequences. Then a sequence of decimal numbers is used to define a bijection map. The modular multiplication operation in the group Z 2 8 +1 * and permutations are alternately applied on plaintext with block length of multiples of 64 bits to produce ciphertext blocks of the same length. Analysis show that the proposed block cipher does not suffer from the flaws of pure chaotic cryptosystems.
A novel block cryptosystem based on iterating a chaotic map
International Nuclear Information System (INIS)
Xiang Tao; Liao Xiaofeng; Tang Guoping; Chen Yong; Wong, Kwok-wo
2006-01-01
A block cryptographic scheme based on iterating a chaotic map is proposed. With random binary sequences generated from the real-valued chaotic map, the plaintext block is permuted by a key-dependent shift approach and then encrypted by the classical chaotic masking technique. Simulation results show that performance and security of the proposed cryptographic scheme are better than those of existing algorithms. Advantages and security of our scheme are also discussed in detail
A new rapid method for rockfall energies and distances estimation
Giacomini, Anna; Ferrari, Federica; Thoeni, Klaus; Lambert, Cedric
2016-04-01
Rockfalls are characterized by long travel distances and significant energies. Over the last decades, three main methods have been proposed in the literature to assess the rockfall runout: empirical, process-based and GIS-based methods (Dorren, 2003). Process-based methods take into account the physics of rockfall by simulating the motion of a falling rock along a slope and they are generally based on a probabilistic rockfall modelling approach that allows for taking into account the uncertainties associated with the rockfall phenomenon. Their application has the advantage of evaluating the energies, bounce heights and distances along the path of a falling block, hence providing valuable information for the design of mitigation measures (Agliardi et al., 2009), however, the implementation of rockfall simulations can be time-consuming and data-demanding. This work focuses on the development of a new methodology for estimating the expected kinetic energies and distances of the first impact at the base of a rock cliff, subject to the conditions that the geometry of the cliff and the properties of the representative block are known. The method is based on an extensive two-dimensional sensitivity analysis, conducted by means of kinematic simulations based on probabilistic modelling of two-dimensional rockfall trajectories (Ferrari et al., 2016). To take into account for the uncertainty associated with the estimation of the input parameters, the study was based on 78400 rockfall scenarios performed by systematically varying the input parameters that are likely to affect the block trajectory, its energy and distance at the base of the rock wall. The variation of the geometry of the rock cliff (in terms of height and slope angle), the roughness of the rock surface and the properties of the outcropping material were considered. A simplified and idealized rock wall geometry was adopted. The analysis of the results allowed finding empirical laws that relate impact energies
Directory of Open Access Journals (Sweden)
Changjiang Zheng
2012-01-01
Full Text Available To solve the problem in pedestrian Mid-Block street crossing, the method of signal coordination control between mid-block street crossing and intersection is researched in this paper. The paper proposes to use “distance-flow rate-time” graph as the tool for building coordination control system model which is for different situations of traffic control. Through alternating the linear optimization model, the system outputs the distribution of signal timing and system operational factors (delays in vehicles and mid-block street crossing. Finally, taking one section on the Taiping North Road in Nanjing as an example, the signal coordination control is carried out. And the results which are delays in the vehicles and mid-block street crossing are compared to those in the current distribution of signal timing.
Contaminant classification using cosine distances based on multiple conventional sensors.
Liu, Shuming; Che, Han; Smith, Kate; Chang, Tian
2015-02-01
Emergent contamination events have a significant impact on water systems. After contamination detection, it is important to classify the type of contaminant quickly to provide support for remediation attempts. Conventional methods generally either rely on laboratory-based analysis, which requires a long analysis time, or on multivariable-based geometry analysis and sequence analysis, which is prone to being affected by the contaminant concentration. This paper proposes a new contaminant classification method, which discriminates contaminants in a real time manner independent of the contaminant concentration. The proposed method quantifies the similarities or dissimilarities between sensors' responses to different types of contaminants. The performance of the proposed method was evaluated using data from contaminant injection experiments in a laboratory and compared with a Euclidean distance-based method. The robustness of the proposed method was evaluated using an uncertainty analysis. The results show that the proposed method performed better in identifying the type of contaminant than the Euclidean distance based method and that it could classify the type of contaminant in minutes without significantly compromising the correct classification rate (CCR).
An Initialization Method Based on Hybrid Distance for k-Means Algorithm.
Yang, Jie; Ma, Yan; Zhang, Xiangfen; Li, Shunbao; Zhang, Yuping
2017-11-01
The traditional [Formula: see text]-means algorithm has been widely used as a simple and efficient clustering method. However, the performance of this algorithm is highly dependent on the selection of initial cluster centers. Therefore, the method adopted for choosing initial cluster centers is extremely important. In this letter, we redefine the density of points according to the number of its neighbors, as well as the distance between points and their neighbors. In addition, we define a new distance measure that considers both Euclidean distance and density. Based on that, we propose an algorithm for selecting initial cluster centers that can dynamically adjust the weighting parameter. Furthermore, we propose a new internal clustering validation measure, the clustering validation index based on the neighbors (CVN), which can be exploited to select the optimal result among multiple clustering results. Experimental results show that the proposed algorithm outperforms existing initialization methods on real-world data sets and demonstrates the adaptability of the proposed algorithm to data sets with various characteristics.
Distance Based Method for Outlier Detection of Body Sensor Networks
Directory of Open Access Journals (Sweden)
Haibin Zhang
2016-01-01
Full Text Available We propose a distance based method for the outlier detection of body sensor networks. Firstly, we use a Kernel Density Estimation (KDE to calculate the probability of the distance to k nearest neighbors for diagnosed data. If the probability is less than a threshold, and the distance of this data to its left and right neighbors is greater than a pre-defined value, the diagnosed data is decided as an outlier. Further, we formalize a sliding window based method to improve the outlier detection performance. Finally, to estimate the KDE by training sensor readings with errors, we introduce a Hidden Markov Model (HMM based method to estimate the most probable ground truth values which have the maximum probability to produce the training data. Simulation results show that the proposed method possesses a good detection accuracy with a low false alarm rate.
ASIC chipset design to generate block-based complex holographic video.
Seo, Young-Ho; Lee, Yoon-Hyuk; Kim, Dong-Wook
2017-03-20
In this paper, we propose a new hardware architecture implemented as a very large scaled integrated circuit by using an application-specific integrated circuit technology, where block-based calculations are used to generate holograms. The proposed hardware is structured to produce a part of a hologram in the block units in parallel. A block of a hologram is calculated using an object point, and then the calculation is repeated for all object points to obtain intermediate results that are accumulated to produce the final block of a hologram. This structure can be used to produce holograms of various sizes in real time with optimized memory access. The proposed hardware was implemented using the Hynix 0.18 μm CMOS technology of Magna Chip, Inc., and it has about 448 K gate counts and a silicon size of 3.592 mm×3.592 mm. It can generate complex holograms and operate in a stable manner at a clock frequency of 200 MHz.
Comparative Visualization of Vector Field Ensembles Based on Longest Common Subsequence
Energy Technology Data Exchange (ETDEWEB)
Liu, Richen; Guo, Hanqi; Zhang, Jiang; Yuan, Xiaoru
2016-04-19
We propose a longest common subsequence (LCS) based approach to compute the distance among vector field ensembles. By measuring how many common blocks the ensemble pathlines passing through, the LCS distance defines the similarity among vector field ensembles by counting the number of sharing domain data blocks. Compared to the traditional methods (e.g. point-wise Euclidean distance or dynamic time warping distance), the proposed approach is robust to outlier, data missing, and sampling rate of pathline timestep. Taking the advantages of smaller and reusable intermediate output, visualization based on the proposed LCS approach revealing temporal trends in the data at low storage cost, and avoiding tracing pathlines repeatedly. Finally, we evaluate our method on both synthetic data and simulation data, which demonstrate the robustness of the proposed approach.
Distance-based relative orbital elements determination for formation flying system
He, Yanchao; Xu, Ming; Chen, Xi
2016-01-01
The present paper deals with determination of relative orbital elements based only on distance between satellites in the formation flying system, which has potential application in engineering, especially suited for rapid orbit determination required missions. A geometric simplification is performed to reduce the formation configuration in three-dimensional space to a plane. Then the equivalent actual configuration deviating from its nominal design is introduced to derive a group of autonomous linear equations on the mapping between the relative orbital elements differences and distance errors. The primary linear equations-based algorithm is initially proposed to conduct the rapid and precise determination of the relative orbital elements without the complex computation, which is further improved by least-squares method with more distance measurements taken into consideration. Numerical simulations and comparisons with traditional approaches are presented to validate the effectiveness of the proposed methods. To assess the performance of the two proposed algorithms, accuracy validation and Monte Carlo simulations are implemented in the presence of noises of distance measurements and the leader's absolute orbital elements. It is demonstrated that the relative orbital elements determination accuracy of two approaches reaches more than 90% and even close to the actual values for the least-squares improved one. The proposed approaches can be alternates for relative orbit determination without assistance of additional facilities in engineering for their fairly high efficiency with accuracy and autonomy.
A novel power swing blocking scheme using adaptive neuro-fuzzy inference system
Energy Technology Data Exchange (ETDEWEB)
Zadeh, Hassan Khorashadi; Li, Zuyi [Illinois Institute of Technology, Department of Electrical and Computer Engineering, 3301 S. Dearborn Street, Chicago, IL 60616 (United States)
2008-07-15
A power swing may be caused by any sudden change in the configuration or the loading of an electrical network. During a power swing, the impedance locus moves along an impedance circle with possible encroachment into the distance relay zone, which may cause an unnecessary tripping. In order to prevent the distance relay from tripping under such condition, a novel power swing blocking (PSB) scheme is proposed in this paper. The proposed scheme uses an adaptive neuro-fuzzy inference systems (ANFIS) for preventing distance relay from tripping during power swings. The input signals to ANFIS, include the change of positive sequence impedance, positive and negative sequence currents, and power swing center voltage. Extensive tests show that the proposed PSB has two distinct features that are advantageous over existing schemes. The first is that the proposed scheme is able to detect various kinds of power swings thus block distance relays during power swings, even if the power swings are fast or the power swings occur during single pole open conditions. The second distinct feature is that the proposed scheme is able to clear the blocking if faults occur within the relay trip zone during power swings, even if the faults are high resistance faults, or the faults occur at the power swing center, or the faults occur when the power angle is close to 180 . (author)
Bin Ratio-Based Histogram Distances and Their Application to Image Classification.
Hu, Weiming; Xie, Nianhua; Hu, Ruiguang; Ling, Haibin; Chen, Qiang; Yan, Shuicheng; Maybank, Stephen
2014-12-01
Large variations in image background may cause partial matching and normalization problems for histogram-based representations, i.e., the histograms of the same category may have bins which are significantly different, and normalization may produce large changes in the differences between corresponding bins. In this paper, we deal with this problem by using the ratios between bin values of histograms, rather than bin values' differences which are used in the traditional histogram distances. We propose a bin ratio-based histogram distance (BRD), which is an intra-cross-bin distance, in contrast with previous bin-to-bin distances and cross-bin distances. The BRD is robust to partial matching and histogram normalization, and captures correlations between bins with only a linear computational complexity. We combine the BRD with the ℓ1 histogram distance and the χ(2) histogram distance to generate the ℓ1 BRD and the χ(2) BRD, respectively. These combinations exploit and benefit from the robustness of the BRD under partial matching and the robustness of the ℓ1 and χ(2) distances to small noise. We propose a method for assessing the robustness of histogram distances to partial matching. The BRDs and logistic regression-based histogram fusion are applied to image classification. The experimental results on synthetic data sets show the robustness of the BRDs to partial matching, and the experiments on seven benchmark data sets demonstrate promising results of the BRDs for image classification.
A distance weighted-based approach for self-organized aggregation in robot swarms
Khaldi, Belkacem
2017-12-14
In this paper, a Distance-Weighted K Nearest Neighboring (DW-KNN) topology is proposed to study self-organized aggregation as an emergent swarming behavior within robot swarms. A virtual physics approach is applied among the proposed neighborhood topology to keep the robots together. A distance-weighted function based on a Smoothed Particle Hydrodynamic (SPH) interpolation approach is used as a key factor to identify the K-Nearest neighbors taken into account when aggregating the robots. The intra virtual physical connectivity among these neighbors is achieved using a virtual viscoelastic-based proximity model. With the ARGoS based-simulator, we model and evaluate the proposed approach showing various self-organized aggregations performed by a swarm of N foot-bot robots.
Overlapping community detection based on link graph using distance dynamics
Chen, Lei; Zhang, Jing; Cai, Li-Jun
2018-01-01
The distance dynamics model was recently proposed to detect the disjoint community of a complex network. To identify the overlapping structure of a network using the distance dynamics model, an overlapping community detection algorithm, called L-Attractor, is proposed in this paper. The process of L-Attractor mainly consists of three phases. In the first phase, L-Attractor transforms the original graph to a link graph (a new edge graph) to assure that one node has multiple distances. In the second phase, using the improved distance dynamics model, a dynamic interaction process is introduced to simulate the distance dynamics (shrink or stretch). Through the dynamic interaction process, all distances converge, and the disjoint community structure of the link graph naturally manifests itself. In the third phase, a recovery method is designed to convert the disjoint community structure of the link graph to the overlapping community structure of the original graph. Extensive experiments are conducted on the LFR benchmark networks as well as real-world networks. Based on the results, our algorithm demonstrates higher accuracy and quality than other state-of-the-art algorithms.
Almazyad, Abdulaziz S; Seddiq, Yasser M; Alotaibi, Ahmed M; Al-Nasheri, Ahmed Y; BenSaleh, Mohammed S; Obeid, Abdulfattah M; Qasim, Syed Manzoor
2014-02-20
Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation.
Directory of Open Access Journals (Sweden)
Abdulaziz S. Almazyad
2014-02-01
Full Text Available Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation.
TOPSIS with statistical distances: A new approach to MADM
Directory of Open Access Journals (Sweden)
Vijaya Babu Vommi
2017-01-01
Full Text Available Multiple attribute decision making (MADM methods are very useful in choosing the best alternative among the available finite but conflicting alternatives. TOPSIS is one of the MADM methods, which is simple in its methodology and logic. In TOPSIS, Euclidean distances of each alternative from the positive and negative ideal solutions are utilized to find the best alternative. In literature, apart from Euclidean distances, the city block distances have also been tried to find the separations measures. In general, the attribute data are distributed with unequal ranges and also possess moderate to high correlations. Hence, in the present paper, use of statistical distances is proposed in place of Euclidean distances. Procedures to find the best alternatives are developed using statistical and weighted statistical distances respectively. The proposed methods are illustrated with some industrial problems taken from literature. Results show that the proposed methods can be used as new alternatives in MADM for choosing the best solutions.
Probabilistic Decision Based Block Partitioning for Future Video Coding
Wang, Zhao; Wang, Shiqi; Zhang, Jian; Wang, Shanshe; Ma, Siwei
2017-01-01
, the mode decision problem is casted into a probabilistic framework to select the final partition based on the confidence interval decision strategy. Experimental results show that the proposed CIET algorithm can speed up QTBT block partitioning structure
Block Access Token Renewal Scheme Based on Secret Sharing in Apache Hadoop
Directory of Open Access Journals (Sweden)
Su-Hyun Kim
2014-07-01
Full Text Available In a cloud computing environment, user data is encrypted and stored using a large number of distributed servers. Global Internet service companies such as Google and Yahoo have recognized the importance of Internet service platforms and conducted their own research and development to utilize large cluster-based cloud computing platform technologies based on low-cost commercial off-the-shelf nodes. Accordingly, as various data services are now allowed over a distributed computing environment, distributed management of big data has become a major issue. On the other hand, security vulnerability and privacy infringement due to malicious attackers or internal users can occur by means of various usage types of big data. In particular, various security vulnerabilities can occur in the block access token, which is used for the permission control of data blocks in Hadoop. To solve this problem, we have proposed a weight-applied XOR-based efficient distribution storage and recovery scheme in this paper. In particular, various security vulnerabilities can occur in the block access token, which is used for the permission control of data blocks in Hadoop. In this paper, a secret sharing-based block access token management scheme is proposed to overcome such security vulnerabilities.
Warped Discrete Cosine Transform-Based Low Bit-Rate Block Coding Using Image Downsampling
Directory of Open Access Journals (Sweden)
Ertürk Sarp
2007-01-01
Full Text Available This paper presents warped discrete cosine transform (WDCT-based low bit-rate block coding using image downsampling. While WDCT aims to improve the performance of conventional DCT by frequency warping, the WDCT has only been applicable to high bit-rate coding applications because of the overhead required to define the parameters of the warping filter. Recently, low bit-rate block coding based on image downsampling prior to block coding followed by upsampling after the decoding process is proposed to improve the compression performance for low bit-rate block coders. This paper demonstrates that a superior performance can be achieved if WDCT is used in conjunction with image downsampling-based block coding for low bit-rate applications.
APF-Based Car Following Behavior Considering Lateral Distance
Directory of Open Access Journals (Sweden)
Zhao-Sheng Yang
2013-01-01
Full Text Available Considering the influence of lateral distance on consecutive vehicles, this paper proposes a new car following model based on the artificial potential field theory (APF. Traditional car following behaviors all assume that the vehicles are driving along the middle of a lane. Different from the traditional car following principles, this incorporation of APF offers a potential breakthrough in the fields of car following theory. The individual vehicle can be represented as a unit point charge in electric field, and the interaction of the attractive potential energy and the repellent potential energy between vehicles simplifies the various influence factors on the target vehicle in actual following behavior. Consequently, it can make a better analysis of the following behavior under the lateral separation. Then, the proposed model has been demonstrated in simulation environment, through which the space-time trajectories and the potential energy change regulation are obtained. Simulations verify that the following vehicle's behavior is vulnerable to be affected by lateral distance, where the attractive potential energy tends to become repellent potential energy as the longitudinal distance decreases. The search results prove that the proposed model quantifies the relations between headway and potential energy and better reflects the following process in real-world situation.
Universal block diagram based modeling and simulation schemes for fractional-order control systems.
Bai, Lu; Xue, Dingyü
2017-05-08
Universal block diagram based schemes are proposed for modeling and simulating the fractional-order control systems in this paper. A fractional operator block in Simulink is designed to evaluate the fractional-order derivative and integral. Based on the block, the fractional-order control systems with zero initial conditions can be modeled conveniently. For modeling the system with nonzero initial conditions, the auxiliary signal is constructed in the compensation scheme. Since the compensation scheme is very complicated, therefore the integrator chain scheme is further proposed to simplify the modeling procedures. The accuracy and effectiveness of the schemes are assessed in the examples, the computation results testify the block diagram scheme is efficient for all Caputo fractional-order ordinary differential equations (FODEs) of any complexity, including the implicit Caputo FODEs. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.
Design of Packet-Based Block Codes with Shift Operators
Directory of Open Access Journals (Sweden)
Ilow Jacek
2010-01-01
Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of information packets to construct redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.
Distance Ranging Based on Quantum Entanglement
International Nuclear Information System (INIS)
Xiao Jun-Jun; Han Xiao-Chun; Zeng Gui-Hua; Fang Chen; Zhao Jian-Kang
2013-01-01
In the quantum metrology, applications of quantum techniques based on entanglement bring in some better performances than conventional approaches. We experimentally investigate an application of entanglement in accurate ranging based on the second-order coherence in the time domain. By a fitting algorithm in the data processing, the optimization results show a precision of ±200 μm at a distance of 1043.3m. In addition, the influence of jamming noise on the ranging scheme is studied. With some different fitting parameters, the result shows that the proposed scheme has a powerful anti-jamming capability for white noise
Effect Evaluation of Fault Resistance on the Operating Behavior of a Distance Relay
Directory of Open Access Journals (Sweden)
K. H. Le
2018-06-01
Full Text Available This paper presents an application of a certain distance protection relay with a quadrilateral characteristic approach for the protection of the 110kV Duy Xuyen - Thang Binh transmission line in Vietnam using measured data from one terminal line. We propose the building process of a Matlab Simulink model for this relay that combines fault detection and classification block, apparent impedance calculation block for all types of faults and a trip logic block of three zone protection coordination. The proposed relay model is further tested using various fault scenarios on the transmission line. It is important to assess what happened, the actual conditions, the causes of mal-operation etc. Detailed explanation and results indicate that the proposed model behavior will help users to perform tests which correctly simulate real-world conditions besides that it properly interprets test results and troubleshoot distance function problems when results are not as expected.
Learning Global-Local Distance Metrics for Signature-Based Biometric Cryptosystems
Directory of Open Access Journals (Sweden)
George S. Eskander Ekladious
2017-11-01
Full Text Available Biometric traits, such as fingerprints, faces and signatures have been employed in bio-cryptosystems to secure cryptographic keys within digital security schemes. Reliable implementations of these systems employ error correction codes formulated as simple distance thresholds, although they may not effectively model the complex variability of behavioral biometrics like signatures. In this paper, a Global-Local Distance Metric (GLDM framework is proposed to learn cost-effective distance metrics, which reduce within-class variability and augment between-class variability, so that simple error correction thresholds of bio-cryptosystems provide high classification accuracy. First, a large number of samples from a development dataset are used to train a global distance metric that differentiates within-class from between-class samples of the population. Then, once user-specific samples are available for enrollment, the global metric is tuned to a local user-specific one. Proof-of-concept experiments on two reference offline signature databases confirm the viability of the proposed approach. Distance metrics are produced based on concise signature representations consisting of about 20 features and a single prototype. A signature-based bio-cryptosystem is designed using the produced metrics and has shown average classification error rates of about 7% and 17% for the PUCPR and the GPDS-300 databases, respectively. This level of performance is comparable to that obtained with complex state-of-the-art classifiers.
A novel three-stage distance-based consensus ranking method
Aghayi, Nazila; Tavana, Madjid
2018-05-01
In this study, we propose a three-stage weighted sum method for identifying the group ranks of alternatives. In the first stage, a rank matrix, similar to the cross-efficiency matrix, is obtained by computing the individual rank position of each alternative based on importance weights. In the second stage, a secondary goal is defined to limit the vector of weights since the vector of weights obtained in the first stage is not unique. Finally, in the third stage, the group rank position of alternatives is obtained based on a distance of individual rank positions. The third stage determines a consensus solution for the group so that the ranks obtained have a minimum distance from the ranks acquired by each alternative in the previous stage. A numerical example is presented to demonstrate the applicability and exhibit the efficacy of the proposed method and algorithms.
Spatial generalised linear mixed models based on distances.
Melo, Oscar O; Mateu, Jorge; Melo, Carlos E
2016-10-01
Risk models derived from environmental data have been widely shown to be effective in delineating geographical areas of risk because they are intuitively easy to understand. We present a new method based on distances, which allows the modelling of continuous and non-continuous random variables through distance-based spatial generalised linear mixed models. The parameters are estimated using Markov chain Monte Carlo maximum likelihood, which is a feasible and a useful technique. The proposed method depends on a detrending step built from continuous or categorical explanatory variables, or a mixture among them, by using an appropriate Euclidean distance. The method is illustrated through the analysis of the variation in the prevalence of Loa loa among a sample of village residents in Cameroon, where the explanatory variables included elevation, together with maximum normalised-difference vegetation index and the standard deviation of normalised-difference vegetation index calculated from repeated satellite scans over time. © The Author(s) 2013.
Saturation Detection-Based Blocking Scheme for Transformer Differential Protection
Directory of Open Access Journals (Sweden)
Byung Eun Lee
2014-07-01
Full Text Available This paper describes a current differential relay for transformer protection that operates in conjunction with a core saturation detection-based blocking algorithm. The differential current for the magnetic inrush or over-excitation has a point of inflection at the start and end of each saturation period of the transformer core. At these instants, discontinuities arise in the first-difference function of the differential current. The second- and third-difference functions convert the points of inflection into pulses, the magnitudes of which are large enough to detect core saturation. The blocking signal is activated if the third-difference of the differential current is larger than the threshold and is maintained for one cycle. In addition, a method to discriminate between transformer saturation and current transformer (CT saturation is included. The performance of the proposed blocking scheme was compared with that of a conventional harmonic blocking method. The test results indicate that the proposed scheme successfully discriminates internal faults even with CT saturation from the magnetic inrush, over-excitation, and external faults with CT saturation, and can significantly reduce the operating time delay of the relay.
Research on cardiovascular disease prediction based on distance metric learning
Ni, Zhuang; Liu, Kui; Kang, Guixia
2018-04-01
Distance metric learning algorithm has been widely applied to medical diagnosis and exhibited its strengths in classification problems. The k-nearest neighbour (KNN) is an efficient method which treats each feature equally. The large margin nearest neighbour classification (LMNN) improves the accuracy of KNN by learning a global distance metric, which did not consider the locality of data distributions. In this paper, we propose a new distance metric algorithm adopting cosine metric and LMNN named COS-SUBLMNN which takes more care about local feature of data to overcome the shortage of LMNN and improve the classification accuracy. The proposed methodology is verified on CVDs patient vector derived from real-world medical data. The Experimental results show that our method provides higher accuracy than KNN and LMNN did, which demonstrates the effectiveness of the Risk predictive model of CVDs based on COS-SUBLMNN.
Adaptive block online learning target tracking based on super pixel segmentation
Cheng, Yue; Li, Jianzeng
2018-04-01
Video target tracking technology under the unremitting exploration of predecessors has made big progress, but there are still lots of problems not solved. This paper proposed a new algorithm of target tracking based on image segmentation technology. Firstly we divide the selected region using simple linear iterative clustering (SLIC) algorithm, after that, we block the area with the improved density-based spatial clustering of applications with noise (DBSCAN) clustering algorithm. Each sub-block independently trained classifier and tracked, then the algorithm ignore the failed tracking sub-block while reintegrate the rest of the sub-blocks into tracking box to complete the target tracking. The experimental results show that our algorithm can work effectively under occlusion interference, rotation change, scale change and many other problems in target tracking compared with the current mainstream algorithms.
Analysis of blocking probability for OFDM-based variable bandwidth optical network
Gong, Lei; Zhang, Jie; Zhao, Yongli; Lin, Xuefeng; Wu, Yuyao; Gu, Wanyi
2011-12-01
Orthogonal Frequency Division Multiplexing (OFDM) has recently been proposed as a modulation technique. For optical networks, because of its good spectral efficiency, flexibility, and tolerance to impairments, optical OFDM is much more flexible compared to traditional WDM systems, enabling elastic bandwidth transmissions, and optical networking is the future trend of development. In OFDM-based optical network the research of blocking rate has very important significance for network assessment. Current research for WDM network is basically based on a fixed bandwidth, in order to accommodate the future business and the fast-changing development of optical network, our study is based on variable bandwidth OFDM-based optical networks. We apply the mathematical analysis and theoretical derivation, based on the existing theory and algorithms, research blocking probability of the variable bandwidth of optical network, and then we will build a model for blocking probability.
Design of Packet-Based Block Codes with Shift Operators
Directory of Open Access Journals (Sweden)
Jacek Ilow
2010-01-01
Full Text Available This paper introduces packet-oriented block codes for the recovery of lost packets and the correction of an erroneous single packet. Specifically, a family of systematic codes is proposed, based on a Vandermonde matrix applied to a group of k information packets to construct r redundant packets, where the elements of the Vandermonde matrix are bit-level right arithmetic shift operators. The code design is applicable to packets of any size, provided that the packets within a block of k information packets are of uniform length. In order to decrease the overhead associated with packet padding using shift operators, non-Vandermonde matrices are also proposed for designing packet-oriented block codes. An efficient matrix inversion procedure for the off-line design of the decoding algorithm is presented to recover lost packets. The error correction capability of the design is investigated as well. The decoding algorithm, based on syndrome decoding, to correct a single erroneous packet in a group of n=k+r received packets is presented. The paper is equipped with examples of codes using different parameters. The code designs and their performance are tested using Monte Carlo simulations; the results obtained exhibit good agreement with the corresponding theoretical results.
Multiscale Distance Coherence Vector Algorithm for Content-Based Image Retrieval
Jiexian, Zeng; Xiupeng, Liu
2014-01-01
Multiscale distance coherence vector algorithm for content-based image retrieval (CBIR) is proposed due to the same descriptor with different shapes and the shortcomings of antinoise performance of the distance coherence vector algorithm. By this algorithm, the image contour curve is evolved by Gaussian function first, and then the distance coherence vector is, respectively, extracted from the contour of the original image and evolved images. Multiscale distance coherence vector was obtained by reasonable weight distribution of the distance coherence vectors of evolved images contour. This algorithm not only is invariable to translation, rotation, and scaling transformation but also has good performance of antinoise. The experiment results show us that the algorithm has a higher recall rate and precision rate for the retrieval of images polluted by noise. PMID:24883416
Wang, Jianji; Zheng, Nanning
2013-09-01
Fractal image compression (FIC) is an image coding technology based on the local similarity of image structure. It is widely used in many fields such as image retrieval, image denoising, image authentication, and encryption. FIC, however, suffers from the high computational complexity in encoding. Although many schemes are published to speed up encoding, they do not easily satisfy the encoding time or the reconstructed image quality requirements. In this paper, a new FIC scheme is proposed based on the fact that the affine similarity between two blocks in FIC is equivalent to the absolute value of Pearson's correlation coefficient (APCC) between them. First, all blocks in the range and domain pools are chosen and classified using an APCC-based block classification method to increase the matching probability. Second, by sorting the domain blocks with respect to APCCs between these domain blocks and a preset block in each class, the matching domain block for a range block can be searched in the selected domain set in which these APCCs are closer to APCC between the range block and the preset block. Experimental results show that the proposed scheme can significantly speed up the encoding process in FIC while preserving the reconstructed image quality well.
Benchmarking Distance Control and Virtual Drilling for Lateral Skull Base Surgery.
Voormolen, Eduard H J; Diederen, Sander; van Stralen, Marijn; Woerdeman, Peter A; Noordmans, Herke Jan; Viergever, Max A; Regli, Luca; Robe, Pierre A; Berkelbach van der Sprenkel, Jan Willem
2018-01-01
Novel audiovisual feedback methods were developed to improve image guidance during skull base surgery by providing audiovisual warnings when the drill tip enters a protective perimeter set at a distance around anatomic structures ("distance control") and visualizing bone drilling ("virtual drilling"). To benchmark the drill damage risk reduction provided by distance control, to quantify the accuracy of virtual drilling, and to investigate whether the proposed feedback methods are clinically feasible. In a simulated surgical scenario using human cadavers, 12 unexperienced users (medical students) drilled 12 mastoidectomies. Users were divided into a control group using standard image guidance and 3 groups using distance control with protective perimeters of 1, 2, or 3 mm. Damage to critical structures (sigmoid sinus, semicircular canals, facial nerve) was assessed. Neurosurgeons performed another 6 mastoidectomy/trans-labyrinthine and retro-labyrinthine approaches. Virtual errors as compared with real postoperative drill cavities were calculated. In a clinical setting, 3 patients received lateral skull base surgery with the proposed feedback methods. Users drilling with distance control protective perimeters of 3 mm did not damage structures, whereas the groups using smaller protective perimeters and the control group injured structures. Virtual drilling maximum cavity underestimations and overestimations were 2.8 ± 0.1 and 3.3 ± 0.4 mm, respectively. Feedback methods functioned properly in the clinical setting. Distance control reduced the risks of drill damage proportional to the protective perimeter distance. Errors in virtual drilling reflect spatial errors of the image guidance system. These feedback methods are clinically feasible. Copyright © 2017 Elsevier Inc. All rights reserved.
2011-04-26
... Information Collection for Public Comment; Indian Community Development Block Grant Information Collection... lists the following information: Title of Proposal: Indian Community Development Block Grant Information... Block Grants, requires that grants for Indian Tribes be awarded on a competitive basis. The purpose of...
Directory of Open Access Journals (Sweden)
Lei Chen
2018-01-01
Full Text Available Conflict management in Dempster-Shafer theory (D-S theory is a hot topic in information fusion. In this paper, a novel weighted evidence combination rule based on evidence distance and uncertainty measure is proposed. The proposed approach consists of two steps. First, the weight is determined based on the evidence distance. Then, the weight value obtained in first step is modified by taking advantage of uncertainty. Our proposed method can efficiently handle high conflicting evidences with better performance of convergence. A numerical example and an application based on sensor fusion in fault diagnosis are given to demonstrate the efficiency of our proposed method.
Text extraction method for historical Tibetan document images based on block projections
Duan, Li-juan; Zhang, Xi-qun; Ma, Long-long; Wu, Jian
2017-11-01
Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of text extraction is considered as text area detection and location problem. The images are divided equally into blocks and the blocks are filtered by the information of the categories of connected components and corner point density. By analyzing the filtered blocks' projections, the approximate text areas can be located, and the text regions are extracted. Experiments on the dataset of historical Tibetan documents demonstrate the effectiveness of the proposed method.
Cryptanalysis on an image block encryption algorithm based on spatiotemporal chaos
International Nuclear Information System (INIS)
Wang Xing-Yuan; He Guo-Xiang
2012-01-01
An image block encryption scheme based on spatiotemporal chaos has been proposed recently. In this paper, we analyse the security weakness of the proposal. The main problem of the original scheme is that the generated keystream remains unchanged for encrypting every image. Based on the flaws, we demonstrate a chosen plaintext attack for revealing the equivalent keys with only 6 pairs of plaintext/ciphertext used. Finally, experimental results show the validity of our attack. (general)
RELATIVE DISTANCE: THE KEY TO THE SHAPE OF HEPATIC BUILDING BLOCKS
Directory of Open Access Journals (Sweden)
Jan M Ruijter
2011-05-01
Full Text Available The delineation and the shape of the smallest structural units of the liver is still the subject of debate. However,the blood flow from an upstream terminal branch of the portal vein to a downstream central vein is thought to induce a functional zonation in hepatocyte gene expression. This property was used to determine boundary conditions for the shape of the hepatic building blocks. Histochemical techniques that specifically label periportally or pericentrally expressed enzymes can be used to distinguish periportal and pericentral areas in a liver section. Pairs of images from aligned serial sections, one stained for a portal and the next for a central enzyme, are used. Segmentation and skeletonisation of these images results in the skeletons of the portal and central areas. Distance transformation with respect to these skeletons gives for each point in the image pair the distance to the nearest terminal branches of the portal vein and the central vein. For each point the relative position on the porto-central radius can then be calculated as its distance to a portal vein divided by the sum of its portal and its central distance. In the resulting relative radius image, the area occupied by 'zones' of equivalent relative radius can be measured. According to the principle of Delesse the relative area of a zone in the image is equal to the relative volume of that zone in the tissue. For structural units of plate-like, cylindrical or spherical shape, the relative volume of a zone is equal to the relative radius of that zone to the power 1, 2 or 3, respectively. Thus, the exponent in the relative area - relative radius relation gives information on the shape of the structural unit. Measurement of the areas of each relative radius zone and determination of the area - radius relation in images of random sections of adult mouse liver results in an exponent of 1.1. This suggests that the smallest structural unit of the mouse liver has the shape of a
Equivalence Testing of Complex Particle Size Distribution Profiles Based on Earth Mover's Distance.
Hu, Meng; Jiang, Xiaohui; Absar, Mohammad; Choi, Stephanie; Kozak, Darby; Shen, Meiyu; Weng, Yu-Ting; Zhao, Liang; Lionberger, Robert
2018-04-12
Particle size distribution (PSD) is an important property of particulates in drug products. In the evaluation of generic drug products formulated as suspensions, emulsions, and liposomes, the PSD comparisons between a test product and the branded product can provide useful information regarding in vitro and in vivo performance. Historically, the FDA has recommended the population bioequivalence (PBE) statistical approach to compare the PSD descriptors D50 and SPAN from test and reference products to support product equivalence. In this study, the earth mover's distance (EMD) is proposed as a new metric for comparing PSD particularly when the PSD profile exhibits complex distribution (e.g., multiple peaks) that is not accurately described by the D50 and SPAN descriptor. EMD is a statistical metric that measures the discrepancy (distance) between size distribution profiles without a prior assumption of the distribution. PBE is then adopted to perform statistical test to establish equivalence based on the calculated EMD distances. Simulations show that proposed EMD-based approach is effective in comparing test and reference profiles for equivalence testing and is superior compared to commonly used distance measures, e.g., Euclidean and Kolmogorov-Smirnov distances. The proposed approach was demonstrated by evaluating equivalence of cyclosporine ophthalmic emulsion PSDs that were manufactured under different conditions. Our results show that proposed approach can effectively pass an equivalent product (e.g., reference product against itself) and reject an inequivalent product (e.g., reference product against negative control), thus suggesting its usefulness in supporting bioequivalence determination of a test product to the reference product which both possess multimodal PSDs.
Directory of Open Access Journals (Sweden)
Sharif Uddin
2016-01-01
Full Text Available An enhanced k-nearest neighbor (k-NN classification algorithm is presented, which uses a density based similarity measure in addition to a distance based similarity measure to improve the diagnostic performance in bearing fault diagnosis. Due to its use of distance based similarity measure alone, the classification accuracy of traditional k-NN deteriorates in case of overlapping samples and outliers and is highly susceptible to the neighborhood size, k. This study addresses these limitations by proposing the use of both distance and density based measures of similarity between training and test samples. The proposed k-NN classifier is used to enhance the diagnostic performance of a bearing fault diagnosis scheme, which classifies different fault conditions based upon hybrid feature vectors extracted from acoustic emission (AE signals. Experimental results demonstrate that the proposed scheme, which uses the enhanced k-NN classifier, yields better diagnostic performance and is more robust to variations in the neighborhood size, k.
Adaptive density trajectory cluster based on time and space distance
Liu, Fagui; Zhang, Zhijie
2017-10-01
There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.
H.B. Kekre; Sudeep Thepade; Karan Dhamejani; Sanchit Khandelwal; Adnan Azmi
2012-01-01
The paper presents a performance analysis of Multilevel Block Truncation Coding based Face Recognition among widely used color spaces. In [1], Multilevel Block Truncation Coding was applied on the RGB color space up to four levels for face recognition. Better results were obtained when the proposed technique was implemented using Kekre’s LUV (K’LUV) color space [25]. This was the motivation to test the proposed technique using assorted color spaces. For experimental analysis, two face databas...
2010-08-26
... DEPARTMENT OF HOUSING AND URBAN DEVELOPMENT [Docket No. FR 5377-N-02] Notice of Proposed Information Collection: Comment Request, State Community Development Block (CDBG) Program AGENCY: Office of... Block Grant (CDBG) Program. OMB Control Number, if applicable: 2506-0085. Description of the need for...
KM-FCM: A fuzzy clustering optimization algorithm based on Mahalanobis distance
Directory of Open Access Journals (Sweden)
Zhiwen ZU
2018-04-01
Full Text Available The traditional fuzzy clustering algorithm uses Euclidean distance as the similarity criterion, which is disadvantageous to the multidimensional data processing. In order to solve this situation, Mahalanobis distance is used instead of the traditional Euclidean distance, and the optimization of fuzzy clustering algorithm based on Mahalanobis distance is studied to enhance the clustering effect and ability. With making the initialization means by Heuristic search algorithm combined with k-means algorithm, and in terms of the validity function which could automatically adjust the optimal clustering number, an optimization algorithm KM-FCM is proposed. The new algorithm is compared with FCM algorithm, FCM-M algorithm and M-FCM algorithm in three standard data sets. The experimental results show that the KM-FCM algorithm is effective. It has higher clustering accuracy than FCM, FCM-M and M-FCM, recognizing high-dimensional data clustering well. It has global optimization effect, and the clustering number has no need for setting in advance. The new algorithm provides a reference for the optimization of fuzzy clustering algorithm based on Mahalanobis distance.
Thickness and clearance visualization based on distance field of 3D objects
Directory of Open Access Journals (Sweden)
Masatomo Inui
2015-07-01
Full Text Available This paper proposes a novel method for visualizing the thickness and clearance of 3D objects in a polyhedral representation. The proposed method uses the distance field of the objects in the visualization. A parallel algorithm is developed for constructing the distance field of polyhedral objects using the GPU. The distance between a voxel and the surface polygons of the model is computed many times in the distance field construction. Similar sets of polygons are usually selected as close polygons for close voxels. By using this spatial coherence, a parallel algorithm is designed to compute the distances between a cluster of close voxels and the polygons selected by the culling operation so that the fast shared memory mechanism of the GPU can be fully utilized. The thickness/clearance of the objects is visualized by distributing points on the visible surfaces of the objects and painting them with a unique color corresponding to the thickness/clearance values at those points. A modified ray casting method is developed for computing the thickness/clearance using the distance field of the objects. A system based on these algorithms can compute the distance field of complex objects within a few minutes for most cases. After the distance field construction, thickness/clearance visualization at a near interactive rate is achieved.
Web page sorting algorithm based on query keyword distance relation
Yang, Han; Cui, Hong Gang; Tang, Hao
2017-08-01
In order to optimize the problem of page sorting, according to the search keywords in the web page in the relationship between the characteristics of the proposed query keywords clustering ideas. And it is converted into the degree of aggregation of the search keywords in the web page. Based on the PageRank algorithm, the clustering degree factor of the query keyword is added to make it possible to participate in the quantitative calculation. This paper proposes an improved algorithm for PageRank based on the distance relation between search keywords. The experimental results show the feasibility and effectiveness of the method.
An improved initialization center k-means clustering algorithm based on distance and density
Duan, Yanling; Liu, Qun; Xia, Shuyin
2018-04-01
Aiming at the problem of the random initial clustering center of k means algorithm that the clustering results are influenced by outlier data sample and are unstable in multiple clustering, a method of central point initialization method based on larger distance and higher density is proposed. The reciprocal of the weighted average of distance is used to represent the sample density, and the data sample with the larger distance and the higher density are selected as the initial clustering centers to optimize the clustering results. Then, a clustering evaluation method based on distance and density is designed to verify the feasibility of the algorithm and the practicality, the experimental results on UCI data sets show that the algorithm has a certain stability and practicality.
Adaptive bit plane quadtree-based block truncation coding for image compression
Li, Shenda; Wang, Jin; Zhu, Qing
2018-04-01
Block truncation coding (BTC) is a fast image compression technique applied in spatial domain. Traditional BTC and its variants mainly focus on reducing computational complexity for low bit rate compression, at the cost of lower quality of decoded images, especially for images with rich texture. To solve this problem, in this paper, a quadtree-based block truncation coding algorithm combined with adaptive bit plane transmission is proposed. First, the direction of edge in each block is detected using Sobel operator. For the block with minimal size, adaptive bit plane is utilized to optimize the BTC, which depends on its MSE loss encoded by absolute moment block truncation coding (AMBTC). Extensive experimental results show that our method gains 0.85 dB PSNR on average compare to some other state-of-the-art BTC variants. So it is desirable for real time image compression applications.
Directory of Open Access Journals (Sweden)
Karla Vittori
2008-12-01
Full Text Available We propose a new distance algorithm for phylogenetic estimation based on Ant Colony Optimization (ACO, named Ant-Based Phylogenetic Reconstruction (ABPR. ABPR joins two taxa iteratively based on evolutionary distance among sequences, while also accounting for the quality of the phylogenetic tree built according to the total length of the tree. Similar to optimization algorithms for phylogenetic estimation, the algorithm allows exploration of a larger set of nearly optimal solutions. We applied the algorithm to four empirical data sets of mitochondrial DNA ranging from 12 to 186 sequences, and from 898 to 16,608 base pairs, and covering taxonomic levels from populations to orders. We show that ABPR performs better than the commonly used Neighbor-Joining algorithm, except when sequences are too closely related (e.g., population-level sequences. The phylogenetic relationships recovered at and above species level by ABPR agree with conventional views. However, like other algorithms of phylogenetic estimation, the proposed algorithm failed to recover expected relationships when distances are too similar or when rates of evolution are very variable, leading to the problem of long-branch attraction. ABPR, as well as other ACO-based algorithms, is emerging as a fast and accurate alternative method of phylogenetic estimation for large data sets.
High Precision Infrared Temperature Measurement System Based on Distance Compensation
Directory of Open Access Journals (Sweden)
Chen Jing
2017-01-01
Full Text Available To meet the need of real-time remote monitoring of human body surface temperature for optical rehabilitation therapy, a non-contact high-precision real-time temperature measurement method based on distance compensation was proposed, and the system design was carried out. The microcontroller controls the infrared temperature measurement module and the laser range module to collect temperature and distance data. The compensation formula of temperature with distance wass fitted according to the least square method. Testing had been performed on different individuals to verify the accuracy of the system. The results indicate that the designed non-contact infrared temperature measurement system has a residual error of less than 0.2°C and the response time isless than 0.1s in the range of 0 to 60cm. This provides a reference for developing long-distance temperature measurement equipment in optical rehabilitation therapy.
Directory of Open Access Journals (Sweden)
Yunsick Sung
2016-11-01
Full Text Available Given that location information is the key to providing a variety of services in sustainable indoor computing environments, it is required to obtain accurate locations. Locations can be estimated by three distances from three fixed points. Therefore, if the distance between two points can be measured or estimated accurately, the location in indoor environments can be estimated. To increase the accuracy of the measured distance, noise filtering, signal revision, and distance estimation processes are generally performed. This paper proposes a novel framework for estimating the distance between a beacon and an access point (AP in a sustainable indoor computing environment. Diverse types of received strength signal indications (RSSIs are used for WiFi, Bluetooth, and radio signals, and the proposed distance estimation framework is unique in that it is independent of the specific wireless signal involved, being based on the Bluetooth signal of the beacon. Generally, RSSI measurement, noise filtering, and revision are required for distance estimation using RSSIs. The employed RSSIs are first measured from an AP, with multiple APs sometimes used to increase the accuracy of the distance estimation. Owing to the inevitable presence of noise in the measured RSSIs, the application of noise filtering is essential, and further revision is used to address the inaccuracy and instability that characterizes RSSIs measured in an indoor environment. The revised RSSIs are then used to estimate the distance. The proposed distance estimation framework uses one AP to measure the RSSIs, a Kalman filter to eliminate noise, and a log-distance path loss model to revise the measured RSSIs. In the experimental implementation of the framework, both a RSSI filter and a Kalman filter were respectively used for noise elimination to comparatively evaluate the performance of the latter for the specific application. The Kalman filter was found to reduce the accumulated errors by 8
Inverse-designed stretchable metalens with tunable focal distance
Callewaert, Francois; Velev, Vesselin; Jiang, Shizhou; Sahakian, Alan Varteres; Kumar, Prem; Aydin, Koray
2018-02-01
In this paper, we present an inverse-designed 3D-printed all-dielectric stretchable millimeter wave metalens with a tunable focal distance. A computational inverse-design method is used to design a flat metalens made of disconnected polymer building blocks with complex shapes, as opposed to conventional monolithic lenses. The proposed metalens provides better performance than a conventional Fresnel lens, using lesser amount of material and enabling larger focal distance tunability. The metalens is fabricated using a commercial 3D-printer and attached to a stretchable platform. Measurements and simulations show that the focal distance can be tuned by a factor of 4 with a stretching factor of only 75%, a nearly diffraction-limited focal spot, and with a 70% relative focusing efficiency, defined as the ratio between power focused in the focal spot and power going through the focal plane. The proposed platform can be extended for design and fabrication of multiple electromagnetic devices working from visible to microwave radiation depending on scaling of the devices.
Molecular architectures based on π-conjugated block copolymers for global quantum computation
International Nuclear Information System (INIS)
Mujica Martinez, C A; Arce, J C; Reina, J H; Thorwart, M
2009-01-01
We propose a molecular setup for the physical implementation of a barrier global quantum computation scheme based on the electron-doped π-conjugated copolymer architecture of nine blocks PPP-PDA-PPP-PA-(CCH-acene)-PA-PPP-PDA-PPP (where each block is an oligomer). The physical carriers of information are electrons coupled through the Coulomb interaction, and the building block of the computing architecture is composed by three adjacent qubit systems in a quasi-linear arrangement, each of them allowing qubit storage, but with the central qubit exhibiting a third accessible state of electronic energy far away from that of the qubits' transition energy. The third state is reached from one of the computational states by means of an on-resonance coherent laser field, and acts as a barrier mechanism for the direct control of qubit entanglement. Initial estimations of the spontaneous emission decay rates associated to the energy level structure allow us to compute a damping rate of order 10 -7 s, which suggest a not so strong coupling to the environment. Our results offer an all-optical, scalable, proposal for global quantum computing based on semiconducting π-conjugated polymers.
Molecular architectures based on pi-conjugated block copolymers for global quantum computation
Energy Technology Data Exchange (ETDEWEB)
Mujica Martinez, C A; Arce, J C [Universidad del Valle, Departamento de QuImica, A. A. 25360, Cali (Colombia); Reina, J H [Universidad del Valle, Departamento de Fisica, A. A. 25360, Cali (Colombia); Thorwart, M, E-mail: camujica@univalle.edu.c, E-mail: j.reina-estupinan@physics.ox.ac.u, E-mail: jularce@univalle.edu.c [Institut fuer Theoretische Physik IV, Heinrich-Heine-Universitaet Duesseldorf, 40225 Duesseldorf (Germany)
2009-05-01
We propose a molecular setup for the physical implementation of a barrier global quantum computation scheme based on the electron-doped pi-conjugated copolymer architecture of nine blocks PPP-PDA-PPP-PA-(CCH-acene)-PA-PPP-PDA-PPP (where each block is an oligomer). The physical carriers of information are electrons coupled through the Coulomb interaction, and the building block of the computing architecture is composed by three adjacent qubit systems in a quasi-linear arrangement, each of them allowing qubit storage, but with the central qubit exhibiting a third accessible state of electronic energy far away from that of the qubits' transition energy. The third state is reached from one of the computational states by means of an on-resonance coherent laser field, and acts as a barrier mechanism for the direct control of qubit entanglement. Initial estimations of the spontaneous emission decay rates associated to the energy level structure allow us to compute a damping rate of order 10{sup -7} s, which suggest a not so strong coupling to the environment. Our results offer an all-optical, scalable, proposal for global quantum computing based on semiconducting pi-conjugated polymers.
Entropy-Based Block Processing for Satellite Image Registration
Directory of Open Access Journals (Sweden)
Ikhyun Lee
2012-11-01
Full Text Available Image registration is an important task in many computer vision applications such as fusion systems, 3D shape recovery and earth observation. Particularly, registering satellite images is challenging and time-consuming due to limited resources and large image size. In such scenario, state-of-the-art image registration methods such as scale-invariant feature transform (SIFT may not be suitable due to high processing time. In this paper, we propose an algorithm based on block processing via entropy to register satellite images. The performance of the proposed method is evaluated using different real images. The comparative analysis shows that it not only reduces the processing time but also enhances the accuracy.
Portfolio Selection Based on Distance between Fuzzy Variables
Directory of Open Access Journals (Sweden)
Weiyi Qian
2014-01-01
Full Text Available This paper researches portfolio selection problem in fuzzy environment. We introduce a new simple method in which the distance between fuzzy variables is used to measure the divergence of fuzzy investment return from a prior one. Firstly, two new mathematical models are proposed by expressing divergence as distance, investment return as expected value, and risk as variance and semivariance, respectively. Secondly, the crisp forms of the new models are also provided for different types of fuzzy variables. Finally, several numerical examples are given to illustrate the effectiveness of the proposed approach.
A. AL-Salhi, Yahya E.; Lu, Songfeng
2016-08-01
Quantum steganography can solve some problems that are considered inefficient in image information concealing. It researches on Quantum image information concealing to have been widely exploited in recent years. Quantum image information concealing can be categorized into quantum image digital blocking, quantum image stereography, anonymity and other branches. Least significant bit (LSB) information concealing plays vital roles in the classical world because many image information concealing algorithms are designed based on it. Firstly, based on the novel enhanced quantum representation (NEQR), image uniform blocks clustering around the concrete the least significant Qu-block (LSQB) information concealing algorithm for quantum image steganography is presented. Secondly, a clustering algorithm is proposed to optimize the concealment of important data. Finally, we used Con-Steg algorithm to conceal the clustered image blocks. Information concealing located on the Fourier domain of an image can achieve the security of image information, thus we further discuss the Fourier domain LSQu-block information concealing algorithm for quantum image based on Quantum Fourier Transforms. In our algorithms, the corresponding unitary Transformations are designed to realize the aim of concealing the secret information to the least significant Qu-block representing color of the quantum cover image. Finally, the procedures of extracting the secret information are illustrated. Quantum image LSQu-block image information concealing algorithm can be applied in many fields according to different needs.
Ishikawa, Kunio; Kawachi, Giichiro; Tsuru, Kanji; Yoshimoto, Ayami
2017-03-01
Calcium carbonate (CaCO 3 ) has been used as a bone substitute, and is a precursor for carbonate apatite, which is also a promising bone substitute. However, limited studies have been reported on the fabrication of artificial calcite blocks. In the present study, cylindrical calcite blocks (ϕ6×3mm) were fabricated by compositional transformation based on dissolution-precipitation reactions using different calcium sulfate blocks as a precursor. In the dissolution-precipitation reactions, both CaSO 4 ·2H 2 O and CaSO 4 transformed into calcite, a polymorph of CaCO 3 , while maintaining their macroscopic structure when immersed in 1mol/L Na 2 CO 3 solution at 80°C for 1week. The diametral tensile strengths of the calcite blocks formed using CaSO 4 ·2H 2 O and CaSO 4 were 1.0±0.3 and 2.3±0.7MPa, respectively. The fabrication of calcite blocks using CaSO 4 ·2H 2 O and CaSO 4 proposed in this investigation may be a useful method to produce calcite blocks because of the self-setting ability and high temperature stability of gypsum precursors. Copyright © 2016 Elsevier B.V. All rights reserved.
Bounded distance decoding of linear error-correcting codes with Gröbner bases
Bulygin, S.; Pellikaan, G.R.
2009-01-01
The problem of bounded distance decoding of arbitrary linear codes using Gröbner bases is addressed. A new method is proposed, which is based on reducing an initial decoding problem to solving a certain system of polynomial equations over a finite field. The peculiarity of this system is that, when
Secure Chaotic Map Based Block Cryptosystem with Application to Camera Sensor Networks
Directory of Open Access Journals (Sweden)
Muhammad Khurram Khan
2011-01-01
Full Text Available Recently, Wang et al. presented an efficient logistic map based block encryption system. The encryption system employs feedback ciphertext to achieve plaintext dependence of sub-keys. Unfortunately, we discovered that their scheme is unable to withstand key stream attack. To improve its security, this paper proposes a novel chaotic map based block cryptosystem. At the same time, a secure architecture for camera sensor network is constructed. The network comprises a set of inexpensive camera sensors to capture the images, a sink node equipped with sufficient computation and storage capabilities and a data processing server. The transmission security between the sink node and the server is gained by utilizing the improved cipher. Both theoretical analysis and simulation results indicate that the improved algorithm can overcome the flaws and maintain all the merits of the original cryptosystem. In addition, computational costs and efficiency of the proposed scheme are encouraging for the practical implementation in the real environment as well as camera sensor network.
A Multiple Criteria Decision Making Method Based on Relative Value Distances
Directory of Open Access Journals (Sweden)
Shyur Huan-jyh
2015-12-01
Full Text Available This paper proposes a new multiple criteria decision-making method called ERVD (election based on relative value distances. The s-shape value function is adopted to replace the expected utility function to describe the risk-averse and risk-seeking behavior of decision makers. Comparisons and experiments contrasting with the TOPSIS (Technique for Order Preference by Similarity to the Ideal Solution method are carried out to verify the feasibility of using the proposed method to represent the decision makers’ preference in the decision making process. Our experimental results show that the proposed approach is an appropriate and effective MCDM method.
A Proposal for the Distribution of Federal Block Grant Funds in Illinois.
Hickrod, G. Alan; And Others
It is proposed that federal block grants to Illinois be distributed to school districts according to four characteristics of those districts. Funds will be distributed inversely proportional to property valuation per pupil, directly proportional to percentage of minority children, directly proportional to percentage of poverty children (Title I…
Mahalanobis Distance Based Iterative Closest Point
DEFF Research Database (Denmark)
Hansen, Mads Fogtmann; Blas, Morten Rufus; Larsen, Rasmus
2007-01-01
the notion of a mahalanobis distance map upon a point set with associated covariance matrices which in addition to providing correlation weighted distance implicitly provides a method for assigning correspondence during alignment. This distance map provides an easy formulation of the ICP problem that permits...... a fast optimization. Initially, the covariance matrices are set to the identity matrix, and all shapes are aligned to a randomly selected shape (equivalent to standard ICP). From this point the algorithm iterates between the steps: (a) obtain mean shape and new estimates of the covariance matrices from...... the aligned shapes, (b) align shapes to the mean shape. Three different methods for estimating the mean shape with associated covariance matrices are explored in the paper. The proposed methods are validated experimentally on two separate datasets (IMM face dataset and femur-bones). The superiority of ICP...
A review on "A Novel Technique for Image Steganography Based on Block-DCT and Huffman Encoding"
Das, Rig; Tuithung, Themrichon
2013-03-01
This paper reviews the embedding and extraction algorithm proposed by "A. Nag, S. Biswas, D. Sarkar and P. P. Sarkar" on "A Novel Technique for Image Steganography based on Block-DCT and Huffman Encoding" in "International Journal of Computer Science and Information Technology, Volume 2, Number 3, June 2010" [3] and shows that the Extraction of Secret Image is Not Possible for the algorithm proposed in [3]. 8 bit Cover Image of size is divided into non joint blocks and a two dimensional Discrete Cosine Transformation (2-D DCT) is performed on each of the blocks. Huffman Encoding is performed on an 8 bit Secret Image of size and each bit of the Huffman Encoded Bit Stream is embedded in the frequency domain by altering the LSB of the DCT coefficients of Cover Image blocks. The Huffman Encoded Bit Stream and Huffman Table
Selective Distance-Based K+ Quantification on Paper-Based Microfluidics.
Gerold, Chase T; Bakker, Eric; Henry, Charles S
2018-04-03
In this study, paper-based microfluidic devices (μPADs) capable of K + quantification in aqueous samples, as well as in human serum, using both colorimetric and distance-based methods are described. A lipophilic phase containing potassium ionophore I (valinomycin) was utilized to achieve highly selective quantification of K + in the presence of Na + , Li + , and Mg 2+ ions. Successful addition of a suspended lipophilic phase to a wax printed paper-based device is described and offers a solution to current approaches that rely on organic solvents, which damage wax barriers. The approach provides an avenue for future alkali/alkaline quantification utilizing μPADs. Colorimetric spot tests allowed for K + quantification from 0.1-5.0 mM using only 3.00 μL of sample solution. Selective distance-based quantification required small sample volumes (6.00 μL) and gave responses sensitive enough to distinguish between 1.0 and 2.5 mM of sample K + . μPADs using distance-based methods were also capable of differentiating between 4.3 and 6.9 mM K + in human serum samples. Distance-based methods required no digital analysis, electronic hardware, or pumps; any steps required for quantification could be carried out using the naked eye.
A class-based link prediction using Distance Dependent Chinese Restaurant Process
Andalib, Azam; Babamir, Seyed Morteza
2016-08-01
One of the important tasks in relational data analysis is link prediction which has been successfully applied on many applications such as bioinformatics, information retrieval, etc. The link prediction is defined as predicting the existence or absence of edges between nodes of a network. In this paper, we propose a novel method for link prediction based on Distance Dependent Chinese Restaurant Process (DDCRP) model which enables us to utilize the information of the topological structure of the network such as shortest path and connectivity of the nodes. We also propose a new Gibbs sampling algorithm for computing the posterior distribution of the hidden variables based on the training data. Experimental results on three real-world datasets show the superiority of the proposed method over other probabilistic models for link prediction problem.
Censoring distances based on labeled cortical distance maps in cortical morphometry.
Ceyhan, Elvan; Nishino, Tomoyuki; Alexopolous, Dimitrios; Todd, Richard D; Botteron, Kelly N; Miller, Michael I; Ratnanather, J Tilak
2013-01-01
It has been demonstrated that shape differences in cortical structures may be manifested in neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM) which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM) voxels with respect to GM/white matter (WM) surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information contained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs) of subjects with major depressive disorder (MDD), subjects at high risk (HR) of MDD, and healthy control (Ctrl) subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface) for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.
Censoring Distances Based on Labeled Cortical Distance Maps in Cortical Morphometry
Directory of Open Access Journals (Sweden)
Elvan eCeyhan
2013-10-01
Full Text Available It has been demonstrated that shape differences are manifested in cortical structures due to neuropsychiatric disorders. Such morphometric differences can be measured by labeled cortical distance mapping (LCDM which characterizes the morphometry of the laminar cortical mantle of cortical structures. LCDM data consist of signed/labeled distances of gray matter (GM voxels with respect to GM/white matter (WM surface. Volumes and other summary measures for each subject and the pooled distances can help determine the morphometric differences between diagnostic groups, however they do not reveal all the morphometric information con-tained in LCDM distances. To extract more information from LCDM data, censoring of the pooled distances is introduced for each diagnostic group where the range of LCDM distances is partitioned at a fixed increment size; and at each censoring step, the distances not exceeding the censoring distance are kept. Censored LCDM distances inherit the advantages of the pooled distances but also provide information about the location of morphometric differences which cannot be obtained from the pooled distances. However, at each step, the censored distances aggregate, which might confound the results. The influence of data aggregation is investigated with an extensive Monte Carlo simulation analysis and it is demonstrated that this influence is negligible. As an illustrative example, GM of ventral medial prefrontal cortices (VMPFCs of subjects with major depressive disorder (MDD, subjects at high risk (HR of MDD, and healthy control (Ctrl subjects are used. A significant reduction in laminar thickness of the VMPFC in MDD and HR subjects is observed compared to Ctrl subjects. Moreover, the GM LCDM distances (i.e., locations with respect to the GM/WM surface for which these differences start to occur are determined. The methodology is also applicable to LCDM-based morphometric measures of other cortical structures affected by disease.
Directory of Open Access Journals (Sweden)
Lawrence A. Tomei
2011-10-01
Full Text Available Adult students demand a wider variety of instructional strategies that encompass real-world, interactive, cooperative, and discovery learning experiences.Designing Instruction for the Traditional, Adult, and Distance Learner: A New Engine for Technology-Based Teaching explores how technology impacts the process of devising instructional plans as well as learning itself in adult students. Containing research from leading international experts, this publication proposes realistic and accurate archetypes to assist educators in incorporating state-of-the-art technologies into online instruction.This text proposes a new paradigm for designing, developing, implementing, and assessed technology-based instruction. It addresses three target populations of today's learner: traditional, adult, and distance education. The text proposes a new model of instructional system design (ISD for developing effective technology-based education that involves a five-step process focusing on the learner, learning theories, resources, delivery modalities, and outcomes.
Heterogeneity Measurement Based on Distance Measure for Polarimetric SAR Data
Xing, Xiaoli; Chen, Qihao; Liu, Xiuguo
2018-04-01
To effectively test the scene heterogeneity for polarimetric synthetic aperture radar (PolSAR) data, in this paper, the distance measure is introduced by utilizing the similarity between the sample and pixels. Moreover, given the influence of the distribution and modeling texture, the K distance measure is deduced according to the Wishart distance measure. Specifically, the average of the pixels in the local window replaces the class center coherency or covariance matrix. The Wishart and K distance measure are calculated between the average matrix and the pixels. Then, the ratio of the standard deviation to the mean is established for the Wishart and K distance measure, and the two features are defined and applied to reflect the complexity of the scene. The proposed heterogeneity measure is proceeded by integrating the two features using the Pauli basis. The experiments conducted on the single-look and multilook PolSAR data demonstrate the effectiveness of the proposed method for the detection of the scene heterogeneity.
Machine learning enhanced optical distance sensor
Amin, M. Junaid; Riza, N. A.
2018-01-01
Presented for the first time is a machine learning enhanced optical distance sensor. The distance sensor is based on our previously demonstrated distance measurement technique that uses an Electronically Controlled Variable Focus Lens (ECVFL) with a laser source to illuminate a target plane with a controlled optical beam spot. This spot with varying spot sizes is viewed by an off-axis camera and the spot size data is processed to compute the distance. In particular, proposed and demonstrated in this paper is the use of a regularized polynomial regression based supervised machine learning algorithm to enhance the accuracy of the operational sensor. The algorithm uses the acquired features and corresponding labels that are the actual target distance values to train a machine learning model. The optimized training model is trained over a 1000 mm (or 1 m) experimental target distance range. Using the machine learning algorithm produces a training set and testing set distance measurement errors of learning. Applications for the proposed sensor include industrial scenario distance sensing where target material specific training models can be generated to realize low <1% measurement error distance measurements.
EPR-based distance measurements at ambient temperature.
Krumkacheva, Olesya; Bagryanskaya, Elena
2017-07-01
Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0nm. It was proposed more than 30years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (TEPR as well as other approaches based on EPR (e.g., relaxation enhancement; RE). In this paper, we review the features of PD EPR and RE at ambient temperatures, in particular, requirements on electron spin phase memory time, ways of immobilization of biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities. Copyright © 2017 Elsevier Inc. All rights reserved.
Chiu, Chun-Huo; Chao, Anne
2014-01-01
Hill numbers (or the “effective number of species”) are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify “the effective number of equally abundant and (functionally) equally distinct species” in an assemblage. We also propose a class of mean functional diversity (per species), which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total) functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity) quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma) can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation) measures, including N-assemblage functional generalizations of
Directory of Open Access Journals (Sweden)
Chun-Huo Chiu
Full Text Available Hill numbers (or the "effective number of species" are increasingly used to characterize species diversity of an assemblage. This work extends Hill numbers to incorporate species pairwise functional distances calculated from species traits. We derive a parametric class of functional Hill numbers, which quantify "the effective number of equally abundant and (functionally equally distinct species" in an assemblage. We also propose a class of mean functional diversity (per species, which quantifies the effective sum of functional distances between a fixed species to all other species. The product of the functional Hill number and the mean functional diversity thus quantifies the (total functional diversity, i.e., the effective total distance between species of the assemblage. The three measures (functional Hill numbers, mean functional diversity and total functional diversity quantify different aspects of species trait space, and all are based on species abundance and species pairwise functional distances. When all species are equally distinct, our functional Hill numbers reduce to ordinary Hill numbers. When species abundances are not considered or species are equally abundant, our total functional diversity reduces to the sum of all pairwise distances between species of an assemblage. The functional Hill numbers and the mean functional diversity both satisfy a replication principle, implying the total functional diversity satisfies a quadratic replication principle. When there are multiple assemblages defined by the investigator, each of the three measures of the pooled assemblage (gamma can be multiplicatively decomposed into alpha and beta components, and the two components are independent. The resulting beta component measures pure functional differentiation among assemblages and can be further transformed to obtain several classes of normalized functional similarity (or differentiation measures, including N-assemblage functional
Color Texture Image Retrieval Based on Local Extrema Features and Riemannian Distance
Directory of Open Access Journals (Sweden)
Minh-Tan Pham
2017-10-01
Full Text Available A novel efficient method for content-based image retrieval (CBIR is developed in this paper using both texture and color features. Our motivation is to represent and characterize an input image by a set of local descriptors extracted from characteristic points (i.e., keypoints within the image. Then, dissimilarity measure between images is calculated based on the geometric distance between the topological feature spaces (i.e., manifolds formed by the sets of local descriptors generated from each image of the database. In this work, we propose to extract and use the local extrema pixels as our feature points. Then, the so-called local extrema-based descriptor (LED is generated for each keypoint by integrating all color, spatial as well as gradient information captured by its nearest local extrema. Hence, each image is encoded by an LED feature point cloud and Riemannian distances between these point clouds enable us to tackle CBIR. Experiments performed on several color texture databases including Vistex, STex, color Brodazt, USPtex and Outex TC-00013 using the proposed approach provide very efficient and competitive results compared to the state-of-the-art methods.
Directory of Open Access Journals (Sweden)
Jae Joon Suh
2017-01-01
Full Text Available We consider the distance-based registration (DBR which is a kind of dynamic location registration scheme in a mobile communication network. In the DBR, the location of a mobile station (MS is updated when it enters a base station more than or equal to a specified distance away from the base station where the location registration for the MS was done last. In this study, we first investigate the existing performance-evaluation methods on the DBR with implicit registration (DBIR presented to improve the performance of the DBR and point out some problems of the evaluation methods. We propose a new performance-evaluation method for the DBIR scheme using a semi-Markov process (SMP which can resolve the controversial issues of the existing methods. The numerical results obtained with the proposed SMP model are compared with those from previous models. It is shown that the SMP model should be considered to get an accurate performance of the DBIR scheme.
Robust and Adaptive Block Tracking Method Based on Particle Filter
Directory of Open Access Journals (Sweden)
Bin Sun
2015-10-01
Full Text Available In the field of video analysis and processing, object tracking is attracting more and more attention especially in traffic management, digital surveillance and so on. However problems such as objects’ abrupt motion, occlusion and complex target structures would bring difficulties to academic study and engineering application. In this paper, a fragmentsbased tracking method using the block relationship coefficient is proposed. In this method, we use particle filter algorithm and object region is divided into blocks initially. The contribution of this method is that object features are not extracted just from a single block, the relationship between current block and its neighbor blocks are extracted to describe the variation of the block. Each block is weighted according to the block relationship coefficient when the block is voted on the most matched region in next frame. This method can make full use of the relationship between blocks. The experimental results demonstrate that our method can provide good performance in condition of occlusion and abrupt posture variation.
Distance education unit "Mario Rizzini": a Salesian proposal
Directory of Open Access Journals (Sweden)
Pablo Farfán
2012-12-01
Full Text Available The distance education unit Mario Rizzini is a Salesian educational program designed to help excluded sectors of society, mainly young people, whom due to their employment status, premature parenthood, exclusion from formal schools that do not consider special conditions, who failed to complete their education at a school age but feel now the need to graduate.This teaching style is based on social constructivism, wich allows the person to move forward from his/her own reality and knowledge, guided by the Salesian perspective with Don Bosco's charisma, using the preventive method as a means to achieve a fair society. The teaching strategies and instruments are developed from contemporary concepts of distance education, partucularly using information techonology, turned into virtual classrooms that guarantee continuous individual support for the learner. To summarize, we offer an educational alternative that according to our founder's charisma, attempts to include those in need but with high quality education.
Azarpour, Masoumeh; Enzner, Gerald
2017-12-01
Binaural noise reduction, with applications for instance in hearing aids, has been a very significant challenge. This task relates to the optimal utilization of the available microphone signals for the estimation of the ambient noise characteristics and for the optimal filtering algorithm to separate the desired speech from the noise. The additional requirements of low computational complexity and low latency further complicate the design. A particular challenge results from the desired reconstruction of binaural speech input with spatial cue preservation. The latter essentially diminishes the utility of multiple-input/single-output filter-and-sum techniques such as beamforming. In this paper, we propose a comprehensive and effective signal processing configuration with which most of the aforementioned criteria can be met suitably. This relates especially to the requirement of efficient online adaptive processing for noise estimation and optimal filtering while preserving the binaural cues. Regarding noise estimation, we consider three different architectures: interaural (ITF), cross-relation (CR), and principal-component (PCA) target blocking. An objective comparison with two other noise PSD estimation algorithms demonstrates the superiority of the blocking-based noise estimators, especially the CR-based and ITF-based blocking architectures. Moreover, we present a new noise reduction filter based on minimum mean-square error (MMSE), which belongs to the class of common gain filters, hence being rigorous in terms of spatial cue preservation but also efficient and competitive for the acoustic noise reduction task. A formal real-time subjective listening test procedure is also developed in this paper. The proposed listening test enables a real-time assessment of the proposed computationally efficient noise reduction algorithms in a realistic acoustic environment, e.g., considering time-varying room impulse responses and the Lombard effect. The listening test outcome
Robust linear discriminant analysis with distance based estimators
Lim, Yai-Fung; Yahaya, Sharipah Soaad Syed; Ali, Hazlina
2017-11-01
Linear discriminant analysis (LDA) is one of the supervised classification techniques concerning relationship between a categorical variable and a set of continuous variables. The main objective of LDA is to create a function to distinguish between populations and allocating future observations to previously defined populations. Under the assumptions of normality and homoscedasticity, the LDA yields optimal linear discriminant rule (LDR) between two or more groups. However, the optimality of LDA highly relies on the sample mean and pooled sample covariance matrix which are known to be sensitive to outliers. To alleviate these conflicts, a new robust LDA using distance based estimators known as minimum variance vector (MVV) has been proposed in this study. The MVV estimators were used to substitute the classical sample mean and classical sample covariance to form a robust linear discriminant rule (RLDR). Simulation and real data study were conducted to examine on the performance of the proposed RLDR measured in terms of misclassification error rates. The computational result showed that the proposed RLDR is better than the classical LDR and was comparable with the existing robust LDR.
Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.
Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si
2017-07-01
Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.
Vision-Based Bicycle Detection Using Multiscale Block Local Binary Pattern
Directory of Open Access Journals (Sweden)
Hongyu Hu
2014-01-01
Full Text Available Bicycle traffic has heavy proportion among all travel modes in some developing countries, which is crucial for urban traffic control and management as well as facility design. This paper proposes a real-time multiple bicycle detection algorithm based on video. At first, an effective feature called multiscale block local binary pattern (MBLBP is extracted for representing the moving object, which is a well-classified feature to distinguish between bicycles and nonbicycles; then, a cascaded bicycle classifier trained by AdaBoost algorithm is proposed, which has a good computation efficiency. Finally, the method is tested with video sequence captured from the real-world traffic scenario. The bicycles in the test scenario are successfully detected.
Utilization of the emergency room: impact of geographic distance
Directory of Open Access Journals (Sweden)
Jae Eun Lee
2007-05-01
Full Text Available The aim of this study was to estimate the distance Mississippi patients must travel to access hospital-based emergency rooms (ERs and to determine whether an association exists between geographic distance and ER utilization. To that end, great circle distances between Census Block Group Centroid Points and 89 hospitals with emergency departments were calculated for the State of Mississippi. Data on the socio-demographic characteristics of each block group came from the 2000 US Census data. Logistic regression analyses were conducted to test if there was any association between ER utilization and travel distance. Compared to the national benchmark of 35.7%, more than one in two (56.7%, or 1,612,762 Mississippians visited ERs in 2003 with an estimated 6.1 miles per person annual travel for this purpose. The majority of the target population (54.9% was found to live within 5 miles of hospitals with ERs. Logistic analyses revealed that block groups associated with less miles traveled to hospitals with ERs had a higher proportion of African Americans, impoverished people, female householders, people with more than 12 years education, people older than 65 years, people with high median house values, and people without employment. Twenty-nine of the 89 hospitals (33% providing ER care in Mississippi were found to be in areas with above-average ER utilization rates. These hospitals served a smaller geographical area (28% of the total but had a greater proportion of visitors (57% and served a higher percentage (37% of the state population. People in areas served by the less utilized ERs traveled more miles to be cared for (7.1 miles vs 5.4 miles; p<0.0001. Logistic regression analysis revealed that shorter distances were associated with increased use of the ERs, even after controlling for socio-demographic factors. The conclusion is that Mississippi ERs are typically located in block groups with higher percentages of disadvantaged residents and that
Reversible Dual-Image-Based Hiding Scheme Using Block Folding Technique
Directory of Open Access Journals (Sweden)
Tzu-Chuen Lu
2017-10-01
Full Text Available The concept of a dual-image based scheme in information sharing consists of concealing secret messages in two cover images; only someone who has both stego-images can extract the secret messages. In 2015, Lu et al. proposed a center-folding strategy where each secret symbol is folded into the reduced digit to reduce the distortion of the stego-image. Then, in 2016, Lu et al. used a frequency-based encoding strategy to reduce the distortion of the frequency of occurrence of the maximum absolute value. Because the folding strategy can obviously reduce the value, the proposed scheme includes the folding operation twice to further decrease the reduced digit. We use a frequency-based encoding strategy to encode a secret message and then use the block folding technique by performing the center-folding operation twice to embed secret messages. An indicator is needed to identify the sequence number of the folding operation. The proposed scheme collects several indicators to produce a combined code and hides the code in a pixel to reduce the size of the indicators. The experimental results show that the proposed method can achieve higher image quality under the same embedding rate or higher payload, which is better than other methods.
Du, Mao-Kang; He, Bo; Wang, Yong
2011-01-01
Recently, the cryptosystem based on chaos has attracted much attention. Wang and Yu (Commun. Nonlin. Sci. Numer. Simulat. 14 (2009) 574) proposed a block encryption algorithm based on dynamic sequences of multiple chaotic systems. We analyze the potential flaws in the algorithm. Then, a chosen-plaintext attack is presented. Some remedial measures are suggested to avoid the flaws effectively. Furthermore, an improved encryption algorithm is proposed to resist the attacks and to keep all the merits of the original cryptosystem.
DEFF Research Database (Denmark)
Pedersen, Knud Ole Helgesen
1999-01-01
A method for implementing a digital distance relay in the power system is described.Instructions are given on how to program this relay on a 80537 based microcomputer system.The problem is used as a practical case study in the course 53113: Micocomputer applications in the power system.The relay...
Abdominal wall blocks in adults
DEFF Research Database (Denmark)
Børglum, Jens; Gögenür, Ismail; Bendtsen, Thomas F
2016-01-01
been introduced with success. Future research should also investigate the effect of specific abdominal wall blocks on neuroendocrine and inflammatory stress response after surgery. Summary USG abdominal wall blocks in adults are commonplace techniques today. Most abdominal wall blocks are assigned......Purpose of review Abdominal wall blocks in adults have evolved much during the last decade; that is, particularly with the introduction of ultrasound-guided (USG) blocks. This review highlights recent advances of block techniques within this field and proposes directions for future research....... Recent findings Ultrasound guidance is now considered the golden standard for abdominal wall blocks in adults, even though some landmark-based blocks are still being investigated. The efficiency of USG transversus abdominis plane blocks in relation to many surgical procedures involving the abdominal wall...
Medical image compression based on vector quantization with variable block sizes in wavelet domain.
Jiang, Huiyan; Ma, Zhiyuan; Hu, Yang; Yang, Benqiang; Zhang, Libo
2012-01-01
An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD) was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.
Directory of Open Access Journals (Sweden)
Sheng Bi
2016-03-01
Full Text Available Compressive sensing (CS theory has opened up new paths for the development of signal processing applications. Based on this theory, a novel single pixel camera architecture has been introduced to overcome the current limitations and challenges of traditional focal plane arrays. However, video quality based on this method is limited by existing acquisition and recovery methods, and the method also suffers from being time-consuming. In this paper, a multi-frame motion estimation algorithm is proposed in CS video to enhance the video quality. The proposed algorithm uses multiple frames to implement motion estimation. Experimental results show that using multi-frame motion estimation can improve the quality of recovered videos. To further reduce the motion estimation time, a block match algorithm is used to process motion estimation. Experiments demonstrate that using the block match algorithm can reduce motion estimation time by 30%.
Definition of distance for nonlinear time series analysis of marked point process data
Energy Technology Data Exchange (ETDEWEB)
Iwayama, Koji, E-mail: koji@sat.t.u-tokyo.ac.jp [Research Institute for Food and Agriculture, Ryukoku Univeristy, 1-5 Yokotani, Seta Oe-cho, Otsu-Shi, Shiga 520-2194 (Japan); Hirata, Yoshito; Aihara, Kazuyuki [Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)
2017-01-30
Marked point process data are time series of discrete events accompanied with some values, such as economic trades, earthquakes, and lightnings. A distance for marked point process data allows us to apply nonlinear time series analysis to such data. We propose a distance for marked point process data which can be calculated much faster than the existing distance when the number of marks is small. Furthermore, under some assumptions, the Kullback–Leibler divergences between posterior distributions for neighbors defined by this distance are small. We performed some numerical simulations showing that analysis based on the proposed distance is effective. - Highlights: • A new distance for marked point process data is proposed. • The distance can be computed fast enough for a small number of marks. • The method to optimize parameter values of the distance is also proposed. • Numerical simulations indicate that the analysis based on the distance is effective.
Rate-Compatible LDPC Codes with Linear Minimum Distance
Divsalar, Dariush; Jones, Christopher; Dolinar, Samuel
2009-01-01
A recently developed method of constructing protograph-based low-density parity-check (LDPC) codes provides for low iterative decoding thresholds and minimum distances proportional to block sizes, and can be used for various code rates. A code constructed by this method can have either fixed input block size or fixed output block size and, in either case, provides rate compatibility. The method comprises two submethods: one for fixed input block size and one for fixed output block size. The first mentioned submethod is useful for applications in which there are requirements for rate-compatible codes that have fixed input block sizes. These are codes in which only the numbers of parity bits are allowed to vary. The fixed-output-blocksize submethod is useful for applications in which framing constraints are imposed on the physical layers of affected communication systems. An example of such a system is one that conforms to one of many new wireless-communication standards that involve the use of orthogonal frequency-division modulation
Block-based wavelet transform coding of mammograms with region-adaptive quantization
Moon, Nam Su; Song, Jun S.; Kwon, Musik; Kim, JongHyo; Lee, ChoongWoong
1998-06-01
To achieve both high compression ratio and information preserving, it is an efficient way to combine segmentation and lossy compression scheme. Microcalcification in mammogram is one of the most significant sign of early stage of breast cancer. Therefore in coding, detection and segmentation of microcalcification enable us to preserve it well by allocating more bits to it than to other regions. Segmentation of microcalcification is performed both in spatial domain and in wavelet transform domain. Peak error controllable quantization step, which is off-line designed, is suitable for medical image compression. For region-adaptive quantization, block- based wavelet transform coding is adopted and different peak- error-constrained quantizers are applied to blocks according to the segmentation result. In view of preservation of microcalcification, the proposed coding scheme shows better performance than JPEG.
Distance Constrained Based Adaptive Flocking Control for Multiagent Networks with Time Delay
Directory of Open Access Journals (Sweden)
Qing Zhang
2015-01-01
Full Text Available The flocking control of multiagent system is a new type of decentralized control method, which has aroused great attention. The paper includes a detailed research in terms of distance constrained based adaptive flocking control for multiagent system with time delay. Firstly, the program on the adaptive flocking with time delay of multiagent is proposed. Secondly, a kind of adaptive controllers and updating laws are presented. According to the Lyapunov stability theory, it is proved that the distance between agents can be larger than a constant during the motion evolution. What is more, velocities of each agent come to the same asymptotically. Finally, the analytical results can be verified by a numerical example.
DEFF Research Database (Denmark)
Mohamed, Omer I. Eldai
2005-01-01
In this paper we describe the prototypic implementations of the BuildingBlock (BB/CB-OHSs) that proposed to address some of the Component-based Open Hypermedia Systems (CB-OHSs) issues, including distribution and interoperability [4, 11, 12]. Four service implementations were described below. The...
Image Blocking Encryption Algorithm Based on Laser Chaos Synchronization
Directory of Open Access Journals (Sweden)
Shu-Ying Wang
2016-01-01
Full Text Available In view of the digital image transmission security, based on laser chaos synchronization and Arnold cat map, a novel image encryption scheme is proposed. Based on pixel values of plain image a parameter is generated to influence the secret key. Sequences of the drive system and response system are pretreated by the same method and make image blocking encryption scheme for plain image. Finally, pixels position are scrambled by general Arnold transformation. In decryption process, the chaotic synchronization accuracy is fully considered and the relationship between the effect of synchronization and decryption is analyzed, which has characteristics of high precision, higher efficiency, simplicity, flexibility, and better controllability. The experimental results show that the encryption algorithm image has high security and good antijamming performance.
Pyrimidine dimers block simian virus 40 replication forks
International Nuclear Information System (INIS)
Berger, C.A.; Edenberg, H.J.
1986-01-01
UV light produces lesions, predominantly pyrimidine dimers, which inhibit DNA replication in mammalian cells. The mechanism of inhibition is controversial: is synthesis of a daughter strand halted at a lesion while the replication fork moves on and reinitiates downstream, or is fork progression itself blocked for some time at the site of a lesion? We directly addressed this question by using electron microscopy to examine the distances of replication forks from the origin in unirradiated and UV-irradiated simian virus 40 chromosomes. If UV lesions block replication fork progression, the forks should be asymmetrically located in a large fraction of the irradiated molecules; if replication forks move rapidly past lesions, the forks should be symmetrically located. A large fraction of the simian virus 40 replication forks in irradiated molecules were asymmetrically located, demonstrating that UV lesions present at the frequency of pyrimidine dimers block replication forks. As a mechanism for this fork blockage, we propose that polymerization of the leading strand makes a significant contribution to the energetics of fork movement, so any lesion in the template for the leading strand which blocks polymerization should also block fork movement
Cryptanalysis and improvement on a block cryptosystem based on iteration a chaotic map
International Nuclear Information System (INIS)
Wang Yong; Liao Xiaofeng; Xiang Tao; Wong, Kwok-Wo; Yang Degang
2007-01-01
Recently, a novel block encryption system has been proposed as an improved version of the chaotic cryptographic method based on iterating a chaotic map. In this Letter, a flaw of this cryptosystem is pointed out and a chosen plaintext attack is presented. Furthermore, a remedial improvement is suggested, which avoids the flaw while keeping all the merits of the original cryptosystem
Directory of Open Access Journals (Sweden)
Cai Guo-Rong
2011-10-01
Full Text Available This paper presents an automated image registration approach to detecting changes in multi-temporal remote sensing images. The proposed algorithm is based on the scale invariant feature transform (SIFT and has two phases. The first phase focuses on SIFT feature extraction and on estimation of image transformation. In the second phase, Structured Local Binary Haar Pattern (SLBHP combined with a fuzzy similarity measure is then used to build a new and effective block similarity measure for change detection. Experimental results obtained on multi-temporal data sets show that compared with three mainstream block matching algorithms, the proposed algorithm is more effective in dealing with scale, rotation and illumination changes.
Directory of Open Access Journals (Sweden)
Shailesh Kamble
2017-08-01
Full Text Available The major challenge with fractal image/video coding technique is that, it requires more encoding time. Therefore, how to reduce the encoding time is the research component remains in the fractal coding. Block matching motion estimation algorithms are used, to reduce the computations performed in the process of encoding. The objective of the proposed work is to develop an approach for video coding using modified three step search (MTSS block matching algorithm and weighted finite automata (WFA coding with a specific focus on reducing the encoding time. The MTSS block matching algorithm are used for computing motion vectors between the two frames i.e. displacement of pixels and WFA is used for the coding as it behaves like the Fractal Coding (FC. WFA represents an image (frame or motion compensated prediction error based on the idea of fractal that the image has self-similarity in itself. The self-similarity is sought from the symmetry of an image, so the encoding algorithm divides an image into multi-levels of quad-tree segmentations and creates an automaton from the sub-images. The proposed MTSS block matching algorithm is based on the combination of rectangular and hexagonal search pattern and compared with the existing New Three-Step Search (NTSS, Three-Step Search (TSS, and Efficient Three-Step Search (ETSS block matching estimation algorithm. The performance of the proposed MTSS block matching algorithm is evaluated on the basis of performance evaluation parameters i.e. mean absolute difference (MAD and average search points required per frame. Mean of absolute difference (MAD distortion function is used as the block distortion measure (BDM. Finally, developed approaches namely, MTSS and WFA, MTSS and FC, and Plane FC (applied on every frame are compared with each other. The experimentations are carried out on the standard uncompressed video databases, namely, akiyo, bus, mobile, suzie, traffic, football, soccer, ice etc. Developed
Directory of Open Access Journals (Sweden)
Mawloud Mosbah
2017-03-01
Full Text Available In this paper, we address the selection in the context of Content Based-Image Retrieval (CBIR. Instead of addressing features’ selection issue, we deal here with distance selection as a novel paradigm poorly addressed within CBIR field. Whereas distance concept is a very precise and sharp mathematical tool, we extend the study to weak distances: Similarity, quasi-distance, and divergence. Therefore, as many as eighteen (18 such measures as considered: distances: {Euclidian, …}, similarities{Ruzika, …}, quasi-distances: {Neyman-X2, …} and divergences: {Jeffrey, …}. We specifically propose a hybrid system based on the Sequential Forward Selector (SFS meta-heuristic with one round and relevance feedback. The experiments conducted on the Wang database (Corel-1K using color moments as a signature show that our system yields promising results in terms of effectiveness.
Directory of Open Access Journals (Sweden)
Yuxian Zhang
2015-01-01
Full Text Available The quality index model in slashing process is difficult to build by reason of the outliers and noise data from original data. To the above problem, a fuzzy neural network based on non-Euclidean distance clustering is proposed in which the input space is partitioned into many local regions by the fuzzy clustering based on non-Euclidean distance so that the computation complexity is decreased, and fuzzy rule number is determined by validity function based on both the separation and the compactness among clusterings. Then, the premise parameters and consequent parameters are trained by hybrid learning algorithm. The parameters identification is realized; meanwhile the convergence condition of consequent parameters is obtained by Lyapunov function. Finally, the proposed method is applied to build the quality index model in slashing process in which the experimental data come from the actual slashing process. The experiment results show that the proposed fuzzy neural network for quality index model has lower computation complexity and faster convergence time, comparing with GP-FNN, BPNN, and RBFNN.
Medical Image Compression Based on Vector Quantization with Variable Block Sizes in Wavelet Domain
Directory of Open Access Journals (Sweden)
Huiyan Jiang
2012-01-01
Full Text Available An optimized medical image compression algorithm based on wavelet transform and improved vector quantization is introduced. The goal of the proposed method is to maintain the diagnostic-related information of the medical image at a high compression ratio. Wavelet transformation was first applied to the image. For the lowest-frequency subband of wavelet coefficients, a lossless compression method was exploited; for each of the high-frequency subbands, an optimized vector quantization with variable block size was implemented. In the novel vector quantization method, local fractal dimension (LFD was used to analyze the local complexity of each wavelet coefficients, subband. Then an optimal quadtree method was employed to partition each wavelet coefficients, subband into several sizes of subblocks. After that, a modified K-means approach which is based on energy function was used in the codebook training phase. At last, vector quantization coding was implemented in different types of sub-blocks. In order to verify the effectiveness of the proposed algorithm, JPEG, JPEG2000, and fractal coding approach were chosen as contrast algorithms. Experimental results show that the proposed method can improve the compression performance and can achieve a balance between the compression ratio and the image visual quality.
Application of Technology in Project-Based Distance Learning
Directory of Open Access Journals (Sweden)
Ali Mehrabian
2008-06-01
Full Text Available Present technology and the accessibility of internet have made distance learning easier, more efficient, and more convenient for students. This technology allows instructors and students to communicate asynchronously, at times and locations of their own choosing, by exchanging printed or electronic information. The use of project-based approach is being recognized in the literature as a potential component of courses in the faculties of engineering, science, and technology. Instructors may have to restructure their course differently to accommodate and facilitate the effectiveness of distance learning. A project-based engineering course, traditionally taught in a classroom settings using live mode at the College of Engineering and Computer Sciences at the University of Central Florida (UCF has been transformed to a distance course taught using distance modes. In this case, pedagogical transitions and adjustments are required, in particular for obtaining an optimal balance between the course material and the project work. Project collaboration in groups requires communication, which is possible with extensive utilization of new information and communication technology, such as virtual meetings. This paper discusses the course transition from live to distance modes and touches on some issues as they relate to the effectiveness of this methodology and the lessons learned from its application within different context. More specifically, this discussion includes the benefit of implementing project-based work in the domain of the distance learning courses.
Analysis and Comparison of Information Theory-based Distances for Genomic Strings
Balzano, Walter; Cicalese, Ferdinando; Del Sorbo, Maria Rosaria; Vaccaro, Ugo
2008-07-01
Genomic string comparison via alignment are widely applied for mining and retrieval of information in biological databases. In some situation, the effectiveness of such alignment based comparison is still unclear, e.g., for sequences with non-uniform length and with significant shuffling of identical substrings. An alternative approach is the one based on information theory distances. Biological data information content is stored in very long strings of only four characters. In last ten years, several entropic measures have been proposed for genomic string analysis. Notwithstanding their individual merit and experimental validation, to the nest of our knowledge, there is no direct comparison of these different metrics. We shall present four of the most representative alignment-free distance measures, based on mutual information. Each one has a different origin and expression. Our comparison involves a sort of arrangement, to reduce different concepts to a unique formalism, so as it has been possible to construct a phylogenetic tree for each of them. The trees produced via these metrics are compared to the ones widely accepted as biologically validated. In general the results provided more evidence of the reliability of the alignment-free distance models. Also, we observe that one of the metrics appeared to be more robust than the other three. We believe that this result can be object of further researches and observations. Many of the results of experimentation, the graphics and the table are available at the following URL: http://people.na.infn.it/˜wbalzano/BIO
Ke, Rihuan; Ng, Michael K.; Sun, Hai-Wei
2015-12-01
In this paper, we study the block lower triangular Toeplitz-like with tri-diagonal blocks system which arises from the time-fractional partial differential equation. Existing fast numerical solver (e.g., fast approximate inversion method) cannot handle such linear system as the main diagonal blocks are different. The main contribution of this paper is to propose a fast direct method for solving this linear system, and to illustrate that the proposed method is much faster than the classical block forward substitution method for solving this linear system. Our idea is based on the divide-and-conquer strategy and together with the fast Fourier transforms for calculating Toeplitz matrix-vector multiplication. The complexity needs O (MNlog2 M) arithmetic operations, where M is the number of blocks (the number of time steps) in the system and N is the size (number of spatial grid points) of each block. Numerical examples from the finite difference discretization of time-fractional partial differential equations are also given to demonstrate the efficiency of the proposed method.
A long distance voice transmission system based on the white light LED
Tian, Chunyu; Wei, Chang; Wang, Yulian; Wang, Dachi; Yu, Benli; Xu, Feng
2017-10-01
A long distance voice transmission system based on a visible light communication technology (VLCT) is proposed in the paper. Our proposed system includes transmitter, receiver and the voice signal processing of single chip microcomputer. In the compact-sized LED transmitter, we use on-off-keying and not-return-to-zero (OOK-NRZ) to easily realize high speed modulation, and then systematic complexity is reduced. A voice transmission system, which possesses the properties of the low-noise and wide modulation band, is achieved by the design of high efficiency receiving optical path and using filters to reduce noise from the surrounding light. To improve the speed of the signal processing, we use single chip microcomputer to code and decode voice signal. Furthermore, serial peripheral interface (SPI) is adopted to accurately transmit voice signal data. The test results of our proposed system show that the transmission distance of this system is more than100 meters with the maximum data rate of 1.5 Mbit/s and a SNR of 30dB. This system has many advantages, such as simple construction, low cost and strong practicality. Therefore, it has extensive application prospect in the fields of the emergency communication and indoor wireless communication, etc.
Block correlated second order perturbation theory with a generalized valence bond reference function
International Nuclear Information System (INIS)
Xu, Enhua; Li, Shuhua
2013-01-01
The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a “multi-orbital” block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Møller–Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods
Xu, Enhua; Li, Shuhua
2013-11-07
The block correlated second-order perturbation theory with a generalized valence bond (GVB) reference (GVB-BCPT2) is proposed. In this approach, each geminal in the GVB reference is considered as a "multi-orbital" block (a subset of spin orbitals), and each occupied or virtual spin orbital is also taken as a single block. The zeroth-order Hamiltonian is set to be the summation of the individual Hamiltonians of all blocks (with explicit two-electron operators within each geminal) so that the GVB reference function and all excited configuration functions are its eigenfunctions. The GVB-BCPT2 energy can be directly obtained without iteration, just like the second order Mo̸ller-Plesset perturbation method (MP2), both of which are size consistent. We have applied this GVB-BCPT2 method to investigate the equilibrium distances and spectroscopic constants of 7 diatomic molecules, conformational energy differences of 8 small molecules, and bond-breaking potential energy profiles in 3 systems. GVB-BCPT2 is demonstrated to have noticeably better performance than MP2 for systems with significant multi-reference character, and provide reasonably accurate results for some systems with large active spaces, which are beyond the capability of all CASSCF-based methods.
An Improved EMD-Based Dissimilarity Metric for Unsupervised Linear Subspace Learning
Directory of Open Access Journals (Sweden)
Xiangchun Yu
2018-01-01
Full Text Available We investigate a novel way of robust face image feature extraction by adopting the methods based on Unsupervised Linear Subspace Learning to extract a small number of good features. Firstly, the face image is divided into blocks with the specified size, and then we propose and extract pooled Histogram of Oriented Gradient (pHOG over each block. Secondly, an improved Earth Mover’s Distance (EMD metric is adopted to measure the dissimilarity between blocks of one face image and the corresponding blocks from the rest of face images. Thirdly, considering the limitations of the original Locality Preserving Projections (LPP, we proposed the Block Structure LPP (BSLPP, which effectively preserves the structural information of face images. Finally, an adjacency graph is constructed and a small number of good features of a face image are obtained by methods based on Unsupervised Linear Subspace Learning. A series of experiments have been conducted on several well-known face databases to evaluate the effectiveness of the proposed algorithm. In addition, we construct the noise, geometric distortion, slight translation, slight rotation AR, and Extended Yale B face databases, and we verify the robustness of the proposed algorithm when faced with a certain degree of these disturbances.
On Computing Breakpoint Distances for Genomes with Duplicate Genes.
Shao, Mingfu; Moret, Bernard M E
2017-06-01
A fundamental problem in comparative genomics is to compute the distance between two genomes in terms of its higher level organization (given by genes or syntenic blocks). For two genomes without duplicate genes, we can easily define (and almost always efficiently compute) a variety of distance measures, but the problem is NP-hard under most models when genomes contain duplicate genes. To tackle duplicate genes, three formulations (exemplar, maximum matching, and any matching) have been proposed, all of which aim to build a matching between homologous genes so as to minimize some distance measure. Of the many distance measures, the breakpoint distance (the number of nonconserved adjacencies) was the first one to be studied and remains of significant interest because of its simplicity and model-free property. The three breakpoint distance problems corresponding to the three formulations have been widely studied. Although we provided last year a solution for the exemplar problem that runs very fast on full genomes, computing optimal solutions for the other two problems has remained challenging. In this article, we describe very fast, exact algorithms for these two problems. Our algorithms rely on a compact integer-linear program that we further simplify by developing an algorithm to remove variables, based on new results on the structure of adjacencies and matchings. Through extensive experiments using both simulations and biological data sets, we show that our algorithms run very fast (in seconds) on mammalian genomes and scale well beyond. We also apply these algorithms (as well as the classic orthology tool MSOAR) to create orthology assignment, then compare their quality in terms of both accuracy and coverage. We find that our algorithm for the "any matching" formulation significantly outperforms other methods in terms of accuracy while achieving nearly maximum coverage.
Palao-Suay, Raquel; Aguilar, María Rosa; Parra-Ruiz, Francisco J; Maji, Samarendra; Hoogenboom, Richard; Rohner, Nathan A; Thomas, Susan N; Román, Julio San
2016-12-01
Well-structured amphiphilic copolymers are necessary to obtain self-assembled nanoparticles (NPs) based on synthetic polymers. Highly homogeneous and monodispersed macromolecules obtained by controlled polymerization have successfully been used for this purpose. However, disaggregation of the organized macromolecules is desired when a bioactive element, such as α-tocopheryl succinate, is introduced in self-assembled NPs and this element must be exposed or released to exert its action. The aim of this work is to demonstrate that the bioactivity of synthetic NPs based on defined reversible addition-fragmentation chain transfer polymerization copolymers can be enhanced by the introduction of hydrophilic comonomers in the hydrophobic segment. The amphiphilic terpolymers are based on poly(ethylene glycol) (PEG) as hydrophilic block, and a hydrophobic block based on a methacrylic derivative of α-tocopheryl succinate (MTOS) and small amounts of 2-hydroxyethyl methacrylate (HEMA) (PEG-b-poly(MTOS-co-HEMA)). The introduction of HEMA reduces hydrophobicity and introduces "disorder" both in the homogeneous blocks and the compact core of the corresponding NPs. These NPs are able to encapsulate additional α-tocopheryl succinate (α-TOS) with high efficiency and their biological activity is much higher than that described for the unmodified copolymers, proposedly due to more efficient degradation and release of α-TOS, demonstrating the importance of the hydrophilic-hydrophobic balance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Directory of Open Access Journals (Sweden)
Tushar Kanti Bera
2011-06-01
Full Text Available A Block Matrix based Multiple Regularization (BMMR technique is proposed for improving conductivity image quality in EIT. The response matrix (JTJ has been partitioned into several sub-block matrices and the highest eigenvalue of each sub-block matrices has been chosen as regularization parameter for the nodes contained by that sub-block. Simulated boundary data are generated for circular domain with circular inhomogeneity and the conductivity images are reconstructed in a Model Based Iterative Image Reconstruction (MoBIIR algorithm. Conductivity images are reconstructed with BMMR technique and the results are compared with the Single-step Tikhonov Regularization (STR and modified Levenberg-Marquardt Regularization (LMR methods. It is observed that the BMMR technique reduces the projection error and solution error and improves the conductivity reconstruction in EIT. Result show that the BMMR method also improves the image contrast and inhomogeneity conductivity profile and hence the reconstructed image quality is enhanced. ;doi:10.5617/jeb.170 J Electr Bioimp, vol. 2, pp. 33-47, 2011
Spatial distribution of block falls using volumetric GIS-decision-tree models
Abdallah, C.
2010-10-01
Block falls are considered a significant aspect of surficial instability contributing to losses in land and socio-economic aspects through their damaging effects to natural and human environments. This paper predicts and maps the geographic distribution and volumes of block falls in central Lebanon using remote sensing, geographic information systems (GIS) and decision-tree modeling (un-pruned and pruned trees). Eleven terrain parameters (lithology, proximity to fault line, karst type, soil type, distance to drainage line, elevation, slope gradient, slope aspect, slope curvature, land cover/use, and proximity to roads) were generated to statistically explain the occurrence of block falls. The latter were discriminated using SPOT4 satellite imageries, and their dimensions were determined during field surveys. The un-pruned tree model based on all considered parameters explained 86% of the variability in field block fall measurements. Once pruned, it classifies 50% in block falls' volumes by selecting just four parameters (lithology, slope gradient, soil type, and land cover/use). Both tree models (un-pruned and pruned) were converted to quantitative 1:50,000 block falls' maps with different classes; starting from Nil (no block falls) to more than 4000 m 3. These maps are fairly matching with coincidence value equal to 45%; however, both can be used to prioritize the choice of specific zones for further measurement and modeling, as well as for land-use management. The proposed tree models are relatively simple, and may also be applied to other areas (i.e. the choice of un-pruned or pruned model is related to the availability of terrain parameters in a given area).
Phylogenetic inference with weighted codon evolutionary distances.
Criscuolo, Alexis; Michel, Christian J
2009-04-01
We develop a new approach to estimate a matrix of pairwise evolutionary distances from a codon-based alignment based on a codon evolutionary model. The method first computes a standard distance matrix for each of the three codon positions. Then these three distance matrices are weighted according to an estimate of the global evolutionary rate of each codon position and averaged into a unique distance matrix. Using a large set of both real and simulated codon-based alignments of nucleotide sequences, we show that this approach leads to distance matrices that have a significantly better treelikeness compared to those obtained by standard nucleotide evolutionary distances. We also propose an alternative weighting to eliminate the part of the noise often associated with some codon positions, particularly the third position, which is known to induce a fast evolutionary rate. Simulation results show that fast distance-based tree reconstruction algorithms on distance matrices based on this codon position weighting can lead to phylogenetic trees that are at least as accurate as, if not better, than those inferred by maximum likelihood. Finally, a well-known multigene dataset composed of eight yeast species and 106 codon-based alignments is reanalyzed and shows that our codon evolutionary distances allow building a phylogenetic tree which is similar to those obtained by non-distance-based methods (e.g., maximum parsimony and maximum likelihood) and also significantly improved compared to standard nucleotide evolutionary distance estimates.
Che, Chang; Yu, Xiaoyang; Sun, Xiaoming; Yu, Boyang
2017-12-01
In recent years, Scalable Vocabulary Tree (SVT) has been shown to be effective in image retrieval. However, for general images where the foreground is the object to be recognized while the background is cluttered, the performance of the current SVT framework is restricted. In this paper, a new image retrieval framework that incorporates a robust distance metric and information fusion is proposed, which improves the retrieval performance relative to the baseline SVT approach. First, the visual words that represent the background are diminished by using a robust Hausdorff distance between different images. Second, image matching results based on three image signature representations are fused, which enhances the retrieval precision. We conducted intensive experiments on small-scale to large-scale image datasets: Corel-9, Corel-48, and PKU-198, where the proposed Hausdorff metric and information fusion outperforms the state-of-the-art methods by about 13, 15, and 15%, respectively.
Design of block copolymer membranes using segregation strength trend lines
Sutisna, Burhannudin
2016-05-18
Block copolymer self-assembly and non-solvent induced phase separation are now being combined to fabricate membranes with narrow pore size distribution and high porosity. The method has the potential to be used with a broad range of tailor-made block copolymers to control functionality and selectivity for specific separations. However, the extension of this process to any new copolymer is challenging and time consuming, due to the complex interplay of influencing parameters, such as solvent composition, polymer molecular weights, casting solution concentration, and evaporation time. We propose here an effective method for designing new block copolymer membranes. The method consists of predetermining a trend line for the preparation of isoporous membranes, obtained by computing solvent properties, interactions and copolymer block sizes for a set of successful systems and using it as a guide to select the preparation conditions for new membranes. We applied the method to membranes based on poly(styrene-b-ethylene oxide) diblocks and extended it to newly synthesized poly(styrene-b-2-vinyl pyridine-b-ethylene oxide) (PS-b-P2VP-b-PEO) terpolymers. The trend line method can be generally applied to other new systems and is expected to dramatically shorten the path of isoporous membrane manufacture. The PS-b-P2VP-b-PEO membrane formation was investigated by in situ Grazing Incident Small Angle X-ray Scattering (GISAXS), which revealed a hexagonal micelle order with domain spacing clearly correlated to the membrane interpore distances.
Auditory/visual distance estimation: accuracy and variability
Directory of Open Access Journals (Sweden)
Paul Wallace Anderson
2014-10-01
Full Text Available Past research has shown that auditory distance estimation improves when listeners are given the opportunity to see all possible sound sources when compared to no visual input. It has also been established that distance estimation is more accurate in vision than in audition. The present study investigates the degree to which auditory distance estimation is improved when matched with a congruent visual stimulus. Virtual sound sources based on binaural room impulse response (BRIR measurements made from distances ranging from approximately 0.3 to 9.8 m in a concert hall were used as auditory stimuli. Visual stimuli were photographs taken from the listener’s perspective at each distance in the impulse response measurement setup presented on a large HDTV monitor. Listeners were asked to estimate egocentric distance to the sound source in each of three conditions: auditory only (A, visual only (V, and congruent auditory/visual stimuli (A+V. Each condition was presented within its own block. Sixty-two listeners were tested in order to quantify the response variability inherent in auditory distance perception. Distance estimates from both the V and A+V conditions were found to be considerably more accurate and less variable than estimates from the A condition.
EPR-based distance measurements at ambient temperature
Krumkacheva, Olesya; Bagryanskaya, Elena
2017-07-01
Pulsed dipolar (PD) EPR spectroscopy is a powerful technique allowing for distance measurements between spin labels in the range of 2.5-10.0 nm. It was proposed more than 30 years ago, and nowadays is widely used in biophysics and materials science. Until recently, PD EPR experiments were limited to cryogenic temperatures (T biomolecules, the influence of a linker between the spin probe and biomolecule, and future opportunities.
Single-Image Distance Measurement by a Smart Mobile Device.
Chen, Shangwen; Fang, Xianyong; Shen, Jianbing; Wang, Linbo; Shao, Ling
2017-12-01
Existing distance measurement methods either require multiple images and special photographing poses or only measure the height with a special view configuration. We propose a novel image-based method that can measure various types of distance from single image captured by a smart mobile device. The embedded accelerometer is used to determine the view orientation of the device. Consequently, pixels can be back-projected to the ground, thanks to the efficient calibration method using two known distances. Then the distance in pixel is transformed to a real distance in centimeter with a linear model parameterized by the magnification ratio. Various types of distance specified in the image can be computed accordingly. Experimental results demonstrate the effectiveness of the proposed method.
Han, Young-Geun; Tran, T V A; Kim, Sang-Hyuck; Lee, Sang Bae
2005-06-01
We propose a simple and flexible multiwavelength Raman-fiber-laser-based long-distance remote-sensing scheme for simultaneous measurement of strain and temperature by use of fiber Bragg gratings. By combining two uniform fiber Bragg gratings with a tunable chirped fiber grating, we readily achieve simultaneous two-channel sensing probes with a high extinction ratio of more than approximately 50 dB over a 50-km distance. When strain and temperature are applied, lasing wavelength separation and shift occur, respectively, since the two uniform fiber Bragg gratings have identical material composition and different cladding diameters. This allows simultaneous measurement of strain and temperature for long-distance sensing applications of more than 50 km.
Rojas, Nicolas; Dollar, Aaron M
2017-07-01
This paper proposes a novel and simple method to compute all possible solutions of the inverse kinematics problem of the five-oblique-axis thumb model with intersecting axes at the metacarpophalangeal joint. This thumb model is one of the suggested results by a magnetic-resonance-imaging-based study that, in contrast to those based on cadaver fingers or on the tracking of the surface of the fingers, takes into account muscle and ligament behaviors and avoids inaccuracies resulting from the movement of the skin with respect to the bones. The proposed distance-based inverse kinematics method eliminates the use of arbitrary reference frames as is usually required by standard approaches; this is relevant because the numerical conditioning of the resulting system of equations with such traditional approaches depends on the selected reference frames. Moreover, contrary to other parametrizations (e.g., Denavit-Hartenberg parameters), the suggested distance-based parameters for the thumb have a natural, human-understandable geometric meaning that makes them easier to be determined from any posture. These characteristics make the proposed approach of interest for those working in, for instance, measuring and modeling the movement of the human hand, developing rehabilitation devices such as orthoses and prostheses, or designing anthropomorphic robotic hands.
Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform
Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin
2013-12-01
Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.
International Nuclear Information System (INIS)
Gong, Chengzhu; Yu, Shiwei; Zhu, Kejun; Hailu, Atakelty
2016-01-01
Designing a desirable increasing block tariff for the residential gas retail market has been a challenging task for regulated utilities, especially in China. To deal with such problems, in this paper, we establish an agent-based, computational economics system to provide a formal evaluation of the direct and indirect influences of several issued increasing block tariffs in the residential gas market. Moreover, a comprehensive demand response behaviour model has been improved in term of price elasticity, while still coping with income levels and complex social environment. We also compute and compare the outcomes of several increasing block tariffs with the initial flat tariff by running the system on a test-case using real-world data from a middle-scale gas retail market in Wuhan. The results indicate that there is an appropriate increasing block gas tariff scheme that has greater ability to improve social equity while still ensuring operator revenue and promoting gas conservation. In order to offset the limitations of the proposed increasing block tariffs, the regulator should adopt some complementary measures, such as applying appropriate policies targeting the intended consumers, and allowing large families to obtain extra allowance of volume. - Highlights: •Analyse the influence of increasing block tariffs in residential gas sector. •An agent-based computational economics system is utilised for policy analysis. •Increasing block tariff can generate revenue while still promote gas conservation. •The increasing subsidy for low income household can improve the social equity.
On some properties of the block linear multi-step methods | Chollom ...
African Journals Online (AJOL)
The convergence, stability and order of Block linear Multistep methods have been determined in the past based on individual members of the block. In this paper, methods are proposed to examine the properties of the entire block. Some Block Linear Multistep methods have been considered, their convergence, stability and ...
Managing distance and covariate information with point-based clustering
Directory of Open Access Journals (Sweden)
Peter A. Whigham
2016-09-01
Full Text Available Abstract Background Geographic perspectives of disease and the human condition often involve point-based observations and questions of clustering or dispersion within a spatial context. These problems involve a finite set of point observations and are constrained by a larger, but finite, set of locations where the observations could occur. Developing a rigorous method for pattern analysis in this context requires handling spatial covariates, a method for constrained finite spatial clustering, and addressing bias in geographic distance measures. An approach, based on Ripley’s K and applied to the problem of clustering with deliberate self-harm (DSH, is presented. Methods Point-based Monte-Carlo simulation of Ripley’s K, accounting for socio-economic deprivation and sources of distance measurement bias, was developed to estimate clustering of DSH at a range of spatial scales. A rotated Minkowski L1 distance metric allowed variation in physical distance and clustering to be assessed. Self-harm data was derived from an audit of 2 years’ emergency hospital presentations (n = 136 in a New Zealand town (population ~50,000. Study area was defined by residential (housing land parcels representing a finite set of possible point addresses. Results Area-based deprivation was spatially correlated. Accounting for deprivation and distance bias showed evidence for clustering of DSH for spatial scales up to 500 m with a one-sided 95 % CI, suggesting that social contagion may be present for this urban cohort. Conclusions Many problems involve finite locations in geographic space that require estimates of distance-based clustering at many scales. A Monte-Carlo approach to Ripley’s K, incorporating covariates and models for distance bias, are crucial when assessing health-related clustering. The case study showed that social network structure defined at the neighbourhood level may account for aspects of neighbourhood clustering of DSH. Accounting for
MODEL OF COLLABORATIVE COURSES DEVELOPMENT IN DISTANCE LEARNING PLATFORMS
Directory of Open Access Journals (Sweden)
Dmytro S. Morozov
2015-02-01
Full Text Available The research paper outlines the problem of organization collaboration of users group on creation distance learning courses. The article contains analysis of the courses data structure. According to proposed structure the model of developer’s collaboration on creating distance learning courses based on basic principles of source code management was proposed. The article also provides result of research on necessary tools for collaborative development of courses in distance learning platforms. According to the requirements of flexibility and simplicity of access to system for any level educational institutions, technological decisions on granting permissions on performing basic operations on course elements and providing to user moderation’s privileges were proposed.
Blocking of Goal-Location Learning Based on Shape
Alexander, Tim; Wilson, Stuart P.; Wilson, Paul N.
2009-01-01
Using desktop, computer-simulated virtual environments (VEs), the authors conducted 5 experiments to investigate blocking of learning about a goal location based on Shape B as a consequence of preliminary training to locate that goal using Shape A. The shapes were large 2-dimensional horizontal figures on the ground. Blocking of spatial learning…
Zero-block mode decision algorithm for H.264/AVC.
Lee, Yu-Ming; Lin, Yinyi
2009-03-01
In the previous paper , we proposed a zero-block intermode decision algorithm for H.264 video coding based upon the number of zero-blocks of 4 x 4 DCT coefficients between the current macroblock and the co-located macroblock. The proposed algorithm can achieve significant improvement in computation, but the computation performance is limited for high bit-rate coding. To improve computation efficiency, in this paper, we suggest an enhanced zero-block decision algorithm, which uses an early zero-block detection method to compute the number of zero-blocks instead of direct DCT and quantization (DCT/Q) calculation and incorporates two adequate decision methods into semi-stationary and nonstationary regions of a video sequence. In addition, the zero-block decision algorithm is also applied to the intramode prediction in the P frame. The enhanced zero-block decision algorithm brings out a reduction of average 27% of total encoding time compared to the zero-block decision algorithm.
Directory of Open Access Journals (Sweden)
Zhaoxi Hong
2017-08-01
Full Text Available In reliability-based and cost-oriented product optimization, the target product reliability is apportioned to subsystems or components to achieve the maximum reliability and minimum cost. Main challenges to conducting such optimization design lie in how to simultaneously consider subsystem division, uncertain evaluation provided by experts for essential factors, and dynamic propagation of product failure. To overcome these problems, a reliability-based and cost-oriented product optimization method integrating fuzzy reasoning Petri net (FRPN, interval expert evaluation and cultural-based dynamic multi-objective particle swarm optimization (DMOPSO using crowding distance sorting is proposed in this paper. Subsystem division is performed based on failure decoupling, and then subsystem weights are calculated with FRPN reflecting dynamic and uncertain failure propagation, as well as interval expert evaluation considering six essential factors. A mathematical model of reliability-based and cost-oriented product optimization is established, and the cultural-based DMOPSO with crowding distance sorting is utilized to obtain the optimized design scheme. The efficiency and effectiveness of the proposed method are demonstrated by the numerical example of the optimization design for a computer numerically controlled (CNC machine tool.
International Nuclear Information System (INIS)
Tian, Peng; Yang, Fan; Li, Fanxing; Hu, Song; Yan, Wei; Hua, Yilei
2017-01-01
Traditional digital in-line holography suffers from twin-image noise problems and extremely short working distances between the object and light source. Here, we propose lensless Fourier transform digital in-line holographic microscopy based on a single optical element. A Fresnel zone plate is used to split the incident light into two parts: one is scattered along the original direction, the other is gathered at a focal point and the sample is put behind the focus. The interference fringe pattern, formed by the two beams, is recorded digitally by a CCD camera. A novel reconstruction algorithm is proposed to present the object image. The proof-of-concept experiments demonstrate that the proposed technique can eliminate the twin-image noise problem, improving the image contrast with high efficiency, and increasing the flexibility of the working distance. Furthermore, a wide field of view and no contact make it a promising tool for the study of materials science, biology and microelectronics. (paper)
Wang, Jeen-Shing; Lin, Che-Wei; Yang, Ya-Ting C; Ho, Yu-Jen
2012-10-01
This paper presents a walking pattern classification and a walking distance estimation algorithm using gait phase information. A gait phase information retrieval algorithm was developed to analyze the duration of the phases in a gait cycle (i.e., stance, push-off, swing, and heel-strike phases). Based on the gait phase information, a decision tree based on the relations between gait phases was constructed for classifying three different walking patterns (level walking, walking upstairs, and walking downstairs). Gait phase information was also used for developing a walking distance estimation algorithm. The walking distance estimation algorithm consists of the processes of step count and step length estimation. The proposed walking pattern classification and walking distance estimation algorithm have been validated by a series of experiments. The accuracy of the proposed walking pattern classification was 98.87%, 95.45%, and 95.00% for level walking, walking upstairs, and walking downstairs, respectively. The accuracy of the proposed walking distance estimation algorithm was 96.42% over a walking distance.
Optimizing distance-based methods for large data sets
Scholl, Tobias; Brenner, Thomas
2015-10-01
Distance-based methods for measuring spatial concentration of industries have received an increasing popularity in the spatial econometrics community. However, a limiting factor for using these methods is their computational complexity since both their memory requirements and running times are in {{O}}(n^2). In this paper, we present an algorithm with constant memory requirements and shorter running time, enabling distance-based methods to deal with large data sets. We discuss three recent distance-based methods in spatial econometrics: the D&O-Index by Duranton and Overman (Rev Econ Stud 72(4):1077-1106, 2005), the M-function by Marcon and Puech (J Econ Geogr 10(5):745-762, 2010) and the Cluster-Index by Scholl and Brenner (Reg Stud (ahead-of-print):1-15, 2014). Finally, we present an alternative calculation for the latter index that allows the use of data sets with millions of firms.
A Foundation for Efficient Indoor Distance-Aware Query Processing
DEFF Research Database (Denmark)
Lu, Hua; Cao, Xin; Jensen, Christian Søndergaard
2012-01-01
model that integrates indoor distance seamlessly. To enable the use of the model as a foundation for query processing, we develop accompanying, efficient algorithms that compute indoor distances for different indoor entities like doors as well as locations. We also propose an indexing framework......Indoor spaces accommodate large numbers of spatial objects, e.g., points of interest (POIs), and moving populations. A variety of services, e.g., location-based services and security control, are relevant to indoor spaces. Such services can be improved substantially if they are capable of utilizing...... that accommodates indoor distances that are pre-computed using the proposed algorithms. On top of this foundation, we develop efficient algorithms for typical indoor, distance-aware queries. The results of an extensive experimental evaluation demonstrate the efficacy of the proposals....
Xu, Long; Zhao, Zhiyuan; Xiao, Mingchao; Yang, Jie; Xiao, Jian; Yi, Zhengran; Wang, Shuai; Liu, Yunqi
2017-11-22
The exploration of novel electron-deficient building blocks is a key task for developing high-performance polymer semiconductors in organic thin-film transistors. In view of the situation of the lack of strong electron-deficient building blocks, we designed two novel π-extended isoindigo-based electron-deficient building blocks, IVI and F 4 IVI. Owing to the strong electron-deficient nature and the extended π-conjugated system of the two acceptor units, their copolymers, PIVI2T and PF 4 IVI2T, containing 2,2'-bithiophene donor units, are endowed with deep-lying highest occupied molecular orbital (HOMO)/lowest unoccupied molecular orbital (LUMO) energy levels and strong intermolecular interactions. In comparison to PIVI2T, the fluorinated PF 4 IVI2T exhibits stronger intra- and intermolecular interactions, lower HOMO/LUMO energy levels up to -5.74/-4.17 eV, and more ordered molecular packing with a smaller π-π stacking distance of up to 3.53 Å, resulting in an excellent ambipolar transporting behavior and a promising application in logic circuits for PF 4 IVI2T in ambient with hole and electron mobilities of up to 1.03 and 1.82 cm 2 V -1 s -1 , respectively. The results reveal that F 4 IVI is a promising and strong electron-deficient building unit to construct high-performance semiconducting polymers, which provides an insight into the structure-property relationships for the exploration and molecular engineering of excellent electron-deficient building blocks in the field of organic electronics.
Improving UWB-Based Localization in IoT Scenarios with Statistical Models of Distance Error.
Monica, Stefania; Ferrari, Gianluigi
2018-05-17
Interest in the Internet of Things (IoT) is rapidly increasing, as the number of connected devices is exponentially growing. One of the application scenarios envisaged for IoT technologies involves indoor localization and context awareness. In this paper, we focus on a localization approach that relies on a particular type of communication technology, namely Ultra Wide Band (UWB). UWB technology is an attractive choice for indoor localization, owing to its high accuracy. Since localization algorithms typically rely on estimated inter-node distances, the goal of this paper is to evaluate the improvement brought by a simple (linear) statistical model of the distance error. On the basis of an extensive experimental measurement campaign, we propose a general analytical framework, based on a Least Square (LS) method, to derive a novel statistical model for the range estimation error between a pair of UWB nodes. The proposed statistical model is then applied to improve the performance of a few illustrative localization algorithms in various realistic scenarios. The obtained experimental results show that the use of the proposed statistical model improves the accuracy of the considered localization algorithms with a reduction of the localization error up to 66%.
Directory of Open Access Journals (Sweden)
Weibo Wang
2016-11-01
Full Text Available We present an approach for an initial configuration design based on obscuration constraint and on-axis Taylor series expansion to realize the design of long working distance microscope (numerical aperture (NA = 0.13 and working distance (WD = 525 mm with a low obscuration aspherical Schwarzschild objective in wide-spectrum imaging (λ = 400–900 nm. Experiments of the testing on the resolution target and inspection on United States Air Force (USAF resolution chart and a line charge-coupled device (CCD (pixel size of 14 μm × 56 μm with different wavelength light sources (λ = 480 nm, 550 nm, 660 nm, 850 nm were implemented to verify the validity of the proposed method.
Lin, Ying Chih; Lu, Chin Lung; Chang, Hwan-You; Tang, Chuan Yi
2005-01-01
In the study of genome rearrangement, the block-interchanges have been proposed recently as a new kind of global rearrangement events affecting a genome by swapping two nonintersecting segments of any length. The so-called block-interchange distance problem, which is equivalent to the sorting-by-block-interchange problem, is to find a minimum series of block-interchanges for transforming one chromosome into another. In this paper, we study this problem by considering the circular chromosomes and propose a Omicron(deltan) time algorithm for solving it by making use of permutation groups in algebra, where n is the length of the circular chromosome and delta is the minimum number of block-interchanges required for the transformation, which can be calculated in Omicron(n) time in advance. Moreover, we obtain analogous results by extending our algorithm to linear chromosomes. Finally, we have implemented our algorithm and applied it to the circular genomic sequences of three human vibrio pathogens for predicting their evolutionary relationships. Consequently, our experimental results coincide with the previous ones obtained by others using a different comparative genomics approach, which implies that the block-interchange events seem to play a significant role in the evolution of vibrio species.
Directory of Open Access Journals (Sweden)
2011-02-01
Full Text Available A comparative study on the self-assembled nanostructured morphology and the rheological and mechanical properties of four different triblock copolymers, based on poly(styrene-block-diene-block-styrene and poly(styrene-block-diene-block-styrene matrices, and of their respective nanocomposites with 1 wt% silver nanoparticles, is reported in this work. In order to obtain well-dispersed nanoparticles in the block copolymer matrix, dodecanethiol was used as surfactant, showing good affinity with both nanoparticles and the polystyrene phase of the matrices as predicted by the solubility parameters calculated based on Hoftyzer and Van Krevelen theory. The block copolymer with the highest PS content shows the highest tensile modulus and tensile strength, but also the smallest elongation at break. When silver nanoparticles treated with surfactant were added to the block copolymer matrices, each system studied shows higher mechanical properties due to the good dispersion and the good interface of Ag nanoparticles in the matrices. Furthermore, it has been shown that semiempirical models such as Guth and Gold equation and Halpin-Tsai model can be used to predict the tensile modulus of the analyzed nanocomposites.
Reducing the distance in distance-caregiving by technology innovation
Directory of Open Access Journals (Sweden)
Lazelle E Benefield
2007-07-01
Full Text Available Lazelle E Benefield1, Cornelia Beck21College of Nursing, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA; 2Pat & Willard Walker Family Memory Research Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USAAbstract: Family caregivers are responsible for the home care of over 34 million older adults in the United States. For many, the elder family member lives more than an hour’s distance away. Distance caregiving is a growing alternative to more familiar models where: 1 the elder and the family caregiver(s may reside in the same household; or 2 the family caregiver may live nearby but not in the same household as the elder. The distance caregiving model involves elders and their family caregivers who live at some distance, defined as more than a 60-minute commute, from one another. Evidence suggests that distance caregiving is a distinct phenomenon, differs substantially from on-site family caregiving, and requires additional assistance to support the physical, social, and contextual dimensions of the caregiving process. Technology-based assists could virtually connect the caregiver and elder and provide strong support that addresses the elder’s physical, social, cognitive, and/or sensory impairments. Therefore, in today’s era of high technology, it is surprising that so few affordable innovations are being marketed for distance caregiving. This article addresses distance caregiving, proposes the use of technology innovation to support caregiving, and suggests a research agenda to better inform policy decisions related to the unique needs of this situation.Keywords: caregiving, family, distance, technology, elders
Identifying multiple influential spreaders in term of the distance-based coloring
Energy Technology Data Exchange (ETDEWEB)
Guo, Lei; Lin, Jian-Hong; Guo, Qiang [Research Center of Complex Systems Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Liu, Jian-Guo, E-mail: liujg004@ustc.edu.cn [Research Center of Complex Systems Science, University of Shanghai for Science and Technology, Shanghai 200093 (China); Data Science and Cloud Service Research Centre, Shanghai University of Finance and Economics, Shanghai 200433 (China)
2016-02-22
Identifying influential nodes is of significance for understanding the dynamics of information diffusion process in complex networks. In this paper, we present an improved distance-based coloring method to identify the multiple influential spreaders. In our method, each node is colored by a kind of color with the rule that the distance between initial nodes is close to the average distance of a network. When all nodes are colored, nodes with the same color are sorted into an independent set. Then we choose the nodes at the top positions of the ranking list according to their centralities. The experimental results for an artificial network and three empirical networks show that, comparing with the performance of traditional coloring method, the improvement ratio of our distance-based coloring method could reach 12.82%, 8.16%, 4.45%, 2.93% for the ER, Erdős, Polblogs and Routers networks respectively. - Highlights: • We present an improved distance-based coloring method to identify the multiple influential spreaders. • Each node is colored by a kind of color where the distance between initial nodes is close to the average distance. • For three empirical networks show that the improvement ratio of our distance-based coloring method could reach 8.16% for the Erdos network.
Identifying multiple influential spreaders in term of the distance-based coloring
International Nuclear Information System (INIS)
Guo, Lei; Lin, Jian-Hong; Guo, Qiang; Liu, Jian-Guo
2016-01-01
Identifying influential nodes is of significance for understanding the dynamics of information diffusion process in complex networks. In this paper, we present an improved distance-based coloring method to identify the multiple influential spreaders. In our method, each node is colored by a kind of color with the rule that the distance between initial nodes is close to the average distance of a network. When all nodes are colored, nodes with the same color are sorted into an independent set. Then we choose the nodes at the top positions of the ranking list according to their centralities. The experimental results for an artificial network and three empirical networks show that, comparing with the performance of traditional coloring method, the improvement ratio of our distance-based coloring method could reach 12.82%, 8.16%, 4.45%, 2.93% for the ER, Erdős, Polblogs and Routers networks respectively. - Highlights: • We present an improved distance-based coloring method to identify the multiple influential spreaders. • Each node is colored by a kind of color where the distance between initial nodes is close to the average distance. • For three empirical networks show that the improvement ratio of our distance-based coloring method could reach 8.16% for the Erdos network.
The Knowledge Base as an Extension of Distance Learning Reference Service
Casey, Anne Marie
2012-01-01
This study explores knowledge bases as extension of reference services for distance learners. Through a survey and follow-up interviews with distance learning librarians, this paper discusses their interest in creating and maintaining a knowledge base as a resource for reference services to distance learners. It also investigates their perceptions…
Directory of Open Access Journals (Sweden)
Xiao Luo
2017-01-01
Full Text Available An intuitionistic fuzzy VIKOR (IF-VIKOR method is proposed based on a new distance measure considering the waver of intuitionistic fuzzy information. The method aggregates all individual decision-makers’ assessment information based on intuitionistic fuzzy weighted averaging operator (IFWA, determines the weights of decision-makers and attributes objectively using intuitionistic fuzzy entropy, calculates the group utility and individual regret by the new distance measure, and then reaches a compromise solution. It can be effectively applied to multiattribute decision-making (MADM problems where the weights of decision-makers and attributes are completely unknown and the attribute values are intuitionistic fuzzy numbers (IFNs. The validity and stability of this method are verified by example analysis and sensitivity analysis, and its superiority is illustrated by the comparison with the existing method.
Project-Based Collaborative Learning in Distance Education
DEFF Research Database (Denmark)
Knudsen, Morten; Bajard, C.; Helbo, Jan
2003-01-01
This article describes the experiences drawn from an experiment in transferring positive experience with a project-organised on-campus engineering programme to a technology supported distance education programme. Three years of experience with the Master of Industrial Information Technology (MII)......, didactic adjustments have been made based on feedback, in particular from evaluation questionnaires. This process has been very constructive in approaching the goal: a successful model for project organized learning in distance education.......) programme indicates, however, that adjustments are required in transforming the on-campus model to distance education. The main problem is that while project work is an excellent regulator of the learning process for on-campus students, this does not seem to be the case for off-campus students. Consequently......This article describes the experiences drawn from an experiment in transferring positive experience with a project-organised on-campus engineering programme to a technology supported distance education programme. Three years of experience with the Master of Industrial Information Technology (MII...
A spectral method to detect community structure based on distance modularity matrix
Yang, Jin-Xuan; Zhang, Xiao-Dong
2017-08-01
There are many community organizations in social and biological networks. How to identify these community structure in complex networks has become a hot issue. In this paper, an algorithm to detect community structure of networks is proposed by using spectra of distance modularity matrix. The proposed algorithm focuses on the distance of vertices within communities, rather than the most weakly connected vertex pairs or number of edges between communities. The experimental results show that our method achieves better effectiveness to identify community structure for a variety of real-world networks and computer generated networks with a little more time-consumption.
Okopi, Fidel Onjefu; Odeyemi, Olajumoke Janet; Adesina, Adewale
2015-01-01
The study has identified the areas of strengths and weaknesses in the current use of Computer Based Learning (CBL) tools in Open and Distance Learning (ODL) institutions in Nigeria. To achieve these objectives, the following research questions were proposed: (i) What are the computer-based learning tools (soft and hard ware) that are actually in…
A Hybrid Distance-Based Ideal-Seeking Consensus Ranking Model
Directory of Open Access Journals (Sweden)
Madjid Tavana
2007-01-01
Full Text Available Ordinal consensus ranking problems have received much attention in the management science literature. A problem arises in situations where a group of k decision makers (DMs is asked to rank order n alternatives. The question is how to combine the DM rankings into one consensus ranking. Several different approaches have been suggested to aggregate DM responses into a compromise or consensus ranking; however, the similarity of consensus rankings generated by the different algorithms is largely unknown. In this paper, we propose a new hybrid distance-based ideal-seeking consensus ranking model (DCM. The proposed hybrid model combines parts of the two commonly used consensus ranking techniques of Beck and Lin (1983 and Cook and Kress (1985 into an intuitive and computationally simple model. We illustrate our method and then run a Monte Carlo simulation across a range of k and n to compare the similarity of the consensus rankings generated by our method with the best-known method of Borda and Kendall (Kendall 1962 and the two methods proposed by Beck and Lin (1983 and Cook and Kress (1985. DCM and Beck and Lin's method yielded the most similar consensus rankings, whereas the Cook-Kress method and the Borda-Kendall method yielded the least similar consensus rankings.
Project-based Collaborative learning in distance education
DEFF Research Database (Denmark)
Knudsen, Morten; Bajard, Christine; Helbo, Jan
2004-01-01
) programme indicates, however, that adjustments are required in transforming the on-campus model to distance education. The main problem is that while project work is an excellent regulator of the learning process for on-campus students, this does not seem to be the case for off-campus students. Consequently......This article describes the experiences drawn from an experiment in transferring positive experience with a project-organised on-campus engineering programme to a technology supported distance education programme. Three years of experience with the Master of Industrial Information Technology (MII......, didactic adjustments have been made based on feedback, in particular from evaluation questionnaires. This process has been very constructive in approaching the goal: a successful model for project organized learning in distance education....
Block adjustment of airborne InSAR based on interferogram phase and POS data
Yue, Xijuan; Zhao, Yinghui; Han, Chunming; Dou, Changyong
2015-12-01
High-precision surface elevation information in large scale can be obtained efficiently by airborne Interferomatric Synthetic Aperture Radar (InSAR) system, which is recently becoming an important tool to acquire remote sensing data and perform mapping applications in the area where surveying and mapping is difficult to be accomplished by spaceborne satellite or field working. . Based on the study of the three-dimensional (3D) positioning model using interferogram phase and Position and Orientation System (POS) data and block adjustment error model, a block adjustment method to produce seamless wide-area mosaic product generated from airborne InSAR data is proposed in this paper. The effect of 6 parameters, including trajectory and attitude of the aircraft, baseline length and incline angle, slant range, and interferometric phase, on the 3D positioning accuracy is quantitatively analyzed. Using the data acquired in the field campaign conducted in Mianyang county Sichuan province, China in June 2011, a mosaic seamless Digital Elevation Model (DEM) product was generated from 76 images in 4 flight strips by the proposed block adjustment model. The residuals of ground control points (GCPs), the absolute positioning accuracy of check points (CPs) and the relative positioning accuracy of tie points (TPs) both in same and adjacent strips were assessed. The experimental results suggest that the DEM and Digital Orthophoto Map (DOM) product generated by the airborne InSAR data with sparse GCPs can meet mapping accuracy requirement at scale of 1:10 000.
Compressed normalized block difference for object tracking
Gao, Yun; Zhang, Dengzhuo; Cai, Donglan; Zhou, Hao; Lan, Ge
2018-04-01
Feature extraction is very important for robust and real-time tracking. Compressive sensing provided a technical support for real-time feature extraction. However, all existing compressive tracking were based on compressed Haar-like feature, and how to compress many more excellent high-dimensional features is worth researching. In this paper, a novel compressed normalized block difference feature (CNBD) was proposed. For resisting noise effectively in a highdimensional normalized pixel difference feature (NPD), a normalized block difference feature extends two pixels in the original formula of NPD to two blocks. A CNBD feature can be obtained by compressing a normalized block difference feature based on compressive sensing theory, with the sparse random Gaussian matrix as the measurement matrix. The comparative experiments of 7 trackers on 20 challenging sequences showed that the tracker based on CNBD feature can perform better than other trackers, especially than FCT tracker based on compressed Haar-like feature, in terms of AUC, SR and Precision.
Ezoddini Ardakani, Fatemeh; Bahrololoumi, Zahra; Zangouie Booshehri, Maryam; Navab Azam, Alireza; Ayatollahi, Fatemeh
2010-01-01
Inferior alveolar nerve block injection is one of the common intra oral anesthetic techniques, with a failure rate of 15-20%. The aim of this study was to evaluate the position of the lingula as an index for this injection. Thirty eight panoramic radiographs of 7-11 year old patients were analyzed and the distance between the lingula index and occlusal plane was measured. Then, lower alveolar nerve block injection was performed on 88 children. Finally, a visual analogue scale was used to measure the rate of pain in the patients. This distance increased with age and in children younger than nine years is -0.45 mm on the right side and -0.95 mm on the left side. This distance in children older than 9 years is -0.23 mm on the right side and 0.47 mm on the left side. The success rates of inferior alveolar nerve block injection based on lingual index were 49% on the right side and 53.8% on the left side. As the lingual index has various positions and its distance from the occlusal plane increases with age, it is not an appropriate landmark for inferior alveolar nerve block injection.
Research of image retrieval technology based on color feature
Fu, Yanjun; Jiang, Guangyu; Chen, Fengying
2009-10-01
Recently, with the development of the communication and the computer technology and the improvement of the storage technology and the capability of the digital image equipment, more and more image resources are given to us than ever. And thus the solution of how to locate the proper image quickly and accurately is wanted.The early method is to set up a key word for searching in the database, but now the method has become very difficult when we search much more picture that we need. In order to overcome the limitation of the traditional searching method, content based image retrieval technology was aroused. Now, it is a hot research subject.Color image retrieval is the important part of it. Color is the most important feature for color image retrieval. Three key questions on how to make use of the color characteristic are discussed in the paper: the expression of color, the abstraction of color characteristic and the measurement of likeness based on color. On the basis, the extraction technology of the color histogram characteristic is especially discussed. Considering the advantages and disadvantages of the overall histogram and the partition histogram, a new method based the partition-overall histogram is proposed. The basic thought of it is to divide the image space according to a certain strategy, and then calculate color histogram of each block as the color feature of this block. Users choose the blocks that contain important space information, confirming the right value. The system calculates the distance between the corresponding blocks that users choosed. Other blocks merge into part overall histograms again, and the distance should be calculated. Then accumulate all the distance as the real distance between two pictures. The partition-overall histogram comprehensive utilizes advantages of two methods above, by choosing blocks makes the feature contain more spatial information which can improve performance; the distances between partition-overall histogram
Directory of Open Access Journals (Sweden)
Xiaobo Guo
Full Text Available Nonlinear dependence is general in regulation mechanism of gene regulatory networks (GRNs. It is vital to properly measure or test nonlinear dependence from real data for reconstructing GRNs and understanding the complex regulatory mechanisms within the cellular system. A recently developed measurement called the distance correlation (DC has been shown powerful and computationally effective in nonlinear dependence for many situations. In this work, we incorporate the DC into inferring GRNs from the gene expression data without any underling distribution assumptions. We propose three DC-based GRNs inference algorithms: CLR-DC, MRNET-DC and REL-DC, and then compare them with the mutual information (MI-based algorithms by analyzing two simulated data: benchmark GRNs from the DREAM challenge and GRNs generated by SynTReN network generator, and an experimentally determined SOS DNA repair network in Escherichia coli. According to both the receiver operator characteristic (ROC curve and the precision-recall (PR curve, our proposed algorithms significantly outperform the MI-based algorithms in GRNs inference.
Selwyn, Ebenezer Juliet; Florinabel, D. Jemi
2018-04-01
Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.
Zhang, Fangzheng; Ge, Xiaozhong; Gao, Bindong; Pan, Shilong
2015-08-24
A novel scheme for photonic generation of a phase-coded microwave signal is proposed and its application in one-dimension distance measurement is demonstrated. The proposed signal generator has a simple and compact structure based on a single dual-polarization modulator. Besides, the generated phase-coded signal is stable and free from the DC and low-frequency backgrounds. An experiment is carried out. A 2 Gb/s phase-coded signal at 20 GHz is successfully generated, and the recovered phase information agrees well with the input 13-bit Barker code. To further investigate the performance of the proposed signal generator, its application in one-dimension distance measurement is demonstrated. The measurement accuracy is less than 1.7 centimeters within a measurement range of ~2 meters. The experimental results can verify the feasibility of the proposed phase-coded microwave signal generator and also provide strong evidence to support its practical applications.
Palmisano, Pietro; Ziacchi, Matteo; Biffi, Mauro; Ricci, Renato P; Landolina, Maurizio; Zoni-Berisso, Massimo; Occhetta, Eraldo; Maglia, Giampiero; Botto, Gianluca; Padeletti, Luigi; Boriani, Giuseppe
2018-04-01
: The purpose of this two-part consensus document is to provide specific suggestions (based on an extensive literature review) on appropriate pacemaker setting in relation to patients' clinical features. In part 2, criteria for pacemaker choice and programming in atrioventricular blocks and neurally mediate syncope are proposed. The atrioventricular blocks can be paroxysmal or persistent, isolated or associated with sinus node disease. Neurally mediated syncope can be related to carotid sinus syndrome or cardioinhibitory vasovagal syncope. In sinus rhythm, with persistent atrioventricular block, we considered appropriate the activation of mode-switch algorithms, and algorithms for auto-adaptive management of the ventricular pacing output. If the atrioventricular block is paroxysmal, in addition to algorithms mentioned above, algorithms to maximize intrinsic atrioventricular conduction should be activated. When sinus node disease is associated with atrioventricular block, the activation of rate-responsive function in patients with chronotropic incompetence is appropriate. In permanent atrial fibrillation with atrioventricular block, algorithms for auto-adaptive management of the ventricular pacing output should be activated. If the atrioventricular block is persistent, the activation of rate-responsive function is appropriate. In carotid sinus syndrome, adequate rate hysteresis should be programmed. In vasovagal syncope, specialized sensing and pacing algorithms designed for reflex syncope prevention should be activated.
Yoo, Hana; Park, Soojin
2010-06-01
We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm × 5 cm.
Energy Technology Data Exchange (ETDEWEB)
Yoo, Hana; Park, Soojin, E-mail: spark@unist.ac.kr [Interdisciplinary School of Green Energy, Ulsan National Institute of Science and Technology, Banyeon-ri 100, Ulsan 689-798 (Korea, Republic of)
2010-06-18
We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm x 5 cm.
Harrou, Fouzi
2017-03-18
Fault detection has a vital role in the process industry to enhance productivity, efficiency, and safety, and to avoid expensive maintenance. This paper proposes an innovative multivariate fault detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions obtained using fault-free data. Furthermore, to enhance further the robustness of these methods to measurement noise, and reduce the false alarms due to modeling errors, wavelet-based multiscale filtering of residuals is used before the application of the HD-based monitoring scheme. The performances of the developed NLPLS-HD fault detection technique is illustrated using simulated plug flow reactor data. The results show that the proposed method provides favorable performance for detection of faults compared to the conventional NLPLS method.
Liu, Yang; Yang, Linghui; Guo, Yin; Lin, Jiarui; Cui, Pengfei; Zhu, Jigui
2018-02-01
An interferometer technique based on temporal coherence function of femtosecond pulses is demonstrated for practical distance measurement. Here, the pulse-to-pulse alignment is analyzed for large delay distance measurement. Firstly, a temporal coherence function model between two femtosecond pulses is developed in the time domain for the dispersive unbalanced Michelson interferometer. Then, according to this model, the fringes analysis and the envelope extraction process are discussed. Meanwhile, optimization methods of pulse-to-pulse alignment for practical long distance measurement are presented. The order of the curve fitting and the selection of points for envelope extraction are analyzed. Furthermore, an averaging method based on the symmetry of the coherence function is demonstrated. Finally, the performance of the proposed methods is evaluated in the absolute distance measurement of 20 μ m with path length difference of 9 m. The improvement of standard deviation in experimental results shows that these approaches have the potential for practical distance measurement.
Ridge Distance Estimation in Fingerprint Images: Algorithm and Performance Evaluation
Directory of Open Access Journals (Sweden)
Tian Jie
2004-01-01
Full Text Available It is important to estimate the ridge distance accurately, an intrinsic texture property of a fingerprint image. Up to now, only several articles have touched directly upon ridge distance estimation. Little has been published providing detailed evaluation of methods for ridge distance estimation, in particular, the traditional spectral analysis method applied in the frequency field. In this paper, a novel method on nonoverlap blocks, called the statistical method, is presented to estimate the ridge distance. Direct estimation ratio (DER and estimation accuracy (EA are defined and used as parameters along with time consumption (TC to evaluate performance of these two methods for ridge distance estimation. Based on comparison of performances of these two methods, a third hybrid method is developed to combine the merits of both methods. Experimental results indicate that DER is 44.7%, 63.8%, and 80.6%; EA is 84%, 93%, and 91%; and TC is , , and seconds, with the spectral analysis method, statistical method, and hybrid method, respectively.
Principal distance constraint error diffusion algorithm for homogeneous dot distribution
Kang, Ki-Min; Kim, Choon-Woo
1999-12-01
The perceived quality of the halftoned image strongly depends on the spatial distribution of the binary dots. Various error diffusion algorithms have been proposed for realizing the homogeneous dot distribution in the highlight and shadow regions. However, they are computationally expensive and/or require large memory space. This paper presents a new threshold modulated error diffusion algorithm for the homogeneous dot distribution. The proposed method is applied exactly same as the Floyd-Steinberg's algorithm except the thresholding process. The threshold value is modulated based on the difference between the distance to the nearest minor pixel, `minor pixel distance', and the principal distance. To do so, calculation of the minor pixel distance is needed for every pixel. But, it is quite time consuming and requires large memory resources. In order to alleviate this problem, `the minor pixel offset array' that transforms the 2D history of minor pixels into the 1D codes is proposed. The proposed algorithm drastically reduces the computational load and memory spaces needed for calculation of the minor pixel distance.
Su, Yun-Ting; Hu, Shuowen; Bethel, James S.
2017-05-01
Light detection and ranging (LIDAR) has become a widely used tool in remote sensing for mapping, surveying, modeling, and a host of other applications. The motivation behind this work is the modeling of piping systems in industrial sites, where cylinders are the most common primitive or shape. We focus on cylinder parameter estimation in three-dimensional point clouds, proposing a mathematical formulation based on angular distance to determine the cylinder orientation. We demonstrate the accuracy and robustness of the technique on synthetically generated cylinder point clouds (where the true axis orientation is known) as well as on real LIDAR data of piping systems. The proposed algorithm is compared with a discrete space Hough transform-based approach as well as a continuous space inlier approach, which iteratively discards outlier points to refine the cylinder parameter estimates. Results show that the proposed method is more computationally efficient than the Hough transform approach and is more accurate than both the Hough transform approach and the inlier method.
Using an Augmented Lagrangian Method and block fracturing in the DDA method
International Nuclear Information System (INIS)
Lin, C.T.; Amadei, B.; Sture, S.
1994-01-01
This paper presents two extensions to the Discontinuous Deformation Analysis (DDA) method orginally proposed by Shi for modeling the response of blocky rock masses to mechanical loading. The first extension consists of improving the block contact algorithm. An Augmented Lagrangian Method is used to replace the Penalty Method orginally proposed. It allows Lagrange multipliers to be introduced without increasing the number of equations that need to be solved and thus, block contract forces can be calculated more accurately. A block fracturing capability based on a three-parameter Mohr-Coulomb criterion represents the second extension. It allows for shear or tensile fracturing of intact blocks and the formation of smaller blocks
Ranking and selection of commercial off-the-shelf using fuzzy distance based approach
Directory of Open Access Journals (Sweden)
Rakesh Garg
2015-06-01
Full Text Available There is a tremendous growth of the use of the component based software engineering (CBSE approach for the development of software systems. The selection of the best suited COTS components which fulfils the necessary requirement for the development of software(s has become a major challenge for the software developers. The complexity of the optimal selection problem increases with an increase in alternative potential COTS components and the corresponding selection criteria. In this research paper, the problem of ranking and selection of Data Base Management Systems (DBMS components is modeled as a multi-criteria decision making problem. A ‘Fuzzy Distance Based Approach (FDBA’ method is proposed for the optimal ranking and selection of DBMS COTS components of an e-payment system based on 14 selection criteria grouped under three major categories i.e. ‘Vendor Capabilities’, ‘Business Issues’ and ‘Cost’. The results of this method are compared with other Analytical Hierarchy Process (AHP which is termed as a typical multi-criteria decision making approach. The proposed methodology is explained with an illustrated example.
Mathur, Sunil; Sadana, Ajit
2015-12-01
We present a rank-based test statistic for the identification of differentially expressed genes using a distance measure. The proposed test statistic is highly robust against extreme values and does not assume the distribution of parent population. Simulation studies show that the proposed test is more powerful than some of the commonly used methods, such as paired t-test, Wilcoxon signed rank test, and significance analysis of microarray (SAM) under certain non-normal distributions. The asymptotic distribution of the test statistic, and the p-value function are discussed. The application of proposed method is shown using a real-life data set. © The Author(s) 2011.
Distance matrix-based approach to protein structure prediction.
Kloczkowski, Andrzej; Jernigan, Robert L; Wu, Zhijun; Song, Guang; Yang, Lei; Kolinski, Andrzej; Pokarowski, Piotr
2009-03-01
Much structural information is encoded in the internal distances; a distance matrix-based approach can be used to predict protein structure and dynamics, and for structural refinement. Our approach is based on the square distance matrix D = [r(ij)(2)] containing all square distances between residues in proteins. This distance matrix contains more information than the contact matrix C, that has elements of either 0 or 1 depending on whether the distance r (ij) is greater or less than a cutoff value r (cutoff). We have performed spectral decomposition of the distance matrices D = sigma lambda(k)V(k)V(kT), in terms of eigenvalues lambda kappa and the corresponding eigenvectors v kappa and found that it contains at most five nonzero terms. A dominant eigenvector is proportional to r (2)--the square distance of points from the center of mass, with the next three being the principal components of the system of points. By predicting r (2) from the sequence we can approximate a distance matrix of a protein with an expected RMSD value of about 7.3 A, and by combining it with the prediction of the first principal component we can improve this approximation to 4.0 A. We can also explain the role of hydrophobic interactions for the protein structure, because r is highly correlated with the hydrophobic profile of the sequence. Moreover, r is highly correlated with several sequence profiles which are useful in protein structure prediction, such as contact number, the residue-wise contact order (RWCO) or mean square fluctuations (i.e. crystallographic temperature factors). We have also shown that the next three components are related to spatial directionality of the secondary structure elements, and they may be also predicted from the sequence, improving overall structure prediction. We have also shown that the large number of available HIV-1 protease structures provides a remarkable sampling of conformations, which can be viewed as direct structural information about the
Distance-Based Phylogenetic Methods Around a Polytomy.
Davidson, Ruth; Sullivant, Seth
2014-01-01
Distance-based phylogenetic algorithms attempt to solve the NP-hard least-squares phylogeny problem by mapping an arbitrary dissimilarity map representing biological data to a tree metric. The set of all dissimilarity maps is a Euclidean space properly containing the space of all tree metrics as a polyhedral fan. Outputs of distance-based tree reconstruction algorithms such as UPGMA and neighbor-joining are points in the maximal cones in the fan. Tree metrics with polytomies lie at the intersections of maximal cones. A phylogenetic algorithm divides the space of all dissimilarity maps into regions based upon which combinatorial tree is reconstructed by the algorithm. Comparison of phylogenetic methods can be done by comparing the geometry of these regions. We use polyhedral geometry to compare the local nature of the subdivisions induced by least-squares phylogeny, UPGMA, and neighbor-joining when the true tree has a single polytomy with exactly four neighbors. Our results suggest that in some circumstances, UPGMA and neighbor-joining poorly match least-squares phylogeny.
Adaptive Distance Protection for Microgrids
DEFF Research Database (Denmark)
Lin, Hengwei; Guerrero, Josep M.; Quintero, Juan Carlos Vasquez
2015-01-01
is adopted to accelerate the tripping speed of the relays on the weak lines. The protection methodology is tested on a mid-voltage microgrid network in Aalborg, Denmark. The results show that the adaptive distance protection methodology has good selectivity and sensitivity. What is more, this system also has......Due to the increasing penetration of distributed generation resources, more and more microgrids can be found in distribution systems. This paper proposes a phasor measurement unit based distance protection strategy for microgrids in distribution system. At the same time, transfer tripping scheme...
Block Least Mean Squares Algorithm over Distributed Wireless Sensor Network
Directory of Open Access Journals (Sweden)
T. Panigrahi
2012-01-01
Full Text Available In a distributed parameter estimation problem, during each sampling instant, a typical sensor node communicates its estimate either by the diffusion algorithm or by the incremental algorithm. Both these conventional distributed algorithms involve significant communication overheads and, consequently, defeat the basic purpose of wireless sensor networks. In the present paper, we therefore propose two new distributed algorithms, namely, block diffusion least mean square (BDLMS and block incremental least mean square (BILMS by extending the concept of block adaptive filtering techniques to the distributed adaptation scenario. The performance analysis of the proposed BDLMS and BILMS algorithms has been carried out and found to have similar performances to those offered by conventional diffusion LMS and incremental LMS algorithms, respectively. The convergence analyses of the proposed algorithms obtained from the simulation study are also found to be in agreement with the theoretical analysis. The remarkable and interesting aspect of the proposed block-based algorithms is that their communication overheads per node and latencies are less than those of the conventional algorithms by a factor as high as the block size used in the algorithms.
Research on Signature Verification Method Based on Discrete Fréchet Distance
Fang, J. L.; Wu, W.
2018-05-01
This paper proposes a multi-feature signature template based on discrete Fréchet distance, which breaks through the limitation of traditional signature authentication using a single signature feature. It solves the online handwritten signature authentication signature global feature template extraction calculation workload, signature feature selection unreasonable problem. In this experiment, the false recognition rate (FAR) and false rejection rate (FRR) of the statistical signature are calculated and the average equal error rate (AEER) is calculated. The feasibility of the combined template scheme is verified by comparing the average equal error rate of the combination template and the original template.
Contact- and distance-based principal component analysis of protein dynamics
Energy Technology Data Exchange (ETDEWEB)
Ernst, Matthias; Sittel, Florian; Stock, Gerhard, E-mail: stock@physik.uni-freiburg.de [Biomolecular Dynamics, Institute of Physics, Albert Ludwigs University, 79104 Freiburg (Germany)
2015-12-28
To interpret molecular dynamics simulations of complex systems, systematic dimensionality reduction methods such as principal component analysis (PCA) represent a well-established and popular approach. Apart from Cartesian coordinates, internal coordinates, e.g., backbone dihedral angles or various kinds of distances, may be used as input data in a PCA. Adopting two well-known model problems, folding of villin headpiece and the functional dynamics of BPTI, a systematic study of PCA using distance-based measures is presented which employs distances between C{sub α}-atoms as well as distances between inter-residue contacts including side chains. While this approach seems prohibitive for larger systems due to the quadratic scaling of the number of distances with the size of the molecule, it is shown that it is sufficient (and sometimes even better) to include only relatively few selected distances in the analysis. The quality of the PCA is assessed by considering the resolution of the resulting free energy landscape (to identify metastable conformational states and barriers) and the decay behavior of the corresponding autocorrelation functions (to test the time scale separation of the PCA). By comparing results obtained with distance-based, dihedral angle, and Cartesian coordinates, the study shows that the choice of input variables may drastically influence the outcome of a PCA.
Godolphin, JD; Godolphin, EJ
2015-01-01
© 2015 Australian Statistical Publishing Association Inc. Criteria are proposed for assessing the robustness of a binary block design against the loss of whole blocks, based on summing entries of selected upper non-principal sections of the concurrence matrix. These criteria improve on the minimal concurrence concept that has been used previously and provide new conditions for measuring the robustness status of a design. The robustness properties of two-associate partially balanced designs ar...
Editorial ~ Does "Lean Thinking" Relate to Network-based Distance Education
Directory of Open Access Journals (Sweden)
Peter S. Cookson
2003-10-01
Full Text Available Pointing to the “objectivised, rationalized, technologically-based interaction,” Peters (1973 referred to the then prevailing correspondence forms of distance education as “the most industrialized form of education” (p. 313. With such features as assembly line methods; division of labor; centralized processes of teaching materials development, production and dispatching; student admissions enrollment systems; automated registration, course allocation, and student support, and personnel management systems, distance education institutions demonstrated management structures and practices utilized in industrial and business organizations. Large numbers of courses and students were thus “processed” in correspondence, radio, and television-based distance education systems.
Distance Dependent Model for the Delay Power Spectrum of In-room Radio Channels
DEFF Research Database (Denmark)
Steinböck, Gerhard; Pedersen, Troels; Fleury, Bernard Henri
2013-01-01
A model based on experimental observations of the delay power spectrum in closed rooms is proposed. The model includes the distance between the transmitter and the receiver as a parameter which makes it suitable for range based radio localization. The experimental observations motivate the proposed...... model of the delay power spectrum with a primary (early) component and a reverberant component (tail). The primary component is modeled as a Dirac delta function weighted according to an inverse distance power law (d-n). The reverberant component is an exponentially decaying function with onset equal...... to the propagation time between transmitter and receiver. Its power decays exponentially with distance. The proposed model allows for the prediction of e.g. the path loss, mean delay, root mean squared (rms) delay spread, and kurtosis versus the distance. The model predictions are validated by measurements...
Handwriting individualization using distance and rarity
Tang, Yi; Srihari, Sargur; Srinivasan, Harish
2012-01-01
Forensic individualization is the task of associating observed evidence with a specific source. The likelihood ratio (LR) is a quantitative measure that expresses the degree of uncertainty in individualization, where the numerator represents the likelihood that the evidence corresponds to the known and the denominator the likelihood that it does not correspond to the known. Since the number of parameters needed to compute the LR is exponential with the number of feature measurements, a commonly used simplification is the use of likelihoods based on distance (or similarity) given the two alternative hypotheses. This paper proposes an intermediate method which decomposes the LR as the product of two factors, one based on distance and the other on rarity. It was evaluated using a data set of handwriting samples, by determining whether two writing samples were written by the same/different writer(s). The accuracy of the distance and rarity method, as measured by error rates, is significantly better than the distance method.
Directory of Open Access Journals (Sweden)
Fatemeh Ezoddini Ardakani
2010-06-01
Full Text Available Background and aims. Inferior alveolar nerve block injection is one of the common intra oral anesthetic techniques, with a failure rate of 15-20%. The aim of this study was to evaluate the position of the lingula as an index for this injection. Materials and methods. Thirty eight panoramic radiographs of 7–11 year old patients were analyzed and the distance between the lingula index and occlusal plane was measured. Then, lower alveolar nerve block injection was performed on 88 children. Finally, a visual analogue scale was used to measure the rate of pain in the patients. Results. This distance increased with age and in children younger than nine years is −0.45 mm on the right side and −0.95 mm on the left side. This distance in children older than 9 years is −0.23 mm on the right side and 0.47 mm on the left side. The success rates of inferior alveolar nerve block injection based on lingual index were 49% on the right side and 53.8% on the left side. Conclusion. As the lingual index has various positions and its distance from the occlusal plane increases with age, it is not an appropriate landmark for inferior alveolar nerve block injection.
Block assembly for global registration of building scans
Yan, Feilong; Nan, Liangliang; Wonka, Peter
2016-01-01
We propose a framework for global registration of building scans. The first contribution of our work is to detect and use portals (e.g., doors and windows) to improve the local registration between two scans. Our second contribution is an optimization based on a linear integer programming formulation. We abstract each scan as a block and model the blocks registration as an optimization problem that aims at maximizing the overall matching score of the entire scene. We propose an efficient solution to this optimization problem by iteratively detecting and adding local constraints. We demonstrate the effectiveness of the proposed method on buildings of various styles and that our approach is superior to the current state of the art.
Block assembly for global registration of building scans
Yan, Feilong
2016-11-11
We propose a framework for global registration of building scans. The first contribution of our work is to detect and use portals (e.g., doors and windows) to improve the local registration between two scans. Our second contribution is an optimization based on a linear integer programming formulation. We abstract each scan as a block and model the blocks registration as an optimization problem that aims at maximizing the overall matching score of the entire scene. We propose an efficient solution to this optimization problem by iteratively detecting and adding local constraints. We demonstrate the effectiveness of the proposed method on buildings of various styles and that our approach is superior to the current state of the art.
New method for distance-based close following safety indicator.
Sharizli, A A; Rahizar, R; Karim, M R; Saifizul, A A
2015-01-01
The increase in the number of fatalities caused by road accidents involving heavy vehicles every year has raised the level of concern and awareness on road safety in developing countries like Malaysia. Changes in the vehicle dynamic characteristics such as gross vehicle weight, travel speed, and vehicle classification will affect a heavy vehicle's braking performance and its ability to stop safely in emergency situations. As such, the aim of this study is to establish a more realistic new distance-based safety indicator called the minimum safe distance gap (MSDG), which incorporates vehicle classification (VC), speed, and gross vehicle weight (GVW). Commercial multibody dynamics simulation software was used to generate braking distance data for various heavy vehicle classes under various loads and speeds. By applying nonlinear regression analysis to the simulation results, a mathematical expression of MSDG has been established. The results show that MSDG is dynamically changed according to GVW, VC, and speed. It is envisaged that this new distance-based safety indicator would provide a more realistic depiction of the real traffic situation for safety analysis.
Directory of Open Access Journals (Sweden)
Jiannan Zheng
2017-05-01
Full Text Available Food image recognition is a key enabler for many smart home applications such as smart kitchen and smart personal nutrition log. In order to improve living experience and life quality, smart home systems collect valuable insights of users’ preferences, nutrition intake and health conditions via accurate and robust food image recognition. In addition, efficiency is also a major concern since many smart home applications are deployed on mobile devices where high-end GPUs are not available. In this paper, we investigate compact and efficient food image recognition methods, namely low-level and mid-level approaches. Considering the real application scenario where only limited and noisy data are available, we first proposed a superpixel based Linear Distance Coding (LDC framework where distinctive low-level food image features are extracted to improve performance. On a challenging small food image dataset where only 12 training images are available per category, our framework has shown superior performance in both accuracy and robustness. In addition, to better model deformable food part distribution, we extend LDC’s feature-to-class distance idea and propose a mid-level superpixel food parts-to-class distance mining framework. The proposed framework show superior performance on a benchmark food image datasets compared to other low-level and mid-level approaches in the literature.
Long-distance configuration of FPGA based on serial communication
International Nuclear Information System (INIS)
Liu Xiang; Song Kezhu; Zhang Sifeng
2010-01-01
To solve FPGA configuration in some nuclear electronics, which works in radioactivity environment, the article introduces a way of long-distance configuration with PC and CPLD, based on serial communication. Taking CYCLONE series FPGA and EPCS configuration chip from ALTERA for example, and using the AS configuration mode, we described our design from the aspects of basic theory, hardware connection, software function and communication protocol. With this design, we could configure several FPGAs in the distance of 100 meters, or we could configure on FPGA in the distance of 150 meters. (authors)
Xu, Shaoping; Hu, Lingyan; Yang, Xiaohui
2016-01-01
The performance of conventional denoising algorithms is usually controlled by one or several parameters whose optimal settings depend on the contents of the processed images and the characteristics of the noises. Among these parameters, noise level is a fundamental parameter that is always assumed to be known by most of the existing denoising algorithms (so-called nonblind denoising algorithms), which largely limits the applicability of these nonblind denoising algorithms in many applications. Moreover, these nonblind algorithms do not always achieve the best denoised images in visual quality even when fed with the actual noise level parameter. To address these shortcomings, in this paper we propose a new quality-aware features-based noise level estimator (NLE), which consists of quality-aware features extraction and optimal noise level parameter prediction. First, considering that image local contrast features convey important structural information that is closely related to image perceptual quality, we utilize the marginal statistics of two local contrast operators, i.e., the gradient magnitude and the Laplacian of Gaussian (LOG), to extract quality-aware features. The proposed quality-aware features have very low computational complexity, making them well suited for time-constrained applications. Then we propose a learning-based framework where the noise level parameter is estimated based on the quality-aware features. Based on the proposed NLE, we develop a blind block matching and three-dimensional filtering (BBM3D) denoising algorithm which is capable of effectively removing additive white Gaussian noise, even coupled with impulse noise. The noise level parameter of the BBM3D algorithm is automatically tuned according to the quality-aware features, guaranteeing the best performance. As such, the classical block matching and three-dimensional algorithm can be transformed into a blind one in an unsupervised manner. Experimental results demonstrate that the
VCSEL-based sensors for distance and velocity
Moench, Holger; Carpaij, Mark; Gerlach, Philipp; Gronenborn, Stephan; Gudde, Ralph; Hellmig, Jochen; Kolb, Johanna; van der Lee, Alexander
2016-03-01
VCSEL based sensors can measure distance and velocity in three dimensional space and are already produced in high quantities for professional and consumer applications. Several physical principles are used: VCSELs are applied as infrared illumination for surveillance cameras. High power arrays combined with imaging optics provide a uniform illumination of scenes up to a distance of several hundred meters. Time-of-flight methods use a pulsed VCSEL as light source, either with strong single pulses at low duty cycle or with pulse trains. Because of the sensitivity to background light and the strong decrease of the signal with distance several Watts of laser power are needed at a distance of up to 100m. VCSEL arrays enable power scaling and can provide very short pulses at higher power density. Applications range from extended functions in a smartphone over industrial sensors up to automotive LIDAR for driver assistance and autonomous driving. Self-mixing interference works with coherent laser photons scattered back into the cavity. It is therefore insensitive to environmental light. The method is used to measure target velocity and distance with very high accuracy at distances up to one meter. Single-mode VCSELs with integrated photodiode and grating stabilized polarization enable very compact and cost effective products. Besides the well know application as computer input device new applications with even higher accuracy or for speed over ground measurement in automobiles and up to 250km/h are investigated. All measurement methods exploit the known VCSEL properties like robustness, stability over temperature and the potential for packages with integrated optics and electronics. This makes VCSEL sensors ideally suited for new mass applications in consumer and automotive markets.
Distance-based microfluidic quantitative detection methods for point-of-care testing.
Tian, Tian; Li, Jiuxing; Song, Yanling; Zhou, Leiji; Zhu, Zhi; Yang, Chaoyong James
2016-04-07
Equipment-free devices with quantitative readout are of great significance to point-of-care testing (POCT), which provides real-time readout to users and is especially important in low-resource settings. Among various equipment-free approaches, distance-based visual quantitative detection methods rely on reading the visual signal length for corresponding target concentrations, thus eliminating the need for sophisticated instruments. The distance-based methods are low-cost, user-friendly and can be integrated into portable analytical devices. Moreover, such methods enable quantitative detection of various targets by the naked eye. In this review, we first introduce the concept and history of distance-based visual quantitative detection methods. Then, we summarize the main methods for translation of molecular signals to distance-based readout and discuss different microfluidic platforms (glass, PDMS, paper and thread) in terms of applications in biomedical diagnostics, food safety monitoring, and environmental analysis. Finally, the potential and future perspectives are discussed.
Building blocks of Collagen based biomaterial devices
Indian Academy of Sciences (India)
First page Back Continue Last page Overview Graphics. Building blocks of Collagen based biomaterial devices. Collagen as a protein. Collagen in tissues and organs. Stabilizing and cross linking agents. Immunogenicity. Hosts (drugs). Controlled release mechanisms of hosts. Biodegradability, workability into devices ...
NOVEL PROPOSAL FOR AUTOMATION OF LAND REGISTRATIONS USING BLOCK CHAIN TECHNOLOGY
M.Archana1 and S. Suguna Mallika2
2018-01-01
Bitcoins are currently gaining popularity among the internet users with their novel approach of dominating the third-party validation like the involvement of banks or trusted third parties in financial transactions. The main technology enabling the rampant rise in the implementation of cryptocurrencies like Bitcoins is Block Chain Technology. Though the block chain technology is much older in its conceptualization and realization, bitcoins popularized it. Block chain technology is an enabling...
Simulation of Distance Relay for Load Encroachment Alleviation with Agent Based Supervision of Zone3
Directory of Open Access Journals (Sweden)
Mohamed Badr
2017-03-01
Full Text Available Cascaded tripping of power lines due to mal-operation of zone-3 distance relays has been one of the main causes of many previous blackouts worldwide. Encroachment of load into zone-3 characteristics during stressed system operation conditions is a basic factor for such mal-operation of the relays. By improving the operation of zone-3, it is possible to prevent mal-operations so that cascaded line tripping can be avoided. For proper study of the behavior of distance relay during faults and load encroachment phenomenon, we must build a model of distance relay, so in this paper a modeling study of distance relay is implemented using MATLAB/Simulink program. However, this model is distinguished from previous models that, examines in detail the third zone of distance relay. Many cases are simulated with changing line loading and fault location to ensure the capability of the relay to detect the fault and thus the maximum load ability limit of distance relay is obtained. In order to prevent cascading events caused by hidden failures in zone-3 relays, agent based relay architectures have been suggested in the recent past. In such architectures each zone-3 relay contains agents that require communication with other agents at various relevant relays in order to distinguish a real zone-3 event from a temporary overload. In this paper, a local master agent is consulted by all zone-3 agents before a tripping decision is made. The master agent maintains a rule base which is updated based on the local topology of the network and real time monitoring of the status of other relays and circuit breakers. Cisco Packet Tracer program is used for running communication network simulations. The result of the simulation indicate that the time estimated to send and receive a packet data unit (PDU message between one relay to anther can satisfy the communication requirement for the proposed scheme with fiber media.
Directory of Open Access Journals (Sweden)
Lei Zeng
2016-01-01
Full Text Available Cone beam computed tomography (CBCT is a new detection method for 3D nondestructive testing of printed circuit boards (PCBs. However, the obtained 3D image of PCBs exhibits low contrast because of several factors, such as the occurrence of metal artifacts and beam hardening, during the process of CBCT imaging. Histogram equalization (HE algorithms cannot effectively extend the gray difference between a substrate and a metal in 3D CT images of PCBs, and the reinforcing effects are insignificant. To address this shortcoming, this study proposes an image enhancement algorithm based on gray and its distance double-weighting HE. Considering the characteristics of 3D CT images of PCBs, the proposed algorithm uses gray and its distance double-weighting strategy to change the form of the original image histogram distribution, suppresses the grayscale of a nonmetallic substrate, and expands the grayscale of wires and other metals. The proposed algorithm also enhances the gray difference between a substrate and a metal and highlights metallic materials. The proposed algorithm can enhance the gray value of wires and other metals in 3D CT images of PCBs. It applies enhancement strategies of changing gray and its distance double-weighting mechanism to adapt to this particular purpose. The flexibility and advantages of the proposed algorithm are confirmed by analyses and experimental results.
In this paper we develop a model for computing directional output distance functions with endogenously determined direction vectors. We show how this model is related to the slacks-based directional distance function introduced by Fare and Grosskopf and show how to use the slacks-based function to e...
Song, Weitao; Weng, Dongdong; Feng, Dan; Li, Yuqian; Liu, Yue; Wang, Yongtian
2015-05-01
As one of popular immersive Virtual Reality (VR) systems, stereoscopic cave automatic virtual environment (CAVE) system is typically consisted of 4 to 6 3m-by-3m sides of a room made of rear-projected screens. While many endeavors have been made to reduce the size of the projection-based CAVE system, the issue of asthenopia caused by lengthy exposure to stereoscopic images in such CAVE with a close viewing distance was seldom tangled. In this paper, we propose a light-weighted approach which utilizes a convex eyepiece to reduce visual discomfort induced by stereoscopic vision. An empirical experiment was conducted to examine the feasibility of convex eyepiece in a large depth of field (DOF) at close viewing distance both objectively and subjectively. The result shows the positive effects of convex eyepiece on the relief of eyestrain.
Kullback-Leibler distance-based enhanced detection of incipient anomalies
Harrou, Fouzi
2016-09-09
Accurate and effective anomaly detection and diagnosis of modern engineering systems by monitoring processes ensure reliability and safety of a product while maintaining desired quality. In this paper, an innovative method based on Kullback-Leibler divergence for detecting incipient anomalies in highly correlated multivariate data is presented. We use a partial least square (PLS) method as a modeling framework and a symmetrized Kullback-Leibler distance (KLD) as an anomaly indicator, where it is used to quantify the dissimilarity between current PLS-based residual and reference probability distributions obtained using fault-free data. Furthermore, this paper reports the development of two monitoring charts based on the KLD. The first approach is a KLD-Shewhart chart, where the Shewhart monitoring chart with a three sigma rule is used to monitor the KLD of the response variables residuals from the PLS model. The second approach integrates the KLD statistic into the exponentially weighted moving average monitoring chart. The performance of the PLS-based KLD anomaly-detection methods is illustrated and compared to that of conventional PLS-based anomaly detection methods. Using synthetic data and simulated distillation column data, we demonstrate the greater sensitivity and effectiveness of the developed method over the conventional PLS-based methods, especially when data are highly correlated and small anomalies are of interest. Results indicate that the proposed chart is a very promising KLD-based method because KLD-based charts are, in practice, designed to detect small shifts in process parameters. © 2016 Elsevier Ltd
International Nuclear Information System (INIS)
Moravej, Zahra; Jazaeri, Mostafa; Gholamzadeh, Mehdi
2012-01-01
Highlight: ► Optimal coordination problem between distance relays and Directional Over-Current Relays (DOCRs) is studied. ► A new problem formulation for both uncompensated and series compensated system is proposed. ► In order to solve the coordination problem a Modified Adaptive Particle Swarm Optimization (MAPSO) is employed. ► The optimum results are found in both uncompensated and series compensated systems. - Abstract: In this paper, a novel problem formulation for optimal coordination between distance relays and Directional Over-Current Relays (DOCRs) in series compensated systems is proposed. The integration of the series capacitor (SC) into the transmission line makes the coordination problem more complex. The main contribution of this paper is a new systematic method for computing the optimal second zone timing of distance relays and optimal settings of DOCRs, in series compensated and uncompensated transmission systems, which have a combined protection scheme with DOCRs and distance relays. In order to solve this coordination problem, which is a nonlinear and non-convex problem, a Modified Adaptive Particle Swarm Optimization (MAPSO) is employed. The new proposed method is supported by obtained results from a typical test case and a real power system network.
GPU-Based Block-Wise Nonlocal Means Denoising for 3D Ultrasound Images
Directory of Open Access Journals (Sweden)
Liu Li
2013-01-01
Full Text Available Speckle suppression plays an important role in improving ultrasound (US image quality. While lots of algorithms have been proposed for 2D US image denoising with remarkable filtering quality, there is relatively less work done on 3D ultrasound speckle suppression, where the whole volume data rather than just one frame needs to be considered. Then, the most crucial problem with 3D US denoising is that the computational complexity increases tremendously. The nonlocal means (NLM provides an effective method for speckle suppression in US images. In this paper, a programmable graphic-processor-unit- (GPU- based fast NLM filter is proposed for 3D ultrasound speckle reduction. A Gamma distribution noise model, which is able to reliably capture image statistics for Log-compressed ultrasound images, was used for the 3D block-wise NLM filter on basis of Bayesian framework. The most significant aspect of our method was the adopting of powerful data-parallel computing capability of GPU to improve the overall efficiency. Experimental results demonstrate that the proposed method can enormously accelerate the algorithm.
DEFF Research Database (Denmark)
Miolane, Charlotte Vikkelsø
ensurethat no attack violatesthe securitybounds specifiedbygeneric attack namely exhaustivekey search and table lookup attacks. This thesis contains a general introduction to cryptography with focus on block ciphers and important block cipher designs, in particular the Advanced Encryption Standard(AES...... on small scale variants of AES. In the final part of the thesis we present a new block cipher proposal Present and examine its security against algebraic and differential cryptanalysis in particular....
A Process-Based Transport-Distance Model of Aeolian Transport
Naylor, A. K.; Okin, G.; Wainwright, J.; Parsons, A. J.
2017-12-01
We present a new approach to modeling aeolian transport based on transport distance. Particle fluxes are based on statistical probabilities of particle detachment and distributions of transport lengths, which are functions of particle size classes. A computational saltation model is used to simulate transport distances over a variety of sizes. These are fit to an exponential distribution, which has the advantages of computational economy, concordance with current field measurements, and a meaningful relationship to theoretical assumptions about mean and median particle transport distance. This novel approach includes particle-particle interactions, which are important for sustaining aeolian transport and dust emission. Results from this model are compared with results from both bulk- and particle-sized-specific transport equations as well as empirical wind tunnel studies. The transport-distance approach has been successfully used for hydraulic processes, and extending this methodology from hydraulic to aeolian transport opens up the possibility of modeling joint transport by wind and water using consistent physics. Particularly in nutrient-limited environments, modeling the joint action of aeolian and hydraulic transport is essential for understanding the spatial distribution of biomass across landscapes and how it responds to climatic variability and change.
International Nuclear Information System (INIS)
Wang Xing-Yuan; Bao Xue-Mei
2013-01-01
In this paper, we propose a novel block cryptographic scheme based on a spatiotemporal chaotic system and a chaotic neural network (CNN). The employed CNN comprises a 4-neuron layer called a chaotic neuron layer (CNL), where the spatiotemporal chaotic system participates in generating its weight matrix and other parameters. The spatiotemporal chaotic system used in our scheme is the typical coupled map lattice (CML), which can be easily implemented in parallel by hardware. A 160-bit-long binary sequence is used to generate the initial conditions of the CML. The decryption process is symmetric relative to the encryption process. Theoretical analysis and experimental results prove that the block cryptosystem is secure and practical, and suitable for image encryption. (general)
Algorithms for Speeding up Distance-Based Outlier Detection
National Aeronautics and Space Administration — The problem of distance-based outlier detection is difficult to solve efficiently in very large datasets because of potential quadratic time complexity. We address...
Directory of Open Access Journals (Sweden)
Alekha Kumar Mishra
2017-01-01
Full Text Available Node replication attack possesses a high level of threat in wireless sensor networks (WSNs and it is severe when the sensors are mobile. A limited number of replica detection schemes in mobile WSNs (MWSNs have been reported till date, where most of them are centralized in nature. The centralized detection schemes use time-location claims and the base station (BS is solely responsible for detecting replica. Therefore, these schemes are prone to single point of failure. There is also additional communication overhead associated with sending time-location claims to the BS. A distributed detection mechanism is always a preferred solution to the above kind of problems due to significantly lower communication overhead than their counterparts. In this paper, we propose a distributed replica detection scheme for MWSNs. In this scheme, the deviation in the distance traveled by a node and its replica is recorded by the observer nodes. Every node is an observer node for some nodes in the network. Observers are responsible for maintaining a sliding window of recent time-distance broadcast of the nodes. A replica is detected by an observer based on the degree of violation computed from the deviations recorded using the time-distance sliding window. The analysis and simulation results show that the proposed scheme is able to achieve higher detection probability compared to distributed replica detection schemes such as Efficient Distributed Detection (EDD and Multi-Time-Location Storage and Diffusion (MTLSD.
Holographic description of 2D conformal block in semi-classical limit
Energy Technology Data Exchange (ETDEWEB)
Chen, Bin [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, 5 Yiheyuan Rd, Beijing 100871 (China); Collaborative Innovation Center of Quantum Matter,5 Yiheyuan Rd, Beijing 100871 (China); Center for High Energy Physics, Peking University, 5 Yiheyuan Rd, Beijing 100871 (China); Wu, Jie-qiang [Department of Physics and State Key Laboratory of Nuclear Physics and Technology,Peking University, 5 Yiheyuan Rd, Beijing 100871 (China); Zhang, Jia-ju [Theoretical Physics Division, Institute of High Energy Physics,Chinese Academy of Sciences, 19B Yuquan Rd, Beijing 100049 (China); Theoretical Physics Center for Science Facilities, Chinese Academy of Sciences,19B Yuquan Rd, Beijing 100049 (China)
2016-10-20
In this paper, we study the holographic descriptions of the conformal block of heavy operators in two-dimensional large c conformal field theory. We consider the case that the operators are pairwise inserted such that the distance between the operators in a pair is much smaller than the others. In this case, each pair of heavy operators creates a conical defect in the bulk. We propose that the conformal block is dual to the on-shell action of three dimensional geometry with conical defects in the semi-classical limit. We show that the variation of the on-shell action with respect to the conical angle is equal to the length of the corresponding conical defect. We derive this differential relation on the conformal block in the field theory by introducing two extra light operators as both the probe and the perturbation. Our study also suggests that the area law of the holographic Rényi entropy must holds for a large class of states generated by a finite number of heavy operators insertion.
Defining functional distances over Gene Ontology
Directory of Open Access Journals (Sweden)
del Pozo Angela
2008-01-01
Full Text Available Abstract Background A fundamental problem when trying to define the functional relationships between proteins is the difficulty in quantifying functional similarities, even when well-structured ontologies exist regarding the activity of proteins (i.e. 'gene ontology' -GO-. However, functional metrics can overcome the problems in the comparing and evaluating functional assignments and predictions. As a reference of proximity, previous approaches to compare GO terms considered linkage in terms of ontology weighted by a probability distribution that balances the non-uniform 'richness' of different parts of the Direct Acyclic Graph. Here, we have followed a different approach to quantify functional similarities between GO terms. Results We propose a new method to derive 'functional distances' between GO terms that is based on the simultaneous occurrence of terms in the same set of Interpro entries, instead of relying on the structure of the GO. The coincidence of GO terms reveals natural biological links between the GO functions and defines a distance model Df which fulfils the properties of a Metric Space. The distances obtained in this way can be represented as a hierarchical 'Functional Tree'. Conclusion The method proposed provides a new definition of distance that enables the similarity between GO terms to be quantified. Additionally, the 'Functional Tree' defines groups with biological meaning enhancing its utility for protein function comparison and prediction. Finally, this approach could be for function-based protein searches in databases, and for analysing the gene clusters produced by DNA array experiments.
Chemical lumbar sympathetic plexus block in Buerger′s disease: Current scenario
Directory of Open Access Journals (Sweden)
Rampal Singh
2014-01-01
Full Text Available Introduction: High incidences of Buerger′s disease (43-62% in India draw our attention towards available treatment modalities in such patients. Patients with this disease are in severe pain and agony. Pain relief by any means remains first and foremost priority in such patients and if patient is able to sleep even one pain free night it is a boon for the patients. The purpose of study was to test the hypothesis that lumber sympathetic block relieves the pain of ischemic limb in Buerger′s disease. Aims and Objectives: To study the effect of chemical lumber sympathetic block on visual analog score (VAS score and walking distance of the patients. Materials and Methods: Lumber sympathetic block was given under C-arm guidance with 17.5 cm long 22 G spinal needle at L3 and L4 level. Diagnostic block was given initially with plain bupivacaine 0.25% with two needle technique. Total seven blocks series were given in all patients. Final block was given with phenol 8%, 8 ml at L3 and L4 level. In postoperative period, VAS score was observed. Effect of block on walking distance was assessed on 3 rd day before giving next block. Statistical analysis: Software Statistical Package for Social Sciences (SPSS version 11.5 was used for statistical analysis. Data were analyzed by paired t-test and P-value < 0.05 was considered as significant. Results: Both VAS and walking distance improved significantly after each successive block. Healing of ulcers of foot is also noted. Conclusion: Despite advances in treatment modalities in such patients, lumber sympathetic block is still very cost-effective, safe, and least-invasive technique in treating painful ischemic legs.
Challenges and Opportunities for Learning Biology in Distance-Based Settings
Hallyburton, Chad L.; Lunsford, Eddie
2013-01-01
The history of learning biology through distance education is documented. A review of terminology and unique problems associated with biology instruction is presented. Using published research and their own teaching experience, the authors present recommendations and best practices for managing biology in distance-based formats. They offer ideas…
Trellises and Trellis-Based Decoding Algorithms for Linear Block Codes
Lin, Shu
1998-01-01
A code trellis is a graphical representation of a code, block or convolutional, in which every path represents a codeword (or a code sequence for a convolutional code). This representation makes it possible to implement Maximum Likelihood Decoding (MLD) of a code with reduced decoding complexity. The most well known trellis-based MLD algorithm is the Viterbi algorithm. The trellis representation was first introduced and used for convolutional codes [23]. This representation, together with the Viterbi decoding algorithm, has resulted in a wide range of applications of convolutional codes for error control in digital communications over the last two decades. There are two major reasons for this inactive period of research in this area. First, most coding theorists at that time believed that block codes did not have simple trellis structure like convolutional codes and maximum likelihood decoding of linear block codes using the Viterbi algorithm was practically impossible, except for very short block codes. Second, since almost all of the linear block codes are constructed algebraically or based on finite geometries, it was the belief of many coding theorists that algebraic decoding was the only way to decode these codes. These two reasons seriously hindered the development of efficient soft-decision decoding methods for linear block codes and their applications to error control in digital communications. This led to a general belief that block codes are inferior to convolutional codes and hence, that they were not useful. Chapter 2 gives a brief review of linear block codes. The goal is to provide the essential background material for the development of trellis structure and trellis-based decoding algorithms for linear block codes in the later chapters. Chapters 3 through 6 present the fundamental concepts, finite-state machine model, state space formulation, basic structural properties, state labeling, construction procedures, complexity, minimality, and
A fast image encryption algorithm based on only blocks in cipher text
Wang, Xing-Yuan; Wang, Qian
2014-03-01
In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simultaneously. The cipher-text image is divided into blocks and each block has k ×k pixels, while the pixels of the plain-text are scanned one by one. Four logistic maps are used to generate the encryption key stream and the new place in the cipher image of plain image pixels, including the row and column of the block which the pixel belongs to and the place where the pixel would be placed in the block. After encrypting each pixel, the initial conditions of logistic maps would be changed according to the encrypted pixel's value; after encrypting each row of plain image, the initial condition would also be changed by the skew tent map. At last, it is illustrated that this algorithm has a faster speed, big key space, and better properties in withstanding differential attacks, statistical analysis, known plaintext, and chosen plaintext attacks.
A fast image encryption algorithm based on only blocks in cipher text
International Nuclear Information System (INIS)
Wang Xing-Yuan; Wang Qian
2014-01-01
In this paper, a fast image encryption algorithm is proposed, in which the shuffling and diffusion is performed simultaneously. The cipher-text image is divided into blocks and each block has k ×k pixels, while the pixels of the plain-text are scanned one by one. Four logistic maps are used to generate the encryption key stream and the new place in the cipher image of plain image pixels, including the row and column of the block which the pixel belongs to and the place where the pixel would be placed in the block. After encrypting each pixel, the initial conditions of logistic maps would be changed according to the encrypted pixel's value; after encrypting each row of plain image, the initial condition would also be changed by the skew tent map. At last, it is illustrated that this algorithm has a faster speed, big key space, and better properties in withstanding differential attacks, statistical analysis, known plaintext, and chosen plaintext attacks
Comparative evaluation of ultrasound scanner accuracy in distance measurement
Branca, F. P.; Sciuto, S. A.; Scorza, A.
2012-10-01
The aim of the present study is to develop and compare two different automatic methods for accuracy evaluation in ultrasound phantom measurements on B-mode images: both of them give as a result the relative error e between measured distances, performed by 14 brand new ultrasound medical scanners, and nominal distances, among nylon wires embedded in a reference test object. The first method is based on a least squares estimation, while the second one applies the mean value of the same distance evaluated at different locations in ultrasound image (same distance method). Results for both of them are proposed and explained.
Using Interference to Block RFID Tags
DEFF Research Database (Denmark)
Krigslund, Rasmus; Popovski, Petar; Pedersen, Gert Frølund
We propose a novel method to block RFID tags from responding, using intentional interference. We focus on the experimental evaluation, where we impose interference on the download and uplink, respectively. The results are positive, where modulated CCI shows most effective to block a tag.......We propose a novel method to block RFID tags from responding, using intentional interference. We focus on the experimental evaluation, where we impose interference on the download and uplink, respectively. The results are positive, where modulated CCI shows most effective to block a tag....
Production Potential Of Nchanga Underground Mines Collapsed Blocks
Directory of Open Access Journals (Sweden)
Eugie Kabwe
2015-08-01
Full Text Available Abstract the main purpose of this study is to recommend modification to block caving at Nchanga ensure that it meets anticipated production levels and address the adverse ground conditions of the intensely fractured orebody. Excavations of current methods are driven close to the incompetent orebody. Determination of the appropriate method based on criteria of selection techniques together with the analysis of operating costs and safety. Reclamation of ore in the collapsed blocks entirely depended on maximizing revenue recovery of the mineral and safe working environment for equipment and personnel. On recommendation of a suitable method extent of the collapsed blocks was another aspect considered. The proposed methods of extraction were variants of block caving further shortlisted based on the extent of collapse. Economic appraisal of both the recommended and current mining methods employed included extraction recovery development reclamation costs revenue estimation and revenue raised from finished copper.
Directory of Open Access Journals (Sweden)
Dansheng Wang
2016-10-01
Full Text Available In the electromechanical impedance (EMI method, the PZT patch performs the functions of both sensor and exciter. Due to the high frequency actuation and non-model based characteristics, the EMI method can be utilized to detect incipient structural damage. In recent years EMI techniques have been widely applied to monitor the health status of concrete and steel materials, however, studies on application to timber are limited. This paper will explore the feasibility of using the EMI technique for damage detection in timber specimens. In addition, the conventional damage index, namely root mean square deviation (RMSD is employed to evaluate the level of damage. On that basis, a new damage index, Mahalanobis distance based on RMSD, is proposed to evaluate the damage severity of timber specimens. Experimental studies are implemented to detect notch and hole damage in the timber specimens. Experimental results verify the availability and robustness of the proposed damage index and its superiority over the RMSD indexes.
International Nuclear Information System (INIS)
Ding, Y.; Arai, K.
2007-01-01
A method for estimation of forest parameters, species, tree shape, distance between canopies by means of Monte-Carlo based radiative transfer model with forestry surface model is proposed. The model is verified through experiments with the miniature model of forest, tree array of relatively small size of trees. Two types of miniature trees, ellipse-looking and cone-looking canopy are examined in the experiments. It is found that the proposed model and experimental results show a coincidence so that the proposed method is validated. It is also found that estimation of tree shape, trunk tree distance as well as distinction between deciduous or coniferous trees can be done with the proposed model. Furthermore, influences due to multiple reflections between trees and interaction between trees and under-laying grass are clarified with the proposed method
Dsm Based Orientation of Large Stereo Satellite Image Blocks
d'Angelo, P.; Reinartz, P.
2012-07-01
High resolution stereo satellite imagery is well suited for the creation of digital surface models (DSM). A system for highly automated and operational DSM and orthoimage generation based on CARTOSAT-1 imagery is presented, with emphasis on fully automated georeferencing. The proposed system processes level-1 stereo scenes using the rational polynomial coefficients (RPC) universal sensor model. The RPC are derived from orbit and attitude information and have a much lower accuracy than the ground resolution of approximately 2.5 m. In order to use the images for orthorectification or DSM generation, an affine RPC correction is required. In this paper, GCP are automatically derived from lower resolution reference datasets (Landsat ETM+ Geocover and SRTM DSM). The traditional method of collecting the lateral position from a reference image and interpolating the corresponding height from the DEM ignores the higher lateral accuracy of the SRTM dataset. Our method avoids this drawback by using a RPC correction based on DSM alignment, resulting in improved geolocation of both DSM and ortho images. Scene based method and a bundle block adjustment based correction are developed and evaluated for a test site covering the nothern part of Italy, for which 405 Cartosat-1 Stereopairs are available. Both methods are tested against independent ground truth. Checks against this ground truth indicate a lateral error of 10 meters.
Normalized compression distance of multisets with applications
Cohen, A.R.; Vitányi, P.M.B.
Pairwise normalized compression distance (NCD) is a parameter-free, feature-free, alignment-free, similarity metric based on compression. We propose an NCD of multisets that is also metric. Previously, attempts to obtain such an NCD failed. For classification purposes it is superior to the pairwise
Entanglement of two blocks of spins in the critical Ising model
Facchi, P.; Florio, G.; Invernizzi, C.; Pascazio, S.
2008-11-01
We compute the entropy of entanglement of two blocks of L spins at a distance d in the ground state of an Ising chain in an external transverse magnetic field. We numerically study the von Neumann entropy for different values of the transverse field. At the critical point we obtain analytical results for blocks of size L=1 and 2. In the general case, the critical entropy is shown to be additive when d→∞ . Finally, based on simple arguments, we derive an expression for the entropy at the critical point as a function of both L and d . This formula is in excellent agreement with numerical results.
Research of Block-Based Motion Estimation Methods for Video Compression
Directory of Open Access Journals (Sweden)
Tropchenko Andrey
2016-08-01
Full Text Available This work is a review of the block-based algorithms used for motion estimation in video compression. It researches different types of block-based algorithms that range from the simplest named Full Search to the fast adaptive algorithms like Hierarchical Search. The algorithms evaluated in this paper are widely accepted by the video compressing community and have been used in implementing various standards, such as MPEG-4 Visual and H.264. The work also presents a very brief introduction to the entire flow of video compression.
Image Inpainting Based on Coherence Transport with Adapted Distance Functions
März, Thomas
2011-01-01
We discuss an extension of our method image inpainting based on coherence transport. For the latter method the pixels of the inpainting domain have to be serialized into an ordered list. Until now, to induce the serialization we have used the distance to boundary map. But there are inpainting problems where the distance to boundary serialization causes unsatisfactory inpainting results. In the present work we demonstrate cases where we can resolve the difficulties by employing other distance functions which better suit the problem at hand. © 2011 Society for Industrial and Applied Mathematics.
Testing block subdivision algorithms on block designs
Wiseman, Natalie; Patterson, Zachary
2016-01-01
Integrated land use-transportation models predict future transportation demand taking into account how households and firms arrange themselves partly as a function of the transportation system. Recent integrated models require parcels as inputs and produce household and employment predictions at the parcel scale. Block subdivision algorithms automatically generate parcel patterns within blocks. Evaluating block subdivision algorithms is done by way of generating parcels and comparing them to those in a parcel database. Three block subdivision algorithms are evaluated on how closely they reproduce parcels of different block types found in a parcel database from Montreal, Canada. While the authors who developed each of the algorithms have evaluated them, they have used their own metrics and block types to evaluate their own algorithms. This makes it difficult to compare their strengths and weaknesses. The contribution of this paper is in resolving this difficulty with the aim of finding a better algorithm suited to subdividing each block type. The proposed hypothesis is that given the different approaches that block subdivision algorithms take, it's likely that different algorithms are better adapted to subdividing different block types. To test this, a standardized block type classification is used that consists of mutually exclusive and comprehensive categories. A statistical method is used for finding a better algorithm and the probability it will perform well for a given block type. Results suggest the oriented bounding box algorithm performs better for warped non-uniform sites, as well as gridiron and fragmented uniform sites. It also produces more similar parcel areas and widths. The Generalized Parcel Divider 1 algorithm performs better for gridiron non-uniform sites. The Straight Skeleton algorithm performs better for loop and lollipop networks as well as fragmented non-uniform and warped uniform sites. It also produces more similar parcel shapes and patterns.
Hwang, Kuo-An; Yang, Chia-Hao
2009-01-01
Most courses based on distance learning focus on the cognitive domain of learning. Because students are sometimes inattentive or tired, they may neglect the attention goal of learning. This study proposes an auto-detection and reinforcement mechanism for the distance-education system based on the reinforcement teaching strategy. If a student is…
A Simple Density with Distance Based Initial Seed Selection Technique for K Means Algorithm
Directory of Open Access Journals (Sweden)
Sajidha Syed Azimuddin
2017-01-01
Full Text Available Open issues with respect to K means algorithm are identifying the number of clusters, initial seed concept selection, clustering tendency, handling empty clusters, identifying outliers etc. In this paper we propose a novel and a simple technique considering both density and distance of the concepts in a dataset to identify initial seed concepts for clustering. Many authors have proposed different techniques to identify initial seed concepts; but our method ensures that the initial seed concepts are chosen from different clusters that are to be generated by the clustering solution. The hallmark of our algorithm is that it is a single pass algorithm that does not require any extra parameters to be estimated. Further, our seed concepts are one among the actual concepts and not the mean of representative concepts as is the case in many other algorithms. We have implemented our proposed algorithm and compared the results with the interval based technique of Fouad Khan. We see that our method outperforms the interval based method. We have also compared our method with the original random K means and K Means++ algorithms.
Distance covariance for stochastic processes
DEFF Research Database (Denmark)
Matsui, Muneya; Mikosch, Thomas Valentin; Samorodnitsky, Gennady
2017-01-01
The distance covariance of two random vectors is a measure of their dependence. The empirical distance covariance and correlation can be used as statistical tools for testing whether two random vectors are independent. We propose an analog of the distance covariance for two stochastic processes...
On-the-Fly Computation of Bisimilarity Distances
DEFF Research Database (Denmark)
Bacci, Giorgio; Bacci, Giovanni; Larsen, Kim Guldstrand
2017-01-01
of Desharnais et al. between discrete-time Markov chains as an optimal solution of a linear program that can be solved by using the ellipsoid method. Inspired by their result, we propose a novel linear program characterization to compute the distance in the continuous-time setting. Differently from previous......We propose a distance between continuous-time Markov chains (CTMCs) and study the problem of computing it by comparing three different algorithmic methodologies: iterative, linear program, and on-the-fly. In a work presented at FoSSaCS'12, Chen et al. characterized the bisimilarity distance...... proposals, ours has a number of constraints that is bounded by a polynomial in the size of the CTMC. This, in particular, proves that the distance we propose can be computed in polynomial time. Despite its theoretical importance, the proposed linear program characterization turns out to be inefficient...
The difference between presence-based education and distance learning
Fernández Rodríguez, Mònica
2002-01-01
Attempts to define distance learning always involve comparisons with presence-based education, as the latter is the most direct reference that the former has. It is on this basis that the convergent points, similarities and differences of the two types of approach are established. This article opens with such a comparison, before going on to focus mainly on distance learning and to examine methodological strategies that should be borne in mind when implementing an e-learning system.
Directory of Open Access Journals (Sweden)
Abdenaceur Boudlal
2010-01-01
Full Text Available This article investigates a new method of motion estimation based on block matching criterion through the modeling of image blocks by a mixture of two and three Gaussian distributions. Mixture parameters (weights, means vectors, and covariance matrices are estimated by the Expectation Maximization algorithm (EM which maximizes the log-likelihood criterion. The similarity between a block in the current image and the more resembling one in a search window on the reference image is measured by the minimization of Extended Mahalanobis distance between the clusters of mixture. Performed experiments on sequences of real images have given good results, and PSNR reached 3 dB.
Distance Learning Course Design Expectations in China and the United Kingdom
Xu, Jingjing; Rees, Terri
2016-01-01
This article provides insight into different expectations between Chinese and British academic culture for distance learning. The article is based on a pedagogic research project, a case study, and is centered on a distance learning course in maritime law proposed by a British university for a university in China. Some important commonalities and…
Optimizing block-based maintenance under random machine usage
de Jonge, Bram; Jakobsons, Edgars
Existing studies on maintenance optimization generally assume that machines are either used continuously, or that times until failure do not depend on the actual usage. In practice, however, these assumptions are often not realistic. In this paper, we consider block-based maintenance optimization
Block-Based Compressed Sensing for Neutron Radiation Image Using WDFB
Directory of Open Access Journals (Sweden)
Wei Jin
2015-01-01
Full Text Available An ideal compression method for neutron radiation image should have high compression ratio while keeping more details of the original image. Compressed sensing (CS, which can break through the restrictions of sampling theorem, is likely to offer an efficient compression scheme for the neutron radiation image. Combining wavelet transform with directional filter banks, a novel nonredundant multiscale geometry analysis transform named Wavelet Directional Filter Banks (WDFB is constructed and applied to represent neutron radiation image sparsely. Then, the block-based CS technique is introduced and a high performance CS scheme for neutron radiation image is proposed. By performing two-step iterative shrinkage algorithm the problem of L1 norm minimization is solved to reconstruct neutron radiation image from random measurements. The experiment results demonstrate that the scheme not only improves the quality of reconstructed image obviously but also retains more details of original image.
Compressions of electrorheological fluids under different initial gap distances.
Tian, Yu; Wen, Shizhu; Meng, Yonggang
2003-05-01
Compressions of electrorheological (ER) fluids have been carried out under different initial gap distances and different applied voltages. The nominal yield stresses of the compressed ER fluid under different conditions, according to the mechanics of compressing continuous fluids considering the yield stress of the plastic fluid, have been calculated. Curves of nominal yield stress under different applied voltages at an initial gap distance of 4 mm overlapped well and were shown to be proportional to the square of the external electric field and agree well with the traditional description. With the decrease of the initial gap distance, the difference between the nominal yield stress curves increased. The gap distance effect on the compression of ER fluids could not be explained by the traditional description based on the Bingham model and the continuous media theory. An explanation based on the mechanics of particle chain is proposed to describe the gap distance effect on the compression of ER fluids.
Ground reaction curve based upon block theory
International Nuclear Information System (INIS)
Yow, J.L. Jr.; Goodman, R.E.
1985-09-01
Discontinuities in a rock mass can intersect an excavation surface to form discrete blocks (keyblocks) which can be unstable. Once a potentially unstable block is identified, the forces affecting it can be calculated to assess its stability. The normal and shear stresses on each block face before displacement are calculated using elastic theory and are modified in a nonlinear way by discontinuity deformations as the keyblock displaces. The stresses are summed into resultant forces to evaluate block stability. Since the resultant forces change with displacement, successive increments of block movement are examined to see whether the block ultimately becomes stable or fails. Two-dimensional (2D) and three-dimensional (3D) analytic models for the stability of simple pyramidal keyblocks were evaluated. Calculated stability is greater for 3D analyses than for 2D analyses. Calculated keyblock stability increases with larger in situ stress magnitudes, larger lateral stress ratios, and larger shear strengths. Discontinuity stiffness controls blocks displacement more strongly than it does stability itself. Large keyblocks are less stable than small ones, and stability increases as blocks become more slender
Optimized curve design for image analysis using localized geodesic distance transformations
Braithwaite, Billy; Niska, Harri; Pöllänen, Irene; Ikonen, Tiia; Haataja, Keijo; Toivanen, Pekka; Tolonen, Teemu
2015-03-01
We consider geodesic distance transformations for digital images. Given a M × N digital image, a distance image is produced by evaluating local pixel distances. Distance Transformation on Curved Space (DTOCS) evaluates shortest geodesics of a given pixel neighborhood by evaluating the height displacements between pixels. In this paper, we propose an optimization framework for geodesic distance transformations in a pattern recognition scheme, yielding more accurate machine learning based image analysis, exemplifying initial experiments using complex breast cancer images. Furthermore, we will outline future research work, which will complete the research work done for this paper.
Sun, Feng-Rong; Wang, Xiao-Jing; Wu, Qiang; Yao, Gui-Hua; Zhang, Yun
2013-01-01
Left ventricular (LV) torsion is a sensitive and global index of LV systolic and diastolic function, but how to noninvasively measure it is challenging. Two-dimensional echocardiography and the block-matching based speckle tracking method were used to measure LV torsion. Main advantages of the proposed method over the previous ones are summarized as follows: (1) The method is automatic, except for manually selecting some endocardium points on the end-diastolic frame in initialization step. (2) The diamond search strategy is applied, with a spatial smoothness constraint introduced into the sum of absolute differences matching criterion; and the reference frame during the search is determined adaptively. (3) The method is capable of removing abnormal measurement data automatically. The proposed method was validated against that using Doppler tissue imaging and some preliminary clinical experimental studies were presented to illustrate clinical values of the proposed method.
Project organized Problem-based learning in Distance Education
DEFF Research Database (Denmark)
Jensen, Lars Peter; Helbo, Jan; Knudsen, Morten
2002-01-01
Project organized problem based learning is a successful concept for on-campus engineering education at Aalborg University. Recently this "Aalborg concept" has been used in networked distance education as well. This paper describes the experiences from two years of Internet-mediated project work...... in a new Master of Information Technology education. The main conclusions are, that the project work is a strong learning motivator, enhancing peer collaboration, for off-campus students as well. However, the concept cannot be directly transferred to off-campus learning. In this paper, the main problems...... experienced with group organized project work in distance education are described, and some possible solutions are listed....
Project-Organized Problem-Based Learning in Distance Education
DEFF Research Database (Denmark)
Jensen, Lars Peter; Helbo, Jan; Knudsen, Morten
2003-01-01
Project organized problem based learning is a successful concept for on-campus engineering education at Aalborg University. Recently this "Aalborg concept" has been used in networked distance education as well. This paper describes the experiences from two years of Internet-mediated project work...... in a new Master of Information Technology education. The main conclusions are, that the project work is a strong learning motivator, enhancing peer collaboration, for off-campus students as well. However, the concept cannot be directly transferred to off-campus learning. In this paper, the main problems...... experienced with group organized project work in distance education are described, and some possible solutions are listed....
DISTANCE LEARNING ONLINE WEB 3 .0
Directory of Open Access Journals (Sweden)
S. M. Petryk
2015-05-01
Full Text Available This article analyzes the existing methods of identification information in the semantic web, outlines the main problems of its implementation and researches the use of Semantic Web as the part of distance learning. Proposed alternative variant of identification and relationship construction of information and acquired knowledge based on the developed method “spectrum of knowledge”
Tableau Calculus for the Logic of Comparative Similarity over Arbitrary Distance Spaces
Alenda, Régis; Olivetti, Nicola
The logic CSL (first introduced by Sheremet, Tishkovsky, Wolter and Zakharyaschev in 2005) allows one to reason about distance comparison and similarity comparison within a modal language. The logic can express assertions of the kind "A is closer/more similar to B than to C" and has a natural application to spatial reasoning, as well as to reasoning about concept similarity in ontologies. The semantics of CSL is defined in terms of models based on different classes of distance spaces and it generalizes the logic S4 u of topological spaces. In this paper we consider CSL defined over arbitrary distance spaces. The logic comprises a binary modality to represent comparative similarity and a unary modality to express the existence of the minimum of a set of distances. We first show that the semantics of CSL can be equivalently defined in terms of preferential models. As a consequence we obtain the finite model property of the logic with respect to its preferential semantic, a property that does not hold with respect to the original distance-space semantics. Next we present an analytic tableau calculus based on its preferential semantics. The calculus provides a decision procedure for the logic, its termination is obtained by imposing suitable blocking restrictions.
Regularisation of 3D Signed Distance Fields
DEFF Research Database (Denmark)
Paulsen, Rasmus Reinhold; Bærentzen, Jakob Andreas; Larsen, Rasmus
2009-01-01
Signed 3D distance fields are used a in a variety of domains. From shape modelling to surface registration. They are typically computed based on sampled point sets. If the input point set contains holes, the behaviour of the zero-level surface of the distance field is not well defined...... Cholesky factorisation. It is demonstrated that the zero-level surface will act as a membrane after the proposed regularisation. This effectively closes holes in a predictable way. Finally, the performance of the method is tested with a set of synthetic point clouds of increasing complexity....
Thermoset coatings from epoxidized sucrose soyate and blocked, bio-based dicarboxylic acids.
Kovash, Curtiss S; Pavlacky, Erin; Selvakumar, Sermadurai; Sibi, Mukund P; Webster, Dean C
2014-08-01
A new 100% bio-based thermosetting coating system was developed from epoxidized sucrose soyate crosslinked with blocked bio-based dicarboxylic acids. A solvent-free, green method was used to block the carboxylic acid groups and render the acids miscible with the epoxy resin. The thermal reversibility of this blocking allowed for the formulation of epoxy-acid thermoset coatings that are 100% bio-based. This was possible due to the volatility of the vinyl ethers under curing conditions. These systems have good adhesion to metal substrates and perform well under chemical and physical stress. Additionally, the hardness of the coating system is dependent on the chain length of the diacid used, making it tunable. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Zhu, Shuzhe; Li, Zhan-Wei; Zhao, Hanying
2015-04-14
Patchy particles are a type of colloidal particles with one or more well-defined patches on the surfaces. The patchy particles with multiple compositions and functionalities have found wide applications from the fundamental studies to practical uses. In this research patchy micelles with thiol groups in the patches were prepared based on coassembly of free block copolymer chains and block copolymer brushes on silica particles. Thiol-terminated and cyanoisopropyl-capped polystyrene-block-poly(N-isopropylacrylamide) block copolymers (PS-b-PNIPAM-SH and PS-b-PNIPAM-CIP) were synthesized by reversible addition-fragmentation chain transfer polymerization and chemical modifications. Pyridyl disulfide-functionalized silica particles (SiO2-SS-Py) were prepared by four-step surface chemical reactions. PS-b-PNIPAM brushes on silica particles were prepared by thiol-disulfide exchange reaction between PS-b-PNIPAM-SH and SiO2-SS-Py. Surface micelles on silica particles were prepared by coassembly of PS-b-PNIPAM-CIP and block copolymer brushes. Upon cleavage of the surface micelles from silica particles, patchy micelles with thiol groups in the patches were obtained. Dynamic light scattering, transmission electron microscopy, and zeta-potential measurements demonstrate the preparation of patchy micelles. Gold nanoparticles can be anchored onto the patchy micelles through S-Au bonds, and asymmetric hybrid structures are formed. The thiol groups can be oxidized to disulfides, which results in directional assembly of the patchy micelles. The self-assembly behavior of the patchy micelles was studied experimentally and by computer simulation.
Distance learning, problem based learning and dynamic knowledge networks.
Giani, U; Martone, P
1998-06-01
This paper is an attempt to develop a distance learning model grounded upon a strict integration of problem based learning (PBL), dynamic knowledge networks (DKN) and web tools, such as hypermedia documents, synchronous and asynchronous communication facilities, etc. The main objective is to develop a theory of distance learning based upon the idea that learning is a highly dynamic cognitive process aimed at connecting different concepts in a network of mutually supporting concepts. Moreover, this process is supposed to be the result of a social interaction that has to be facilitated by the web. The model was tested by creating a virtual classroom of medical and nursing students and activating a learning session on the concept of knowledge representation in health sciences.
Pardo-Montero, Juan; Fenwick, John D
2010-06-01
The purpose of this work is twofold: To further develop an approach to multiobjective optimization of rotational therapy treatments recently introduced by the authors [J. Pardo-Montero and J. D. Fenwick, "An approach to multiobjective optimization of rotational therapy," Med. Phys. 36, 3292-3303 (2009)], especially regarding its application to realistic geometries, and to study the quality (Pareto optimality) of plans obtained using such an approach by comparing them with Pareto optimal plans obtained through inverse planning. In the previous work of the authors, a methodology is proposed for constructing a large number of plans, with different compromises between the objectives involved, from a small number of geometrically based arcs, each arc prioritizing different objectives. Here, this method has been further developed and studied. Two different techniques for constructing these arcs are investigated, one based on image-reconstruction algorithms and the other based on more common gradient-descent algorithms. The difficulty of dealing with organs abutting the target, briefly reported in previous work of the authors, has been investigated using partial OAR unblocking. Optimality of the solutions has been investigated by comparison with a Pareto front obtained from inverse planning. A relative Euclidean distance has been used to measure the distance of these plans to the Pareto front, and dose volume histogram comparisons have been used to gauge the clinical impact of these distances. A prostate geometry has been used for the study. For geometries where a blocked OAR abuts the target, moderate OAR unblocking can substantially improve target dose distribution and minimize hot spots while not overly compromising dose sparing of the organ. Image-reconstruction type and gradient-descent blocked-arc computations generate similar results. The Pareto front for the prostate geometry, reconstructed using a large number of inverse plans, presents a hockey-stick shape
Olga R. Chepyuk; Anton O. Shalyminov
2014-01-01
This article discusses the possibility of organizing a practice-based learning using modern web-based technologies of distance learning like cMOOC. The authors share their experience of practical implementation of proprietary technology in the organization of a University course of innovative entrepreneurship. Based on their practice results authors propose the concept of a new generation of educational platforms based on the four vectors of development.
Energy Technology Data Exchange (ETDEWEB)
Lu, Chunhong; Xiao, Shaoqing; Gu, Xiaofeng [Jiangnan University, Wuxi (China)
2014-11-15
The collected training data often include both normal and faulty samples for complex chemical processes. However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), independent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal operation model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes the multimodality within the faulty data into account, and thus improves the capability of process monitoring significantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the conventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy.
International Nuclear Information System (INIS)
Lu, Chunhong; Xiao, Shaoqing; Gu, Xiaofeng
2014-01-01
The collected training data often include both normal and faulty samples for complex chemical processes. However, some monitoring methods, such as partial least squares (PLS), principal component analysis (PCA), independent component analysis (ICA) and Fisher discriminant analysis (FDA), require fault-free data to build the normal operation model. These techniques are applicable after the preliminary step of data clustering is applied. We here propose a novel hyperplane distance neighbor clustering (HDNC) based on the local discriminant analysis (LDA) for chemical process monitoring. First, faulty samples are separated from normal ones using the HDNC method. Then, the optimal subspace for fault detection and classification can be obtained using the LDA approach. The proposed method takes the multimodality within the faulty data into account, and thus improves the capability of process monitoring significantly. The HDNC-LDA monitoring approach is applied to two simulation processes and then compared with the conventional FDA based on the K-nearest neighbor (KNN-FDA) method. The results obtained in two different scenarios demonstrate the superiority of the HDNC-LDA approach in terms of fault detection and classification accuracy
Unifying distance-based goodness-of-fit indicators for hydrologic model assessment
Cheng, Qinbo; Reinhardt-Imjela, Christian; Chen, Xi; Schulte, Achim
2014-05-01
The goodness-of-fit indicator, i.e. efficiency criterion, is very important for model calibration. However, recently the knowledge about the goodness-of-fit indicators is all empirical and lacks a theoretical support. Based on the likelihood theory, a unified distance-based goodness-of-fit indicator termed BC-GED model is proposed, which uses the Box-Cox (BC) transformation to remove the heteroscedasticity of model errors and the generalized error distribution (GED) with zero-mean to fit the distribution of model errors after BC. The BC-GED model can unify all recent distance-based goodness-of-fit indicators, and reveals the mean square error (MSE) and the mean absolute error (MAE) that are widely used goodness-of-fit indicators imply statistic assumptions that the model errors follow the Gaussian distribution and the Laplace distribution with zero-mean, respectively. The empirical knowledge about goodness-of-fit indicators can be also easily interpreted by BC-GED model, e.g. the sensitivity to high flow of the goodness-of-fit indicators with large power of model errors results from the low probability of large model error in the assumed distribution of these indicators. In order to assess the effect of the parameters (i.e. the BC transformation parameter λ and the GED kurtosis coefficient β also termed the power of model errors) of BC-GED model on hydrologic model calibration, six cases of BC-GED model were applied in Baocun watershed (East China) with SWAT-WB-VSA model. Comparison of the inferred model parameters and model simulation results among the six indicators demonstrates these indicators can be clearly separated two classes by the GED kurtosis β: β >1 and β ≤ 1. SWAT-WB-VSA calibrated by the class β >1 of distance-based goodness-of-fit indicators captures high flow very well and mimics the baseflow very badly, but it calibrated by the class β ≤ 1 mimics the baseflow very well, because first the larger value of β, the greater emphasis is put on
Pairwise Comparison and Distance Measure of Hesitant Fuzzy Linguistic Term Sets
Directory of Open Access Journals (Sweden)
Han-Chen Huang
2014-01-01
Full Text Available A hesitant fuzzy linguistic term set (HFLTS, allowing experts using several possible linguistic terms to assess a qualitative linguistic variable, is very useful to express people’s hesitancy in practical decision-making problems. Up to now, a little research has been done on the comparison and distance measure of HFLTSs. In this paper, we present a comparison method for HFLTSs based on pairwise comparisons of each linguistic term in the two HFLTSs. Then, a distance measure method based on the pairwise comparison matrix of HFLTSs is proposed, and we prove that this distance is equal to the distance of the average values of HFLTSs, which makes the distance measure much more simple. Finally, the pairwise comparison and distance measure methods are utilized to develop two multicriteria decision-making approaches under hesitant fuzzy linguistic environments. The results analysis shows that our methods in this paper are more reasonable.
Samigulina, Galina A.; Shayakhmetova, Assem S.
2016-11-01
Research objective is the creation of intellectual innovative technology and information Smart-system of distance learning for visually impaired people. The organization of the available environment for receiving quality education for visually impaired people, their social adaptation in society are important and topical issues of modern education.The proposed Smart-system of distance learning for visually impaired people can significantly improve the efficiency and quality of education of this category of people. The scientific novelty of proposed Smart-system is using intelligent and statistical methods of processing multi-dimensional data, and taking into account psycho-physiological characteristics of perception and awareness learning information by visually impaired people.
Calibration Base Lines for Electronic Distance Measuring Instruments (EDMI)
National Oceanic and Atmospheric Administration, Department of Commerce — A calibration base line (CBL) is a precisely measured, straight-line course of approximately 1,400 m used to calibrate Electronic Distance Measuring Instruments...
International Nuclear Information System (INIS)
Kohli, Vandana; King, Micgael A.; Glick, Stephen J.; Pan, Tin-Su
1998-01-01
The goal of this investigation was to compare resolution recovery versus noise level of two methods for compensation of distance-dependent resolution (DDR) in SPECT imaging. The two methods of compensation were restoration filtering based on the frequency-distance relationship (FDR) prior to iterative reconstruction, and modelling DDR in the projector/backprojector pair employed in iterative reconstruction. FDR restoration filtering was computationally faster than modelling the detector response in iterative reconstruction. Using Gaussian diffusion to model the detector response in iterative reconstruction sped up the process by a factor of 2.5 over frequency domain filtering in the projector/backprojector pair. Gaussian diffusion modelling resulted in a better resolution versus noise tradeoff than either FDR restoration filtering or solely modelling attenuation in the projector/backprojector pair of iterative reconstruction. For the pixel size investigated herein (0.317 cm), accounting for DDR in the projector/backprojector pair by Gaussian diffusion, or by applying a blurring function based on the distance from the face of the collimator at each distance, resulted in very similar resolution recovery and slice noise level. (author)
The behavioural motivation model in open distance learning
DEFF Research Database (Denmark)
Zaikin, Oleg; Malinowska, Magdalena; Kofoed, Lise B.
2014-01-01
The article contains the concept of developing a motivation model aimed at supporting activity of both students and teachers in the process of implementing and using an open and distance learning system. Proposed motivation model is focused on the task of filling the knowledge repository with high...... quality didactic material. Open and distance learning system assures a computer space for the teaching/learning process in open environment. The structure of the motivation model and formal assumptions are described. Additionally, there is presented a structure of the linguistic database, helping...... the teacher to assess the student's motivation and the basic simulation model to analysis the teaching/learning process constrains. The proposed approach is based on the games theory and simulation approach....
A Distance Bounding Protocol for Location-Cloaked Applications.
Molina-Martínez, Cristián; Galdames, Patricio; Duran-Faundez, Cristian
2018-04-26
Location-based services (LBSs) assume that users are willing to release trustworthy and useful details about their whereabouts. However, many location privacy concerns have arisen. For location privacy protection, several algorithms build a cloaking region to hide a user’s location. However, many applications may not operate adequately on cloaked locations. For example, a traditional distance bounding protocol (DBP)—which is run by two nodes called the prover and the verifier—may conclude an untight and useless distance between these two entities. An LBS (verifier) may use this distance as a metric of usefulness and trustworthiness of the location claimed by the user (prover). However, we show that if a tight distance is desired, traditional DBP can refine a user’s cloaked location and compromise its location privacy. To find a proper balance, we propose a location-privacy-aware DBP protocol. Our solution consists of adding some small delays before submitting any user’s response. We show that several issues arise when a certain delay is chosen, and we propose some solutions. The effectiveness of our techniques in balancing location refinement and utility is demonstrated through simulation.
A Distance Bounding Protocol for Location-Cloaked Applications
Directory of Open Access Journals (Sweden)
Cristián Molina-Martínez
2018-04-01
Full Text Available Location-based services (LBSs assume that users are willing to release trustworthy and useful details about their whereabouts. However, many location privacy concerns have arisen. For location privacy protection, several algorithms build a cloaking region to hide a user’s location. However, many applications may not operate adequately on cloaked locations. For example, a traditional distance bounding protocol (DBP—which is run by two nodes called the prover and the verifier—may conclude an untight and useless distance between these two entities. An LBS (verifier may use this distance as a metric of usefulness and trustworthiness of the location claimed by the user (prover. However, we show that if a tight distance is desired, traditional DBP can refine a user’s cloaked location and compromise its location privacy. To find a proper balance, we propose a location-privacy-aware DBP protocol. Our solution consists of adding some small delays before submitting any user’s response. We show that several issues arise when a certain delay is chosen, and we propose some solutions. The effectiveness of our techniques in balancing location refinement and utility is demonstrated through simulation.
Origami-inspired building block and parametric design for mechanical metamaterials
Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo
2016-08-01
An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures.
Origami-inspired building block and parametric design for mechanical metamaterials
International Nuclear Information System (INIS)
Jiang, Wei; Ma, Hua; Feng, Mingde; Yan, Leilei; Wang, Jiafu; Wang, Jun; Qu, Shaobo
2016-01-01
An origami-based building block of mechanical metamaterials is proposed and explained by introducing a mechanism model based on its geometry. According to our model, this origami mechanism supports response to uniaxial tension that depends on structure parameters. Hence, its mechanical properties can be tunable by adjusting the structure parameters. Experiments for poly lactic acid (PLA) samples were carried out, and the results are in good agreement with those of finite element analysis (FEA). This work may be useful for designing building blocks of mechanical metamaterials or other complex mechanical structures. (paper)
Novel Distance Measure in Fuzzy TOPSIS for Supply Chain Strategy Based Supplier Selection
Directory of Open Access Journals (Sweden)
B. Pardha Saradhi
2016-01-01
Full Text Available In today’s highly competitive environment, organizations need to evaluate and select suppliers based on their manufacturing strategy. Identification of supply chain strategy of the organization, determination of decision criteria, and methods of supplier selection are appearing to be the most important components in research area in the field of supply chain management. In this paper, evaluation of suppliers is done based on the balanced scorecard framework using new distance measure in fuzzy TOPSIS by considering the supply chain strategy of the manufacturing organization. To take care of vagueness in decision making, trapezoidal fuzzy number is assumed for pairwise comparisons to determine relative weights of perspectives and criteria of supplier selection. Also, linguistic variables specified in terms of trapezoidal fuzzy number are considered for the payoff values of criteria of the suppliers. These fuzzy numbers satisfied the Jensen based inequality. A detailed application of the proposed methodology is illustrated.
Quasi-Block Copolymers Based on a General Polymeric Chain Stopper.
Sanguramath, Rajashekharayya A; Nealey, Paul F; Shenhar, Roy
2016-07-11
Quasi-block copolymers (q-BCPs) are block copolymers consisting of conventional and supramolecular blocks, in which the conventional block is end-terminated by a functionality that interacts with the supramolecular monomer (a "chain stopper" functionality). A new design of q-BCPs based on a general polymeric chain stopper, which consists of polystyrene end-terminated with a sulfonate group (PS-SO3 Li), is described. Through viscosity measurements and a detailed diffusion-ordered NMR spectroscopy study, it is shown that PS-SO3 Li can effectively cap two types of model supramolecular monomers to form q-BCPs in solution. Furthermore, differential scanning calorimetry data and structural characterization of thin films by scanning force microscopy suggests the existence of the q-BCP architecture in the melt. The new design considerably simplifies the synthesis of polymeric chain stoppers; thus promoting the utilization of q-BCPs as smart, nanostructured materials. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Self-sorting of guests and hard blocks in bisurea-based thermoplastic elastomers
Botterhuis, N.E.; Karthikeyan, S.; Spiering, A.J.H.; Sijbesma, R.P.
2010-01-01
Self-sorting in thermoplastic elastomers was studied using bisurea-based thermoplastic elastomers (TPEs) which are known to form hard blocks via hierarchical aggregation of bisurea segments into ribbons and of ribbons into fibers. Self-sorting of different bisurea hard blocks in mixtures of polymers
Directory of Open Access Journals (Sweden)
Olga R. Chepyuk
2014-01-01
Full Text Available This article discusses the possibility of organizing a practice-based learning using modern web-based technologies of distance learning like cMOOC. The authors share their experience of practical implementation of proprietary technology in the organization of a University course of innovative entrepreneurship. Based on their practice results authors propose the concept of a new generation of educational platforms based on the four vectors of development.
International Trade Modelling Using Open Flow Networks: A Flow-Distance Based Analysis.
Shen, Bin; Zhang, Jiang; Li, Yixiao; Zheng, Qiuhua; Li, Xingsen
2015-01-01
This paper models and analyzes international trade flows using open flow networks (OFNs) with the approaches of flow distances, which provide a novel perspective and effective tools for the study of international trade. We discuss the establishment of OFNs of international trade from two coupled viewpoints: the viewpoint of trading commodity flow and that of money flow. Based on the novel model with flow distance approaches, meaningful insights are gained. First, by introducing the concepts of trade trophic levels and niches, countries' roles and positions in the global supply chains (or value-added chains) can be evaluated quantitatively. We find that the distributions of trading "trophic levels" have the similar clustering pattern for different types of commodities, and summarize some regularities between money flow and commodity flow viewpoints. Second, we find that active and competitive countries trade a wide spectrum of products, while inactive and underdeveloped countries trade a limited variety of products. Besides, some abnormal countries import many types of goods, which the vast majority of countries do not need to import. Third, harmonic node centrality is proposed and we find the phenomenon of centrality stratification. All the results illustrate the usefulness of the model of OFNs with its network approaches for investigating international trade flows.
3D Reasoning from Blocks to Stability.
Zhaoyin Jia; Gallagher, Andrew C; Saxena, Ashutosh; Chen, Tsuhan
2015-05-01
Objects occupy physical space and obey physical laws. To truly understand a scene, we must reason about the space that objects in it occupy, and how each objects is supported stably by each other. In other words, we seek to understand which objects would, if moved, cause other objects to fall. This 3D volumetric reasoning is important for many scene understanding tasks, ranging from segmentation of objects to perception of a rich 3D, physically well-founded, interpretations of the scene. In this paper, we propose a new algorithm to parse a single RGB-D image with 3D block units while jointly reasoning about the segments, volumes, supporting relationships, and object stability. Our algorithm is based on the intuition that a good 3D representation of the scene is one that fits the depth data well, and is a stable, self-supporting arrangement of objects (i.e., one that does not topple). We design an energy function for representing the quality of the block representation based on these properties. Our algorithm fits 3D blocks to the depth values corresponding to image segments, and iteratively optimizes the energy function. Our proposed algorithm is the first to consider stability of objects in complex arrangements for reasoning about the underlying structure of the scene. Experimental results show that our stability-reasoning framework improves RGB-D segmentation and scene volumetric representation.
Keller, Katharina; Mertens, Valerie; Qi, Mian; Nalepa, Anna I; Godt, Adelheid; Savitsky, Anton; Jeschke, Gunnar; Yulikov, Maxim
2017-07-21
Extraction of distance distributions between high-spin paramagnetic centers from relaxation induced dipolar modulation enhancement (RIDME) data is affected by the presence of overtones of dipolar frequencies. As previously proposed, we account for these overtones by using a modified kernel function in Tikhonov regularization analysis. This paper analyzes the performance of such an approach on a series of model compounds with the Gd(iii)-PyMTA complex serving as paramagnetic high-spin label. We describe the calibration of the overtone coefficients for the RIDME kernel, demonstrate the accuracy of distance distributions obtained with this approach, and show that for our series of Gd-rulers RIDME technique provides more accurate distance distributions than Gd(iii)-Gd(iii) double electron-electron resonance (DEER). The analysis of RIDME data including harmonic overtones can be performed using the MATLAB-based program OvertoneAnalysis, which is available as open-source software from the web page of ETH Zurich. This approach opens a perspective for the routine use of the RIDME technique with high-spin labels in structural biology and structural studies of other soft matter.
An Artificial Intelligence-Based Distance Education System: Artimat
Nabiyev, Vasif; Karal, Hasan; Arslan, Selahattin; Erumit, Ali Kursat; Cebi, Ayca
2013-01-01
The purpose of this study is to evaluate the artificial intelligence-based distance education system called ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed…
Directory of Open Access Journals (Sweden)
Balajee Maram K.
2016-02-01
Full Text Available Data security is a major issue because of rapid evolution of data communication over unsecured internetwork. Here the proposed system is concerned with the problem of randomly generated S-box. The generation of S-box depends on Pseudo-Random-Number-Generators and shared-secret-key. The process of Pseudo-Random-Number-Generator depends on large prime numbers. All Pseudo-Random-Numbers are scrambled according to shared-secret-key. After scrambling, the S-box is generated. In this research, large prime numbers are the inputs to the Pseudo-Random-Number-Generator. The proposed S-box will reduce the complexity of S-box generation. Based on S-box parameters, it experimentally investigates the quality and robustness of the proposed algorithm which was tested. It yields better results with the S-box parameters like Hamming Distance, Balanced Output and Avalanche Effect and can be embedded to popular cryptography algorithms
Convolutional cylinder-type block-circulant cycle codes
Directory of Open Access Journals (Sweden)
Mohammad Gholami
2013-06-01
Full Text Available In this paper, we consider a class of column-weight two quasi-cyclic low-density paritycheck codes in which the girth can be large enough, as an arbitrary multiple of 8. Then we devote a convolutional form to these codes, such that their generator matrix can be obtained by elementary row and column operations on the parity-check matrix. Finally, we show that the free distance of the convolutional codes is equal to the minimum distance of their block counterparts.
Tackling student neurophobia in neurosciences block with team-based learning
Directory of Open Access Journals (Sweden)
Khurshid Anwar
2015-07-01
Full Text Available Introduction: Traditionally, neurosciences is perceived as a difficult course in undergraduate medical education with literature suggesting use of the term “Neurophobia” (fear of neurology among medical students. Instructional strategies employed for the teaching of neurosciences in undergraduate curricula traditionally include a combination of lectures, demonstrations, practical classes, problem-based learning and clinico-pathological conferences. Recently, team-based learning (TBL, a student-centered instructional strategy, has increasingly been regarded by many undergraduate medical courses as an effective method to assist student learning. Methods: In this study, 156 students of year-three neuroscience block were divided into seven male and seven female groups, comprising 11–12 students in each group. TBL was introduced during the 6 weeks of this block, and a total of eight TBL sessions were conducted during this duration. We evaluated the effect of TBL on student learning and correlated it with the student's performance in summative assessment. Moreover, the students’ perceptions regarding the process of TBL was assessed by online survey. Results: We found that students who attended TBL sessions performed better in the summative examinations as compared to those who did not. Furthermore, students performed better in team activities compared to individual testing, with male students performing better with a more favorable impact on their grades in the summative examination. There was an increase in the number of students achieving higher grades (grade B and above in this block when compared to the previous block (51.7% vs. 25%. Moreover, the number of students at risk for lower grades (Grade B- and below decreased in this block when compared to the previous block (30.6% vs. 55%. Students generally elicited a favorable response regarding the TBL process, as well as expressed satisfaction with the content covered and felt that such
Nagarajan, Ramanathan
2015-07-01
Micelles generated in water from most amphiphilic block copolymers are widely recognized to be non-equilibrium structures. Typically, the micelles are prepared by a kinetic process, first allowing molecular scale dissolution of the block copolymer in a common solvent that likes both the blocks and then gradually replacing the common solvent by water to promote the hydrophobic blocks to aggregate and create the micelles. The non-equilibrium nature of the micelle originates from the fact that dynamic exchange between the block copolymer molecules in the micelle and the singly dispersed block copolymer molecules in water is suppressed, because of the glassy nature of the core forming polymer block and/or its very large hydrophobicity. Although most amphiphilic block copolymers generate such non-equilibrium micelles, no theoretical approach to a priori predict the micelle characteristics currently exists. In this work, we propose a predictive approach for non-equilibrium micelles with glassy cores by applying the equilibrium theory of micelles in two steps. In the first, we calculate the properties of micelles formed in the mixed solvent while true equilibrium prevails, until the micelle core becomes glassy. In the second step, we freeze the micelle aggregation number at this glassy state and calculate the corona dimension from the equilibrium theory of micelles. The condition when the micelle core becomes glassy is independently determined from a statistical thermodynamic treatment of diluent effect on polymer glass transition temperature. The predictions based on this "non-equilibrium" model compare reasonably well with experimental data for polystyrene-polyethylene oxide diblock copolymer, which is the most extensively studied system in the literature. In contrast, the application of the equilibrium model to describe such a system significantly overpredicts the micelle core and corona dimensions and the aggregation number. The non-equilibrium model suggests ways to
Copper based superconductors by the combination of blocking and mediating layers
International Nuclear Information System (INIS)
Shimizu, K.; Nobumasa, H.; Kawai, T.
1992-01-01
Copper based high temperature superconductors are composed of Cu-O 2 sheets in combination with thin atomic mediating layers and thick blocking layers which mediate and intercept interactions between Cu-O 2 sheets, respectively. New possible superconductors can be designed by the stacking of the Cu-O 2 sheets along with the periodic insertion of the mediating layers and different kinds of blocking layers. (orig.)
International Nuclear Information System (INIS)
Luo, Da-Wei; Xu, Jing-Bo
2015-01-01
We use an alternative method to investigate the quantum criticality at zero and finite temperature using trace distance along with the density matrix renormalization group. It is shown that the average correlation measured by the trace distance between the system block and environment block in a DMRG sweep is able to detect the critical points of quantum phase transitions at finite temperature. As illustrative examples, we study spin-1 XXZ chains with uniaxial single-ion-type anisotropy and the Heisenberg spin chain with staggered coupling and external magnetic field. It is found that the trace distance shows discontinuity at the critical points of quantum phase transition and can be used as an indicator of QPTs
Nanostructure of self-assembled rod-coil block copolymer films for photovoltaic applications
International Nuclear Information System (INIS)
Heiser, T.; Adamopoulos, G.; Brinkmann, M.; Giovanella, U.; Ould-Saad, S.; Brochon, C.; Wetering, K. van de; Hadziioannou, G.
2006-01-01
The nanostructures of a series of rod-coil block copolymers, designed for photovoltaic applications, are studied by atomic force microscopy and transmission electron microscopy. The copolymers are composed of a semiconducting poly-p-phenylenevinylene rod with (2'-ethyl)-hexyloxy side chains and a functionalized coil block of various length and flexibility. Both, as deposited and annealed block copolymer films were investigated. The results show that highly ordered structures are only obtained if the coil block is characterized by a glass transition temperature which is significantly lower than the melting temperature of the alkyl side chains. For this material a high molecular mobility and strong driving force for crystallization of the rigid block can be achieved simultaneously. For the smallest coil to rod length ratio, we found a lamellar morphology with perpendicularly oriented lamellae with respect to the substrate. Electron diffraction data show the presence of a periodical molecular arrangement with a characteristic distance of 0.94 nm that is attributed to the distance between conjugated chains separated by the layers of alkyl sidechains
Nanostructure of self-assembled rod-coil block copolymer films for photovoltaic applications
Energy Technology Data Exchange (ETDEWEB)
Heiser, T. [Institut d' Electronique du Solide et des Systemes (InESS), CNRS/ULP, 23, rue du Loess, F-67037 Strasbourg Cedex 2 (France)]. E-mail: Thomas.Heiser@iness.c-strasbourg.fr; Adamopoulos, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (LIPHT), Ecole Europeenne de Chimie Polymeres et Materiaux (ECPM), 25, rue Becquerel, F-67087 Strasbourg Cedex 2 (France); Brinkmann, M. [Institut Charles Sadron (ICS), CNRS, 6, rue Boussingault, F-67083 Strasbourg Cedex (France); Giovanella, U. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (LIPHT), Ecole Europeenne de Chimie Polymeres et Materiaux (ECPM), 25, rue Becquerel, F-67087 Strasbourg Cedex 2 (France); Ould-Saad, S. [Institut d' Electronique du Solide et des Systemes (InESS), CNRS/ULP, 23, rue du Loess, F-67037 Strasbourg Cedex 2 (France); Brochon, C. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (LIPHT), Ecole Europeenne de Chimie Polymeres et Materiaux (ECPM), 25, rue Becquerel, F-67087 Strasbourg Cedex 2 (France); Wetering, K. van de [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (LIPHT), Ecole Europeenne de Chimie Polymeres et Materiaux (ECPM), 25, rue Becquerel, F-67087 Strasbourg Cedex 2 (France); Hadziioannou, G. [Laboratoire d' Ingenierie des Polymeres pour les Hautes Technologies (LIPHT), Ecole Europeenne de Chimie Polymeres et Materiaux (ECPM), 25, rue Becquerel, F-67087 Strasbourg Cedex 2 (France)
2006-07-26
The nanostructures of a series of rod-coil block copolymers, designed for photovoltaic applications, are studied by atomic force microscopy and transmission electron microscopy. The copolymers are composed of a semiconducting poly-p-phenylenevinylene rod with (2'-ethyl)-hexyloxy side chains and a functionalized coil block of various length and flexibility. Both, as deposited and annealed block copolymer films were investigated. The results show that highly ordered structures are only obtained if the coil block is characterized by a glass transition temperature which is significantly lower than the melting temperature of the alkyl side chains. For this material a high molecular mobility and strong driving force for crystallization of the rigid block can be achieved simultaneously. For the smallest coil to rod length ratio, we found a lamellar morphology with perpendicularly oriented lamellae with respect to the substrate. Electron diffraction data show the presence of a periodical molecular arrangement with a characteristic distance of 0.94 nm that is attributed to the distance between conjugated chains separated by the layers of alkyl sidechains.
Preparedness of NGO Health Service Providers in Bangladesh about Distance Based Learning
Directory of Open Access Journals (Sweden)
AKM ALAMGIR
2006-07-01
Full Text Available This cross-sectional survey was conducted countrywide from 15 January to 01 March 2004 to explore the potentials of health care service providers (physicians, nurses, paramedics etc. for using distance-based learning materials. Face-to-face in-depth interview was taken from 99 randomly selected direct service providers, 45 midlevel clinic mangers/physicians and 06 administrators or policy planners. Quasi-open questionnaire was developed for three different levels. Pre-trained interviewer team assisted data collection at field level. Total procedure was stringently monitored for completeness and consistency to ensure quality data. SPSS software was used to process and analyze both univariate and multivariate multiple responses. Identified need for training areas were- STD/HIV, tuberculosis updates, family planning, treatment of locally endemic diseases, behavioral change communication & marketing and quality management system for managers. About 76.7% clinic managers and 89.1% service providers had primary information about distance-based learning in spite showed interest. About 51.5% desired monthly, 20.6% biweekly and 26.8% wanted bimonthly circulation of the distance-based study materials. About 35.1% expected print materials with regular facilitators while 58.8% demanded stand-by facilitators. The study suggested wide acceptance of distance-based learning methods as supplementary to the continuing medical education among the countrywide health service providers.
RADIOMETRIC BLOCK ADJUSMENT AND DIGITAL RADIOMETRIC MODEL GENERATION
Directory of Open Access Journals (Sweden)
A. Pros
2013-05-01
Full Text Available In this paper we present a radiometric block adjustment method that is related to geometric block adjustment and to the concept of a terrain Digital Radiometric Model (DRM as a complement to the terrain digital elevation and surface models. A DRM, in our concept, is a function that for each ground point returns a reflectance value and a Bidirectional Reflectance Distribution Function (BRDF. In a similar way to the terrain geometric reconstruction procedure, given an image block of some terrain area, we split the DRM generation in two phases: radiometric block adjustment and DRM generation. In the paper we concentrate on the radiometric block adjustment step, but we also describe a preliminary DRM generator. In the block adjustment step, after a radiometric pre-calibraton step, local atmosphere radiative transfer parameters, and ground reflectances and BRDFs at the radiometric tie points are estimated. This radiometric block adjustment is based on atmospheric radiative transfer (ART models, pre-selected BRDF models and radiometric ground control points. The proposed concept is implemented and applied in an experimental campaign, and the obtained results are presented. The DRM and orthophoto mosaics are generated showing no radiometric differences at the seam lines.
A Conceptual Model of the Cognitive Processing of Environmental Distance Information
Montello, Daniel R.
I review theories and research on the cognitive processing of environmental distance information by humans, particularly that acquired via direct experience in the environment. The cognitive processes I consider for acquiring and thinking about environmental distance information include working-memory, nonmediated, hybrid, and simple-retrieval processes. Based on my review of the research literature, and additional considerations about the sources of distance information and the situations in which it is used, I propose an integrative conceptual model to explain the cognitive processing of distance information that takes account of the plurality of possible processes and information sources, and describes conditions under which particular processes and sources are likely to operate. The mechanism of summing vista distances is identified as widely important in situations with good visual access to the environment. Heuristics based on time, effort, or other information are likely to play their most important role when sensory access is restricted.
Effect of the inter-block spacing on the thermal performance of a PCM based heat sink
Energy Technology Data Exchange (ETDEWEB)
Faraji, M.; El Qarnia, H. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire de mecanique des fluides et d' energetique; El Khadir, L. [Cadi Ayyad Univ., Marrakech (Morocco). Faculte des sciences Semlalia, Dept. de physique, Laboratoire d' tomatique de l' Environnement et Procedes de Transferts
2010-07-01
Advanced electronic devices require efficient thermal control systems. Heat transfer analysis of such systems is challenging because of constraints regarding space limitations, power consumption and noise level. This study considered the problem of melting and natural convection in a rectangular enclosure heated with 3 heat sources with a constant and uniform volumetric heat generation. The heat sources were protruding and mounted on a vertical conducting plate. Conjugate conduction in a plate and heat sources coupled with natural convection and melting process were examined in an effort to determine the effects of the inter-blocks spacing ratio on the thermal performance of the cooling PCM-heat sink. The percentage contribution of substrate heat conduction on the total removed heat from heat sources was also investigated. Correlations were derived for the non- dimensional secured working time and the corresponding melt fraction. In order to investigate the thermal behaviour of the proposed heat sink, a mathematical model was developed based on the mass, momentum and energy conservation equations. The results revealed that for lower inter-blocks spacing, the dimensionless secured working time needed by the chips to reach the critical temperature was maximized. The highest inter-blocks spacing ratio provoked a sudden rise in chip temperatures and thus reduced the dimensionless secured working time. It was concluded that this approach can be used in the design of PCM-based cooling systems. 9 refs., 2 tabs., 4 figs.
Dynamical theory of subconstituents based on ternary algebras
International Nuclear Information System (INIS)
Bars, I.; Guenaydin, M.
1980-01-01
We propose a dynamical theory of possible fundamental constituents of matter. Our scheme is based on (super) ternary algebras which are building blocks of Lie (super) algebras. Elementary fields, called ''ternons,'' are associated with the elements of a (super) ternary algebra. Effective gauge bosons, ''quarks,'' and ''leptons'' are constructed as composite fields from ternons. We propose two- and four-dimensional (super) ternon theories whose structures are closely related to CP/sub N/ and Yang-Mills theories and their supersymmetric extensions. We conjecture that at large distances (low energies) the ternon theories dynamically produce effective gauge theories and thus may be capable of explaining the present particle-physics phenomenology. Such a scenario is valid in two dimensions
PYRAMID METHOD OF DISTANCE LEARNING IN HIGER EDUCATION
Directory of Open Access Journals (Sweden)
Дмитрий Васильевич Сенашенко
2017-12-01
Full Text Available The article deals with modern methods of distance learning in the corporate sector. On the specifics of the application of the described methods is their classification and be subject to review their specific differences based on the features and applications of these techniques given the characteristics of the organization of teaching in higher education, a conclusion about their preferred sides, which can be used in distance education. Later in the article, taking into account the above factors, it is proposed an innovative method of formation of educational programs. In view of the similarity of the rendered appearance of the pyramids, this technique proposed name “pyramid”. Offered by the authors, this technique is best synthesis of the best features of the previously described in the article for the online teaching methods. In the future, we are given a detailed description and conducted a preliminary analysis of the applicability of this technique to the training process in the Russian Federation. The analysis describes the eight alleged authors of distance education problems of high school that this method can help to solve.
Mannila, H; Koivisto, M; Perola, M; Varilo, T; Hennah, W; Ekelund, J; Lukk, M; Peltonen, L; Ukkonen, E
2003-07-01
We describe a new probabilistic method for finding haplotype blocks that is based on the use of the minimum description length (MDL) principle. We give a rigorous definition of the quality of a segmentation of a genomic region into blocks and describe a dynamic programming algorithm for finding the optimal segmentation with respect to this measure. We also describe a method for finding the probability of a block boundary for each pair of adjacent markers: this gives a tool for evaluating the significance of each block boundary. We have applied the method to the published data of Daly and colleagues. The results expose some problems that exist in the current methods for the evaluation of the significance of predicted block boundaries. Our method, MDL block finder, can be used to compare block borders in different sample sets, and we demonstrate this by applying the MDL-based method to define the block structure in chromosomes from population isolates.
Robustness of Distance-to-Default
DEFF Research Database (Denmark)
Jessen, Cathrine; Lando, David
2013-01-01
. A notable exception is a model with stochastic volatility of assets. In this case both the ranking of firms and the estimated default probabilities using distance-to-default perform significantly worse. We therefore propose a volatility adjustment of the distance-to-default measure, that significantly...
Proving Continuity of Coinductive Global Bisimulation Distances: A Never Ending Story
Directory of Open Access Journals (Sweden)
David Romero-Hernández
2015-12-01
Full Text Available We have developed a notion of global bisimulation distance between processes which goes somehow beyond the notions of bisimulation distance already existing in the literature, mainly based on bisimulation games. Our proposal is based on the cost of transformations: how much we need to modify one of the compared processes to obtain the other. Our original definition only covered finite processes, but a coinductive approach allows us to extend it to cover infinite but finitary trees. After having shown many interesting properties of our distance, it was our intention to prove continuity with respect to projections, but unfortunately the issue remains open. Nonetheless, we have obtained several partial results that are presented in this paper.
Analytic processing of distance.
Dopkins, Stephen; Galyer, Darin
2018-01-01
How does a human observer extract from the distance between two frontal points the component corresponding to an axis of a rectangular reference frame? To find out we had participants classify pairs of small circles, varying on the horizontal and vertical axes of a computer screen, in terms of the horizontal distance between them. A response signal controlled response time. The error rate depended on the irrelevant vertical as well as the relevant horizontal distance between the test circles with the relevant distance effect being larger than the irrelevant distance effect. The results implied that the horizontal distance between the test circles was imperfectly extracted from the overall distance between them. The results supported an account, derived from the Exemplar Based Random Walk model (Nosofsky & Palmieri, 1997), under which distance classification is based on the overall distance between the test circles, with relevant distance being extracted from overall distance to the extent that the relevant and irrelevant axes are differentially weighted so as to reduce the contribution of irrelevant distance to overall distance. The results did not support an account, derived from the General Recognition Theory (Ashby & Maddox, 1994), under which distance classification is based on the relevant distance between the test circles, with the irrelevant distance effect arising because a test circle's perceived location on the relevant axis depends on its location on the irrelevant axis, and with relevant distance being extracted from overall distance to the extent that this dependency is absent. Copyright © 2017 Elsevier B.V. All rights reserved.
An Agent-Based Solution Framework for Inter-Block Yard Crane Scheduling Problems
Directory of Open Access Journals (Sweden)
Omor Sharif
2012-06-01
Full Text Available The efficiency of yard operations is critical to the overall productivity of a container terminal because the yard serves as the interface between the landside and waterside operations. Most container terminals use yard cranes to transfer containers between the yard and trucks (both external and internal. To facilitate vessel operations, an efficient work schedule for the yard cranes is necessary given varying work volumes among yard blocks with different planning periods. This paper investigated an agent-based approach to assign and relocate yard cranes among yard blocks based on the forecasted work volumes. The goal of our study is to reduce the work volume that remains incomplete at the end of a planning period. We offered several preference functions for yard cranes and blocks which are modeled as agents. These preference functions are designed to find effective schedules for yard cranes. In addition, we examined various rules for the initial assignment of yard cranes to blocks. Our analysis demonstrated that our model can effectively and efficiently reduce the percentage of incomplete work volume for any real-world sized problem.
Meier, Matthias M. M.; Wieler, Rainer
2014-03-01
It has been argued that the decay rates of several radioactive nuclides are slightly lower at Earth's aphelion than at perihelion, and that this effect might depend on heliocentric distance. It might then be expected that nuclear decay rates be considerably lower at larger distances from the sun, e.g., in the asteroid belt at 2-3 AU from where most meteorites originate. If so, ages of meteorites obtained by analyses of radioactive nuclides and their stable daughter isotopes might be in error, since these ages are based on decay rates determined on Earth. Here we evaluate whether the large data base on nuclear cosmochronology offers any hint for discrepancies which might be due to radially variable decay rates. Chlorine-36 (t1/2 = 301,000 a) is produced in meteorites by interactions with cosmic rays and is the nuclide for which a decay rate dependence from heliocentric distance has been proposed, which, in principle, can be tested with our approach and the current data base. We show that compilations of 36Cl concentrations measured in meteorites offer no support for a spatially variable 36Cl decay rate. For very short-lived cosmic-ray produced radionuclides (half-lives uranium decay rates in different meteorite parent bodies in the asteroid belt. Moreover, the oldest U-Pb ages of meteorites agree with the main-sequence age of the sun derived from helioseismology within the formal ˜1% uncertainty of the latter. Meteorite ages also provide no evidence for a decrease of decay rates with heliocentric distance for nuclides such as 87Rb (decay mode β-) 40K (β- and electron capture), and 147Sm (α).
Oligomers and Polymers Based on Pentacene Building Blocks
Lehnherr, Dan; Tykwinski, Rik R.
2010-01-01
Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.
Swarm-based wayfinding support in open and distance learning
Tattersall, Colin; Manderveld, Jocelyn; Van den Berg, Bert; Van Es, René; Janssen, José; Koper, Rob
2005-01-01
Please refer to the original source: Tattersall, C. Manderveld, J., Van den Berg, B., Van Es, R., Janssen, J., & Koper, R. (2005). Swarm-based wayfinding support in open and distance learning. In Alkhalifa, E.M. (Ed). Cognitively Informed Systems: Utilizing Practical Approaches to Enrich Information
Fault Diagnosis of Supervision and Homogenization Distance Based on Local Linear Embedding Algorithm
Directory of Open Access Journals (Sweden)
Guangbin Wang
2015-01-01
Full Text Available In view of the problems of uneven distribution of reality fault samples and dimension reduction effect of locally linear embedding (LLE algorithm which is easily affected by neighboring points, an improved local linear embedding algorithm of homogenization distance (HLLE is developed. The method makes the overall distribution of sample points tend to be homogenization and reduces the influence of neighboring points using homogenization distance instead of the traditional Euclidean distance. It is helpful to choose effective neighboring points to construct weight matrix for dimension reduction. Because the fault recognition performance improvement of HLLE is limited and unstable, the paper further proposes a new local linear embedding algorithm of supervision and homogenization distance (SHLLE by adding the supervised learning mechanism. On the basis of homogenization distance, supervised learning increases the category information of sample points so that the same category of sample points will be gathered and the heterogeneous category of sample points will be scattered. It effectively improves the performance of fault diagnosis and maintains stability at the same time. A comparison of the methods mentioned above was made by simulation experiment with rotor system fault diagnosis, and the results show that SHLLE algorithm has superior fault recognition performance.
Permutation-invariant distance between atomic configurations
Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel
2015-09-01
We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity.
Permutation-invariant distance between atomic configurations
International Nuclear Information System (INIS)
Ferré, Grégoire; Maillet, Jean-Bernard; Stoltz, Gabriel
2015-01-01
We present a permutation-invariant distance between atomic configurations, defined through a functional representation of atomic positions. This distance enables us to directly compare different atomic environments with an arbitrary number of particles, without going through a space of reduced dimensionality (i.e., fingerprints) as an intermediate step. Moreover, this distance is naturally invariant through permutations of atoms, avoiding the time consuming associated minimization required by other common criteria (like the root mean square distance). Finally, the invariance through global rotations is accounted for by a minimization procedure in the space of rotations solved by Monte Carlo simulated annealing. A formal framework is also introduced, showing that the distance we propose verifies the property of a metric on the space of atomic configurations. Two examples of applications are proposed. The first one consists in evaluating faithfulness of some fingerprints (or descriptors), i.e., their capacity to represent the structural information of a configuration. The second application concerns structural analysis, where our distance proves to be efficient in discriminating different local structures and even classifying their degree of similarity
Compressed multi-block local binary pattern for object tracking
Li, Tianwen; Gao, Yun; Zhao, Lei; Zhou, Hao
2018-04-01
Both robustness and real-time are very important for the application of object tracking under a real environment. The focused trackers based on deep learning are difficult to satisfy with the real-time of tracking. Compressive sensing provided a technical support for real-time tracking. In this paper, an object can be tracked via a multi-block local binary pattern feature. The feature vector was extracted based on the multi-block local binary pattern feature, which was compressed via a sparse random Gaussian matrix as the measurement matrix. The experiments showed that the proposed tracker ran in real-time and outperformed the existed compressive trackers based on Haar-like feature on many challenging video sequences in terms of accuracy and robustness.
Nitrogen Abundances and the Distance Moduli of the Pleiades and Hyades
Miller, Blake; King, Jeremy R.; Chen, Yu; Boesgaard, Ann M.
2013-01-01
Recent reanalyses of HIPPARCOS parallax data confirm a previously noted discrepancy with the Pleiades distance modulus estimated from main-sequence fitting in the color-magnitude diagram. One proposed explanation of this distance modulus discrepancy is a Pleiades He abundance that is significantly larger than the Hyades value. We suggest that, based on our theoretical and observational understanding of Galactic chemical evolution, nitrogen abundances may serve as a proxy for helium abundances...
EnviroAtlas - Portland, ME - Park Access by Block Group
U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the block group population that is within and beyond an easy walking distance (500m) of a park entrance. Park entrances were included...
Implementation of a microcomputer based distance relay for parallel transmission lines
International Nuclear Information System (INIS)
Phadke, A.G.; Jihuang, L.
1986-01-01
Distance relaying for parallel transmission lines is a difficult application problem with conventional phase and ground distance relays. It is known that for cross-country faults involving dissimilar phases and ground, three phase tripping may result. This paper summarizes a newly developed microcomputer based relay which is capable of classifying the cross-country fault correctly. The paper describes the principle of operation and results of laboratory tests of this relay
V Besteiro, Lucas; Kong, Xiang-Tian; Wang, Zhiming; Rosei, Federico; Govorov, Alexander O
2018-04-16
The need for energy-saving materials is pressing. This Letter reports on the design of energy-saving glasses and films based on plasmonic nanocrystals that efficiently block infrared radiation. Designing such plasmonic composite glasses is nontrivial and requires taking full advantage of both material and geometrical properties of the nanoparticles. We compute the performance of solar plasmonic glasses incorporating a transparent matrix and specially shaped nanocrystals. This performance depends on the shape and material of such nanocrystals. Glasses designed with plasmonic nanoshells are shown to exhibit overall better performances as compared to nanorods and nanocups. Simultaneously, scalable synthesis of plasmonic nanoshells and nanocups is technologically feasible using gas-phase fabrication methods. The computational simulations were performed for noble metals (gold and silver) as well as for alternative plasmonic materials (aluminum, copper, and titanium nitride). Inexpensive plasmonic materials (silver, copper, aluminum, and titanium nitride) show an overall good performance in terms of the commonly used figures of merit of industrial glass windows. Together with numerical data for specific materials, this study includes a set of general rules for designing efficient plasmonic IR-blocking media. The plasmonic glasses proposed herein are good candidates for the creation of cheap optical media, to be used in energy-saving windows in warm climates' housing or temperature-sensitive infrastructure.
Anchoring quartet-based phylogenetic distances and applications to species tree reconstruction.
Sayyari, Erfan; Mirarab, Siavash
2016-11-11
Inferring species trees from gene trees using the coalescent-based summary methods has been the subject of much attention, yet new scalable and accurate methods are needed. We introduce DISTIQUE, a new statistically consistent summary method for inferring species trees from gene trees under the coalescent model. We generalize our results to arbitrary phylogenetic inference problems; we show that two arbitrarily chosen leaves, called anchors, can be used to estimate relative distances between all other pairs of leaves by inferring relevant quartet trees. This results in a family of distance-based tree inference methods, with running times ranging between quadratic to quartic in the number of leaves. We show in simulated studies that DISTIQUE has comparable accuracy to leading coalescent-based summary methods and reduced running times.
FBCOT: a fast block coding option for JPEG 2000
Taubman, David; Naman, Aous; Mathew, Reji
2017-09-01
Based on the EBCOT algorithm, JPEG 2000 finds application in many fields, including high performance scientific, geospatial and video coding applications. Beyond digital cinema, JPEG 2000 is also attractive for low-latency video communications. The main obstacle for some of these applications is the relatively high computational complexity of the block coder, especially at high bit-rates. This paper proposes a drop-in replacement for the JPEG 2000 block coding algorithm, achieving much higher encoding and decoding throughputs, with only modest loss in coding efficiency (typically Coding with Optimized Truncation).
Symmetrical compression distance for arrhythmia discrimination in cloud-based big-data services.
Lillo-Castellano, J M; Mora-Jiménez, I; Santiago-Mozos, R; Chavarría-Asso, F; Cano-González, A; García-Alberola, A; Rojo-Álvarez, J L
2015-07-01
The current development of cloud computing is completely changing the paradigm of data knowledge extraction in huge databases. An example of this technology in the cardiac arrhythmia field is the SCOOP platform, a national-level scientific cloud-based big data service for implantable cardioverter defibrillators. In this scenario, we here propose a new methodology for automatic classification of intracardiac electrograms (EGMs) in a cloud computing system, designed for minimal signal preprocessing. A new compression-based similarity measure (CSM) is created for low computational burden, so-called weighted fast compression distance, which provides better performance when compared with other CSMs in the literature. Using simple machine learning techniques, a set of 6848 EGMs extracted from SCOOP platform were classified into seven cardiac arrhythmia classes and one noise class, reaching near to 90% accuracy when previous patient arrhythmia information was available and 63% otherwise, hence overcoming in all cases the classification provided by the majority class. Results show that this methodology can be used as a high-quality service of cloud computing, providing support to physicians for improving the knowledge on patient diagnosis.
Cai, Ailong; Li, Lei; Zheng, Zhizhong; Zhang, Hanming; Wang, Linyuan; Hu, Guoen; Yan, Bin
2018-02-01
In medical imaging many conventional regularization methods, such as total variation or total generalized variation, impose strong prior assumptions which can only account for very limited classes of images. A more reasonable sparse representation frame for images is still badly needed. Visually understandable images contain meaningful patterns, and combinations or collections of these patterns can be utilized to form some sparse and redundant representations which promise to facilitate image reconstructions. In this work, we propose and study block matching sparsity regularization (BMSR) and devise an optimization program using BMSR for computed tomography (CT) image reconstruction for an incomplete projection set. The program is built as a constrained optimization, minimizing the L1-norm of the coefficients of the image in the transformed domain subject to data observation and positivity of the image itself. To solve the program efficiently, a practical method based on the proximal point algorithm is developed and analyzed. In order to accelerate the convergence rate, a practical strategy for tuning the BMSR parameter is proposed and applied. The experimental results for various settings, including real CT scanning, have verified the proposed reconstruction method showing promising capabilities over conventional regularization.
Handwritten Digit Recognition using Edit Distance-Based KNN
Bernard , Marc; Fromont , Elisa; Habrard , Amaury; Sebban , Marc
2012-01-01
We discuss the student project given for the last 5 years to the 1st year Master Students which follow the Machine Learning lecture at the University Jean Monnet in Saint Etienne, France. The goal of this project is to develop a GUI that can recognize digits and/or letters drawn manually. The system is based on a string representation of the dig- its using Freeman codes and on the use of an edit-distance-based K-Nearest Neighbors classifier. In addition to the machine learning knowledge about...
GPU-based Branchless Distance-Driven Projection and Backprojection.
Liu, Rui; Fu, Lin; De Man, Bruno; Yu, Hengyong
2017-12-01
Projection and backprojection operations are essential in a variety of image reconstruction and physical correction algorithms in CT. The distance-driven (DD) projection and backprojection are widely used for their highly sequential memory access pattern and low arithmetic cost. However, a typical DD implementation has an inner loop that adjusts the calculation depending on the relative position between voxel and detector cell boundaries. The irregularity of the branch behavior makes it inefficient to be implemented on massively parallel computing devices such as graphics processing units (GPUs). Such irregular branch behaviors can be eliminated by factorizing the DD operation as three branchless steps: integration, linear interpolation, and differentiation, all of which are highly amenable to massive vectorization. In this paper, we implement and evaluate a highly parallel branchless DD algorithm for 3D cone beam CT. The algorithm utilizes the texture memory and hardware interpolation on GPUs to achieve fast computational speed. The developed branchless DD algorithm achieved 137-fold speedup for forward projection and 188-fold speedup for backprojection relative to a single-thread CPU implementation. Compared with a state-of-the-art 32-thread CPU implementation, the proposed branchless DD achieved 8-fold acceleration for forward projection and 10-fold acceleration for backprojection. GPU based branchless DD method was evaluated by iterative reconstruction algorithms with both simulation and real datasets. It obtained visually identical images as the CPU reference algorithm.
Two innovative solutions based on fibre concrete blocks designed for building substructure
Pazderka, J.; Hájek, P.
2017-09-01
Using of fibers in a high-strength concrete allows reduction of the dimensions of small precast concrete elements, which opens up new ways of solution for traditional construction details in buildings. The paper presents two innovative technical solutions for building substructure: The special shaped plinth block from fibre concrete and the fibre concrete elements for new technical solution of ventilated floor. The main advantages of plinth block from fibre concrete blocks (compared with standard plinth solutions) is: easier and faster assembly, higher durability and thanks to the air cavity between the vertical part of the block, the building substructure reduced moisture level of structures under the waterproofing layer and a comprehensive solution to the final surface of building plinth as well as the surface of adjacent terrain. The ventilated floor based on fibre concrete precast blocks is an attractive structural alternative for tackling the problem of increased moisture in masonry in older buildings, lacking a functional waterproof layer in the substructure.
Oligomers and Polymers Based on Pentacene Building Blocks
Directory of Open Access Journals (Sweden)
Dan Lehnherr
2010-04-01
Full Text Available Functionalized pentacene derivatives continue to provide unique materials for organic semiconductor applications. Although oligomers and polymers based on pentacene building blocks remain quite rare, recent synthetic achievements have provided a number of examples with varied structural motifs. This review highlights recent work in this area and, when possible, contrasts the properties of defined-length pentacene oligomers to those of mono- and polymeric systems.
[Travel time and distances to Norwegian out-of-hours casualty clinics].
Raknes, Guttorm; Morken, Tone; Hunskår, Steinar
2014-11-01
Geographical factors have an impact on the utilisation of out-of-hours services. In this study we have investigated the travel distance to out-of-hours casualty clinics in Norwegian municipalities in 2011 and the number of municipalities covered by the proposed recommendations for secondary on-call arrangements due to long distances. We estimated the average maximum travel times and distances in Norwegian municipalities using a postcode-based method. Separate analyses were performed for municipalities with a single, permanently located casualty clinic. Altogether 417 out of 430 municipalities were included. We present the median value of the maximum travel times and distances for the included municipalities. The median maximum average travel distance for the municipalities was 19 km. The median maximum average travel time was 22 minutes. In 40 of the municipalities (10 %) the median maximum average travel time exceeded 60 minutes, and in 97 municipalities (23 %) the median maximum average travel time exceeded 40 minutes. The population of these groups comprised 2 % and 5 % of the country's total population respectively. For municipalities with permanent emergency facilities(N = 316), the median average flight time 16 minutes and median average distance 13 km.. In many municipalities, the inhabitants have a long average journey to out-of-hours emergency health services, but seen as a whole, the inhabitants of these municipalities account for a very small proportion of the Norwegian population. The results indicate that the proposed recommendations for secondary on-call duty based on long distances apply to only a small number of inhabitants. The recommendations should therefore be adjusted and reformulated to become more relevant.
Towards an intelligent environment for distance learning
Directory of Open Access Journals (Sweden)
Rafael Morales
2009-12-01
Full Text Available Mainstream distance learning nowadays is heavily influenced by traditional educational approaches that produceshomogenised learning scenarios for all learners through learning management systems. Any differentiation betweenlearners and personalisation of their learning scenarios is left to the teacher, who gets minimum support from the system inthis respect. This way, the truly digital native, the computer, is left out of the move, unable to better support the teachinglearning processes because it is not provided with the means to transform into knowledge all the information that it storesand manages. I believe learning management systems should care for supporting adaptation and personalisation of bothindividual learning and the formation of communities of learning. Open learner modelling and intelligent collaborativelearning environments are proposed as a means to care. The proposal is complemented with a general architecture for anintelligent environment for distance learning and an educational model based on the principles of self-management,creativity, significance and participation.
Nonlinear partial least squares with Hellinger distance for nonlinear process monitoring
Harrou, Fouzi; Madakyaru, Muddu; Sun, Ying
2017-01-01
This paper proposes an efficient data-based anomaly detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions. The performances of the developed anomaly detection using NLPLS-based HD technique is illustrated using simulated plug flow reactor data.
Nonlinear partial least squares with Hellinger distance for nonlinear process monitoring
Harrou, Fouzi
2017-02-16
This paper proposes an efficient data-based anomaly detection method that can be used for monitoring nonlinear processes. The proposed method merges advantages of nonlinear projection to latent structures (NLPLS) modeling and those of Hellinger distance (HD) metric to identify abnormal changes in highly correlated multivariate data. Specifically, the HD is used to quantify the dissimilarity between current NLPLS-based residual and reference probability distributions. The performances of the developed anomaly detection using NLPLS-based HD technique is illustrated using simulated plug flow reactor data.
Scalable inference for stochastic block models
Peng, Chengbin
2017-12-08
Community detection in graphs is widely used in social and biological networks, and the stochastic block model is a powerful probabilistic tool for describing graphs with community structures. However, in the era of "big data," traditional inference algorithms for such a model are increasingly limited due to their high time complexity and poor scalability. In this paper, we propose a multi-stage maximum likelihood approach to recover the latent parameters of the stochastic block model, in time linear with respect to the number of edges. We also propose a parallel algorithm based on message passing. Our algorithm can overlap communication and computation, providing speedup without compromising accuracy as the number of processors grows. For example, to process a real-world graph with about 1.3 million nodes and 10 million edges, our algorithm requires about 6 seconds on 64 cores of a contemporary commodity Linux cluster. Experiments demonstrate that the algorithm can produce high quality results on both benchmark and real-world graphs. An example of finding more meaningful communities is illustrated consequently in comparison with a popular modularity maximization algorithm.
Practical method of calculating time-integrated concentrations at medium and large distances
International Nuclear Information System (INIS)
Cagnetti, P.; Ferrara, V.
1980-01-01
Previous reports have covered the possibility of calculating time-integrated concentrations (TICs) for a prolonged release, based on concentration estimates for a brief release. This study proposes a simple method of evaluating concentrations in the air at medium and large distances, for a brief release. It is known that the stability of the atmospheric layers close to ground level influence diffusion only over short distances. Beyond some tens of kilometers, as the pollutant cloud progressively reaches higher layers, diffusion is affected by factors other than the stability at ground level, such as wind shear for intermediate distances and the divergence and rotational motion of air masses towards the upper limit of the mesoscale and on the synoptic scale. Using the data available in the literature, expressions for sigmasub(y) and sigmasub(z) are proposed for transfer times corresponding to those for up to distances of several thousand kilometres, for two initial diffusion situations (up to distances of 10 - 20 km), those characterized by stable and neutral conditions respectively. Using this method simple hand calculations can be made for any problem relating to the diffusion of radioactive pollutants over long distances
Directory of Open Access Journals (Sweden)
Neeta Nathani
2017-08-01
Full Text Available The Cognitive Radio usage has been estimated as non-emergency service with low volume traffic. Present work proposes an infrastructure based Cognitive Radio network and probability of success of CR traffic in licensed band. The Cognitive Radio nodes will form cluster. The cluster nodes will communicate on Industrial, Scientific and Medical band using IPv6 over Low-Power Wireless Personal Area Network based protocol from sensor to Gateway Cluster Head. For Cognitive Radio-Media Access Control protocol for Gateway to Cognitive Radio-Base Station communication, it will use vacant channels of licensed band. Standalone secondary users of Cognitive Radio Network shall be considered as a Gateway with one user. The Gateway will handle multi-channel multi radio for communication with Base Station. Cognitive Radio Network operators shall define various traffic data accumulation counters at Base Station for storing signal strength, Carrier-to-Interference and Noise Ratio, etc. parameters and record channel occupied/vacant status. The researches has been done so far using hour as interval is too long for parameters like holding time expressed in minutes and hence channel vacant/occupied status time is only probabilistically calculated. In the present work, an infrastructure based architecture has been proposed which polls channel status each minute in contrary to hourly polling of data. The Gateways of the Cognitive Radio Network shall monitor status of each Primary User periodically inside its working range and shall inform to Cognitive Radio- Base Station for preparation of minutewise database. For simulation, the occupancy data for all primary user channels were pulled in one minute interval from a live mobile network. Hourly traffic data and minutewise holding times has been analyzed to optimize the parameters of Seasonal Auto Regressive Integrated Moving Average prediction model. The blocking probability of an incoming Cognitive Radio call has been
Identification of fractional-order systems with time delays using block pulse functions
Tang, Yinggan; Li, Ning; Liu, Minmin; Lu, Yao; Wang, Weiwei
2017-07-01
In this paper, a novel method based on block pulse functions is proposed to identify continuous-time fractional-order systems with time delays. First, the operational matrices of block pulse functions for fractional integral operator and time delay operator are derived. Then, these operational matrices are applied to convert the continuous-time fractional-order systems with time delays to an algebraic equation. Finally, the system's parameters along with the differentiation orders and the time delays are all simultaneously estimated through minimizing a quadric error function. The proposed method reduces the computation complexity of the identification process, and also it does not require the system's differentiation orders to be commensurate. The effectiveness of the proposed method are demonstrated by several numerical examples.
Directory of Open Access Journals (Sweden)
Alokananda Ghosh
2016-06-01
Full Text Available The maternal health issue was a part of the Millennium Development Goals (MDGs, Target-5. Now it has been incorporated into Target-3 of 17 points Sustainable Development Goal-2030, declared by the United Nations, 2015. In India, about 50% of newborn deaths can be reduced by taking good care of the mother during pregnancy, childbirth and postpartum period. This requires timely, well-equipped healthcare by trained providers, along with emergency transportation for referral obstetric emergency. Governments need to ensure physicians in the rural underserved areas. The utilisation of maternal healthcare services (MHCSs depends on both the availability and accessibility of services along with accountability. This study is based on an empirical retrospective survey, also called a historic study, to evaluate the influences of distance on the provision of maternal health services and on its accountability in Murarai-II block, Birbhum District. The major objective of the study is to identify the influence of distance on the provision and accountability of the overall MHCSs. The investigation has found that there is a strong inverse relationship (-0.75 between accessibility index and accountability score with p-value = 0.05. Tracking of pregnant women, identification of high risk pregnancy and timely Postnatal Care (PNC have become the dominant factors of the maternal healthcare services in the first Principal Component Analysis (PCA, explaining 49.67% of the accountability system. Overall, institutional barriers to accessibility are identified as important constraints behind lesser accountability of the services, preventing the anticipated benefit. This study highlights the critical areas where maternal healthcare services are lacking. The analysis has highlighted the importance of physical access to health services in shaping the provision of maternal healthcare services. Drawing on empirical observations of operation of public distribution system in
Block Textured a-Si:H Solar Cell
Directory of Open Access Journals (Sweden)
Seung Jae Moon
2014-01-01
Full Text Available A series of etching experiments on light trapping structure have been carried out by glass etching. The block structure provides long light traveling path and a constant distance between the cathode and anode electrodes regardless of the block height, which results in higher efficiency of the block textured solar cell. In terms of etching profile of the glass substrate, the addition of NH4F resulted in the smooth and clean etching profile, and the steep slope of the block was obtained by optimizing the composition of etching solution. For a higher HF concentration, a more graded slope was obtained and the addition of HNO3 and NH4F provided steep slope and clean etching profile. The effects of the block textured glass were verified by a comparison of the solar cell efficiency. For the textured solar cell, the surface was much rougher than that of the plain glass, which also contributes to the improvement of the efficiency. We accomplished block shaped light trapping structure for the first time by wet etching of the glass substrate, which enables the high efficiency thin film solar cell with the aid of the good step coverage deposition.
Measuring the Distance of Moving Objects from Big Trajectory Data
Directory of Open Access Journals (Sweden)
Khaing Phyo Wai
2017-03-01
Full Text Available Location-based services have become important in social networking, mobile applications, advertising, traffic monitoring, and many other domains. The growth of location sensing devices has led to the vast generation of dynamic spatial-temporal data in the form of moving object trajectories which can be characterized as big trajectory data. Big trajectory data enables the opportunities such as analyzing the groups of moving objects. To obtain such facilities, the issue of this work is to find a distance measurement method that respects the geographic distance and the semantic similarity for each trajectory. Measurement of similarity between moving objects is a difficult task because not only their position changes but also their semantic features vary. In this research, a method to measure trajectory similarity based on both geographical features and semantic features of motion is proposed. Finally, the proposed methods are practically evaluated by using real trajectory dataset.
Directory of Open Access Journals (Sweden)
Mei-Shiang Chang
2013-01-01
Full Text Available The facility layout problem is a typical combinational optimization problem. In this research, a slicing tree representation and a quadratically constrained program model are combined with harmony search to develop a heuristic method for solving the unequal-area block layout problem. Because of characteristics of slicing tree structure, we propose a regional structure of harmony memory to memorize facility layout solutions and two kinds of harmony improvisation to enhance global search ability of the proposed heuristic method. The proposed harmony search based heuristic is tested on 10 well-known unequal-area facility layout problems from the literature. The results are compared with the previously best-known solutions obtained by genetic algorithm, tabu search, and ant system as well as exact methods. For problems O7, O9, vC10Ra, M11*, and Nug12, new best solutions are found. For other problems, the proposed approach can find solutions that are very similar to previous best-known solutions.
Tactile-Sight: A Sensory Substitution Device Based on Distance-Related Vibrotactile Flow
Directory of Open Access Journals (Sweden)
Leandro Cancar
2013-06-01
Full Text Available Sensory substitution is a research field of increasing interest with regard to technical, applied and theoretical issues. Among the latter, it is of central interest to understand the form in which humans perceive the environment. Ecological psychology, among other approaches, proposes that we can detect higher-order informational variables (in the sense that they are defined over substantial spatial and temporal intervals that specify our interaction with the environment. When using a vibrotactile sensory substitution device, it is reasonable to ask if stimulation on the skin may be exploitable to detect higher-order variables. Motivated by this question, a portable vibrotactile sensory substitution device was built, using distance-based information as a source and driving a large number of vibrotactile actuators (72 in the reported version, 120 max. The portable device was designed to explore real environments, allowing natural unrestricted movement for the user while providing contingent real-time vibrotactile information. Two preliminary experiments were performed. In the first one, participants were asked to detect the time to contact of an approaching ball in a simulated (desktop environment. Reasonable performance was observed in all experimental conditions, including the one with only tactile stimulation. In the second experiment, a portable version of the device was used in a real environment, where participants were asked to hit an approaching ball. Participants were able to coordinate their arm movements with vibrotactile stimulation in appropriate timing. We conclude that vibrotactile flow can be generated by distance-based activation of the actuators and that this stimulation on the skin allows users to perceive time-to-contact related environmental properties.
Long-distance multipartite quantum communication
International Nuclear Information System (INIS)
Herbst, T.
2014-01-01
This work addresses two long-distance free-space experiments based on multi-photon polarization entanglement. The highlighted measurements were performed between the Canary Islands La Palma and Tenerife, featuring a 143 km horizontal free-space quantum channel. Based on the superposition principle, quantum entanglement constitutes the key building block in quantum information sciences. Its nonclassical correlations lay the ground for exciting new protocols like quantum cryptography, quantum computation or quantum teleportation. Our first experiment targeted on the teleportation of entanglement, also known as entanglement swapping, where the entanglement from two polarization entangled photon pairs 0-1 and 2-3 is swapped onto photons 1-2 and 0-3. This feature constitutes the fundamental resource for so-called quantum repeaters. In the future such devices could be used to subdivide large distances into shorter links and finally extend the entanglement over the whole range by entanglement swapping. In the second experiment we realized four-photon entanglement in the form of a GHZ-state, named after the researchers Daniel Greenberger, Michael Horne and Anton Zeilinger. At the base station on La Palma we employed two sources for polarization-entanglement, generating photon pairs of 808 nm wavelength by spontaneous parametric down-conversion of femtosecond pulsed laser light. In both experiments one of the four photons per pulse was transmitted over a 143 km free-space link to the receiver station on Tenerife, whereas the remaining three photons were measured locally on La Palma. Long term atmospheric turbulences in the near-ground quantum channel were compensated by means of a bi-directional closed-loop tracking of the transceiver telescopes. Despite an average link attenuation of around 30 dB over the 143 km free-space channel, we successfully showed entanglement swapping with a statistical significance of more than 6 standard deviations. Moreover we faithfully
Research on manufacturing service behavior modeling based on block chain theory
Zhao, Gang; Zhang, Guangli; Liu, Ming; Yu, Shuqin; Liu, Yali; Zhang, Xu
2018-04-01
According to the attribute characteristics of processing craft, the manufacturing service behavior is divided into service attribute, basic attribute, process attribute, resource attribute. The attribute information model of manufacturing service is established. The manufacturing service behavior information is successfully divided into public and private domain. Additionally, the block chain technology is introduced, and the information model of manufacturing service based on block chain principle is established, which solves the problem of sharing and secreting information of processing behavior, and ensures that data is not tampered with. Based on the key pairing verification relationship, the selective publishing mechanism for manufacturing information is established, achieving the traceability of product data, guarantying the quality of processing quality.
中川, 敦; Atsushi, NAKAGAWA
2015-01-01
This study clarifies what long-distance caregivers do. To this end, I conducted a conversation analysis of video data of a care conference in which a long-distance caregiver participated. When a professional caregiver proposes a care plan to a long-distance caregiver, he/she substitutes technical terms with laymen terms for easy understanding, indicating his/her orientation that a long-distance caregiver is not a professional. However, if the caregiver laughs or averts his/her eyes during the...
Efficient block processing of long duration biotelemetric brain data for health care monitoring
Energy Technology Data Exchange (ETDEWEB)
Soumya, I. [Department of E.I.E, GITAM University, Visakhapatnam (India); Zia Ur Rahman, M., E-mail: mdzr-5@ieee.org [Department of E.C.E, K.L. University, Vaddeswaram, Green Fields, Guntur, Andhra Pradesh (India); Rama Koti Reddy, D. V. [Department of Instrumentation Engineering, College of Engineering, Andhra University, Visakhapatnam (India); Lay-Ekuakille, A. [Department of Innovation Engineering, University of Salento, Lecce (Italy)
2015-03-15
In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS, which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence.
Efficient block processing of long duration biotelemetric brain data for health care monitoring
International Nuclear Information System (INIS)
Soumya, I.; Zia Ur Rahman, M.; Rama Koti Reddy, D. V.; Lay-Ekuakille, A.
2015-01-01
In real time clinical environment, the brain signals which doctor need to analyze are usually very long. Such a scenario can be made simple by partitioning the input signal into several blocks and applying signal conditioning. This paper presents various block based adaptive filter structures for obtaining high resolution electroencephalogram (EEG) signals, which estimate the deterministic components of the EEG signal by removing noise. To process these long duration signals, we propose Time domain Block Least Mean Square (TDBLMS) algorithm for brain signal enhancement. In order to improve filtering capability, we introduce normalization in the weight update recursion of TDBLMS, which results TD-B-normalized-least mean square (LMS). To increase accuracy and resolution in the proposed noise cancelers, we implement the time domain cancelers in frequency domain which results frequency domain TDBLMS and FD-B-Normalized-LMS. Finally, we have applied these algorithms on real EEG signals obtained from human using Emotive Epoc EEG recorder and compared their performance with the conventional LMS algorithm. The results show that the performance of the block based algorithms is superior to the LMS counter-parts in terms of signal to noise ratio, convergence rate, excess mean square error, misadjustment, and coherence
Masuyama, Hiroyuki
2015-01-01
This paper studies the last-column-block-augmented northwest-corner truncation (LC-block-augmented truncation, for short) of discrete-time block-monotone Markov chains under subgeometric drift conditions. The main result of this paper is to present an upper bound for the total variation distance between the stationary probability vectors of a block-monotone Markov chain and its LC-block-augmented truncation. The main result is extended to Markov chains that themselves may not be block monoton...
Entity-Linking via Graph-Distance Minimization
Directory of Open Access Journals (Sweden)
Roi Blanco
2014-07-01
Full Text Available Entity-linking is a natural-language–processing task that consists in identifying the entities mentioned in a piece of text, linking each to an appropriate item in some knowledge base; when the knowledge base is Wikipedia, the problem comes to be known as wikification (in this case, items are wikipedia articles. One instance of entity-linking can be formalized as an optimization problem on the underlying concept graph, where the quantity to be optimized is the average distance between chosen items. Inspired by this application, we define a new graph problem which is a natural variant of the Maximum Capacity Representative Set. We prove that our problem is NP-hard for general graphs; nonetheless, under some restrictive assumptions, it turns out to be solvable in linear time. For the general case, we propose two heuristics: one tries to enforce the above assumptions and another one is based on the notion of hitting distance; we show experimentally how these approaches perform with respect to some baselines on a real-world dataset.
An Improved Method to Watermark Images Sensitive to Blocking Artifacts
Afzel Noore
2007-01-01
A new digital watermarking technique for images that are sensitive to blocking artifacts is presented. Experimental results show that the proposed MDCT based approach produces highly imperceptible watermarked images and is robust to attacks such as compression, noise, filtering and geometric transformations. The proposed MDCT watermarking technique is applied to fingerprints for ensuring security. The face image and demographic text data of an individual are used as multi...
Making Distance Visible: Assembling Nearness in an Online Distance Learning Programme
Directory of Open Access Journals (Sweden)
Jen Ross
2013-09-01
Full Text Available Online distance learners are in a particularly complex relationship with the educational institutions they belong to (Bayne, Gallagher, & Lamb, 2012. For part-time distance students, arrivals and departures can be multiple and invisible as students take courses, take breaks, move into independent study phases of a programme, find work or family commitments overtaking their study time, experience personal upheaval or loss, and find alignments between their professional and academic work. These comings and goings indicate a fluid and temporary assemblage of engagement, not a permanent or stable state of either “presence” or “distance”. This paper draws from interview data from the “New Geographies of Learning” project, a research project exploring the notions of space and institution for the MSc in Digital Education at the University of Edinburgh, and from literature on distance learning and online community. The concept of nearness emerged from the data analyzing the comings and goings of students on a fully online programme. It proposes that “nearness” to a distance programme is a temporary assemblage of people, circumstances, and technologies. This state is difficult to establish and impossible to sustain in an uninterrupted way over the long period of time that many are engaged in part-time study. Interruptions and subsequent returns should therefore be seen as normal in the practice of studying as an online distance learner, and teachers and institutions should work to help students develop resilience in negotiating various states of nearness. Four strategies for increasing this resilience are proposed: recognising nearness as effortful; identifying affinities; valuing perspective shifts; and designing openings.
AN ARTIFICIAL INTELLIGENCE-BASED DISTANCE EDUCATION SYSTEM: Artimat
Directory of Open Access Journals (Sweden)
Vasif NABIYEV
2013-04-01
Full Text Available The purpose of this study is to evaluate the artificial intelligence-based distance education system called as ARTIMAT, which has been prepared in order to improve mathematical problem solving skills of the students, in terms of conceptual proficiency and ease of use with the opinions of teachers and students. The implementation has been performed with 4 teachers and 59 students in 10th grade in an Anatolian High School in Trabzon. Many institutions and organizations in the world approach seriously to distance education besides traditional education. It is inevitable to use the distance education in teaching the problem solving skills in this different dimension of the education. In the studies in Turkey and abroad in the field of mathematics teaching, problem solving skills are generally stated not to be at the desired level and often expressed to have difficulty in teaching. For this reason, difficulties of the students in problem solving have initially been evaluated and the system has been prepared utilizing artificial intelligence algorithms according to the obtained results. In the evaluation of the findings obtained from the application, it has been concluded that the system is responsive to the needs of the students and is successful in general, but that conceptual changes should be made in order that students adapt to the system quickly.
A droplet-based building block approach for bladder smooth muscle cell (SMC) proliferation
Energy Technology Data Exchange (ETDEWEB)
Xu, F; Moon, S J; Emre, A E; Turali, E S; Song, Y S; Hacking, S A; Demirci, U [Department of Medicine, Bio-Acoustic-MEMS in Medicine (BAMM) Laboratory, Center for Biomedical Engineering, Brigham and Women' s Hospital, Harvard Medical School, Boston, MA (United States); Nagatomi, J, E-mail: udemirci@rics.bwh.harvard.ed [Department of Bioengineering, Clemson University, Clemson, SC (United States)
2010-03-15
Tissue engineering based on building blocks is an emerging method to fabricate 3D tissue constructs. This method requires depositing and assembling building blocks (cell-laden microgels) at high throughput. The current technologies (e.g., molding and photolithography) to fabricate microgels have throughput challenges and provide limited control over building block properties (e.g., cell density). The cell-encapsulating droplet generation technique has potential to address these challenges. In this study, we monitored individual building blocks for viability, proliferation and cell density. The results showed that (i) SMCs can be encapsulated in collagen droplets with high viability (>94.2 +- 3.2%) for four cases of initial number of cells per building block (i.e. 7 +- 2, 16 +- 2, 26 +- 3 and 37 +- 3 cells/building block). (ii) Encapsulated SMCs can proliferate in building blocks at rates that are consistent (1.49 +- 0.29) across all four cases, compared to that of the controls. (iii) By assembling these building blocks, we created an SMC patch (5 mm x 5 mm x 20 mum), which was cultured for 51 days forming a 3D tissue-like construct. The histology of the cultured patch was compared to that of a native rat bladder. These results indicate the potential of creating 3D tissue models at high throughput in vitro using building blocks.
Yekta, Tahereh Sadeghi; Khazaei, Mohammad; Nabizadeh, Ramin; Mahvi, Amir Hossein; Nasseri, Simin; Yari, Ahmad Reza
2015-01-01
Hierarchical distance-based fuzzy multi-criteria group decision making was served as a tool to evaluate the drinking water supply systems of Qom, a semi-arid city located in central part of Iran. A list of aspects consisting of 6 criteria and 35 sub-criteria were evaluated based on a linguistic term set by five decision-makers. Four water supply alternatives including "Public desalinated distribution system", "PET Bottled Drinking Water", "Private desalinated water suppliers" and "Household desalinated water units" were assessed based on criteria and sub-criteria. Data were aggregated and normalized to apply Performance Ratings of Alternatives. Also, the Performance Ratings of Alternatives were aggregated again to achieve the Aggregate Performance Ratings. The weighted distances from ideal solution and anti-ideal solution were calculated after secondary normalization. The proximity of each alternative to the ideal solution was determined as the final step. The alternatives were ranked based on the magnitude of ideal solutions. Results showed that "Public desalinated distribution system" was the most appropriate alternative to supply the drinking needs of Qom population. Also, "PET Bottled Drinking Water" was the second acceptable option. A novel classification of alternatives to satisfy the drinking water requirements was proposed which is applicable for the other cities located in semi-arid regions of Iran. The health issues were considered as independent criterion, distinct from the environmental issues. The constraints of high-tech alternatives were also considered regarding to the level of dependency on overseas.
A Laser-Based Measuring System for Online Quality Control of Car Engine Block
Directory of Open Access Journals (Sweden)
Xing-Qiang Li
2016-11-01
Full Text Available For online quality control of car engine production, pneumatic measurement instrument plays an unshakeable role in measuring diameters inside engine block because of its portability and high-accuracy. To the limitation of its measuring principle, however, the working space between the pneumatic device and measured surface is too small to require manual operation. This lowers the measuring efficiency and becomes an obstacle to perform automatic measurement. In this article, a high-speed, automatic measuring system is proposed to take the place of pneumatic devices by using a laser-based measuring unit. The measuring unit is considered as a set of several measuring modules, where each of them acts like a single bore gauge and is made of four laser triangulation sensors (LTSs, which are installed on different positions and in opposite directions. The spatial relationship among these LTSs was calibrated before measurements. Sampling points from measured shaft holes can be collected by the measuring unit. A unified mathematical model was established for both calibration and measurement. Based on the established model, the relative pose between the measuring unit and measured workpiece does not impact the measuring accuracy. This frees the measuring unit from accurate positioning or adjustment, and makes it possible to realize fast and automatic measurement. The proposed system and method were finally validated by experiments.
EnviroAtlas - New York, NY - Park Access by Block Group
U.S. Environmental Protection Agency — This EnviroAtlas dataset shows the block group population that is within and beyond an easy walking distance (500m) of a park entrance. Park entrances were included...
MedBlock: Efficient and Secure Medical Data Sharing Via Blockchain.
Fan, Kai; Wang, Shangyang; Ren, Yanhui; Li, Hui; Yang, Yintang
2018-06-21
With the development of electronic information technology, electronic medical records (EMRs) have been a common way to store the patients' data in hospitals. They are stored in different hospitals' databases, even for the same patient. Therefore, it is difficult to construct a summarized EMR for one patient from multiple hospital databases due to the security and privacy concerns. Meanwhile, current EMRs systems lack a standard data management and sharing policy, making it difficult for pharmaceutical scientists to develop precise medicines based on data obtained under different policies. To solve the above problems, we proposed a blockchain-based information management system, MedBlock, to handle patients' information. In this scheme, the distributed ledger of MedBlock allows the efficient EMRs access and EMRs retrieval. The improved consensus mechanism achieves consensus of EMRs without large energy consumption and network congestion. In addition, MedBlock also exhibits high information security combining the customized access control protocols and symmetric cryptography. MedBlock can play an important role in the sensitive medical information sharing.
Directory of Open Access Journals (Sweden)
Suting Chen
2017-12-01
Full Text Available Aerial images have features of high resolution, complex background, and usually require large amounts of calculation, however, most algorithms used in matching of aerial images adopt the shallow hand-crafted features expressed as floating-point descriptors (e.g., SIFT (Scale-invariant Feature Transform, SURF (Speeded Up Robust Features, which may suffer from poor matching speed and are not well represented in the literature. Here, we propose a novel Local Deep Hashing Matching (LDHM method for matching of aerial images with large size and with lower complexity or fast matching speed. The basic idea of the proposed algorithm is to utilize the deep network model in the local area of the aerial images, and study the local features, as well as the hash function of the images. Firstly, according to the course overlap rate of aerial images, the algorithm extracts the local areas for matching to avoid the processing of redundant information. Secondly, a triplet network structure is proposed to mine the deep features of the patches of the local image, and the learned features are imported to the hash layer, thus obtaining the representation of a binary hash code. Thirdly, the constraints of the positive samples to the absolute distance are added on the basis of the triplet loss, a new objective function is constructed to optimize the parameters of the network and enhance the discriminating capabilities of image patch features. Finally, the obtained deep hash code of each image patch is used for the similarity comparison of the image patches in the Hamming space to complete the matching of aerial images. The proposed LDHM algorithm evaluates the UltraCam-D dataset and a set of actual aerial images, simulation result demonstrates that it may significantly outperform the state-of-the-art algorithm in terms of the efficiency and performance.
Synthesis of amylose-block-polystyrene rod-coil block copolymers
Loos, Katja; Stadler, Reimund
1997-01-01
In the present communication we demonstrate the synthesis of a hybrid block copolymer based on the combination of a biopolymer (amylose) with a synthetic block (polystyrene). To obtain such materials, amino-functionalized polymers were modified with maltoheptaose moieties that serve as initiators
Implicit Block ACK Scheme for IEEE 802.11 WLANs
Sthapit, Pranesh; Pyun, Jae-Young
2016-01-01
The throughput of IEEE 802.11 standard is significantly bounded by the associated Medium Access Control (MAC) overhead. Because of the overhead, an upper limit exists for throughput, which is bounded, including situations where data rates are extremely high. Therefore, an overhead reduction is necessary to achieve higher throughput. The IEEE 802.11e amendment introduced the block ACK mechanism, to reduce the number of control messages in MAC. Although the block ACK scheme greatly reduces overhead, further improvements are possible. In this letter, we propose an implicit block ACK method that further reduces the overhead associated with IEEE 802.11e’s block ACK scheme. The mathematical analysis results are presented for both the original protocol and the proposed scheme. A performance improvement of greater than 10% was achieved with the proposed implementation.
Li, Gongxin; Li, Peng; Wang, Yuechao; Wang, Wenxue; Xi, Ning; Liu, Lianqing
2014-07-01
Scanning Ion Conductance Microscopy (SICM) is one kind of Scanning Probe Microscopies (SPMs), and it is widely used in imaging soft samples for many distinctive advantages. However, the scanning speed of SICM is much slower than other SPMs. Compressive sensing (CS) could improve scanning speed tremendously by breaking through the Shannon sampling theorem, but it still requires too much time in image reconstruction. Block compressive sensing can be applied to SICM imaging to further reduce the reconstruction time of sparse signals, and it has another unique application that it can achieve the function of image real-time display in SICM imaging. In this article, a new method of dividing blocks and a new matrix arithmetic operation were proposed to build the block compressive sensing model, and several experiments were carried out to verify the superiority of block compressive sensing in reducing imaging time and real-time display in SICM imaging.
DistancePPG: Robust non-contact vital signs monitoring using a camera
Kumar, Mayank; Veeraraghavan, Ashok; Sabharwal, Ashutosh
2015-01-01
Vital signs such as pulse rate and breathing rate are currently measured using contact probes. But, non-contact methods for measuring vital signs are desirable both in hospital settings (e.g. in NICU) and for ubiquitous in-situ health tracking (e.g. on mobile phone and computers with webcams). Recently, camera-based non-contact vital sign monitoring have been shown to be feasible. However, camera-based vital sign monitoring is challenging for people with darker skin tone, under low lighting conditions, and/or during movement of an individual in front of the camera. In this paper, we propose distancePPG, a new camera-based vital sign estimation algorithm which addresses these challenges. DistancePPG proposes a new method of combining skin-color change signals from different tracked regions of the face using a weighted average, where the weights depend on the blood perfusion and incident light intensity in the region, to improve the signal-to-noise ratio (SNR) of camera-based estimate. One of our key contributions is a new automatic method for determining the weights based only on the video recording of the subject. The gains in SNR of camera-based PPG estimated using distancePPG translate into reduction of the error in vital sign estimation, and thus expand the scope of camera-based vital sign monitoring to potentially challenging scenarios. Further, a dataset will be released, comprising of synchronized video recordings of face and pulse oximeter based ground truth recordings from the earlobe for people with different skin tones, under different lighting conditions and for various motion scenarios. PMID:26137365
Performance evaluation of railway blocking system based on markov chain and queuing theory
Guo, Jin; Chen, Hongxia; Yang, Yang
2005-12-01
Railway blocking system is the system with the high demanding of real-time performance. Firstly, the tasks and the time limits, which had to be handled for the blocking system, were introduced. The FCFS and the Markov chain were used to set the model for it. By analyzing the performance of the system with the FCFS model found out that it was not satisfied to the real-time performance. Secondly, NPPR model to evaluate the software real-time performance of the blocking processor was proposed. By evaluation, analysis and comparison, the results indicate that the NPPR model is prevail over the model of (M/M/1): (N/N/FCFS) in real-time performance. And the priorities of the tasks in the system should be given according to their time limit. With the principle of (M/M/1): (N/N/NPPR), if the priority was given to the tasks properly, the satisfied real-time performance will be gotten. The models were tested in forms software and the satisfied result has been gotten in practice.
Directory of Open Access Journals (Sweden)
Bérenger Bramas
2018-04-01
Full Text Available The sparse matrix-vector product (SpMV is a fundamental operation in many scientific applications from various fields. The High Performance Computing (HPC community has therefore continuously invested a lot of effort to provide an efficient SpMV kernel on modern CPU architectures. Although it has been shown that block-based kernels help to achieve high performance, they are difficult to use in practice because of the zero padding they require. In the current paper, we propose new kernels using the AVX-512 instruction set, which makes it possible to use a blocking scheme without any zero padding in the matrix memory storage. We describe mask-based sparse matrix formats and their corresponding SpMV kernels highly optimized in assembly language. Considering that the optimal blocking size depends on the matrix, we also provide a method to predict the best kernel to be used utilizing a simple interpolation of results from previous executions. We compare the performance of our approach to that of the Intel MKL CSR kernel and the CSR5 open-source package on a set of standard benchmark matrices. We show that we can achieve significant improvements in many cases, both for sequential and for parallel executions. Finally, we provide the corresponding code in an open source library, called SPC5.
The anatomic basis of lingual nerve trauma associated with inferior alveolar block injections.
Morris, Christopher D; Rasmussen, Jared; Throckmorton, Gaylord S; Finn, Richard
2010-11-01
This study describes the anatomic variability in the position of the lingual nerve in the pterygomandibular space, the location of the inferior alveolar nerve block injection. Simulated standard landmark-based inferior alveolar nerve blocks were administered to 44 fixed sagitally bisected cadaver heads. Measurements were made of the diameter of the nerves and distances between the needle and selected anatomic landmarks and the nerves. Of 44 simulated injections, 42 (95.5%) passed lateral to the lingual nerve, 7 (16%) passed within 0.1 mm of the nerve, and 2 (4.5%) penetrated the nerve. The position of the lingual nerve relative to bony landmarks within the interpterygoid fascia was highly variable. Variation in the position of the lingual nerve is an important contributor to lingual nerve trauma during inferior alveolar block injections. This factor should be an important part of preoperative informed consent. Copyright © 2010 American Association of Oral and Maxillofacial Surgeons. Published by Elsevier Inc. All rights reserved.
Nicaise, Samuel M.; Gadelrab, Karim R.; G, Amir Tavakkoli K.; Ross, Caroline A.; Alexander-Katz, Alfredo; Berggren, Karl K.
2018-01-01
Directed self-assembly of block copolymers (BCPs) provided by shear-stress can produce aligned sub-10 nm structures over large areas for applications in integrated circuits, next-generation data storage, and plasmonic structures. In this work, we present a fast, versatile BCP shear-alignment process based on coefficient of thermal expansion mismatch of the BCP film, a rigid top coat and a substrate. Monolayer and bilayer cylindrical microdomains of poly(styrene-b-dimethylsiloxane) aligned preferentially in-plane and orthogonal to naturally-forming or engineered cracks in the top coat film, allowing for orientation control over 1 cm2 substrates. Annealing temperatures, up to 275 °C, provided low-defect alignment up to 2 mm away from cracks for rapid (<1 min) annealing times. Finite-element simulations of the stress as a function of annealing time, annealing temperature, and distance from cracks showed that shear stress during the cooling phase of the thermal annealing was critical for the observed microdomain alignment.
Two new tests to the distance duality relation with galaxy clusters
Energy Technology Data Exchange (ETDEWEB)
Santos-da-Costa, Simony [Departamento de Astronomia, Observatório Nacional, Street General José Cristino, Rio de Janeiro (Brazil); Busti, Vinicius C. [Department of Mathematics and Applied Mathematics, Astrophysics, Cosmology and Gravity Centre, University of Cape Town, Rondebosch, Cape Town (South Africa); Holanda, Rodrigo F.L., E-mail: simonycosta.nic@gmail.com, E-mail: vcbusti@astro.iag.usp.br, E-mail: holanda@uepb.edu.br [Departamento de Física, Universidade Estadual da Paraíba, Street Baraúnas, Campina Grande (Brazil)
2015-10-01
The cosmic distance duality relation is a milestone of cosmology involving the luminosity and angular diameter distances. Any departure of the relation points to new physics or systematic errors in the observations, therefore tests of the relation are extremely important to build a consistent cosmological framework. Here, two new tests are proposed based on galaxy clusters observations (angular diameter distance and gas mass fraction) and H(z) measurements. By applying Gaussian Processes, a non-parametric method, we are able to derive constraints on departures of the relation where no evidence of deviation is found in both methods, reinforcing the cosmological and astrophysical hypotheses adopted so far.
International Nuclear Information System (INIS)
Wang Wenbin; Banjevic, Dragan
2012-01-01
The delay time concept and the techniques developed for modelling and optimising plant inspection practice have been reported in many papers and case studies. For a system subject to a few major failure modes, component based delay time models have been developed under the assumptions of an age-based inspection policy. An age-based inspection assumes that an inspection is scheduled according to the age of the component, and if there is a failure renewal, the next inspection is always, say τ times, from the time of the failure renewal. This applies to certain cases, particularly important plant items where the time since the last renewal or inspection is a key to schedule the next inspection service. However, in most cases, the inspection service is not scheduled according to the need of a particular component, rather it is scheduled according to a fixed calendar time regardless whether the component being inspected was just renewed or not. This policy is called a block-based inspection which has the advantage of easy planning and is particularly useful for plant items which are part of a larger system to be inspected. If a block-based inspection policy is used, the time to failure since the last inspection prior to the failure for a particular item is a random variable. This time is called the forward time in this paper. To optimise the inspection interval for block-based inspections, the usual criterion functions such as expected cost or down time per unit time depend on the distribution of this forward time. We report in this paper the development of a theoretical proof that a limiting distribution for such a forward time exists if certain conditions are met. We also propose a recursive algorithm for determining such a limiting distribution. A numerical example is presented to demonstrate the existence of the limiting distribution.
Clustering for high-dimension, low-sample size data using distance vectors
Terada, Yoshikazu
2013-01-01
In high-dimension, low-sample size (HDLSS) data, it is not always true that closeness of two objects reflects a hidden cluster structure. We point out the important fact that it is not the closeness, but the "values" of distance that contain information of the cluster structure in high-dimensional space. Based on this fact, we propose an efficient and simple clustering approach, called distance vector clustering, for HDLSS data. Under the assumptions given in the work of Hall et al. (2005), w...
Visualization of the distribution of surface-active block copolymers in PDMS-based coatings
DEFF Research Database (Denmark)
Noguer, A. Camós; Latipov, R.; Madsen, F. B.
2018-01-01
the distribution and release of these block copolymers from PDMS-based coatings has been previously reported. However, the distribution and behaviour of these compounds in the bulk of the PDMS coating are not fully understood. A novel fluorescent-labelled triblock PEG-b-PDMS-b-PEG copolymer was synthesized...... results in non-specific protein adsorption and wettability issues. Poly(ethylene glycol)-based surface-active block copolymers and surfactants have been added to PDMS coatings and films to impart biofouling resistance and hydrophilicity to the PDMS surface with successful results. Information regarding...
Dynamic optimization of a dead-end filtration trajectory: Blocking filtration laws
Blankert, B.; Betlem, Bernardus H.L.; Roffel, B.
2006-01-01
An operating model for dead-end membrane filtration is proposed based on the well-known blocking laws. The resulting model contains three parameters representing, the operating strategy, the fouling mechanism and the fouling potential of the feed. The optimal control strategy is determined by
Performance Analysis of Reuse Distance in Cooperative Broadcasting
Directory of Open Access Journals (Sweden)
Jimmi Grönkvist
2016-01-01
Full Text Available Cooperative broadcasting is a promising technique for robust broadcast with low overhead and delay in mobile ad hoc networks. The technique is attractive for mission-oriented mobile communication, where a majority of the traffic is of broadcast nature. In cooperative broadcasting, all nodes simultaneously retransmit packets. The receiver utilizes cooperative diversity in the simultaneously received signals. The retransmissions continue until all nodes are reached. After the packet has traveled a specific number of hops out from the source, denoted as reuse distance, the source node transmits a new broadcast packet in the time slot used for the previous broadcast packet. If the reuse distance is too small, interference causes packet loss in intermediate nodes. In the literature, a reuse distance of three is common. With an analysis based on a realistic interference model and real terrain data, we show that a reuse distance of at least four is necessary to avoid packet loss in sparsely connected networks, especially for high spectral efficiencies. For frequency hopping, widely used in military systems, we propose a novel method. This method almost eliminates interference for a reuse distance of three, increasing the throughput by 33% compared to systems with a reuse distance of four.
Directory of Open Access Journals (Sweden)
Christopher A. Loebach
2018-03-01
Full Text Available Introduction Alliaria petiolata, an herbaceous plant, has invaded woodlands in North America. Its ecology has been thoroughly studied, but an overlooked aspect of its biology is seed dispersal distances and mechanisms. We measured seed dispersal distances in the field and tested if epizoochory is a potential mechanism for long-distance seed dispersal. Methods Dispersal distances were measured by placing seed traps in a sector design around three seed point sources, which consisted of 15 second-year plants transplanted within a 0.25 m radius circle. Traps were placed at intervals ranging from 0.25–3.25 m from the point source. Traps remained in the field until a majority of seeds were dispersed. Eight probability density functions were fitted to seed trap counts via maximum likelihood. Epizoochory was tested as a potential seed dispersal mechanism for A. petiolata through a combination of field and laboratory experiments. To test if small mammals transport A. petiolata seeds in their fur, experimental blocks were placed around dense A. petiolata patches. Each block contained a mammal inclusion treatment (MIT and control. The MIT consisted of a wood-frame (31 × 61× 31 cm covered in wire mesh, except for the two 31 × 31 cm ends, placed over a germination tray filled with potting soil. A pan filled with bait was placed in the center of the tray. The control frame (11 × 31 × 61 cm was placed over a germination tray and completely covered in wire mesh to exclude animal activity. Treatments were in the field for peak seed dispersal. In March, trays were moved to a greenhouse and A. petiolata seedlings were counted and then compared between treatments. To determine if A. petiolata seeds attach to raccoon (Procyon lotor and white-tailed deer (Odocoileus virginianus fur, wet and dry seeds were dropped onto wet and dry fur. Furs were rotated 180 degrees and the seeds that remained attached were counted. To measure seed retention, seeds
Contextual Distance Refining for Image Retrieval
Islam, Almasri
2014-01-01
Recently, a number of methods have been proposed to improve image retrieval accuracy by capturing context information. These methods try to compensate for the fact that a visually less similar image might be more relevant because it depicts the same object. We propose a new quick method for refining any pairwise distance metric, it works by iteratively discovering the object in the image from the most similar images, and then refine the distance metric accordingly. Test show that our technique improves over the state of art in terms of accuracy over the MPEG7 dataset.
Contextual Distance Refining for Image Retrieval
Islam, Almasri
2014-09-16
Recently, a number of methods have been proposed to improve image retrieval accuracy by capturing context information. These methods try to compensate for the fact that a visually less similar image might be more relevant because it depicts the same object. We propose a new quick method for refining any pairwise distance metric, it works by iteratively discovering the object in the image from the most similar images, and then refine the distance metric accordingly. Test show that our technique improves over the state of art in terms of accuracy over the MPEG7 dataset.
MOND rotation curves for spiral galaxies with Cepheid-based distances
Bottema, R; Pestana, JLG; Rothberg, B; Sanders, RH
2002-01-01
Rotation curves for four spiral galaxies with recently determined Cepheid-based distances are reconsidered in terms of modified Newtonian dynamics (MOND). For two of the objects, NGC 2403 and NGC 7331, the rotation curves predicted by MOND are compatible with the observed curves when these galaxies
Vector Directional Distance Rational Hybrid Filters for Color Image Restoration
Directory of Open Access Journals (Sweden)
L. Khriji
2005-12-01
Full Text Available A new class of nonlinear filters, called vector-directional distance rational hybrid filters (VDDRHF for multispectral image processing, is introduced and applied to color image-filtering problems. These filters are based on rational functions (RF. The VDDRHF filter is a two-stage filter, which exploits the features of the vector directional distance filter (VDDF, the center weighted vector directional distance filter (CWVDDF and those of the rational operator. The filter output is a result of vector rational function (VRF operating on the output of three sub-functions. Two vector directional distance (VDDF filters and one center weighted vector directional distance filter (CWVDDF are proposed to be used in the first stage due to their desirable properties, such as, noise attenuation, chromaticity retention, and edges and details preservation. Experimental results show that the new VDDRHF outperforms a number of widely known nonlinear filters for multi-spectral image processing such as the vector median filter (VMF, the generalized vector directional filters (GVDF and distance directional filters (DDF with respect to all criteria used.
Diepens, M.; Gijsman, P.
2009-01-01
Bisphenol A polycarbonate degrades due to sunlight, humidity and oxygen. In this study two possible techniques to stabilize the polymer were compared, i.e. blending of UV-absorbers (UVAs) into the polymer or using block copolymers based on resorcinol polyarylates. Combination of different analysis
Video surveillance using distance maps
Schouten, Theo E.; Kuppens, Harco C.; van den Broek, Egon L.
2006-02-01
Human vigilance is limited; hence, automatic motion and distance detection is one of the central issues in video surveillance. Hereby, many aspects are of importance, this paper specially addresses: efficiency, achieving real-time performance, accuracy, and robustness against various noise factors. To obtain fully controlled test environments, an artificial development center for robot navigation is introduced in which several parameters can be set (e.g., number of objects, trajectories and type and amount of noise). In the videos, for each following frame, movement of stationary objects is detected and pixels of moving objects are located from which moving objects are identified in a robust way. An Exact Euclidean Distance Map (E2DM) is utilized to determine accurately the distances between moving and stationary objects. Together with the determined distances between moving objects and the detected movement of stationary objects, this provides the input for detecting unwanted situations in the scene. Further, each intelligent object (e.g., a robot), is provided with its E2DM, allowing the object to plan its course of action. Timing results are specified for each program block of the processing chain for 20 different setups. So, the current paper presents extensive, experimentally controlled research on real-time, accurate, and robust motion detection for video surveillance, using E2DMs, which makes it a unique approach.
International Nuclear Information System (INIS)
Giansanti, Daniele; Macellari, Velio; Maccioni, Giovanni
2008-01-01
Fall prevention lacks easy, quantitative and wearable methods for the classification of fall-risk (FR). Efforts must be thus devoted to the choice of an ad hoc classifier both to reduce the size of the sample used to train the classifier and to improve performances. A new methodology that uses a neural network (NN) and a wearable device are hereby proposed for this purpose. The NN uses kinematic parameters assessed by a wearable device with accelerometers and rate gyroscopes during a posturography protocol. The training of the NN was based on the Mahalanobis distance and was carried out on two groups of 30 elderly subjects with varying fall-risk Tinetti scores. The validation was done on two groups of 100 subjects with different fall-risk Tinetti scores and showed that, both in terms of specificity and sensitivity, the NN performed better than other classifiers (naive Bayes, Bayes net, multilayer perceptron, support vector machines, statistical classifiers). In particular, (i) the proposed NN methodology improved the specificity and sensitivity by a mean of 3% when compared to the statistical classifier based on the Mahalanobis distance (SCMD) described in Giansanti (2006 Physiol. Meas. 27 1081–90); (ii) the assessed specificity was 97%, the assessed sensitivity was 98% and the area under receiver operator characteristics was 0.965. (note)
Real-time stop sign detection and distance estimation using a single camera
Wang, Wenpeng; Su, Yuxuan; Cheng, Ming
2018-04-01
In modern world, the drastic development of driver assistance system has made driving a lot easier than before. In order to increase the safety onboard, a method was proposed to detect STOP sign and estimate distance using a single camera. In STOP sign detection, LBP-cascade classifier was applied to identify the sign in the image, and the principle of pinhole imaging was based for distance estimation. Road test was conducted using a detection system built with a CMOS camera and software developed by Python language with OpenCV library. Results shows that that the proposed system reach a detection accuracy of maximum of 97.6% at 10m, a minimum of 95.00% at 20m, and 5% max error in distance estimation. The results indicate that the system is effective and has the potential to be used in both autonomous driving and advanced driver assistance driving systems.
REPRESENTATIONS OF DISTANCE: DIFFERENCES IN UNDERSTANDING DISTANCE ACCORDING TO TRAVEL METHOD
Directory of Open Access Journals (Sweden)
Gunvor Riber Larsen
2017-12-01
Full Text Available This paper explores how Danish tourists represent distance in relation to their holiday mobility and how these representations of distance are a result of being aero-mobile as opposed to being land-mobile. Based on interviews with Danish tourists, whose holiday mobility ranges from the European continent to global destinations, the first part of this qualitative study identifies three categories of representations of distance that show how distance is being ‘translated’ by the tourists into non-geometric forms: distance as resources, distance as accessibility, and distance as knowledge. The representations of distance articulated by the Danish tourists show that distance is often not viewed in ‘just’ kilometres. Rather, it is understood in forms that express how transcending the physical distance through holiday mobility is dependent on individual social and economic contexts, and on whether the journey was undertaken by air or land. The analysis also shows that being aeromobile is the holiday transportation mode that removes the tourists the furthest away from physical distance, resulting in the distance travelled by air being represented in ways that have the least correlation, in the tourists’ minds, with physical distance measured in kilometres.
Directory of Open Access Journals (Sweden)
Kuldeep K. Bansal
2018-03-01
Full Text Available Polymers from natural resources are attracting much attention in various fields including drug delivery as green alternatives to fossil fuel based polymers. In this quest, novel block copolymers based on renewable poly(δ-decalactone (PDL were evaluated for their drug delivery capabilities and compared with a fossil fuel based polymer i.e. methoxy-poly(ethylene glycol-b-poly(ε-caprolactone (mPEG-b-PCL. Using curcumin as a hydrophobic drug model, micelles of PDL block copolymers with different orientation i.e. AB (mPEG-b-PDL, ABA (PDL-b-PEG-b-PDL, ABC (mPEG-b-PDL-b-poly(pentadecalactone and (mPEG-b-PCL were prepared by nanoprecipitation method. The size, drug loading and curcumin stability studies results indicated that mPEG-b-PDL micelles was comparable to its counterpart mPEG-b-PCL micelles towards improved delivery of curcumin. Therefore, mixed micelles using these two copolymers were also evaluated to see any change in size, loading and drug release. Drug release studies proposed that sustained release can be obtained using poly(pentadecalactone as crystalline core whereas rapid release can be achieved using amorphous PDL core. Further, mPEG-b-PDL micelles were found to be non-haemolytic, up to the concentration of 40 mg/mL. In vivo toxicity studies on rats advised low-toxic behaviour of these micelles up to 400 mg/kg dose, as evident by histopathological and biochemical analysis. In summary, it is anticipated that mPEG-b-PDL block copolymer micelles could serve as a renewable alternative for mPEG-b-PCL copolymers in drug delivery applications.
An enhanced chaotic key-based RC5 block cipher adapted to image encryption
Faragallah, Osama S.
2012-07-01
RC5 is a block cipher that has several salient features such as adaptability to process different word lengths with a variable block size, a variable number of rounds and a variable-length secret key. However, RC5 can be broken with various attacks such as correlation attack, timing attack, known plaintext correlation attack and differential attacks, revealing weak security. We aimed to enhance the RC5 block cipher to be more secure and efficient for real-time applications while preserving its advantages. For this purpose, this article introduces a new approach based on strengthening both the confusion and diffusion operations by combining chaos and cryptographic primitive operations to produce round keys with better pseudo-random sequences. Comparative security analysis and performance evaluation of the enhanced RC5 block cipher (ERC5) with RC5, RC6 and chaotic block cipher algorithm (CBCA) are addressed. Several test images are used for inspecting the validity of the encryption and decryption algorithms. The experimental results show the superiority of the suggested enhanced RC5 (ERC5) block cipher to image encryption algorithms such as RC5, RC6 and CBCA from the security analysis and performance evaluation points of view.
Femtosecond frequency comb based distance measurement in air.
Balling, Petr; Kren, Petr; Masika, Pavel; van den Berg, S A
2009-05-25
Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The relative agreement for distance measurement in known laboratory conditions is better than 10(-7). According to the model, similar precision seems feasible even for long-distance measurement in air if conditions are sufficiently known. It is demonstrated that the relative width of the interferogram envelope even decreases with the measured length, and a fringe contrast higher than 90% could be obtained for kilometer distances in air, if optimal spectral width for that length and wavelength is used. The possibility of comb radiation delivery to the interferometer by an optical fiber is shown by model and experiment, which is important from a practical point of view.
Stereo camera based virtual cane system with identifiable distance tactile feedback for the blind.
Kim, Donghun; Kim, Kwangtaek; Lee, Sangyoun
2014-06-13
In this paper, we propose a new haptic-assisted virtual cane system operated by a simple finger pointing gesture. The system is developed by two stages: development of visual information delivery assistant (VIDA) with a stereo camera and adding a tactile feedback interface with dual actuators for guidance and distance feedbacks. In the first stage, user's pointing finger is automatically detected using color and disparity data from stereo images and then a 3D pointing direction of the finger is estimated with its geometric and textural features. Finally, any object within the estimated pointing trajectory in 3D space is detected and the distance is then estimated in real time. For the second stage, identifiable tactile signals are designed through a series of identification experiments, and an identifiable tactile feedback interface is developed and integrated into the VIDA system. Our approach differs in that navigation guidance is provided by a simple finger pointing gesture and tactile distance feedbacks are perfectly identifiable to the blind.
Robustness of Distance-to-Default
DEFF Research Database (Denmark)
Jessen, Cathrine; Lando, David
2013-01-01
Distance-to-default is a remarkably robust measure for ranking firms according to their risk of default. The ranking seems to work despite the fact that the Merton model from which the measure is derived produces default probabilities that are far too small when applied to real data. We use...... simulations to investigate the robustness of the distance-to-default measure to different model specifications. Overall we find distance-to-default to be robust to a number of deviations from the simple Merton model that involve different asset value dynamics and different default triggering mechanisms....... A notable exception is a model with stochastic volatility of assets. In this case both the ranking of firms and the estimated default probabilities using distance-to-default perform significantly worse. We therefore propose a volatility adjustment of the distance-to-default measure, that significantly...
Williams, C.J.; Heglund, P.J.
2009-01-01
Habitat association models are commonly developed for individual animal species using generalized linear modeling methods such as logistic regression. We considered the issue of grouping species based on their habitat use so that management decisions can be based on sets of species rather than individual species. This research was motivated by a study of western landbirds in northern Idaho forests. The method we examined was to separately fit models to each species and to use a generalized Mahalanobis distance between coefficient vectors to create a distance matrix among species. Clustering methods were used to group species from the distance matrix, and multidimensional scaling methods were used to visualize the relations among species groups. Methods were also discussed for evaluating the sensitivity of the conclusions because of outliers or influential data points. We illustrate these methods with data from the landbird study conducted in northern Idaho. Simulation results are presented to compare the success of this method to alternative methods using Euclidean distance between coefficient vectors and to methods that do not use habitat association models. These simulations demonstrate that our Mahalanobis-distance- based method was nearly always better than Euclidean-distance-based methods or methods not based on habitat association models. The methods used to develop candidate species groups are easily explained to other scientists and resource managers since they mainly rely on classical multivariate statistical methods. ?? 2008 Springer Science+Business Media, LLC.
Directory of Open Access Journals (Sweden)
Urard Pascal
2006-01-01
Full Text Available We propose an efficient IP-block-based design environment for high-throughput VLSI systems. The flow generates SystemC register-transfer-level (RTL architecture, starting from a Matlab functional model described as a netlist of functional IP. The refinement model inserts automatically control structures to manage delays induced by the use of RTL IPs. It also inserts a control structure to coordinate the execution of parallel clocked IP. The delays may be managed by registers or by counters included in the control structure. The flow has been used successfully in three real-world DSP systems. The experimentations show that the approach can produce efficient RTL architecture and allows to save huge amount of time.
Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect
International Nuclear Information System (INIS)
Niculae, G; Lacatusu, I; Badea, N; Meghea, A
2012-01-01
The aim of the present study was to obtain efficient lipid nanoparticles loaded with butyl-methoxydibenzoylmethane (BMDBM) in order to develop cosmetic formulations with enhanced UVA blocking effect. For this purpose, two adequate liquid lipids (medium chain triglycerides and squalene) have been used in combination with two solid lipids (cetyl palmitate and glyceryl stearate) in order to create appropriate nanostructured carriers with a disordered lipid network able to accommodate up to 1.5% BMDBM. The lipid nanoparticles (LNs) were characterized in terms of particle size, zeta potential, entrapment efficiency, loading capacity and in vitro UVA blocking effect. The efficiency of lipid nanoparticles in developing some cosmetic formulations has been evaluated by determining the in vitro erythemal UVA protection factor. In order to quantify the photoprotective effect, some selected cream formulations based on BMDBM-LNs and a conventional emulsion were exposed to photochemical UV irradiation at a low energy to simulate the solar energy during the midday. The results obtained demonstrated the high ability of cream formulations based on BMDBM-LNs to absorb more than 96% of UVA radiation. Moreover, the developed cosmetic formulations manifest an enhanced UVA blocking effect, the erythemal UVA protection factor being four times higher than those specific to conventional emulsions. (paper)
Lipid nanoparticles based on butyl-methoxydibenzoylmethane: in vitro UVA blocking effect
Niculae, G.; Lacatusu, I.; Badea, N.; Meghea, A.
2012-08-01
The aim of the present study was to obtain efficient lipid nanoparticles loaded with butyl-methoxydibenzoylmethane (BMDBM) in order to develop cosmetic formulations with enhanced UVA blocking effect. For this purpose, two adequate liquid lipids (medium chain triglycerides and squalene) have been used in combination with two solid lipids (cetyl palmitate and glyceryl stearate) in order to create appropriate nanostructured carriers with a disordered lipid network able to accommodate up to 1.5% BMDBM. The lipid nanoparticles (LNs) were characterized in terms of particle size, zeta potential, entrapment efficiency, loading capacity and in vitro UVA blocking effect. The efficiency of lipid nanoparticles in developing some cosmetic formulations has been evaluated by determining the in vitro erythemal UVA protection factor. In order to quantify the photoprotective effect, some selected cream formulations based on BMDBM-LNs and a conventional emulsion were exposed to photochemical UV irradiation at a low energy to simulate the solar energy during the midday. The results obtained demonstrated the high ability of cream formulations based on BMDBM-LNs to absorb more than 96% of UVA radiation. Moreover, the developed cosmetic formulations manifest an enhanced UVA blocking effect, the erythemal UVA protection factor being four times higher than those specific to conventional emulsions.
A Survey of Binary Similarity and Distance Measures
Directory of Open Access Journals (Sweden)
Seung-Seok Choi
2010-02-01
Full Text Available The binary feature vector is one of the most common representations of patterns and measuring similarity and distance measures play a critical role in many problems such as clustering, classification, etc. Ever since Jaccard proposed a similarity measure to classify ecological species in 1901, numerous binary similarity and distance measures have been proposed in various fields. Applying appropriate measures results in more accurate data analysis. Notwithstanding, few comprehensive surveys on binary measures have been conducted. Hence we collected 76 binary similarity and distance measures used over the last century and reveal their correlations through the hierarchical clustering technique.
Directory of Open Access Journals (Sweden)
Kae Y. Foo
2010-01-01
Full Text Available The task of localizing underwater assets involves the relative localization of each unit using only pairwise distance measurements, usually obtained from time-of-arrival or time-delay-of-arrival measurements. In the fluctuating underwater environment, a complete set of pair-wise distance measurements can often be difficult to acquire, thus hindering a straightforward closed-form solution in deriving the assets' relative coordinates. An iterative multidimensional scaling approach is presented based upon a weighted-majorization algorithm that tolerates missing or inaccurate distance measurements. Substantial modifications are proposed to optimize the algorithm, while the effects of refractive propagation paths are considered. A parametric study of the algorithm based upon simulation results is shown. An acoustic field-trial was then carried out, presenting field measurements to highlight the practical implementation of this algorithm.
Distance Learning Courses on the Web: The Authoring Approach.
Santos, Neide; Diaz, Alicia; Bibbo, Luis Mariano
This paper proposes a framework for supporting the authoring process of distance learning courses. An overview of distance learning courses and the World Wide Web is presented. The proposed framework is then described, including: (1) components of the framework--a hypermedia design methodology for authoring the course, links to related Web sites,…
Risking Aggression: Reply to Block
Kris Borer
2010-01-01
In his paper, “Is There an ‘Anomalous’ Section of the Laffer Curve?”, Walter Block describes some situations in which it appears that a libertarian should violate the non-aggression principle. To rectify this, Block proposes a different perspective on libertarianism which he calls punishment theory. This paper argues that no new theory is needed, as the non-aggression principle can be used to resolve theapparent conundrums.
Dialect distances based on orthographic and phonetic transcriptions
CSIR Research Space (South Africa)
Zulu, N
2006-11-01
Full Text Available , where transcription segments were compared using the algorithm. In 2003 Gooskens and Heeringa [5] calculated Levenshtein distances between 15 Norwegian dialects and compared them to the distances as perceived by Norwegian listeners... by a clustering algorithm. Figure 2 illustrates the dendrogram derived from the clustering of perceptual distances as perceived by Norwegian listeners for the 15 Norwegian dialects investigated in this research [6]. Figure 2: Dendrogram...
Directory of Open Access Journals (Sweden)
Martin Carlsen
Full Text Available Knowledge-based potentials are energy functions derived from the analysis of databases of protein structures and sequences. They can be divided into two classes. Potentials from the first class are based on a direct conversion of the distributions of some geometric properties observed in native protein structures into energy values, while potentials from the second class are trained to mimic quantitatively the geometric differences between incorrectly folded models and native structures. In this paper, we focus on the relationship between energy and geometry when training the second class of knowledge-based potentials. We assume that the difference in energy between a decoy structure and the corresponding native structure is linearly related to the distance between the two structures. We trained two distance-based knowledge-based potentials accordingly, one based on all inter-residue distances (PPD, while the other had the set of all distances filtered to reflect consistency in an ensemble of decoys (PPE. We tested four types of metric to characterize the distance between the decoy and the native structure, two based on extrinsic geometry (RMSD and GTD-TS*, and two based on intrinsic geometry (Q* and MT. The corresponding eight potentials were tested on a large collection of decoy sets. We found that it is usually better to train a potential using an intrinsic distance measure. We also found that PPE outperforms PPD, emphasizing the benefits of capturing consistent information in an ensemble. The relevance of these results for the design of knowledge-based potentials is discussed.
DEFF Research Database (Denmark)
Larsen, Gunvor Riber
The environmental impact of tourism mobility is linked to the distances travelled in order to reach a holiday destination, and with tourists travelling more and further than previously, an understanding of how the tourists view the distance they travel across becomes relevant. Based on interviews...... contribute to an understanding of how it is possible to change tourism travel behaviour towards becoming more sustainable. How tourists 'consume distance' is discussed, from the practical level of actually driving the car or sitting in the air plane, to the symbolic consumption of distance that occurs when...... travelling on holiday becomes part of a lifestyle and a social positioning game. Further, different types of tourist distance consumers are identified, ranging from the reluctant to the deliberate and nonchalant distance consumers, who display very differing attitudes towards the distance they all travel...
Computing discrete signed distance fields from triangle meshes
DEFF Research Database (Denmark)
Bærentzen, Jakob Andreas; Aanæs, Henrik
2002-01-01
A method for generating a discrete, signed 3D distance field is proposed. Distance fields are used in a number of contexts. In particular the popular level set method is usually initialized by a distance field. The main focus of our work is on simplifying the computation of the sign when generating...
IMPACT OF COMPUTER BASED ONLINE ENTREPRENEURSHIP DISTANCE EDUCATION IN INDIA
Directory of Open Access Journals (Sweden)
Bhagwan SHREE RAM
2012-07-01
Full Text Available The success of Indian enterprises and professionals in the computer and information technology (CIT domain during the twenty year has been spectacular. Entrepreneurs, bureaucrats and technocrats are now advancing views about how India can ride CIT bandwagon and leapfrog into a knowledge-based economy in the area of entrepreneurship distance education on-line. Isolated instances of remotely located villagers sending and receiving email messages, effective application of mobile communications and surfing the Internet are being promoted as examples of how the nation can achieve this transformation, while vanquishing socio-economic challenges such as illiteracy, high growth of population, poverty, and the digital divide along the way. Likewise, even while a small fraction of the urban population in India has access to computers and the Internet, e-governance is being projected as the way of the future. There is no dearth of fascinating stories about CIT enabled changes, yet there is little discussion about whether such changes are effective and sustainable in the absence of the basic infrastructure that is accessible to the citizens of more advanced economies. When used appropriately, different CITs are said to help expand access to entrepreneurship distance education, strengthen the relevance of education to the increasingly digital workplace, and raise technical and managerial educational quality by, among others, helping make teaching and learning into an engaging, active process connected to real life. This research paper investigates on the impact of computer based online entrepreneurship distance education in India.
Teaching Reading Comprehension in English in a Distance Web-Based Course: New Roles for Teachers
Directory of Open Access Journals (Sweden)
Jorge Hugo Muñoz Marín
2010-10-01
Full Text Available Distance web-based learning is a popular strategy in ELT teaching in Colombia. Despite of the growth of experiences, there are very few studies regarding teachers' participation in these courses. This paper reports preliminary findings of an on-going study aiming at exploring the roles that a teacher plays in an efl reading comprehension distance web-based course. Data analysis suggests that teachers play new roles solving technical problems, providing immediate feedback, interacting with students in a non traditional way, providing time management advice, and acting as a constant motivator. The authors conclude that EFL teachers require training for this new teaching roles and the analysis of web-based distance learning environments as an option under permanent construction that requires their active participation.
On The Determinant of q-Distance Matrix of a Graph
Directory of Open Access Journals (Sweden)
Li Hong-Hai
2014-02-01
Full Text Available In this note, we show how the determinant of the q-distance matrix Dq(T of a weighted directed graph G can be expressed in terms of the corresponding determinants for the blocks of G, and thus generalize the results obtained by Graham et al. [R.L. Graham, A.J. Hoffman and H. Hosoya, On the distance matrix of a directed graph, J. Graph Theory 1 (1977 85-88]. Further, by means of the result, we determine the determinant of the q-distance matrix of the graph obtained from a connected weighted graph G by adding the weighted branches to G, and so generalize in part the results obtained by Bapat et al. [R.B. Bapat, S. Kirkland and M. Neumann, On distance matrices and Laplacians, Linear Algebra Appl. 401 (2005 193- 209]. In particular, as a consequence, determinantal formulae of q-distance matrices for unicyclic graphs and one class of bicyclic graphs are presented.
High-Tg Polynorbornene-Based Block and Random Copolymers for Butanol Pervaporation Membranes
Register, Richard A.; Kim, Dong-Gyun; Takigawa, Tamami; Kashino, Tomomasa; Burtovyy, Oleksandr; Bell, Andrew
Vinyl addition polymers of substituted norbornene (NB) monomers possess desirably high glass transition temperatures (Tg); however, until very recently, the lack of an applicable living polymerization chemistry has precluded the synthesis of such polymers with controlled architecture, or copolymers with controlled sequence distribution. We have recently synthesized block and random copolymers of NB monomers bearing hydroxyhexafluoroisopropyl and n-butyl substituents (HFANB and BuNB) via living vinyl addition polymerization with Pd-based catalysts. Both series of polymers were cast into the selective skin layers of thin film composite (TFC) membranes, and these organophilic membranes investigated for the isolation of n-butanol from dilute aqueous solution (model fermentation broth) via pervaporation. The block copolymers show well-defined microphase-separated morphologies, both in bulk and as the selective skin layers on TFC membranes, while the random copolymers are homogeneous. Both block and random vinyl addition copolymers are effective as n-butanol pervaporation membranes, with the block copolymers showing a better flux-selectivity balance. While polyHFANB has much higher permeability and n-butanol selectivity than polyBuNB, incorporating BuNB units into the polymer (in either a block or random sequence) limits the swelling of the polyHFANB and thereby improves the n-butanol pervaporation selectivity.
Spatial Block Codes Based on Unitary Transformations Derived from Orthonormal Polynomial Sets
Directory of Open Access Journals (Sweden)
Mandyam Giridhar D
2002-01-01
Full Text Available Recent work in the development of diversity transformations for wireless systems has produced a theoretical framework for space-time block codes. Such codes are beneficial in that they may be easily concatenated with interleaved trellis codes and yet still may be decoded separately. In this paper, a theoretical framework is provided for the generation of spatial block codes of arbitrary dimensionality through the use of orthonormal polynomial sets. While these codes cannot maximize theoretical diversity performance for given dimensionality, they still provide performance improvements over the single-antenna case. In particular, their application to closed-loop transmit diversity systems is proposed, as the bandwidth necessary for feedback using these types of codes is fixed regardless of the number of antennas used. Simulation data is provided demonstrating these types of codes′ performance under this implementation as compared not only to the single-antenna case but also to the two-antenna code derived from the Radon-Hurwitz construction.
Manipulation robot system based on visual guidance for sealing blocking plate of steam generator
International Nuclear Information System (INIS)
Duan Xingguang; Wang Yonggui; Li Meng; Kong Xiangzhan; Liu Qingsong
2016-01-01
To reduce labor intensity and irradiation exposure time inside the steam generator during the maintenance period of the nuclear power plant, a blocking plate manipulation robot system, including manipulation robot and pneumatic control console, is developed as an automatic remote-control tool to help staff to complete sealing steam generator primary pipes. The manipulation robot for fastening/loosening bolts utilizes visual guidance for target position, and the recognition algorithm is exerted to extract the bolt center coordinate values from image captured by camera in the procedure. The control strategy based on the position and current feedback is proposed for single bolt operation and whole bolts automatic operation. Meanwhile, the virtual interactive interface and remote monitoring are designed to improve the operability and safety. Finally, the relative experiments have verified the work effectiveness and the future work would be discussed. (author)
A distance limited method for sampling downed coarse woody debris
Jeffrey H. Gove; Mark J. Ducey; Harry T. Valentine; Michael S. Williams
2012-01-01
A new sampling method for down coarse woody debris is proposed based on limiting the perpendicular distance from individual pieces to a randomly chosen sample point. Two approaches are presented that allow different protocols to be used to determine field measurements; estimators for each protocol are also developed. Both protocols are compared via simulation against...
Distance-Constraint k-Nearest Neighbor Searching in Mobile Sensor Networks.
Han, Yongkoo; Park, Kisung; Hong, Jihye; Ulamin, Noor; Lee, Young-Koo
2015-07-27
The κ-Nearest Neighbors ( κNN) query is an important spatial query in mobile sensor networks. In this work we extend κNN to include a distance constraint, calling it a l-distant κ-nearest-neighbors (l-κNN) query, which finds the κ sensor nodes nearest to a query point that are also at or greater distance from each other. The query results indicate the objects nearest to the area of interest that are scattered from each other by at least distance l. The l-κNN query can be used in most κNN applications for the case of well distributed query results. To process an l-κNN query, we must discover all sets of κNN sensor nodes and then find all pairs of sensor nodes in each set that are separated by at least a distance l. Given the limited battery and computing power of sensor nodes, this l-κNN query processing is problematically expensive in terms of energy consumption. In this paper, we propose a greedy approach for l-κNN query processing in mobile sensor networks. The key idea of the proposed approach is to divide the search space into subspaces whose all sides are l. By selecting κ sensor nodes from the other subspaces near the query point, we guarantee accurate query results for l-κNN. In our experiments, we show that the proposed method exhibits superior performance compared with a post-processing based method using the κNN query in terms of energy efficiency, query latency, and accuracy.
Directory of Open Access Journals (Sweden)
Haejoon Jung
2018-01-01
Full Text Available As an intrinsic part of the Internet of Things (IoT ecosystem, machine-to-machine (M2M communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.
Jung, Haejoon; Lee, In-Ho
2018-01-12
As an intrinsic part of the Internet of Things (IoT) ecosystem, machine-to-machine (M2M) communications are expected to provide ubiquitous connectivity between machines. Millimeter-wave (mmWave) communication is another promising technology for the future communication systems to alleviate the pressure of scarce spectrum resources. For this reason, in this paper, we consider multi-hop M2M communications, where a machine-type communication (MTC) device with the limited transmit power relays to help other devices using mmWave. To be specific, we focus on hop distance statistics and their impacts on system performances in multi-hop wireless networks (MWNs) with directional antenna arrays in mmWave for M2M communications. Different from microwave systems, in mmWave communications, wireless channel suffers from blockage by obstacles that heavily attenuate line-of-sight signals, which may result in limited per-hop progress in MWNs. We consider two routing strategies aiming at different types of applications and derive the probability distributions of their hop distances. Moreover, we provide their baseline statistics assuming the blockage-free scenario to quantify the impact of blockages. Based on the hop distance analysis, we propose a method to estimate the end-to-end performances (e.g., outage probability, hop count, and transmit energy) of the mmWave MWNs, which provides important insights into mmWave MWN design without time-consuming and repetitive end-to-end simulation.
A cognitively grounded measure of pronunciation distance.
Directory of Open Access Journals (Sweden)
Martijn Wieling
Full Text Available In this study we develop pronunciation distances based on naive discriminative learning (NDL. Measures of pronunciation distance are used in several subfields of linguistics, including psycholinguistics, dialectology and typology. In contrast to the commonly used Levenshtein algorithm, NDL is grounded in cognitive theory of competitive reinforcement learning and is able to generate asymmetrical pronunciation distances. In a first study, we validated the NDL-based pronunciation distances by comparing them to a large set of native-likeness ratings given by native American English speakers when presented with accented English speech. In a second study, the NDL-based pronunciation distances were validated on the basis of perceptual dialect distances of Norwegian speakers. Results indicated that the NDL-based pronunciation distances matched perceptual distances reasonably well with correlations ranging between 0.7 and 0.8. While the correlations were comparable to those obtained using the Levenshtein distance, the NDL-based approach is more flexible as it is also able to incorporate acoustic information other than sound segments.
Directory of Open Access Journals (Sweden)
Ertekin Öztekin Öztekin
2015-12-01
Full Text Available Design of the distance of bolts to each other and design of the distance of bolts to the edge of connection plates are made based on minimum and maximum boundary values proposed by structural codes. In this study, reliabilities of those distances were investigated. For this purpose, loading types, bolt types and plate thicknesses were taken as variable parameters. Monte Carlo Simulation (MCS method was used in the reliability computations performed for all combination of those parameters. At the end of study, all reliability index values for all those distances were presented in graphics and tables. Results obtained from this study compared with the values proposed by some structural codes and finally some evaluations were made about those comparisons. Finally, It was emphasized in the end of study that, it would be incorrect of the usage of the same bolt distances in the both traditional designs and the higher reliability level designs.
Risking Aggression: Reply to Block
Directory of Open Access Journals (Sweden)
Kris Borer
2010-05-01
Full Text Available In his paper, “Is There an ‘Anomalous’ Section of the Laffer Curve?”, Walter Block describes some situations in which it appears that a libertarian should violate the non-aggression principle. To rectify this, Block proposes a different perspective on libertarianism which he calls punishment theory. This paper argues that no new theory is needed, as the non-aggression principle can be used to resolve theapparent conundrums.
Representing distance, consuming distance
DEFF Research Database (Denmark)
Larsen, Gunvor Riber
Title: Representing Distance, Consuming Distance Abstract: Distance is a condition for corporeal and virtual mobilities, for desired and actual travel, but yet it has received relatively little attention as a theoretical entity in its own right. Understandings of and assumptions about distance...... are being consumed in the contemporary society, in the same way as places, media, cultures and status are being consumed (Urry 1995, Featherstone 2007). An exploration of distance and its representations through contemporary consumption theory could expose what role distance plays in forming...
Ito, T.; Mora-Páez, H.; Peláez-Gaviria, J. R.; Kimura, H.; Sagiya, T.
2017-12-01
IntroductionEcuador-Colombia trench is located at the boundary between South-America plate, Nazca Plate and Caribrian plate. This region is very complexes such as subducting Caribrian plate and Nazca plate, and collision between Panama and northern part of the Andes mountains. The previous large earthquakes occurred along the subducting boundary of Nazca plate, such as 1906 (M8.8) and 1979 (M8.2). And also, earthquakes occurred inland, too. So, it is important to evaluate earthquake potentials for preparing huge damage due to large earthquake in near future. GNSS observation In the last decade, the GNSS observation was established in Columbia. The GNSS observation is called by GEORED, which is operated by servicing Geologico Colomiano. The purpose of GEORED is research of crustal deformation. The number of GNSS site of GEORED is consist of 60 continuous GNSS observation site at 2017 (Mora et al., 2017). The sampling interval of almost GNSS site is 30 seconds. These GNSS data were processed by PPP processing using GIPSY-OASYS II software. GEORED can obtain the detailed crustal deformation map in whole Colombia. In addition, we use 100 GNSS data at Ecuador-Peru region (Nocquet et al. 2014). Method We developed a crustal block movements model based on crustal deformation derived from GNSS observation. Our model considers to the block motion with pole location and angular velocity and the interplate coupling between each block boundaries, including subduction between the South-American plate and the Nazca plate. And also, our approach of estimation of crustal block motion and coefficient of interplate coupling are based on MCMC method. The estimated each parameter is obtained probably density function (PDF). Result We tested 11 crustal block models based on geological data, such as active fault trace at surface. The optimal number of crustal blocks is 11 for based on geological and geodetic data using AIC. We use optimal block motion model. And also, we estimate
An image processing approach to computing distances between RNA secondary structures dot plots
Directory of Open Access Journals (Sweden)
Sapiro Guillermo
2009-02-01
Full Text Available Abstract Background Computing the distance between two RNA secondary structures can contribute in understanding the functional relationship between them. When used repeatedly, such a procedure may lead to finding a query RNA structure of interest in a database of structures. Several methods are available for computing distances between RNAs represented as strings or graphs, but none utilize the RNA representation with dot plots. Since dot plots are essentially digital images, there is a clear motivation to devise an algorithm for computing the distance between dot plots based on image processing methods. Results We have developed a new metric dubbed 'DoPloCompare', which compares two RNA structures. The method is based on comparing dot plot diagrams that represent the secondary structures. When analyzing two diagrams and motivated by image processing, the distance is based on a combination of histogram correlations and a geometrical distance measure. We introduce, describe, and illustrate the procedure by two applications that utilize this metric on RNA sequences. The first application is the RNA design problem, where the goal is to find the nucleotide sequence for a given secondary structure. Examples where our proposed distance measure outperforms others are given. The second application locates peculiar point mutations that induce significant structural alternations relative to the wild type predicted secondary structure. The approach reported in the past to solve this problem was tested on several RNA sequences with known secondary structures to affirm their prediction, as well as on a data set of ribosomal pieces. These pieces were computationally cut from a ribosome for which an experimentally derived secondary structure is available, and on each piece the prediction conveys similarity to the experimental result. Our newly proposed distance measure shows benefit in this problem as well when compared to standard methods used for assessing
International Nuclear Information System (INIS)
Reuter, Matthew G; Hill, Judith C
2012-01-01
We present an algorithm for computing any block of the inverse of a block tridiagonal, nearly block Toeplitz matrix (defined as a block tridiagonal matrix with a small number of deviations from the purely block Toeplitz structure). By exploiting both the block tridiagonal and the nearly block Toeplitz structures, this method scales independently of the total number of blocks in the matrix and linearly with the number of deviations. Numerical studies demonstrate this scaling and the advantages of our method over alternatives.
Directory of Open Access Journals (Sweden)
Jiaqian Li
Full Text Available Indirect immunofluorescence based on HEp-2 cell substrate is the most commonly used staining method for antinuclear autoantibodies associated with different types of autoimmune pathologies. The aim of this paper is to design an automatic system to identify the staining patterns based on block segmentation compared to the cell segmentation most used in previous research. Various feature descriptors and classifiers are tested and compared in the classification of the staining pattern of blocks and it is found that the technique of the combination of the local binary pattern and the k-nearest neighbor algorithm achieve the best performance. Relying on the results of block pattern classification, experiments on the whole images show that classifier fusion rules are able to identify the staining patterns of the whole well (specimen image with a total accuracy of about 94.62%.
A Bullet-Block Experiment that Explains the Chain Fountain
Pantaleone, J.; Smith, R.
2018-05-01
It is common in science for two phenomena to appear to be very different, but in fact follow from the same basic principles. Here we consider such a case, the connection between the chain fountain and a bullet-block collision experiment. When an upward moving bullet strikes a wooden block resting on a horizontal table, the block will rise to a higher height when the bullet strikes near the end of the block. This is because the quickly rotating block experiences an additional upward "reaction" force from its contact with the table. Such a reaction force also explains the chain fountain. When a chain falls from a pile in a container to the floor below, the chain rises up above the container. This rise occurs because the quickly rotating links in the container push off of the surface beneath them. We derive a model that accurately describes our measurements in the bullet-block experiment, and then use this same model to calculate an approximate expression for the distance the chain rises above the container. More extensive discussions of the chain fountain are available elsewhere.
TRUE Block Scale Continuation Project. Final Report
Energy Technology Data Exchange (ETDEWEB)
Andersson, Peter; Byegaard, Johan [Geosigma AB (Sweden); Billaux, Daniel [Itasca Consultants SA (France); Cvetkovic, Vladimir [Royal Inst. of Technology, Stockholm (Sweden); Dershowitz, William; Doe, Thomas [Golder Associates Inc. (United States); Hermanson, Jan [Golder Associates AB (Sweden); Poteri, Antti [VTT (Finland); Tullborg, Eva-Lena [Terralogica AB (Sweden); Winberg, Anders [Conterra AB (SE)] (ed.)
2007-03-15
The TRUE Block Scale project was carried out during 1996-2002. This project focused on site characterisation and building of hydrostructural and microstructural models, sorbing tracer experiments in single structures and networks of structures over distances ranging between 1 and 100 m and also involved a unified application of various model approaches for modelling the in situ experiments. In 2002, ANDRA, Posiva, JNC and SKB decided to pursue some remaining issues in the so-called TRUE Block Scale Continuation project (TRUE BS2). The specific objectives of BS2 can be summarised as: 'Improve understanding of transport pathways at the block scale, including assessment of effects of geology and geometry, macrostructure and microstructure'. In order to cater to addressing the stated objective a series of hypotheses were formulated which explored the importance of geological information for predicting transport and retention and the possible differences between transport and retention between transport paths dominated by faults and those dominated by non-fault fractures (background fractures). In the process, prospects for carrying out experiments in fracture networks over longer distances (c 20-100 m) were explored. It was identified that experiments with sorbing tracers over these distances were prohibitive because of the time frames involved and the projected low mass recoveries. Instead the experimental locus was shifted to a geological structure previously not investigated by tracer tests in the TRUE Block Scale experiments. The lower immobile zone retention material properties assigned to background fractures compared to those assigned to the fault-type Structure 19 have been verified by means of back-calculations. The evaluated Type 1 flow path (Structure 19, Flow path I) retention material properties, as expressed by {kappa} parameter, are one order of magnitude higher than for the background fracture flow path. This finding is consistent with the
Professional development of distance education professionals (DEPs)
African Journals Online (AJOL)
Firstly, the international and national ETD and distance education contexts are described for the purpose of benchmarking, and thereafter the TSA context is described and aligned to the benchmarks. Finally, a comparison is drawn between the proposed profile of ETD practitioners at a distance education institution and the ...
Multi-stage decoding for multi-level block modulation codes
Lin, Shu
1991-01-01
In this paper, we investigate various types of multi-stage decoding for multi-level block modulation codes, in which the decoding of a component code at each stage can be either soft-decision or hard-decision, maximum likelihood or bounded-distance. Error performance of codes is analyzed for a memoryless additive channel based on various types of multi-stage decoding, and upper bounds on the probability of an incorrect decoding are derived. Based on our study and computation results, we find that, if component codes of a multi-level modulation code and types of decoding at various stages are chosen properly, high spectral efficiency and large coding gain can be achieved with reduced decoding complexity. In particular, we find that the difference in performance between the suboptimum multi-stage soft-decision maximum likelihood decoding of a modulation code and the single-stage optimum decoding of the overall code is very small: only a fraction of dB loss in SNR at the probability of an incorrect decoding for a block of 10(exp -6). Multi-stage decoding of multi-level modulation codes really offers a way to achieve the best of three worlds, bandwidth efficiency, coding gain, and decoding complexity.
Distance to human populations influences epidemiology of respiratory disease in desert tortoises
Berry, Kristin H.; Ashley A. Coble (formerly Emerson), no longer USGS; Yee, Julie L.; Mack, Jeremy S.; Perry, William M.; Anderson, Kemp M.; Brown, Mary B.
2014-01-01
We explored variables likely to affect health of Agassiz's desert tortoises (Gopherus agassizii) in a 1,183-km2 study area in the central Mojave Desert of California between 2005 and 2008. We evaluated 1,004 tortoises for prevalence and spatial distribution of 2 pathogens, Mycoplasma agassizii and M. testudineum, that cause upper respiratory tract disease. We defined tortoises as test-positive if they were positive by culture and/or DNA identification or positive or suspect for specific antibody for either of the two pathogens. We used covariates of habitat (vegetation, elevation, slope, and aspect), tortoise size and sex, distance from another test-positive tortoise, and anthropogenic variables (distances to roads, agricultural areas, playas, urban areas, and centroids of human-populated census blocks). We used both logistic regression models and regression trees to evaluate the 2 species of Mycoplasma separately. The prevalence of test-positive tortoises was low: 1.49% (15/1,004) for M. agassizii and 2.89% (29/1,004) for M. testudineum. The spatial distributions of test-positive tortoises for the 2 Mycoplasma species showed little overlap; only 2 tortoises were test-positive for both diseases. However, the spatial distributions did not differ statistically between the 2 species. We consistently found higher prevalence of test-positive tortoises with shorter distances to centroids of human-populated census blocks. The relationship between distance to human-populated census blocks and tortoises that are test-positive for M. agassizii and potentially M. testudineum may be related to release or escape of captive tortoises because the prevalence of M. agassizii in captive tortoises is high. Our findings have application to other species of chelonians where both domestic captive and wild populations exist. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.
Enhancing multi-view autostereoscopic displays by viewing distance control (VDC)
Jurk, Silvio; Duckstein, Bernd; Renault, Sylvain; Kuhlmey, Mathias; de la Barré, René; Ebner, Thomas
2014-03-01
Conventional multi-view displays spatially interlace various views of a 3D scene and form appropriate viewing channels. However, they only support sufficient stereo quality within a limited range around the nominal viewing distance (NVD). If this distance is maintained, two slightly divergent views are projected to the person's eyes, both covering the entire screen. With increasing deviations from the NVD the stereo image quality decreases. As a major drawback in usability, the manufacturer so far assigns this distance. We propose a software-based solution that corrects false view assignments depending on the distance of the viewer. Our novel approach enables continuous view adaptation based on the calculation of intermediate views and a column-bycolumn rendering method. The algorithm controls each individual subpixel and generates a new interleaving pattern from selected views. In addition, we use color-coded test content to verify its efficacy. This novel technology helps shifting the physically determined NVD to a user-defined distance thereby supporting stereopsis. The recent viewing positions can fall in front or behind the NVD of the original setup. Our algorithm can be applied to all multi-view autostereoscopic displays — independent of the ascent or the periodicity of the optical element. In general, the viewing distance can be corrected with a factor of more than 2.5. By creating a continuous viewing area the visualized 3D content is suitable even for persons with largely divergent intraocular distance — adults and children alike — without any deficiency in spatial perception.
Measuring distance “as the horse runs”: Cross-scale comparison of terrain-based metrics
Buttenfield, Barbara P.; Ghandehari, M; Leyk, S; Stanislawski, Larry V.; Brantley, M E; Qiang, Yi
2016-01-01
Distance metrics play significant roles in spatial modeling tasks, such as flood inundation (Tucker and Hancock 2010), stream extraction (Stanislawski et al. 2015), power line routing (Kiessling et al. 2003) and analysis of surface pollutants such as nitrogen (Harms et al. 2009). Avalanche risk is based on slope, aspect, and curvature, all directly computed from distance metrics (Gutiérrez 2012). Distance metrics anchor variogram analysis, kernel estimation, and spatial interpolation (Cressie 1993). Several approaches are employed to measure distance. Planar metrics measure straight line distance between two points (“as the crow flies”) and are simple and intuitive, but suffer from uncertainties. Planar metrics assume that Digital Elevation Model (DEM) pixels are rigid and flat, as tiny facets of ceramic tile approximating a continuous terrain surface. In truth, terrain can bend, twist and undulate within each pixel.Work with Light Detection and Ranging (lidar) data or High Resolution Topography to achieve precise measurements present challenges, as filtering can eliminate or distort significant features (Passalacqua et al. 2015). The current availability of lidar data is far from comprehensive in developed nations, and non-existent in many rural and undeveloped regions. Notwithstanding computational advances, distance estimation on DEMs has never been systematically assessed, due to assumptions that improvements are so small that surface adjustment is unwarranted. For individual pixels inaccuracies may be small, but additive effects can propagate dramatically, especially in regional models (e.g., disaster evacuation) or global models (e.g., sea level rise) where pixels span dozens to hundreds of kilometers (Usery et al 2003). Such models are increasingly common, lending compelling reasons to understand shortcomings in the use of planar distance metrics. Researchers have studied curvature-based terrain modeling. Jenny et al. (2011) use curvature to generate
Power Block Geometry Applied to the Building of Power Electronics Converters
dos Santos, E. C., Jr.; da Silva, E. R. C.
2013-01-01
This paper proposes a new methodology, Power Block Geometry (PBG), for the presentation of power electronics topologies that process ac voltage. PBG's strategy uses formal methods based on a geometrical representation with particular rules and defines a universe with axioms and conjectures to establish a formation law. It allows power…
A Versatile Active Block: DXCCCII and Tunable Applications
Directory of Open Access Journals (Sweden)
S. A. Tekin
2014-12-01
Full Text Available The study describes dual-X controlled current conveyor (DXCCCII as a versatile active block and its application to inductance simulators for testing. Moreover, the high pass filter application using with DXCCCII based inductance simulator and oscillator with flexible tunable oscillation frequency have been presented and simulated to confirm the theoretical validity. The proposed circuit which has a simple circuit design requires the low-voltage and the DXCCCII can also be tuned in the wide range by the biasing current. The proposed DXCCCII provides a good linearity, high output impedance at Z terminals, and a reasonable current and voltage transfer gain accuracy. The proposed DXCCCII and its applications have been simulated using the CMOS 0.18 µm technology.
Measures of lexical distance between languages
Petroni, Filippo; Serva, Maurizio
2010-06-01
The idea of measuring distance between languages seems to have its roots in the work of the French explorer Dumont D’Urville (1832) [13]. He collected comparative word lists for various languages during his voyages aboard the Astrolabe from 1826 to 1829 and, in his work concerning the geographical division of the Pacific, he proposed a method for measuring the degree of relation among languages. The method used by modern glottochronology, developed by Morris Swadesh in the 1950s, measures distances from the percentage of shared cognates, which are words with a common historical origin. Recently, we proposed a new automated method which uses the normalized Levenshtein distances among words with the same meaning and averages on the words contained in a list. Recently another group of scholars, Bakker et al. (2009) [8] and Holman et al. (2008) [9], proposed a refined version of our definition including a second normalization. In this paper we compare the information content of our definition with the refined version in order to decide which of the two can be applied with greater success to resolve relationships among languages.
Stereo Camera Based Virtual Cane System with Identifiable Distance Tactile Feedback for the Blind
Directory of Open Access Journals (Sweden)
Donghun Kim
2014-06-01
Full Text Available In this paper, we propose a new haptic-assisted virtual cane system operated by a simple finger pointing gesture. The system is developed by two stages: development of visual information delivery assistant (VIDA with a stereo camera and adding a tactile feedback interface with dual actuators for guidance and distance feedbacks. In the first stage, user’s pointing finger is automatically detected using color and disparity data from stereo images and then a 3D pointing direction of the finger is estimated with its geometric and textural features. Finally, any object within the estimated pointing trajectory in 3D space is detected and the distance is then estimated in real time. For the second stage, identifiable tactile signals are designed through a series of identification experiments, and an identifiable tactile feedback interface is developed and integrated into the VIDA system. Our approach differs in that navigation guidance is provided by a simple finger pointing gesture and tactile distance feedbacks are perfectly identifiable to the blind.
Energy Technology Data Exchange (ETDEWEB)
Cheng, X C; Su, S J; Wang, Y K; Du, J B [Instrument Department, College of Mechatronics Engineering and Automation, National University of Defense Technology, ChangSha, Hunan, 410073 (China)
2006-10-15
In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily.
International Nuclear Information System (INIS)
Cheng, X C; Su, S J; Wang, Y K; Du, J B
2006-01-01
In order to identify each base-station in quasi-GPS ultrasonic location system, a unique pseudo-random code is assigned to each base-station. This article primarily studies the distance estimation problem between Autonomous Guide Vehicle (AGV) and single base-station, and then the ultrasonic spread-spectrum distance measurement Time Delay Estimation (TDE) model is established. Based on the above model, the envelope correlation fast TDE algorithm based on FFT is presented and analyzed. It shows by experiments that when the m sequence used in the received signal is as same as the reference signal, there will be a sharp correlation value in their envelope correlation function after they are processed by the above algorithm; otherwise, the will be no prominent correlation value. So, the AGV can identify each base-station easily
Amphiphilic Fluorinated Block Copolymer Synthesized by RAFT Polymerization for Graphene Dispersions
Directory of Open Access Journals (Sweden)
Hyang Moo Lee
2016-03-01
Full Text Available Despite the superior properties of graphene, the strong π–π interactions among pristine graphenes yielding massive aggregation impede industrial applications. For non-covalent functionalization of highly-ordered pyrolytic graphite (HOPG, poly(2,2,2-trifluoroethyl methacrylate-block-poly(4-vinyl pyridine (PTFEMA-b-PVP block copolymers were prepared by reversible addition-fragmentation chain transfer (RAFT polymerization and used as polymeric dispersants in liquid phase exfoliation assisted by ultrasonication. The HOPG graphene concentrations were found to be 0.260–0.385 mg/mL in methanolic graphene dispersions stabilized with 10 wt % (relative to HOPG PTFEMA-b-PVP block copolymers after one week. Raman and atomic force microscopy (AFM analyses revealed that HOPG could not be completely exfoliated during the sonication. However, on-line turbidity results confirmed that the dispersion stability of HOPG in the presence of the block copolymer lasted for one week and that longer PTFEMA and PVP blocks led to better graphene dispersibility. Force–distance (F–d analyses of AFM showed that PVP block is a good graphene-philic block while PTFEMA is methanol-philic.
A result-driven minimum blocking method for PageRank parallel computing
Tao, Wan; Liu, Tao; Yu, Wei; Huang, Gan
2017-01-01
Matrix blocking is a common method for improving computational efficiency of PageRank, but the blocking rules are hard to be determined, and the following calculation is complicated. In tackling these problems, we propose a minimum blocking method driven by result needs to accomplish a parallel implementation of PageRank algorithm. The minimum blocking just stores the element which is necessary for the result matrix. In return, the following calculation becomes simple and the consumption of the I/O transmission is cut down. We do experiments on several matrixes of different data size and different sparsity degree. The results show that the proposed method has better computational efficiency than traditional blocking methods.
Chand, Umesh
2017-08-05
We propose a new method to improve resistive switching properties in HfO2 based CBRAM crossbar structure device by introducing a TaN thin diffusion blocking layer between the Cu top electrode and HfO2 switching layer. The Cu/TaN/HfO2/TiN device structure exhibits high resistance ratio of OFF/ON states without any degradation in switching during endurance test. The improvement in the endurance properties of the Cu/TaN/HfO2/TiN CBRAM device is thus attributed to the relatively low amount of Cu migration into HfO2 switching layer.
Variance-Based Cluster Selection Criteria in a K-Means Framework for One-Mode Dissimilarity Data.
Vera, J Fernando; Macías, Rodrigo
2017-06-01
One of the main problems in cluster analysis is that of determining the number of groups in the data. In general, the approach taken depends on the cluster method used. For K-means, some of the most widely employed criteria are formulated in terms of the decomposition of the total point scatter, regarding a two-mode data set of N points in p dimensions, which are optimally arranged into K classes. This paper addresses the formulation of criteria to determine the number of clusters, in the general situation in which the available information for clustering is a one-mode [Formula: see text] dissimilarity matrix describing the objects. In this framework, p and the coordinates of points are usually unknown, and the application of criteria originally formulated for two-mode data sets is dependent on their possible reformulation in the one-mode situation. The decomposition of the variability of the clustered objects is proposed in terms of the corresponding block-shaped partition of the dissimilarity matrix. Within-block and between-block dispersion values for the partitioned dissimilarity matrix are derived, and variance-based criteria are subsequently formulated in order to determine the number of groups in the data. A Monte Carlo experiment was carried out to study the performance of the proposed criteria. For simulated clustered points in p dimensions, greater efficiency in recovering the number of clusters is obtained when the criteria are calculated from the related Euclidean distances instead of the known two-mode data set, in general, for unequal-sized clusters and for low dimensionality situations. For simulated dissimilarity data sets, the proposed criteria always outperform the results obtained when these criteria are calculated from their original formulation, using dissimilarities instead of distances.
Novel prediction- and subblock-based algorithm for fractal image compression
International Nuclear Information System (INIS)
Chung, K.-L.; Hsu, C.-H.
2006-01-01
Fractal encoding is the most consuming part in fractal image compression. In this paper, a novel two-phase prediction- and subblock-based fractal encoding algorithm is presented. Initially the original gray image is partitioned into a set of variable-size blocks according to the S-tree- and interpolation-based decomposition principle. In the first phase, each current block of variable-size range block tries to find the best matched domain block based on the proposed prediction-based search strategy which utilizes the relevant neighboring variable-size domain blocks. The first phase leads to a significant computation-saving effect. If the domain block found within the predicted search space is unacceptable, in the second phase, a subblock strategy is employed to partition the current variable-size range block into smaller blocks to improve the image quality. Experimental results show that our proposed prediction- and subblock-based fractal encoding algorithm outperforms the conventional full search algorithm and the recently published spatial-correlation-based algorithm by Truong et al. in terms of encoding time and image quality. In addition, the performance comparison among our proposed algorithm and the other two algorithms, the no search-based algorithm and the quadtree-based algorithm, are also investigated
Femtosecond frequency comb based distance measurement in air
Balling, P.; Kren, P.; Masika, P.; van den Berg, S.A.
2009-01-01
Interferometric measurement of distance using a femtosecond frequency comb is demonstrated and compared with a counting interferometer displacement measurement. A numerical model of pulse propagation in air is developed and the results are compared with experimental data for short distances. The
Fan, Jihong; Liang, Ru-Ze
2016-01-01
Dictionary plays an important role in multi-instance data representation. It maps bags of instances to histograms. Earth mover's distance (EMD) is the most effective histogram distance metric for the application of multi-instance retrieval. However, up to now, there is no existing multi-instance dictionary learning methods designed for EMD based histogram comparison. To fill this gap, we develop the first EMD-optimal dictionary learning method using stochastic optimization method. In the stoc...
Pāhoehoe, `a`ā, and block lava: an illustrated history of the nomenclature
Harris, Andrew J. L.; Rowland, Scott K.; Villeneuve, Nicolas; Thordarson, Thor
2017-01-01
Lava flows occur worldwide, and throughout history, various cultures (and geologists) have described flows based on their surface textures. As a result, surface morphology-based nomenclature schemes have been proposed in most languages to aid in the classification and distinction of lava surface types. One of the first to be published was likely the nine-class, Italian-language description-based classification proposed by Mario Gemmellaro in 1858. By far, the most commonly used terms to describe lava surfaces today are not descriptive but, instead, are merely words, specifically the Hawaiian words `a`ā (rough brecciated basalt lava) and pāhoehoe (smooth glassy basalt lava), plus block lava (thick brecciated lavas that are typically more silicic than basalt). `A`ā and pāhoehoe were introduced into the Western geological vocabulary by American geologists working in Hawai`i during the 1800s. They and other nineteenth century geologists proposed formal lava-type classification schemes for scientific use, and most of them used the Hawaiian words. In 1933, Ruy Finch added the third lava type, block lava, to the classification scheme, with the tripartite system being formalized in 1953 by Gordon Macdonald. More recently, particularly since the 1980s and based largely on studies of lava flow interiors, a number of sub-types and transitional forms of all three major lava types have been defined. This paper reviews the early history of the development of the pāhoehoe, `a`ā, and block lava-naming system and presents a new descriptive classification so as to break out the three parental lava types into their many morphological sub-types.
Structure-Based Low-Rank Model With Graph Nuclear Norm Regularization for Noise Removal.
Ge, Qi; Jing, Xiao-Yuan; Wu, Fei; Wei, Zhi-Hui; Xiao, Liang; Shao, Wen-Ze; Yue, Dong; Li, Hai-Bo
2017-07-01
Nonlocal image representation methods, including group-based sparse coding and block-matching 3-D filtering, have shown their great performance in application to low-level tasks. The nonlocal prior is extracted from each group consisting of patches with similar intensities. Grouping patches based on intensity similarity, however, gives rise to disturbance and inaccuracy in estimation of the true images. To address this problem, we propose a structure-based low-rank model with graph nuclear norm regularization. We exploit the local manifold structure inside a patch and group the patches by the distance metric of manifold structure. With the manifold structure information, a graph nuclear norm regularization is established and incorporated into a low-rank approximation model. We then prove that the graph-based regularization is equivalent to a weighted nuclear norm and the proposed model can be solved by a weighted singular-value thresholding algorithm. Extensive experiments on additive white Gaussian noise removal and mixed noise removal demonstrate that the proposed method achieves a better performance than several state-of-the-art algorithms.
Stealthy Hardware Trojan Based Algebraic Fault Analysis of HIGHT Block Cipher
Directory of Open Access Journals (Sweden)
Hao Chen
2017-01-01
Full Text Available HIGHT is a lightweight block cipher which has been adopted as a standard block cipher. In this paper, we present a bit-level algebraic fault analysis (AFA of HIGHT, where the faults are perturbed by a stealthy HT. The fault model in our attack assumes that the adversary is able to insert a HT that flips a specific bit of a certain intermediate word of the cipher once the HT is activated. The HT is realized by merely 4 registers and with an extremely low activation rate of about 0.000025. We show that the optimal location for inserting the designed HT can be efficiently determined by AFA in advance. Finally, a method is proposed to represent the cipher and the injected faults with a merged set of algebraic equations and the master key can be recovered by solving the merged equation system with an SAT solver. Our attack, which fully recovers the secret master key of the cipher in 12572.26 seconds, requires three times of activation on the designed HT. To the best of our knowledge, this is the first Trojan attack on HIGHT.
DEFF Research Database (Denmark)
Shi, Liming; Nielsen, Jesper Kjær; Jensen, Jesper Rindom
2017-01-01
The modeling of speech can be used for speech synthesis and speech recognition. We present a speech analysis method based on pole-zero modeling of speech with mixed block sparse and Gaussian excitation. By using a pole-zero model, instead of the all-pole model, a better spectral fitting can...... be expected. Moreover, motivated by the block sparse glottal flow excitation during voiced speech and the white noise excitation for unvoiced speech, we model the excitation sequence as a combination of block sparse signals and white noise. A variational EM (VEM) method is proposed for estimating...... in reconstructing of the block sparse excitation....
Distance majorization and its applications.
Chi, Eric C; Zhou, Hua; Lange, Kenneth
2014-08-01
The problem of minimizing a continuously differentiable convex function over an intersection of closed convex sets is ubiquitous in applied mathematics. It is particularly interesting when it is easy to project onto each separate set, but nontrivial to project onto their intersection. Algorithms based on Newton's method such as the interior point method are viable for small to medium-scale problems. However, modern applications in statistics, engineering, and machine learning are posing problems with potentially tens of thousands of parameters or more. We revisit this convex programming problem and propose an algorithm that scales well with dimensionality. Our proposal is an instance of a sequential unconstrained minimization technique and revolves around three ideas: the majorization-minimization principle, the classical penalty method for constrained optimization, and quasi-Newton acceleration of fixed-point algorithms. The performance of our distance majorization algorithms is illustrated in several applications.
Liu, Bo; Cheng, H D; Huang, Jianhua; Tian, Jiawei; Liu, Jiafeng; Tang, Xianglong
2009-08-01
Because of its complicated structure, low signal/noise ratio, low contrast and blurry boundaries, fully automated segmentation of a breast ultrasound (BUS) image is a difficult task. In this paper, a novel segmentation method for BUS images without human intervention is proposed. Unlike most published approaches, the proposed method handles the segmentation problem by using a two-step strategy: ROI generation and ROI segmentation. First, a well-trained texture classifier categorizes the tissues into different classes, and the background knowledge rules are used for selecting the regions of interest (ROIs) from them. Second, a novel probability distance-based active contour model is applied for segmenting the ROIs and finding the accurate positions of the breast tumors. The active contour model combines both global statistical information and local edge information, using a level set approach. The proposed segmentation method was performed on 103 BUS images (48 benign and 55 malignant). To validate the performance, the results were compared with the corresponding tumor regions marked by an experienced radiologist. Three error metrics, true-positive ratio (TP), false-negative ratio (FN) and false-positive ratio (FP) were used for measuring the performance of the proposed method. The final results (TP = 91.31%, FN = 8.69% and FP = 7.26%) demonstrate that the proposed method can segment BUS images efficiently, quickly and automatically.
Gao, Liqiang; Sun, Chao; Zhang, Chen; Zheng, Nenggan; Chen, Weidong; Zheng, Xiaoxiang
2013-01-01
Traditional automatic navigation methods for bio-robots are constrained to configured environments and thus can't be applied to tasks in unknown environments. With no consideration of bio-robot's own innate living ability and treating bio-robots in the same way as mechanical robots, those methods neglect the intelligence behavior of animals. This paper proposes a novel ratbot automatic navigation method in unknown environments using only reward stimulation and distance measurement. By utilizing rat's habit of thigmotaxis and its reward-seeking behavior, this method is able to incorporate rat's intrinsic intelligence of obstacle avoidance and path searching into navigation. Experiment results show that this method works robustly and can successfully navigate the ratbot to a target in the unknown environment. This work might put a solid base for application of ratbots and also has significant implication of automatic navigation for other bio-robots as well.
Directory of Open Access Journals (Sweden)
C. S. Barbosa
Full Text Available This paper deals with correlations among mechanical properties of hollow blocks and those of concrete used to make them. Concrete hollow blocks and test samples were moulded with plastic consistency concrete, to assure the same material in all cases, in three diferente levels of strength (nominally 10 N/mm², 20 N/mm² and 30 N/mm². The mechanical properties and structural behaviour in axial compression and tension tests were determined by standard tests in blocks and cylinders. Stress and strain analyses were made based on concrete’s modulus of elasticity obtained in the sample tests as well as on measured strain in the blocks’ face-shells and webs. A peculiar stress-strain analysis, based on the superposition of effects, provided an estimation of the block load capacity based on its deformations. In addition, a tentative method to preview the block deformability from the concrete mechanical properties is described and tested. This analysis is a part of a broader research that aims to support a detailed structural analysis of blocks, prisms and masonry constructions.
The social distance theory of power.
Magee, Joe C; Smith, Pamela K
2013-05-01
We propose that asymmetric dependence between individuals (i.e., power) produces asymmetric social distance, with high-power individuals feeling more distant than low-power individuals. From this insight, we articulate predictions about how power affects (a) social comparison, (b) susceptibility to influence, (c) mental state inference and responsiveness, and (d) emotions. We then explain how high-power individuals' greater experienced social distance leads them to engage in more abstract mental representation. This mediating process of construal level generates predictions about how power affects (a) goal selection and pursuit, (b) attention to desirability and feasibility concerns, (c) subjective certainty, (d) value-behavior correspondence, (e) self-control, and (f) person perception. We also reassess the approach/inhibition theory of power, noting limitations both in what it can predict and in the evidence directly supporting its proposed mechanisms. Finally, we discuss moderators and methodological recommendations for the study of power from a social distance perspective.
PEO-related block copolymer surfactants
DEFF Research Database (Denmark)
Mortensen, K.
2001-01-01
Non-ionic block copolymer systems based on hydrophilic poly(ethylene oxide) and more hydrophobic co-polymer blocks are used intensively in a variety of industrial and personal applications. A brief description on the applications is presented. The physical properties of more simple model systems...... of such PEG-based block copolymers in aqueous suspensions are reviewed. Based on scattering experiments using either X-ray or neutrons, the phase behavior is characterized, showing that the thermo-reversible gelation is a result of micellar ordering into mesoscopic crystalline phases of cubic, hexagonal...
QuaBingo: A Prediction System for Protein Quaternary Structure Attributes Using Block Composition
Directory of Open Access Journals (Sweden)
Chi-Hua Tung
2016-01-01
Full Text Available Background. Quaternary structures of proteins are closely relevant to gene regulation, signal transduction, and many other biological functions of proteins. In the current study, a new method based on protein-conserved motif composition in block format for feature extraction is proposed, which is termed block composition. Results. The protein quaternary assembly states prediction system which combines blocks with functional domain composition, called QuaBingo, is constructed by three layers of classifiers that can categorize quaternary structural attributes of monomer, homooligomer, and heterooligomer. The building of the first layer classifier uses support vector machines (SVM based on blocks and functional domains of proteins, and the second layer SVM was utilized to process the outputs of the first layer. Finally, the result is determined by the Random Forest of the third layer. We compared the effectiveness of the combination of block composition, functional domain composition, and pseudoamino acid composition of the model. In the 11 kinds of functional protein families, QuaBingo is 23% of Matthews Correlation Coefficient (MCC higher than the existing prediction system. The results also revealed the biological characterization of the top five block compositions. Conclusions. QuaBingo provides better predictive ability for predicting the quaternary structural attributes of proteins.
Yang, Wei; Feng, Qianjin; Yu, Mei; Lu, Zhentai; Gao, Yang; Xu, Yikai; Chen, Wufan
2012-11-01
A content-based image retrieval (CBIR) method for T1-weighted contrast-enhanced MRI (CE-MRI) images of brain tumors is presented for diagnosis aid. The method is thoroughly evaluated on a large image dataset. Using the tumor region as a query, the authors' CBIR system attempts to retrieve tumors of the same pathological category. Aside from commonly used features such as intensity, texture, and shape features, the authors use a margin information descriptor (MID), which is capable of describing the characteristics of tissue surrounding a tumor, for representing image contents. In addition, the authors designed a distance metric learning algorithm called Maximum mean average Precision Projection (MPP) to maximize the smooth approximated mean average precision (mAP) to optimize retrieval performance. The effectiveness of MID and MPP algorithms was evaluated using a brain CE-MRI dataset consisting of 3108 2D scans acquired from 235 patients with three categories of brain tumors (meningioma, glioma, and pituitary tumor). By combining MID and other features, the mAP of retrieval increased by more than 6% with the learned distance metrics. The distance metric learned by MPP significantly outperformed the other two existing distance metric learning methods in terms of mAP. The CBIR system using the proposed strategies achieved a mAP of 87.3% and a precision of 89.3% when top 10 images were returned by the system. Compared with scale-invariant feature transform, the MID, which uses the intensity profile as descriptor, achieves better retrieval performance. Incorporating tumor margin information represented by MID with the distance metric learned by the MPP algorithm can substantially improve the retrieval performance for brain tumors in CE-MRI.
The effect of uncertainties in distance-based ranking methods for multi-criteria decision making
Jaini, Nor I.; Utyuzhnikov, Sergei V.
2017-08-01
Data in the multi-criteria decision making are often imprecise and changeable. Therefore, it is important to carry out sensitivity analysis test for the multi-criteria decision making problem. The paper aims to present a sensitivity analysis for some ranking techniques based on the distance measures in multi-criteria decision making. Two types of uncertainties are considered for the sensitivity analysis test. The first uncertainty is related to the input data, while the second uncertainty is towards the Decision Maker preferences (weights). The ranking techniques considered in this study are TOPSIS, the relative distance and trade-off ranking methods. TOPSIS and the relative distance method measure a distance from an alternative to the ideal and antiideal solutions. In turn, the trade-off ranking calculates a distance of an alternative to the extreme solutions and other alternatives. Several test cases are considered to study the performance of each ranking technique in both types of uncertainties.
Secure transmission of images based on chaotic systems and cipher block chaining
Lakhani, Mahdieh Karimi; Behnam, Hamid; Karimi, Arash
2013-01-01
The ever-growing penetration of communication networks, digital and Internet technologies in our everyday lives has the transmission of text data, as well as multimedia data such as images and videos, possible. Digital images have a vast usage in a number of applications, including medicine and providing security authentication, for example. This applicability becomes evident when images, such as walking or people's facial features, are utilized in their identification. Considering the required security level and the properties of images, different algorithms may be used. After key generation using logistic chaos signals, a scrambling function is utilized for image agitation in both horizontal and vertical axes, and then a block-chaining mode of operation may be applied to encrypt the resultant image. The results demonstrate that using the proposed method drastically degrades the correlation between the image components and also the entropy is increased to an acceptable level. Therefore, the image will become greatly resistant to differential attacks. However, the increasing scrambling rounds and the decreasing number of bits of the blocks result in increasing the entropy and decreasing the correlation.
International Nuclear Information System (INIS)
Kikuchi, Kenji; Futakawa, Masatoshi; Takizuka, Takakazu; Kaburaki, Hideo; Sanokawa, Konomo
1984-01-01
In order to minimize the leak flow rate of an experimental VHTR (a multi-purpose very high-temperature gas-cooled reactor), the graphite blocks are tightened to reduce the gap distance between blocks by core restrainers surrounded outside of the fixed reflectors of the bottom-core structure and seal elements are placed in the gaps. By using a 1/2.75-scale model of the bottom-core structure, the experiments on the following items have been carried out: a relationship between core restraint force and block gap, a relationship between core restraint force and inclined angle of the model, leak flow characteristics of seal elements etc. The conclusions derived from the experiments are as follows: (1) Core restraint force is significantly effective for decreasing the gap distance between hot plenum blocks, but ineffective for the gap between hot plenum block and fixed reflector. (2) Graphite seal element reduces the leak flow rate from the top surface of hot plenum block into plenum region to one-third. (author)
Masuyama, Hiroyuki
2014-01-01
In this paper we study the augmented truncation of discrete-time block-monotone Markov chains under geometric drift conditions. We first present a bound for the total variation distance between the stationary distributions of an original Markov chain and its augmented truncation. We also obtain such error bounds for more general cases, where an original Markov chain itself is not necessarily block monotone but is blockwise dominated by a block-monotone Markov chain. Finally,...
Mannila, H.; Koivisto, M.; Perola, M.; Varilo, T.; Hennah, W.; Ekelund, J.; Lukk, M.; Peltonen, L.; Ukkonen, E.
2003-01-01
We describe a new probabilistic method for finding haplotype blocks that is based on the use of the minimum description length (MDL) principle. We give a rigorous definition of the quality of a segmentation of a genomic region into blocks and describe a dynamic programming algorithm for finding the optimal segmentation with respect to this measure. We also describe a method for finding the probability of a block boundary for each pair of adjacent markers: this gives a tool for evaluating the ...
Zheng, Luping; Wang, Yunfei; Zhang, Xianshuo; Ma, Liwei; Wang, Baoyan; Ji, Xiangling; Wei, Hua
2018-01-17
Dendrimer with hyperbranched structure and multivalent surface is regarded as one of the most promising candidates close to the ideal drug delivery systems, but the clinical translation and scale-up production of dendrimer has been hampered significantly by the synthetic difficulties. Therefore, there is considerable scope for the development of novel hyperbranched polymer that can not only address the drawbacks of dendrimer but maintain its advantages. The reversible addition-fragmentation chain transfer self-condensing vinyl polymerization (RAFT-SCVP) technique has enabled facile preparation of segmented hyperbranched polymer (SHP) by using chain transfer monomer (CTM)-based double-head agent during the past decade. Meanwhile, the design and development of block-statistical copolymers has been proven in our recent studies to be a simple yet effective way to address the extracellular stability vs intracellular high delivery efficacy dilemma. To integrate the advantages of both hyperbranched and block-statistical structures, we herein reported the fabrication of hyperbranched block-statistical copolymer-based prodrug with pH and reduction dual sensitivities using RAFT-SCVP and post-polymerization click coupling. The external homo oligo(ethylene glycol methyl ether methacrylate) (OEGMA) block provides sufficient extracellularly colloidal stability for the nanocarriers by steric hindrance, and the interior OEGMA units incorporated by the statistical copolymerization promote intracellular drug release by facilitating the permeation of GSH and H + for the cleavage of the reduction-responsive disulfide bond and pH-liable carbonate link as well as weakening the hydrophobic encapsulation of drug molecules. The delivery efficacy of the target hyperbranched block-statistical copolymer-based prodrug was evaluated in terms of in vitro drug release and cytotoxicity studies, which confirms both acidic pH and reduction-triggered drug release for inhibiting proliferation of He
Waqas, Abi; Melati, Daniele; Manfredi, Paolo; Grassi, Flavia; Melloni, Andrea
2018-02-01
The Building Block (BB) approach has recently emerged in photonic as a suitable strategy for the analysis and design of complex circuits. Each BB can be foundry related and contains a mathematical macro-model of its functionality. As well known, statistical variations in fabrication processes can have a strong effect on their functionality and ultimately affect the yield. In order to predict the statistical behavior of the circuit, proper analysis of the uncertainties effects is crucial. This paper presents a method to build a novel class of Stochastic Process Design Kits for the analysis of photonic circuits. The proposed design kits directly store the information on the stochastic behavior of each building block in the form of a generalized-polynomial-chaos-based augmented macro-model obtained by properly exploiting stochastic collocation and Galerkin methods. Using this approach, we demonstrate that the augmented macro-models of the BBs can be calculated once and stored in a BB (foundry dependent) library and then used for the analysis of any desired circuit. The main advantage of this approach, shown here for the first time in photonics, is that the stochastic moments of an arbitrary photonic circuit can be evaluated by a single simulation only, without the need for repeated simulations. The accuracy and the significant speed-up with respect to the classical Monte Carlo analysis are verified by means of classical photonic circuit example with multiple uncertain variables.
Block-free optical quantum Banyan network based on quantum state fusion and fission
International Nuclear Information System (INIS)
Zhu Chang-Hua; Meng Yan-Hong; Quan Dong-Xiao; Zhao Nan; Pei Chang-Xing
2014-01-01
Optical switch fabric plays an important role in building multiple-user optical quantum communication networks. Owing to its self-routing property and low complexity, a banyan network is widely used for building switch fabric. While, there is no efficient way to remove internal blocking in a banyan network in a classical way, quantum state fusion, by which the two-dimensional internal quantum states of two photons could be combined into a four-dimensional internal state of a single photon, makes it possible to solve this problem. In this paper, we convert the output mode of quantum state fusion from spatial-polarization mode into time-polarization mode. By combining modified quantum state fusion and quantum state fission with quantum Fredkin gate, we propose a practical scheme to build an optical quantum switch unit which is block free. The scheme can be extended to building more complex units, four of which are shown in this paper. (general)
Didactics, Technology, and Organisation of Project Based Distance Education
DEFF Research Database (Denmark)
Knudsen, Morten Haack; Borch, Ole M.; Helbo, Jan
2005-01-01
The didactics, technology, and organization of an ICT supported distance engineering Master education are described. A systematic monitoring and evaluation of the basis year has given useful experience, subsequently used for adjustments and improvements. A successful on-campus project organized...... as asynchronous, which is possible with extensive utilization of new information and communication technology. Virtual meetings are conducted with text, sound and video based communication. Also the organization requires technology. A new learning management system, specifically designed to the didactic form...
CO2 permeation properties of poly(ethylene oxide)-based segmented block copolymers
Husken, D.; Visser, Tymen; Wessling, Matthias; Gaymans, R.J.
2010-01-01
This paper discusses the gas permeation properties of poly(ethylene oxide) (PEO)-based segmented block copolymers containing monodisperse amide segments. These monodisperse segments give rise to a well phase-separated morphology, comprising a continuous PEO phase with dispersed crystallised amide
Cryptanalysis of Selected Block Ciphers
DEFF Research Database (Denmark)
Alkhzaimi, Hoda A.
, pseudorandom number generators, and authenticated encryption designs. For this reason a multitude of initiatives over the years has been established to provide a secure and sound designs for block ciphers as in the calls for Data Encryption Standard (DES) and Advanced Encryption Standard (AES), lightweight...... ciphers initiatives, and the Competition for Authenticated Encryption: Security, Applicability, and Robustness (CAESAR). In this thesis, we first present cryptanalytic results on different ciphers. We propose attack named the Invariant Subspace Attack. It is utilized to break the full block cipher...
International Nuclear Information System (INIS)
Weston, Mark; Juhasz, Janos
2016-01-01
Purpose: The accuracy of treatment delivery for left breast/chest wall patients using deep inspiration breath hold (DIBH) is being monitored using a distance measuring laser (DML) Methods: A commercially available DML (DLS-C15, Dimetix) was mounted behind a Varian TrilogyTM linac. Relative to the machine isocenter, the laser from the beam was offset by 8 cm to the left and by 1 cm in the superior direction. This position was selected because this point is situated on the sternum for the majority of the left breast/chest-wall patients treated at our institution. The Varian Real-Time Positioning Management™ (RPM) guided DIBH treatments at our institution is delivered by placing the system’s tracking block on the patient’s abdomen. The treatment beam is enabled only when the block is in between a predefined abdomen motion range as determined during the CT simulation process. A LabVIEW program was developed to record both beam status (i.e. on/off) and distance measurements. In this study the DML was only used to monitor the position of a single point on the chest and no clinical decisions/adjustments were made based on these measurements. Results and Conclusions: Thus far, 34 fractions have been recorded for 4 patients. As such, the performance of our DIBH treatment technique cannot be fairly evaluated at this point. However, deviations between expected and measured distances have been observed and if these are found to be reproducible, then modifications in our treatment procedures and policies will have to take place.
Energy Technology Data Exchange (ETDEWEB)
Weston, Mark; Juhasz, Janos [Juravinski Cancer Centre (Canada)
2016-08-15
Purpose: The accuracy of treatment delivery for left breast/chest wall patients using deep inspiration breath hold (DIBH) is being monitored using a distance measuring laser (DML) Methods: A commercially available DML (DLS-C15, Dimetix) was mounted behind a Varian TrilogyTM linac. Relative to the machine isocenter, the laser from the beam was offset by 8 cm to the left and by 1 cm in the superior direction. This position was selected because this point is situated on the sternum for the majority of the left breast/chest-wall patients treated at our institution. The Varian Real-Time Positioning Management™ (RPM) guided DIBH treatments at our institution is delivered by placing the system’s tracking block on the patient’s abdomen. The treatment beam is enabled only when the block is in between a predefined abdomen motion range as determined during the CT simulation process. A LabVIEW program was developed to record both beam status (i.e. on/off) and distance measurements. In this study the DML was only used to monitor the position of a single point on the chest and no clinical decisions/adjustments were made based on these measurements. Results and Conclusions: Thus far, 34 fractions have been recorded for 4 patients. As such, the performance of our DIBH treatment technique cannot be fairly evaluated at this point. However, deviations between expected and measured distances have been observed and if these are found to be reproducible, then modifications in our treatment procedures and policies will have to take place.
International Nuclear Information System (INIS)
Lin, Jyun-Hao; Huang, Shyh-Jer; Su, Yan-Kuin; Huang, Kai-Wen
2015-01-01
Highlights: • Concave nano-patterned sapphire substrates with SiO 2 blocking layer. • The IQE is almost two times larger than that of conventional one. • The EQE was extremely enhanced more than 100%. - Abstract: In contrast to convex nano-pattern sapphire substrates (NPSS), which are frequently used to fabricate high-quality nitride-based light-emitting diodes (LEDs), concave NPSS have been paid relatively less attention. In this study, a concave NPSS was fabricated, and its nitride epitaxial growth process was evaluated in a step by step manner. A SiO 2 layer was used to avoid nucleation over the sidewall and bottom of the nano-patterns to reduce dislocation reformation. Traditional LED structures were grown on the NPSS layer to determine its influence on device performance. X-ray diffraction, etched pit density, inverse leakage current, and internal quantum efficiency (IQE) results showed that dislocations and non-radiative recombination centers are reduced by the NPSS constructed with a SiO 2 blocking layer. An IQE twice that on a planar substrate was also achieved; such a high IQE significantly enhanced the external quantum efficiency of the resultant device. Taken together, the results demonstrate that the SiO 2 blocking layer proposed in this work can enhance the performance of LEDs.
DISTANCES TO DARK CLOUDS: COMPARING EXTINCTION DISTANCES TO MASER PARALLAX DISTANCES
International Nuclear Information System (INIS)
Foster, Jonathan B.; Jackson, James M.; Stead, Joseph J.; Hoare, Melvin G.; Benjamin, Robert A.
2012-01-01
We test two different methods of using near-infrared extinction to estimate distances to dark clouds in the first quadrant of the Galaxy using large near-infrared (Two Micron All Sky Survey and UKIRT Infrared Deep Sky Survey) surveys. Very long baseline interferometry parallax measurements of masers around massive young stars provide the most direct and bias-free measurement of the distance to these dark clouds. We compare the extinction distance estimates to these maser parallax distances. We also compare these distances to kinematic distances, including recent re-calibrations of the Galactic rotation curve. The extinction distance methods agree with the maser parallax distances (within the errors) between 66% and 100% of the time (depending on method and input survey) and between 85% and 100% of the time outside of the crowded Galactic center. Although the sample size is small, extinction distance methods reproduce maser parallax distances better than kinematic distances; furthermore, extinction distance methods do not suffer from the kinematic distance ambiguity. This validation gives us confidence that these extinction methods may be extended to additional dark clouds where maser parallaxes are not available.
Gualtieri, J. A.; Le Moigne, J.; Packer, C. V.
1992-01-01
Comparing two binary images and assigning a quantitative measure to this comparison finds its purpose in such tasks as image recognition, image compression, and image browsing. This quantitative measurement may be computed by utilizing the Hausdorff distance of the images represented as two-dimensional point sets. In this paper, we review two algorithms that have been proposed to compute this distance, and we present a parallel implementation of one of them on the MasPar parallel processor. We study their complexity and the results obtained by these algorithms for two different types of images: a set of displaced pairs of images of Gaussian densities, and a comparison of a Canny edge image with several edge images from a hierarchical region growing code.
Gasaymeh, Al-Mothana M.
2009-01-01
The purpose of this study was to examine the attitudes toward internet-based distance education by the faculty members of two Jordanian public universities, Al-Hussein Bin Talal University and Yarmouk University, as well as to explore the relationship between their attitudes toward internet-based distance education and their perceptions of their…
Long-distance calls in Neotropical primates
Directory of Open Access Journals (Sweden)
Oliveira Dilmar A.G.
2004-01-01
Full Text Available Long-distance calls are widespread among primates. Several studies concentrate on such calls in just one or in few species, while few studies have treated more general trends within the order. The common features that usually characterize these vocalizations are related to long-distance propagation of sounds. The proposed functions of primate long-distance calls can be divided into extragroup and intragroup ones. Extragroup functions relate to mate defense, mate attraction or resource defense, while intragroup functions involve group coordination or alarm. Among Neotropical primates, several species perform long-distance calls that seem more related to intragroup coordination, markedly in atelines. Callitrichids present long-distance calls that are employed both in intragroup coordination and intergroup contests or spacing. Examples of extragroup directed long-distance calls are the duets of titi monkeys and the roars and barks of howler monkeys. Considerable complexity and gradation exist in the long-distance call repertoires of some Neotropical primates, and female long-distance calls are probably more important in non-duetting species than usually thought. Future research must focus on larger trends in the evolution of primate long-distance calls, including the phylogeny of calling repertoires and the relationships between form and function in these signals.
Treadmill sideways gait training with visual blocking for patients with brain lesions.
Kim, Tea-Woo; Kim, Yong-Wook
2014-09-01
[Purpose] The aim of this study was to verify the effect of sideways treadmill training with and without visual blocking on the balance and gait function of patients with brain lesions. [Subjects] Twenty-four stroke and traumatic brain injury subjects participated in this study. They were divided into two groups: an experimental group (12 subjects) and a control group (12 subjects). [Methods] Each group executed a treadmill training session for 20 minutes, three times a week, for 6 weeks. The sideways gait training on the treadmill was performed with visual blocking by the experimental group and with normal vision by the control group. A Biodex Gait Trainer 2 was used to assess the gait function. It was used to measure walking speed, walking distance, step length, and stance time on each foot. The Five-Times-Sit-To-Stand test (FTSST) and Timed Up and Go test (TUG) were used as balance measures. [Results] The sideways gait training with visual blocking group showed significantly improved walking speed, walking distance, step length, and stance time on each foot after training; FTSST and TUG times also significantly improved after training in the experimental group. Compared to the control group, the experimental group showed significant increases in stance time on each foot. [Conclusion] Sideways gait training on a treadmill with visual blocking performed by patients with brain lesions significantly improved their balance and gait function.
Development of GAGG depth-of-interaction (DOI) block detectors based on pulse shape analysis
International Nuclear Information System (INIS)
Yamamoto, Seiichi; Kobayashi, Takahiro; Yeol Yeom, Jung; Morishita, Yuki; Sato, Hiroki; Endo, Takanori; Usuki, Yoshiyuki; Kamada, Kei; Yoshikawa, Akira
2014-01-01
A depth-of-interaction (DOI) detector is required for developing a high resolution and high sensitivity PET system. Ce-doped Gd 3 Al 2 Ga 3 O 12 (GAGG fast: GAGG-F) is a promising scintillator for PET applications with high light output, no natural radioisotope and suitable light emission wavelength for semiconductor based photodetectors. However, no DOI detector based on pulse shape analysis with GAGG-F has been developed to date, due to the lack of appropriate scintillators of pairing. Recently a new variation of this scintillator with different Al/Ga ratios—Ce-doped Gd 3 Al 2.6 Ga 2.4 O 12 (GAGG slow: GAGG-S), which has slower decay time was developed. The combination of GAGG-F and GAGG-S may allow us to realize high resolution DOI detectors based on pulse shape analysis. We developed and tested two GAGG phoswich DOI block detectors comprised of pixelated GAGG-F and GAGG-S scintillation crystals. One phoswich block detector comprised of 2×2×5 mm pixel that were assembled into a 5×5 matrix. The DOI block was optically coupled to a silicon photomultiplier (Si-PM) array (Hamamatsu MPPC S11064-050P) with a 2-mm thick light guide. The other phoswich block detector comprised of 0.5×0.5×5 mm (GAGG-F) and 0.5×0.5×6 mm 3 (GAGG-S) pixels that were assembled into a 20×20 matrix. The DOI block was also optically coupled to the same Si-PM array with a 2-mm thick light guide. In the block detector of 2-mm crystal pixels (5×5 matrix), the 2-dimensional histogram revealed excellent separation with an average energy resolution of 14.1% for 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 8.7. In the block detector that used 0.5-mm crystal pixels (20×20 matrix), the 2-dimensional histogram also showed good separation with energy resolution of 27.5% for the 662-keV gamma photons. The pulse shape spectrum displayed good separation with a peak-to-valley ratio of 6.5. These results indicate that phoswich DOI
Highly Efficient One-Pot Synthesis of COS-Based Block Copolymers by Using Organic Lewis Pairs.
Yang, Jia-Liang; Cao, Xiao-Han; Zhang, Cheng-Jian; Wu, Hai-Lin; Zhang, Xing-Hong
2018-01-31
A one-pot synthesis of block copolymer with regioregular poly(monothiocarbonate) block is described via metal-free catalysis. Lewis bases such as guanidine, quaternary onium salts, and Lewis acid triethyl borane (TEB) were equivalently combined and used as the catalysts. By using polyethylene glycol (PEG) as the macromolecular chain transfer agent (CTA), narrow polydispersity block copolymers were obtained from the copolymerization of carbonyl sulfide (COS) and propylene oxide (PO). The block copolymers had a poly(monothiocarbonate) block with perfect alternating degree and regioregularity. Unexpectedly, the addition of CTA to COS/PO copolymerization system could dramatically improve the turnover frequency (TOF) of PO (up to 240 h -1 ), higher than that of the copolymerization without CTA. In addition, the conversion of CTA could be up to 100% in most cases, as revealed by ¹H NMR spectra. Of consequence, the number-average molecular weights ( M n s) of the resultant block copolymers could be regulated by varying the feed ratio of CTA to PO. Oxygen-sulfur exchange reaction (O/S ER), which can generate randomly distributed thiocarbonate and carbonate units, was effectively suppressed in all of the cases in the presence of CTA, even at 80 °C. This work presents a versatile method for synthesizing sulfur-containing block copolymers through a metal-free route, providing an array of new block copolymers.
A distance weighted-based approach for self-organized aggregation in robot swarms
Khaldi, Belkacem; Harrou, Fouzi; Cherif, Foudil; Sun, Ying
2017-01-01
topology to keep the robots together. A distance-weighted function based on a Smoothed Particle Hydrodynamic (SPH) interpolation approach is used as a key factor to identify the K-Nearest neighbors taken into account when aggregating the robots. The intra
Zhang, Jing
2009-01-01
Distance education is not a new concept for all kinds of learners in the modern societies. Many researchers have studied traditional distance education programs for adult learners in the past, but little research has been done on Web-based distance education (WBDE) for adult learners. There are also many popular online universities in the U.S. or…
Facial expression recognition under partial occlusion based on fusion of global and local features
Wang, Xiaohua; Xia, Chen; Hu, Min; Ren, Fuji
2018-04-01
Facial expression recognition under partial occlusion is a challenging research. This paper proposes a novel framework for facial expression recognition under occlusion by fusing the global and local features. In global aspect, first, information entropy are employed to locate the occluded region. Second, principal Component Analysis (PCA) method is adopted to reconstruct the occlusion region of image. After that, a replace strategy is applied to reconstruct image by replacing the occluded region with the corresponding region of the best matched image in training set, Pyramid Weber Local Descriptor (PWLD) feature is then extracted. At last, the outputs of SVM are fitted to the probabilities of the target class by using sigmoid function. For the local aspect, an overlapping block-based method is adopted to extract WLD features, and each block is weighted adaptively by information entropy, Chi-square distance and similar block summation methods are then applied to obtain the probabilities which emotion belongs to. Finally, fusion at the decision level is employed for the data fusion of the global and local features based on Dempster-Shafer theory of evidence. Experimental results on the Cohn-Kanade and JAFFE databases demonstrate the effectiveness and fault tolerance of this method.
Laomettachit, Teeraphan; Termsaithong, Teerasit; Sae-Tang, Anuwat; Duangphakdee, Orawan
2015-01-07
In the nest-site selection process of honeybee swarms, an individual bee performs a waggle dance to communicate information about direction, quality, and distance of a discovered site to other bees at the swarm. Initially, different groups of bees dance to represent different potential sites, but eventually the swarm usually reaches an agreement for only one site. Here, we model the nest-site selection process in honeybee swarms of Apis mellifera and show how the swarms make adaptive decisions based on a trade-off between the quality and distance to candidate nest sites. We use bifurcation analysis and stochastic simulations to reveal that the swarm's site distance preference is moderate>near>far when the swarms choose between low quality sites. However, the distance preference becomes near>moderate>far when the swarms choose between high quality sites. Our simulations also indicate that swarms with large population size prefer nearer sites and, in addition, are more adaptive at making decisions based on available information compared to swarms with smaller population size. Copyright © 2014 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
T. A. Ismailov
2016-01-01
Full Text Available Aim. The article deals with the problem of constructing the power supply devices in the composition of the ship's secondary power systems based on standardized blocks and securing their thermal regime.Methods. It is stated that with the advent of modern power electronics multifunctional components the secondary power supply developers got possibilities to improve the quality of secondary power supply and to upgrade the existing systems.Results. The advantages of unified power units, having a function of parallel operation are revealed. Heat transfer processes in a vertical channel with free convection, and the calculation of the minimum width of the channel, which provides efficient heat removal have been analyzed.Conclusion.A model is proposed for determining the minimum distance between the blocks without deterioration of heat transfer in the channel formed by the walls of adjacent blocks.
Coastal protection using topological interlocking blocks
Pasternak, Elena; Dyskin, Arcady; Pattiaratchi, Charitha; Pelinovsky, Efim
2013-04-01
The coastal protection systems mainly rely on the self-weight of armour blocks to ensure its stability. We propose a system of interlocking armour blocks, which form plate-shape assemblies. The shape and the position of the blocks are chosen in such a way as to impose kinematic constraints that prevent the blocks from being removed from the assembly. The topological interlocking shapes include simple convex blocks such as platonic solids, the most practical being tetrahedra, cubes and octahedra. Another class of topological interlocking blocks is so-called osteomorphic blocks, which form plate-like assemblies tolerant to random block removal (almost 25% of blocks need to be removed for the assembly to loose integrity). Both classes require peripheral constraint, which can be provided either by the weight of the blocks or post-tensioned internal cables. The interlocking assemblies provide increased stability because lifting one block involves lifting (and bending) the whole assembly. We model the effect of interlocking by introducing an equivalent additional self-weight of the armour blocks. This additional self-weight is proportional to the critical pressure needed to cause bending of the interlocking assembly when it loses stability. Using beam approximation we find an equivalent stability coefficient for interlocking. It is found to be greater than the stability coefficient of a structure with similar blocks without interlocking. In the case when the peripheral constraint is provided by the weight of the blocks and for the slope angle of 45o, the effective stability coefficient for a structure of 100 blocks is 33% higher than the one for a similar structure without interlocking. Further increase in the stability coefficient can be reached by a specially constructed peripheral constraint system, for instance by using post-tension cables.
Directory of Open Access Journals (Sweden)
Peek-Asa Corinne
2011-01-01
Full Text Available Abstract Background The need to estimate the distance from an individual to a service provider is common in public health research. However, estimated distances are often imprecise and, we suspect, biased due to a lack of specific residential location data. In many cases, to protect subject confidentiality, data sets contain only a ZIP Code or a county. Results This paper describes an algorithm, known as "the probabilistic sampling method" (PSM, which was used to create a distribution of estimated distances to a health facility for a person whose region of residence was known, but for which demographic details and centroids were known for smaller areas within the region. From this distribution, the median distance is the most likely distance to the facility. The algorithm, using Monte Carlo sampling methods, drew a probabilistic sample of all the smaller areas (Census blocks within each participant's reported region (ZIP Code, weighting these areas by the number of residents in the same age group as the participant. To test the PSM, we used data from a large cross-sectional study that screened women at a clinic for intimate partner violence (IPV. We had data on each woman's age and ZIP Code, but no precise residential address. We used the PSM to select a sample of census blocks, then calculated network distances from each census block's centroid to the closest IPV facility, resulting in a distribution of distances from these locations to the geocoded locations of known IPV services. We selected the median distance as the most likely distance traveled and computed confidence intervals that describe the shortest and longest distance within which any given percent of the distance estimates lie. We compared our results to those obtained using two other geocoding approaches. We show that one method overestimated the most likely distance and the other underestimated it. Neither of the alternative methods produced confidence intervals for the distance
2011-01-01
Background The need to estimate the distance from an individual to a service provider is common in public health research. However, estimated distances are often imprecise and, we suspect, biased due to a lack of specific residential location data. In many cases, to protect subject confidentiality, data sets contain only a ZIP Code or a county. Results This paper describes an algorithm, known as "the probabilistic sampling method" (PSM), which was used to create a distribution of estimated distances to a health facility for a person whose region of residence was known, but for which demographic details and centroids were known for smaller areas within the region. From this distribution, the median distance is the most likely distance to the facility. The algorithm, using Monte Carlo sampling methods, drew a probabilistic sample of all the smaller areas (Census blocks) within each participant's reported region (ZIP Code), weighting these areas by the number of residents in the same age group as the participant. To test the PSM, we used data from a large cross-sectional study that screened women at a clinic for intimate partner violence (IPV). We had data on each woman's age and ZIP Code, but no precise residential address. We used the PSM to select a sample of census blocks, then calculated network distances from each census block's centroid to the closest IPV facility, resulting in a distribution of distances from these locations to the geocoded locations of known IPV services. We selected the median distance as the most likely distance traveled and computed confidence intervals that describe the shortest and longest distance within which any given percent of the distance estimates lie. We compared our results to those obtained using two other geocoding approaches. We show that one method overestimated the most likely distance and the other underestimated it. Neither of the alternative methods produced confidence intervals for the distance estimates. The algorithm
Defying gravity using Jenga™ blocks
Tan, Yin-Soo; Yap, Kueh-Chin
2007-11-01
This paper describes how Jenga™ blocks can be used to demonstrate the physics of an overhanging tower that appears to defy gravity. We also propose ideas for how this demonstration can be adapted for the A-level physics curriculum.
The Research and Evaluation of Road Environment in the Block of City Based on 3-D Streetscape Data
Guan, L.; Ding, Y.; Ge, J.; Yang, H.; Feng, X.; Chen, P.
2018-04-01
This paper focus on the problem of the street environment of block unit, based on making clear the acquisition mode and characteristics of 3D streetscape data, the paper designs the assessment model of regional block unit based on 3D streetscape data. The 3D streetscape data with the aid of oblique photogrammetry surveying and mobile equipment, will greatly improve the efficiency and accuracy of urban regional assessment, and expand the assessment scope. Based on the latest urban regional assessment model, with the street environment assessment model of the current situation, this paper analyzes the street form and street environment assessment of current situation in the typical area of Beijing. Through the street environment assessment of block unit, we found that in the megacity street environment assessment model of block unit based on 3D streetscape data has greatly help to improve the assessment efficiency and accuracy. At the same time, motor vehicle lane, green shade deficiency, bad railings and street lost situation is still very serious in Beijing, the street environment improvement of the block unit is still a heavy task. The research results will provide data support for urban fine management and urban design, and provide a solid foundation for the improvement of city image.
Distance error correction for time-of-flight cameras
Fuersattel, Peter; Schaller, Christian; Maier, Andreas; Riess, Christian
2017-06-01
The measurement accuracy of time-of-flight cameras is limited due to properties of the scene and systematic errors. These errors can accumulate to multiple centimeters which may limit the applicability of these range sensors. In the past, different approaches have been proposed for improving the accuracy of these cameras. In this work, we propose a new method that improves two important aspects of the range calibration. First, we propose a new checkerboard which is augmented by a gray-level gradient. With this addition it becomes possible to capture the calibration features for intrinsic and distance calibration at the same time. The gradient strip allows to acquire a large amount of distance measurements for different surface reflectivities, which results in more meaningful training data. Second, we present multiple new features which are used as input to a random forest regressor. By using random regression forests, we circumvent the problem of finding an accurate model for the measurement error. During application, a correction value for each individual pixel is estimated with the trained forest based on a specifically tailored feature vector. With our approach the measurement error can be reduced by more than 40% for the Mesa SR4000 and by more than 30% for the Microsoft Kinect V2. In our evaluation we also investigate the impact of the individual forest parameters and illustrate the importance of the individual features.
Block RAM-based architecture for real-time reconfiguration using Xilinx® FPGAs
Directory of Open Access Journals (Sweden)
Rikus le Roux
2015-07-01
Full Text Available Despite the advantages dynamic reconfiguration adds to a system, it only improves system performance if the execution time exceeds the configuration time. As a result, dynamic reconfiguration is only capable of improving the performance of quasi-static applications. In order to improve the performance of dynamic applications, researchers focus on improving the reconfiguration throughput. These approaches are mostly limited by the bus commonly used to connect the configuration controller to the memory, which contributes to the configuration time. A method proposed to ameliorate this overhead is an architecture utilizing localised block RAM (BRAM connected to the configuration controller to store the configuration bitstream. The aim of this paper is to illustrate the advantages of the proposed architecture, especially for reconfiguring real-time applications. This is done by validating the throughput of the architecture and comparing this to the maximum theoretical throughput of the internal configuration access port (ICAP. It was found that the proposed architecture is capable of reconfiguring an application within a time-frame suitable for real-time reconfiguration. The drawback of this method is that the BRAM is extremely limited and only a discrete set of configurations can be stored. This paper also proposes a method on how this can be mitigated without affecting the throughput.
International Nuclear Information System (INIS)
Nie Min; Meng, Dennis Desheng; Sun Kai
2009-01-01
A new method is reported to form metal nanoparticles by sputter deposition inside a reactive ion etching chamber with a very short target-substrate distance. The distribution and morphology of nanoparticles are found to be affected by the distance, the ion concentration, and the sputtering time. Densely distributed nanoparticles of various compositions were fabricated on the substrates that were kept at a distance of 130 μm or smaller from the target. When the distance was increased to 510 μm, island structures were formed, indicating the tendency to form continuous thin film with longer distance. The observed trend for nanoparticle formation is opposite to the previously reported mechanism for the formation of nanoparticles by sputtering. A new mechanism based on the seeding effect of the substrate is proposed to interpret the experimental results.
Directory of Open Access Journals (Sweden)
Chadchadaporn Pukkaew
2013-09-01
Full Text Available This study assesses the effectiveness of internet-based distance learning (IBDL through the VClass live e-education platform. The research examines (1 the effectiveness of IBDL for regular and distance students and (2 the distance students’ experience of VClass in the IBDL course entitled Computer Programming 1. The study employed the common definitions of evaluation to attain useful statistical results. The measurement instruments used were test scores and questionnaires. The sample consisted of 59 first-year undergraduate students, most of whom were studying computer information systems at Rajamangala University of Technology Lanna Chiang Mai in Thailand. The results revealed that distance students engaged in learning behavior only occasionally but that the effectiveness of learning was the same for distance and regular students. Moreover, the provided computer-mediated communications (CMC (e.g., live chat, email, and discussion board were sparingly used, primarily by male distance students. Distance students, regular students, the instructor, and the tutor agreed to use a social networking site, Facebook, rather than the provided CMC during the course. The evaluation results produce useful information that is applicable for developing and improving IBDL practices.
Zhang, H.; Alkayal, N.; Gnanou, Yves; Hadjichristidis, Nikolaos
2013-01-01
A novel one-pot methodology combining anionic polymerization and polyhomologation, through a "bridge" molecule (BF3OEt 2), was developed for the synthesis of polyethylene (PE)-based block copolymers. The anionically synthesized macroanion reacts
Directory of Open Access Journals (Sweden)
Longxiang Li
Full Text Available Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.
An Approach for On-Board Software Building Blocks Cooperation and Interfaces Definition
Pascucci, Dario; Campolo, Giovanni; Candia, Sante; Lisio, Giovanni
2010-08-01
This paper provides an insight on the Avionic SW architecture developed by Thales Alenia Space Italy (TAS-I) to achieve structuring of the OBSW as a set of self-standing and re-usable building blocks. It is initially described the underlying framework for building blocks cooperation, which is based on ECSSE-70 packets forwarding (for services request to a building block) and standard parameters exchange for data communication. Subsequently it is discussed the high level of flexibility and scalability of the resulting architecture, reporting as example an implementation of the Failure Detection, Isolation and Recovery (FDIR) function which exploits the proposed architecture. The presented approach evolves from avionic SW architecture developed in the scope of the project PRIMA (Mult-Purpose Italian Re-configurable Platform) and has been adopted for the Sentinel-1 Avionic Software (ASW).
A proposed HTTP service based IDS
Directory of Open Access Journals (Sweden)
Mohamed M. Abd-Eldayem
2014-03-01
Full Text Available The tremendous growth of the web-based applications has increased information security vulnerabilities over the Internet. Security administrators use Intrusion-Detection System (IDS to monitor network traffic and host activities to detect attacks against hosts and network resources. In this paper IDS based on Naïve Bayes classifier is analyzed. The main objective is to enhance IDS performance through preparing the training data set allowing to detect malicious connections that exploit the http service. Results of application are demonstrated and discussed. In the training phase of the proposed IDS, at first a feature selection technique based on Naïve Bayes classifier is used, this technique identifies the most important HTTP traffic features that can be used to detect HTTP attacks. In the testing and running phases proposed IDS classifies the network traffic based on the requested service, then based on the selected features Naïve Bayes classifier is used to analyze the HTTP service based traffic and identifies the HTTP normal connections and attacks. The performance of the IDS is measured through experiments using NSL-KDD data set. The results show that the detection rate of the IDS is about 99%, the false-positive rate is about 1%, and the false-negative rate is about 0.25%; therefore, proposed IDS holds the highest detection rate and the lowest false alarm compared with other leading IDS. In addition, the proposed IDS based on Naïve Bayes is used to classify network connections as a normal or attack. And it holds a high detection rate and a low false alarm.
Exposure as Duration and Distance in Telematics Motor Insurance Using Generalized Additive Models
Directory of Open Access Journals (Sweden)
Jean-Philippe Boucher
2017-09-01
Full Text Available In Pay-As-You-Drive (PAYD automobile insurance, the premium is fixed based on the distance traveled, while in usage-based insurance (UBI the driving patterns of the policyholder are also considered. In those schemes, drivers who drive more pay a higher premium compared to those with the same characteristics who drive only occasionally, because the former are more exposed to the risk of accident. In this paper, we analyze the simultaneous effect of the distance traveled and exposure time on the risk of accident by using Generalized Additive Models (GAM. We carry out an empirical application and show that the expected number of claims (1 stabilizes once a certain number of accumulated distance-driven is reached and (2 it is not proportional to the duration of the contract, which is in contradiction to insurance practice. Finally, we propose to use a rating system that takes into account simultaneously exposure time and distance traveled in the premium calculation. We think that this is the trend the automobile insurance market is going to follow with the eruption of telematics data.
Design for an IO block array in a tile-based FPGA
International Nuclear Information System (INIS)
Ding Guangxin; Chen Lingdou; Liu Zhongli
2009-01-01
A design for an IO block array in a tile-based FPGA is presented. Corresponding with the characteristics of the FPGA, each IO cell is composed of a signal path, local routing pool and configurable input/output buffers. Shared programmable registers in the signal path can be configured for the function of JTAG, without specific boundary scan registers/latches, saving layout area. The local routing pool increases the flexibility of routing and the routability of the whole FPGA. An auxiliary power supply is adopted to increase the performance of the IO buffers at different configured IO standards. The organization of the IO block array is described in an architecture description file, from which the array layout can be accomplished through use of an automated layout assembly tool. This design strategy facilitates the design of FPGAs with different capacities or architectures in an FPGA family series. The bond-out schemes of the same FPGA chip in different packages are also considered. The layout is based on SMIC 0.13 μm logic 1P8M salicide 1.2/2.5 V CMOS technology. Our performance is comparable with commercial SRAM-based FPGAs which use a similar process. (semiconductor integrated circuits)
Directory of Open Access Journals (Sweden)
Pankaj KHANNA
2011-07-01
Full Text Available It is proposed to establish an Integrated Distance Education System in India by designing modern technology based information communication network, connecting all its ODL (Open and Distance Learning institutions to the headquarters of the ODL system in India. The principle roles to be performed by such a system have been discussed; according to which it would enable, educate and empower every member of the academic community including distance learners so as to provide them quality distance education. The connectivity between the ODL institutions would be achieved through the use of VPN (Virtual Private Network involving wireless networking and optical networking. Various benefits of providing VPN connectivity to the ODL institutions in India, such as cost effectiveness, security, and shared applications/services have also been discussed. Thus, the networking of all the ODL institutions in India would provide a national framework so as to build an excellent Integrated Distance Education System necessary for providing equity and quality distance education at national level.
DEFF Research Database (Denmark)
Carlsen, Martin; Koehl, Patrice; Røgen, Peter
2014-01-01
(PPD), while the other had the set of all distances filtered to reflect consistency in an ensemble of decoys (PPE). We tested four types of metric to characterize the distance between the decoy and the native structure, two based on extrinsic geometry (RMSD and GTD-TS*), and two based on intrinsic...... geometry (Q* and MT). The corresponding eight potentials were tested on a large collection of decoy sets. We found that it is usually better to train a potential using an intrinsic distance measure. We also found that PPE outperforms PPD, emphasizing the benefits of capturing consistent information...
A Second Ladder: Testing for Bias in the Type Ia Distance Scale with SBF
Milne, Peter
2016-10-01
We propose obtaining Surface Brightness Fluctuation (SBF) distances to the hosts galaxies of 20 nearby type Ia supernovae (SNe Ia), resulting in a sample of 29 SNe Ia in 27 galaxies when combined with HST-SBF distances from the literature. This sample can then be compared with the existing 18 SN Ia distances from Cepheids. Through these comparisons, we will determine if there are any discrepancies between the SBF distance scale, which is extended into the Hubble flow using early-type galaxies, and the SNIa distance scale, for which local calibrators are scarce and host galaxy types and SN environments are heterogenous. Since recent measurements of UV-optical colors suggest that SN Ia properties do depend on galaxy type and environment, it is essential that SNe Ia in all galaxy types are included when extending SN Ia distances to the distant Hubble flow. Since the conclusion that universal expansion is accelerating was originally based on SNe Ia distances, and because recent measurements of UV-optical colors suggest that SN Ia properties do depend on galaxy type and environment, it is essential to measure the same types of SNe in the same types of galaxies. To meet this goal, we propose to measure high-precision SBF distances to all early-type galaxies that have hosted SNIa within 80 Mpc. We will therefore be able to distinguish between systematic offsets in the derived Hubble constant between galaxies and/or SNe of different types and correct for them. SBF is the only distance measurement technique with statistical uncertainties comparable to SN Ia that can be applied to the early-type of galaxies in which the majority of the high-redshift SNIa occur.
Impact of distance on the network management capability of the home base firm
DEFF Research Database (Denmark)
Mykhaylenko, Alona; Wæhrens, Brian Vejrum; Slepniov, Dmitrij
For many globally dispersed organizations the home base (HB) is historically the locus of integrative, coordinating and innovating efforts, important for the overall performance. The growing concerns about the offshoring strategies posing threats to the capabilities of the HB draw attention to how...... a HB can continuously sustain its centrality. The well-known challenges of distance in the distributed working arrangements may be regarded as a major threat to the network management capabilities (NMCs) of the HB. Therefore, this paper investigates what role does distance between the HB and its...
Tian, Jinyan; Li, Xiaojuan; Duan, Fuzhou; Wang, Junqian; Ou, Yang
2016-05-10
The rapid development of Unmanned Aerial Vehicle (UAV) remote sensing conforms to the increasing demand for the low-altitude very high resolution (VHR) image data. However, high processing speed of massive UAV data has become an indispensable prerequisite for its applications in various industry sectors. In this paper, we developed an effective and efficient seam elimination approach for UAV images based on Wallis dodging and Gaussian distance weight enhancement (WD-GDWE). The method encompasses two major steps: first, Wallis dodging was introduced to adjust the difference of brightness between the two matched images, and the parameters in the algorithm were derived in this study. Second, a Gaussian distance weight distribution method was proposed to fuse the two matched images in the overlap region based on the theory of the First Law of Geography, which can share the partial dislocation in the seam to the whole overlap region with an effect of smooth transition. This method was validated at a study site located in Hanwang (Sichuan, China) which was a seriously damaged area in the 12 May 2008 enchuan Earthquake. Then, a performance comparison between WD-GDWE and the other five classical seam elimination algorithms in the aspect of efficiency and effectiveness was conducted. Results showed that WD-GDWE is not only efficient, but also has a satisfactory effectiveness. This method is promising in advancing the applications in UAV industry especially in emergency situations.
Gu, Ming-liang; Chu, Jia-you
2007-12-01
Human genome has structures of haplotype and haplotype block which provide valuable information on human evolutionary history and may lead to the development of more efficient strategies to identify genetic variants that increase susceptibility to complex diseases. Haplotype block can be divided into discrete blocks of limited haplotype diversity. In each block, a small fraction of ptag SNPsq can be used to distinguish a large fraction of the haplotypes. These tag SNPs can be potentially useful for construction of haplotype and haplotype block, and association studies in complex diseases. There are two general classes of methods to construct haplotype and haplotype blocks based on genotypes on large pedigrees and statistical algorithms respectively. The author evaluate several construction methods to assess the power of different association tests with a variety of disease models and block-partitioning criteria. The advantages, limitations and applications of each method and the application in the association studies are discussed equitably. With the completion of the HapMap and development of statistical algorithms for addressing haplotype reconstruction, ideas of construction of haplotype based on combination of mathematics, physics, and computer science etc will have profound impacts on population genetics, location and cloning for susceptible genes in complex diseases, and related domain with life science etc.
McQuinn, Kristen. B. W.; Skillman, Evan D.; Dolphin, Andrew E.; Berg, Danielle; Kennicutt, Robert
2016-07-01
Great investments of observing time have been dedicated to the study of nearby spiral galaxies with diverse goals ranging from understanding the star formation process to characterizing their dark matter distributions. Accurate distances are fundamental to interpreting observations of these galaxies, yet many of the best studied nearby galaxies have distances based on methods with relatively large uncertainties. We have started a program to derive accurate distances to these galaxies. Here we measure the distance to M51—the Whirlpool galaxy—from newly obtained Hubble Space Telescope optical imaging using the tip of the red giant branch method. We measure the distance modulus to be 8.58 ± 0.10 Mpc (statistical), corresponding to a distance modulus of 29.67 ± 0.02 mag. Our distance is an improvement over previous results as we use a well-calibrated, stable distance indicator, precision photometry in a optimally selected field of view, and a Bayesian Maximum Likelihood technique that reduces measurement uncertainties. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Data Archive at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.
Block Grants: The View from the Dome.
Shreve, David L.
1996-01-01
Reviews characteristics and operations of state legislatures in the context of the current reforms proposed by the federal government and the devolution of authority to the states via block grants. Examines proposed changes related to welfare, Medicaid, workforce training, and taxation, highlighting the impact of these reforms on state…
Towards understanding the known-key security of block ciphers
DEFF Research Database (Denmark)
Andreeva, Elena; Bogdanov, Andrey; Mennink, Bart
2014-01-01
ciphers based on ideal components such as random permutations and random functions as well as propose new generic known-key attacks on generalized Feistel ciphers. We introduce the notion of known-key indifferentiability to capture the security of such block ciphers under a known key. To show its...... meaningfulness, we prove that the known-key attacks on block ciphers with ideal primitives to date violate security under known-key indifferentiability. On the other hand, to demonstrate its constructiveness, we prove the balanced Feistel cipher with random functions and the multiple Even-Mansour cipher...... with random permutations known-key indifferentiable for a sufficient number of rounds. We note that known-key indifferentiability is more quickly and tightly attained by multiple Even-Mansour which puts it forward as a construction provably secure against known-key attacks....
DEFF Research Database (Denmark)
Ayoubi, Mehran Asad; Almdal, Kristoffer; Zhu, Kaizheng
2014-01-01
(Cn; n = 8, 12, and 16) trimethylammonium counterions (i.e., side chains) at various ion (pair) fractions X [i.e., counterion/side-chain grafting density; X = number of alkyl counterions (i.e., side chains) per acidic group of the parent PMAA block] these L-b-AC ionic supramolecules exhibit...... a spherical-in-lamellar hierarchical self-assembly. For these systems, (1) the effective Flory-Huggins interaction parameter between L- and AC-blocks chi'(Cn/x) was extracted, and (2) analysis of the lamellar microdomains showed that when there is an increase in X, alkyl counterion (i.e., side chain) length l......Based on a parent diblock copolymer of poly(styrene)-b-poly(methacrylic acid), PS-b-PMAA, linear-b-amphiphilic comb (L-b-AC) ionic supramolecules [Soft Matter 2013, 9, 1540-1555] are synthesized in which the poly(methacrylate) backbone of the ionic supramolecular AC-block is neutralized by alkyl...
Automated choroid segmentation based on gradual intensity distance in HD-OCT images.
Chen, Qiang; Fan, Wen; Niu, Sijie; Shi, Jiajia; Shen, Honglie; Yuan, Songtao
2015-04-06
The choroid is an important structure of the eye and plays a vital role in the pathology of retinal diseases. This paper presents an automated choroid segmentation method for high-definition optical coherence tomography (HD-OCT) images, including Bruch's membrane (BM) segmentation and choroidal-scleral interface (CSI) segmentation. An improved retinal nerve fiber layer (RNFL) complex removal algorithm is presented to segment BM by considering the structure characteristics of retinal layers. By analyzing the characteristics of CSI boundaries, we present a novel algorithm to generate a gradual intensity distance image. Then an improved 2-D graph search method with curve smooth constraints is used to obtain the CSI segmentation. Experimental results with 212 HD-OCT images from 110 eyes in 66 patients demonstrate that the proposed method can achieve high segmentation accuracy. The mean choroid thickness difference and overlap ratio between our proposed method and outlines drawn by experts was 6.72µm and 85.04%, respectively.
Cryptanalysis of Lin et al.'s Efficient Block-Cipher-Based Hash Function
Liu, Bozhong; Gong, Zheng; Chen, Xiaohong; Qiu, Weidong; Zheng, Dong
2010-01-01
Hash functions are widely used in authentication. In this paper, the security of Lin et al.'s efficient block-cipher-based hash function is reviewed. By using Joux's multicollisions and Kelsey et al.'s expandable message techniques, we find the scheme is vulnerable to collision, preimage and second
Distance-Based Image Classification: Generalizing to New Classes at Near Zero Cost
Mensink, T.; Verbeek, J.; Perronnin, F.; Csurka, G.
2013-01-01
We study large-scale image classification methods that can incorporate new classes and training images continuously over time at negligible cost. To this end, we consider two distance-based classifiers, the k-nearest neighbor (k-NN) and nearest class mean (NCM) classifiers, and introduce a new
Raknes, Guttorm; Hunskaar, Steinar
2014-01-01
We describe a method that uses crowdsourced postcode coordinates and Google maps to estimate average distance and travel time for inhabitants of a municipality to a casualty clinic in Norway. The new method was compared with methods based on population centroids, median distance and town hall location, and we used it to examine how distance affects the utilisation of out-of-hours primary care services. At short distances our method showed good correlation with mean travel time and distance. The utilisation of out-of-hours services correlated with postcode based distances similar to previous research. The results show that our method is a reliable and useful tool for estimating average travel distances and travel times.
Directory of Open Access Journals (Sweden)
Guttorm Raknes
Full Text Available We describe a method that uses crowdsourced postcode coordinates and Google maps to estimate average distance and travel time for inhabitants of a municipality to a casualty clinic in Norway. The new method was compared with methods based on population centroids, median distance and town hall location, and we used it to examine how distance affects the utilisation of out-of-hours primary care services. At short distances our method showed good correlation with mean travel time and distance. The utilisation of out-of-hours services correlated with postcode based distances similar to previous research. The results show that our method is a reliable and useful tool for estimating average travel distances and travel times.
Tracking frequency laser distance gauge
International Nuclear Information System (INIS)
Phillips, J.D.; Reasenberg, R.D.
2005-01-01
Advanced astronomical missions with greatly enhanced resolution and physics missions of unprecedented accuracy will require laser distance gauges of substantially improved performance. We describe a laser gauge, based on Pound-Drever-Hall locking, in which the optical frequency is adjusted to maintain an interferometer's null condition. This technique has been demonstrated with pm performance. Automatic fringe hopping allows it to track arbitrary distance changes. The instrument is intrinsically free of the nm-scale cyclic bias present in traditional (heterodyne) high-precision laser gauges. The output is a radio frequency, readily measured to sufficient accuracy. The laser gauge has operated in a resonant cavity, which improves precision, can suppress the effects of misalignments, and makes possible precise automatic alignment. The measurement of absolute distance requires little or no additional hardware, and has also been demonstrated. The proof-of-concept version, based on a stabilized HeNe laser and operating on a 0.5 m path, has achieved 10 pm precision with 0.1 s integration time, and 0.1 mm absolute distance accuracy. This version has also followed substantial distance changes as fast as 16 mm/s. We show that, if the precision in optical frequency is a fixed fraction of the linewidth, both incremental and absolute distance precision are independent of the distance measured. We discuss systematic error sources, and present plans for a new version of the gauge based on semiconductor lasers and fiber-coupled components
Yamada, Kentaro; Henares, Terence G; Suzuki, Koji; Citterio, Daniel
2015-11-11
"Distance-based" detection motifs on microfluidic paper-based analytical devices (μPADs) allow quantitative analysis without using signal readout instruments in a similar manner to classical analogue thermometers. To realize a cost-effective and calibration-free distance-based assay of lactoferrin in human tear fluid on a μPAD not relying on antibodies or enzymes, we investigated the fluidic mobilities of the target protein and Tb(3+) cations used as the fluorescent detection reagent on surface-modified cellulosic filter papers. Chromatographic elution experiments in a tear-like sample matrix containing electrolytes and proteins revealed a collapse of attractive electrostatic interactions between lactoferrin or Tb(3+) and the cellulosic substrate, which was overcome by the modification of the paper surface with the sulfated polysaccharide ι-carrageenan. The resulting μPAD based on the fluorescence emission distance successfully analyzed 0-4 mg mL(-1) of lactoferrin in complex human tear matrix with a lower limit of detection of 0.1 mg mL(-1) by simple visual inspection. Assay results of 18 human tear samples including ocular disease patients and healthy volunteers showed good correlation to the reference ELISA method with a slope of 0.997 and a regression coefficient of 0.948. The distance-based quantitative signal and the good batch-to-batch fabrication reproducibility relying on printing methods enable quantitative analysis by simply reading out "concentration scale marks" printed on the μPAD without performing any calibration and using any signal readout instrument.
Human Identification at a Distance Using Body Shape Information
International Nuclear Information System (INIS)
Rashid, N K A M; Yahya, M F; Shafie, A A
2013-01-01
Shape of human body is unique from one person to another. This paper presents an intelligent system approach for human identification at a distance using human body shape information. The body features used are the head, shoulder, and trunk. Image processing techniques for detection of these body features were developed in this work. Then, the features are recognized using fuzzy logic approach and used as inputs to a recognition system based on a multilayer neural network. The developed system is only applicable for recognizing a person from its frontal view and specifically constrained to male gender to simplify the algorithm. In this research, the accuracy for human identification using the proposed method is 77.5%. Thus, it is proved that human can be identified at a distance using body shape information
Short-Block Protograph-Based LDPC Codes
Divsalar, Dariush; Dolinar, Samuel; Jones, Christopher
2010-01-01
Short-block low-density parity-check (LDPC) codes of a special type are intended to be especially well suited for potential applications that include transmission of command and control data, cellular telephony, data communications in wireless local area networks, and satellite data communications. [In general, LDPC codes belong to a class of error-correcting codes suitable for use in a variety of wireless data-communication systems that include noisy channels.] The codes of the present special type exhibit low error floors, low bit and frame error rates, and low latency (in comparison with related prior codes). These codes also achieve low maximum rate of undetected errors over all signal-to-noise ratios, without requiring the use of cyclic redundancy checks, which would significantly increase the overhead for short blocks. These codes have protograph representations; this is advantageous in that, for reasons that exceed the scope of this article, the applicability of protograph representations makes it possible to design highspeed iterative decoders that utilize belief- propagation algorithms.
Horses for courses: a DNA-based test for race distance aptitude in thoroughbred racehorses.
Hill, Emmeline W; Ryan, Donal P; MacHugh, David E
2012-12-01
Variation at the myostatin (MSTN) gene locus has been shown to influence racing phenotypes in Thoroughbred horses, and in particular, early skeletal muscle development and the aptitude for racing at short distances. Specifically, a single nucleotide polymorphism (SNP) in the first intron of MSTN (g.66493737C/T) is highly predictive of best race distance among Flat racing Thoroughbreds: homozygous C/C horses are best suited to short distance races, heterozygous C/T horses are best suited to middle distance races, and homozygous T/T horses are best suited to longer distance races. Patent applications for this gene marker association, and other linked markers, have been filed. The information contained within the patent applications is exclusively licensed to the commercial biotechnology company Equinome Ltd, which provides a DNA-based test to the international Thoroughbred horse racing and breeding industry. The application of this information in the industry enables informed decision making in breeding and racing and can be used to assist selection to accelerate the rate of change of genetic types among distinct populations (Case Study 1) and within individual breeding operations (Case Study 2).
Directory of Open Access Journals (Sweden)
Y. Damchi
2015-06-01
Full Text Available The aim of the relay coordination is that protection systems detect and isolate the faulted part as fast and selective as possible. On the other hand, in order to reduce the fault clearing time, distance protection relays are usually equipped with pilot protection schemes. Such schemes can be considered in the distance and directional overcurrent relays (D&DOCRs coordination to achieve faster protection systems, while the selectivity is maintained. Therefore, in this paper, a new formulation is presented for the relay coordination problem considering pilot protection. In the proposed formulation, the selectivity constraints for the primary distance and backup overcurrent relays are defined based on the fault at the end of the transmission lines, rather than those at the end of the first zone of the primary distance relay. To solve this nonlinear optimization problem, a combination of genetic algorithm (GA and linear programming (LP is used as a hybrid genetic algorithm (HGA. The proposed approach is tested on an 8-bus and the IEEE 14-bus test systems. Simulation results indicate that considering the pilot protection in the D&DOCRS coordination, not only obtains feasible and effective solutions for the relay settings, but also reduces the overall operating time of the protection system.