WorldWideScience

Sample records for prokaryotic expression system

  1. A rapid screening method to monitor expression of various recombinant proteins from prokaryotic and eukaryotic expression systems using MALDI-TOF mass spectrometry

    DEFF Research Database (Denmark)

    Jebanathirajah, J.A.; Andersen, S.; Blagoev, B.

    2002-01-01

    Rapid methods using matrix-assisted laser desorption ionization-time-of-flight mass spectrometry to monitor recombinant protein expression from various prokaryotic and eukaryotic cell culture systems were devised. Intracellular as well as secreted proteins from both induced and constitutive...

  2. Construction and prokaryotic expression of the fusion gene PRRSV ...

    African Journals Online (AJOL)

    ajl4

    2013-07-24

    Jul 24, 2013 ... The fusion expressing plasmid pET32-GP5-Hsp70 was constructed and expressed in ... 2004). Hsps, expressed by prokaryotes and eukaryotes and their action as molecular ..... Facts, thoughts, and dreams. Shock. 12(4): ...

  3. [Prokaryotic expression of Leptospira interrogans groEL gene and immunoprotection of its products in hamsters].

    Science.gov (United States)

    Li, Xiaoyu; Wang, Yinhuan; Yan, Jie; Cheng, Dongqing

    2013-03-01

    To construct a prokaryotic expression system of groEL gene of Leptospira interrogans serogroup Icterohaemorrhagia serovar Lai strain Lai, and to determine the immunoprotective effect of recombinant GroEL protein (rGroEL) in LVG hamsters. The groEL gene was amplified by high fidelity PCR and the amplification products were then sequenced. A prokaryotic expression system of groEL gene was constructed using routine genetic engineering technique. SDS-PAGE plus Bio-Rad Gel Image Analyzer was applied to examine the expression and dissolubility of rGroEL protein while Ni-NTA affinity chromatography was used to extract the expressed rGroEL. The immunoprotective rate in rGroEL-immunized LVG hamsters was determined after challenge with L.interrogans strain Lai. The cross agglutination titers of sera from immunized hamsters with different L.interrogans serogroups were detected using MAT. The nucleotide and amino acid sequences of the cloned groEL gene were the same as those reported in GenBank. The constructed prokaryotic expression system of groEL gene expressed soluble rGroEL. The immunoprotective rates of 100 and 200 μg rGroEL in LVG hamsters were 50.0 % and 75.0%, respectively. The sera from the rGroEL-immunized LVG hamsters agglutinated all the L.interrogans serogroups tested with different levels. The GroEL protein is a genus-specific immunoprotective antigen of L.interrogans and can be used to develop an universal genetically engineering vaccine of Leptospira.

  4. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system

    Directory of Open Access Journals (Sweden)

    Maryam Mohammadi Tashakkori

    2016-01-01

    Conclusion: These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB.

  5. [Construction and application of prokaryotic expression system of Leptospira interrogans lipL32/1-lipL41/1 fusion gene].

    Science.gov (United States)

    Luo, Dong-jiao; Yan, Jie; Mao, Ya-fei; Li, Shu-ping; Luo, Yi-hui; Li, Li-wei

    2005-01-01

    To construct lipL32/1-lipL41/1 fusion gene and its prokaryotic expression system and to determine frequencies of carrying and expression of lipL32 and lipL41 genes in L.interrogans wild strains and specific antibody levels in sera from leptospirosis patients. lipL32/1-lipL41/1 fusion gene was constructed using linking primer PCR method and the prokaryotic expression system of the fusion gene done with routine techniques. SDS-PAGE was used to examine expression of the target recombinant protein rLipL32/1-rLipL41/1. Immunogenicity of rLipL32/1-rLipL41/1 was identified by Western blot. PCR and MAT were performed to detect carrying and expression of lipL32 and lipL41 genes in 97 wild L.interrogans strains. Antibodies against products of lipL32 and lipL41 genes in serum samples from 228 leptospirosis patients were detected by ELISA method. The homogeneity of nucleotide and putative amino acid sequence of lipL32/1-lipL41/1 fusion gene were 99.9 % and 99.8 % in comparison with the reported sequences. Expression output of the target recombinant protein rLipL32/1-rLipL41/1, mainly present in inclusion body, accounted for 10 % of the total bacterial proteins. Both the rabbit antisera against rLipL32/1 and rLipL41/1 could combine to rLipL32/1-rLipL41/1. 97.9 % and 87.6 % of the L.interrogans wild strains had lipL32 and lipL41 genes, respectively. 95.9 % and 84.5 % of the wild strains were positive for MAT with titers of 1:4 - 1:128 using rabbit anti-rLipL32s or anti-rLipL41s sera, respectively. 94.7 % - 97.4 % of the patients'serum samples were positive for rLipL32s antibodies, while 78.5 % - 84.6 % of them were rLipL41s antibodies detectable. lipL32/1-jlipL41/1 fusion gene and its prokaryotic expression system were successfully constructed. The expressed fusion protein had qualified immunogenicity. Both the lipL32 and lipL41 genes are extensively carried and frequently expressed by different serogroups of L.interrogans, and their expression products exhibit cross-antigenicity.

  6. [Prokaryotic expression of trigeminy artificial fusion gene of Leptospira interrogans and the immunogenicity of its products].

    Science.gov (United States)

    Luo, Dong-jiao; Qiu, Xiao-feng; Wang, Jiang; Yan, Jin; Wang, Hai-bin; Zhou, Jin-cheng; Yan, Jie

    2008-11-01

    To construct lipL32/1-lipL21-OmpL1/2 fusion gene of Leptospira interrogans and its prokaryotic expression system, and to identify the immunogenicity of its products. PCR using linking primers was applied to construct lipL32/1-lipL21-OmpL1/2 fusion gene and a prokaryotic expression system of the fusion gene was then established using routine genetic engineering technique. SDS-PAGE was used to examine output of the target recombinant protein rLipL32/1-LipL21-OmpL1/2. Double immunodiffusion and Western Blot assay were applied to identify immunogenicity of rLipL32/1-LipL21-OmpL1/2. lipL32/1-lipL21-OmpL1/2 fusion gene with correct sequence and its prokaryotic expression system E.coli BL21DE3pET42a-lipL32/1-lipL21-ompL1/2 was obtained in this study. The output of rLipL32/1-LipL21- OmpL1/2 after optimisation was 37.78 mg/L. The immunodiffusion titer of rabbit antiserum against rLipL32/1-LipL21-OmpL1/2 was 1:4. The rLipL32/1-LipL21-OmpL1/2 antiserum was able to recognize rLipL32/1-LipL21-OmpL1/2, rLipL32/1, rLipL21 and rOmpL1/2. Positive Western hybridization signals were found among rLipL32/1-LipL21-OmpL1/2 and rabbit antiserum against whole cell of strain 56601 and serum from patients infected with L.interrogans serogroups Icterohaemorrhagiae, Grippotyphosa, Autumnalis and Pomona. The fusion gene lipL32/1-lipL21-OmpL1/2 and its prokaryotic expression system were successfully constructed in this study. The expressed fusion protein can be used as the antigen for developing universal genetic engineering vaccine and universal serological tests of leptospirosis.

  7. Cloning, expression, and purification of recombinant protein MPT-64 from a virulent strain of Mycobacterium bovis in a prokaryotic system.

    Science.gov (United States)

    Tashakkori, Maryam Mohammadi; Tebianian, Majid; Tabatabaei, Mohammad; Mosavari, Nader

    2016-12-01

    Tuberculosis (TB) is a zoonotic infectious disease common to humans and animals that is caused by the rod-shaped acid-fast bacterium Mycobacterium bovis. Rapid and sensitive detection of TB is promoted by specific antigens. Virulent strains of the TB complex from M. bovis contain 16 regions of difference (RD) in their genome that encode important proteins, including major protein of Mycobacterium Tuberculosis 64 (MBT-64, which is a primary immune-stimulating antigen encoded by RD-2. In this study, we cloned, expressed, and purified MPT-64 as a potent M. bovis antigen in a prokaryotic system for use in future diagnostic studies. The antigenic region of the Mpt64 gene was investigated by bioinformatics methods, cloned into the PQE-30 plasmid, and expressed in Escherichia coli M15 cells, followed by isopropyl β-d-1-thiogalactopyranoside induction. The expressed protein was analyzed sodium dodecyl sulfate polyacrylamide gel electrophoresis and purified using a nickel-affinity column. Biological activity was confirmed by western blot using specific antibodies. Our data verified the successful cloning of the Mpt64 gene (687-bp segment) via the expression vector and purification of recombinant MPT-64 as a 24-kDa protein. These results indicated successful expression and purification of recombinant MPT-64 protein in a prokaryotic system. This protein can be used for serological diagnosis, improved detection of pathogenicity and non-pathogenicity between infected cattle, and for verification of suspected cases of bovine TB. Copyright © 2016.

  8. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    Directory of Open Access Journals (Sweden)

    Somayeh Kadkhodayan

    2016-07-01

    Full Text Available Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa could act as a cell penetrating peptide (CPP. In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confirmed by western blot analysis and was purified using reverse staining method. Materials and Methods: In this experimental study, primarily, cloning of Tat-Nef fusion gene was done in pGEX6p2 expression vector. Then, the expression of Tat-Nef recombinat protein in E.coli BL21 (DE3 strain was performed by using IPTG inducer. The protein expression was confirmed by SDS-PAGE and western blotting using anti-Nef monoclonal antibody. Then, the recombinant fusion protein was purified from gel using reverse staining method. Results: The results of PCR analysis and enzyme digestion showed a clear band of ~ 726 bp in agarose gel indicating the correct Tat-Nef fusion cloning in pGEX6p2 prokaryotic expression vector. In addition, a 54 kDa band of Tat-Nef on SDS-PAGE revealed Tat-Nef protein expression that western blot analysis using anti-Nef monoclonal antibody confirmed it. Conclusion: The purified Tat-Nef recombinant fusion protein will be used as an antigen for protein vaccine design against HIV infection.

  9. Effect of nitrate addition on prokaryotic diversity and the activity of sulfate-reducing prokaryotes in high-temperature oil production systems

    DEFF Research Database (Denmark)

    Gittel, Antje; Wieczorek, Adam; Sørensen, Ketil

    Adding nitrate to injection water is a possible strategy to control the activity of sulfate-reducing prokaryotes (SRP) in oil production system. To assess the effects of nitrate addition, prokaryotic diversity (Bacteria, Archaea, SRP) and SRP activity were studied in the production waters......-treated site was additionally supported by demonstrating their potential activity at 58°C, indicating that the troublesome SRP were pipeline-derived. Consistent with the low frequency of SRP in the clone libraries, no activity could be shown for samples from the nitrate-treated system suggesting that SRP were...... inhibited by nitrate addition. Visualization and quantification of the identified troublesome prokaryotes and potential competitors using the CARD-FISH technique will be performed on production water from both sites....

  10. [Construction and prokaryotic expression of recombinant gene EGFRvIII HBcAg and immunogenicity analysis of the fusion protein].

    Science.gov (United States)

    Duan, Xiao-yi; Wang, Jian-sheng; Guo, You-min; Han, Jun-li; Wang, Quan-ying; Yang, Guang-xiao

    2007-01-01

    To construct recombinant prokaryotic expression plasmid pET28a(+)/c-PEP-3-c and evaluate the immunogenicity of the fusion protein. cDNA fragment encoding PEP-3 was obtained from pGEM-T Easy/PEP-3 and inserted into recombinant plasmid pGEMEX/HBcAg. Then it was subcloned in prokaryotic expression vector and transformed into E.coli BL21(DE3). The fusion protein was expressed by inducing IPTG and purified by Ni(2+)-NTA affinity chromatography. BALB/c mice were immunized with fusion protein and the antibody titre was determined by indirect ELISA. The recombinant gene was confirmed to be correct by restriction enzyme digestion and DNA sequencing. After prokaryotic expression, fusion protein existed in sediment and accounted for 56% of all bacterial lysate. The purified product accounted for 92% of all protein and its concentration was 8 g/L. The antibody titre in blood serum reached 1:16 000 after the fourth immunization and reached 1:2.56x10(5) after the sixth immunization. The titre of anti-PEP-3 antibody reached 1:1.28x10(5) and the titre of anti-HBcAg antibody was less than 1:4x10(3). Fusion gene PEP-3-HBcAg is highly expressed in E.coli BL21. The expressed fusion protein can induce neutralizing antibody with high titer and specificity, which lays a foundation for the study of genetically engineering vaccine for malignant tumors with the high expression of EGFRvIII.

  11. Keeping the wolves at bay: antitoxins of prokaryotic type II toxin-antitoxin systems

    Directory of Open Access Journals (Sweden)

    Wai Ting eChan

    2016-03-01

    Full Text Available In their initial stages of discovery, prokaryotic toxin-antitoxin (TA systems were confined to bacterial plasmids where they function to mediate the maintenance and stability of usually low- to medium-copy number plasmids through the post-segregational killing of any plasmid-free daughter cells that developed. Their eventual discovery as nearly ubiquitous and repetitive elements in bacterial chromosomes led to a wealth of knowledge and scientific debate as to their diversity and functionality in the prokaryotic lifestyle. Currently categorized into six different types designated types I – VI, type II TA systems are the best characterized. These generally comprised of two genes encoding a proteic toxin and its corresponding proteic antitoxin, respectively. Under normal growth conditions, the stable toxin is prevented from exerting its lethal effect through tight binding with the less stable antitoxin partner, forming a non-lethal TA protein complex. Besides binding with its cognate toxin, the antitoxin also plays a role in regulating the expression of the type II TA operon by binding to the operator site, thereby repressing transcription from the TA promoter. In most cases, full repression is observed in the presence of the TA complex as binding of the toxin enhances the DNA binding capability of the antitoxin. TA systems have been implicated in a gamut of prokaryotic cellular functions such as being mediators of programmed cell death as well as persistence or dormancy, biofilm formation, as defensive weapons against bacteriophage infections and as virulence factors in pathogenic bacteria. It is thus apparent that these antitoxins, as DNA-binding proteins, play an essential role in modulating the prokaryotic lifestyle whilst at the same time preventing the lethal action of the toxins under normal growth conditions, i.e., keeping the proverbial wolves at bay. In this review, we will cover the diversity and characteristics of various type II TA

  12. Cloning and prokaryotic expression of the porcine lipasin gene.

    Science.gov (United States)

    Li, M M; Geng, J; Guo, Y J; Jiao, X Q; Lu, W F; Zhu, H S; Wang, Y Y; Yang, G Y

    2015-11-23

    Lipasin has recently been demonstrated to be involved in lipid metabolism. In this study, two specific primers were used to amplify the lipasin open reading frame from porcine liver tissue. The polymerase chain reaction product was cloned to a pGEM®-T Easy Vector, digested by SalI and NotI, and sequenced. The lipasin fragment was then cloned to a pET21(b) vector and digested by the same restriction enzyme. The recombinant plasmid was transferred to Escherichia coli (BL21), and the lipasin protein was induced with isopropyl-β-D-thiogalactopyranoside. The protein obtained was identified by sodium dodecyl sulfate polyacrylamide gel electrophoresis and western blotting. A pET-lipasin prokaryotic recombinant expression vector was successfully constructed, and a 25.2-kDa protein was obtained. This study provides a basis for further research on the biological function of porcine lipasin.

  13. SURVIVAL AND EVOLUTION OF CRISPR-CAS SYSTEM IN PROKARYOTES AND ITS APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Muhammad Abu Bakr Shabbir

    2016-09-01

    Full Text Available Prokaryotes have developed numerous innate immune mechanisms in order to fend off bacteriophage or plasmid attack. One of these immune systems is Clustered regularly interspaced short palindromic repeats (CRISPR. CRISPR associated proteins play a key role in survival of prokaryotes against invaders, as these systems cleave DNA of foreign genetic elements. Beyond providing immunity, these systems have significant impact in altering the bacterial physiology in term of its virulence and pathogenicity, as well as evolution. Also, due to their diverse nature of functionality, cas9 endoribonuclease can be easily reprogrammed with the help of guide RNAs, showing unprecedented potential and significance for gene editing in treating genetic diseases. Here, we also discuss the use of NgAgo-gDNA system in genome editing of human cells.

  14. Survival and Evolution of CRISPR–Cas System in Prokaryotes and Its Applications

    Science.gov (United States)

    Shabbir, Muhammad Abu Bakr; Hao, Haihong; Shabbir, Muhammad Zubair; Hussain, Hafiz Iftikhar; Iqbal, Zahid; Ahmed, Saeed; Sattar, Adeel; Iqbal, Mujahid; Li, Jun; Yuan, Zonghui

    2016-01-01

    Prokaryotes have developed numerous innate immune mechanisms in order to fend off bacteriophage or plasmid attack. One of these immune systems is clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR-associated proteins play a key role in survival of prokaryotes against invaders, as these systems cleave DNA of foreign genetic elements. Beyond providing immunity, these systems have significant impact in altering the bacterial physiology in term of its virulence and pathogenicity, as well as evolution. Also, due to their diverse nature of functionality, cas9 endoribonuclease can be easily reprogrammed with the help of guide RNAs, showing unprecedented potential and significance for gene editing in treating genetic diseases. Here, we also discuss the use of NgAgo–gDNA system in genome editing of human cells. PMID:27725818

  15. Viral Diversity Threshold for Adaptive Immunity in Prokaryotes

    Science.gov (United States)

    Weinberger, Ariel D.; Wolf, Yuri I.; Lobkovsky, Alexander E.; Gilmore, Michael S.; Koonin, Eugene V.

    2012-01-01

    ABSTRACT Bacteria and archaea face continual onslaughts of rapidly diversifying viruses and plasmids. Many prokaryotes maintain adaptive immune systems known as clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (Cas). CRISPR-Cas systems are genomic sensors that serially acquire viral and plasmid DNA fragments (spacers) that are utilized to target and cleave matching viral and plasmid DNA in subsequent genomic invasions, offering critical immunological memory. Only 50% of sequenced bacteria possess CRISPR-Cas immunity, in contrast to over 90% of sequenced archaea. To probe why half of bacteria lack CRISPR-Cas immunity, we combined comparative genomics and mathematical modeling. Analysis of hundreds of diverse prokaryotic genomes shows that CRISPR-Cas systems are substantially more prevalent in thermophiles than in mesophiles. With sequenced bacteria disproportionately mesophilic and sequenced archaea mostly thermophilic, the presence of CRISPR-Cas appears to depend more on environmental temperature than on bacterial-archaeal taxonomy. Mutation rates are typically severalfold higher in mesophilic prokaryotes than in thermophilic prokaryotes. To quantitatively test whether accelerated viral mutation leads microbes to lose CRISPR-Cas systems, we developed a stochastic model of virus-CRISPR coevolution. The model competes CRISPR-Cas-positive (CRISPR-Cas+) prokaryotes against CRISPR-Cas-negative (CRISPR-Cas−) prokaryotes, continually weighing the antiviral benefits conferred by CRISPR-Cas immunity against its fitness costs. Tracking this cost-benefit analysis across parameter space reveals viral mutation rate thresholds beyond which CRISPR-Cas cannot provide sufficient immunity and is purged from host populations. These results offer a simple, testable viral diversity hypothesis to explain why mesophilic bacteria disproportionately lack CRISPR-Cas immunity. More generally, fundamental limits on the adaptability of biological

  16. [Prokaryotic expression and histological localization of the Taenia solium CDC37 gene].

    Science.gov (United States)

    Huang, Jiang; Li, Bo; Dai, Jia-Lin; Zhang, Ai-Hua

    2013-02-01

    To express Taenia solium gene encoding cell division cycle 37 protein (TsCDC37) and investigate its antigenicity and localization in adults of Taenia solium. The complete coding sequence of TsCDC37 was amplified by PCR based on the recombinant plasmid clone from the cDNA library of adult Taenia solium. The PCR product was cloned into a prokaryotic expression vector pET-28a (+). The recombinant expression plasmid was identified by PCR, double endonuclease digestion and sequencing. The recombinant plasmid was transformed into E. coli BL21/DE3 and followed by expression of the protein induced by IPTG. The mice were immunized subcutaneously with purified recombinant TsCDC37 formulated in Freund's adjuvant. The antigenicity of the recombinant protein was examined by Western blotting. The localization of TsCDC37 in adult worms was demonstrated by immunofluorescent technique. The recombinant expression vector was constructed successfully. The recombinant protein was about M(r) 52 000, it was then purified and specifically recognized by immuno sera of SD rats and sera from patients infected with Taenia solium, Taenia saginata or Taenia asiatica. The immunofluorescence assay revealed that TsCDC37 located at the tegument of T. solium adult and the eggs. TsCDC37 gene has been expressed with immunoreactivity. The recombinant protein is mainly expressed in tegument and egg, and is a common antigen of the three human taenia cestodes.

  17. Horizontal transfer, not duplication, drives the expansion of protein families in prokaryotes.

    Directory of Open Access Journals (Sweden)

    Todd J Treangen

    2011-01-01

    Full Text Available Gene duplication followed by neo- or sub-functionalization deeply impacts the evolution of protein families and is regarded as the main source of adaptive functional novelty in eukaryotes. While there is ample evidence of adaptive gene duplication in prokaryotes, it is not clear whether duplication outweighs the contribution of horizontal gene transfer in the expansion of protein families. We analyzed closely related prokaryote strains or species with small genomes (Helicobacter, Neisseria, Streptococcus, Sulfolobus, average-sized genomes (Bacillus, Enterobacteriaceae, and large genomes (Pseudomonas, Bradyrhizobiaceae to untangle the effects of duplication and horizontal transfer. After removing the effects of transposable elements and phages, we show that the vast majority of expansions of protein families are due to transfer, even among large genomes. Transferred genes--xenologs--persist longer in prokaryotic lineages possibly due to a higher/longer adaptive role. On the other hand, duplicated genes--paralogs--are expressed more, and, when persistent, they evolve slower. This suggests that gene transfer and gene duplication have very different roles in shaping the evolution of biological systems: transfer allows the acquisition of new functions and duplication leads to higher gene dosage. Accordingly, we show that paralogs share most protein-protein interactions and genetic regulators, whereas xenologs share very few of them. Prokaryotes invented most of life's biochemical diversity. Therefore, the study of the evolution of biology systems should explicitly account for the predominant role of horizontal gene transfer in the diversification of protein families.

  18. A Novel Prokaryotic Green Fluorescent Protein Expression System for Testing Gene Editing Tools Activity Like Zinc Finger Nuclease.

    Science.gov (United States)

    Sabzehei, Faezeh; Kouhpayeh, Shirin; Dastjerdeh, Mansoureh Shahbazi; Khanahmad, Hossein; Salehi, Rasoul; Naderi, Shamsi; Taghizadeh, Razieh; Rabiei, Parisa; Hejazi, Zahra; Shariati, Laleh

    2017-01-01

    Gene editing technology has created a revolution in the field of genome editing. The three of the most famous tools in gene editing technology are zinc finger nucleases (ZFNs), transcription activator-like effector nucleases, clustered regularly interspaced short palindromic repeats (CRISPR), and CRISPR-associated systems. As their predictable nature, it is necessary to assess their efficiency. There are some methods for this purpose, but most of them are time labor and complicated. Here, we introduce a new prokaryotic reporter system, which makes it possible to evaluate the efficiency of gene editing tools faster, cheaper, and simpler than previous methods. At first, the target sites of a custom ZFN, which is designed against a segment of ampicillin resistance gene, were cloned on both sides of green fluorescent protein (GFP) gene to construct pPRO-GFP. Then pPRO-GFP was transformed into Escherichia coli TOP10F' that contains pZFN (contains expression cassette of a ZFN against ampicillin resistant gene), or p15A-KanaR as a negative control. The transformed bacteria were cultured on three separate media that contained ampicillin, kanamycin, and ampicillin + kanamycin; then the resulted colonies were assessed by flow cytometry. The results of flow cytometry showed a significant difference between the case (bacteria contain pZFN) and control (bacteria contain p15A, KanaR) in MFI (Mean Fluorescence Intensity) ( P < 0.0001). According to ZFN efficiency, it can bind and cut the target sites, the bilateral cutting can affect the intensity of GFP fluorescence. Our flow cytometry results showed that this ZFN could reduce the intensity of GFP color and colony count of bacteria in media containing amp + kana versus control sample.

  19. Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes

    Directory of Open Access Journals (Sweden)

    Makarova Kira S

    2009-06-01

    Full Text Available Abstract Background The prokaryotic toxin-antitoxin systems (TAS, also referred to as TA loci are widespread, mobile two-gene modules that can be viewed as selfish genetic elements because they evolved mechanisms to become addictive for replicons and cells in which they reside, but also possess "normal" cellular functions in various forms of stress response and management of prokaryotic population. Several distinct TAS of type 1, where the toxin is a protein and the antitoxin is an antisense RNA, and numerous, unrelated TAS of type 2, in which both the toxin and the antitoxin are proteins, have been experimentally characterized, and it is suspected that many more remain to be identified. Results We report a comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems in prokaryotes. Using sensitive methods for distant sequence similarity search, genome context analysis and a new approach for the identification of mobile two-component systems, we identified numerous, previously unnoticed protein families that are homologous to toxins and antitoxins of known type 2 TAS. In addition, we predict 12 new families of toxins and 13 families of antitoxins, and also, predict a TAS or TAS-like activity for several gene modules that were not previously suspected to function in that capacity. In particular, we present indications that the two-gene module that encodes a minimal nucleotidyl transferase and the accompanying HEPN protein, and is extremely abundant in many archaea and bacteria, especially, thermophiles might comprise a novel TAS. We present a survey of previously known and newly predicted TAS in 750 complete genomes of archaea and bacteria, quantitatively demonstrate the exceptional mobility of the TAS, and explore the network of toxin-antitoxin pairings that combines plasticity with selectivity. Conclusion The defining properties of the TAS, namely, the typically small size of the toxin and antitoxin genes, fast evolution, and

  20. Comprehensive comparative-genomic analysis of type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes.

    Science.gov (United States)

    Makarova, Kira S; Wolf, Yuri I; Koonin, Eugene V

    2009-06-03

    The prokaryotic toxin-antitoxin systems (TAS, also referred to as TA loci) are widespread, mobile two-gene modules that can be viewed as selfish genetic elements because they evolved mechanisms to become addictive for replicons and cells in which they reside, but also possess "normal" cellular functions in various forms of stress response and management of prokaryotic population. Several distinct TAS of type 1, where the toxin is a protein and the antitoxin is an antisense RNA, and numerous, unrelated TAS of type 2, in which both the toxin and the antitoxin are proteins, have been experimentally characterized, and it is suspected that many more remain to be identified. We report a comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems in prokaryotes. Using sensitive methods for distant sequence similarity search, genome context analysis and a new approach for the identification of mobile two-component systems, we identified numerous, previously unnoticed protein families that are homologous to toxins and antitoxins of known type 2 TAS. In addition, we predict 12 new families of toxins and 13 families of antitoxins, and also, predict a TAS or TAS-like activity for several gene modules that were not previously suspected to function in that capacity. In particular, we present indications that the two-gene module that encodes a minimal nucleotidyl transferase and the accompanying HEPN protein, and is extremely abundant in many archaea and bacteria, especially, thermophiles might comprise a novel TAS. We present a survey of previously known and newly predicted TAS in 750 complete genomes of archaea and bacteria, quantitatively demonstrate the exceptional mobility of the TAS, and explore the network of toxin-antitoxin pairings that combines plasticity with selectivity. The defining properties of the TAS, namely, the typically small size of the toxin and antitoxin genes, fast evolution, and extensive horizontal mobility, make the task of

  1. A proposed genus boundary for the prokaryotes based on genomic insights.

    Science.gov (United States)

    Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Chen, Xiu-Lan; Zhou, Bai-Cheng; Zhou, Jizhong; Oren, Aharon; Zhang, Yu-Zhong

    2014-06-01

    Genomic information has already been applied to prokaryotic species definition and classification. However, the contribution of the genome sequence to prokaryotic genus delimitation has been less studied. To gain insights into genus definition for the prokaryotes, we attempted to reveal the genus-level genomic differences in the current prokaryotic classification system and to delineate the boundary of a genus on the basis of genomic information. The average nucleotide sequence identity between two genomes can be used for prokaryotic species delineation, but it is not suitable for genus demarcation. We used the percentage of conserved proteins (POCP) between two strains to estimate their evolutionary and phenotypic distance. A comprehensive genomic survey indicated that the POCP can serve as a robust genomic index for establishing the genus boundary for prokaryotic groups. Basically, two species belonging to the same genus would share at least half of their proteins. In a specific lineage, the genus and family/order ranks showed slight or no overlap in terms of POCP values. A prokaryotic genus can be defined as a group of species with all pairwise POCP values higher than 50%. Integration of whole-genome data into the current taxonomy system can provide comprehensive information for prokaryotic genus definition and delimitation. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  2. [Effects of antimicrobial peptide LL-37 expressed and purified from prokaryotes in the murine model of vaginal candidiasis].

    Science.gov (United States)

    Wang, F; Huo, Y; Yin, L R; Sun, B; Zhang, P P

    2016-07-25

    To study the effects of antimicrobial peptide LL-37 expressed and purified from prokaryotes on candida albicans growth. (1)Thirty female Kunming mice were treated with estrogen and white candida yeast suspension were poured into vagina to establish a vulvovaginal candidiasis(VVC)murine model. After successful establishing the VVC mouse model, mice were randomly sorted into test group(n=15)and control group(n=15). Suspension(30 μl, 100 μg/ml)of recombinant peptide LL-37 expressed and purified in Prokaryotes was given by intravaginal administration to the test group for 5 days, while the same amount of phosphate buffered saline(PBS)was given to the control group.(2)Tweenty-four hours after treatment, the fungal burden and colony-forming unit(CFU)of vaginal fluids were evaluated. All mice were subsequently sacrificed and vaginal tissues were harvested for tissue homogenate preparation. ELISA was used to determine the levels of nterleukin-10(IL-10)and interferon-γ(IFN-γ)in the isolated vaginal tissues. (1)VVC mouse model was established successfully in this study. Vaginal mucosa congestion, edema, vaginal plica disappearing were obviously observed in the control group. After treatment with recombinant protein LL-37 vaginal mucosa has no obvious change in the test group.(2)Fungal burden and CFU of vaginal fluids were significantly lower in the test group [(4.8±1.0)×10(4) CFU/ml]than that in the control group [(8.5±2.1)×10(4) CFU/ml, P=0.017]. IFN-γ level of the test group was increased [(257±11)vs(197±4)pg/ml, P=0.000], while the level of IL-10 was reduced [(287 ± 15)vs(379 ± 17)pg/ml P=0.000] resulting in a the ratio of IFN-γ/IL-10 was in significantly higher in test group(0.892±0.008 vs 0.496±0.013, P=0.000). Recombinant protein LL-37 expressed and purified from prokaryotes inhibits the growth candida albicans and improves vaginal immunity by adjusting IFN-γ and IL-10 secretion in the VVC mouse model, highlighting the therapeutic potential of LL-37

  3. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes.

    Science.gov (United States)

    Al-Attar, Sinan; Westra, Edze R; van der Oost, John; Brouns, Stan J J

    2011-04-01

    Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences (repeats), interspaced by highly variable sequences referred to as spacers. The spacers originate from either phages or plasmids and comprise the prokaryotes' 'immunological memory'. CRISPR-associated (cas) genes encode conserved proteins that together with CRISPRs make-up the CRISPR/Cas system, responsible for defending the prokaryotic cell against invaders. CRISPR-mediated resistance has been proposed to involve three stages: (i) CRISPR-Adaptation, the invader DNA is encountered by the CRISPR/Cas machinery and an invader-derived short DNA fragment is incorporated in the CRISPR array. (ii) CRISPR-Expression, the CRISPR array is transcribed and the transcript is processed by Cas proteins. (iii) CRISPR-Interference, the invaders' nucleic acid is recognized by complementarity to the crRNA and neutralized. An application of the CRISPR/Cas system is the immunization of industry-relevant prokaryotes (or eukaryotes) against mobile-genetic invasion. In addition, the high variability of the CRISPR spacer content can be exploited for phylogenetic and evolutionary studies. Despite impressive progress during the last couple of years, the elucidation of several fundamental details will be a major challenge in future research.

  4. Halophilic & halotolerant prokaryotes in humans.

    Science.gov (United States)

    Seck, El Hadji; Dufour, Jean-Charles; Raoult, Didier; Lagier, Jean-Christophe

    2018-05-04

    Halophilic prokaryotes are described as microorganisms living in hypersaline environments. Here, we list the halotolerant and halophilic bacteria which have been isolated in humans. Of the 52 halophilic prokaryotes, 32 (61.54%) were moderately halophilic, 17 (32.69%) were slightly halophilic and three (5.76%) were extremely halophilic prokaryotes. At the phylum level, 29 (54.72%) belong to Firmicutes, 15 (28.84%) to Proteobacteria, four (7.69%) to Actinobacteria, three (5.78%) to Euryarchaeota and one (1.92%) belongs to Bacteroidetes. Halophilic prokaryotes are rarely pathogenic: of these 52 halophilic prokaryotes only two (3.92%) species were classified in Risk Group 2 (Vibrio cholerae, Vibrio parahaemolyticus) and one (1.96%), species in Risk Group 3 (Bacillus anthracis).

  5. Differential impact of lytic viruses on prokaryotic morphopopulations in a tropical estuarine system (Cochin estuary, India).

    Science.gov (United States)

    Jasna, Vijayan; Pradeep Ram, Angia Sriram; Parvathi, Ammini; Sime-Ngando, Telesphore

    2018-01-01

    Our understanding on the importance of viral lysis in the functioning of tropical estuarine ecosystem is limited. This study examines viral infection of prokaryotes and subsequent lysis of cells belonging to different morphotypes across a salinity gradient in monsoon driven estuarine ecosystem (Cochin estuary, India). High standing stock of viruses and prokaryotes accompanied by lytic infection rates in the euryhaline/mesohaline region of the estuary suggests salinity to have an influential role in driving interactions between prokaryotes and viruses. High prokaryotic mortality rates, up to 42% of prokaryote population in the pre-monsoon season is further substantiated by a high virus to prokaryote ratio (VPR), suggesting that maintenance of a high number of viruses is dependent on the most active fraction of bacterioplankton. Although myoviruses were the dominant viral morphotype (mean = 43%) throughout the study period, there was significant variation among prokaryotic morphotypes susceptible to viral infection. Among them, the viral infected short rod prokaryote morphotype with lower burst estimates (mean = 18 viruses prokaryote-1) was dominant (35%) in the dry seasons whereas a substantial increase in cocci forms (30%) infected by viruses with high burst size (mean = 31 viruses prokaryote-1) was evident during the monsoon season. Such preferential infections of prokaryotic morphopopulations with respect to seasons can have a strong and variable impact on the carbon and energy flow in this tropical ecosystem.

  6. Prokaryotic Argonautes - variations on the RNA interference theme

    Science.gov (United States)

    van der Oost, John; Swarts, Daan C.; Jore, Matthijs M.

    2014-01-01

    The discovery of RNA interference (RNAi) has been a major scientific breakthrough. This RNA-guided RNA interference system plays a crucial role in a wide range of regulatory and defense mechanisms in eukaryotes. The key enzyme of the RNAi system is Argonaute (Ago), an endo-ribonuclease that uses a small RNA guide molecule to specifically target a complementary RNA transcript. Two functional classes of eukaryotic Ago have been described: catalytically active Ago that cleaves RNA targets complementary to its guide, and inactive Ago that uses its guide to bind target RNA to down-regulate translation efficiency. A recent comparative genomics study has revealed that Argonaute-like proteins are also encoded by prokaryotic genomes. Interestingly, there is a lot of variation among these prokaryotic Argonaute (pAgo) proteins with respect to domain architecture: some resemble the eukaryotic Ago (long pAgo) containing a complete or disrupted catalytic site, while others are truncated versions (short pAgo) that generally contain an incomplete catalytic site. Prokaryotic Agos with an incomplete catalytic site often co-occur with (predicted) nucleases. Based on this diversity, and on the fact that homologs of other RNAi-related protein components (such as Dicer nucleases) have never been identified in prokaryotes, it has been predicted that variations on the eukaryotic RNAi theme may occur in prokaryotes. PMID:28357239

  7. The Epigenomic Landscape of Prokaryotes.

    Directory of Open Access Journals (Sweden)

    Matthew J Blow

    2016-02-01

    Full Text Available DNA methylation acts in concert with restriction enzymes to protect the integrity of prokaryotic genomes. Studies in a limited number of organisms suggest that methylation also contributes to prokaryotic genome regulation, but the prevalence and properties of such non-restriction-associated methylation systems remain poorly understood. Here, we used single molecule, real-time sequencing to map DNA modifications including m6A, m4C, and m5C across the genomes of 230 diverse bacterial and archaeal species. We observed DNA methylation in nearly all (93% organisms examined, and identified a total of 834 distinct reproducibly methylated motifs. This data enabled annotation of the DNA binding specificities of 620 DNA Methyltransferases (MTases, doubling known specificities for previously hard to study Type I, IIG and III MTases, and revealing their extraordinary diversity. Strikingly, 48% of organisms harbor active Type II MTases with no apparent cognate restriction enzyme. These active 'orphan' MTases are present in diverse bacterial and archaeal phyla and show motif specificities and methylation patterns consistent with functions in gene regulation and DNA replication. Our results reveal the pervasive presence of DNA methylation throughout the prokaryotic kingdoms, as well as the diversity of sequence specificities and potential functions of DNA methylation systems.

  8. Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems

    Science.gov (United States)

    Cooper, Edwin L.; Overstreet, Nicola

    2014-03-01

    Recent evidence supports that prokaryotes exhibit adaptive immunity in the form of CRISPR (Clustered Regularly Interspersed Short Palindromic Repeats) and Cas (CRISPR associated proteins). The CRISPR-Cas system confers resistance to exogenous genetic elements such as phages and plasmids by allowing for the recognition and silencing of these genetic elements. Moreover, CRISPR-Cas serves as a memory of past exposures. This suggests that the evolution of the immune system has counterparts among the prokaryotes, not exclusively among eukaryotes. Mathematical models have been proposed which simulate the evolutionary patterns of CRISPR, however large gaps in our understanding of CRISPR-Cas function and evolution still exist. The CRISPR-Cas system is analogous to small RNAs involved in resistance mechanisms throughout the tree of life, and a deeper understanding of the evolution of small RNA pathways is necessary before the relationship between these convergent systems is to be determined. Presented in this review are novel RNAi therapies based on CRISPR-Cas analogs and the potential for future therapies based on CRISPR-Cas system components.

  9. Production of isotopically labeled heterologous proteins in non-E. coli prokaryotic and eukaryotic cells

    International Nuclear Information System (INIS)

    Takahashi, Hideo; Shimada, Ichio

    2010-01-01

    The preparation of stable isotope-labeled proteins is necessary for the application of a wide variety of NMR methods, to study the structures and dynamics of proteins and protein complexes. The E. coli expression system is generally used for the production of isotope-labeled proteins, because of the advantages of ease of handling, rapid growth, high-level protein production, and low cost for isotope-labeling. However, many eukaryotic proteins are not functionally expressed in E. coli, due to problems related to disulfide bond formation, post-translational modifications, and folding. In such cases, other expression systems are required for producing proteins for biomolecular NMR analyses. In this paper, we review the recent advances in expression systems for isotopically labeled heterologous proteins, utilizing non-E. coli prokaryotic and eukaryotic cells.

  10. Evolution of small prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    David José Martínez-Cano

    2015-01-01

    Full Text Available As revealed by genome sequencing, the biology of prokaryotes with reduced genomes is strikingly diverse. These include free-living prokaryotes with ~800 genes as well as endosymbiotic bacteria with as few as ~140 genes. Comparative genomics is revealing the evolutionary mechanisms that led to these small genomes. In the case of free-living prokaryotes, natural selection directly favored genome reduction, while in the case of endosymbiotic prokaryotes neutral processes played a more prominent role. However, new experimental data suggest that selective processes may be at operation as well for endosymbiotic prokaryotes at least during the first stages of genome reduction. Endosymbiotic prokaryotes have evolved diverse strategies for living with reduced gene sets inside a host-defined medium. These include utilization of host-encoded functions (some of them coded by genes acquired by gene transfer from the endosymbiont and/or other bacteria; metabolic complementation between co-symbionts; and forming consortiums with other bacteria within the host. Recent genome sequencing projects of intracellular mutualistic bacteria showed that previously believed universal evolutionary trends like reduced G+C content and conservation of genome synteny are not always present in highly reduced genomes. Finally, the simplified molecular machinery of some of these organisms with small genomes may be used to aid in the design of artificial minimal cells. Here we review recent genomic discoveries of the biology of prokaryotes endowed with small gene sets and discuss the evolutionary mechanisms that have been proposed to explain their peculiar nature.

  11. Prokaryotic expression and in vitro functional analysis of IL-1β and MCP-1 from guinea pig.

    Science.gov (United States)

    Dirisala, Vijaya R; Jeevan, Amminikutty; Ly, Lan H; McMurray, David N

    2013-06-01

    The Guinea pig (Cavia porcellus) is an excellent animal model for studying human tuberculosis (TB) and also for a number of other infectious and non-infectious diseases. One of the major roadblocks in effective utilization of this animal model is the lack of readily available immunological reagents. In order to address this issue, guinea pig interleukin 1 beta (IL-1β) and monocyte chemoattractant protein-1 (MCP-1) were efficiently cloned and expressed in a prokaryotic expression vector, and the expressed proteins in soluble form from both the genes were confirmed by N-terminal sequencing. The biological activity of recombinant guinea pig IL-1β was demonstrated by its ability to drive proliferation in thymocytes, and the recombinant guinea pig MCP-1 exhibited chemotactic activity for guinea pig resident peritoneal macrophages. These biologically active recombinant guinea pig proteins will facilitate an in-depth understanding of the role they play in the immune responses of the guinea pig to TB and other diseases.

  12. Transcriptome dynamics-based operon prediction in prokaryotes.

    Science.gov (United States)

    Fortino, Vittorio; Smolander, Olli-Pekka; Auvinen, Petri; Tagliaferri, Roberto; Greco, Dario

    2014-05-16

    Inferring operon maps is crucial to understanding the regulatory networks of prokaryotic genomes. Recently, RNA-seq based transcriptome studies revealed that in many bacterial species the operon structure vary with the change of environmental conditions. Therefore, new computational solutions that use both static and dynamic data are necessary to create condition specific operon predictions. In this work, we propose a novel classification method that integrates RNA-seq based transcriptome profiles with genomic sequence features to accurately identify the operons that are expressed under a measured condition. The classifiers are trained on a small set of confirmed operons and then used to classify the remaining gene pairs of the organism studied. Finally, by linking consecutive gene pairs classified as operons, our computational approach produces condition-dependent operon maps. We evaluated our approach on various RNA-seq expression profiles of the bacteria Haemophilus somni, Porphyromonas gingivalis, Escherichia coli and Salmonella enterica. Our results demonstrate that, using features depending on both transcriptome dynamics and genome sequence characteristics, we can identify operon pairs with high accuracy. Moreover, the combination of DNA sequence and expression data results in more accurate predictions than each one alone. We present a computational strategy for the comprehensive analysis of condition-dependent operon maps in prokaryotes. Our method can be used to generate condition specific operon maps of many bacterial organisms for which high-resolution transcriptome data is available.

  13. Novel gene sets improve set-level classification of prokaryotic gene expression data.

    Science.gov (United States)

    Holec, Matěj; Kuželka, Ondřej; Železný, Filip

    2015-10-28

    Set-level classification of gene expression data has received significant attention recently. In this setting, high-dimensional vectors of features corresponding to genes are converted into lower-dimensional vectors of features corresponding to biologically interpretable gene sets. The dimensionality reduction brings the promise of a decreased risk of overfitting, potentially resulting in improved accuracy of the learned classifiers. However, recent empirical research has not confirmed this expectation. Here we hypothesize that the reported unfavorable classification results in the set-level framework were due to the adoption of unsuitable gene sets defined typically on the basis of the Gene ontology and the KEGG database of metabolic networks. We explore an alternative approach to defining gene sets, based on regulatory interactions, which we expect to collect genes with more correlated expression. We hypothesize that such more correlated gene sets will enable to learn more accurate classifiers. We define two families of gene sets using information on regulatory interactions, and evaluate them on phenotype-classification tasks using public prokaryotic gene expression data sets. From each of the two gene-set families, we first select the best-performing subtype. The two selected subtypes are then evaluated on independent (testing) data sets against state-of-the-art gene sets and against the conventional gene-level approach. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. The novel gene sets are indeed more correlated than the conventional ones, and lead to significantly more accurate classifiers. Novel gene sets defined on the basis of regulatory interactions improve set-level classification of gene expression data. The experimental scripts and other material needed to reproduce the experiments are available at http://ida.felk.cvut.cz/novelgenesets.tar.gz.

  14. Interactions Between Prokaryotes and Dissolved Organic Matter in Marine Waters

    DEFF Research Database (Denmark)

    Traving, Sachia Jo

    organic bound carbon equal in size to atmospheric carbon dioxide. Prokaryotes mediate the fate of a large part of marine DOM, which is their principal source of energy and substrate. However, a large fraction is also left behind in the water column persisting for millennia, and prokaryotes may hold...... the key to understanding the mechanisms controlling the cycling of DOM within marine waters. In the thesis presented here, the aim was to investigate the activity and composition of prokaryotes to determine their functional role in DOM utilization. The thesis incorporates a range of study systems...

  15. Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements

    Directory of Open Access Journals (Sweden)

    van der Oost John

    2009-08-01

    horizontal transfer of pAgo genes, and their common, statistically significant over-representation in genomic neighborhoods enriched in genes encoding proteins involved in the defense against phages and/or plasmids, we hypothesize that pAgos are key components of a novel class of defense systems. The PAZ-domain containing pAgos are predicted to directly destroy virus or plasmid nucleic acids via their nuclease activity, whereas the apparently inactivated, PAZ-lacking pAgos could be structural subunits of protein complexes that contain, as active moieties, the putative nucleases that we predict to be co-expressed with these pAgos. All these nucleases are predicted to be DNA endonucleases, so it seems most probable that the putative novel phage/plasmid-defense system targets phage DNA rather than mRNAs. Given that in eukaryotic RNAi systems, the PAZ domain binds a guide RNA and positions it on the complementary region of the target, we further speculate that pAgos function on a similar principle (the guide being either DNA or RNA, and that the uncharacterized domain found in putative operons with the short forms of pAgos is a functional substitute for the PAZ domain. Conclusion The hypothesis that pAgos are key components of a novel prokaryotic immune system that employs guide RNA or DNA molecules to degrade nucleic acids of invading mobile elements implies a functional analogy with the prokaryotic CASS and a direct evolutionary connection with eukaryotic RNAi. The predictions of the hypothesis including both the activities of pAgos and those of the associated endonucleases are readily amenable to experimental tests. Reviewers This article was reviewed by Daniel Haft, Martijn Huynen, and Chris Ponting.

  16. Relationship between viral and prokaryotic abundance on the Bajo O’Higgins 1 Seamount (Humboldt Current System off Chile

    Directory of Open Access Journals (Sweden)

    Oscar E. Chiang

    2007-03-01

    Full Text Available There is little known about the ecology of microbial communities living in the water column over seamounts. Here, for the first time, the spatial distribution and abundance of virus-like particles (VLP are described over a seamount. The association between VLP distribution, prokaryotic abundance, and environmental variables is also analyzed. Sampling was conducted in December 2004 on the Bajo O’Higgins 1 seamount (32°54’S, 73°53’W located in the Humboldt Current System off Chile. A oxygen minimum layer (OMZ was clearly present between 130 and 280 m in the water column over the seamount. Water samples were taken with Niskin bottles at 10 oceanographic stations over the seamount at depths of 5, 20, 50, 75, 100, and 150 m and at the benthic boundary layer (BBL; 5-12 m over the sediments. Temperature, salinity, oxygen, chlorophyll , and phaeopigments were measured at each station. Viral and prokaryotic abundances were determined with fluorochrome SYBR Green I. Viral abundance ranged from 1.53 x 109 VLP L-1 - 16.48 x 109 VLP L-1, whereas prokaryotic abundance ranged from 1.78 x 10 8 cell L-1 - 14.91 x 108 cell L-1. The virus-like particle/prokaryote ratio varied widely among the analyzed layers (i.e. surface, OMZ, and BBL, probably due to the presence of different prokaryotic and viral assemblages in each layer. Our results indicate that the environmental conditions, mainly the concentration of dissolved oxygen in the water column over Bajo O’Higgins 1 seamount, shape the association between viral and prokaryotic abundance.

  17. Translational selection is ubiquitous in prokaryotes.

    Directory of Open Access Journals (Sweden)

    Fran Supek

    2010-06-01

    Full Text Available Codon usage bias in prokaryotic genomes is largely a consequence of background substitution patterns in DNA, but highly expressed genes may show a preference towards codons that enable more efficient and/or accurate translation. We introduce a novel approach based on supervised machine learning that detects effects of translational selection on genes, while controlling for local variation in nucleotide substitution patterns represented as sequence composition of intergenic DNA. A cornerstone of our method is a Random Forest classifier that outperformed previous distance measure-based approaches, such as the codon adaptation index, in the task of discerning the (highly expressed ribosomal protein genes by their codon frequencies. Unlike previous reports, we show evidence that translational selection in prokaryotes is practically universal: in 460 of 461 examined microbial genomes, we find that a subset of genes shows a higher codon usage similarity to the ribosomal proteins than would be expected from the local sequence composition. These genes constitute a substantial part of the genome--between 5% and 33%, depending on genome size--while also exhibiting higher experimentally measured mRNA abundances and tending toward codons that match tRNA anticodons by canonical base pairing. Certain gene functional categories are generally enriched with, or depleted of codon-optimized genes, the trends of enrichment/depletion being conserved between Archaea and Bacteria. Prominent exceptions from these trends might indicate genes with alternative physiological roles; we speculate on specific examples related to detoxication of oxygen radicals and ammonia and to possible misannotations of asparaginyl-tRNA synthetases. Since the presence of codon optimizations on genes is a valid proxy for expression levels in fully sequenced genomes, we provide an example of an "adaptome" by highlighting gene functions with expression levels elevated specifically in

  18. [Cloning, prokaryotic expression and antibacterial assay of Tenecin gene encoding an antibacterial peptide from Tenebrio molitor].

    Science.gov (United States)

    Liu, Ying; Jiang, Yu-xin; Li, Chao-pin

    2011-12-01

    To clone tenecin gene, an antibacterial peptide gene, from Tenebrio molitor for its prokaryotic expression and explore the molecular mechanism for regulating the expression of antibacterial peptide in Tenebrio molitor larvae. The antibacterial peptide was induced from the larvae of Tenebrio molitor by intraperitoneal injection of Escherichia coli DH-5α (1×10(8)/ml). RT-PCR was performed 72 h after the injection to clone Tenecin gene followed by sequencing and bioinformatic analysis. The recombinant expression vector pET-28a(+)-Tenecin was constructed and transformed into E. coli BL21(DE3) cells and the expression of tenecin protein was observed after IPTG induction. Tenecin expression was detected in transformed E.coli using SDS-PAGE after 1 mmol/L IPTG induction. Tenecin gene, which was about 255 bp in length, encoded Tenecin protein with a relative molecular mass of 9 kD. Incubation of E.coli with 80, 60, 40, and 20 µg/ml tenecin for 18 h resulted in a diameter of the inhibition zone of 25.1∓0.03, 20.7∓0.06, 17.2∓0.11 and 9.3∓0.04 mm, respectively. Tenecin protein possesses strong antibacterial activity against E. coli DH-5α, which warrants further study of this protein for its potential as an antibacterial agent in clinical application.

  19. 阴道毛滴虫TPI基因克隆及原核表达%Cloning and prokaryotic expression of the Trichomonas vaginalis TPI gene in Escherichia coli

    Institute of Scientific and Technical Information of China (English)

    丁鹤; 刘畅; 宫鹏涛; 李建华; 李赫; 张国才; 杨举; 李淑红; 张西臣

    2012-01-01

    Objective To construct a prokaryotic expression vector of the Trichomonas vaginalis TPI gene and express it in Escherichia coli (BL2KDE3). Methods Special primers were designed on the basis of the reported Trichomonas vaginalis TPI gene. The TPI gene was amplified by PCR from the total cDNA of T. vaginalis and was cloned into pMD-18-T to construct pMD-TPI. The plasmid pMI-TPI was then digested with restriction ribozymes and subcloned into the prokaryotic expression plasmid pGEX-T to construct pGEX-TPI. It was expressed in E. coli BL21 (DE3) induced with IPTG. The fusion product was identified by SDS-PAGE and Western blot. Results A prokaryotic expression vector of the TPI gene was constructed and expressed in E. coli. Induced with IPTG, the expressed recombinant protein was detected as a band of 27. 5 ku by SDS-PAGE. A special reaction band to anti-TPI sera was observed in Western blot. Conclusion The fusion protein of the TPI gene was successfully expressed in prokaryotic cells and has provided a basis to further study the function of the T. vaginalis TPI gene.%目的 构建阴道毛滴虫TPI基因原核表达载体,并在大肠埃希菌BL21 (DE3)中表达.方法 根据阴道毛滴虫TPI基因开放阅读框设计并合成特异性引物,以阴道毛滴虫总cDNA为模板PCR扩增目的片段,与pMD-18-T连接构建克隆载体pMD-TPI,经双酶切回收目的片段,与表达载体pGEX-T连接,构建原核表达载体pGEX- TPI,经IPTG诱导后通过SDS PAGE及Western blot鉴定表达产物.结果 成功构建了阴道毛滴虫TPI基因原核表达载体pGEX TPI; SDS-PAGE电泳显示,在IPTG诱导下重组质粒转化菌高效表达分子质量单位为27.5 ku的蛋白质;Western blot显示表达产物可被抗阴道毛滴虫的多克隆血清识别.结论 成功构建了TPI基因原核表达载体,并在大肠埃希菌BL21( DE3)中高效表达,为进一步研究阴道毛滴虫TPI基因功能奠定了基础.

  20. How crowded is the prokaryotic cytoplasm?

    NARCIS (Netherlands)

    Spitzer, Jan; Poolman, Bert; Ferguson, Stuart

    2013-01-01

    We consider biomacromolecular crowding within the cytoplasm of prokaryotic cells as a two-phase system of 'supercrowded' cytogel and 'dilute' cytosol; we simplify and quantify this model for a coccoid cell over a wide range of biomacromolecular crowding. The key result shows that the supercrowded

  1. Getting out : protein traffic in prokaryotes

    NARCIS (Netherlands)

    Pugsley, A.P; Francetic, O; Driessen, A.J.M.; de Lorenzo, V.

    Protein secretion systems in prokaryotes are increasingly shifting from being considered as experimental models for 'more complex' processes (i.e. eukaryotes) to being a major source of key biological questions in their own right. The pathways by which proteins move between compartments or insert

  2. Light-controlled motility in prokaryotes and the problem of directional light perception.

    Science.gov (United States)

    Wilde, Annegret; Mullineaux, Conrad W

    2017-11-01

    The natural light environment is important to many prokaryotes. Most obviously, phototrophic prokaryotes need to acclimate their photosynthetic apparatus to the prevailing light conditions, and such acclimation is frequently complemented by motility to enable cells to relocate in search of more favorable illumination conditions. Non-phototrophic prokaryotes may also seek to avoid light at damaging intensities and wavelengths, and many prokaryotes with diverse lifestyles could potentially exploit light signals as a rich source of information about their surroundings and a cue for acclimation and behavior. Here we discuss our current understanding of the ways in which bacteria can perceive the intensity, wavelength and direction of illumination, and the signal transduction networks that link light perception to the control of motile behavior. We discuss the problems of light perception at the prokaryotic scale, and the challenge of directional light perception in small bacterial cells. We explain the peculiarities and the common features of light-controlled motility systems in prokaryotes as diverse as cyanobacteria, purple photosynthetic bacteria, chemoheterotrophic bacteria and haloarchaea. © FEMS 2017.

  3. [Prokaryotic expression of vp3 gene of Muscovy duck parvovirus, and its antiserum preparation for detection of virus multiplication].

    Science.gov (United States)

    Huang, Yu; Zhu, Yumin; Dong, Shijuan; Yu, Ruisong; Zhang, Yuanshu; Li, Zhen

    2015-01-01

    New epidemic broke out in recent year which was suspected to be caused by variant Muscovy duck parvovirus (MDPV). For this reason, new MDPV detection methods are needed for the new virus strains. In this study, a pair of primers were designed according to the full-length genome of MDPV strain SAAS-SHNH, which were identified in 2012, and were used to amplify the vp3 gene of MDPV by polymerase chain reaction. After being sequenced, the vp3 gene was subcloned into the prokaryotic expression vector PET28a. The recombinant plasmid was transformed into E. coli BL21 and induced with IPTG. SDS-PAGE and Western blotting analysis showed the MDPV vp3 gene was successfully expressed. After being purified by Ni2+ affinity chromatography system, the recombinant protein was used as antigen to immunize rabbits to obtain antiserum. Western blotting analysis showed that the acquired antiserum could react specifically with VP3 protein of J3D6 strain and MDPV vaccine strain. The antiserum could also be used for detection of cultured MDPV from primary duck embryo fibroblasts by immune fluorescence assay (IFA). It could be concluded that the VP3 protein and its antibody prepared in the research could be used for detection of VP3 antiserum and antigen respectively.

  4. Metabolic engineering with systems biology tools to optimize production of prokaryotic secondary metabolites

    DEFF Research Database (Denmark)

    Kim, Hyun Uk; Charusanti, Pep; Lee, Sang Yup

    2016-01-01

    Metabolic engineering using systems biology tools is increasingly applied to overproduce secondary metabolites for their potential industrial production. In this Highlight, recent relevant metabolic engineering studies are analyzed with emphasis on host selection and engineering approaches...... for the optimal production of various prokaryotic secondary metabolites: native versus heterologous hosts (e.g., Escherichia coli) and rational versus random approaches. This comparative analysis is followed by discussions on systems biology tools deployed in optimizing the production of secondary metabolites....... The potential contributions of additional systems biology tools are also discussed in the context of current challenges encountered during optimization of secondary metabolite production....

  5. [Construction and expression of fusion protein TRX-hJagged1 in E.coli BL21].

    Science.gov (United States)

    Li, Guo-Hui; Fan, Yu-Zhen; Huang, Si-Yong; Liu, Qiang; Yin, Dan-Dan; Liu, Li; Chen, Ren-An; Hao, Miao-Wang; Liang, Ying-Min

    2014-06-01

    This study was purposed to construct prokaryotic expression vector and to investigate the expression of Notch ligand Jagged1 in E.coli. An expression vector pET-hJagged1 was constructed, which can be inserted in Jagged1 with different lengths, but the DSL domain of human Jagged1 should be contained. Then the recombinant plasmids were transformed into the competent cell of E.coli BL21, and the expression of the fusion protein was induced by IPTG. Fusion protein was purified from the supernatant of cell lysates via the Nickel affinity chromatography. The results showed that prokaryotic expression vectors pET-hJagged1 (Bgl II), pET-hJagged1 (Hind I) and pET-hJagged1 (Stu I) were successfully constructed, but only pET-hJagged1 (Stu I) could express the soluble TRX-hJagged1. The purified TRX-Jagged1 protein could be obtained via the Nickel affinity chromatography, and then confirmed by Western Blot. It is concluded that prokaryotic expression vector pET-hJagged1 is successfully constructed, but only pET-hJagged1 (Stu I) can express the soluble TRX-hJagged1 and the TRX-Jagged1 fusion protein is obtained through the prokaryotic expression system, which laid a solid foundation for further to explore the effects of Jagged1 in hematopoietic and lymphoid system.

  6. Prokaryotes versus Eukaryotes: Who is hosting whom?

    Directory of Open Access Journals (Sweden)

    Guillermo eTellez

    2014-10-01

    Full Text Available Microorganisms represent the largest component of biodiversity in our world. For millions of years, prokaryotic microorganisms have functioned as a major selective force shaping eukaryotic evolution. Microbes that live inside and on animals outnumber the animals’ actual somatic and germ cells by an estimated 10-fold. Collectively, the intestinal microbiome represents a ‘forgotten organ’, functioning as an organ inside another that can execute many physiological responsibilities. The nature of primitive eukaryotes was drastically changed due to the association with symbiotic prokaryotes facilitating mutual coevolution of host and microbe. Phytophagous insects have long been used to test theories of evolutionary diversification; moreover, the diversification of a number of phytophagous insect lineages has been linked to mutualisms with microbes. From termites and honey bees to ruminants and mammals, depending on novel biochemistries provided by the prokaryotic microbiome, the association helps to metabolize several nutrients that the host cannot digest and converting these into useful end products (such as short chain fatty acids, a process which has huge impact on the biology and homeostasis of metazoans. More importantly, in a direct and/or indirect way, the intestinal microbiota influences the assembly of gut-associated lymphoid tissue, helps to educate immune system, affects the integrity of the intestinal mucosal barrier, modulates proliferation and differentiation of its epithelial lineages, regulates angiogenesis, and modifies the activity of enteric as well as the central nervous system,. Despite these important effects, the mechanisms by which the gut microbial community influences the host’s biology remains almost entirely unknown. Our aim here is to encourage empirical inquiry into the relationship between mutualism and evolutionary diversification between prokaryotes and eukaryotes which encourage us to postulate: Who is

  7. A framework for classification of prokaryotic protein kinases.

    Directory of Open Access Journals (Sweden)

    Nidhi Tyagi

    Full Text Available BACKGROUND: Overwhelming majority of the Serine/Threonine protein kinases identified by gleaning archaeal and eubacterial genomes could not be classified into any of the well known Hanks and Hunter subfamilies of protein kinases. This is owing to the development of Hanks and Hunter classification scheme based on eukaryotic protein kinases which are highly divergent from their prokaryotic homologues. A large dataset of prokaryotic Serine/Threonine protein kinases recognized from genomes of prokaryotes have been used to develop a classification framework for prokaryotic Ser/Thr protein kinases. METHODOLOGY/PRINCIPAL FINDINGS: We have used traditional sequence alignment and phylogenetic approaches and clustered the prokaryotic kinases which represent 72 subfamilies with at least 4 members in each. Such a clustering enables classification of prokaryotic Ser/Thr kinases and it can be used as a framework to classify newly identified prokaryotic Ser/Thr kinases. After series of searches in a comprehensive sequence database we recognized that 38 subfamilies of prokaryotic protein kinases are associated to a specific taxonomic level. For example 4, 6 and 3 subfamilies have been identified that are currently specific to phylum proteobacteria, cyanobacteria and actinobacteria respectively. Similarly subfamilies which are specific to an order, sub-order, class, family and genus have also been identified. In addition to these, we also identify organism-diverse subfamilies. Members of these clusters are from organisms of different taxonomic levels, such as archaea, bacteria, eukaryotes and viruses. CONCLUSION/SIGNIFICANCE: Interestingly, occurrence of several taxonomic level specific subfamilies of prokaryotic kinases contrasts with classification of eukaryotic protein kinases in which most of the popular subfamilies of eukaryotic protein kinases occur diversely in several eukaryotes. Many prokaryotic Ser/Thr kinases exhibit a wide variety of modular

  8. Do marine natural products interfere with prokaryotic AHL regulatory systems?

    DEFF Research Database (Denmark)

    Kjelleberg, S.; Steinberg, P.; Givskov, Michael Christian

    1997-01-01

    Recent studies indicate that a taxonomically diverse range of marine eukaryotes produce metabolites which inhibit phenotypic traits in bacteria, with no or minimal effects on growth. In this review, we present evidence for the existence of such eukaryotic interference with a conserved prokaryotic...

  9. Culturable prokaryotic diversity of deep, gas hydrate sediments: first use of a continuous high-pressure, anaerobic, enrichment and isolation system for subseafloor sediments (DeepIsoBUG)

    OpenAIRE

    Parkes, R John; Sellek, Gerard; Webster, Gordon; Martin, Derek; Anders, Erik; Weightman, Andrew J; Sass, Henrik

    2009-01-01

    Deep subseafloor sediments may contain depressurization-sensitive, anaerobic, piezophilic prokaryotes. To test this we developed the DeepIsoBUG system, which when coupled with the HYACINTH pressure-retaining drilling and core storage system and the PRESS core cutting and processing system, enables deep sediments to be handled without depressurization (up to 25 MPa) and anaerobic prokaryotic enrichments and isolation to be conducted up to 100 MPa. Here, we describe the system and its first use...

  10. Evolution and Diversity of the Ras Superfamily of Small GTPases in Prokaryotes

    Science.gov (United States)

    Wuichet, Kristin; Søgaard-Andersen, Lotte

    2015-01-01

    The Ras superfamily of small GTPases are single domain nucleotide-dependent molecular switches that act as highly tuned regulators of complex signal transduction pathways. Originally identified in eukaryotes for their roles in fundamental cellular processes including proliferation, motility, polarity, nuclear transport, and vesicle transport, recent studies have revealed that single domain GTPases also control complex functions such as cell polarity, motility, predation, development and antibiotic resistance in bacteria. Here, we used a computational genomics approach to understand the abundance, diversity, and evolution of small GTPases in prokaryotes. We collected 520 small GTPase sequences present in 17% of 1,611 prokaryotic genomes analyzed that cover diverse lineages. We identified two discrete families of small GTPases in prokaryotes that show evidence of three distinct catalytic mechanisms. The MglA family includes MglA homologs, which are typically associated with the MglB GTPase activating protein, whereas members of the Rup (Ras superfamily GTPase of unknown function in prokaryotes) family are not predicted to interact with MglB homologs. System classification and genome context analyses support the involvement of small GTPases in diverse prokaryotic signal transduction pathways including two component systems, laying the foundation for future experimental characterization of these proteins. Phylogenetic analysis of prokaryotic and eukaryotic GTPases supports that the last universal common ancestor contained ancestral MglA and Rup family members. We propose that the MglA family was lost from the ancestral eukaryote and that the Ras superfamily members in extant eukaryotes are the result of vertical and horizontal gene transfer events of ancestral Rup GTPases. PMID:25480683

  11. Top-Down Control of Diesel-Degrading Prokaryotic Communities.

    Science.gov (United States)

    Sauret, Caroline; Böttjer, Daniela; Talarmin, Agathe; Guigue, Catherine; Conan, Pascal; Pujo-Pay, Mireille; Ghiglione, Jean-François

    2015-08-01

    Biostimulation through the addition of inorganic nutrients has been the most widely practiced bioremediation strategy in oil-polluted marine waters. However, little attention has so far been paid to the microbial food web and the impact of top-down control that directly or indirectly influences the success of the bioremediation. We designed a mesocosm experiment using pre-filtered (diesel fuel. Prokaryotes, HNF and VLP abundances showed a predator-prey succession, with a co-development of HNF and VLP. In the polluted system, we observed a stronger impact of viral lysis on prokaryotic abundances than in the control. Analysis of the diversity revealed that a bloom of Vibrio sp. occurred in the polluted mesocosm. That bloom was rapidly followed by a less abundant and more even community of predation-resistant bacteria, including known hydrocarbon degraders such as Oleispira spp. and Methylophaga spp. and opportunistic bacteria such as Percisivirga spp., Roseobacter spp. and Phaeobacter spp. The shift in prokaryotic dominance in response to viral lysis provided clear evidence of the 'killing the winner' model. Nevertheless, despite clear effects on prokaryotic abundance, activity and diversity, the diesel degradation was not impacted by top-down control. The present study investigates for the first time the functioning of a complex microbial network (including VLP) using a nutrient-based biostimulation strategy and highlights some key processes useful for tailoring bioremediation.

  12. Perdeuteration and methyl-selective 1H, 13C-labeling by using a Kluyveromyces lactis expression system

    International Nuclear Information System (INIS)

    Miyazawa-Onami, Mayumi; Takeuchi, Koh; Takano, Toshiaki; Sugiki, Toshihiko; Shimada, Ichio; Takahashi, Hideo

    2013-01-01

    The production of stable isotope-labeled proteins is critical in structural analyses of large molecular weight proteins using NMR. Although prokaryotic expression systems using Escherichia coli have been widely used for this purpose, yeast strains have also been useful for the expression of functional eukaryotic proteins. Recently, we reported a cost-effective stable isotope-labeled protein expression using the hemiascomycete yeast Kluyveromyces lactis (K. lactis), which allow us to express exogenous proteins at costs comparable to prokaryotic expression systems. Here, we report the successful production of highly deuterated (>90 %) protein in the K. lactis system. We also examined the methyl-selective 1 H, 13 C-labeling of Ile, Leu, and Val residues using commonly used amino acid precursors. The efficiency of 1 H- 13 C-incorporation varied significantly based on the amino acid. Although a high level of 1 H- 13 C-incorporation was observed for the Ile δ1 position, 1 H, 13 C-labeling rates of Val and Leu methyl groups were limited due to the mitochondrial localization of enzymes involved in amino acid biosynthesis and the lack of transporters for α-ketoisovalerate in the mitochondrial membrane. In line with this notion, the co-expression with branched-chain-amino-acid aminotransferase in the cytosol significantly improved the incorporation rates of amino acid precursors. Although it would be less cost-effective, addition of 13 C-labeled valine can circumvent problems associated with precursors and achieve high level 1 H, 13 C-labeling of Val and Leu. Taken together, the K. lactis system would be a good alternative for expressing large eukaryotic proteins that need deuteration and/or the methyl-selective 1 H, 13 C-labeling for the sensitive detection of NMR resonances

  13. Prokaryote genome fluidity: toward a system approach of the mobilome.

    Science.gov (United States)

    Toussaint, Ariane; Chandler, Mick

    2012-01-01

    The importance of horizontal/lateral gene transfer (LGT) in shaping the genomes of prokaryotic organisms has been recognized in recent years as a result of analysis of the increasing number of available genome sequences. LGT is largely due to the transfer and recombination activities of mobile genetic elements (MGEs). Bacterial and archaeal genomes are mosaics of vertically and horizontally transmitted DNA segments. This generates reticulate relationships between members of the prokaryotic world that are better represented by networks than by "classical" phylogenetic trees. In this review we summarize the nature and activities of MGEs, and the problems that presently limit their analysis on a large scale. We propose routes to improve their annotation in the flow of genomic and metagenomic sequences that currently exist and those that become available. We describe network analysis of evolutionary relationships among some MGE categories and sketch out possible developments of this type of approach to get more insight into the role of the mobilome in bacterial adaptation and evolution.

  14. Advances in algal-prokaryotic wastewater treatment: A review of nitrogen transformations, reactor configurations and molecular tools.

    Science.gov (United States)

    Wang, Meng; Keeley, Ryan; Zalivina, Nadezhda; Halfhide, Trina; Scott, Kathleen; Zhang, Qiong; van der Steen, Peter; Ergas, Sarina J

    2018-07-01

    The synergistic activity of algae and prokaryotic microorganisms can be used to improve the efficiency of biological wastewater treatment, particularly with regards to nitrogen removal. For example, algae can provide oxygen through photosynthesis needed for aerobic degradation of organic carbon and nitrification and harvested algal-prokaryotic biomass can be used to produce high value chemicals or biogas. Algal-prokaryotic consortia have been used to treat wastewater in different types of reactors, including waste stabilization ponds, high rate algal ponds and closed photobioreactors. This review addresses the current literature and identifies research gaps related to the following topics: 1) the complex interactions between algae and prokaryotes in wastewater treatment; 2) advances in bioreactor technologies that can achieve high nitrogen removal efficiencies in small reactor volumes, such as algal-prokaryotic biofilm reactors and enhanced algal-prokaryotic treatment systems (EAPS); 3) molecular tools that have expanded our understanding of the activities of algal and prokaryotic communities in wastewater treatment processes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Prokaryotic expression of chicken interferon-γ fusion protein and its effect on expression of poultry heat shock protein 70 under heat stress.

    Science.gov (United States)

    Sun, Jinhua; Chen, Yinglin; Qin, Feiyue; Guan, Xueting; Xu, Wei; Xu, Liangmei

    2017-06-01

    Interferons have attracted considerable attention due to their vital roles in the host immune response and low induction of antibiotic resistance. In this study, total RNA was extracted from spleen cells of chicken embryos inoculated with Newcastle disease vaccine, and the full-length chicken interferon-γ (ChIFN-γ) gene was amplified by RT-PCR. The full complementary DNA sequence of the ChIFN-γ gene was 495 bp long and was cloned into the prokaryotic expression vector pProEX™HT b . The plasmid was transformed into Escherichia coli DH5α and the expression of ChIFN-γ was induced by isopropyl β-D-1-thiogalactopyranoside. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis and Western blot results showed the expressed fusion protein had a molecular weight of approximately 18 kDa and was recognized by an anti-His mAb. Moreover, ChIFN-γ was found to demonstrate anti-viral activity in vitro. To test the in vivo function of ChIFN-γ in broilers under heat stress, a total of 100 broilers were randomly assigned to either a control group or a treated group, in which they were hypodermically injected with recombinant ChIFN-γ. Results demonstrated ChIFN-γ affects the messenger RNA expression levels of heat shock protein 70 (HSP70) in the heart and lung tissues, and decreases the concentration of HSP70 in serum. Therefore, we conclude recombinant ChIFN-γ can reduce heat stress to some extent in vivo. © 2016 Japanese Society of Animal Science.

  16. Construction of expression vectors carrying mouse peroxisomal ...

    African Journals Online (AJOL)

    PRECIOUS

    2009-11-16

    Nov 16, 2009 ... The aim of this study was to construct expression vectors carrying mouse peroxisomal protein gene. (PEP-cDNA) in prokaryotic and mammalian expression vectors in chimeric cDNA types, encompassing. GST and FLAG with PEP-cDNA. PEP-cDNA was sub-cloned in pGEX6p2 prokaryotic expression ...

  17. Metabolic Compensation and Circadian Resilience in Prokaryotic Cyanobacteria

    Science.gov (United States)

    Johnson, Carl Hirschie; Egli, Martin

    2014-01-01

    For a biological oscillator to function as a circadian pacemaker that confers a fitness advantage, its timing functions must be stable in response to environmental and metabolic fluctuations. One such stability enhancer, temperature compensation, has long been a defining characteristic of these timekeepers. However, an accurate biological timekeeper must also resist changes in metabolism, and this review suggests that temperature compensation is actually a subset of a larger phenomenon, namely metabolic compensation, which maintains the frequency of circadian oscillators in response to a host of factors that impinge on metabolism and would otherwise destabilize these clocks. The circadian system of prokaryotic cyanobacteria is an illustrative model because it is composed of transcriptional and nontranscriptional oscillators that are coupled to promote resilience. Moreover, the cyanobacterial circadian program regulates gene activity and metabolic pathways, and it can be manipulated to improve the expression of bioproducts that have practical value. PMID:24905782

  18. [Optimization of prokaryotic expression conditions of Leptospira interrogans trigeminy genus-specific protein antigen based on surface response analysis].

    Science.gov (United States)

    Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie

    2008-07-01

    Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.

  19. Rule Mining Techniques to Predict Prokaryotic Metabolic Pathways

    KAUST Repository

    Saidi, Rabie

    2017-08-28

    It is becoming more evident that computational methods are needed for the identification and the mapping of pathways in new genomes. We introduce an automatic annotation system (ARBA4Path Association Rule-Based Annotator for Pathways) that utilizes rule mining techniques to predict metabolic pathways across wide range of prokaryotes. It was demonstrated that specific combinations of protein domains (recorded in our rules) strongly determine pathways in which proteins are involved and thus provide information that let us very accurately assign pathway membership (with precision of 0.999 and recall of 0.966) to proteins of a given prokaryotic taxon. Our system can be used to enhance the quality of automatically generated annotations as well as annotating proteins with unknown function. The prediction models are represented in the form of human-readable rules, and they can be used effectively to add absent pathway information to many proteins in UniProtKB/TrEMBL database.

  20. Rule Mining Techniques to Predict Prokaryotic Metabolic Pathways

    KAUST Repository

    Saidi, Rabie; Boudellioua, Imene; Martin, Maria J.; Solovyev, Victor

    2017-01-01

    It is becoming more evident that computational methods are needed for the identification and the mapping of pathways in new genomes. We introduce an automatic annotation system (ARBA4Path Association Rule-Based Annotator for Pathways) that utilizes rule mining techniques to predict metabolic pathways across wide range of prokaryotes. It was demonstrated that specific combinations of protein domains (recorded in our rules) strongly determine pathways in which proteins are involved and thus provide information that let us very accurately assign pathway membership (with precision of 0.999 and recall of 0.966) to proteins of a given prokaryotic taxon. Our system can be used to enhance the quality of automatically generated annotations as well as annotating proteins with unknown function. The prediction models are represented in the form of human-readable rules, and they can be used effectively to add absent pathway information to many proteins in UniProtKB/TrEMBL database.

  1. Expression of variable viruses as herpes simplex glycoprotein D and varicella zoster gE glycoprotein using a novel plasmid based expression system in insect cell

    Directory of Open Access Journals (Sweden)

    A.M. Al-Sulaiman

    2017-11-01

    Full Text Available Several prokaryotic and eukaryotic expression systems have been used for in vitro production of viruses’ proteins. However eukaryotic expression system was always the first choice for production of proteins that undergo post-translational modification such as glycosylation. Recombinant baculoviruses have been widely used as safe vectors to express heterologous genes in the culture of insect cells, but the manipulation involved in creating, titrating, and amplifying viral stocks make it time consuming and laborious. Therefore, to facilitate rapid expression in insect cell, a plasmid based expression system was used to express herpes simplex type 1 glycoprotein D (HSV-1 gD and varicella zoster glycoprotein E (VZV gE. Recombinant plasmids were generated, transfected into insect cells (SF9, and both glycoproteins were expressed 48 h post-infection. A protein with approximately molecular weight of 64-kDa and 98-kDa for HSV-1 gD and VZV gE respectively was expressed and confirmed by SDS. Proteins were detected in insect cells cytoplasm and outer membrane by immunofluorescence. The antigenicity and immunoreactivity of each protein were confirmed by immunoblot and ELISA. Results suggest that this system can be an alternative to the traditional baculovirus expression for small scale expression system in insect cells.

  2. Surveying the expanding prokaryotic Rubisco multiverse.

    Science.gov (United States)

    Liu, Di; Ramya, Ramaswamy Chettiyan Seetharaman; Mueller-Cajar, Oliver

    2017-09-01

    The universal, but catalytically modest, CO2-fixing enzyme Rubisco is currently experiencing intense interest by researchers aiming to enhance crop photosynthesis. These efforts are mostly focused on the highly conserved hexadecameric enzyme found in land plants. In comparison, prokaryotic organisms harbor a far greater diversity in Rubisco forms. Recent work towards improving our appreciation of microbial Rubisco properties and harnessing their potential is surveyed. New structural models are providing informative glimpses into catalytic subtleties and diverse oligomeric states. Ongoing characterization is informing us about the conservation of constraints, such as sugar phosphate inhibition and the associated dependence on Rubisco activase helper proteins. Prokaryotic Rubiscos operate under a far wider range of metabolic contexts than the photosynthetic function of higher plant enzymes. Relaxed selection pressures may have resulted in the exploration of a larger volume of sequence space than permitted in organisms performing oxygenic photosynthesis. To tap into the potential of microbial Rubiscos, in vivo selection systems are being used to discover functional metagenomic Rubiscos. Various directed evolution systems to optimize their function have been developed. It is anticipated that this approach will provide access to biotechnologically valuable enzymes that cannot be encountered in the higher plant Rubisco space. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Prokaryotic Expression of Rice Ospgip1 Gene and Bioinformatic Analysis of Encoded Product

    Directory of Open Access Journals (Sweden)

    Xi-jun CHEN

    2011-12-01

    Full Text Available Using the reference sequences of pgip genes in GenBank, a fragment of 930 bp covering the open reading frame (ORF of rice Ospgip1 (Oryza sativa polygalacturonase-inhibiting protein 1 was amplified. The prokaryotic expression product of the gene inhibited the growth of Rhizoctonia solani, the causal agent of rice sheath blight, and reduced its polygalacturonase activity. Bioinformatic analysis showed that OsPGIP1 is a hydrophobic protein with a molecular weight of 32.8 kDa and an isoelectric point (pI of 7.26. The protein is mainly located in the cell wall of rice, and its signal peptide cleavage site is located between the 17th and 18th amino acids. There are four cysteines in both the N- and C-termini of the deduced protein, which can form three disulfide bonds (between the 56th and 63rd, the 278th and 298th, and the 300th and 308th amino acids. The protein has a typical leucine-rich repeat (LRR domain, and its secondary structure comprises α-helices, β-sheets and irregular coils. Compared with polygalacturonase-inhibiting proteins (PGIPs from other plants, the 7th LRR is absent in OsPGIP1. The nine LRRs could form a cleft that might associate with proteins from pathogenic fungi, such as polygalacturonase.

  4. Capturing prokaryotic dark matter genomes.

    Science.gov (United States)

    Gasc, Cyrielle; Ribière, Céline; Parisot, Nicolas; Beugnot, Réjane; Defois, Clémence; Petit-Biderre, Corinne; Boucher, Delphine; Peyretaillade, Eric; Peyret, Pierre

    2015-12-01

    Prokaryotes are the most diverse and abundant cellular life forms on Earth. Most of them, identified by indirect molecular approaches, belong to microbial dark matter. The advent of metagenomic and single-cell genomic approaches has highlighted the metabolic capabilities of numerous members of this dark matter through genome reconstruction. Thus, linking functions back to the species has revolutionized our understanding of how ecosystem function is sustained by the microbial world. This review will present discoveries acquired through the illumination of prokaryotic dark matter genomes by these innovative approaches. Copyright © 2015 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  5. Potential of nitrate addition to control the activity of sulfate-reducing prokaryotes in high-temperature oil production systems - a comparative study on a nitrate-treated and an untreated system

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. Adding nitrate to the injection water is applied to control SRP activity by favoring the growth of heterotrophic, nitrate-reducing bacteria (h......NRB) and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). Microbial diversity, abundance of Bacteria, Archaea and sulfate-reducing prokaryotes (SRP) and the potential activity of SRP were studied in production water samples from a nitrate-treated and an untreated system. The reservoirs and the produced water......) and Desulfotomaculum (system with nitrate). In samples from the untreated site, the presence of active SRP was supported by demonstrating their activity (incubations with 35S-sulfate) and growth in batch cultures at pipeline temperature. No SRP activity was detected at reservoir temperature and in samples from...

  6. Microscopic Identification of Prokaryotes in Modern and Ancient Halite, Saline Valley and Death Valley, California

    Science.gov (United States)

    Schubert, Brian A.; Lowenstein, Tim K.; Timofeeff, Michael N.

    2009-06-01

    Primary fluid inclusions in halite crystallized in Saline Valley, California, in 1980, 2004-2005, and 2007, contain rod- and coccoid-shaped microparticles the same size and morphology as archaea and bacteria living in modern brines. Primary fluid inclusions from a well-dated (0-100,000 years), 90 m long salt core from Badwater Basin, Death Valley, California, also contain microparticles, here interpreted as halophilic and halotolerant prokaryotes. Prokaryotes are distinguished from crystals on the basis of morphology, optical properties (birefringence), and uniformity of size. Electron micrographs of microparticles from filtered modern brine (Saline Valley), dissolved modern halite crystals (Saline Valley), and dissolved ancient halite crystals (Death Valley) support in situ microscopic observations that prokaryotes are present in fluid inclusions in ancient halite. In the Death Valley salt core, prokaryotes in fluid inclusions occur almost exclusively in halite precipitated in perennial saline lakes 10,000 to 35,000 years ago. This suggests that trapping and preservation of prokaryotes in fluid inclusions is influenced by the surface environment in which the halite originally precipitated. In all cases, prokaryotes in fluid inclusions in halite from the Death Valley salt core are miniaturized (<1 μm diameter cocci, <2.5 μm long, very rare rod shapes), which supports interpretations that the prokaryotes are indigenous to the halite and starvation survival may be the normal response of some prokaryotes to entrapment in fluid inclusions for millennia. These results reinforce the view that fluid inclusions in halite and possibly other evaporites are important repositories of microbial life and should be carefully examined in the search for ancient microorganisms on Earth, Mars, and elsewhere in the Solar System.

  7. Modeling the winter-to-summer transition of prokaryotic and viral abundance in the Arctic Ocean.

    Science.gov (United States)

    Winter, Christian; Payet, Jérôme P; Suttle, Curtis A

    2012-01-01

    One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations.

  8. Modeling the Winter–to–Summer Transition of Prokaryotic and Viral Abundance in the Arctic Ocean

    Science.gov (United States)

    Winter, Christian; Payet, Jérôme P.; Suttle, Curtis A.

    2012-01-01

    One of the challenges in oceanography is to understand the influence of environmental factors on the abundances of prokaryotes and viruses. Generally, conventional statistical methods resolve trends well, but more complex relationships are difficult to explore. In such cases, Artificial Neural Networks (ANNs) offer an alternative way for data analysis. Here, we developed ANN-based models of prokaryotic and viral abundances in the Arctic Ocean. The models were used to identify the best predictors for prokaryotic and viral abundances including cytometrically-distinguishable populations of prokaryotes (high and low nucleic acid cells) and viruses (high- and low-fluorescent viruses) among salinity, temperature, depth, day length, and the concentration of Chlorophyll-a. The best performing ANNs to model the abundances of high and low nucleic acid cells used temperature and Chl-a as input parameters, while the abundances of high- and low-fluorescent viruses used depth, Chl-a, and day length as input parameters. Decreasing viral abundance with increasing depth and decreasing system productivity was captured well by the ANNs. Despite identifying the same predictors for the two populations of prokaryotes and viruses, respectively, the structure of the best performing ANNs differed between high and low nucleic acid cells and between high- and low-fluorescent viruses. Also, the two prokaryotic and viral groups responded differently to changes in the predictor parameters; hence, the cytometric distinction between these populations is ecologically relevant. The models imply that temperature is the main factor explaining most of the variation in the abundances of high nucleic acid cells and total prokaryotes and that the mechanisms governing the reaction to changes in the environment are distinctly different among the prokaryotic and viral populations. PMID:23285186

  9. Proteolytic enzymes in seawater: contribution of prokaryotes and protists

    Science.gov (United States)

    Obayashi, Y.; Suzuki, S.

    2016-02-01

    Proteolytic enzyme is one of the major catalysts of microbial processing of organic matter in biogeochemical cycle. Here we summarize some of our studies about proteases in seawater, including 1) distribution of protease activities in coastal and oceanic seawater, 2) responses of microbial community and protease activities in seawater to organic matter amending, and 3) possible contribution of heterotrophic protists besides prokaryotes to proteases in seawater, to clarify cleared facts and remaining questions. Activities of aminopeptidases, trypsin-type and chymotrypsin-type proteases were detected from both coastal and oceanic seawater by using MCA-substrate assay. Significant activities were detected from not only particulate (cell-associated) fraction but also dissolved fraction of seawater, especially for trypsin-type and chymotrypsin-type proteases. Hydrolytic enzymes in seawater have been commonly thought to be mainly derived from heterotrophic prokaryotes; however, it was difficult to determine actual source organisms of dissolved enzymes in natural seawater. Our experiment with addition of dissolved protein to subtropical oligotrophic Pacific water showed drastically enhancement of the protease activities especially aminopeptidases in seawater, and the prokaryotic community structure simultaneously changed to be dominant of Bacteroidetes, indicating that heterotrophic bacteria were actually one of the sources of proteases in seawater. Another microcosm experiment with free-living marine heterotrophic ciliate Paranophrys marina together with an associated bacterium showed that extracellular trypsin-type activity was mainly attributed to the ciliate. The protist seemed to work in organic matter digestion in addition to be a grazer. From the results, we propose a system of organic matter digestion by prokaryotes and protists in aquatic environments, although their actual contribution in natural environments should be estimated in future studies.

  10. RNA in defense: CRISPRs protect prokaryotes against mobile genetic elements

    NARCIS (Netherlands)

    Jore, M.M.; Brouns, S.J.J.; Oost, van der J.

    2012-01-01

    The CRISPR/Cas system in prokaryotes provides resistance against invading viruses and plasmids. Three distinct stages in the mechanism can be recognized. Initially, fragments of invader DNA are integrated as new spacers into the repetitive CRISPR locus. Subsequently, the CRISPR is transcribed and

  11. Prokaryotic DNA segregation by an actin-like filament

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Löwe, Jan

    2002-01-01

    The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments with prop...... point for ParM polymerization. Hence, we provide evidence for a simple prokaryotic analogue of the eukaryotic mitotic spindle apparatus.......The mechanisms responsible for prokaryotic DNA segregation are largely unknown. The partitioning locus (par) encoded by the Escherichia coli plasmid R1 actively segregates its replicon to daughter cells. We show here that the ParM ATPase encoded by par forms dynamic actin-like filaments...

  12. Rumen prokaryotic communities of ruminants under different feeding paradigms on the Qinghai-Tibetan Plateau.

    Science.gov (United States)

    Xue, Dan; Chen, Huai; Zhao, Xinquan; Xu, Shixiao; Hu, Linyong; Xu, Tianwei; Jiang, Lin; Zhan, Wei

    2017-06-01

    Yak and Tibetan sheep are the major indigenous ruminants on the Qinghai-Tibetan Plateau in China. The aim of this work was to study the differences in ruminal fermentation parameters and rumen prokaryotic community composition between hosts and feeding paradigms. The 16S rRNA genes targeting bacteria and archaea were sequenced using the MiSeq platform. The results showed that the prokaryotic community structure between yak and Tibetan sheep was significantly different (PTibetan sheep of the two groups (P=0.026). The core prokaryotic populations that existed in the rumen mostly dominated the structure. There was an obvious correlation of the prokaryotic community composition at the phylum and genus levels with the host or the feeding pattern. In addition, Tibetan sheep showed significantly higher yields of volatile fatty acids (VFAs) than yak, as did the NG group compared with the TMR group. In conclusion, both the host and feeding pattern may influence rumen microbial ecology system, with host effects being more important than those of the feeding pattern. Copyright © 2017 Elsevier GmbH. All rights reserved.

  13. A computational genomics pipeline for prokaryotic sequencing projects.

    Science.gov (United States)

    Kislyuk, Andrey O; Katz, Lee S; Agrawal, Sonia; Hagen, Matthew S; Conley, Andrew B; Jayaraman, Pushkala; Nelakuditi, Viswateja; Humphrey, Jay C; Sammons, Scott A; Govil, Dhwani; Mair, Raydel D; Tatti, Kathleen M; Tondella, Maria L; Harcourt, Brian H; Mayer, Leonard W; Jordan, I King

    2010-08-01

    New sequencing technologies have accelerated research on prokaryotic genomes and have made genome sequencing operations outside major genome sequencing centers routine. However, no off-the-shelf solution exists for the combined assembly, gene prediction, genome annotation and data presentation necessary to interpret sequencing data. The resulting requirement to invest significant resources into custom informatics support for genome sequencing projects remains a major impediment to the accessibility of high-throughput sequence data. We present a self-contained, automated high-throughput open source genome sequencing and computational genomics pipeline suitable for prokaryotic sequencing projects. The pipeline has been used at the Georgia Institute of Technology and the Centers for Disease Control and Prevention for the analysis of Neisseria meningitidis and Bordetella bronchiseptica genomes. The pipeline is capable of enhanced or manually assisted reference-based assembly using multiple assemblers and modes; gene predictor combining; and functional annotation of genes and gene products. Because every component of the pipeline is executed on a local machine with no need to access resources over the Internet, the pipeline is suitable for projects of a sensitive nature. Annotation of virulence-related features makes the pipeline particularly useful for projects working with pathogenic prokaryotes. The pipeline is licensed under the open-source GNU General Public License and available at the Georgia Tech Neisseria Base (http://nbase.biology.gatech.edu/). The pipeline is implemented with a combination of Perl, Bourne Shell and MySQL and is compatible with Linux and other Unix systems.

  14. Molecular cloning and expression analysis of a zeta-class ...

    African Journals Online (AJOL)

    Jane

    2011-07-27

    Jul 27, 2011 ... sugar-signalling pathway (Chi et al., 2010). All the earlier mentioned ... real-time qPCR analysis was the ABI PRISM7500 real-time PCR system. ... Construction of prokaryotic expression vector of Sc-GST gene. pET29a (+) ...

  15. Prokaryotic Expression and Serodiagnostic Potential of Glyceraldehyde-3-Phosphate Dehydrogenase and Thioredoxin Peroxidase from Baylisascaris schroederi

    Directory of Open Access Journals (Sweden)

    Yu Li

    2017-10-01

    Full Text Available Baylisascaris schroederi, a roundworm parasite of giant pandas, badly affects the health of its hosts. Diagnosis of this disease currently depends mainly on sedimentation floatation and Polymerase Chain Reaction (PCR methods to detect the eggs. However, neither of these methods is suitable for diagnosis of early-stage panda baylisascariasis and no information on early diagnosis of this disease is available so far. Therefore, to develop an effective serologic diagnostic method, this study produced recombinant glyceraldehyde-3-phosphate dehydrogenase (GAPDH and thioredoxin peroxidase (Tpx proteins from B. schroederi using a prokaryotic expression system. We determined the immunological characteristics of these proteins and their location in the parasite. Indirect enzyme-linked immunosorbent assays (ELISAs were established to detect B. schroederi infection in giant pandas based on GAPDH and Tpx respectively. The open reading frame of the GAPDH gene (1083 bp encoded a 39 kDa protein, while the predicted molecular weight of Tpx (588 bp was 21.6 kDa. Western-blotting analysis revealed that both recombinant proteins could be recognized with positive serum of pandas infected with B. schroederi. Immunohistochemical staining showed that the endogenous GAPDH of B. schroederi was widely distributed in the worm while Tpx was mainly localized in the muscle, eggs, gut wall, uterus wall and hypodermis. Serological tests showed that the GAPDH-based indirect ELISA had a sensitivity of 95.83% and specificity of 100%, while the test using Tpx as the antigen had sensitivity of 75% and specificity of 91.7%. Thus, B. schroederi Tpx is unsuitable as a diagnostic antigen for baylisascariasis, but B. schroederi GAPDH is a good candidate diagnostic antigen for B. schroederi in pandas.

  16. Genome-based analysis of heme biosynthesis and uptake in prokaryotic systems.

    Science.gov (United States)

    Cavallaro, Gabriele; Decaria, Leonardo; Rosato, Antonio

    2008-11-01

    Heme is the prosthetic group of many proteins that carry out a variety of key biological functions. In addition, for many pathogenic organisms, heme (acquired from the host) may constitute a very important source of iron. Organisms can meet their heme demands by taking it up from external sources, by producing the cofactor through a dedicated biosynthetic pathway, or both. Here we analyzed the distribution of proteins specifically involved in the processes of heme biosynthesis and heme uptake in 474 prokaryotic organisms. These data allowed us to identify which organisms are capable of performing none, one, or both processes, based on the similarity to known systems. Some specific instances where one or more proteins along the pathways had unusual modifications were singled out. For two key protein domains involved in heme uptake, we could build a series of structural models, which suggested possible alternative modes of heme binding. Future directions for experimental work are given.

  17. Insights into structural variations and genome rearrangements in prokaryotic genomes.

    Science.gov (United States)

    Periwal, Vinita; Scaria, Vinod

    2015-01-01

    Structural variations (SVs) are genomic rearrangements that affect fairly large fragments of DNA. Most of the SVs such as inversions, deletions and translocations have been largely studied in context of genetic diseases in eukaryotes. However, recent studies demonstrate that genome rearrangements can also have profound impact on prokaryotic genomes, leading to altered cell phenotype. In contrast to single-nucleotide variations, SVs provide a much deeper insight into organization of bacterial genomes at a much better resolution. SVs can confer change in gene copy number, creation of new genes, altered gene expression and many other functional consequences. High-throughput technologies have now made it possible to explore SVs at a much refined resolution in bacterial genomes. Through this review, we aim to highlight the importance of the less explored field of SVs in prokaryotic genomes and their impact. We also discuss its potential applicability in the emerging fields of synthetic biology and genome engineering where targeted SVs could serve to create sophisticated and accurate genome editing. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  18. Primer design for a prokaryotic differential display RT-PCR.

    Science.gov (United States)

    Fislage, R; Berceanu, M; Humboldt, Y; Wendt, M; Oberender, H

    1997-05-01

    We have developed a primer set for a prokaryotic differential display of mRNA in the Enterobacteriaceae group. Each combination of ten 10mer and ten 11mer primers generates up to 85 bands from total Escherichia coli RNA, thus covering expressed sequences of a complete bacterial genome. Due to the lack of polyadenylation in prokaryotic RNA the type T11VN anchored oligonucleotides for the reverse transcriptase reaction had to be replaced with respect to the original method described by Liang and Pardee [ Science , 257, 967-971 (1992)]. Therefore, the sequences of both the 10mer and the new 11mer oligonucleotides were determined by a statistical evaluation of species-specific coding regions extracted from the EMBL database. The 11mer primers used for reverse transcription were selected for localization in the 3'-region of the bacterial RNA. The 10mer primers preferentially bind to the 5'-end of the RNA. None of the primers show homology to rRNA or other abundant small RNA species. Randomly sampled cDNA bands were checked for their bacterial origin either by re-amplification, cloning and sequencing or by re-amplification and direct sequencing with 10mer and 11mer primers after asymmetric PCR.

  19. [Prokaryotic expression and immunogenicity analysis of the chimeric HBcAg containing APP beta cleavage site peptide and Aβ(1-15);].

    Science.gov (United States)

    Feng, Gai-feng; Wang, Jun-yang; Jin, Hui; Wang, Wei-xi; Qian, Yi-hua; Yang, Wei-na; Wang, Quan-ying; Yang, Guang-xiao

    2011-11-01

    To construct the recombinant prokaryotic expression plasmid pET/c-ABCSP-Aβ(15-c);, and evaluate the immunogenicity of the fusion protein expressed in E.coli. The gene fragment HBc88-144 was amplified by PCR and subcloned to pUC19. The APP beta cleavage site peptide(ABCSP) and Aβ(1-15); gene(ABCSP-Aβ(15);) was amplified by PCR and inserted downstream of HBc1-71 in pGEMEX/c1-71. After restriction enzyme digestion, c1-17-ABCSP-Aβ(15); were connected with HBc88-144, yielding the recombinant gene c-ABCSP-Aβ(15-c);. c-ABCSP-Aβ(15-c); gene was subcloned into pET-28a(+).The fusion protein expressed in transformed E.coli BL21 was induced with IPTG and analyzed by SDS-PAGE. The virus-like particles (VLP) formed by fusion protein was observed with Transmission Electron Microscope (TEM). 4 Kunming (KM) mice received intraperitoneal injection (i.p) of fusion protein VLP. The antibody was detected by indirect ELISA. The recombinant gene was confirmed by restriction enzyme digestion and DNA sequencing. After IPTG induction, fusion protein was expressed and mainly existed in the sediment of the bacterial lysate. The expression level was 40% of all the proteins in the sediment. The fusion protein could form VLP. After 5 times of immunization, the titer of anti-ABCSP and anti-Aβantibody in sera of KM mice reached up to 1:5 000 and 1:10 000 respectively, while the anti-HBc antibody was undetectable. Recombinant c-ABCSP-Aβ(15-c); gene can be expressed in E.coli. The expressed protein could form VLP and has a strong immunogenicity. This study lays the foundation for the study of AD genetic engineering vaccine.

  20. Impact of Lowland Rainforest Transformation on Diversity and Composition of Soil Prokaryotic Communities in Sumatra (Indonesia)

    Science.gov (United States)

    Schneider, Dominik; Engelhaupt, Martin; Allen, Kara; Kurniawan, Syahrul; Krashevska, Valentyna; Heinemann, Melanie; Nacke, Heiko; Wijayanti, Marini; Meryandini, Anja; Corre, Marife D.; Scheu, Stefan; Daniel, Rolf

    2015-01-01

    Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use systems comprised rubber agroforests (jungle rubber), rubber plantations and oil palm plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 16,413 bacterial and 1679 archaeal operational taxonomic units at species level (97% genetic identity). Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota) dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to N ratio

  1. Impact of lowland rainforest transformation on diversity and composition of soil prokaryotic communities in Sumatra (Indonesia

    Directory of Open Access Journals (Sweden)

    Dominik eSchneider

    2015-12-01

    Full Text Available Prokaryotes are the most abundant and diverse group of microorganisms in soil and mediate virtually all biogeochemical cycles in terrestrial ecosystems. Thereby, they influence aboveground plant productivity and diversity. In this study, the impact of rainforest transformation to intensively managed cash crop systems on soil prokaryotic communities was investigated. The studied managed land use system comprised rubber agroforests (jungle rubber, rubber plantation and oil plantations within two Indonesian landscapes Bukit Duabelas and Harapan. Soil prokaryotic community composition and diversity were assessed by pyrotag sequencing of bacterial and archaeal 16S rRNA genes. The curated dataset contained 20,494 bacterial and 1,762 archaeal Operational Taxonomic Units at species level (97% genetic identity. Analysis revealed changes in indigenous taxon-specific patterns of soil prokaryotic communities accompanying lowland rainforest transformation to jungle rubber, and intensively managed rubber and oil palm plantations. Distinct clustering of the rainforest soil communities indicated that these are different from the communities in the studied managed land use systems. The predominant bacterial taxa in all investigated soils were Acidobacteria, Actinobacteria, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria. Overall, the bacterial community shifted from proteobacterial groups in rainforest soils to Acidobacteria in managed soils. The archaeal soil communities were mainly represented by Thaumarchaeota and Euryarchaeota. Members of the Terrestrial Group and South African Gold Mine Group 1 (Thaumarchaeota dominated in the rainforest and members of Thermoplasmata in the managed land use systems. The alpha and beta diversity of the soil prokaryotic communities was higher in managed land use systems than in rainforest. In the case of bacteria, this was related to soil characteristics such as pH value, exchangeable Ca and Fe content, C to

  2. The Role of Prokaryotes in Sediment Carbon Cycling

    DEFF Research Database (Denmark)

    Piil, Kristoffer

    in the sediment. In particular, the work has focused on estimating how rapidly amino acids derived from plankton are degraded and replaced by amino acids from prokaryotes and how extensive this reworking of amino acids is in surface sediments. Another part of my work has focused on establishing reliable estimates...... of cell specific amino acid and muramic acid concentrations in sediment bacteria. Such estimates are important tools when studying the reworking of amino acids by bacteria and the preservation of bacterial cell walls. In addition, it has been an aim of the work to investigate how abundant endospores...... are in marine sediment and how dynamic the endospore population is, as very little is known about this compartment of the prokaryotic community. Prokaryotic reworking of amino acids was investigated by two independent methods. The first approach involved estimating the amount of amino acids produced...

  3. Once in a lifetime: strategies for preventing re-replication in prokaryotic and eukaryotic cells

    DEFF Research Database (Denmark)

    Nielsen, Olaf; Løbner-Olesen, Anders

    2008-01-01

    DNA replication is an extremely accurate process and cells have evolved intricate control mechanisms to ensure that each region of their genome is replicated only once during S phase. Here, we compare what is known about the processes that prevent re-replication in prokaryotic and eukaryotic cells...... prokaryotes and eukaryotes are inactivated until the next cell cycle. Furthermore, in both systems the beta-clamp of the replicative polymerase associates with enzymatic activities that contribute to the inactivation of the helicase loaders. Finally, recent studies suggest that the control mechanism...

  4. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge.

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-09-29

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates-ciliates frequently found in anoxic ecosystems-on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885-3,190 and 2,387-2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function.

  5. Differential response of marine flagellate communities to prokaryotic food quality

    Science.gov (United States)

    De Corte, D.; Paredes, G.; Sintes, E.; Herndl, G. J.

    2016-02-01

    Marine prokaryotes play a major role in the biogeochemical cycles. The main predators of prokaryotes are heterotrophic nanoflagellates (HNF). HNF are thus a major link connecting dissolved organic material through prokaryotic grazing to the higher trophic levels. However, little is known about the grazing specificity of HNF on specific prokaryotic taxa. Bacterial and archaeal microbes may have different nutritive values for the HNF communities, thus affecting growth rates and community composition of HNFs. In this study we investigated the influence of prey food quality on Cafeteria roenbergensis and on a natural HNF community isolated in the northern Adriatic Sea. Two Nitrosopumilus maritimus-related strains isolated from the northern Adriatic Sea (Nitrosopumilus adriaticus, Nitrosopumilus piranensis), two Nitrosococcus strains and two fast growing marine Bacteria (Pseudomonas marina and Marinobacter algicola) were fed to the HNFs. The two fast growing bacterial strains resulted in high growth rates of Cafeteria roenbergensis and the mixed HNF community, while the two Nitrosococcus strains did not. Cafeteria roenbergensis fed on N. adriaticus but it did not graze N. piranensis, suggesting that the subtle metabolic and physiological differences between these two closely related thaumarchaeal strains affect the grazing pressure to which they are exposed. Our study also indicates that prokaryotic community composition influences the composition of the HNF community.

  6. [Sequences and expression pattern of mce gene in Leptospira interrogans of different serogroups].

    Science.gov (United States)

    Zhang, Lei; Xue, Feng; Yan, Jie; Mao, Ya-fei; Li, Li-wei

    2008-11-01

    To determine the frequency of mce gene in Leptospira interrogans, and to investigate the gene transcription levels of L. interrogans before and after infecting cells. The segments of entire mce genes from 13 L.interrogans strains and 1 L.biflexa strain were amplified by PCR and then sequenced after T-A cloning. A prokaryotic expression system of mce gene was constructed; the expression and output of the target recombinant protein rMce were examined by SDS-PAGE and Western Blot assay. Rabbits were intradermally immunized with rMce to prepare the antiserum, the titer of antiserum was measured by immunodiffusion test. The transcription levels of mce gene in L.interrogans serogroup Icterohaemorrhagiae serovar lai strain 56601 before and after infecting J774A.1 cells were monitored by real-time fluorescence quantitative RT-PCR. mce gene was carried in all tested L.interrogans strains, but not in L.biflexa serogroup Semaranga serovar patoc strain Patoc I. The similarities of nucleotide and putative amino acid sequences of the cloned mce genes to the reported sequences (GenBank accession No: NP712236) were 99.02%-100% and 97.91%-100%, respectively. The constructed prokaryotic expression system of mce gene expressed rMce and the output of rMce was about 5% of the total bacterial proteins. The antiserum against whole cell of L.interrogans strain 56601 efficiently recognized rMce. After infecting J774A.1 cells, transcription levels of the mce gene in L.interrogans strain 56601 were remarkably up-regulated. The constructed prokaryotic expression system of mce gene and the prepared antiserum against rMce provide useful tools for further study of the gene function.

  7. Optimized expression and purification of NavAb provide the structural insight into the voltage dependence.

    Science.gov (United States)

    Irie, Katsumasa; Haga, Yukari; Shimomura, Takushi; Fujiyoshi, Yoshinori

    2018-01-01

    Voltage-gated sodium channels are crucial for electro-signalling in living systems. Analysis of the molecular mechanism requires both fine electrophysiological evaluation and high-resolution channel structures. Here, we optimized a dual expression system of NavAb, which is a well-established standard of prokaryotic voltage-gated sodium channels, for E. coli and insect cells using a single plasmid vector to analyse high-resolution protein structures and measure large ionic currents. Using this expression system, we evaluated the voltage dependence and determined the crystal structures of NavAb wild-type and two mutants, E32Q and N49K, whose voltage dependence were positively shifted and essential interactions were lost in voltage sensor domain. The structural and functional comparison elucidated the molecular mechanisms of the voltage dependence of prokaryotic voltage-gated sodium channels. © 2017 Federation of European Biochemical Societies.

  8. Global diversity and biogeography of deep-sea pelagic prokaryotes

    KAUST Repository

    Salazar, Guillem

    2015-08-07

    The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean\\'s microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (∼3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.

  9. Global diversity and biogeography of deep-sea pelagic prokaryotes

    KAUST Repository

    Salazar, Guillem; Cornejo-Castillo, Francisco M.; Bení tez-Barrios, Veró nica; Fraile-Nuez, Eugenio; Á lvarez-Salgado, X. Antó n; Duarte, Carlos M.; Gasol, Josep M.; Acinas, Silvia G.

    2015-01-01

    The deep-sea is the largest biome of the biosphere, and contains more than half of the whole ocean's microbes. Uncovering their general patterns of diversity and community structure at a global scale remains a great challenge, as only fragmentary information of deep-sea microbial diversity exists based on regional-scale studies. Here we report the first globally comprehensive survey of the prokaryotic communities inhabiting the bathypelagic ocean using high-throughput sequencing of the 16S rRNA gene. This work identifies the dominant prokaryotes in the pelagic deep ocean and reveals that 50% of the operational taxonomic units (OTUs) belong to previously unknown prokaryotic taxa, most of which are rare and appear in just a few samples. We show that whereas the local richness of communities is comparable to that observed in previous regional studies, the global pool of prokaryotic taxa detected is modest (∼3600 OTUs), as a high proportion of OTUs are shared among samples. The water masses appear to act as clear drivers of the geographical distribution of both particle-attached and free-living prokaryotes. In addition, we show that the deep-oceanic basins in which the bathypelagic realm is divided contain different particle-attached (but not free-living) microbial communities. The combination of the aging of the water masses and a lack of complete dispersal are identified as the main drivers for this biogeographical pattern. All together, we identify the potential of the deep ocean as a reservoir of still unknown biological diversity with a higher degree of spatial complexity than hitherto considered.

  10. Effects of Predation by Protists on Prokaryotic Community Function, Structure, and Diversity in Anaerobic Granular Sludge

    Science.gov (United States)

    Hirakata, Yuga; Oshiki, Mamoru; Kuroda, Kyohei; Hatamoto, Masashi; Kubota, Kengo; Yamaguchi, Takashi; Harada, Hideki; Araki, Nobuo

    2016-01-01

    Predation by protists is top-down pressure that regulates prokaryotic abundance, community function, structure, and diversity in natural and artificial ecosystems. Although the effects of predation by protists have been studied in aerobic ecosystems, they are poorly understood in anoxic environments. We herein studied the influence of predation by Metopus and Caenomorpha ciliates—ciliates frequently found in anoxic ecosystems—on prokaryotic community function, structure, and diversity. Metopus and Caenomorpha ciliates were cocultivated with prokaryotic assemblages (i.e., anaerobic granular sludge) in an up-flow anaerobic sludge blanket (UASB) reactor for 171 d. Predation by these ciliates increased the methanogenic activities of granular sludge, which constituted 155% of those found in a UASB reactor without the ciliates (i.e., control reactor). Sequencing of 16S rRNA gene amplicons using Illumina MiSeq revealed that the prokaryotic community in the UASB reactor with the ciliates was more diverse than that in the control reactor; 2,885–3,190 and 2,387–2,426 operational taxonomic units (>97% sequence similarities), respectively. The effects of predation by protists in anaerobic engineered systems have mostly been overlooked, and our results show that the influence of predation by protists needs to be examined and considered in the future for a better understanding of prokaryotic community structure and function. PMID:27431197

  11. The prokaryote-eukaryote dichotomy: meanings and mythology.

    Science.gov (United States)

    Sapp, Jan

    2005-06-01

    Drawing on documents both published and archival, this paper explains how the prokaryote-eukaryote dichotomy of the 1960s was constructed, the purposes it served, and what it implied in terms of classification and phylogeny. In doing so, I first show how the concept was attributed to Edouard Chatton and the context in which he introduced the terms. Following, I examine the context in which the terms were reintroduced into biology in 1962 by Roger Stanier and C. B. van Niel. I study the discourse over the subsequent decade to understand how the organizational dichotomy took on the form of a natural classification as the kingdom Monera or superkingdom Procaryotae. Stanier and van Niel admitted that, in regard to constructing a natural classification of bacteria, structural characteristics were no more useful than physiological properties. They repeatedly denied that bacterial phylogenetics was possible. I thus examine the great historical irony that the "prokaryote," in both its organizational and phylogenetic senses, was defined (negatively) on the basis of structure. Finally, we see how phylogenetic research based on 16S rRNA led by Carl Woese and his collaborators confronted the prokaryote concept while moving microbiology to the center of evolutionary biology.

  12. Chloroplast two-component systems: evolution of the link between photosynthesis and gene expression.

    Science.gov (United States)

    Puthiyaveetil, Sujith; Allen, John F

    2009-06-22

    Two-component signal transduction, consisting of sensor kinases and response regulators, is the predominant signalling mechanism in bacteria. This signalling system originated in prokaryotes and has spread throughout the eukaryotic domain of life through endosymbiotic, lateral gene transfer from the bacterial ancestors and early evolutionary precursors of eukaryotic, cytoplasmic, bioenergetic organelles-chloroplasts and mitochondria. Until recently, it was thought that two-component systems inherited from an ancestral cyanobacterial symbiont are no longer present in chloroplasts. Recent research now shows that two-component systems have survived in chloroplasts as products of both chloroplast and nuclear genes. Comparative genomic analysis of photosynthetic eukaryotes shows a lineage-specific distribution of chloroplast two-component systems. The components and the systems they comprise have homologues in extant cyanobacterial lineages, indicating their ancient cyanobacterial origin. Sequence and functional characteristics of chloroplast two-component systems point to their fundamental role in linking photosynthesis with gene expression. We propose that two-component systems provide a coupling between photosynthesis and gene expression that serves to retain genes in chloroplasts, thus providing the basis of cytoplasmic, non-Mendelian inheritance of plastid-associated characters. We discuss the role of this coupling in the chronobiology of cells and in the dialogue between nuclear and cytoplasmic genetic systems.

  13. Effects of viruses and predators on prokaryotic community composition.

    Science.gov (United States)

    Jardillier, Ludwig; Bettarel, Yvan; Richardot, Mathilde; Bardot, Corinne; Amblard, Christian; Sime-Ngando, Télesphore; Debroas, Didier

    2005-11-01

    Dialysis bags were used to examine the impact of predation and viral lysis on prokaryotic community composition (PCC) over a 5-day experiment in the oligomesotrophic Lake Pavin (France). The impact of the different predator communities (protists and metazoans) of prokaryotes was estimated by water fractionation (protists, which also affected PCC, whereas viruses seemed to be essentially responsible for profound changes in PCC via direct and indirect actions.

  14. Mathematical simulation of influence of irradiated cell reparative system saturation on cell survival. Communication 1. Simulation of survival curves in prokaryotes

    International Nuclear Information System (INIS)

    Knyigavko, V.G.; Meshcheryakova, O.P.; Radzyishevs'ka, Je.B.

    2004-01-01

    Mathematical models of the processes of forming survival curves for prokaryotes which are based on the idea about the possibility of saturation of radiation lesion reparation systems of DNA of the irradiated cells at the dose increase were worked out. For the simplest of the discussed models the authors discuss the question about the methods of evaluation of the model parameters

  15. Prokaryote metabolism activity

    OpenAIRE

    Biederman, Lori

    2017-01-01

    I wrote this activity to emphasize that prokaryotic organisms can carry out 6 different types of metabolisms (as presented in Freeman’s Biological Science textbook) and this contrasts to eukaryotes, which can only use 2 metabolism pathways (photoautotroph and heterotroph).    For in class materials I remove the  red box (upper right corner) and print slides 3-10, place them back-to-back and laminate them.  The students get a key (slide 2) and a two-sided organism sheet...

  16. Prokaryotic caspase homologs: phylogenetic patterns and functional characteristics reveal considerable diversity.

    Directory of Open Access Journals (Sweden)

    Johannes Asplund-Samuelsson

    Full Text Available Caspases accomplish initiation and execution of apoptosis, a programmed cell death process specific to metazoans. The existence of prokaryotic caspase homologs, termed metacaspases, has been known for slightly more than a decade. Despite their potential connection to the evolution of programmed cell death in eukaryotes, the phylogenetic distribution and functions of these prokaryotic metacaspase sequences are largely uncharted, while a few experiments imply involvement in programmed cell death. Aiming at providing a more detailed picture of prokaryotic caspase homologs, we applied a computational approach based on Hidden Markov Model search profiles to identify and functionally characterize putative metacaspases in bacterial and archaeal genomes. Out of the total of 1463 analyzed genomes, merely 267 (18% were identified to contain putative metacaspases, but their taxonomic distribution included most prokaryotic phyla and a few archaea (Euryarchaeota. Metacaspases were particularly abundant in Alphaproteobacteria, Deltaproteobacteria and Cyanobacteria, which harbor many morphologically and developmentally complex organisms, and a distinct correlation was found between abundance and phenotypic complexity in Cyanobacteria. Notably, Bacillus subtilis and Escherichia coli, known to undergo genetically regulated autolysis, lacked metacaspases. Pfam domain architecture analysis combined with operon identification revealed rich and varied configurations among the metacaspase sequences. These imply roles in programmed cell death, but also e.g. in signaling, various enzymatic activities and protein modification. Together our data show a wide and scattered distribution of caspase homologs in prokaryotes with structurally and functionally diverse sub-groups, and with a potentially intriguing evolutionary role. These features will help delineate future characterizations of death pathways in prokaryotes.

  17. Viral infections stimulate the metabolism and shape prokaryotic assemblages in submarine mud volcanoes.

    Science.gov (United States)

    Corinaldesi, Cinzia; Dell'Anno, Antonio; Danovaro, Roberto

    2012-06-01

    Mud volcanoes are geological structures in the oceans that have key roles in the functioning of the global ecosystem. Information on the dynamics of benthic viruses and their interactions with prokaryotes in mud volcano ecosystems is still completely lacking. We investigated the impact of viral infection on the mortality and assemblage structure of benthic prokaryotes of five mud volcanoes in the Mediterranean Sea. Mud volcano sediments promote high rates of viral production (1.65-7.89 × 10(9) viruses g(-1) d(-1)), viral-induced prokaryotic mortality (VIPM) (33% cells killed per day) and heterotrophic prokaryotic production (3.0-8.3 μgC g(-1) d(-1)) when compared with sediments outside the mud volcano area. The viral shunt (that is, the microbial biomass converted into dissolved organic matter as a result of viral infection, and thus diverted away from higher trophic levels) provides 49 mgC m(-2) d(-1), thus fuelling the metabolism of uninfected prokaryotes and contributing to the total C budget. Bacteria are the dominant components of prokaryotic assemblages in surface sediments of mud volcanoes, whereas archaea dominate the subsurface sediment layers. Multivariate multiple regression analyses show that prokaryotic assemblage composition is not only dependant on the geochemical features and processes of mud volcano ecosystems but also on synergistic interactions between bottom-up (that is, trophic resources) and top-down (that is, VIPM) controlling factors. Overall, these findings highlight the significant role of the viral shunt in sustaining the metabolism of prokaryotes and shaping their assemblage structure in mud volcano sediments, and they provide new clues for our understanding of the functioning of cold-seep ecosystems.

  18. Cloning, Expression and Purification of the Recombinant HIV-1 Tat-Nef Fusion Protein in Prokaryotic Expression System

    OpenAIRE

    Somayeh Kadkhodayan; Shiva Irani; Seyed Mehdi Sadat; Fatemeh Fotouhi; Azam Bolhassani

    2016-01-01

    Abstract Background: Nef is one of the HIV-1 critical proteins, because it is essential for viral replication and AIDS disease progression and induction of immune response against it can partially inhibit viral infection. Moreover, a domain of the HIV-1 Trans-Activator of Transcription (Tat, 48-60 aa) could act as a cell penetrating peptide (CPP). In current study, cloning and expression of Tat-Nef fusion protein was performed in E. coli for the first time. The protein expression was confi...

  19. Biodegradation of Emiliania huxleyi Aggregates by natural Prokaryotic Communities under Increasing Hydrostatic Pressure.

    Science.gov (United States)

    Riou, V.; Para, J.; Garel, M.; Guigue, C.; Al Ali, B.; Santinelli, C.; Lefèvre, D.; Gattuso, J. P.; Goutx, M.; Panagiotopoulos, C.; Beaufort, L.; Jacquet, S.; Le Moigne, F. A. C.; Tachikawa, K.; Tamburini, C.

    2016-02-01

    Fluxes of particulate organic carbon (POC) and minerals are positively correlated, suggesting that minerals could enhance the flux of POC into the deep ocean. The so called "ballast effect" posits that minerals could increase sinking particle densities and/or protect the organic matter from heterotrophic degradation. Laboratory controlled experiments on coccolithophorid aggregates under atmospheric pressure show that biogenic calcite both increases particle settling velocities and preserves the organic matter. However, such experiments have yet to include genuine prokaryote rates indicators as well as the effect of increasing pressure. Here, we used the PArticle Sinking Simulator (PASS) to investigate the effect of the increasing pressure on the degradation of Emiliania huxleyi (calcifiers) aggregates. Extra care was taken to obtain culture aggregates with low prokaryotic abundance prior to exposure to natural mesopelagic prokaryotic communities. Particulate organic and inorganic carbon and dissolved organic carbon concentrations were monitored along with the lipid and carbohydrate compositions, as well as prokaryotic community abundance and specific diversity. A control experiment, without natural prokaryotic community addition, indicates that the pressure increase did not have any effect on calcite dissolution observed after ten days. In contrast, the addition of natural prokaryotic community accelerates calcite dissolution under conditions of increasing pressure. Prokaryotic community development and the lipid fraction of E. huxleyi particulate organic carbon are enhanced under increasing pressure. These results suggest that hydrostatic pressure denatures the structural integrity of the carbonate skeleton that protects the cellular organic matter.

  20. Engineering prokaryotic transcriptional activators as metabolite biosensors in yeast

    DEFF Research Database (Denmark)

    Skjødt, Mette Louise; Snoek, Tim; Kildegaard, Kanchana Rueksomtawin

    2016-01-01

    ,cis-muconic acid at different levels, and found that reporter gene output correlated with production. The transplantation of prokaryotic transcriptional activators into the eukaryotic chassis illustrates the potential of a hitherto untapped biosensor resource useful for biotechnological applications....... real-time monitoring of production has attracted attention. Here we applied systematic engineering of multiple parameters to search for a general biosensor design in the budding yeast Saccharomyces cerevisiae based on small-molecule binding transcriptional activators from the prokaryote superfamily...

  1. BLAST Ring Image Generator (BRIG: simple prokaryote genome comparisons

    Directory of Open Access Journals (Sweden)

    Beatson Scott A

    2011-08-01

    automatically. Conclusions There is a clear need for a user-friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at http://sourceforge.net/projects/brig/.

  2. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons.

    Science.gov (United States)

    Alikhan, Nabil-Fareed; Petty, Nicola K; Ben Zakour, Nouri L; Beatson, Scott A

    2011-08-08

    -friendly program that can produce genome comparisons for a large number of prokaryote genomes with an emphasis on rapidly utilising unfinished or unassembled genome data. Here we present BRIG, a cross-platform application that enables the interactive generation of comparative genomic images via a simple graphical-user interface. BRIG is freely available for all operating systems at http://sourceforge.net/projects/brig/.

  3. PairWise Neighbours database: overlaps and spacers among prokaryote genomes

    Directory of Open Access Journals (Sweden)

    Garcia-Vallvé Santiago

    2009-06-01

    Full Text Available Abstract Background Although prokaryotes live in a variety of habitats and possess different metabolic and genomic complexity, they have several genomic architectural features in common. The overlapping genes are a common feature of the prokaryote genomes. The overlapping lengths tend to be short because as the overlaps become longer they have more risk of deleterious mutations. The spacers between genes tend to be short too because of the tendency to reduce the non coding DNA among prokaryotes. However they must be long enough to maintain essential regulatory signals such as the Shine-Dalgarno (SD sequence, which is responsible of an efficient translation. Description PairWise Neighbours is an interactive and intuitive database used for retrieving information about the spacers and overlapping genes among bacterial and archaeal genomes. It contains 1,956,294 gene pairs from 678 fully sequenced prokaryote genomes and is freely available at the URL http://genomes.urv.cat/pwneigh. This database provides information about the overlaps and their conservation across species. Furthermore, it allows the wide analysis of the intergenic regions providing useful information such as the location and strength of the SD sequence. Conclusion There are experiments and bioinformatic analysis that rely on correct annotations of the initiation site. Therefore, a database that studies the overlaps and spacers among prokaryotes appears to be desirable. PairWise Neighbours database permits the reliability analysis of the overlapping structures and the study of the SD presence and location among the adjacent genes, which may help to check the annotation of the initiation sites.

  4. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity.

    Science.gov (United States)

    Urbieta, María Sofía; Porati, Graciana Willis; Segretín, Ana Belén; González-Toril, Elena; Giaveno, María Alejandra; Donati, Edgardo Rubén

    2015-07-08

    The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  5. Constitutive type VI secretion system expression gives Vibrio cholerae intra- and interspecific competitive advantages.

    Directory of Open Access Journals (Sweden)

    Daniel Unterweger

    Full Text Available The type VI secretion system (T6SS mediates protein translocation across the cell membrane of Gram-negative bacteria, including Vibrio cholerae - the causative agent of cholera. All V. cholerae strains examined to date harbor gene clusters encoding a T6SS. Structural similarity and sequence homology between components of the T6SS and the T4 bacteriophage cell-puncturing device suggest that the T6SS functions as a contractile molecular syringe to inject effector molecules into prokaryotic and eukaryotic target cells. Regulation of the T6SS is critical. A subset of V. cholerae strains, including the clinical O37 serogroup strain V52, express T6SS constitutively. In contrast, pandemic strains impose tight control that can be genetically disrupted: mutations in the quorum sensing gene luxO and the newly described regulator gene tsrA lead to constitutive T6SS expression in the El Tor strain C6706. In this report, we examined environmental V. cholerae isolates from the Rio Grande with regard to T6SS regulation. Rough V. cholerae lacking O-antigen carried a nonsense mutation in the gene encoding the global T6SS regulator VasH and did not display virulent behavior towards Escherichia coli and other environmental bacteria. In contrast, smooth V. cholerae strains engaged constitutively in type VI-mediated secretion and displayed virulence towards prokaryotes (E. coli and other environmental bacteria and a eukaryote (the social amoeba Dictyostelium discoideum. Furthermore, smooth V. cholerae strains were able to outcompete each other in a T6SS-dependent manner. The work presented here suggests that constitutive T6SS expression provides V. cholerae with an advantage in intraspecific and interspecific competition.

  6. Plasmid and chromosome segregation in prokaryotes

    DEFF Research Database (Denmark)

    Møller-Jensen, Jakob; Bugge Jensen, Rasmus; Gerdes, Kenn

    2000-01-01

    Recent major advances in the understanding of prokaryotic DNA segregation have been achieved by using fluorescence microscopy to visualize the localization of cellular components. Plasmids and bacterial chromosomes are partitioned in a highly dynamic fashion, suggesting the presence of a mitotic...

  7. Emerging spatial patterns in Antarctic prokaryotes.

    Science.gov (United States)

    Chong, Chun-Wie; Pearce, David A; Convey, Peter

    2015-01-01

    Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote groups where appropriate

  8. Genome resource utilization during prokaryotic development

    Czech Academy of Sciences Publication Activity Database

    Vohradský, Jiří; Ramsden, J. J.

    2001-01-01

    Roč. 15, - (2001), s. 2054-2056 ISSN 0892-6638 R&D Projects: GA ČR GA204/00/1253 Institutional research plan: CEZ:AV0Z5020903 Keywords : prokaryotic development Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 8.817, year: 2001

  9. Geochemical Interactions and Viral-Prokaryote Relationships in Freshwater Environments

    Science.gov (United States)

    Kyle, J. E.; Ferris, G.

    2009-05-01

    Viral and prokaryotic abundances were surveyed throughout southern Ontario aquatic habitats to determine relationships with geochemical parameters in the natural environment. Surface water samples were collected from acid mine drainage in summer of 2007 and 2008 and from circum-neutral pH environments in October to November 2008. Site determination was based on collecting samples from various aquatic habitats (acid mine drainage, lakes, rivers, tributaries, wetlands) with differing bedrock geology (limestone and shale dominated vs granitic Canadian Shield) to obtain a range of geochemical conditions. At each site, measurements of temperature, pH, and Eh were conducted. Samples collected for microbial counts and electron imaging were preserved to a final concentration of 2.5 % (v/v) glutaraldehyde. Additional sample were filtered into 60 mL nalgene bottles and amber EPA certified 40 mL glass vials to determine chemical constituents and dissolved organic carbon (DOC), respectively. Water was also collected to determine additional physiochemical parameters (dissolved total iron, ferric iron, nitrate, sulfate, phosphate, alkalinity, and turbidity). All samples were stored at 4 °C until analysis. Viral and prokaryotic abundance was determined by staining samples with SYBR Green I and examining with a epifluorescence microscope under blue excitation. Multiple regression analysis using stepwise backwards regression and general linear models revealed that viral abundance was the most influential predictor of prokaryotic abundance. Additional predictors include pH, sulfate, phosphate, and magnesium. The strength of the model was very strong with 90 % of the variability explained (R2 = 0.90, p < 0.007). This is the first report, to our knowledge, of viruses exhibiting such strong controls over prokaryotic abundance in the natural environment. All relationships are positively correlated with the exception of Mg, which is negatively correlated. Iron was also noted as a

  10. Global identification of prokaryotic glycoproteins based on an Escherichia coli proteome microarray.

    Directory of Open Access Journals (Sweden)

    Zong-Xiu Wang

    Full Text Available Glycosylation is one of the most abundant protein posttranslational modifications. Protein glycosylation plays important roles not only in eukaryotes but also in prokaryotes. To further understand the roles of protein glycosylation in prokaryotes, we developed a lectin binding assay to screen glycoproteins on an Escherichia coli proteome microarray containing 4,256 affinity-purified E.coli proteins. Twenty-three E.coli proteins that bound Wheat-Germ Agglutinin (WGA were identified. PANTHER protein classification analysis showed that these glycoprotein candidates were highly enriched in metabolic process and catalytic activity classes. One sub-network centered on deoxyribonuclease I (sbcB was identified. Bioinformatics analysis suggests that prokaryotic protein glycosylation may play roles in nucleotide and nucleic acid metabolism. Fifteen of the 23 glycoprotein candidates were validated by lectin (WGA staining, thereby increasing the number of validated E. coli glycoproteins from 3 to 18. By cataloguing glycoproteins in E.coli, our study greatly extends our understanding of protein glycosylation in prokaryotes.

  11. Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes

    NARCIS (Netherlands)

    Al-Attar, S.; Westra, E.R.; Oost, van der J.; Brouns, S.J.J.

    2011-01-01

    Many prokaryotes contain the recently discovered defense system against mobile genetic elements. This defense system contains a unique type of repetitive DNA stretches, termed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs). CRISPRs consist of identical repeated DNA sequences

  12. PSSRdb: a relational database of polymorphic simple sequence repeats extracted from prokaryotic genomes.

    Science.gov (United States)

    Kumar, Pankaj; Chaitanya, Pasumarthy S; Nagarajaram, Hampapathalu A

    2011-01-01

    PSSRdb (Polymorphic Simple Sequence Repeats database) (http://www.cdfd.org.in/PSSRdb/) is a relational database of polymorphic simple sequence repeats (PSSRs) extracted from 85 different species of prokaryotes. Simple sequence repeats (SSRs) are the tandem repeats of nucleotide motifs of the sizes 1-6 bp and are highly polymorphic. SSR mutations in and around coding regions affect transcription and translation of genes. Such changes underpin phase variations and antigenic variations seen in some bacteria. Although SSR-mediated phase variation and antigenic variations have been well-studied in some bacteria there seems a lot of other species of prokaryotes yet to be investigated for SSR mediated adaptive and other evolutionary advantages. As a part of our on-going studies on SSR polymorphism in prokaryotes we compared the genome sequences of various strains and isolates available for 85 different species of prokaryotes and extracted a number of SSRs showing length variations and created a relational database called PSSRdb. This database gives useful information such as location of PSSRs in genomes, length variation across genomes, the regions harboring PSSRs, etc. The information provided in this database is very useful for further research and analysis of SSRs in prokaryotes.

  13. Two Tales of Prokaryotic Genomic Diversity: Escherichia coli and Halophiles

    Directory of Open Access Journals (Sweden)

    Lejla Pašić

    2014-01-01

    Full Text Available Prokaryotes are generally characterized by vast genomic diversity that has been shaped by mutations, horizontal gene transfer, bacteriocins and phage predation. Enormous genetic diversity has developed as a result of stresses imposed in harsh environments and the ability of microorganisms to adapt. Two examples of prokaryotic diversity are presented: on intraspecies level, exemplified by Escherichia coli, and the diversity of the hypersaline environment, with the discussion of food-related health issues and biotechnological potential.

  14. Prokaryotic cells: structural organisation of the cytoskeleton and organelles

    Directory of Open Access Journals (Sweden)

    Wanderley de Souza

    2012-05-01

    Full Text Available For many years, prokaryotic cells were distinguished from eukaryotic cells based on the simplicity of their cytoplasm, in which the presence of organelles and cytoskeletal structures had not been discovered. Based on current knowledge, this review describes the complex components of the prokaryotic cell cytoskeleton, including (i tubulin homologues composed of FtsZ, BtuA, BtuB and several associated proteins, which play a fundamental role in cell division, (ii actin-like homologues, such as MreB and Mb1, which are involved in controlling cell width and cell length, and (iii intermediate filament homologues, including crescentin and CfpA, which localise on the concave side of a bacterium and along its inner curvature and associate with its membrane. Some prokaryotes exhibit specialised membrane-bound organelles in the cytoplasm, such as magnetosomes and acidocalcisomes, as well as protein complexes, such as carboxysomes. This review also examines recent data on the presence of nanotubes, which are structures that are well characterised in mammalian cells that allow direct contact and communication between cells.

  15. Gene duplications in prokaryotes can be associated with environmental adaptation.

    Science.gov (United States)

    Bratlie, Marit S; Johansen, Jostein; Sherman, Brad T; Huang, Da Wei; Lempicki, Richard A; Drabløs, Finn

    2010-10-20

    Gene duplication is a normal evolutionary process. If there is no selective advantage in keeping the duplicated gene, it is usually reduced to a pseudogene and disappears from the genome. However, some paralogs are retained. These gene products are likely to be beneficial to the organism, e.g. in adaptation to new environmental conditions. The aim of our analysis is to investigate the properties of paralog-forming genes in prokaryotes, and to analyse the role of these retained paralogs by relating gene properties to life style of the corresponding prokaryotes. Paralogs were identified in a number of prokaryotes, and these paralogs were compared to singletons of persistent orthologs based on functional classification. This showed that the paralogs were associated with for example energy production, cell motility, ion transport, and defence mechanisms. A statistical overrepresentation analysis of gene and protein annotations was based on paralogs of the 200 prokaryotes with the highest fraction of paralog-forming genes. Biclustering of overrepresented gene ontology terms versus species was used to identify clusters of properties associated with clusters of species. The clusters were classified using similarity scores on properties and species to identify interesting clusters, and a subset of clusters were analysed by comparison to literature data. This analysis showed that paralogs often are associated with properties that are important for survival and proliferation of the specific organisms. This includes processes like ion transport, locomotion, chemotaxis and photosynthesis. However, the analysis also showed that the gene ontology terms sometimes were too general, imprecise or even misleading for automatic analysis. Properties described by gene ontology terms identified in the overrepresentation analysis are often consistent with individual prokaryote lifestyles and are likely to give a competitive advantage to the organism. Paralogs and singletons dominate

  16. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi. PMID:24463735

  17. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Lamellomorpha sp. indicated by metagenomics

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-01

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Lamellomorpha sp. at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Lamellomorpha sp.. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Lamellomorpha sp..

  18. Copahue Geothermal System: A Volcanic Environment with Rich Extreme Prokaryotic Biodiversity

    Directory of Open Access Journals (Sweden)

    María Sofía Urbieta

    2015-07-01

    Full Text Available The Copahue geothermal system is a natural extreme environment located at the northern end of the Cordillera de los Andes in Neuquén province in Argentina. The geochemistry and consequently the biodiversity of the area are dominated by the activity of the Copahue volcano. The main characteristic of Copahue is the extreme acidity of its aquatic environments; ponds and hot springs of moderate and high temperature as well as Río Agrio. In spite of being an apparently hostile location, the prokaryotic biodiversity detected by molecular ecology techniques as well as cultivation shows a rich and diverse environment dominated by acidophilic, sulphur oxidising bacteria or archaea, depending on the conditions of the particular niche studied. In microbial biofilms, found in the borders of the ponds where thermal activity is less intense, the species found are completely different, with a high presence of cyanobacteria and other photosynthetic species. Our results, collected during more than 10 years of work in Copahue, have enabled us to outline geomicrobiological models for the different environments found in the ponds and Río Agrio. Besides, Copahue seems to be the habitat of novel, not yet characterised autochthonous species, especially in the domain Archaea.

  19. [A study of recombinant human sestrin 1 and sestrin 2 proteins produced in a prokaryotic system].

    Science.gov (United States)

    Rai, N; Kumar, R; Haque, Md A; Hassan, Md I; Dey, S

    2017-01-01

    Sestrins are highly conserved stress-inducible proteins capable of suppressing the production of ROS and signalling through mTORC1. Here we report a study of human sestrin1 (sesn1) and sestrin2 (sesn2) proteins produced in a pET28^(+) vector based prokaryotic system. Mass spectrometry analysis, western blot and surface plasmon resonance (SPR) of affinity purified sesn1 and sesn2 proteins confirmed their identity; biophysical characteristics were observed using circular dichroism (CD) showing that sesn1 and sesn2 have a predominant α-helical structure. Here we describe a simple, one step purification process to purify a large amount of sestrin proteins with significant yield. Further study of recombinant human sestrins may further facilitate the understanding of their roles in eukaryotic cells.

  20. Diversity and activity in marine prokaryotes

    NARCIS (Netherlands)

    Arrieta López de Uralde, Jesús Maria

    2005-01-01

    Life on Earth epends on the endless recycling of elements as matter and energy are required to sustain life. The prokaryotes (Bacteria and Archaea) are the masters of the trade of life. After all, they were already responsible for the major biogeochemical cycles 3.000 million years ago, long before

  1. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Science.gov (United States)

    Yeo, Chew Chieng; Abu Bakar, Fauziah; Chan, Wai Ting; Espinosa, Manuel; Harikrishna, Jennifer Ann

    2016-01-01

    Toxin-antitoxin (TA) systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies. PMID:26907343

  2. Heterologous Expression of Toxins from Bacterial Toxin-Antitoxin Systems in Eukaryotic Cells: Strategies and Applications

    Directory of Open Access Journals (Sweden)

    Chew Chieng Yeo

    2016-02-01

    Full Text Available Toxin-antitoxin (TA systems are found in nearly all prokaryotic genomes and usually consist of a pair of co-transcribed genes, one of which encodes a stable toxin and the other, its cognate labile antitoxin. Certain environmental and physiological cues trigger the degradation of the antitoxin, causing activation of the toxin, leading either to the death or stasis of the host cell. TA systems have a variety of functions in the bacterial cell, including acting as mediators of programmed cell death, the induction of a dormant state known as persistence and the stable maintenance of plasmids and other mobile genetic elements. Some bacterial TA systems are functional when expressed in eukaryotic cells and this has led to several innovative applications, which are the subject of this review. Here, we look at how bacterial TA systems have been utilized for the genetic manipulation of yeasts and other eukaryotes, for the containment of genetically modified organisms, and for the engineering of high expression eukaryotic cell lines. We also examine how TA systems have been adopted as an important tool in developmental biology research for the ablation of specific cells and the potential for utility of TA systems in antiviral and anticancer gene therapies.

  3. CRISPR-Cas: evolution of an RNA-based adaptive immunity system in prokaryotes.

    Science.gov (United States)

    Koonin, Eugene V; Makarova, Kira S

    2013-05-01

    The CRISPR-Cas (clustered regularly interspaced short palindromic repeats, CRISPR-associated genes) is an adaptive immunity system in bacteria and archaea that functions via a distinct self-non-self recognition mechanism that is partially analogous to the mechanism of eukaryotic RNA interference (RNAi). The CRISPR-Cas system incorporates fragments of virus or plasmid DNA into the CRISPR repeat cassettes and employs the processed transcripts of these spacers as guide RNAs to cleave the cognate foreign DNA or RNA. The Cas proteins, however, are not homologous to the proteins involved in RNAi and comprise numerous, highly diverged families. The majority of the Cas proteins contain diverse variants of the RNA recognition motif (RRM), a widespread RNA-binding domain. Despite the fast evolution that is typical of the cas genes, the presence of diverse versions of the RRM in most Cas proteins provides for a simple scenario for the evolution of the three distinct types of CRISPR-cas systems. In addition to several proteins that are directly implicated in the immune response, the cas genes encode a variety of proteins that are homologous to prokaryotic toxins that typically possess nuclease activity. The predicted toxins associated with CRISPR-Cas systems include the essential Cas2 protein, proteins of COG1517 that, in addition to a ligand-binding domain and a helix-turn-helix domain, typically contain different nuclease domains and several other predicted nucleases. The tight association of the CRISPR-Cas immunity systems with predicted toxins that, upon activation, would induce dormancy or cell death suggests that adaptive immunity and dormancy/suicide response are functionally coupled. Such coupling could manifest in the persistence state being induced and potentially providing conditions for more effective action of the immune system or in cell death being triggered when immunity fails.

  4. Heterogeneous distribution of prokaryotes and viruses at the microscale in a tidal sediment

    DEFF Research Database (Denmark)

    Carreira, Cátia; Larsen, Morten; Glud, Ronnie

    2013-01-01

    In this study we show for the first time the microscale (mm) 2- and 3-dimensional spatial distribution and abundance of prokaryotes, viruses, and oxygen in a tidal sediment. Prokaryotes and viruses were highly heterogeneously distributed with patches of elevated abundances surrounded by areas of ...

  5. Use of mariner transposases for one-step delivery and integration of DNA in prokaryotes and eukaryotes by transfection.

    Science.gov (United States)

    Trubitsyna, Maryia; Michlewski, Gracjan; Finnegan, David J; Elfick, Alistair; Rosser, Susan J; Richardson, Julia M; French, Christopher E

    2017-06-02

    Delivery of DNA to cells and its subsequent integration into the host genome is a fundamental task in molecular biology, biotechnology and gene therapy. Here we describe an IP-free one-step method that enables stable genome integration into either prokaryotic or eukaryotic cells. A synthetic mariner transposon is generated by flanking a DNA sequence with short inverted repeats. When purified recombinant Mos1 or Mboumar-9 transposase is co-transfected with transposon-containing plasmid DNA, it penetrates prokaryotic or eukaryotic cells and integrates the target DNA into the genome. In vivo integrations by purified transposase can be achieved by electroporation, chemical transfection or Lipofection of the transposase:DNA mixture, in contrast to other published transposon-based protocols which require electroporation or microinjection. As in other transposome systems, no helper plasmids are required since transposases are not expressed inside the host cells, thus leading to generation of stable cell lines. Since it does not require electroporation or microinjection, this tool has the potential to be applied for automated high-throughput creation of libraries of random integrants for purposes including gene knock-out libraries, screening for optimal integration positions or safe genome locations in different organisms, selection of the highest production of valuable compounds for biotechnology, and sequencing. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. Emerging spatial patterns in Antarctic prokaryotes

    Directory of Open Access Journals (Sweden)

    Chun Wie eChong

    2015-09-01

    Full Text Available Recent advances in knowledge of patterns of biogeography in terrestrial eukaryotic organisms have led to a fundamental paradigm shift in understanding of the controls and history of life on land in Antarctica, and its interactions over the long term with the glaciological and geological processes that have shaped the continent. However, while it has long been recognized that the terrestrial ecosystems of Antarctica are dominated by microbes and their processes, knowledge of microbial diversity and distributions has lagged far behind that of the macroscopic eukaryote organisms. Increasing human contact with and activity in the continent is leading to risks of biological contamination and change in a region whose isolation has protected it for millions of years at least; these risks may be particularly acute for microbial communities which have, as yet, received scant recognition and attention. Even a matter apparently as straightforward as Protected Area designation in Antarctica requires robust biodiversity data which, in most parts of the continent, remain almost completely unavailable. A range of important contributing factors mean that it is now timely to reconsider the state of knowledge of Antarctic terrestrial prokaryotes. Rapid advances in molecular biological approaches are increasingly demonstrating that bacterial diversity in Antarctica may be far greater than previously thought, and that there is overlap in the environmental controls affecting both Antarctic prokaryotic and eukaryotic communities. Bacterial dispersal mechanisms and colonization patterns remain largely unaddressed, although evidence for regional evolutionary differentiation is rapidly accruing and, with this, there is increasing appreciation of patterns in regional bacterial biogeography in this large part of the globe. In this review, we set out to describe the state of knowledge of Antarctic prokaryote diversity patterns, drawing analogy with those of eukaryote

  7. Metabolic profiles of prokaryotic and eukaryotic communities in deep-sea sponge Neamphius huxleyi [corrected]. indicated by metagenomics.

    Science.gov (United States)

    Li, Zhi-Yong; Wang, Yue-Zhu; He, Li-Ming; Zheng, Hua-Jun

    2014-01-27

    The whole metabolism of a sponge holobiont and the respective contributions of prokaryotic and eukaryotic symbionts and their associations with the sponge host remain largely unclear. Meanwhile, compared with shallow water sponges, deep-sea sponges are rarely understood. Here we report the metagenomic exploration of deep-sea sponge Neamphius huxleyi [corrected] . at the whole community level. Metagenomic data showed phylogenetically diverse prokaryotes and eukaryotes in Neamphius huxleyi [corrected]. MEGAN and gene enrichment analyses indicated different metabolic potentials of prokaryotic symbionts from eukaryotic symbionts, especially in nitrogen and carbon metabolisms, and their molecular interactions with the sponge host. These results supported the hypothesis that prokaryotic and eukaryotic symbionts have different ecological roles and relationships with sponge host. Moreover, vigorous denitrification, and CO2 fixation by chemoautotrophic prokaryotes were suggested for this deep-sea sponge. The study provided novel insights into the respective potentials of prokaryotic and eukaryotic symbionts and their associations with deep-sea sponge Neamphius huxleyi [corrected].

  8. Gene duplications in prokaryotes can be associated with environmental adaptation

    Directory of Open Access Journals (Sweden)

    Lempicki Richard A

    2010-10-01

    Full Text Available Abstract Background Gene duplication is a normal evolutionary process. If there is no selective advantage in keeping the duplicated gene, it is usually reduced to a pseudogene and disappears from the genome. However, some paralogs are retained. These gene products are likely to be beneficial to the organism, e.g. in adaptation to new environmental conditions. The aim of our analysis is to investigate the properties of paralog-forming genes in prokaryotes, and to analyse the role of these retained paralogs by relating gene properties to life style of the corresponding prokaryotes. Results Paralogs were identified in a number of prokaryotes, and these paralogs were compared to singletons of persistent orthologs based on functional classification. This showed that the paralogs were associated with for example energy production, cell motility, ion transport, and defence mechanisms. A statistical overrepresentation analysis of gene and protein annotations was based on paralogs of the 200 prokaryotes with the highest fraction of paralog-forming genes. Biclustering of overrepresented gene ontology terms versus species was used to identify clusters of properties associated with clusters of species. The clusters were classified using similarity scores on properties and species to identify interesting clusters, and a subset of clusters were analysed by comparison to literature data. This analysis showed that paralogs often are associated with properties that are important for survival and proliferation of the specific organisms. This includes processes like ion transport, locomotion, chemotaxis and photosynthesis. However, the analysis also showed that the gene ontology terms sometimes were too general, imprecise or even misleading for automatic analysis. Conclusions Properties described by gene ontology terms identified in the overrepresentation analysis are often consistent with individual prokaryote lifestyles and are likely to give a competitive

  9. Prediction of Metabolic Pathway Involvement in Prokaryotic UniProtKB Data by Association Rule Mining

    KAUST Repository

    Boudellioua, Imene; Saidi, Rabie; Hoehndorf, Robert; Martin, Maria J.; Solovyev, Victor

    2016-01-01

    The widening gap between known proteins and their functions has encouraged the development of methods to automatically infer annotations. Automatic functional annotation of proteins is expected to meet the conflicting requirements of maximizing annotation coverage, while minimizing erroneous functional assignments. This trade-off imposes a great challenge in designing intelligent systems to tackle the problem of automatic protein annotation. In this work, we present a system that utilizes rule mining techniques to predict metabolic pathways in prokaryotes. The resulting knowledge represents predictive models that assign pathway involvement to UniProtKB entries. We carried out an evaluation study of our system performance using cross-validation technique. We found that it achieved very promising results in pathway identification with an F1-measure of 0.982 and an AUC of 0.987. Our prediction models were then successfully applied to 6.2 million UniProtKB/TrEMBL reference proteome entries of prokaryotes. As a result, 663,724 entries were covered, where 436,510 of them lacked any previous pathway annotations.

  10. Prediction of Metabolic Pathway Involvement in Prokaryotic UniProtKB Data by Association Rule Mining

    KAUST Repository

    Boudellioua, Imene

    2016-07-08

    The widening gap between known proteins and their functions has encouraged the development of methods to automatically infer annotations. Automatic functional annotation of proteins is expected to meet the conflicting requirements of maximizing annotation coverage, while minimizing erroneous functional assignments. This trade-off imposes a great challenge in designing intelligent systems to tackle the problem of automatic protein annotation. In this work, we present a system that utilizes rule mining techniques to predict metabolic pathways in prokaryotes. The resulting knowledge represents predictive models that assign pathway involvement to UniProtKB entries. We carried out an evaluation study of our system performance using cross-validation technique. We found that it achieved very promising results in pathway identification with an F1-measure of 0.982 and an AUC of 0.987. Our prediction models were then successfully applied to 6.2 million UniProtKB/TrEMBL reference proteome entries of prokaryotes. As a result, 663,724 entries were covered, where 436,510 of them lacked any previous pathway annotations.

  11. Prokaryotic photosynthesis and phototrophy illuminated

    DEFF Research Database (Denmark)

    Bryant, Donald A; Frigaard, Niels-Ulrik

    2006-01-01

    Genome sequencing projects are revealing new information about the distribution and evolution of photosynthesis and phototrophy. Although coverage of the five phyla containing photosynthetic prokaryotes (Chlorobi, Chloroflexi, Cyanobacteria, Proteobacteria and Firmicutes) is limited and uneven...... components that have not yet been described. Metagenomics has already shown how the relatively simple phototrophy based upon rhodopsins has spread laterally throughout Archaea, Bacteria and eukaryotes. In this review, we present examples that reflect recent advances in phototroph biology as a result...

  12. Thiol biochemistry of prokaryotes

    Science.gov (United States)

    Fahey, Robert C.

    1986-01-01

    The present studies have shown that GSH metabolism arose in the purple bacteria and cyanobacteria where it functions to protect against oxygen toxicity. Evidence was obtained indicating that GSH metabolism was incorporated into eucaryotes via the endosymbiosis giving rise to mitochrondria and chloroplasts. Aerobic bacteria lacking GSH utilize other thiols for apparently similar functions, the thiol being coenzyme A in Gram positive bacteria and chi-glutamylcysteine in the halobacteria. The thiol biochemistry of prokaryotes is thus seen to be much more highly diversified than that of eucaryotes and much remains to be learned about this subject.

  13. Prokaryotic community structure and activity of sulfate reducers in production water from high-temperature oil reservoirs with and without nitrate treatment

    DEFF Research Database (Denmark)

    Gittel, Antje; Sørensen, Ketil; Skovhus, Torben L.

    2009-01-01

    Sulfate-reducing prokaryotes (SRP) cause severe problems like microbial corrosion and reservoir souring in seawater-injected oil production systems. One strategy to control SRP activity is the addition of nitrate to the injection water. Production waters from two adjacent, hot (80°C) oil reservoirs......, one with and one without nitrate treatment, were compared for prokaryotic community structure and activity of SRP. Bacterial and archaeal 16S rRNA gene analyses revealed higher prokaryotic abundance but lower diversity for the nitrate-treated field. The 16S rRNA gene clone libraries from both fields...... were dominated by sequences affiliated with Firmicutes (Bacteria) and Thermococcales (Archaea). Potential heterotrophic nitrate reducers (Deferribacterales) were exclusively found at the nitrate-treated field, possibly stimulated by nitrate addition. Quantitative PCR of dsrAB genes revealed...

  14. Effects of sodium azide on the abundance of prokaryotes and viruses in marine samples.

    Directory of Open Access Journals (Sweden)

    Christian Winter

    Full Text Available Flow cytometry is set to become the standard method for enumerating prokaryotes and viruses in marine samples. However, the samples need to be flash-frozen in liquid nitrogen directly after aldehyde fixation. Because liquid nitrogen may not always be available, we tested the potential of sodium azide as a preservative for prokaryotes and viruses in marine samples as a possible alternative. For that we conducted incubation experiments with untreated and sodium azide treated marine water samples at 4°C and room temperature. The data indicate that sodium azide cannot be used to maintain marine samples used for the enumeration of prokaryotes and viruses.

  15. [Experimental interaction of halophilic prokaryotes and opportunistic bacteria in brine].

    Science.gov (United States)

    Selivanova, E A; Nemtseva, N V

    2013-01-01

    Study the effect of extremely halophilic archaea and moderately halophilic bacteria on preservation of opportunistic bacteria in brine. 17 strains of moderately halophilic bacteria and 2 strains of extremely halophilic archaea were isolated from continental hypersaline lake Razval of Sol-Iletsk area of Orenburg Region. Identification of pure cultures of prokaryotes was carried out taking into account their phenotype properties and based on determination of 16S RNA gene sequence. The effect of halophilic prokaryote on elimination of Escherichia coli from brine was evaluated during co-cultivation. Antagonistic activity of cell extracts of the studied microorganisms was evaluated by photometric method. A more prolonged preservation of an E. coli strain in brine in the presence of live cells of extremely halophilic archaea Halorubrum tebenquichense and moderately halophilic bacteria Marinococcus halophilus was established. Extracts of cells of extremely halophilic archaea and moderately halophilic bacteria on the contrary displayed antagonistic activity. The protective effect of live cells of halophilic prokaryotes and antagonistic activity of their cell extracts change the period of conservation of opportunistic bacteria in brine that regulates inter-microbial interactions and changes the period of self-purification that reflects the sanitary condition of a hypersaline water body.

  16. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lønborg, Christian

    2016-06-07

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  17. Depth Dependent Relationships between Temperature and Ocean Heterotrophic Prokaryotic Production

    KAUST Repository

    Lø nborg, Christian; Cuevas, L. Antonio; Reinthaler, Thomas; Herndl, Gerhard J.; Gasol, Josep M.; Moran, Xose Anxelu G.; Bates, Nicholas R.; á lvarez-Salgado, Xosé A.

    2016-01-01

    Marine prokaryotes play a key role in cycling of organic matter and nutrients in the ocean. Using a unique dataset (>14,500 samples), we applied a space-for-time substitution analysis to assess the temperature dependence of prokaryotic heterotrophic production (PHP) in epi- (0-200 m), meso- (201-1000 m) and bathypelagic waters (1001-4000 m) of the global ocean. Here, we show that the temperature dependence of PHP is fundamentally different between these major oceanic depth layers, with an estimated ecosystem-level activation energy (E) of 36 ± 7 kJ mol for the epipelagic, 72 ± 15 kJ mol for the mesopelagic and 274 ± 65 kJ mol for the bathypelagic realm. We suggest that the increasing temperature dependence with depth is related to the parallel vertical gradient in the proportion of recalcitrant organic compounds. These Ea predict an increased PHP of about 5, 12, and 55% in the epi-, meso-, and bathypelagic ocean, respectively, in response to a water temperature increase by 1°C. Hence, there is indication that a major thus far underestimated feedback mechanism exists between future bathypelagic ocean warming and heterotrophic prokaryotic activity.

  18. ConSpeciFix: Classifying prokaryotic species based on gene flow.

    Science.gov (United States)

    Bobay, Louis-Marie; Ellis, Brian Shin-Hua; Ochman, Howard

    2018-05-16

    Classification of prokaryotic species is usually based on sequence similarity thresholds, which are easy to apply but lack a biologically-relevant foundation. Here, we present ConSpeciFix, a program that classifies prokaryotes into species using criteria set forth by the Biological Species Concept, thereby unifying species definition in all domains of life. ConSpeciFix's webserver is freely available at www.conspecifix.com. The local version of the program can be freely downloaded from https://github.com/Bobay-Ochman/ConSpeciFix. ConSpeciFix is written in Python 2.7 and requires the following dependencies: Usearch, MCL, MAFFT and RAxML. ljbobay@uncg.edu.

  19. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline-Alkaline Soils.

    Science.gov (United States)

    Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua

    2018-01-01

    Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline-alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity ( P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi ( P analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi.

  20. Macro and Microelements Drive Diversity and Composition of Prokaryotic and Fungal Communities in Hypersaline Sediments and Saline–Alkaline Soils

    Science.gov (United States)

    Liu, Kaihui; Ding, Xiaowei; Tang, Xiaofei; Wang, Jianjun; Li, Wenjun; Yan, Qingyun; Liu, Zhenghua

    2018-01-01

    Understanding the effects of environmental factors on microbial communities is critical for microbial ecology, but it remains challenging. In this study, we examined the diversity (alpha diversity) and community compositions (beta diversity) of prokaryotes and fungi in hypersaline sediments and salinized soils from northern China. Environmental variables were highly correlated, but they differed significantly between the sediments and saline soils. The compositions of prokaryotic and fungal communities in the hypersaline sediments were different from those in adjacent saline–alkaline soils, indicating a habitat-specific microbial distribution pattern. The macroelements (S, P, K, Mg, and Fe) and Ca were, respectively, correlated closely with the alpha diversity of prokaryotes and fungi, while the macronutrients (e.g., Na, S, P, and Ca) were correlated with the prokaryotic and fungal beta-diversity (P ≤ 0.05). And, the nine microelements (e.g., Al, Ba, Co, Hg, and Mn) and micronutrients (Ba, Cd, and Sr) individually shaped the alpha diversity of prokaryotes and fungi, while the six microelements (e.g., As, Ba, Cr, and Ge) and only the trace elements (Cr and Cu), respectively, influenced the beta diversity of prokaryotes and fungi (P analysis (VPA) showed that environmental variables jointly explained 55.49% and 32.27% of the total variation for the prokaryotic and fungal communities, respectively. Together, our findings demonstrate that the diversity and community composition of the prokaryotes and fungi were driven by different macro and microelements in saline habitats, and that geochemical elements could more widely regulate the diversity and community composition of prokaryotes than these of fungi. PMID:29535703

  1. Links between viruses and prokaryotes throughout the water column along a North Atlantic latitudinal transect

    NARCIS (Netherlands)

    De Corte, Daniele; Sintes, Eva; Yokokawa, Taichi; Reinthaler, Thomas; Herndl, Gerhard J.

    Viruses are an abundant, diverse and dynamic component of marine ecosystems and have a key role in the biogeochemical processes of the ocean by controlling prokaryotic and phytoplankton abundance and diversity. However, most of the studies on virus-prokaryote interactions in marine environments have

  2. Small CRISPR RNAs guide antiviral defense in prokaryotes

    NARCIS (Netherlands)

    Brouns, S.J.J.; Jore, M.M.; Lundgren, M.; Westra, E.R.; Slijkhuis, R.J.; Snijders, A.P.; Dickman, M.J.; Makarova, K.S.; Koonin, E.V.; Oost, van der J.

    2008-01-01

    Prokaryotes acquire virus resistance by integrating short fragments of viral nucleic acid into clusters of regularly interspaced short palindromic repeats (CRISPRs). Here we show how virus-derived sequences contained in CRISPRs are used by CRISPR-associated (Cas) proteins from the host to mediate an

  3. Mesopelagic Prokaryotes Alter Surface Phytoplankton Production during Simulated Deep Mixing Experiments in Eastern Mediterranean Sea Waters

    Directory of Open Access Journals (Sweden)

    Or Hazan

    2018-01-01

    Full Text Available Mesopelagic prokaryotes (archaea and bacteria, which are transported together with nutrient-rich intermediate-water to the surface layer by deep convection in the oceans (e.g., winter mixing, upwelling systems, can interact with surface microbial populations. This interaction can potentially affect production rates and biomass of surface microbial populations, and thus play an important role in the marine carbon cycle and oceanic carbon sequestration. The Eastern Mediterranean Sea (EMS is one of the most oligotrophic and warm systems in the world's oceans, with usually very shallow winter mixing (<200 m and lack of large-size spring algal blooms. In this study, we collected seawater (0–1,500 m in 9 different cruises at the open EMS during both the stratified and the mixed seasons. We show that the EMS is a highly oligotrophic regime, resulting in low autotrophic biomass and primary productivity and relatively high heterotrophic prokaryotic biomass and production. Further, we simulated deep water mixing in on-board microcosms using Levantine surface (LSW, ~0.5 m and intermediate (LIW, ~400 m waters at a 9:1 ratio, respectively and examined the responses of the microbial populations to such a scenario. We hypothesized that the LIW, being nutrient-rich (e.g., N, P and a “hot-spot” for microbial activity (due to the warm conditions that prevail in these depths, may supply the LSW with not only key-limiting nutrients but also with viable and active heterotrophic prokaryotes that can interact with the ambient surface microbial population. Indeed, we show that LIW heterotrophic prokaryotes negatively affected the surface phytoplankton populations, resulting in lower chlorophyll-a levels and primary production rates. This may be due to out-competition of phytoplankton by LIW populations for resources and/or by a phytoplankton cell lysis via viral infection. Our results suggest that phytoplankton in the EMS may not likely form blooms, even after

  4. Prokaryotic communities differ along a geothermal soil photic gradient.

    Science.gov (United States)

    Meadow, James F; Zabinski, Catherine A

    2013-01-01

    Geothermal influenced soils exert unique physical and chemical limitations on resident microbial communities but have received little attention in microbial ecology research. These environments offer a model system in which to investigate microbial community heterogeneity and a range of soil ecological concepts. We conducted a 16S bar-coded pyrosequencing survey of the prokaryotic communities in a diatomaceous geothermal soil system and compared communities across soil types and along a conspicuous photic depth gradient. We found significant differences between the communities of the two different soils and also predictable differences between samples taken at different depths. Additionally, we targeted three ecologically relevant bacterial phyla, Cyanobacteria, Planctomycetes, and Verrucomicrobia, for clade-wise comparisons with these variables and found strong differences in their abundances, consistent with the autecology of these groups.

  5. Effect of nitrate addition on the diversity and activity of sulfate-reducing prokaryotes in high-temperature oil production systems

    DEFF Research Database (Denmark)

    Gittel, Antje; Wieczorek, Adam; Sørensen, Ketil

    Sulfate-reducing prokaryotes (SRP) producing hydrogen sulfide cause severe problems like microbial corrosion, souring and plugging in seawater-injected oil production systems. Adding nitrate to the injection water is a possible strategy to control the activity of SRP by favoring the growth of both...... heterotrophic, nitrate-reducing bacteria that outcompete SRP for substrates, and nitrate-reducing, sulfide-oxidizing bacteria (NR-SOB). To assess the effects of nitrate addition, microbial diversity (Bacteria, Archaea) and SRP activity were studied in the production waters of a nitrate-treated and a non...... their potential activity under pipeline (60°C), but not under oil reservoir conditions (80°C), indicating that the troublesome SRP were pipeline-derived. Consistent with the low amount of SRP, no activity could be shown for samples from the nitrate-treated system suggesting that SRP were inhibited by nitrate...

  6. Construction of expression vectors carrying mouse peroxisomal ...

    African Journals Online (AJOL)

    The aim of this study was to construct expression vectors carrying mouse peroxisomal protein gene (PEP-cDNA) in prokaryotic and mammalian expression vectors in ... pGEX6p2-PEP and pUcD3-FLAG-PEP constructed vectors were transformed into the one shot TOP10 and JM105 bacterial competent cells, respectively.

  7. Trends and barriers to lateral gene transfer in prokaryotes.

    Science.gov (United States)

    Popa, Ovidiu; Dagan, Tal

    2011-10-01

    Gene acquisition by lateral gene transfer (LGT) is an important mechanism for natural variation among prokaryotes. Laboratory experiments show that protein-coding genes can be laterally transferred extremely fast among microbial cells, inherited to most of their descendants, and adapt to a new regulatory regime within a short time. Recent advance in the phylogenetic analysis of microbial genomes using networks approach reveals a substantial impact of LGT during microbial genome evolution. Phylogenomic networks of LGT among prokaryotes reconstructed from completely sequenced genomes uncover barriers to LGT in multiple levels. Here we discuss the kinds of barriers to gene acquisition in nature including physical barriers for gene transfer between cells, genomic barriers for the integration of acquired DNA, and functional barriers for the acquisition of new genes. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes

    KAUST Repository

    Salazar, Guillem; Cornejo-Castillo, Francisco M.; Borrull, Encarna; Dí ez-Vives, Cristina; Lara, Elena; Vaqué , Dolors; Arrieta, J M; Duarte, Carlos M.; Gasol, Josep M.; Acinas, Silvia G.

    2015-01-01

    The free-living (FL) and particle-attached (PA) marine microbial communities have repeatedly been proved to differ in their diversity and composition in the photic ocean and also recently in the bathypelagic ocean at a global scale. However, although high taxonomic ranks exhibit preferences for a PA or FL mode of life, it remains poorly understood whether two clear lifestyles do exist and how these are distributed across the prokaryotic phylogeny. We studied the FL (<0.8 μm) and PA (0.8 – 20 μm) prokaryotes at 30 stations distributed worldwide within the bathypelagic oceanic realm (2,150 – 4,000 m depth) using high throughput sequencing of the small subunit ribosomal RNA gene (16S rRNA). A high proportion of the bathypelagic prokaryotes were mostly found either attached to particles or freely in the surrounding water but rarely in both types of environments. In particular, this trait was deeply conserved through their phylogeny suggesting that the deep-ocean particles and the surrounding water constitute two highly distinct niches and that transitions from one to the other have been rare at an evolutionary time-scale. As a consequence, PA and FL communities had clear alpha- and beta-diversity differences that exceeded the global-scale geographical variation. Our study organizes the bathypelagic prokaryotic diversity into a reasonable number of ecologically coherent taxa regarding their association to particles, a first step for understanding which are the microbes responsible for the processing of the dissolved and particulate pools of organic matter that have a very different biogeochemical role in the deep ocean.

  9. Particle-association lifestyle is a phylogenetically conserved trait in bathypelagic prokaryotes

    KAUST Repository

    Salazar, Guillem

    2015-10-13

    The free-living (FL) and particle-attached (PA) marine microbial communities have repeatedly been proved to differ in their diversity and composition in the photic ocean and also recently in the bathypelagic ocean at a global scale. However, although high taxonomic ranks exhibit preferences for a PA or FL mode of life, it remains poorly understood whether two clear lifestyles do exist and how these are distributed across the prokaryotic phylogeny. We studied the FL (<0.8 μm) and PA (0.8 – 20 μm) prokaryotes at 30 stations distributed worldwide within the bathypelagic oceanic realm (2,150 – 4,000 m depth) using high throughput sequencing of the small subunit ribosomal RNA gene (16S rRNA). A high proportion of the bathypelagic prokaryotes were mostly found either attached to particles or freely in the surrounding water but rarely in both types of environments. In particular, this trait was deeply conserved through their phylogeny suggesting that the deep-ocean particles and the surrounding water constitute two highly distinct niches and that transitions from one to the other have been rare at an evolutionary time-scale. As a consequence, PA and FL communities had clear alpha- and beta-diversity differences that exceeded the global-scale geographical variation. Our study organizes the bathypelagic prokaryotic diversity into a reasonable number of ecologically coherent taxa regarding their association to particles, a first step for understanding which are the microbes responsible for the processing of the dissolved and particulate pools of organic matter that have a very different biogeochemical role in the deep ocean.

  10. Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water.

    Science.gov (United States)

    Frank, Alexander H; Garcia, Juan A L; Herndl, Gerhard J; Reinthaler, Thomas

    2016-06-01

    To decipher the influence of depth stratification and surface provincialism on the dark ocean prokaryotic community composition, we sampled the major deep-water masses in the eastern North Atlantic covering three biogeographic provinces. Their diversity was evaluated using ordination and canonical analysis of 454 pyrotag sequences. Variance partitioning suggested that 16% of the variation in the bacterial community composition was based on depth stratification while 9% of the variation was due to geographic location. General linear mixed effect models showed that the community of the subsurface waters was connected to the dark ocean prokaryotic communities in different biogeographic provinces. Cluster analysis indicated that some prokaryotic taxa are specific to distinct regions in bathypelagic water masses. Taken together, our data suggest that the dark ocean prokaryotic community composition of the eastern North Atlantic is primed by the formation and the horizontal transport of water masses. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  11. Prosecutor: parameter-free inference of gene function for prokaryotes using DNA microarray data, genomic context and multiple gene annotation sources

    Directory of Open Access Journals (Sweden)

    van Hijum Sacha AFT

    2008-10-01

    Full Text Available Abstract Background Despite a plethora of functional genomic efforts, the function of many genes in sequenced genomes remains unknown. The increasing amount of microarray data for many species allows employing the guilt-by-association principle to predict function on a large scale: genes exhibiting similar expression patterns are more likely to participate in shared biological processes. Results We developed Prosecutor, an application that enables researchers to rapidly infer gene function based on available gene expression data and functional annotations. Our parameter-free functional prediction method uses a sensitive algorithm to achieve a high association rate of linking genes with unknown function to annotated genes. Furthermore, Prosecutor utilizes additional biological information such as genomic context and known regulatory mechanisms that are specific for prokaryotes. We analyzed publicly available transcriptome data sets and used literature sources to validate putative functions suggested by Prosecutor. We supply the complete results of our analysis for 11 prokaryotic organisms on a dedicated website. Conclusion The Prosecutor software and supplementary datasets available at http://www.prosecutor.nl allow researchers working on any of the analyzed organisms to quickly identify the putative functions of their genes of interest. A de novo analysis allows new organisms to be studied.

  12. Genomics of bacteria and archaea: the emerging dynamic view of the prokaryotic world

    Science.gov (United States)

    Koonin, Eugene V.; Wolf, Yuri I.

    2008-01-01

    The first bacterial genome was sequenced in 1995, and the first archaeal genome in 1996. Soon after these breakthroughs, an exponential rate of genome sequencing was established, with a doubling time of approximately 20 months for bacteria and approximately 34 months for archaea. Comparative analysis of the hundreds of sequenced bacterial and dozens of archaeal genomes leads to several generalizations on the principles of genome organization and evolution. A crucial finding that enables functional characterization of the sequenced genomes and evolutionary reconstruction is that the majority of archaeal and bacterial genes have conserved orthologs in other, often, distant organisms. However, comparative genomics also shows that horizontal gene transfer (HGT) is a dominant force of prokaryotic evolution, along with the loss of genetic material resulting in genome contraction. A crucial component of the prokaryotic world is the mobilome, the enormous collection of viruses, plasmids and other selfish elements, which are in constant exchange with more stable chromosomes and serve as HGT vehicles. Thus, the prokaryotic genome space is a tightly connected, although compartmentalized, network, a novel notion that undermines the ‘Tree of Life’ model of evolution and requires a new conceptual framework and tools for the study of prokaryotic evolution. PMID:18948295

  13. Metagenomic Sequence of Prokaryotic Microbiota from an Intermediate-Salinity Pond of a Saltern in Isla Cristina, Spain

    OpenAIRE

    Fernández, Ana B.; León, María José; Vera, Blanca; Sánchez-Porro, Cristina; Ventosa, Antonio

    2014-01-01

    Marine salterns are artificial multipond systems designed for the commercial production of salt by evaporation of seawater. We report here the metagenomic sequence of the prokaryotic microbiota of a pond with intermediate salinity (21% total salts) of a saltern located in Isla Cristina, Huelva, southwest Spain.

  14. Metagenomic sequence of prokaryotic microbiota from an intermediate-salinity pond of a saltern in isla cristina, Spain.

    Science.gov (United States)

    Fernández, Ana B; León, María José; Vera, Blanca; Sánchez-Porro, Cristina; Ventosa, Antonio

    2014-02-13

    Marine salterns are artificial multipond systems designed for the commercial production of salt by evaporation of seawater. We report here the metagenomic sequence of the prokaryotic microbiota of a pond with intermediate salinity (21% total salts) of a saltern located in Isla Cristina, Huelva, southwest Spain.

  15. Short Term INT-Formazan Production as a Proxy for Marine Prokaryote Respiration

    Science.gov (United States)

    Cajal-Medrano, R.; Villegas-Mendoza, J.; Maske, H.

    2016-02-01

    Prokaryotes are poisoned by the tetrazolium electron transport probe INT on time scales of less than one hour, invalidating the interpretation of the rate of in vivo INT reduction to formazan as a proxy for oxygen consumption rates (Villegas-Mendoza et al. 2015). We measured oxygen consumption rate (R; µM O2 hour-1) and electron transport activity with in vivo INT formazan production (IFP, mM formazan) at 0.5 mM INT during 1 hour exposure time of natural communities and cultures of the marine bacteria Vibrio harveyi growing in batch and continuous cultures. A strong exponential relationship R = 0.20 IFP2.15 (pgrowth rates under aerobic condition. We find that IFP and oxygen consumption increase with bacterial specific growth rates and temperature as expected from basic principles of physiology and biochemistry. Oxygen and nitrogen saturated batch cultures of V. harveyi showed that both, IFP and oxygen consumption increased for 0.8 hours but then stopped similar to natural bacterial communities supporting the above relationship of IFP to prokaryote respiration. Our method implies adding 0.5 mM INT to a plankton sample and incubating for less than 1 hour. After prokaryote separation by size filtration (0.8 mm), the formazan crystals are collected by filtration (0.2 mm) and dissolved in propanol. The absorbance at 485 nm per sample volume yields the formazan potential that is related to prokaryote respiration in the sample.

  16. ProOpDB: Prokaryotic Operon DataBase.

    Science.gov (United States)

    Taboada, Blanca; Ciria, Ricardo; Martinez-Guerrero, Cristian E; Merino, Enrique

    2012-01-01

    The Prokaryotic Operon DataBase (ProOpDB, http://operons.ibt.unam.mx/OperonPredictor) constitutes one of the most precise and complete repositories of operon predictions now available. Using our novel and highly accurate operon identification algorithm, we have predicted the operon structures of more than 1200 prokaryotic genomes. ProOpDB offers diverse alternatives by which a set of operon predictions can be retrieved including: (i) organism name, (ii) metabolic pathways, as defined by the KEGG database, (iii) gene orthology, as defined by the COG database, (iv) conserved protein domains, as defined by the Pfam database, (v) reference gene and (vi) reference operon, among others. In order to limit the operon output to non-redundant organisms, ProOpDB offers an efficient method to select the most representative organisms based on a precompiled phylogenetic distances matrix. In addition, the ProOpDB operon predictions are used directly as the input data of our Gene Context Tool to visualize their genomic context and retrieve the sequence of their corresponding 5' regulatory regions, as well as the nucleotide or amino acid sequences of their genes.

  17. Patterns of prokaryotic lateral gene transfers affecting parasitic microbial eukaryotes

    DEFF Research Database (Denmark)

    Alsmark, Cecilia; Foster, Peter G; Sicheritz-Pontén, Thomas

    2013-01-01

    BACKGROUND: The influence of lateral gene transfer on gene origins and biology in eukaryotes is poorly understood compared with those of prokaryotes. A number of independent investigations focusing on specific genes, individual genomes, or specific functional categories from various eukaryotes have...... approach to systematically investigate lateral gene transfer affecting the proteomes of thirteen, mainly parasitic, microbial eukaryotes, representing four of the six eukaryotic super-groups. All of the genomes investigated have been significantly affected by prokaryote-to-eukaryote lateral gene transfers...... indicated that lateral gene transfer does indeed affect eukaryotic genomes. However, the lack of common methodology and criteria in these studies makes it difficult to assess the general importance and influence of lateral gene transfer on eukaryotic genome evolution. RESULTS: We used a phylogenomic...

  18. Comparative genomic analysis of translation initiation mechanisms for genes lacking the Shine–Dalgarno sequence in prokaryotes

    KAUST Repository

    Nakagawa, So

    2017-02-15

    In prokaryotes, translation initiation is believed to occur through an interaction between the 3\\' tail of a 16S rRNA and a corresponding Shine-Dalgarno (SD) sequence in the 5\\' untranslated region (UTR) of an mRNA. However, some genes lack SD sequences (non-SD genes), and the fraction of non-SD genes in a genome varies depending on the prokaryotic species. To elucidate non-SD translation initiation mechanisms in prokaryotes from an evolutionary perspective, we statistically examined the nucleotide frequencies around the initiation codons in non-SD genes from 260 prokaryotes (235 bacteria and 25 archaea). We identified distinct nucleotide frequency biases upstream of the initiation codon in bacteria and archaea, likely because of the presence of leaderless mRNAs lacking a 5\\' UTR. Moreover, we observed overall similarities in the nucleotide patterns between upstream and downstream regions of the initiation codon in all examined phyla. Symmetric nucleotide frequency biases might facilitate translation initiation by preventing the formation of secondary structures around the initiation codon. These features are more prominent in species\\' genomes that harbor large fractions of non-SD sequences, suggesting that a reduced stability around the initiation codon is important for efficient translation initiation in prokaryotes.

  19. Comparative genomic analysis of translation initiation mechanisms for genes lacking the Shine–Dalgarno sequence in prokaryotes

    KAUST Repository

    Nakagawa, So; Niimura, Yoshihito; Gojobori, Takashi

    2017-01-01

    In prokaryotes, translation initiation is believed to occur through an interaction between the 3' tail of a 16S rRNA and a corresponding Shine-Dalgarno (SD) sequence in the 5' untranslated region (UTR) of an mRNA. However, some genes lack SD sequences (non-SD genes), and the fraction of non-SD genes in a genome varies depending on the prokaryotic species. To elucidate non-SD translation initiation mechanisms in prokaryotes from an evolutionary perspective, we statistically examined the nucleotide frequencies around the initiation codons in non-SD genes from 260 prokaryotes (235 bacteria and 25 archaea). We identified distinct nucleotide frequency biases upstream of the initiation codon in bacteria and archaea, likely because of the presence of leaderless mRNAs lacking a 5' UTR. Moreover, we observed overall similarities in the nucleotide patterns between upstream and downstream regions of the initiation codon in all examined phyla. Symmetric nucleotide frequency biases might facilitate translation initiation by preventing the formation of secondary structures around the initiation codon. These features are more prominent in species' genomes that harbor large fractions of non-SD sequences, suggesting that a reduced stability around the initiation codon is important for efficient translation initiation in prokaryotes.

  20. Evolution of glutamate dehydrogenase genes: evidence for lateral gene transfer within and between prokaryotes and eukaryotes

    Directory of Open Access Journals (Sweden)

    Roger Andrew J

    2003-06-01

    Full Text Available Abstract Background Lateral gene transfer can introduce genes with novel functions into genomes or replace genes with functionally similar orthologs or paralogs. Here we present a study of the occurrence of the latter gene replacement phenomenon in the four gene families encoding different classes of glutamate dehydrogenase (GDH, to evaluate and compare the patterns and rates of lateral gene transfer (LGT in prokaryotes and eukaryotes. Results We extend the taxon sampling of gdh genes with nine new eukaryotic sequences and examine the phylogenetic distribution pattern of the various GDH classes in combination with maximum likelihood phylogenetic analyses. The distribution pattern analyses indicate that LGT has played a significant role in the evolution of the four gdh gene families. Indeed, a number of gene transfer events are identified by phylogenetic analyses, including numerous prokaryotic intra-domain transfers, some prokaryotic inter-domain transfers and several inter-domain transfers between prokaryotes and microbial eukaryotes (protists. Conclusion LGT has apparently affected eukaryotes and prokaryotes to a similar extent within the gdh gene families. In the absence of indications that the evolution of the gdh gene families is radically different from other families, these results suggest that gene transfer might be an important evolutionary mechanism in microbial eukaryote genome evolution.

  1. Prokaryotic communities in pit mud from different-aged cellars used for the production of Chinese strong-flavored liquor.

    Science.gov (United States)

    Tao, Yong; Li, Jiabao; Rui, Junpeng; Xu, Zhancheng; Zhou, Yan; Hu, Xiaohong; Wang, Xiang; Liu, Menghua; Li, Daping; Li, Xiangzhen

    2014-04-01

    Chinese strong-flavored liquor (CSFL) accounts for more than 70% of all Chinese liquor production. Microbes in pit mud play key roles in the fermentation cellar for the CSFL production. However, microbial diversity, community structure, and cellar-age-related changes in pit mud are poorly understood. Here, we investigated the prokaryotic community structure and diversity in pit-mud samples with different cellar ages (1, 10, 25, and 50 years) using the pyrosequencing technique. Results indicated that prokaryotic diversity increased with cellar age until the age reached 25 years and that prokaryotic community structure changed significantly between three cellar ages (1, 10, and 25 years). Significant correlations between prokaryotic communities and environmental variables (pH, NH4(+), lactic acid, butyric acid, and caproic acid) were observed. Overall, our study results suggested that the long-term brewing operation shapes unique prokaryotic community structure and diversity as well as pit-mud chemistry. We have proposed a three-phase model to characterize the changes of pit-mud prokaryotic communities. (i) Phase I is an initial domestication period. Pit mud is characterized by abundant Lactobacillus and high lactic acid and low pH levels. (ii) Phase II is a transition period. While Lactobacillus abundance decreases dramatically, that of Bacteroidetes and methanogens increases. (iii) Phase III is a relative mature period. The prokaryotic community shows the highest diversity and capability to produce more caproic acid as a precursor for synthesis of ethyl caproate, the main flavor component in CSFL. This research provides scientific evidence to support the practical experience that old fermentation cellars produce high-quality liquor.

  2. Read length and repeat resolution: Exploring prokaryote genomes using next-generation sequencing technologies

    KAUST Repository

    Cahill, Matt J.

    2010-07-12

    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length. 2010 Cahill et al.

  3. Read length and repeat resolution: exploring prokaryote genomes using next-generation sequencing technologies.

    Directory of Open Access Journals (Sweden)

    Matt J Cahill

    Full Text Available BACKGROUND: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. METHODOLOGY/PRINCIPAL FINDINGS: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. CONCLUSIONS: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length.

  4. Read length and repeat resolution: Exploring prokaryote genomes using next-generation sequencing technologies

    KAUST Repository

    Cahill, Matt J.; Kö ser, Claudio U.; Ross, Nicholas E.; Archer, John A.C.

    2010-01-01

    Background: There are a growing number of next-generation sequencing technologies. At present, the most cost-effective options also produce the shortest reads. However, even for prokaryotes, there is uncertainty concerning the utility of these technologies for the de novo assembly of complete genomes. This reflects an expectation that short reads will be unable to resolve small, but presumably abundant, repeats. Methodology/Principal Findings: Using a simple model of repeat assembly, we develop and test a technique that, for any read length, can estimate the occurrence of unresolvable repeats in a genome, and thus predict the number of gaps that would need to be closed to produce a complete sequence. We apply this technique to 818 prokaryote genome sequences. This provides a quantitative assessment of the relative performance of various lengths. Notably, unpaired reads of only 150nt can reconstruct approximately 50% of the analysed genomes with fewer than 96 repeat-induced gaps. Nonetheless, there is considerable variation amongst prokaryotes. Some genomes can be assembled to near contiguity using very short reads while others require much longer reads. Conclusions: Given the diversity of prokaryote genomes, a sequencing strategy should be tailored to the organism under study. Our results will provide researchers with a practical resource to guide the selection of the appropriate read length. 2010 Cahill et al.

  5. 阴道毛滴虫TvRab11C基因的克隆及原核表达%Cloning and prokaryotic expression of TvRab11C gene of Trichomonas vaginalis

    Institute of Scientific and Technical Information of China (English)

    刘畅; 丁鹤; 宫鹏涛; 李建华; 李淑红; 李赫; 张国才; 张西臣

    2012-01-01

    目的 克隆并原核表达阴道毛滴虫TvRab11C(G3 Ras-related protein Rab11C)基因.方法 利用PCR技术扩增阴道毛滴虫TvRab1 1C基因,与原核表达载体pET-28a连接,构建重组原核表达质粒pET-28a-TvRab1 1C,转化大肠杆菌BL21(DE3),IPTG诱导表达,SDS-PAGE分析表达产物的可溶性,Western blot分析表达产物的反应原性.结果 重组原核表达质粒pET-28a-TvRab11C经双酶切及测序证明构建正确;表达的重组蛋白相对分子质量约为30000,主要以包涵体形式存在,可被抗阴道毛滴虫多克隆抗体识别.结论 成功克隆了阴道毛滴虫TvRab11C基因,并在E.coli BL21 (DE3)中获得了表达,为进一步研究TvRas基因和G蛋白与阴道毛滴虫寄生能力和致病性的关系奠定了基础.%Objective To clone the TvRabllC gene of Trichomonas vaginalis and express in prokaryotic cells. Methods The TvRabllC gene was amplified by PCR from T. vaginalis and inserted into prokaryotic expression vector pET-28a. The constructed recombinant plasmid pET-28a-TvRabllC was transformed to E. coli BL21 (DE3) and induced by IPTG. The expressed product was analyzed for solubility by SDS-PAGE and for reactogenicity by Western blot. Results Both restriction analysis and sequencing proved that recombinant plasmid pET-28a-TvRabllC was constructed correctly. The expressed recombinant protein,with a relative molecular mass of about 30 000,mainly existed in a form of inclusion body,and was recognized by polyclonal antibody against T. vaginalis. Conclusion The TvRas gene of T. vaginalis was successfully cloned and expressed in E. coli BL21 (DE3),which laid a foundation of further study on relationship of TvRas gene and protein to the parasitic ability and pathogenicity of T. vaginalis.

  6. Protein Based Molecular Markers Provide Reliable Means to Understand Prokaryotic Phylogeny and Support Darwinian Mode of Evolution

    Directory of Open Access Journals (Sweden)

    Vaibhav eBhandari

    2012-07-01

    Full Text Available The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning whether the Darwinian model of evolution is applicable to the prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs and conserved signature proteins (CSPs for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical

  7. Protein based molecular markers provide reliable means to understand prokaryotic phylogeny and support Darwinian mode of evolution.

    Science.gov (United States)

    Bhandari, Vaibhav; Naushad, Hafiz S; Gupta, Radhey S

    2012-01-01

    The analyses of genome sequences have led to the proposal that lateral gene transfers (LGTs) among prokaryotes are so widespread that they disguise the interrelationships among these organisms. This has led to questioning of whether the Darwinian model of evolution is applicable to prokaryotic organisms. In this review, we discuss the usefulness of taxon-specific molecular markers such as conserved signature indels (CSIs) and conserved signature proteins (CSPs) for understanding the evolutionary relationships among prokaryotes and to assess the influence of LGTs on prokaryotic evolution. The analyses of genomic sequences have identified large numbers of CSIs and CSPs that are unique properties of different groups of prokaryotes ranging from phylum to genus levels. The species distribution patterns of these molecular signatures strongly support a tree-like vertical inheritance of the genes containing these molecular signatures that is consistent with phylogenetic trees. Recent detailed studies in this regard on the Thermotogae and Archaea, which are reviewed here, have identified large numbers of CSIs and CSPs that are specific for the species from these two taxa and a number of their major clades. The genetic changes responsible for these CSIs (and CSPs) initially likely occurred in the common ancestors of these taxa and then vertically transferred to various descendants. Although some CSIs and CSPs in unrelated groups of prokaryotes were identified, their small numbers and random occurrence has no apparent influence on the consistent tree-like branching pattern emerging from other markers. These results provide evidence that although LGT is an important evolutionary force, it does not mask the tree-like branching pattern of prokaryotes or understanding of their evolutionary relationships. The identified CSIs and CSPs also provide novel and highly specific means for identification of different groups of microbes and for taxonomical and biochemical studies.

  8. A quantitative account of genomic island acquisitions in prokaryotes

    Directory of Open Access Journals (Sweden)

    Roos Tom E

    2011-08-01

    Full Text Available Abstract Background Microbial genomes do not merely evolve through the slow accumulation of mutations, but also, and often more dramatically, by taking up new DNA in a process called horizontal gene transfer. These innovation leaps in the acquisition of new traits can take place via the introgression of single genes, but also through the acquisition of large gene clusters, which are termed Genomic Islands. Since only a small proportion of all the DNA diversity has been sequenced, it can be hard to find the appropriate donors for acquired genes via sequence alignments from databases. In contrast, relative oligonucleotide frequencies represent a remarkably stable genomic signature in prokaryotes, which facilitates compositional comparisons as an alignment-free alternative for phylogenetic relatedness. In this project, we test whether Genomic Islands identified in individual bacterial genomes have a similar genomic signature, in terms of relative dinucleotide frequencies, and can therefore be expected to originate from a common donor species. Results When multiple Genomic Islands are present within a single genome, we find that up to 28% of these are compositionally very similar to each other, indicative of frequent recurring acquisitions from the same donor to the same acceptor. Conclusions This represents the first quantitative assessment of common directional transfer events in prokaryotic evolutionary history. We suggest that many of the resident Genomic Islands per prokaryotic genome originated from the same source, which may have implications with respect to their regulatory interactions, and for the elucidation of the common origins of these acquired gene clusters.

  9. Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote.

    Science.gov (United States)

    Strakova, Eva; Zikova, Alice; Vohradsky, Jiri

    2014-01-01

    A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.

  10. Exploring cultivable Bacteria from the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea.

    Science.gov (United States)

    Dupont, Samuel; Carre-Mlouka, Alyssa; Domart-Coulon, Isabelle; Vacelet, Jean; Bourguet-Kondracki, Marie-Lise

    2014-04-01

    Combining culture-dependent and independent approaches, we investigated for the first time the cultivable fraction of the prokaryotic community associated with the carnivorous sponge Asbestopluma hypogea. The heterotrophic prokaryotes isolated from this tiny sponge were compared between specimens freshly collected from cave and maintained in aquarium. Overall, 67 isolates obtained in pure culture were phylogenetically affiliated to the bacterial phyla Proteobacteria, Bacteroidetes, Actinobacteria, and Firmicutes. This cultivable diversity was lower than the prokaryotic diversity obtained by previous pyrosequencing study and comparable to that of another Mediterranean demosponge, the filter-feeding Phorbas tenacior. Furthermore, using fluorescence in situ hybridization, we visualized bacterial and archaeal cells, confirming the presence of both prokaryotes in A. hypogea tissue. Approximately 16% of the bacterial isolates tested positive for chitinolytic activity, suggesting potential microbial involvement in the digestion processes of crustacean prey by this carnivorous sponge. Additionally, 6% and 16% of bacterial isolates revealed antimicrobial and antioxidant activities, respectively. One Streptomyces sp. S1CA strain was identified as a promising candidate for the production of antimicrobial and antioxidant secondary metabolites as well as chitinolytic enzymes. Implications in the context of the sponge biology and prey-feeding strategy are discussed. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  11. DNA sequence and prokaryotic expression analysis of vitellogenin ...

    African Journals Online (AJOL)

    In this study, the DNA sequence of vitellogenin from Antheraea pernyi (Ap-Vg) was identified and its functional domain (30-740 aa, Ap-Vg-1) was expressed in Escherichia coli BL21 (DE3) cells. The recombinant Ap-Vg-1 proteins were purified and used for antibody preparation. The results showed that the intact DNA ...

  12. Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls

    KAUST Repository

    Moran, Xose Anxelu G.; Gasol, Josep M.; Pernice, Massimo C.; Mangot, Jean-Franç ois; Massana, Ramon; Lara, Elena; Vaqué , Dolors; Duarte, Carlos M.

    2017-01-01

    Planktonic heterotrophic prokaryotes make up the largest living biomass and process most organic matter in the ocean. Determining when and where the biomass and activity of heterotrophic prokaryotes are controlled by resource availability (bottom

  13. Over-expression of gene encoding heat shock protein 70 from Mycobacterium tuberculosis and its evaluation as vaccine adjuvant

    Directory of Open Access Journals (Sweden)

    J Dhakal

    2013-01-01

    Full Text Available Background: Heat shock proteins (Hsps are evolutionary ancient and highly conserved molecular chaperons found in prokaryotes as well as eukaryotes. Hsp70 is a predominant member of Hsp family. Microbial Hsp70s (mHsp70s have acquired special significance in immunity since they have been shown to be potent activators of the innate immune system and generate specific immune responses against tumours and infectious agents. Objectives: The present study was aimed to clone express and purify recombinant Hsp70 from the Mycobacterium tuberculosis and characterise it immunologically. The study also aimed at determining the potential of recombinant M. tuberculosis heat shock protein (rMTB-Hsp70 as adjuvant or antigen carrier. Materials and Methods: Cloning of M. tuberculosis heat shock protein (MTB-Hsp70 amplicon was carried out using the pGEMT-Easy vector although for expression, pProExHTb prokaryotic expression vector was used. Purification of recombinant Hsp70 was carried out by nickel-nitrilotriacetic acid (Ni-NTA affinity chromatography. For immunological characterization and determining the adjuvant effect of MTB-Hsp70, BALB/c mice were used. The data obtained was statistically analysed. Results: Hsp70 gene was cloned, sequenced and the sequence data were submitted to National Center for Biotechnology Information (NCBI. Recombinant MTB-Hsp70 was successfully over-expressed using the prokaryotic expression system and purified to homogeneity. The protein was found to be immunodominant. Significant adjuvant effect was produced by the rMTB-Hsp70 when inoculated with recombinant outer membrane protein 31; however, effect was less than the conventionally used the Freund′s adjuvant. Conclusion: Protocol standardised can be followed for bulk production of rHsp70 in a cost-effective manner. Significant adjuvant effect was produced by rMTB-Hsp70; however, the effect was than Freund′s adjuvant. Further, studies need to be carried out to explore its

  14. Spatiotemporal and species variations in prokaryotic communities associated with sediments from surface-flow constructed wetlands for treating swine wastewater.

    Science.gov (United States)

    Jia, Fen; Lai, Cui; Chen, Liang; Zeng, Guangming; Huang, Danlian; Liu, Feng; Li, Xi; Luo, Pei; Wu, Jinshui; Qin, Lei; Zhang, Chen; Cheng, Min; Xu, Piao

    2017-10-01

    Microorganisms are the main mechanisms of pollutants removals in constructed wetlands (CWs) used for wastewater treatment. However, the different biological processes and variations of prokaryotic community in CWs remain poorly understood. In this study, we applied a high-throughput sequencing technique to investigate the prokaryotic communities associated with sediments from pilot-scale surface-flow constructed wetlands (SFCWs) treating swine wastewater (SW) of varying strengths. Our results revealed that highly diverse prokaryotic communities were present in the SFCWs, with Proteobacteria (16.44-44.44%), Acidobacteria (3.25-24.40%), and Chloroflexi (5.77-14.43%) being the major phyla, and Nitrospira (4.14-12.02%), the most dominant genus. The prokaryotic communities in the sediments varied greatly with location and season, which markedly altered the microenvironmental conditions. Principal co-ordinates analysis indicated that SW strength significantly influenced the community structure in sediments of the SFCWs, and canonical correspondence analysis illustrated that the shifts in prokaryotic communities were strongly related to NO 3 - -N and TN in winter; and in summer with NH 4 + N, NO 3 - -N, NO 2 - -N, TN, TP, SOM, and pH. In conclusion, the use of high-throughput sequencing greatly enhanced our understanding of prokaryotic communities with different functional groups in SFCWs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Thermophilic Adaptation in Prokaryotes Is Constrained by Metabolic Costs of Proteostasis

    Science.gov (United States)

    Venev, Sergey V; Zeldovich, Konstantin B

    2018-01-01

    Abstract Prokaryotes evolved to thrive in an extremely diverse set of habitats, and their proteomes bear signatures of environmental conditions. Although correlations between amino acid usage and environmental temperature are well-documented, understanding of the mechanisms of thermal adaptation remains incomplete. Here, we couple the energetic costs of protein folding and protein homeostasis to build a microscopic model explaining both the overall amino acid composition and its temperature trends. Low biosynthesis costs lead to low diversity of physical interactions between amino acid residues, which in turn makes proteins less stable and drives up chaperone activity to maintain appropriate levels of folded, functional proteins. Assuming that the cost of chaperone activity is proportional to the fraction of unfolded client proteins, we simulated thermal adaptation of model proteins subject to minimization of the total cost of amino acid synthesis and chaperone activity. For the first time, we predicted both the proteome-average amino acid abundances and their temperature trends simultaneously, and found strong correlations between model predictions and 402 genomes of bacteria and archaea. The energetic constraint on protein evolution is more apparent in highly expressed proteins, selected by codon adaptation index. We found that in bacteria, highly expressed proteins are similar in composition to thermophilic ones, whereas in archaea no correlation between predicted expression level and thermostability was observed. At the same time, thermal adaptations of highly expressed proteins in bacteria and archaea are nearly identical, suggesting that universal energetic constraints prevail over the phylogenetic differences between these domains of life. PMID:29106597

  16. Microbial biomass and viral infections of heterotrophic prokaryotes in the sub-surface layer of the central Arctic Ocean

    Science.gov (United States)

    Steward, Grieg F.; Fandino, Laura B.; Hollibaugh, James T.; Whitledge, Terry E.; Azam, Farooq

    2007-10-01

    Seawater samples were collected for microbial analyses between 55 and 235 m depth across the Arctic Ocean during the SCICEX 97 expedition (03 September-02 October 1997) using a nuclear submarine as a research platform. Abundances of prokaryotes (range 0.043-0.47×10 9 dm -3) and viruses (range 0.68-11×10 9 dm -3) were correlated ( r=0.66, n=150) with an average virus:prokaryote ratio of 26 (range 5-70). Biomass of prokaryotes integrated from 55 to 235 m ranged from 0.27 to 0.85 g C m -2 exceeding that of phytoplankton (0.005-0.2 g C m -2) or viruses (0.02-0.05 g C m -2) over the same depth range by an order of magnitude on average. Using transmission electron microscopy (TEM), we estimated that 0.5% of the prokaryote community on average (range 0-1.4%) was visibly infected with viruses, which suggests that very little of prokaryotic secondary production was lost due to viral lysis. Intracellular viruses ranged from 5 to >200/cell, with an average apparent burst size of 45±38 (mean±s.d.; n=45). TEM also revealed the presence of putative metal-precipitating bacteria in 8 of 13 samples, which averaged 0.3% of the total prokaryote community (range 0-1%). If these prokaryotes are accessible to protistan grazers, the Fe and Mn associated with their capsules might be an important source of trace metals to the planktonic food web. After combining our abundance and mortality data with data from the literature, we conclude that the biomass of prokaryoplankton exceeds that of phytoplankton when averaged over the upper 250 m of the central Arctic Ocean and that the fate of this biomass is poorly understood.

  17. Non-Random Inversion Landscapes in Prokaryotic Genomes Are Shaped by Heterogeneous Selection Pressures.

    Science.gov (United States)

    Repar, Jelena; Warnecke, Tobias

    2017-08-01

    Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin-terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus-Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  18. Strong negative self regulation of Prokaryotic transcription factors increases the intrinsic noise of protein expression

    Directory of Open Access Journals (Sweden)

    Jenkins Dafyd J

    2008-01-01

    Full Text Available Abstract Background Many prokaryotic transcription factors repress their own transcription. It is often asserted that such regulation enables a cell to homeostatically maintain protein abundance. We explore the role of negative self regulation of transcription in regulating the variability of protein abundance using a variety of stochastic modeling techniques. Results We undertake a novel analysis of a classic model for negative self regulation. We demonstrate that, with standard approximations, protein variance relative to its mean should be independent of repressor strength in a physiological range. Consequently, in that range, the coefficient of variation would increase with repressor strength. However, stochastic computer simulations demonstrate that there is a greater increase in noise associated with strong repressors than predicted by theory. The discrepancies between the mathematical analysis and computer simulations arise because with strong repressors the approximation that leads to Michaelis-Menten-like hyperbolic repression terms ceases to be valid. Because we observe that strong negative feedback increases variability and so is unlikely to be a mechanism for noise control, we suggest instead that negative feedback is evolutionarily favoured because it allows the cell to minimize mRNA usage. To test this, we used in silico evolution to demonstrate that while negative feedback can achieve only a modest improvement in protein noise reduction compared with the unregulated system, it can achieve good improvement in protein response times and very substantial improvement in reducing mRNA levels. Conclusion Strong negative self regulation of transcription may not always be a mechanism for homeostatic control of protein abundance, but instead might be evolutionarily favoured as a mechanism to limit the use of mRNA. The use of hyperbolic terms derived from quasi-steady-state approximation should also be avoided in the analysis of stochastic

  19. A synthetic system for expression of components of a bacterial microcompartment.

    Science.gov (United States)

    Sargent, Frank; Davidson, Fordyce A; Kelly, Ciarán L; Binny, Rachelle; Christodoulides, Natasha; Gibson, David; Johansson, Emelie; Kozyrska, Katarzyna; Lado, Lucia Licandro; Maccallum, Jane; Montague, Rachel; Ortmann, Brian; Owen, Richard; Coulthurst, Sarah J; Dupuy, Lionel; Prescott, Alan R; Palmer, Tracy

    2013-11-01

    In general, prokaryotes are considered to be single-celled organisms that lack internal membrane-bound organelles. However, many bacteria produce proteinaceous microcompartments that serve a similar purpose, i.e. to concentrate specific enzymic reactions together or to shield the wider cytoplasm from toxic metabolic intermediates. In this paper, a synthetic operon encoding the key structural components of a microcompartment was designed based on the genes for the Salmonella propanediol utilization (Pdu) microcompartment. The genes chosen included pduA, -B, -J, -K, -N, -T and -U, and each was shown to produce protein in an Escherichia coli chassis. In parallel, a set of compatible vectors designed to express non-native cargo proteins was also designed and tested. Engineered hexa-His tags allowed isolation of the components of the microcompartments together with co-expressed, untagged, cargo proteins. Finally, an in vivo protease accessibility assay suggested that a PduD-GFP fusion could be protected from proteolysis when co-expressed with the synthetic microcompartment operon. This work gives encouragement that it may be possible to harness the genes encoding a non-native microcompartment for future biotechnological applications.

  20. SIS: a program to generate draft genome sequence scaffolds for prokaryotes

    Directory of Open Access Journals (Sweden)

    Dias Zanoni

    2012-05-01

    Full Text Available Abstract Background Decreasing costs of DNA sequencing have made prokaryotic draft genome sequences increasingly common. A contig scaffold is an ordering of contigs in the correct orientation. A scaffold can help genome comparisons and guide gap closure efforts. One popular technique for obtaining contig scaffolds is to map contigs onto a reference genome. However, rearrangements that may exist between the query and reference genomes may result in incorrect scaffolds, if these rearrangements are not taken into account. Large-scale inversions are common rearrangement events in prokaryotic genomes. Even in draft genomes it is possible to detect the presence of inversions given sufficient sequencing coverage and a sufficiently close reference genome. Results We present a linear-time algorithm that can generate a set of contig scaffolds for a draft genome sequence represented in contigs given a reference genome. The algorithm is aimed at prokaryotic genomes and relies on the presence of matching sequence patterns between the query and reference genomes that can be interpreted as the result of large-scale inversions; we call these patterns inversion signatures. Our algorithm is capable of correctly generating a scaffold if at least one member of every inversion signature pair is present in contigs and no inversion signatures have been overwritten in evolution. The algorithm is also capable of generating scaffolds in the presence of any kind of inversion, even though in this general case there is no guarantee that all scaffolds in the scaffold set will be correct. We compare the performance of sis, the program that implements the algorithm, to seven other scaffold-generating programs. The results of our tests show that sis has overall better performance. Conclusions sis is a new easy-to-use tool to generate contig scaffolds, available both as stand-alone and as a web server. The good performance of sis in our tests adds evidence that large

  1. Prokaryotic Expression of Truncate F Protein Gene of Newcastle Disease Virus%截短NDV F蛋白的原核表达

    Institute of Scientific and Technical Information of China (English)

    王杰; 王宇鹏; 刘振格; 杨鸣发; 林红丽; 田斌; 侯喜林

    2013-01-01

    根据NDV LaSota株F基因已知的抗原表位,对F蛋白进行分段表达。应用RT-PCR方法分段扩增F基因,并将其克隆到pET30a(+)原核表达载体上,得到重组质粒pET30-F780和pET30-F760,将质粒导入BL21(ED3)感受态中,经IPTG诱导表达。表达的重组蛋白通过SDS-PAGE和Westem-blotting方法进行鉴定。表达的两段蛋白大小约为31.1 kDa和27.9 kDa,与预期的蛋白分子量大小相符。Western blot分析表明重组蛋白可以和NDV抗体发生特异性反应。成功构建了原核表达质粒pET-F780和pET-F760,并获得了高效表达,通过Western blot分析表明重组蛋白具有良好的免疫反应性。%According to the epitopes of F gene of NDV LaSota strain,the F gene truncated two fragments were expressed in E.coli BL21 (ED3)strain. The two truncate F gene amplified by RT-PCR were inserted into pET30 (+),a prokaryotic expression vector. The recombinant plasmid pET30-F780 and pET30-F760 were transformed into BL21(ED3)competent cells. SDS-PAGE and Western-blotting screened the recombinant proteins induced by IPTG in E.coli. The size of the recombinant proteins were 31.1 kDa and 27.9 kDa,which were also consistent with those expected. Western-blotting showed that F780 and F760 were of immunogenicity.The recombinant plasmids were constructed,called pET-F780 and pET-F760,which were expressed the corresponding proteins with better immunoreactivity.

  2. Design, Engineering, and Characterization of Prokaryotic Ligand-Binding Transcriptional Activators as Biosensors in Yeast

    DEFF Research Database (Denmark)

    Ambri, Francesca; Snoek, Tim; Skjødt, Mette Louise

    2018-01-01

    process. In the yeast Saccharomyces cerevisiae, implementation of allosterically regulated transcription factors from prokaryotes as metabolite biosensors has proven a valuable strategy to alleviate this screening bottleneck. Here, we present a protocol to select and incorporate prokaryotic...... transcriptional activators as metabolite biosensors in S. cerevisiae. As an example, we outline the engineering and characterization of the LysR-type transcriptional regulator (LTTR) family member BenM from Acetinobacter sp. ADP1 for monitoring accumulation of cis,cis-muconic acid, a bioplast precursor, in yeast...

  3. [Description of the phylogenetic structure of hydrolytic prokaryotic complex in the soils].

    Science.gov (United States)

    Lukacheva, E G; Chernov, T I; Bykova, E M; Vlasenko, A N; Manucharova, N A

    2013-01-01

    With the help of the molecular-biological method of cell hybridization in situ (FISH), the abundance of a physiologically active hydrolytic prokaryotic complex in chernozem and gley-podzolic soils is determined. The total proportion of metabolically active cells, which were detected by hybridization with universal probes as representatives of the domains Bacteria and Archaea, in samples of the studied soil, was from 38% for chernozem up to 78% for gley-podzolic soil of the total number of cells. The differences in the structure of chitinolytic and pectinolytic prokaryotic soil complexes are detected. Along with the high abundance of Actinobacteria and Firmicutes in the soils with chitin, an increase in phylogenetic groups such as Alphaproteobacteria and Bacteroidetes is observed.

  4. PSP: rapid identification of orthologous coding genes under positive selection across multiple closely related prokaryotic genomes.

    Science.gov (United States)

    Su, Fei; Ou, Hong-Yu; Tao, Fei; Tang, Hongzhi; Xu, Ping

    2013-12-27

    With genomic sequences of many closely related bacterial strains made available by deep sequencing, it is now possible to investigate trends in prokaryotic microevolution. Positive selection is a sub-process of microevolution, in which a particular mutation is favored, causing the allele frequency to continuously shift in one direction. Wide scanning of prokaryotic genomes has shown that positive selection at the molecular level is much more frequent than expected. Genes with significant positive selection may play key roles in bacterial adaption to different environmental pressures. However, selection pressure analyses are computationally intensive and awkward to configure. Here we describe an open access web server, which is designated as PSP (Positive Selection analysis for Prokaryotic genomes) for performing evolutionary analysis on orthologous coding genes, specially designed for rapid comparison of dozens of closely related prokaryotic genomes. Remarkably, PSP facilitates functional exploration at the multiple levels by assignments and enrichments of KO, GO or COG terms. To illustrate this user-friendly tool, we analyzed Escherichia coli and Bacillus cereus genomes and found that several genes, which play key roles in human infection and antibiotic resistance, show significant evidence of positive selection. PSP is freely available to all users without any login requirement at: http://db-mml.sjtu.edu.cn/PSP/. PSP ultimately allows researchers to do genome-scale analysis for evolutionary selection across multiple prokaryotic genomes rapidly and easily, and identify the genes undergoing positive selection, which may play key roles in the interactions of host-pathogen and/or environmental adaptation.

  5. Cellular Viscosity in Prokaryotes and Thermal Stability of Low Molecular Weight Biomolecules.

    Science.gov (United States)

    Cuecas, Alba; Cruces, Jorge; Galisteo-López, Juan F; Peng, Xiaojun; Gonzalez, Juan M

    2016-08-23

    Some low molecular weight biomolecules, i.e., NAD(P)H, are unstable at high temperatures. The use of these biomolecules by thermophilic microorganisms has been scarcely analyzed. Herein, NADH stability has been studied at different temperatures and viscosities. NADH decay increased at increasing temperatures. At increasing viscosities, NADH decay rates decreased. Thus, maintaining relatively high cellular viscosity in cells could result in increased stability of low molecular weight biomolecules (i.e., NADH) at high temperatures, unlike what was previously deduced from studies in diluted water solutions. Cellular viscosity was determined using a fluorescent molecular rotor in various prokaryotes covering the range from 10 to 100°C. Some mesophiles showed the capability of changing cellular viscosity depending on growth temperature. Thermophiles and extreme thermophiles presented a relatively high cellular viscosity, suggesting this strategy as a reasonable mechanism to thrive under these high temperatures. Results substantiate the capability of thermophiles and extreme thermophiles (growth range 50-80°C) to stabilize and use generally considered unstable, universal low molecular weight biomolecules. In addition, this study represents a first report, to our knowledge, on cellular viscosity measurements in prokaryotes and it shows the dependency of prokaryotic cellular viscosity on species and growth temperature. Copyright © 2016 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. An integrative and applicable phylogenetic footprinting framework for cis-regulatory motifs identification in prokaryotic genomes.

    Science.gov (United States)

    Liu, Bingqiang; Zhang, Hanyuan; Zhou, Chuan; Li, Guojun; Fennell, Anne; Wang, Guanghui; Kang, Yu; Liu, Qi; Ma, Qin

    2016-08-09

    Phylogenetic footprinting is an important computational technique for identifying cis-regulatory motifs in orthologous regulatory regions from multiple genomes, as motifs tend to evolve slower than their surrounding non-functional sequences. Its application, however, has several difficulties for optimizing the selection of orthologous data and reducing the false positives in motif prediction. Here we present an integrative phylogenetic footprinting framework for accurate motif predictions in prokaryotic genomes (MP(3)). The framework includes a new orthologous data preparation procedure, an additional promoter scoring and pruning method and an integration of six existing motif finding algorithms as basic motif search engines. Specifically, we collected orthologous genes from available prokaryotic genomes and built the orthologous regulatory regions based on sequence similarity of promoter regions. This procedure made full use of the large-scale genomic data and taxonomy information and filtered out the promoters with limited contribution to produce a high quality orthologous promoter set. The promoter scoring and pruning is implemented through motif voting by a set of complementary predicting tools that mine as many motif candidates as possible and simultaneously eliminate the effect of random noise. We have applied the framework to Escherichia coli k12 genome and evaluated the prediction performance through comparison with seven existing programs. This evaluation was systematically carried out at the nucleotide and binding site level, and the results showed that MP(3) consistently outperformed other popular motif finding tools. We have integrated MP(3) into our motif identification and analysis server DMINDA, allowing users to efficiently identify and analyze motifs in 2,072 completely sequenced prokaryotic genomes. The performance evaluation indicated that MP(3) is effective for predicting regulatory motifs in prokaryotic genomes. Its application may enhance

  7. CpLEA5, the Late Embryogenesis Abundant Protein Gene from Chimonanthus praecox, Possesses Low Temperature and Osmotic Resistances in Prokaryote and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Yiling Liu

    2015-11-01

    Full Text Available Plants synthesize and accumulate a series of stress-resistance proteins to protect normal physiological activities under adverse conditions. Chimonanthus praecox which blooms in freezing weather accumulates late embryogenesis abundant proteins (LEAs in flowers, but C. praecox LEAs are little reported. Here, we report a group of five LEA genes of C. praecox (CpLEA5, KT727031. Prokaryotic-expressed CpLEA5 was employed in Escherichia coli to investigate bioactivities and membrane permeability at low-temperature. In comparison with the vacant strains, CpLEA5-containing strains survived in a 20% higher rate; and the degree of cell membrane damage in CpLEA5-containing strains was 55% of that of the vacant strains according to a conductivity test, revealing the low-temperature resistance of CpLEA5 in bacteria. CpLEA5 was also expressed in Pichia pastoris. Interestingly, besides low-temperature resistance, CpLEA5 conferred high resistance to salt and alkali in CpLEA5 overexpressing yeast. The CpLEA5 gene was transferred into Arabidopsis thaliana to also demonstrate CpLEA5 actions in plants. As expected, the transgenic lines were more resistant against low-temperature and drought while compared with the wild type. Taken together, CpLEA5-conferred resistances to several conditions in prokaryote and eukaryotes could have great value as a genetic technology to enhance osmotic stress and low-temperature tolerance.

  8. Taguchi Experimental Design for Optimization of Recombinant Human Growth Hormone Production in CHO Cell Lines and Comparing its Biological Activity with Prokaryotic Growth Hormone.

    Science.gov (United States)

    Aghili, Zahra Sadat; Zarkesh-Esfahani, Sayyed Hamid

    2018-02-01

    Growth hormone deficiency results in growth retardation in children and the GH deficiency syndrome in adults and they need to receive recombinant-GH in order to rectify the GH deficiency symptoms. Mammalian cells have become the favorite system for production of recombinant proteins for clinical application compared to prokaryotic systems because of their capability for appropriate protein folding, assembly, post-translational modification and proper signal. However, production level in mammalian cells is generally low compared to prokaryotic hosts. Taguchi has established orthogonal arrays to describe a large number of experimental situations mainly to reduce experimental errors and to enhance the efficiency and reproducibility of laboratory experiments.In the present study, rhGH was produced in CHO cells and production of rhGH was assessed using Dot blotting, western blotting and Elisa assay. For optimization of rhGH production in CHO cells using Taguchi method An M16 orthogonal experimental design was used to investigate four different culture components. The biological activity of rhGH was assessed using LHRE-TK-Luciferase reporter gene system in HEK-293 and compared to the biological activity of prokaryotic rhGH.A maximal productivity of rhGH was reached in the conditions of 1%DMSO, 1%glycerol, 25 µM ZnSO 4 and 0 mM NaBu. Our findings indicate that control of culture conditions such as the addition of chemical components helps to develop an efficient large-scale and industrial process for the production of rhGH in CHO cells. Results of bioassay indicated that rhGH produced by CHO cells is able to induce GH-mediated intracellular cell signaling and showed higher bioactivity when compared to prokaryotic GH at the same concentrations. © Georg Thieme Verlag KG Stuttgart · New York.

  9. Bioinformatics analysis of disordered proteins in prokaryotes

    Directory of Open Access Journals (Sweden)

    Malkov Saša N

    2011-03-01

    Full Text Available Abstract Background A significant number of proteins have been shown to be intrinsically disordered, meaning that they lack a fixed 3 D structure or contain regions that do not posses a well defined 3 D structure. It has also been proven that a protein's disorder content is related to its function. We have performed an exhaustive analysis and comparison of the disorder content of proteins from prokaryotic organisms (i.e., superkingdoms Archaea and Bacteria with respect to functional categories they belong to, i.e., Clusters of Orthologous Groups of proteins (COGs and groups of COGs-Cellular processes (Cp, Information storage and processing (Isp, Metabolism (Me and Poorly characterized (Pc. We also analyzed the disorder content of proteins with respect to various genomic, metabolic and ecological characteristics of the organism they belong to. We used correlations and association rule mining in order to identify the most confident associations between specific modalities of the characteristics considered and disorder content. Results Bacteria are shown to have a somewhat higher level of protein disorder than archaea, except for proteins in the Me functional group. It is demonstrated that the Isp and Cp functional groups in particular (L-repair function and N-cell motility and secretion COGs of proteins in specific possess the highest disorder content, while Me proteins, in general, posses the lowest. Disorder fractions have been confirmed to have the lowest level for the so-called order-promoting amino acids and the highest level for the so-called disorder promoters. For each pair of organism characteristics, specific modalities are identified with the maximum disorder proteins in the corresponding organisms, e.g., high genome size-high GC content organisms, facultative anaerobic-low GC content organisms, aerobic-high genome size organisms, etc. Maximum disorder in archaea is observed for high GC content-low genome size organisms, high GC content

  10. Biodiversity of prokaryotic communities associated with the ectoderm of Ectopleura crocea (Cnidaria, Hydrozoa.

    Directory of Open Access Journals (Sweden)

    Cristina Gioia Di Camillo

    Full Text Available The surface of many marine organisms is colonized by complex communities of microbes, yet our understanding of the diversity and role of host-associated microbes is still limited. We investigated the association between Ectopleura crocea (a colonial hydroid distributed worldwide in temperate waters and prokaryotic assemblages colonizing the hydranth surface. We used, for the first time on a marine hydroid, a combination of electron and epifluorescence microscopy and 16S rDNA tag pyrosequencing to investigate the associated prokaryotic diversity. Dense assemblages of prokaryotes were associated with the hydrant surface. Two microbial morphotypes were observed: one horseshoe-shaped and one fusiform, worm-like. These prokaryotes were observed on the hydrozoan epidermis, but not in the portions covered by the perisarcal exoskeleton, and their abundance was higher in March while decreased in late spring. Molecular analyses showed that assemblages were dominated by Bacteria rather than Archaea. Bacterial assemblages were highly diversified, with up to 113 genera and 570 Operational Taxonomic Units (OTUs, many of which were rare and contributed to <0.4%. The two most abundant OTUs, likely corresponding to the two morphotypes present on the epidermis, were distantly related to Comamonadaceae (genus Delftia and to Flavobacteriaceae (genus Polaribacter. Epibiontic bacteria were found on E. crocea from different geographic areas but not in other hydroid species in the same areas, suggesting that the host-microbe association is species-specific. This is the first detailed report of bacteria living on the hydrozoan epidermis, and indeed the first study reporting bacteria associated with the epithelium of E. crocea. Our results provide a starting point for future studies aiming at clarifying the role of this peculiar hydrozoan-bacterial association.

  11. Prokaryotic diversity in one of the largest hypersaline coastal lagoons in the world.

    Science.gov (United States)

    Clementino, M M; Vieira, R P; Cardoso, A M; Nascimento, A P A; Silveira, C B; Riva, T C; Gonzalez, A S M; Paranhos, R; Albano, R M; Ventosa, A; Martins, O B

    2008-07-01

    Araruama Lagoon is an environment characterized by high salt concentrations. The low raining and high evaporation rates in this region favored the development of many salty ponds around the lagoon. In order to reveal the microbial composition of this system, we performed a 16S rRNA gene survey. Among archaea, most clones were related to uncultured environmental Euryarchaeota. In lagoon water, we found some clones related to Methanomicrobia and Methanothermococcus groups, while in the saline pond water members related to the genus Haloarcula were detected. Bacterial community was dominated by clones related to Gamma-proteobacteria, Actinobacteria, and Synechococcus in lagoon water, while Salinibacter ruber relatives dominated in saline pond. We also detected the presence of Alpha-proteobacteria, Pseudomonas-like bacteria and Verrucomicrobia. Only representatives of the genus Ralstonia were cosmopolitan, being observed in both systems. The detection of a substantial number of clones related to uncultured archaea and bacteria suggest that the hypersaline waters of Araruama harbor a pool of novel prokaryotic phylotypes, distinct from those observed in other similar systems. We also observed clones related to halophilic genera of cyanobacteria that are specific for each habitat studied. Additionally, two bacterioplankton molecular markers with ecological relevance were analyzed, one is linked to nitrogen fixation (nifH) and the other is linked to carbon fixation by bacterial photosynthesis, the protochlorophyllide genes, revealing a specific genetic distribution in this ecosystem. This is the first study of the biogeography and community structure of microbial assemblages in Brazilian tropical hypersaline environments. This work is directed towards a better understanding of the free-living prokaryotic diversity adapted to life in hypersaline waters.

  12. Relationships between meiofaunal biodiversity and prokaryotic heterotrophic production in different tropical habitats and oceanic regions.

    Science.gov (United States)

    Pusceddu, Antonio; Gambi, Cristina; Corinaldesi, Cinzia; Scopa, Mariaspina; Danovaro, Roberto

    2014-01-01

    Tropical marine ecosystems are among the most diverse of the world oceans, so that assessing the linkages between biodiversity and ecosystem functions (BEF) is a crucial step to predict consequences of biodiversity loss. Most BEF studies in marine ecosystems have been carried out on macrobenthic diversity, whereas the influence of the meiofauna on ecosystem functioning has received much less attention. We compared meiofaunal and nematode biodiversity and prokaryotic heterotrophic production across seagrass, mangrove and reef sediments in the Caribbean, Celebes and Red Seas. For all variables we report the presence of differences among habitats within the same region, and among regions within the same habitat. In all regions, the richness of meiofaunal taxa in reef and seagrass sediments is higher than in mangrove sediments. The sediments of the Celebes Sea show the highest meiofaunal biodiversity. The composition of meiofaunal assemblages varies significantly among habitats in the same region. The nematode beta diversity among habitats within the same region is higher than the beta diversity among regions. Although one site per habitat was considered in each region, these results suggest that the composition of meiofaunal assemblages varies primarily among biogeographic regions, whereas the composition of nematode assemblages varies more considerably among habitats. Meiofauna and nematode biodiversity and prokaryotic heterotrophic production, even after the removal of covariate effects linked with longitude and the quantity and nutritional quality of organic matter, are positively and linearly linked both across regions and within each habitat type. Our results confirm that meiofauna and nematode biodiversity may influence benthic prokaryotic activity, which, in turn, implies that diversity loss could have negative impacts on ecosystem functioning in these systems.

  13. Relationships between meiofaunal biodiversity and prokaryotic heterotrophic production in different tropical habitats and oceanic regions.

    Directory of Open Access Journals (Sweden)

    Antonio Pusceddu

    Full Text Available Tropical marine ecosystems are among the most diverse of the world oceans, so that assessing the linkages between biodiversity and ecosystem functions (BEF is a crucial step to predict consequences of biodiversity loss. Most BEF studies in marine ecosystems have been carried out on macrobenthic diversity, whereas the influence of the meiofauna on ecosystem functioning has received much less attention. We compared meiofaunal and nematode biodiversity and prokaryotic heterotrophic production across seagrass, mangrove and reef sediments in the Caribbean, Celebes and Red Seas. For all variables we report the presence of differences among habitats within the same region, and among regions within the same habitat. In all regions, the richness of meiofaunal taxa in reef and seagrass sediments is higher than in mangrove sediments. The sediments of the Celebes Sea show the highest meiofaunal biodiversity. The composition of meiofaunal assemblages varies significantly among habitats in the same region. The nematode beta diversity among habitats within the same region is higher than the beta diversity among regions. Although one site per habitat was considered in each region, these results suggest that the composition of meiofaunal assemblages varies primarily among biogeographic regions, whereas the composition of nematode assemblages varies more considerably among habitats. Meiofauna and nematode biodiversity and prokaryotic heterotrophic production, even after the removal of covariate effects linked with longitude and the quantity and nutritional quality of organic matter, are positively and linearly linked both across regions and within each habitat type. Our results confirm that meiofauna and nematode biodiversity may influence benthic prokaryotic activity, which, in turn, implies that diversity loss could have negative impacts on ecosystem functioning in these systems.

  14. Prokaryotic responses to ammonium and organic carbon reveal alternative CO2 fixation pathways and importance of alkaline phosphatase in the mesopelagic North Atlantic

    Directory of Open Access Journals (Sweden)

    Federico Baltar

    2016-10-01

    Full Text Available To decipher the response of mesopelagic prokaryotic communities to input of nutrients, we tracked changes in prokaryotic abundance, extracellular enzymatic activities, heterotrophic production, dark dissolved inorganic carbon (DIC fixation, community composition (16S rRNA sequencing and community gene expression (metatranscriptomics in 3 microcosm experiments with water from the mesopelagic North Atlantic. Responses in 3 different treatments amended with thiosulfate, ammonium or organic matter (i.e. pyruvate plus acetate were compared to unamended controls. The strongest stimulation was found in the organic matter enrichments, where all measured rates increased >10-fold. Strikingly, in the organic matter treatment, the dark DIC fixation rates —assumed to be related to autotrophic metabolisms— were equally stimulated as all the other heterotrophic-related parameters. This increase in DIC fixation rates was paralleled by an up-regulation of genes involved in DIC assimilation via anaplerotic pathways. Alkaline phosphatase was the metabolic rate most strongly stimulated and its activity seemed to be related to cross-activation by nonpartner histidine kinases, and/or the activation of genes involved in the regulation of elemental balance during catabolic processes. These findings suggest that episodic events such as strong sedimentation of organic matter into the mesopelagic might trigger rapid increases of originally rare members of the prokaryotic community, enhancing heterotrophic and autotrophic carbon uptake rates, ultimately affecting carbon cycling. Our experiments highlight a number of fairly unstudied microbial processes of potential importance in mesopelagic waters that require future attention.

  15. Detecting uber-operons in prokaryotic genomes.

    Science.gov (United States)

    Che, Dongsheng; Li, Guojun; Mao, Fenglou; Wu, Hongwei; Xu, Ying

    2006-01-01

    We present a study on computational identification of uber-operons in a prokaryotic genome, each of which represents a group of operons that are evolutionarily or functionally associated through operons in other (reference) genomes. Uber-operons represent a rich set of footprints of operon evolution, whose full utilization could lead to new and more powerful tools for elucidation of biological pathways and networks than what operons have provided, and a better understanding of prokaryotic genome structures and evolution. Our prediction algorithm predicts uber-operons through identifying groups of functionally or transcriptionally related operons, whose gene sets are conserved across the target and multiple reference genomes. Using this algorithm, we have predicted uber-operons for each of a group of 91 genomes, using the other 90 genomes as references. In particular, we predicted 158 uber-operons in Escherichia coli K12 covering 1830 genes, and found that many of the uber-operons correspond to parts of known regulons or biological pathways or are involved in highly related biological processes based on their Gene Ontology (GO) assignments. For some of the predicted uber-operons that are not parts of known regulons or pathways, our analyses indicate that their genes are highly likely to work together in the same biological processes, suggesting the possibility of new regulons and pathways. We believe that our uber-operon prediction provides a highly useful capability and a rich information source for elucidation of complex biological processes, such as pathways in microbes. All the prediction results are available at our Uber-Operon Database: http://csbl.bmb.uga.edu/uber, the first of its kind.

  16. Use of prokaryotic transcriptional activators as metabolite biosensors in eukaryotic cells

    DEFF Research Database (Denmark)

    2018-01-01

    The present invention relates to the use of transcriptional activators from prokaryotic organisms for use in eukaryotic cells, such as yeast as sensors of intracellular and extracellular accumulation of a ligand or metabolite specifically activating this transcriptional activator in a eukaryot...

  17. A time series of prokaryote secondary production in the oxygen minimum zone of the Humboldt current system, off central Chile

    Science.gov (United States)

    Levipan, H. A.; Quiñones, R. A.; Urrutia, H.

    2007-11-01

    Because the marine picoplanktonic communities are made up of phylogenetically different microbial groups, the re-evaluation of key processes such as bacterial secondary production (BSP) has become an important contemporary issue. The difficulty of differentiating the metabolic processes of Bacteria from the rest of the microorganisms in the water column (i.e., Archaea and Eukarya) has made it difficult to estimate in situ BSP. This work presents the seasonal variability of the prokaryote secondary production (PSP) measured by the incorporation of 14C-leucine in the oxygen minimum zone (OMZ) off central-southern Chile. The BSP and potential archaeal secondary production (PASP) were determined through the combined use of 14C-leucine and N1-guanyl-1, 7-diaminoheptane (GC 7), an efficient inhibitor of archaeal and eukaryote cell growth. BSP accounted for the majority of the PSP (total average, 59 ± 7.5%); maximum values were ∼600 μg C m -3 h -1 and, on several dates, BSP represented 100% of the PSP. Similarly, PASP was also an important fraction of the PSP (total average, 42.4 ± 8.5%), although with levels that ranged from not detectable (on given dates) to levels that represented up to ∼97% of PSP (winter 2003). Our results showed that both Bacteria and Archaea accounted for almost equal portions of the prokaryote heterotrophic metabolism in the OMZ, and that PASP is notoriously enhanced through temporal pulses of heterotrophy. This indicates that, at least in marine systems with high abundance of Archaea (e.g., mesopelagic realm), the secondary production obtained through methods measuring the uptake of radiolabeled substrates should be considered as PSP and not as BSP. If the latter is the target measurement, then the use of an inhibitor of both archaeal and eukaryote cell growth such as GC 7 is recommended.

  18. Emerging experimental and computational technologies for purpose designed engineering of photosynthetic prokaryotes

    KAUST Repository

    Lindblad, Peter

    2016-01-25

    With recent advances in synthetic molecular tools to be used in photosynthetic prokaryotes, like cyanobacteria, it is possible to custom design and construct microbial cells for specific metabolic functions. This cross-disciplinary area of research has emerged within the interfaces of advanced genetic engineering, computational science, and molecular biotechnology. We have initiated the development of a genetic toolbox, using a synthetic biology approach, to custom design, engineer and construct cyanobacteria for selected function and metabolism. One major bottleneck is a controlled transcription and translation of introduced genetic constructs. An additional major issue is genetic stability. I will present and discuss recent progress in our development of genetic tools for advanced cyanobacterial biotechnology. Progress on understanding the electron pathways in native and engineered cyanobacterial enzymes and heterologous expression of non-native enymzes in cyanobacterial cells will be highlighted. Finally, I will discuss our attempts to merge synthetic biology with synthetic chemistry to explore fundamantal questions of protein design and function.

  19. From Plant Infectivity to Growth Patterns: The Role of Blue-Light Sensing in the Prokaryotic World

    Directory of Open Access Journals (Sweden)

    Aba Losi

    2014-01-01

    Full Text Available Flavin-based photoreceptor proteins of the LOV (Light, Oxygen, and Voltage and BLUF (Blue Light sensing Using Flavins superfamilies are ubiquitous among the three life domains and are essential blue-light sensing systems, not only in plants and algae, but also in prokaryotes. Here we review their biological roles in the prokaryotic world and their evolution pathways. An unexpected large number of bacterial species possess flavin-based photosensors, amongst which are important human and plant pathogens. Still, few cases are reported where the activity of blue-light sensors could be correlated to infectivity and/or has been shown to be involved in the activation of specific genes, resulting in selective growth patterns. Metagenomics and bio-informatic analysis have only recently been initiated, but signatures are beginning to emerge that allow definition of a bona fide LOV or BLUF domain, aiming at better selection criteria for novel blue-light sensors. We also present here, for the first time, the phylogenetic tree for archaeal LOV domains that have reached a statistically significant number but have not at all been investigated thus far.

  20. [Prokaryotic expression of Nanog gene and preparation of anti-Nanog antibody].

    Science.gov (United States)

    Li, Jun; Wang, Xiao-min; Dou, Zhong-ying; Li, Yong

    2012-07-01

    To express Nanog fusion protein in Escherichia coli ( E.coli), and to prepare rabbit anti-mouse polyclonal antibodies to the Nanog fusion protein. Mouse Nanog gene was amplified from the pNA992 recombinant plasmid and inserted into pET-32a vector to construct a recombinant expression vector pET-32a-Nanog. The recombinant vector was transfected into E.coli BL21 and induced by IPTG to express in them. The acquired Nanog fusion protein was purified with HisTrap affinity column and injected as an antigen into rabbits for preparing polyclonal antibodies. At last, the titer and specificity of the polyclonal antibodies were analyzed with indirect ELISA, Western blotting and immunocytochemical staining, respectively. The recombinant expression vector pET-32a-Nanog was successfully prepared, transfected and induced to obtain the high expression of the Nanog fusion protein in a form of inclusion bodies in E.coli. After purification, its purity was up to 97%. The titer of anti-Nanog antibodies was 1:32 000 in the immunized rabbit serum, and exhibited a high specificity to Nanog protein. The rabbit anti-mouse polyclonal antibodies have been prepared successfully with a high titer and specificity to the Nanog fusion protein.

  1. Lateral gene transfer between prokaryotes and multicellular eukaryotes: ongoing and significant?

    NARCIS (Netherlands)

    Ros, V.I.D.; Hurst, G.D.D.

    2009-01-01

    The expansion of genome sequencing projects has produced accumulating evidence for lateral transfer of genes between prokaryotic and eukaryotic genomes. However, it remains controversial whether these genes are of functional importance in their recipient host. Nikoh and Nakabachi, in a recent paper

  2. Eukaryotic expression system Pichia pastoris affects the lipase catalytic properties: a monolayer study.

    Directory of Open Access Journals (Sweden)

    Madiha Bou Ali

    Full Text Available Recombinant DNA methods are being widely used to express proteins in both prokaryotic and eukaryotic cells for both fundamental and applied research purposes. Expressed protein must be well characterized to be sure that it retains the same properties as the native one, especially when expressed protein will be used in the pharmaceutical field. In this aim, interfacial and kinetic properties of native, untagged recombinant and tagged recombinant forms of a pancreatic lipase were compared using the monomolecular film technique. Turkey pancreatic lipase (TPL was chosen as model. A kinetic study on the dependence of the stereoselectivity of these three forms on the surface pressure was performed using three dicaprin isomers spread in the form of monomolecular films at the air-water interface. The heterologous expression and the N-His-tag extension were found to modify the pressure preference and decrease the catalytic hydrolysis rate of three dicaprin isomers. Besides, the heterologous expression was found to change the TPL regioselectivity without affecting its stereospecificity contrary to the N-tag extension which retained that regioselectivity and changed the stereospecificity at high surface pressures. The study of parameters, termed Recombinant expression Effects on Catalysis (REC, N-Tag Effects on Catalysis (TEC, and N-Tag and Recombinant expression Effects on Catalysis (TREC showed that the heterologous expression effects on the catalytic properties of the TPL were more deleterious than the presence of an N-terminal tag extension.

  3. Novel thiols of prokaryotes.

    Science.gov (United States)

    Fahey, R C

    2001-01-01

    Glutathione metabolism is associated with oxygenic cyanobacteria and the oxygen-utilizing purple bacteria, but is absent in many other prokaryotes. This review focuses on novel thiols found in those bacteria lacking glutathione. Included are glutathione amide and its perthiol, produced by phototrophic purple sulfur bacteria and apparently involved in their sulfide metabolism. Among archaebacteria, coenzyme M (2-mercaptoethanesulfonic acid) and coenzyme B (7-mercaptoheptanoylthreonine phosphate) play central roles in the anaerobic production of CH4 and associated energy conversion by methanogens, whereas the major thiol in the aerobic phototrophic halobacteria is gamma-glutamylcysteine. The highly aerobic actinomycetes produce mycothiol, a conjugate of N-acetylcysteine with a pseudodisaccharide of glucosamine and myo-inositol, AcCys-GlcNalpha(1 --> 1)Ins, which appears to play an antioxidant role similar to glutathione. Ergothioneine, also produced by actinomycetes, remains a mystery despite many years of study. Available data on the biosynthesis and metabolism of these and other novel thiols is summarized and key areas for additional study are identified.

  4. The current status of cyanobacterial nomenclature under the "prokaryotic" and the "botanical" code.

    Science.gov (United States)

    Oren, Aharon; Ventura, Stefano

    2017-10-01

    Cyanobacterial taxonomy developed in the botanical world because Cyanobacteria/Cyanophyta have traditionally been identified as algae. However, they possess a prokaryotic cell structure, and phylogenetically they belong to the Bacteria. This caused nomenclature problems as the provisions of the International Code of Nomenclature for algae, fungi, and plants (ICN; the "Botanical Code") differ from those of the International Code of Nomenclature of Prokaryotes (ICNP; the "Prokaryotic Code"). While the ICN recognises names validly published under the ICNP, Article 45(1) of the ICN has not yet been reciprocated in the ICNP. Different solutions have been proposed to solve the current problems. In 2012 a Special Committee on the harmonisation of the nomenclature of Cyanobacteria was appointed, but its activity has been minimal. Two opposing proposals to regulate cyanobacterial nomenclature were recently submitted, one calling for deletion of the cyanobacteria from the groups of organisms whose nomenclature is regulated by the ICNP, the second to consistently apply the rules of the ICNP to all cyanobacteria. Following a general overview of the current status of cyanobacterial nomenclature under the two codes we present five case studies of genera for which nomenclatural aspects have been discussed in recent years: Microcystis, Planktothrix, Halothece, Gloeobacter and Nostoc.

  5. Analyzing the Differences and Preferences of Pathogenic and Nonpathogenic Prokaryote Species

    Science.gov (United States)

    Nolen, L.; Duong, K.; Heim, N. A.; Payne, J.

    2015-12-01

    A limited amount of knowledge exists on the large-scale characteristics and differences of pathogenic species in comparison to all prokaryotes. Pathogenic species, like other prokaryotes, have attributes specific to their environment and lifestyles. However, because they have evolved to coexist inside their hosts, the conditions they occupy may be more limited than those of non-pathogenic species. In this study we investigate the possibility of divergent evolution between pathogenic and non-pathogenic species by examining differences that may have evolved as a result of the need to adapt to their host. For this research we analyzed data collected from over 1900 prokaryotic species and performed t-tests using R to quantify potential differences in preferences. To examine the possible divergences from nonpathogenic bacteria, we focused on three variables: cell biovolume, preferred environmental pH, and preferred environmental temperature. We also looked at differences between pathogenic and nonpathogenic species belonging to the same phylum. Our results suggest a strong divergence in abiotic preferences between the two groups, with pathogens occupying a much smaller range of temperatures and pHs than their non-pathogenic counterparts. However, while the median biovolume is different when comparing pathogens and nonpathogens, we cannot conclude that the mean values are significantly different from each other. In addition, we found evidence of convergent evolution, as the temperature and pH preferences of pathogenic bacteria species from different phlya all approach the same values. Pathogenic species do not, however, all approach the same biovolume values, suggesting that specific pH and temperature preferences are more characteristic of pathogens than certain biovolumes.

  6. Listeriolysin S Is a Streptolysin S-Like Virulence Factor That Targets Exclusively Prokaryotic Cells In Vivo

    Directory of Open Access Journals (Sweden)

    Juan J. Quereda

    2017-04-01

    Full Text Available Streptolysin S (SLS-like virulence factors from clinically relevant Gram-positive pathogens have been proposed to behave as potent cytotoxins, playing key roles in tissue infection. Listeriolysin S (LLS is an SLS-like hemolysin/bacteriocin present among Listeria monocytogenes strains responsible for human listeriosis outbreaks. As LLS cytotoxic activity has been associated with virulence, we investigated the LLS-specific contribution to host tissue infection. Surprisingly, we first show that LLS causes only weak red blood cell (RBC hemolysis in vitro and neither confers resistance to phagocytic killing nor favors survival of L. monocytogenes within the blood cells or in the extracellular space (in the plasma. We reveal that LLS does not elicit specific immune responses, is not cytotoxic for eukaryotic cells, and does not impact cell infection by L. monocytogenes. Using in vitro cell infection systems and a murine intravenous infection model, we actually demonstrate that LLS expression is undetectable during infection of cells and murine inner organs. Importantly, upon intravenous animal inoculation, L. monocytogenes is found in the gastrointestinal system, and only in this environment LLS expression is detected in vivo. Finally, we confirm that LLS production is associated with destruction of target bacteria. Our results demonstrate therefore that LLS does not contribute to L. monocytogenes tissue injury and virulence in inner host organs as previously reported. Moreover, we describe that LlsB, a putative posttranslational modification enzyme encoded in the LLS operon, is necessary for murine inner organ colonization. Overall, we demonstrate that LLS is the first SLS-like virulence factor targeting exclusively prokaryotic cells during in vivo infections.

  7. Emerging experimental and computational technologies for purpose designed engineering of photosynthetic prokaryotes

    KAUST Repository

    Lindblad, Peter

    2016-01-01

    With recent advances in synthetic molecular tools to be used in photosynthetic prokaryotes, like cyanobacteria, it is possible to custom design and construct microbial cells for specific metabolic functions. This cross-disciplinary area of research

  8. Energy Coupling Factor-Type ABC Transporters for Vitamin Uptake in Prokaryotes

    NARCIS (Netherlands)

    Erkens, Guus B.; Dosz-Majsnerowska, Maria; ter Beek, Josy; Slotboom, Dirk Jan

    2012-01-01

    Energy coupling factor (ECF) transporters are a subgroup of ATP-binding cassette (ABC) transporters involved in the uptake of vitamins and micronutrients in prokaryotes. In contrast to classical ABC importers, ECF transporters do not make use of water-soluble substrate binding proteins or domains

  9. Focus on Membrane Differentiation and Membrane Domains in the Prokaryotic Cell

    NARCIS (Netherlands)

    Boekema, Egbert J.; Scheffers, Dirk-Jan; van Bezouwen, Laura S.; Bolhuis, Henk; Folea, I. Mihaela

    2013-01-01

    A summary is presented of membrane differentiation in the prokaryotic cell, with an emphasis on the organization of proteins in the plasma/cell membrane. Many species belonging to the Eubacteria and Archaea have special membrane domains and/or membrane proliferation, which are vital for different

  10. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes.

    Science.gov (United States)

    Puigbò, Pere; Lobkovsky, Alexander E; Kristensen, David M; Wolf, Yuri I; Koonin, Eugene V

    2014-08-21

    Genomes of bacteria and archaea (collectively, prokaryotes) appear to exist in incessant flux, expanding via horizontal gene transfer and gene duplication, and contracting via gene loss. However, the actual rates of genome dynamics and relative contributions of different types of event across the diversity of prokaryotes are largely unknown, as are the sizes of microbial supergenomes, i.e. pools of genes that are accessible to the given microbial species. We performed a comprehensive analysis of the genome dynamics in 35 groups (34 bacterial and one archaeal) of closely related microbial genomes using a phylogenetic birth-and-death maximum likelihood model to quantify the rates of gene family gain and loss, as well as expansion and reduction. The results show that loss of gene families dominates the evolution of prokaryotes, occurring at approximately three times the rate of gain. The rates of gene family expansion and reduction are typically seven and twenty times less than the gain and loss rates, respectively. Thus, the prevailing mode of evolution in bacteria and archaea is genome contraction, which is partially compensated by the gain of new gene families via horizontal gene transfer. However, the rates of gene family gain, loss, expansion and reduction vary within wide ranges, with the most stable genomes showing rates about 25 times lower than the most dynamic genomes. For many groups, the supergenome estimated from the fraction of repetitive gene family gains includes about tenfold more gene families than the typical genome in the group although some groups appear to have vast, 'open' supergenomes. Reconstruction of evolution for groups of closely related bacteria and archaea reveals an extremely rapid and highly variable flux of genes in evolving microbial genomes, demonstrates that extensive gene loss and horizontal gene transfer leading to innovation are the two dominant evolutionary processes, and yields robust estimates of the supergenome size.

  11. Recombinant protein expression for structural biology in HEK 293F suspension cells: a novel and accessible approach.

    Science.gov (United States)

    Portolano, Nicola; Watson, Peter J; Fairall, Louise; Millard, Christopher J; Milano, Charles P; Song, Yun; Cowley, Shaun M; Schwabe, John W R

    2014-10-16

    The expression and purification of large amounts of recombinant protein complexes is an essential requirement for structural biology studies. For over two decades, prokaryotic expression systems such as E. coli have dominated the scientific literature over costly and less efficient eukaryotic cell lines. Despite the clear advantage in terms of yields and costs of expressing recombinant proteins in bacteria, the absence of specific co-factors, chaperones and post-translational modifications may cause loss of function, mis-folding and can disrupt protein-protein interactions of certain eukaryotic multi-subunit complexes, surface receptors and secreted proteins. The use of mammalian cell expression systems can address these drawbacks since they provide a eukaryotic expression environment. However, low protein yields and high costs of such methods have until recently limited their use for structural biology. Here we describe a simple and accessible method for expressing and purifying milligram quantities of protein by performing transient transfections of suspension grown HEK (Human Embryonic Kidney) 293 F cells.

  12. Adaptation of the short intergenic spacers between co-directional genes to the Shine-Dalgarno motif among prokaryote genomes

    DEFF Research Database (Denmark)

    Caro, Albert Pallejà; García-Vallvé, Santiago; Romeu, Antoni

    2009-01-01

    ABSTRACT: BACKGROUND: In prokaryote genomes most of the co-directional genes are in close proximity. Even the coding sequence or the stop codon of a gene can overlap with the Shine-Dalgarno (SD) sequence of the downstream co-directional gene. In this paper we analyze how the presence of SD may...... influence the stop codon usage or the spacing lengths between co-directional genes. RESULTS: The SD sequences for 530 prokaryote genomes have been predicted using computer calculations of the base-pairing free energy between translation initiation regions and the 16S rRNA 3' tail. Genomes with a large...... to the discussion of which factors affect the intergenic lengths, which cannot be totally explained by the pressure to compact the prokaryote genomes....

  13. Molecular cloning, structural analysis and expression of a zinc ...

    African Journals Online (AJOL)

    The results of prokaryotic expression of ZnBP and overexpression of the ZnBP gene in A. thaliana improve our understanding of the function of this gene. Future studies should investigate the molecular mechanisms involved in gland morphogenesis in cotton. Key words: Gossypium hirsutum, pigment gland, zinc binding ...

  14. Cloning, expression and purification of d-tagatose 3-epimerase gene from Escherichia coli JM109.

    Science.gov (United States)

    He, Xiaoliang; Zhou, Xiaohui; Yang, Zi; Xu, Le; Yu, Yuxiu; Jia, Lingling; Li, Guoqing

    2015-10-01

    An unknown d-tagatose 3-epimerase (DTE) containing a IoIE domain was identified and cloned from Escherichia coli. This gene was subcloned into the prokaryotic expression vector pET-15b, and induced by IPTG in E. coli BL21 expression system. Through His-select gel column purification and fast-protein liquid chromatography, highly purified and stable DTE protein was produced. The molecular weight of the DTE protein was estimated to be 29.8kDa. The latest 83 DTE sequences from public database were selected and analyzed by molecular clustering, multi-sequence alignment. DTEs were roughly divided into five categories. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. A Comprehensive Curation Shows the Dynamic Evolutionary Patterns of Prokaryotic CRISPRs

    Directory of Open Access Journals (Sweden)

    Guoqin Mai

    2016-01-01

    Full Text Available Motivation. Clustered regularly interspaced short palindromic repeat (CRISPR is a genetic element with active regulation roles for foreign invasive genes in the prokaryotic genomes and has been engineered to work with the CRISPR-associated sequence (Cas gene Cas9 as one of the modern genome editing technologies. Due to inconsistent definitions, the existing CRISPR detection programs seem to have missed some weak CRISPR signals. Results. This study manually curates all the currently annotated CRISPR elements in the prokaryotic genomes and proposes 95 updates to the annotations. A new definition is proposed to cover all the CRISPRs. The comprehensive comparison of CRISPR numbers on the taxonomic levels of both domains and genus shows high variations for closely related species even in the same genus. The detailed investigation of how CRISPRs are evolutionarily manipulated in the 8 completely sequenced species in the genus Thermoanaerobacter demonstrates that transposons act as a frequent tool for splitting long CRISPRs into shorter ones along a long evolutionary history.

  16. [Prokaryotic expression of recombinant prochymosin gene and its antiserum preparation].

    Science.gov (United States)

    Li, Xin-ping; Liu, Huan-huan; Pu, Yan; Zhang, Fu-chun; Li, Yi-jie

    2012-07-01

    To optimize the prochymosin (pCHY) gene codons and express the gene in Escherichia coli (E.coli), and to prepare its antiserum and detect chymosin protein specifically. According to codon usage bias of E.coli, prochymosin gene sequence was synthesized based on the conserved sequences of prochymosin gene from bovine, lamb and camel, and then cloned into the plasmid pET-30a and pcDNA3-AAT-COMP-C3d3 (pcD-ACC), respectively. pET-30a-pCHY was expressed, as the detected antigen, in E.coli BL21(DE3) after IPTG induction. RT-PCR was used to detect prochymosin mRNA expression in liver from the mice injected pcDNA3-AAT-COMP-pCHY-C3d3(pACCC) by hydrodynamics-based transfection method. To prepare the antiserum of prochymosin, pACCC and GST-pCHY proteins were used to immunize New Zealand rabbits in accordance with DNA prime-protein boost strategy. Antibody levels were tested by ELISA. Western blotting showed the molecular weight of His-pCHY protein was about 55 000, similar to the expected molecular size. ELISA demonstrated that the titer level of prochymosin antiserum was high. Based on the codon optimization, we have obtained high-titer prochymosin antiserum through DNA vaccine vector pcD-ACC combined with DNA prime-protein boost strategy, similar to that by protein vaccine.

  17. Deep sub-seafloor prokaryotes stimulated at interfaces over geological time RID B-1731-2010 RID A-1877-2008 RID D-2690-2009 RID A-2970-2010

    DEFF Research Database (Denmark)

    Parkes, RJ; Webster, G.; Cragg, BA

    2005-01-01

    in numbers of prokaryotes at depth were more restricted but also corresponded to increased activity; however, this time they were associated with repeating layers of diatom-rich sediments ( about 9 Myr old). These results show that deep sedimentary prokaryotes can have high activity, have changing diversity...... Pacific Ocean sites, margin and open ocean, both of which have deep, subsurface stimulation of prokaryotic processes associated with geochemical and/or sedimentary interfaces. At 90 m depth in the margin site, stimulation was such that prokaryote numbers were higher ( about 13-fold) and activity rates...

  18. The Response of Heterotrophic Prokaryote and Viral Communities to Labile Organic Carbon Inputs Is Controlled by the Predator Food Chain Structure.

    Science.gov (United States)

    Sandaa, Ruth-Anne; Pree, Bernadette; Larsen, Aud; Våge, Selina; Töpper, Birte; Töpper, Joachim P; Thyrhaug, Runar; Thingstad, Tron Frede

    2017-08-23

    Factors controlling the community composition of marine heterotrophic prokaryotes include organic-C, mineral nutrients, predation, and viral lysis. Two mesocosm experiments, performed at an Arctic location and bottom-up manipulated with organic-C, had very different results in community composition for both prokaryotes and viruses. Previously, we showed how a simple mathematical model could reproduce food web level dynamics observed in these mesocosms, demonstrating strong top-down control through the predator chain from copepods via ciliates and heterotrophic nanoflagellates. Here, we use a steady-state analysis to connect ciliate biomass to bacterial carbon demand. This gives a coupling of top-down and bottom-up factors whereby low initial densities of ciliates are associated with mineral nutrient-limited heterotrophic prokaryotes that do not respond to external supply of labile organic-C. In contrast, high initial densities of ciliates give carbon-limited growth and high responsiveness to organic-C. The differences observed in ciliate abundance, and in prokaryote abundance and community composition in the two experiments were in accordance with these predictions. Responsiveness in the viral community followed a pattern similar to that of prokaryotes. Our study provides a unique link between the structure of the predator chain in the microbial food web and viral abundance and diversity.

  19. PePPER : a webserver for prediction of prokaryote promoter elements and regulons

    NARCIS (Netherlands)

    de Jong, Anne; Pietersma, Hilco; Cordes, Martijn; Kuipers, Oscar P.; Kok, Jan

    2012-01-01

    Background: Accurate prediction of DNA motifs that are targets of RNA polymerases, sigma factors and transcription factors (TFs) in prokaryotes is a difficult mission mainly due to as yet undiscovered features in DNA sequences or structures in promoter regions. Improved prediction and comparison

  20. Prokaryotic diversity of the Saccharomyces cerevisiae Atx1p-mediated copper pathway.

    NARCIS (Netherlands)

    Bakel, H. van; Huynen, M.A.; Wijmenga, C.

    2004-01-01

    MOTIVATION: Several genes involved in the cellular import of copper and its subsequent incorporation into the high-affinity iron transport complex in Saccharomyces cerevisiae are known to be conserved between eukaryotes and prokaryotes. However, the degree to which these genes share their functional

  1. Advanced technologies for improved expression of recombinant proteins in bacteria: perspectives and applications.

    Science.gov (United States)

    Gupta, Sanjeev K; Shukla, Pratyoosh

    2016-12-01

    Prokaryotic expression systems are superior in producing valuable recombinant proteins, enzymes and therapeutic products. Conventional microbial technology is evolving gradually and amalgamated with advanced technologies in order to give rise to improved processes for the production of metabolites, recombinant biopharmaceuticals and industrial enzymes. Recently, several novel approaches have been employed in a bacterial expression platform to improve recombinant protein expression. These approaches involve metabolic engineering, use of strong promoters, novel vector elements such as inducers and enhancers, protein tags, secretion signals, high-throughput devices for cloning and process screening as well as fermentation technologies. Advancement of the novel technologies in E. coli systems led to the production of "difficult to express" complex products including small peptides, antibody fragments, few proteins and full-length aglycosylated monoclonal antibodies in considerable large quantity. Wacker's secretion technologies, Pfenex system, inducers, cell-free systems, strain engineering for post-translational modification, such as disulfide bridging and bacterial N-glycosylation, are still under evaluation for the production of complex proteins and peptides in E. coli in an efficient manner. This appraisal provides an impression of expression technologies developed in recent times for enhanced production of heterologous proteins in E. coli which are of foremost importance for diverse applications in microbiology and biopharmaceutical production.

  2. Prokaryotic Phylogenies Inferred from Whole-Genome Sequence and Annotation Data

    Directory of Open Access Journals (Sweden)

    Wei Du

    2013-01-01

    Full Text Available Phylogenetic trees are used to represent the evolutionary relationship among various groups of species. In this paper, a novel method for inferring prokaryotic phylogenies using multiple genomic information is proposed. The method is called CGCPhy and based on the distance matrix of orthologous gene clusters between whole-genome pairs. CGCPhy comprises four main steps. First, orthologous genes are determined by sequence similarity, genomic function, and genomic structure information. Second, genes involving potential HGT events are eliminated, since such genes are considered to be the highly conserved genes across different species and the genes located on fragments with abnormal genome barcode. Third, we calculate the distance of the orthologous gene clusters between each genome pair in terms of the number of orthologous genes in conserved clusters. Finally, the neighbor-joining method is employed to construct phylogenetic trees across different species. CGCPhy has been examined on different datasets from 617 complete single-chromosome prokaryotic genomes and achieved applicative accuracies on different species sets in agreement with Bergey's taxonomy in quartet topologies. Simulation results show that CGCPhy achieves high average accuracy and has a low standard deviation on different datasets, so it has an applicative potential for phylogenetic analysis.

  3. Prokaryotic community composition in alkaline-fermented skate (Raja pulchra).

    Science.gov (United States)

    Jang, Gwang Il; Kim, Gahee; Hwang, Chung Yeon; Cho, Byung Cheol

    2017-02-01

    Prokaryotes were extracted from skates and fermented skates purchased from fish markets and a local manufacturer in South Korea. The prokaryotic community composition of skates and fermented skates was investigated using 16S rRNA pyrosequencing. The ranges for pH and salinity of the grinded tissue extract from fermented skates were 8.4-8.9 and 1.6-6.6%, respectively. Urea and ammonia concentrations were markedly low and high, respectively, in fermented skates compared to skates. Species richness was increased in fermented skates compared to skates. Dominant and predominant bacterial groups present in the fermented skates belonged to the phylum Firmicutes, whereas those in skates belonged to Gammaproteobacteria. The major taxa found in Firmicutes were Atopostipes (Carnobacteriaceae, Lactobacillales) and/or Tissierella (Tissierellaceae, Tissierellales). A combination of RT-PCR and pyrosequencing for active bacterial composition showed that the dominant taxa i.e., Atopostipes and Tissierella, were active in fermented skate. Those dominant taxa are possibly marine lactic acid bacteria. Marine bacteria of the taxa Lactobacillales and/or Clostridia seem to be important in alkaline fermentation of skates. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Selection on start codons in prokaryotes and potential compensatory nucleotide substitutions.

    Science.gov (United States)

    Belinky, Frida; Rogozin, Igor B; Koonin, Eugene V

    2017-09-29

    Reconstruction of the evolution of start codons in 36 groups of closely related bacterial and archaeal genomes reveals purifying selection affecting AUG codons. The AUG starts are replaced by GUG and especially UUG significantly less frequently than expected under the neutral expectation derived from the frequencies of the respective nucleotide triplet substitutions in non-coding regions and in 4-fold degenerate sites. Thus, AUG is the optimal start codon that is actively maintained by purifying selection. However, purifying selection on start codons is significantly weaker than the selection on the same codons in coding sequences, although the switches between the codons result in conservative amino acid substitutions. The only exception is the AUG to UUG switch that is strongly selected against among start codons. Selection on start codons is most pronounced in evolutionarily conserved, highly expressed genes. Mutation of the start codon to a sub-optimal form (GUG or UUG) tends to be compensated by mutations in the Shine-Dalgarno sequence towards a stronger translation initiation signal. Together, all these findings indicate that in prokaryotes, translation start signals are subject to weak but significant selection for maximization of initiation rate and, consequently, protein production.

  5. Viruses and Protists Induced-mortality of Prokaryotes around the Antarctic Peninsula during the Austral Summer

    KAUST Repository

    Vaque, Dolors; Boras, Julia A.; Torrent-Llagostera, Francesc; Agusti, Susana; Arrieta, J M; Lara, Elena; Castillo, Yaiza M.; Duarte, Carlos M.; Sala, Maria M.

    2017-01-01

    During the Austral summer 2009 we studied three areas surrounding the Antarctic Peninsula: the Bellingshausen Sea, the Bransfield Strait and the Weddell Sea. We aimed to investigate, whether viruses or protists were the main agents inducing prokaryotic mortality rates, and the sensitivity to temperature of prokaryotic heterotrophic production and mortality based on the activation energy (Ea) for each process. Seawater samples were taken at seven depths (0.1-100 m) to quantify viruses, prokaryotes and protists abundances, and heterotrophic prokaryotic production (PHP). Viral lytic production, lysogeny, and mortality rates of prokaryotes due to viruses and protists were estimated at surface (0.1-1 m) and at the Deep Fluorescence Maximum (DFM, 12-55 m) at eight representative stations of the three areas. The average viral lytic production ranged from 1.0 +/- 0.3 x 10(7) viruses ml(-1) d(-1) in the Bellingshausen Sea to1.3 +/- 0.7 x 10(7) viruses ml(-1) d(-1) in the Bransfield Strait, while lysogeny, when detectable, recorded the lowest value in the Bellingshausen Sea (0.05 +/- 0.05 x 10(7) viruses ml(-1) d(-1)) and the highest in the Weddell Sea (4.3 +/- 3.5 x 10(7) viruses ml(-1) d(-1)). Average mortality rates due to viruses ranged from 9.7 +/- 6.1 x 10(4) cells ml(-1) d(-1) in the Weddell Sea to 14.3 +/- 4.0 x 10(4) cells ml(-1) d(-1) in the Bellingshausen Sea, and were higher than averaged grazing rates in the Weddell Sea (5.9 +/- 1.1 x 10(4) cells ml(-1) d(-1)) and in the Bellingshausen Sea (6.8 +/- 0.9 x 10(4) cells ml-1 d(-1)). The highest impact on prokaryotes by viruses and main differences between viral and protists activities were observed in surface samples: 17.8 +/- 6.8 x 10(4) cells ml(-1) d(-1) and 6.5 +/- 3.9 x 10(4) cells ml(-1) d(-1) in the Weddell Sea; 22.1 +/- 9.6 x 10(4) cells ml(-1) d(-1) and 11.6 +/- 1.4 x 10(4) cells ml(-1) d(-1) in the Bransfield Strait; and 16.1 +/- 5.7 x 10(4) cells ml(-1) d(-1) and 7.9 +/- 2.6 x 10(4) cells ml(-1) d(-1) in

  6. Viruses and Protists Induced-mortality of Prokaryotes around the Antarctic Peninsula during the Austral Summer

    KAUST Repository

    Vaque, Dolors

    2017-03-27

    During the Austral summer 2009 we studied three areas surrounding the Antarctic Peninsula: the Bellingshausen Sea, the Bransfield Strait and the Weddell Sea. We aimed to investigate, whether viruses or protists were the main agents inducing prokaryotic mortality rates, and the sensitivity to temperature of prokaryotic heterotrophic production and mortality based on the activation energy (Ea) for each process. Seawater samples were taken at seven depths (0.1-100 m) to quantify viruses, prokaryotes and protists abundances, and heterotrophic prokaryotic production (PHP). Viral lytic production, lysogeny, and mortality rates of prokaryotes due to viruses and protists were estimated at surface (0.1-1 m) and at the Deep Fluorescence Maximum (DFM, 12-55 m) at eight representative stations of the three areas. The average viral lytic production ranged from 1.0 +/- 0.3 x 10(7) viruses ml(-1) d(-1) in the Bellingshausen Sea to1.3 +/- 0.7 x 10(7) viruses ml(-1) d(-1) in the Bransfield Strait, while lysogeny, when detectable, recorded the lowest value in the Bellingshausen Sea (0.05 +/- 0.05 x 10(7) viruses ml(-1) d(-1)) and the highest in the Weddell Sea (4.3 +/- 3.5 x 10(7) viruses ml(-1) d(-1)). Average mortality rates due to viruses ranged from 9.7 +/- 6.1 x 10(4) cells ml(-1) d(-1) in the Weddell Sea to 14.3 +/- 4.0 x 10(4) cells ml(-1) d(-1) in the Bellingshausen Sea, and were higher than averaged grazing rates in the Weddell Sea (5.9 +/- 1.1 x 10(4) cells ml(-1) d(-1)) and in the Bellingshausen Sea (6.8 +/- 0.9 x 10(4) cells ml-1 d(-1)). The highest impact on prokaryotes by viruses and main differences between viral and protists activities were observed in surface samples: 17.8 +/- 6.8 x 10(4) cells ml(-1) d(-1) and 6.5 +/- 3.9 x 10(4) cells ml(-1) d(-1) in the Weddell Sea; 22.1 +/- 9.6 x 10(4) cells ml(-1) d(-1) and 11.6 +/- 1.4 x 10(4) cells ml(-1) d(-1) in the Bransfield Strait; and 16.1 +/- 5.7 x 10(4) cells ml(-1) d(-1) and 7.9 +/- 2.6 x 10(4) cells ml(-1) d(-1) in

  7. Footprints of Optimal Protein Assembly Strategies in the Operonic Structure of Prokaryotes

    Directory of Open Access Journals (Sweden)

    Jan Ewald

    2015-04-01

    Full Text Available In this work, we investigate optimality principles behind synthesis strategies for protein complexes using a dynamic optimization approach. We show that the cellular capacity of protein synthesis has a strong influence on optimal synthesis strategies reaching from a simultaneous to a sequential synthesis of the subunits of a protein complex. Sequential synthesis is preferred if protein synthesis is strongly limited, whereas a simultaneous synthesis is optimal in situations with a high protein synthesis capacity. We confirm the predictions of our optimization approach through the analysis of the operonic organization of protein complexes in several hundred prokaryotes. Thereby, we are able to show that cellular protein synthesis capacity is a driving force in the dissolution of operons comprising the subunits of a protein complex. Thus, we also provide a tested hypothesis explaining why the subunits of many prokaryotic protein complexes are distributed across several operons despite the presumably less precise co-regulation.

  8. Cloning and expression of chaetomium thermophilum xylanase 11-A gene in prokaryote

    International Nuclear Information System (INIS)

    Wajid, S.; Latif, F.; Afzal, S.; Rajoka, I.

    2008-01-01

    The xylanase gene was cloned into pET32a(+) and expressed in E. coli BL21 under T7 promotor alongwith fusion protein. The SDS-PAGE and western blot analysis showed a protein of 42 kDa. The best expression of xylanase enzyme was found by using xylose as carbon source and lactose as an inducer. The maximum activity of xylanase expressed in E. coli was 6.02 U/mL in the presence of 2% xylose in DS medium. The activity of recombinant xylanase was observed on 1% xylan LB agar plates, showed halos of xylan clearance when lactose was used as an inducer. (author)

  9. Proposal to modify Rule 10a and to delete Recommendation 10a(3) from the International Code of Nomenclature of Prokaryotes.

    Science.gov (United States)

    Oren, Aharon

    2017-09-01

    Principle 2 of the Prokaryotic Code, as modified by the ICSP in 1999, reads: 'The nomenclature of prokaryotes is not independent of botanical and zoological nomenclature. When naming new taxa in the rank of genus or higher, due consideration is to be given to avoiding names which are regulated by the International Code of Zoological Nomenclature and the International Code of Nomenclature for algae, fungi and plants'. But in the current version of the Prokaryotic Code no Rule implements this version of Principle 2. I therefore propose adding the following sentence to Rule 10a: 'As from January 2001, newly proposed generic names must not be later homonyms of names in use in botany or zoology'. Recommendation 10a(3) of the Code states: 'Avoid introducing into bacteriology as generic names such names as are in use in botany or zoology, in particular well-known names'. This Recommendation contravenes the current version of Principle 2 and the proposed new version of Rule 10a. Therefore I propose to delete Recommendation 10a(3) from the Prokaryotic Code.

  10. Method Enabling Gene Expression Studies of Pathogens in a Complex Food Matrix

    DEFF Research Database (Denmark)

    Kjeldgaard, Jette; Henriksen, Sidsel; Cohn, Marianne Thorup

    2011-01-01

    We describe a simple method for stabilizing and extracting high-quality prokaryotic RNA from meat. Heat and salt stress of Escherichia coli and Salmonella spp. in minced meat reproducibly induced dnaK and otsB expression, respectively, as observed by quantitative reverse transcription-PCR (>5-fold...

  11. Comparative evaluation of prokaryotic 16S rDNA clone libraries and SSCP in groundwater samples.

    Science.gov (United States)

    Larentis, Michael; Alfreider, Albin

    2011-06-01

    A comparison of ribosomal RNA sequence analysis methods based on clone libraries and single-strand conformational polymorphism technique (SSCP) was performed with groundwater samples obtained between 523-555 meters below surface. The coverage of analyzed clones by phylotype-richness estimates was between 88-100%, confirming that the clone libraries were adequately examined. Analysis of individual bands retrieved from SSCP gels identified 1-6 different taxonomic units per band, suggesting that a single SSCP band does often represent more than one single prokaryotic species. The prokaryotic diversity obtained by both methods showed an overall difference of 42-80%. In comparison to SSCP, clone libraries underestimated the phylogenetic diversity and only 36-66% of the phylotypes observed with SSCP were also detected with the clone libraries. An exception was a sample where the SSCP analysis of Archaea identified only half of the phylotypes retrieved by the clone library. Overall, this study suggests that the clone library and the SSCP approach do not provide an identical picture of the prokaryotic diversity in groundwater samples. The results clearly show that the SSCP method, although this approach is prone to generate methodological artifacts, was able to detect significantly more phylotypes than microbial community analysis based on clone libraries. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. A Preliminary List of Horizontally Transferred Genes in Prokaryotes Determined by Tree Reconstruction and Reconciliation

    Directory of Open Access Journals (Sweden)

    Hyeonsoo Jeong

    2017-08-01

    Full Text Available Genome-wide global detection of genes involved in horizontal gene transfer (HGT remains an active area of research in medical microbiology and evolutionary genomics. Utilizing the explicit evolutionary method of comparing topologies of a total of 154,805 orthologous gene trees against corresponding 16S rRNA “reference” trees, we previously detected a total of 660,894 candidate HGT events in 2,472 completely-sequenced prokaryotic genomes. Here, we report an HGT-index for each individual gene-reference tree pair reconciliation, representing the total number of detected HGT events on the gene tree divided by the total number of genomes (taxa member of that tree. HGT-index is thus a simple measure indicating the sensitivity of prokaryotic genes to participate (or not participate in HGT. Our preliminary list provides HGT-indices for a total of 69,365 genes (detected in >10 and <50% available prokaryotic genomes that are involved in a wide range of biological processes such as metabolism, information, and bacterial response to environment. Identification of horizontally-derived genes is important to combat antibiotic resistance and is a step forward toward reconstructions of improved phylogenies describing the history of life. Our effort is thus expected to benefit ongoing research in the fields of clinical microbiology and evolutionary biology.

  13. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors

    Directory of Open Access Journals (Sweden)

    Tatiana Tatarinova

    2015-01-01

    Full Text Available Proteins of the same functional family (for example, kinases may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content tend to have longer genes than species with low GC3 content.

  14. Lengths of Orthologous Prokaryotic Proteins Are Affected by Evolutionary Factors.

    Science.gov (United States)

    Tatarinova, Tatiana; Salih, Bilal; Dien Bard, Jennifer; Cohen, Irit; Bolshoy, Alexander

    2015-01-01

    Proteins of the same functional family (for example, kinases) may have significantly different lengths. It is an open question whether such variation in length is random or it appears as a response to some unknown evolutionary driving factors. The main purpose of this paper is to demonstrate existence of factors affecting prokaryotic gene lengths. We believe that the ranking of genomes according to lengths of their genes, followed by the calculation of coefficients of association between genome rank and genome property, is a reasonable approach in revealing such evolutionary driving factors. As we demonstrated earlier, our chosen approach, Bubble-sort, combines stability, accuracy, and computational efficiency as compared to other ranking methods. Application of Bubble Sort to the set of 1390 prokaryotic genomes confirmed that genes of Archaeal species are generally shorter than Bacterial ones. We observed that gene lengths are affected by various factors: within each domain, different phyla have preferences for short or long genes; thermophiles tend to have shorter genes than the soil-dwellers; halophiles tend to have longer genes. We also found that species with overrepresentation of cytosines and guanines in the third position of the codon (GC3 content) tend to have longer genes than species with low GC3 content.

  15. High-temperature protein G is essential for activity of the Escherichia coli clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system.

    Science.gov (United States)

    Yosef, Ido; Goren, Moran G; Kiro, Ruth; Edgar, Rotem; Qimron, Udi

    2011-12-13

    Prokaryotic DNA arrays arranged as clustered regularly interspaced short palindromic repeats (CRISPR), along with their associated proteins, provide prokaryotes with adaptive immunity by RNA-mediated targeting of alien DNA or RNA matching the sequences between the repeats. Here, we present a thorough screening system for the identification of bacterial proteins participating in immunity conferred by the Escherichia coli CRISPR system. We describe the identification of one such protein, high-temperature protein G (HtpG), a homolog of the eukaryotic chaperone heat-shock protein 90. We demonstrate that in the absence of htpG, the E. coli CRISPR system loses its suicidal activity against λ prophage and its ability to provide immunity from lysogenization. Transcomplementation of htpG restores CRISPR activity. We further show that inactivity of the CRISPR system attributable to htpG deficiency can be suppressed by expression of Cas3, a protein that is essential for its activity. Accordingly, we also find that the steady-state level of overexpressed Cas3 is significantly enhanced following HtpG expression. We conclude that HtpG is a newly identified positive modulator of the CRISPR system that is essential for maintaining functional levels of Cas3.

  16. Viruses and Protists Induced-mortality of Prokaryotes around the Antarctic Peninsula during the Austral Summer.

    Science.gov (United States)

    Vaqué, Dolors; Boras, Julia A; Torrent-Llagostera, Francesc; Agustí, Susana; Arrieta, Jesús M; Lara, Elena; Castillo, Yaiza M; Duarte, Carlos M; Sala, Maria M

    2017-01-01

    During the Austral summer 2009 we studied three areas surrounding the Antarctic Peninsula: the Bellingshausen Sea, the Bransfield Strait and the Weddell Sea. We aimed to investigate, whether viruses or protists were the main agents inducing prokaryotic mortality rates, and the sensitivity to temperature of prokaryotic heterotrophic production and mortality based on the activation energy (Ea) for each process. Seawater samples were taken at seven depths (0.1-100 m) to quantify viruses, prokaryotes and protists abundances, and heterotrophic prokaryotic production (PHP). Viral lytic production, lysogeny, and mortality rates of prokaryotes due to viruses and protists were estimated at surface (0.1-1 m) and at the Deep Fluorescence Maximum (DFM, 12-55 m) at eight representative stations of the three areas. The average viral lytic production ranged from 1.0 ± 0.3 × 10 7 viruses ml -1 d -1 in the Bellingshausen Sea to1.3 ± 0.7 × 10 7 viruses ml -1 d -1 in the Bransfield Strait, while lysogeny, when detectable, recorded the lowest value in the Bellingshausen Sea (0.05 ± 0.05 × 10 7 viruses ml -1 d -1 ) and the highest in the Weddell Sea (4.3 ± 3.5 × 10 7 viruses ml -1 d -1 ). Average mortality rates due to viruses ranged from 9.7 ± 6.1 × 10 4 cells ml -1 d -1 in the Weddell Sea to 14.3 ± 4.0 × 10 4 cells ml -1 d -1 in the Bellingshausen Sea, and were higher than averaged grazing rates in the Weddell Sea (5.9 ± 1.1 × 10 4 cells ml -1 d -1 ) and in the Bellingshausen Sea (6.8 ± 0.9 × 10 4 cells ml -1 d -1 ). The highest impact on prokaryotes by viruses and main differences between viral and protists activities were observed in surface samples: 17.8 ± 6.8 × 10 4 cells ml -1 d -1 and 6.5 ± 3.9 × 10 4 cells ml -1 d -1 in the Weddell Sea; 22.1 ± 9.6 × 10 4 cells ml -1 d -1 and 11.6 ± 1.4 × 10 4 cells ml -1 d -1 in the Bransfield Strait; and 16.1 ± 5.7 × 10 4 cells ml -1 d -1 and 7.9 ± 2.6 × 10 4 cells ml -1 d -1 in the Bellingshausen Sea, respectively

  17. MetaMetaDB: a database and analytic system for investigating microbial habitability.

    Directory of Open Access Journals (Sweden)

    Ching-chia Yang

    Full Text Available MetaMetaDB (http://mmdb.aori.u-tokyo.ac.jp/ is a database and analytic system for investigating microbial habitability, i.e., how a prokaryotic group can inhabit different environments. The interaction between prokaryotes and the environment is a key issue in microbiology because distinct prokaryotic communities maintain distinct ecosystems. Because 16S ribosomal RNA (rRNA sequences play pivotal roles in identifying prokaryotic species, a system that comprehensively links diverse environments to 16S rRNA sequences of the inhabitant prokaryotes is necessary for the systematic understanding of the microbial habitability. However, existing databases are biased to culturable prokaryotes and exhibit limitations in the comprehensiveness of the data because most prokaryotes are unculturable. Recently, metagenomic and 16S rRNA amplicon sequencing approaches have generated abundant 16S rRNA sequence data that encompass unculturable prokaryotes across diverse environments; however, these data are usually buried in large databases and are difficult to access. In this study, we developed MetaMetaDB (Meta-Metagenomic DataBase, which comprehensively and compactly covers 16S rRNA sequences retrieved from public datasets. Using MetaMetaDB, users can quickly generate hypotheses regarding the types of environments a prokaryotic group may be adapted to. We anticipate that MetaMetaDB will improve our understanding of the diversity and evolution of prokaryotes.

  18. MetaMetaDB: a database and analytic system for investigating microbial habitability.

    Science.gov (United States)

    Yang, Ching-chia; Iwasaki, Wataru

    2014-01-01

    MetaMetaDB (http://mmdb.aori.u-tokyo.ac.jp/) is a database and analytic system for investigating microbial habitability, i.e., how a prokaryotic group can inhabit different environments. The interaction between prokaryotes and the environment is a key issue in microbiology because distinct prokaryotic communities maintain distinct ecosystems. Because 16S ribosomal RNA (rRNA) sequences play pivotal roles in identifying prokaryotic species, a system that comprehensively links diverse environments to 16S rRNA sequences of the inhabitant prokaryotes is necessary for the systematic understanding of the microbial habitability. However, existing databases are biased to culturable prokaryotes and exhibit limitations in the comprehensiveness of the data because most prokaryotes are unculturable. Recently, metagenomic and 16S rRNA amplicon sequencing approaches have generated abundant 16S rRNA sequence data that encompass unculturable prokaryotes across diverse environments; however, these data are usually buried in large databases and are difficult to access. In this study, we developed MetaMetaDB (Meta-Metagenomic DataBase), which comprehensively and compactly covers 16S rRNA sequences retrieved from public datasets. Using MetaMetaDB, users can quickly generate hypotheses regarding the types of environments a prokaryotic group may be adapted to. We anticipate that MetaMetaDB will improve our understanding of the diversity and evolution of prokaryotes.

  19. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Engelbrecht, Jacob; Brunak, Søren

    1997-01-01

    We have developed a new method for the identification of signal peptides and their cleavage based on neural networks trained on separate sets of prokaryotic and eukaryotic sequence. The method performs significantly better than previous prediction schemes and can easily be applied on genome...

  20. Deep-biosphere consortium of fungi and prokaryotes in Eocene subseafloor basalts.

    Science.gov (United States)

    Bengtson, S; Ivarsson, M; Astolfo, A; Belivanova, V; Broman, C; Marone, F; Stampanoni, M

    2014-11-01

    The deep biosphere of the subseafloor crust is believed to contain a significant part of Earth's biomass, but because of the difficulties of directly observing the living organisms, its composition and ecology are poorly known. We report here a consortium of fossilized prokaryotic and eukaryotic micro-organisms, occupying cavities in deep-drilled vesicular basalt from the Emperor Seamounts, Pacific Ocean, 67.5 m below seafloor (mbsf). Fungal hyphae provide the framework on which prokaryote-like organisms are suspended like cobwebs and iron-oxidizing bacteria form microstromatolites (Frutexites). The spatial inter-relationships show that the organisms were living at the same time in an integrated fashion, suggesting symbiotic interdependence. The community is contemporaneous with secondary mineralizations of calcite partly filling the cavities. The fungal hyphae frequently extend into the calcite, indicating that they were able to bore into the substrate through mineral dissolution. A symbiotic relationship with chemoautotrophs, as inferred for the observed consortium, may be a pre-requisite for the eukaryotic colonization of crustal rocks. Fossils thus open a window to the extant as well as the ancient deep biosphere. © 2014 The Authors. Geobiology Published by John Wiley & Sons Ltd.

  1. CRISPR/Cas systems: new players in gene regulation and bacterial physiology

    Directory of Open Access Journals (Sweden)

    David eWeiss

    2014-04-01

    Full Text Available CRISPR-Cas systems are bacterial defenses against foreign nucleic acids derived from bacteriophages, plasmids or other sources. These systems are targeted in an RNA-dependent, sequence-specific manner, and are also adaptive, providing protection against previously encountered foreign elements. In addition to their canonical function in defense against foreign nucleic acid, their roles in various aspects of bacterial physiology are now being uncovered. We recently revealed a role for a Cas9-based Type II CRISPR-Cas system in the control of endogenous gene expression, a novel form of prokaryotic gene regulation. Cas9 functions in association with two small RNAs to target and alter the stability of an endogenous transcript encoding a bacterial lipoprotein (BLP. Since BLPs are recognized by the host innate immune protein Toll-like Receptor 2 (TLR2, CRISPR-Cas-mediated repression of BLP expression facilitates evasion of TLR2 by the intracellular bacterial pathogen Francisella novicida, and is essential for its virulence. Here we describe the Cas9 regulatory system in detail, as well as data on its role in controlling virulence traits of Neisseria meningitidis and Campylobacter jejuni. We also discuss potential roles of CRISPR-Cas systems in the response to envelope stress and other aspects of bacterial physiology. Since ~45% of bacteria and ~83% of Archaea encode these machineries, the newly appreciated regulatory functions of CRISPR-Cas systems are likely to play broad roles in controlling the pathogenesis and physiology of diverse prokaryotes.

  2. RegPredict: an integrated system for regulon inference in prokaryotes by comparative genomics approach

    Energy Technology Data Exchange (ETDEWEB)

    Novichkov, Pavel S.; Rodionov, Dmitry A.; Stavrovskaya, Elena D.; Novichkova, Elena S.; Kazakov, Alexey E.; Gelfand, Mikhail S.; Arkin, Adam P.; Mironov, Andrey A.; Dubchak, Inna

    2010-05-26

    RegPredict web server is designed to provide comparative genomics tools for reconstruction and analysis of microbial regulons using comparative genomics approach. The server allows the user to rapidly generate reference sets of regulons and regulatory motif profiles in a group of prokaryotic genomes. The new concept of a cluster of co-regulated orthologous operons allows the user to distribute the analysis of large regulons and to perform the comparative analysis of multiple clusters independently. Two major workflows currently implemented in RegPredict are: (i) regulon reconstruction for a known regulatory motif and (ii) ab initio inference of a novel regulon using several scenarios for the generation of starting gene sets. RegPredict provides a comprehensive collection of manually curated positional weight matrices of regulatory motifs. It is based on genomic sequences, ortholog and operon predictions from the MicrobesOnline. An interactive web interface of RegPredict integrates and presents diverse genomic and functional information about the candidate regulon members from several web resources. RegPredict is freely accessible at http://regpredict.lbl.gov.

  3. Melatonin immunoreactivity in the photosynthetic prokaryote Rhodospirillum rubrum: implications for an ancient antioxidant system.

    Science.gov (United States)

    Manchester, L C; Poeggeler, B; Alvares, F L; Ogden, G B; Reiter, R J

    1995-01-01

    Rhodospirillum rubrum is a spiral anoxygenic photosynthetic bacterium that can exist under either aerobic or anaerobic conditions. The organism thrives in the presence of light or complete darkness and represents one of the oldest species of living organisms, possibly 2-3.5 billion years old. The success of this prokaryotic species may be attributed to the evolution of certain indole compounds that offer protection against life-threatening oxygen radicals produced by an evolutionary harsh environment. Melatonin, N-acetyl-5-methoxytryptamine, is an indolic highly conserved molecule that exists in protists, plants, and animals. This study was undertaken to determine the presence of an immunoreactive melatonin in the kingdom Monera and particularly in the photosynthetic bacterium, R. rubrum, under conditions of prolonged darkness or prolonged light. Immunoreactive melatonin was measured during both the extended day and extended night. Significantly more melatonin was observed during the scotophase than the photophase. This study marks the first demonstration of melatonin in a bacterium. The high level of melatonin observed in bacteria may provide on-site protection of bacterial DNA against free radical attack.

  4. Evolutionary consequences of polyploidy in prokaryotes and the origin of mitosis and meiosis.

    Science.gov (United States)

    Markov, Alexander V; Kaznacheev, Ilya S

    2016-06-08

    The origin of eukaryote-specific traits such as mitosis and sexual reproduction remains disputable. There is growing evidence that both mitosis and eukaryotic sex (i.e., the alternation of syngamy and meiosis) may have already existed in the basal eukaryotes. The mating system of the halophilic archaeon Haloferax volcanii probably represents an intermediate stage between typical prokaryotic and eukaryotic sex. H. volcanii is highly polyploid, as well as many other Archaea. Here, we use computer simulation to explore genetic and evolutionary outcomes of polyploidy in amitotic prokaryotes and its possible role in the origin of mitosis, meiosis and eukaryotic sex. Modeling suggests that polyploidy can confer strong short-term evolutionary advantage to amitotic prokaryotes. However, it also promotes the accumulation of recessive deleterious mutations and the risk of extinction in the long term, especially in highly mutagenic environment. There are several possible strategies that amitotic polyploids can use in order to reduce the genetic costs of polyploidy while retaining its benefits. Interestingly, most of these strategies resemble different components or aspects of eukaryotic sex. They include asexual ploidy cycles, equalization of genome copies by gene conversion, high-frequency lateral gene transfer between relatives, chromosome exchange coupled with homologous recombination, and the evolution of more accurate chromosome distribution during cell division (mitosis). Acquisition of mitosis by an amitotic polyploid results in chromosome diversification and specialization. Ultimately, it transforms a polyploid cell into a functionally monoploid one with multiple unique, highly redundant chromosomes. Specialization of chromosomes makes the previously evolved modes of promiscuous chromosome shuffling deleterious. This can result in selective pressure to develop accurate mechanisms of homolog pairing, and, ultimately, meiosis. Emergence of mitosis and the first

  5. Characterization of prokaryotic and eukaryotic promoters usinghidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, Pierre; Brunak, Søren

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma-70 and sigma-54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely...

  6. CVTree3 Web Server for Whole-genome-based and Alignment-free Prokaryotic Phylogeny and Taxonomy

    Directory of Open Access Journals (Sweden)

    Guanghong Zuo

    2015-10-01

    Full Text Available A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each other and ultimately follow the genome data. With the number of sequenced genomes reaching tens of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We now provide one solution in the latest Release 3.0 of the alignment-free and whole-genome-based web server CVTree3. The server resides in a cluster of 64 cores and is equipped with an interactive, collapsible, and expandable tree display. It is capable of comparing the tree branching order with prokaryotic classification at all taxonomic ranks from domains down to species and strains. CVTree3 allows for inquiry by taxon names and trial on lineage modifications. In addition, it reports a summary of monophyletic and non-monophyletic taxa at all ranks as well as produces print-quality subtree figures. After giving an overview of retrospective verification of the CVTree approach, the power of the new server is described for the mega-classification of prokaryotes and determination of taxonomic placement of some newly-sequenced genomes. A few discrepancies between CVTree and 16S rRNA analyses are also summarized with regard to possible taxonomic revisions. CVTree3 is freely accessible to all users at http://tlife.fudan.edu.cn/cvtree3/ without login requirements.

  7. CVTree3 Web Server for Whole-genome-based and Alignment-free Prokaryotic Phylogeny and Taxonomy.

    Science.gov (United States)

    Zuo, Guanghong; Hao, Bailin

    2015-10-01

    A faithful phylogeny and an objective taxonomy for prokaryotes should agree with each other and ultimately follow the genome data. With the number of sequenced genomes reaching tens of thousands, both tree inference and detailed comparison with taxonomy are great challenges. We now provide one solution in the latest Release 3.0 of the alignment-free and whole-genome-based web server CVTree3. The server resides in a cluster of 64 cores and is equipped with an interactive, collapsible, and expandable tree display. It is capable of comparing the tree branching order with prokaryotic classification at all taxonomic ranks from domains down to species and strains. CVTree3 allows for inquiry by taxon names and trial on lineage modifications. In addition, it reports a summary of monophyletic and non-monophyletic taxa at all ranks as well as produces print-quality subtree figures. After giving an overview of retrospective verification of the CVTree approach, the power of the new server is described for the mega-classification of prokaryotes and determination of taxonomic placement of some newly-sequenced genomes. A few discrepancies between CVTree and 16S rRNA analyses are also summarized with regard to possible taxonomic revisions. CVTree3 is freely accessible to all users at http://tlife.fudan.edu.cn/cvtree3/ without login requirements. Copyright © 2015 The Authors. Production and hosting by Elsevier Ltd.. All rights reserved.

  8. Differences in Prokaryotic Species Between Primary and Logged-Over Deep Peat Forest in Sarawak, Malaysia

    International Nuclear Information System (INIS)

    Mohd Shawal Thakib Maidin; Sakinah Safari; Nur Aziemah Ghani; Sharifah Azura Syed Ibrahim; Shamsilawani Ahamed Bakeri; Mohamed Mazmira Mohd Masri; Siti Ramlah Ahmad Ali

    2016-01-01

    Peat land has an important role in environmental sustainability which can be used for agricultural purposes. However, deforestation in the logged-over forest may disrupt the diversity of microbial population in peat soil. Therefore, this study focuses on the differences of microbial populations in Maludam primary forest and Cermat Ceria logged-over forest in Sarawak, Malaysia. The prokaryotic 16S rDNA region was amplified followed by denaturing gradient gel electrophoresis (16S PCR-DGGE) analysis. Berger-Parker and Shannon-Weaver Biodiversity Index showed that Maludam (0.11, 7.75) was more diverse compared to Cermat Ceria (0.19, 7.63). Sequence analysis showed that the bacterial community in Maludam and Cermat Ceria were dominated by unclassified bacteria, followed by Acidobacteria, Actinobacteria, Firmicutes and a-Proteobacteria. Based on the findings, the distinct species that can be found in Maludam were Acidobacterium capsulatum, Solibacter sp., Mycobacterium intracellulare, Rhodoplanes sp., Clostridia bacterium, Exiguobacterium sp. and Lysinibacillus fusiformis. While, the distinct species that can be found in Cermat Ceria were Telmatobacter, Mycobacterium tuberculosis and Bacillus tequilensis. Overall, the findings showed that microbial population in the logged-over forest are less diverse compared to primary forest. Higher prokaryotic diversity identified in the primary forest compared to logged-over forest showed that deforestation might cause prokaryotic population changes to both ecosystems. (author)

  9. Colorimetric sensor for triphosphates and their application as a viable staining agent for prokaryotes and eukaryotes.

    Science.gov (United States)

    Ghosh, Amrita; Shrivastav, Anupama; Jose, D Amilan; Mishra, Sanjiv K; Chandrakanth, C K; Mishra, Sandhya; Das, Amitava

    2008-07-15

    The chromogenic complex 1 x Zn (where 1 is (E)-4-(4-dimethylamino-phenylazo)-N,N-bispyridin-2-ylmethyl-benzenesulfonamide) showed high affinity toward the phosphate ion in tetrabutylammonium phosphate in acetonitrile solution and could preferentially bind to adenosine triphosphate (ATP) in aqueous solution at physiological pH. This binding caused a visual change in color, whereas no such change was noticed with other related anions (adenosine monophosphate, adenosine diphosphate, pyrophosphate, and phosphate) of biological significance. Thus, 1 x Zn could be used as a staining agent for different biological cells through binding to the ATP, generated in situ by the mitochondria (in eukaryotes). For prokaryotes (bacteria) the cell membrane takes care of the cells' energy conversion, since they lack mitochondria. ATP is produced in their unique cell structure on the cell membrane, which is not found in any eukaryotes. These stained cells could be viewed with normal light microscopy. This reagent could even be used for distinguishing the gram-positive and the gram-negative bacteria (prokaryotes). This dye was found to be nonlipophilic in nature and nontoxic to living microbes (eukaryotes and prokaryotes). Further, stained cells were found to grow in their respective media, and this confirmed the maintenance of viability of the microbes even after staining, unlike with many other dyes available commercially.

  10. Thermophilic prokaryotic communities inhabiting the biofilm and well water of a thermal karst system located in Budapest (Hungary).

    Science.gov (United States)

    Anda, Dóra; Makk, Judit; Krett, Gergely; Jurecska, Laura; Márialigeti, Károly; Mádl-Szőnyi, Judit; Borsodi, Andrea K

    2015-07-01

    In this study, scanning electron microscopy (SEM) and 16S rRNA gene-based phylogenetic approach were applied to reveal the morphological structure and genetic diversity of thermophilic prokaryotic communities of a thermal karst well located in Budapest (Hungary). Bacterial and archaeal diversity of the well water (73.7 °C) and the biofilm developed on the inner surface of an outflow pipeline of the well were studied by molecular cloning method. According to the SEM images calcium carbonate minerals serve as a surface for colonization of bacterial aggregates. The vast majority of the bacterial and archaeal clones showed the highest sequence similarities to chemolithoautotrophic species. The bacterial clone libraries were dominated by sulfur oxidizer Thiobacillus (Betaproteobacteria) in the water and Sulfurihydrogenibium (Aquificae) in the biofilm. A relatively high proportion of molecular clones represented genera Thermus and Bellilinea in the biofilm library. The most abundant phylotypes both in water and biofilm archaeal clone libraries were closely related to thermophilic ammonia oxidizer Nitrosocaldus and Nitrososphaera but phylotypes belonging to methanogens were also detected. The results show that in addition to the bacterial sulfur and hydrogen oxidation, mainly archaeal ammonia oxidation may play a decisive role in the studied thermal karst system.

  11. Expression of a pathogen-induced cysteine protease (AdCP) in tapetum results in male sterility in transgenic tobacco.

    Science.gov (United States)

    Shukla, Pawan; Singh, Naveen Kumar; Kumar, Dilip; Vijayan, Sambasivam; Ahmed, Israr; Kirti, Pulugurtha Bharadwaja

    2014-06-01

    Usable male sterility systems have immense potential in developing hybrid varieties in crop plants, which can also be used as a biological safety containment to prevent horizontal transgene flow. Barnase-Barstar system developed earlier was the first approach to engineer male sterility in plants. In an analogous situation, we have evolved a system of inducing pollen abortion and male sterility in transgenic tobacco by expressing a plant gene coding for a protein with known developmental function in contrast to the Barnase-Barstar system, which deploys genes of prokaryotic origin, i.e., from Bacillus amyloliquefaciens. We have used a plant pathogen-induced gene, cysteine protease for inducing male sterility. This gene was identified in the wild peanut, Arachis diogoi differentially expressed when it was challenged with the late leaf spot pathogen, Phaeoisariopsis personata. Arachis diogoi cysteine protease (AdCP) was expressed under the strong tapetum-specific promoter (TA29) and tobacco transformants were generated. Morphological and histological analysis of AdCP transgenic plants showed ablated tapetum and complete pollen abortion in three transgenic lines. Furthermore, transcript analysis displayed the expression of cysteine protease in these male sterile lines and the expression of the protein was identified in western blot analysis using its polyclonal antibody raised in the rabbit system.

  12. Pyrosequencing assessment of prokaryotic and eukaryotic diversity in biofilm communities from a French river.

    Science.gov (United States)

    Bricheux, Geneviève; Morin, Loïc; Le Moal, Gwenaël; Coffe, Gérard; Balestrino, Damien; Charbonnel, Nicolas; Bohatier, Jacques; Forestier, Christiane

    2013-06-01

    Despite the recent and significant increase in the study of aquatic microbial communities, little is known about the microbial diversity of complex ecosystems such as running waters. This study investigated the biodiversity of biofilm communities formed in a river with 454 Sequencing™. This river has the particularity of integrating both organic and microbiological pollution, as receiver of agricultural pollution in its upstream catchment area and urban pollution through discharges of the wastewater treatment plant of the town of Billom. Different regions of the small subunit (SSU) ribosomal RNA gene were targeted using nine pairs of primers, either universal or specific for bacteria, eukarya, or archaea. Our aim was to characterize the widest range of rDNA sequences using different sets of polymerase chain reaction (PCR) primers. A first look at reads abundance revealed that a large majority (47-48%) were rare sequences (<5 copies). Prokaryotic phyla represented the species richness, and eukaryotic phyla accounted for a small part. Among the prokaryotic phyla, Proteobacteria (beta and alpha) predominated, followed by Bacteroidetes together with a large number of nonaffiliated bacterial sequences. Bacillariophyta plastids were abundant. The remaining bacterial phyla, Verrucomicrobia and Cyanobacteria, made up the rest of the bulk biodiversity. The most abundant eukaryotic phyla were annelid worms, followed by Diatoms, and Chlorophytes. These latter phyla attest to the abundance of plastids and the importance of photosynthetic activity for the biofilm. These findings highlight the existence and plasticity of multiple trophic levels within these complex biological systems. © 2013 The Authors. Microbiology Open published by John Wiley & Sons Ltd.

  13. INT (2-(4-Iodophenyl)-3-(4-Nitrophenyl)-5-(Phenyl) Tetrazolium Chloride) Is Toxic to Prokaryote Cells Precluding Its Use with Whole Cells as a Proxy for In Vivo Respiration.

    Science.gov (United States)

    Villegas-Mendoza, Josué; Cajal-Medrano, Ramón; Maske, Helmut

    2015-11-01

    Prokaryote respiration is expected to be responsible for more than half of the community respiration in the ocean, but the lack of a practical method to measure the rate of prokaryote respiration in the open ocean resulted in very few published data leaving the role of organotrophic prokaryotes open to debate. Oxygen consumption rates of oceanic prokaryotes measured with current methods may be biased due to pre-incubation size filtration and long incubation times both of which can change the physiological and taxonomic profile of the sample during the incubation period. In vivo INT reduction has been used in terrestrial samples to estimate respiration rates, and recently, the method was introduced and applied in aquatic ecology. We measured oxygen consumption rates and in vivo INT reduction to formazan in cultures of marine bacterioplankton communities, Vibrio harveyi and the eukaryote Isochrysis galbana. For prokaryotes, we observed a decrease in oxygen consumption rates with increasing INT concentrations between 0.05 and 1 mM. Time series after 0.5 mM INT addition to prokaryote samples showed a burst of in vivo INT reduction to formazan and a rapid decline of oxygen consumption rates to zero within less than an hour. Our data for non-axenic eukaryote cultures suggest poisoning of the eukaryote. Prokaryotes are clearly poisoned by INT on time scales of less than 1 h, invalidating the interpretation of in vivo INT reduction to formazan as a proxy for oxygen consumption rates.

  14. Prokaryotic diversity and community composition in the Salar de Uyuni, a large scale, chaotropic salt flat.

    Science.gov (United States)

    dC Rubin, Sergio S; Marín, Irma; Gómez, Manuel J; Morales, Eduardo A; Zekker, Ivar; San Martín-Uriz, Patxi; Rodríguez, Nuria; Amils, Ricardo

    2017-09-01

    Salar de Uyuni (SdU), with a geological history that reflects 50 000 years of climate change, is the largest hypersaline salt flat on Earth and is estimated to be the biggest lithium reservoir in the world. Its salinity reaches saturation levels for NaCl, a kosmotropic salt, and high concentrations of MgCL 2 and LiCl, both salts considered important chaotrophic stressors. In addition, extreme temperatures, anoxic conditions, high UV irradiance, high albedo and extremely low concentrations of phosphorous, make SdU a unique natural extreme environment in which to contrast hypotheses about limiting factors of life diversification. Geophysical studies of brines from different sampling stations show that water activity is rather constant along SdU. Geochemical measurements show significant differences in magnesium concentration, ranging from 0.2 to 2M. This work analyses the prokaryotic diversity and community structure at four SdU sampling stations, selected according to their location and ionic composition. Prokaryotic communities were composed of both Archaea (with members of the classes Halobacteria, Thermoplasmata and Nanohaloarchaea, from the Euryarchaeota and Nanohaloarcheota phyla respectively) and Bacteria (mainly belonging to Bacteroidetes and Proteobacteria phyla). The important differences in composition of microbial communities inversely correlate with Mg 2+ concentration, suggesting that prokaryotic diversity at SdU is chaotropic dependent. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  15. Co-solute assistance in refolding of recombinant proteins | Gerami ...

    African Journals Online (AJOL)

    Prokaryotic expression system is the most widely used host for the production of recombinant proteins but inclusion body formation is a major bottleneck in the production of recombinant proteins in prokaryotic cells, especially in Escherichia coli. In vitro refolding of inclusion body into the the proteins with native ...

  16. Molecular fossils of prokaryotes in ancient authigenic minerals: archives of microbial activity in reefs and mounds?

    Science.gov (United States)

    Heindel, Katrin; Birgel, Daniel; Richoz, Sylvain; Westphal, Hildegard; Peckmann, Jörn

    2016-04-01

    Molecular fossils (lipid biomarkers) are commonly used as proxies in organic-rich sediments of various sources, including eukaryotes and prokaryotes. Usually, molecular fossils of organisms transferred from the water column to the sediment are studied to monitor environmental changes (e.g., temperature, pH). Apart from these 'allochthonous' molecular fossils, prokaryotes are active in sediments and mats on the seafloor and leave behind 'autochthonous' molecular fossils in situ. In contrast to many phototrophic organisms, most benthic sedimentary prokaryotes are obtaining their energy from oxidation or reduction of organic or inorganic substrates. A peculiarity of some of the sediment-thriving prokaryotes is their ability to trigger in situ mineral precipitation, often but not only due to metabolic activity, resulting in authigenic rocks (microbialites). During that process, prokaryotes are rapidly entombed in the mineral matrix, where the molecular fossils are protected from early (bio)degradation. In contrast to other organic compounds (DNA, proteins etc.), molecular fossils can be preserved over very long time periods (millions of years). Thus, molecular fossils in authigenic mineral phases are perfectly suitable to trace microbial activity back in time. Among the best examples of molecular fossils, which are preserved in authigenic rocks are various microbialites, forming e.g. in phototrophic microbial mats and at cold seeps. Microbialite formation is reported throughout earth history. We here will focus on reefal microbialites form the Early Triassic and the Holocene. After the End-Permian mass extinction, microbialites covered wide areas on the ocean margins. In microbialites from the Griesbachian in Iran and Turkey (both Neotethys), molecular fossils of cyanobacteria, archaea, anoxygenic phototrophs, and sulphate-reducing bacteria indicate the presence of layered microbial mats on the seafloor, in which carbonate precipitation was induced. In association with

  17. Characterization of prokaryotic and eukaryotic promoters using hidden Markov models

    DEFF Research Database (Denmark)

    Pedersen, Anders Gorm; Baldi, P.; Chauvin, Y.

    1996-01-01

    In this paper we utilize hidden Markov models (HMMs) and information theory to analyze prokaryotic and eukaryotic promoters. We perform this analysis with special emphasis on the fact that promoters are divided into a number of different classes, depending on which polymerase-associated factors...... that bind to them. We find that HMMs trained on such subclasses of Escherichia coli promoters (specifically, the so-called sigma 70 and sigma 54 classes) give an excellent classification of unknown promoters with respect to sigma-class. HMMs trained on eukaryotic sequences from human genes also model nicely...

  18. Live virus-free or die: coupling of antivirus immunity and programmed suicide or dormancy in prokaryotes

    Directory of Open Access Journals (Sweden)

    Makarova Kira S

    2012-11-01

    Full Text Available Abstract Background The virus-host arms race is a major theater for evolutionary innovation. Archaea and bacteria have evolved diverse, elaborate antivirus defense systems that function on two general principles: i immune systems that discriminate self DNA from nonself DNA and specifically destroy the foreign, in particular viral, genomes, whereas the host genome is protected, or ii programmed cell suicide or dormancy induced by infection. Presentation of the hypothesis Almost all genomic loci encoding immunity systems such as CRISPR-Cas, restriction-modification and DNA phosphorothioation also encompass suicide genes, in particular those encoding known and predicted toxin nucleases, which do not appear to be directly involved in immunity. In contrast, the immunity systems do not appear to encode antitoxins found in typical toxin-antitoxin systems. This raises the possibility that components of the immunity system themselves act as reversible inhibitors of the associated toxin proteins or domains as has been demonstrated for the Escherichia coli anticodon nuclease PrrC that interacts with the PrrI restriction-modification system. We hypothesize that coupling of diverse immunity and suicide/dormancy systems in prokaryotes evolved under selective pressure to provide robustness to the antivirus response. We further propose that the involvement of suicide/dormancy systems in the coupled antivirus response could take two distinct forms: 1 induction of a dormancy-like state in the infected cell to ‘buy time’ for activation of adaptive immunity; 2 suicide or dormancy as the final recourse to prevent viral spread triggered by the failure of immunity. Testing the hypothesis This hypothesis entails many experimentally testable predictions. Specifically, we predict that Cas2 protein present in all cas operons is a mRNA-cleaving nuclease (interferase that might be activated at an early stage of virus infection to enable incorporation of virus

  19. [Reconstruction of Leptospira interrogans lipL21 gene and characteristics of its expression product].

    Science.gov (United States)

    Luo, Dong-jiao; Hu, Ye; Dennin, R H; Yan, Jie

    2007-09-01

    To reconstruct the nucleotide sequence of Leptospira interrogans lipL21 gene for increasing the output of prokaryotic expression and to understand the changes on immunogenicity of the expression products before and after reconstruction, and to determine the position of envelope lipoprotein LipL21 on the surface of leptospiral body. According to the preferred codons of E.coli, the nucleotide sequence of lipL21 gene was designed and synthesized, and then its prokaryotic expression system was constructed. By using SDS-PAGE plus BioRad agarose image analysor, the expression level changes of lipL21 genes before and after reconstruction were measured. A Western blot assay using rabbit anti-TR/Patoc I serum as the first antibody was performed to identify the immunoreactivity of the two target recombinant proteins rLipL21s before and after reconstruction. The changes of cross agglutination titers of antisera against two rLipL21s before and after reconstruction to the different leptospiral serogroups were demonstrated using microscope agglutination test (MAT). Immuno-electronmicroscopy was applied to confirm the location of LipL21s. The expression outputs of original and reconstructed lipL21 genes were 8.5 % and 46.5 % of the total bacterial proteins, respectively. Both the two rLipL21s could take place immune conjugation reaction with TR/Patoc I antiserum. After immunization with each of the two rLipL21s in rabbits, the animals could produce specific antibody. Similar MAT titers with 1:80 - 1:320 of the two antisera against rLipL21s were present. LipL21 was confirmed to locate on the surface of leptospiral envelope. LipL21 is a superficial antigen of Leptospira interrogans. The expression output of the reconstructed lipL21 gene is remarkably increased. The expression rLipL21 maintains fine antigenicity and immunoreactivity and its antibody still shows an extensive cross immunoagglutination activity. The high expression of the reconstructed lipL21 gene will offer a

  20. Prokaryotic regulatory systems biology: Common principles governing the functional architectures of Bacillus subtilis and Escherichia coli unveiled by the natural decomposition approach.

    Science.gov (United States)

    Freyre-González, Julio A; Treviño-Quintanilla, Luis G; Valtierra-Gutiérrez, Ilse A; Gutiérrez-Ríos, Rosa María; Alonso-Pavón, José A

    2012-10-31

    Escherichia coli and Bacillus subtilis are two of the best-studied prokaryotic model organisms. Previous analyses of their transcriptional regulatory networks have shown that they exhibit high plasticity during evolution and suggested that both converge to scale-free-like structures. Nevertheless, beyond this suggestion, no analyses have been carried out to identify the common systems-level components and principles governing these organisms. Here we show that these two phylogenetically distant organisms follow a set of common novel biologically consistent systems principles revealed by the mathematically and biologically founded natural decomposition approach. The discovered common functional architecture is a diamond-shaped, matryoshka-like, three-layer (coordination, processing, and integration) hierarchy exhibiting feedback, which is shaped by four systems-level components: global transcription factors (global TFs), locally autonomous modules, basal machinery and intermodular genes. The first mathematical criterion to identify global TFs, the κ-value, was reassessed on B. subtilis and confirmed its high predictive power by identifying all the previously reported, plus three potential, master regulators and eight sigma factors. The functionally conserved cores of modules, basal cell machinery, and a set of non-orthologous common physiological global responses were identified via both orthologous genes and non-orthologous conserved functions. This study reveals novel common systems principles maintained between two phylogenetically distant organisms and provides a comparison of their lifestyle adaptations. Our results shed new light on the systems-level principles and the fundamental functions required by bacteria to sustain life. Copyright © 2012 Elsevier B.V. All rights reserved.

  1. Diversity of sulfur-cycle prokaryotes in freshwater lake sediments investigated using aprA as the functional marker gene.

    Science.gov (United States)

    Watanabe, Tomohiro; Kojima, Hisaya; Takano, Yoshinori; Fukui, Manabu

    2013-09-01

    The diversity of sulfate-reducing prokaryotes (SRPs) and sulfur-oxidizing prokaryotes (SOPs) in freshwater lake ecosystems was investigated by cloning and sequencing of the aprA gene, which encodes for a key enzyme in dissimilatory sulfate reduction and sulfur oxidation. To understand their diversity better, the spatial distribution of aprA genes was investigated in sediments collected from six geographically distant lakes in Antarctica and Japan, including a hypersaline lake for comparison. The microbial community compositions of freshwater sediments and a hypersaline sediment showed notable differences. The clones affiliated with Desulfobacteraceae and Desulfobulbaceae were frequently detected in all freshwater lake sediments. The SOP community was mainly composed of four major phylogenetic groups. One of them formed a monophyletic cluster with a sulfur-oxidizing betaproteobacterium, Sulfuricella denitrificans, but the others were not assigned to specific genera. In addition, the AprA sequences, which were not clearly affiliated to either SRP or SOP lineages, dominated the libraries from four freshwater lake sediments. The results showed the wide distribution of some sulfur-cycle prokaryotes across geographical distances and supported the idea that metabolic flexibility is an important feature for SRP survival in low-sulfate environments. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. Functional characterization of a prokaryotic Kir channel.

    Science.gov (United States)

    Enkvetchakul, Decha; Bhattacharyya, Jaya; Jeliazkova, Iana; Groesbeck, Darcy K; Cukras, Catherine A; Nichols, Colin G

    2004-11-05

    The Kir gene family encodes inward rectifying K+ (Kir) channels that are widespread and critical regulators of excitability in eukaryotic cells. A related gene family (KirBac) has recently been identified in prokaryotes. While a crystal structure of one member, Kir-Bac1.1, has been solved, there has been no functional characterization of any KirBac gene products. Here we present functional characterization of KirBac1.1 reconstituted in liposomes. Utilizing a 86Rb+ uptake assay, we demonstrate that KirBac1.1 generates a K+ -selective permeation path that is inhibited by extraliposomal Ba2+ and Ca2+ ions. In contrast to KcsA (an acid-activated bacterial potassium channel), KirBac1.1 is inhibited by extraliposomal acid (pKa approximately 6). This characterization of KirBac1.1 activity now paves the way for further correlation of structure and function in this model Kir channel.

  3. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil.

    Science.gov (United States)

    Caldwell, Adam Collins; Silva, Lívia Carneiro Fidéles; da Silva, Cynthia Canêdo; Ouverney, Cleber Costa

    2015-01-01

    Despite a continuous rise in consumption of coffee over the past 60 years and recent studies showing positive benefits linked to human health, intensive coffee farming practices have been associated with environmental damage, risks to human health, and reductions in biodiversity. In contrast, organic farming has become an increasingly popular alternative, with both environmental and health benefits. This study aimed to characterize and determine the differences in the prokaryotic soil microbiology of three Brazilian coffee farms: one practicing intensive farming, one practicing organic farming, and one undergoing a transition from intensive to organic practices. Soil samples were collected from 20 coffee plant rhizospheres (soil directly influenced by the plant root exudates) and 10 control sites (soil 5 m away from the coffee plantation) at each of the three farms for a total of 90 samples. Profiling of 16S rRNA gene V4 regions revealed high levels of prokaryotic diversity in all three farms, with thousands of species level operational taxonomic units identified in each farm. Additionally, a statistically significant difference was found between each farm's coffee rhizosphere microbiome, as well as between coffee rhizosphere soils and control soils. Two groups of prokaryotes associated with the nitrogen cycle, the archaeal genus Candidatus Nitrososphaera and the bacterial order Rhizobiales were found to be abundant and statistically different in composition between the three farms and in inverse relationship to each other. Many of the nitrogen-fixing genera known to enhance plant growth were found in low numbers (e.g. Rhizobium, Agrobacter, Acetobacter, Rhodospirillum, Azospirillum), but the families in which they belong had some of the highest relative abundance in the dataset, suggesting many new groups may exist in these samples that can be further studied as potential plant growth-promoting bacteria to improve coffee production while diminishing negative

  4. [Characterization of the Structure of the Prokaryotic Complex of Antarctic Permafrost by Molecular Genetic Techniques].

    Science.gov (United States)

    Manucharova, N A; Trosheva, E V; Kol'tsova, E M; Demkina, E V; Karaevskaya, E V; Rivkina, E M; Mardanov, A V; El'-Registan, G I

    2016-01-01

    A prokaryotic mesophilic organotrophic community responsible for 10% of the total microbial number determined by epifluorescence microscopy was reactivated in the samples ofAntarctic permafrost retrieved from the environment favoring long-term preservation of microbial communities (7500 years). No culturable forms were obtained without resuscitation procedures (CFU = 0). Proteobacteria, Actinobacteria, and Firmicutes were the dominant microbial groups in the complex. Initiation of the reactivated microbial complex by addition of chitin (0.1% wt/vol) resulted in an increased share of metabolically active biomass (up to 50%) due to the functional domination of chitinolytics caused by the target resource. Thus, sequential application of resuscitation procedures and initiation of a specific physiological group (in this case, chitinolytics) to a permafrost-preserved microbial community made it possible to reveal a prokaryotic complex capable of reversion of metabolic activity (FISH data), to determine its phylogenetic structure by metagenomic anal-ysis, and to isolate a pure culture of the dominant microorganism with high chitinolytic activity.

  5. Expression of Na,K-ATPase and H,K-ATPase Isoforms with the Baculovirus Expression System

    NARCIS (Netherlands)

    Koenderink, J.B.; Swarts, H.G.

    2016-01-01

    P-type ATPases can be expressed in several cell systems. The baculovirus expressions system uses an insect virus to enter and express proteins in Sf9 insect cells. This expression system is a lytic system in which the cells will die a few days after viral infection. Subsequently, the expressed

  6. A mechanism for ParB-dependent waves of ParA, a protein related to DNA segregation during cell division in prokaryotes

    DEFF Research Database (Denmark)

    Hunding, Axel; Gerdes, Kenn; Charbon, Gitte Ebersbach

    2003-01-01

    in an autocatalytic process. We discuss this mechanism in relation to recent models for MinDE oscillations in E.coli and to microtubule degradation in mitosis. The study points to an ancestral role for the presented pattern types in generating bipolarity in prokaryotes and eukaryotes.......Prokaryotic plasmids encode partitioning (par) loci involved in segregation of DNA to daughter cells at cell division. A functional fusion protein consisting of Walker-type ParA ATPase and green fluorescent protein (Gfp) oscillates back and forth within nucleoid regions with a wave period of about...

  7. Assessing the evolutionary rate of positional orthologous genes in prokaryotes using synteny data

    Directory of Open Access Journals (Sweden)

    Lespinet Olivier

    2007-11-01

    Full Text Available Abstract Background Comparison of completely sequenced microbial genomes has revealed how fluid these genomes are. Detecting synteny blocks requires reliable methods to determining the orthologs among the whole set of homologs detected by exhaustive comparisons between each pair of completely sequenced genomes. This is a complex and difficult problem in the field of comparative genomics but will help to better understand the way prokaryotic genomes are evolving. Results We have developed a suite of programs that automate three essential steps to study conservation of gene order, and validated them with a set of 107 bacteria and archaea that cover the majority of the prokaryotic taxonomic space. We identified the whole set of shared homologs between two or more species and computed the evolutionary distance separating each pair of homologs. We applied two strategies to extract from the set of homologs a collection of valid orthologs shared by at least two genomes. The first computes the Reciprocal Smallest Distance (RSD using the PAM distances separating pairs of homologs. The second method groups homologs in families and reconstructs each family's evolutionary tree, distinguishing bona fide orthologs as well as paralogs created after the last speciation event. Although the phylogenetic tree method often succeeds where RSD fails, the reverse could occasionally be true. Accordingly, we used the data obtained with either methods or their intersection to number the orthologs that are adjacent in for each pair of genomes, the Positional Orthologous Genes (POGs, and to further study their properties. Once all these synteny blocks have been detected, we showed that POGs are subject to more evolutionary constraints than orthologs outside synteny groups, whichever the taxonomic distance separating the compared organisms. Conclusion The suite of programs described in this paper allows a reliable detection of orthologs and is useful for evaluating gene

  8. PSAT: A web tool to compare genomic neighborhoods of multiple prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Wasnick Michael

    2008-03-01

    Full Text Available Abstract Background The conservation of gene order among prokaryotic genomes can provide valuable insight into gene function, protein interactions, or events by which genomes have evolved. Although some tools are available for visualizing and comparing the order of genes between genomes of study, few support an efficient and organized analysis between large numbers of genomes. The Prokaryotic Sequence homology Analysis Tool (PSAT is a web tool for comparing gene neighborhoods among multiple prokaryotic genomes. Results PSAT utilizes a database that is preloaded with gene annotation, BLAST hit results, and gene-clustering scores designed to help identify regions of conserved gene order. Researchers use the PSAT web interface to find a gene of interest in a reference genome and efficiently retrieve the sequence homologs found in other bacterial genomes. The tool generates a graphic of the genomic neighborhood surrounding the selected gene and the corresponding regions for its homologs in each comparison genome. Homologs in each region are color coded to assist users with analyzing gene order among various genomes. In contrast to common comparative analysis methods that filter sequence homolog data based on alignment score cutoffs, PSAT leverages gene context information for homologs, including those with weak alignment scores, enabling a more sensitive analysis. Features for constraining or ordering results are designed to help researchers browse results from large numbers of comparison genomes in an organized manner. PSAT has been demonstrated to be useful for helping to identify gene orthologs and potential functional gene clusters, and detecting genome modifications that may result in loss of function. Conclusion PSAT allows researchers to investigate the order of genes within local genomic neighborhoods of multiple genomes. A PSAT web server for public use is available for performing analyses on a growing set of reference genomes through any

  9. Prokaryote community dynamics in anaerobic co-digestion of swine manure, rice straw and industrial clay residuals.

    Science.gov (United States)

    Jiménez, Janet; Theuerl, Susanne; Bergmann, Ingo; Klocke, Michael; Guerra, Gilda; Romero-Romero, Osvaldo

    The aim of this study was to analyze the effect of the addition of rice straw and clay residuals on the prokaryote methane-producing community structure in a semi-continuously stirred tank reactor fed with swine manure. Molecular techniques, including terminal restriction fragment length polymorphism and a comparative nucleotide sequence analyses of the prokaryotic 16S rRNA genes, were performed. The results showed a positive effect of clay addition on methane yield during the co-digestion of swine manure and rice straw. At the digestion of swine manure, the bacterial phylum Firmicutes and the archaeal family Methanosarcinaceae, particularly Methanosarcina species, were predominant. During the co-digestion of swine manure and rice straw the microbial community changed, and with the addition of clay residual, the phylum Bacteroidetes predominated. The new nutritional conditions resulted in a shift in the archaeal family Methanosarcinaceae community as acetoclastic Methanosaeta species became dominant.

  10. Expression and purification of recombinant truncated human keratinocyte growth factor-1

    International Nuclear Information System (INIS)

    Deng Lin; Ma Jisheng; Liu Xiaoju; Wang Xiaojie; Li Xiaokun; Gong Shouliang; Wang Huiyan; Tian Haishan

    2010-01-01

    Objective: To construct the genetic engineering bacteria highly expressing 23 amino acids human keratinocyte growth factor-1 (rhKGF1 dest23 ) missing N terminal, and provide experimental data for development of new drug for treatment of oral mucositis after radiotherapy and chemotherapy. Methods: PCR was used to synthese 23 amino acids rhKGF1 dest23 missing N terminal and sumo gene fragments, and construct four kinds of recombinant prokaryotic expression vectors: pET22b-rhKGF1 dest23 , pET22b-sumo-rhKGF1 dest23 , pET3c-rhKGF1 dest23 and pET3c-sumo-rhKGF1 dest23 , then they were transformed into prokaryotic expression host bacteria: Rosetta (DE3) plysS, BL21 (DE3), BL21 (DE3) Star plysS, origima(DE3) and BL21AI, the best expression combination of plasmid and host strain of rhKGF1 dest23 protein was screened and purified by CM ion-exchange and heparin affinity chromatography and identified with Western blotting. Results: pET22b-rhKGF1 dest23 plasmid and the BL21AI host bacteria was the best combination of expression, after induced by IPTG and arabinose, the majority of recombinant protein was expressed in soluble form, accounting for about 12% of the total bacterial proteins. Its purity reached to more than 95% of the protein after two steps chromatography, then conformed with Western blotting. Conclusion: Human genetic engineering bacteria of KGF1 dest23 is successfully constructed and induced by IPTG and arabinose, then after CM weak cation exchange and heparin affinity chromatography, the purified rhKGF1 dest23 protein is obtained. (authors)

  11. Response of the rhizosphere prokaryotic community of barley (Hordeum vulgare L.) to elevated atmospheric CO2 concentration in open-top chambers.

    Science.gov (United States)

    Szoboszlay, Márton; Näther, Astrid; Mitterbauer, Esther; Bender, Jürgen; Weigel, Hans-Joachim; Tebbe, Christoph C

    2017-08-01

    The effect of elevated atmospheric CO 2 concentration [CO 2 ] on the diversity and composition of the prokaryotic community inhabiting the rhizosphere of winter barley (Hordeum vulgare L.) was investigated in a field experiment, using open-top chambers. Rhizosphere samples were collected at anthesis (flowering stage) from six chambers with ambient [CO 2 ] (approximately 400 ppm) and six chambers with elevated [CO 2 ] (700 ppm). The V4 region of the 16S rRNA gene was PCR-amplified from the extracted DNA and sequenced on an Illumina MiSeq instrument. Above-ground plant biomass was not affected by elevated [CO 2 ] at anthesis, but plants exposed to elevated [CO 2 ] had significantly higher grain yield. The composition of the rhizosphere prokaryotic communities was very similar under ambient and elevated [CO 2 ]. The dominant taxa were Bacteroidetes, Actinobacteria, Alpha-, Gamma-, and Betaproteobacteria. Elevated [CO 2 ] resulted in lower prokaryotic diversity in the rhizosphere, but did not cause a significant difference in community structure. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  12. Soil Nematodes and Their Prokaryotic Prey Along an Elevation Gradient in The Mojave Desert (Death Valley National Park, California, USA

    Directory of Open Access Journals (Sweden)

    Alyxandra Pikus

    2012-10-01

    Full Text Available We characterized soil communities in the Mojave Desert across an elevation gradient. Our goal was to test the hypothesis that as soil quality improved with increasing elevation (due to increased productivity, the diversity of soil prokaryotes and nematodes would also increase. Soil organic matter and soil moisture content increased with elevation as predicted. Soil salinity did not correlate to elevation, but was highest at a mid-gradient, alluvial site. Soil nematode density, community trophic structure, and diversity did not show patterns related to elevation. Similar results were obtained for diversity of bacteria and archaea. Relationships between soil properties, nematode communities, and prokaryotic diversity were site-specific. For example, at the lowest elevation site, nematode communities contained a high proportion of fungal-feeding species and diversity of bacteria was lowest. At a high-salinity site, nematode density was highest, and overall, nematode density showed an unexpected, positive correlation to salinity. At the highest elevation site, nematode density and species richness were attenuated, despite relatively high moisture and organic matter content for the soils. Our results support emerging evidence for the lack of a relationship between productivity and the diversity of soil nematodes and prokaryotes.

  13. Prokaryotic and eukaryotic features observed on the secondary structures of Giardia SSU rRNAs and its phylogenetic implications.

    Science.gov (United States)

    Hwang, Ui Wook

    2007-04-01

    Phylogenetic position of a diplomonad protist Giardia, a principle cause of diarrhea, among eukaryotes has been vigorously debated so far. Through the comparisons of primary and secondary structures of SSU rRNAs of G. intestinalis, G. microti, G. ardeae, and G. muris, I found two major indel regions (a 6-nt indel and a 22-26-nt indel), which correspond to the helix 10 of the V2 region and helices E23-8 to E23-9 of the V4 region, respectively. As generally shown in eukaryotes, G. intestinalis and G. microti have commonly a relatively longer helix 10 (a 7-bp stem and a 4-nt loop), and also the eukaryote-specific helices E23-6 to E23-9. On the other hand, G. muris and G. ardeae have a shorter helix 10: a 2-bp stem and a 6-nt loop in G. ardeae and a 3-bp stem and a 6-nt loop in G. muris. In the V4, they have a single long helix (like the P23-1 helix in prokaryotes) instead of the helices E23-6 to E23-9. Among the four Giardia species, co-appearance of prokaryote- and eukaryote-typical features might be significant evidence to suggest that Giardia (Archezoa) is a living fossil showing an "intermediate stage" during the evolution from prokaryotes to eukaryotes.

  14. Chronic polyaromatic hydrocarbon (PAH contamination is a marginal driver for community diversity and prokaryotic predicted functioning in coastal sediments

    Directory of Open Access Journals (Sweden)

    Mathilde Jeanbille

    2016-08-01

    Full Text Available Benthic microorganisms are key players in the recycling of organic matter and recalcitrant compounds such as polyaromatic hydrocarbons (PAHs in coastal sediments. Despite their ecological importance, the response of microbial communities to chronic PAH pollution, one of the major threats to coastal ecosystems, has received very little attention. In one of the largest surveys performed so far on coastal sediments, the diversity and composition of microbial communities inhabiting both chronically contaminated and non-contaminated coastal sediments were investigated using high-throughput sequencing on the 18S and 16S rRNA genes. Prokaryotic alpha-diversity showed significant association with salinity, temperature, and organic carbon content. The effect of particle size distribution was strong on eukaryotic diversity. Similarly to alpha-diversity, beta-diversity patterns were strongly influenced by the environmental filter, while PAHs had no influence on the prokaryotic community structure and a weak impact on the eukaryotic community structure at the continental scale. However, at the regional scale, PAHs became the main driver shaping the structure of bacterial and eukaryotic communities. These patterns were not found for PICRUSt predicted prokaryotic functions, thus indicating some degree of functional redundancy. Eukaryotes presented a greater potential for their use as PAH contamination biomarkers, owing to their stronger response at both regional and continental scales.

  15. Diversity of sulfur isotope fractionations by sulfate-reducing prokaryotes

    DEFF Research Database (Denmark)

    Detmers, Jan; Brüchert, Volker; Habicht, K S

    2001-01-01

    Batch culture experiments were performed with 32 different sulfate-reducing prokaryotes to explore the diversity in sulfur isotope fractionation during dissimilatory sulfate reduction by pure cultures. The selected strains reflect the phylogenetic and physiologic diversity of presently known...... sulfate reducers and cover a broad range of natural marine and freshwater habitats. Experimental conditions were designed to achieve optimum growth conditions with respect to electron donors, salinity, temperature, and pH. Under these optimized conditions, experimental fractionation factors ranged from 2.......0 to 42.0 per thousand. Salinity, incubation temperature, pH, and phylogeny had no systematic effect on the sulfur isotope fractionation. There was no correlation between isotope fractionation and sulfate reduction rate. The type of dissimilatory bisulfite reductase also had no effect on fractionation...

  16. [Ultrastructural basis of interactions between prokaryotes and eukaryotes in different symbiotic models].

    Science.gov (United States)

    Sacchi, L

    2004-06-01

    This paper reviews the Author's contribution to the knowledge of the ultrastructural basis of the prokaryote-eukaryote interactions in different models assessed by an ultrastructural approach. In agreement with the hypothesis of the origin of eukaryotic cells, which are chimeras of several prokaryotes with different morpho-functional specializations, symbiosis had major consequence for evolution of life. In Arthropods, one of the most successful lifestyles, the presence of endosymbiotic prokaryotes, plays an important role in their metabolism. In some cases, genome integration has occurred in the endosymbiotic relationships with the host, proving that intracellular symbiosis is not merely a nutritional supplement. Intracellular symbiotic bacteria are also described in nematodes. In particular, the presence of intracellular Wolbachia in filariae, even if its function is not yet completely known, influences positively the reproductive biology and the survival of the host, as proved by antibiotic treatment against this bacterium. The ultrastructural images reported in this review were obtained using different species of cockroaches, termites, ticks and filarial nematodes. The traditional methods of transmission (TEM), scansion (SEM) and immuno electron microscopy were used. In addition, also freeze-fracture and deep-etching techniques were employed. The cockroaches and the primitive termite Mastotermes darwiniensis host symbiotic bacteria in the ovary and in specialized cells (bacteriocytes) of the fat body. These bacteria have the typical cell boundary profile of gram-negative bacteria and are enveloped in a vacuolar membrane produced by the host cell. Molecular sequence data of 16S rDNA of endosymbionts of five species of cockroaches and M. darwiniensis indicate that they are members of the Flavobacteria-bacteroides group and that the infection occurred in an ancestor common to cockroaches and termites probably after the end of the Paleozoic (250 Ma BP). The

  17. Abundance and distribution of the highly iterated palindrome 1 (HIP1) among prokaryotes

    OpenAIRE

    Delaye, Luis; Moya, Andrés

    2011-01-01

    We have studied the abundance and phylogenetic distribution of the Highly Iterated Palindrome 1 (HIP1) among sequenced prokaryotic genomes. We show that an overrepresentation of HIP1 is exclusive of some lineages of cyanobacteria, and that this abundance was gained only once during evolution and was subsequently lost in the lineage leading to marine pico-cyanobacteria. We show that among cyanobacterial protein sequences with annotated Pfam domains, only OpcA (glucose 6-phosphate dehydrogenase...

  18. The YsrS Paralog DygS Has the Capacity To Activate Expression of the Yersinia enterocolitica Ysa Type III Secretion System.

    Science.gov (United States)

    Walker, Kimberly A; Griggs, Lauren A; Obrist, Markus; Bode, Addys; Summers, R Patrick; Miller, Virginia L

    2016-06-15

    The Yersinia enterocolitica Ysa type III secretion system (T3SS) is associated with intracellular survival, and, like other characterized T3SSs, it is tightly controlled. Expression of the ysa genes is only detected following growth at low temperatures (26°C) and in high concentrations of sodium chloride (290 mM) in the medium. The YsrSTR phosphorelay (PR) system is required for ysa expression and likely responds to NaCl. During our investigations into the Ysr PR system, we discovered that genes YE3578 and YE3579 are remarkably similar to ysrR and ysrS, respectively, and are probably a consequence of a gene duplication event. The amino acid differences between YE3578 and ysrR are primarily clustered into two short regions. The differences between YE3579 and ysrS are nearly all located in the periplasmic sensing domain; the cytoplasmic domains are 98% identical. We investigated whether these paralogs were capable of activating ysa gene expression. We found that the sensor paralog, named DygS, is capable of compensating for loss of ysrS, but the response regulator paralog, DygR, cannot complement a ysrR gene deletion. In addition, YsrR, but not DygR, interacts with the histidine phosphorelay protein YsrT. Thus, DygS likely activates ysa gene expression in response to a signal other than NaCl and provides an example of a phosphorelay system in which two sensor kinases feed into the same regulatory pathway. All organisms need mechanisms to promote survival in changing environments. Prokaryotic phosphorelay systems are minimally comprised of a histidine kinase (HK) that senses an extracellular stimulus and a response regulator (RR) but can contain three or more proteins. Through gene duplication, a unique hybrid HK was created. We show that, while the hybrid appears to retain all of the phosphorelay functions, it responds to a different signal than the original. Both HKs transmit the signal to the same RR, which activates a promoter that transcribes a set of genes

  19. Evolution and Expansion of the Prokaryote-Like Lipoxygenase Family in the Brown Alga Saccharina japonica

    Directory of Open Access Journals (Sweden)

    Linhong Teng

    2017-11-01

    Full Text Available Lipoxygenase (LOX plays important roles in fatty acid oxidation and lipid mediator biosynthesis. In this study, we give first insights into brown algal LOX evolution. Whole genome searches revealed four, three, and eleven LOXs in Ectocarpus siliculosus, Cladosiphon okamuranus, and Saccharina japonica, respectively. In phylogenetic analyses, LOXs from brown algae form a robust clade with those from prokaryotes, suggesting an ancestral origin and slow evolution. Brown algal LOXs were divided into two clades, C1 and C2 in a phylogenetic tree. Compared to the two species of Ectocarpales, LOX gene expansion occurred in the kelp S. japonica through tandem duplication and segmental duplication. Selection pressure analysis showed that LOX genes in brown algae have undergone strong purifying selection, while the selective constraint in the C2 clade was more relaxed than that in the C1 clade. Furthermore, within each clade, LOXs of S. japonica evolved under more relaxed selection constraints than E. siliculosus and C. okamuranus. Structural modeling showed that unlike LOXs of plants and animals, which contain a β barrel in the N-terminal part of the protein, LOXs in brown algae fold into a single domain. Analysis of previously published transcriptomic data showed that LOXs in E. siliculosus are responsive to hyposaline, hypersaline, oxidative, and copper stresses. Moreover, clear divergence of expression patterns was observed among different life stages, as well as between duplicate gene pairs. In E. siliculosus, all four LOXs are male-biased in immature gametophytes, and mature gametophytes showed significantly higher LOX mRNA levels than immature gametophytes and sporophytes. In S. japonica, however, our RNA-Seq data showed that most LOXs are highly expressed in sporophytes. Even the most recently duplicated gene pairs showed divergent expression patterns, suggesting that functional divergence has likely occurred since LOX genes duplicated, which

  20. A mammalianized synthetic nitroreductase gene for high-level expression

    International Nuclear Information System (INIS)

    Grohmann, Maik; Paulmann, Nils; Fleischhauer, Sebastian; Vowinckel, Jakob; Priller, Josef; Walther, Diego J

    2009-01-01

    The nitroreductase/5-(azaridin-1-yl)-2,4-dinitrobenzamide (NTR/CB1954) enzyme/prodrug system is considered as a promising candidate for anti-cancer strategies by gene-directed enzyme prodrug therapy (GDEPT) and has recently entered clinical trials. It requires the genetic modification of tumor cells to express the E. coli enzyme nitroreductase that bioactivates the prodrug CB1954 to a powerful cytotoxin. This metabolite causes apoptotic cell death by DNA interstrand crosslinking. Enhancing the enzymatic NTR activity for CB1954 should improve the therapeutical potential of this enzyme-prodrug combination in cancer gene therapy. We performed de novo synthesis of the bacterial nitroreductase gene adapting codon usage to mammalian preferences. The synthetic gene was investigated for its expression efficacy and ability to sensitize mammalian cells to CB1954 using western blotting analysis and cytotoxicity assays. In our study, we detected cytoplasmic protein aggregates by expressing GFP-tagged NTR in COS-7 cells, suggesting an impaired translation by divergent codon usage between prokaryotes and eukaryotes. Therefore, we generated a synthetic variant of the nitroreductase gene, called ntro, adapted for high-level expression in mammalian cells. A total of 144 silent base substitutions were made within the bacterial ntr gene to change its codon usage to mammalian preferences. The codon-optimized ntro either tagged to gfp or c-myc showed higher expression levels in mammalian cell lines. Furthermore, the ntro rendered several cell lines ten times more sensitive to the prodrug CB1954 and also resulted in an improved bystander effect. Our results show that codon optimization overcomes expression limitations of the bacterial ntr gene in mammalian cells, thereby improving the NTR/CB1954 system at translational level for cancer gene therapy in humans

  1. Reconstruction of phylogenetic trees of prokaryotes using maximal common intervals.

    Science.gov (United States)

    Heydari, Mahdi; Marashi, Sayed-Amir; Tusserkani, Ruzbeh; Sadeghi, Mehdi

    2014-10-01

    One of the fundamental problems in bioinformatics is phylogenetic tree reconstruction, which can be used for classifying living organisms into different taxonomic clades. The classical approach to this problem is based on a marker such as 16S ribosomal RNA. Since evolutionary events like genomic rearrangements are not included in reconstructions of phylogenetic trees based on single genes, much effort has been made to find other characteristics for phylogenetic reconstruction in recent years. With the increasing availability of completely sequenced genomes, gene order can be considered as a new solution for this problem. In the present work, we applied maximal common intervals (MCIs) in two or more genomes to infer their distance and to reconstruct their evolutionary relationship. Additionally, measures based on uncommon segments (UCS's), i.e., those genomic segments which are not detected as part of any of the MCIs, are also used for phylogenetic tree reconstruction. We applied these two types of measures for reconstructing the phylogenetic tree of 63 prokaryotes with known COG (clusters of orthologous groups) families. Similarity between the MCI-based (resp. UCS-based) reconstructed phylogenetic trees and the phylogenetic tree obtained from NCBI taxonomy browser is as high as 93.1% (resp. 94.9%). We show that in the case of this diverse dataset of prokaryotes, tree reconstruction based on MCI and UCS outperforms most of the currently available methods based on gene orders, including breakpoint distance and DCJ. We additionally tested our new measures on a dataset of 13 closely-related bacteria from the genus Prochlorococcus. In this case, distances like rearrangement distance, breakpoint distance and DCJ proved to be useful, while our new measures are still appropriate for phylogenetic reconstruction. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. DFAST: a flexible prokaryotic genome annotation pipeline for faster genome publication.

    Science.gov (United States)

    Tanizawa, Yasuhiro; Fujisawa, Takatomo; Nakamura, Yasukazu

    2018-03-15

    We developed a prokaryotic genome annotation pipeline, DFAST, that also supports genome submission to public sequence databases. DFAST was originally started as an on-line annotation server, and to date, over 7000 jobs have been processed since its first launch in 2016. Here, we present a newly implemented background annotation engine for DFAST, which is also available as a standalone command-line program. The new engine can annotate a typical-sized bacterial genome within 10 min, with rich information such as pseudogenes, translation exceptions and orthologous gene assignment between given reference genomes. In addition, the modular framework of DFAST allows users to customize the annotation workflow easily and will also facilitate extensions for new functions and incorporation of new tools in the future. The software is implemented in Python 3 and runs in both Python 2.7 and 3.4-on Macintosh and Linux systems. It is freely available at https://github.com/nigyta/dfast_core/under the GPLv3 license with external binaries bundled in the software distribution. An on-line version is also available at https://dfast.nig.ac.jp/. yn@nig.ac.jp. Supplementary data are available at Bioinformatics online.

  3. Resilience of the prokaryotic microbial community of Acropora digitifera to elevated temperature.

    Science.gov (United States)

    Gajigan, Andrian P; Diaz, Leomir A; Conaco, Cecilia

    2017-08-01

    The coral is a holobiont formed by the close interaction between the coral animal and a diverse community of microorganisms, including dinoflagellates, bacteria, archaea, fungi, and viruses. The prokaryotic symbionts of corals are important for host fitness but are also highly sensitive to changes in the environment. In this study, we used 16S ribosomal RNA (rRNA) sequencing to examine the response of the microbial community associated with the coral, Acropora digitifera, to elevated temperature. The A. digitifera microbial community is dominated by operational taxonomic unit (OTUs) affiliated with classes Alphaproteobacteria and Gammaproteobacteria. The prokaryotic community in the coral tissue is distinct from that of the mucus and the surrounding seawater. Remarkably, the overall microbial community structure of A. digitifera remained stable for 10 days of continuous exptosure at 32°C compared to corals maintained at 27°C. However, the elevated temperature regime resulted in a decrease in the abundance of OTUs affiliated with certain groups of bacteria, such as order Rhodobacterales. On the other hand, some OTUs affiliated with the orders Alteromonadales, Vibrionales, and Flavobacteriales, which are often associated with diseased and stressed corals, increased in abundance. Thus, while the A. digitifera bacterial community structure appears resilient to higher temperature, prolonged exposure and intensified stress results in changes in the abundance of specific microbial community members that may affect the overall metabolic state and health of the coral holobiont. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  4. On names of genera of prokaryotes that are later homonyms of generic names with standing in the zoological or the botanical nomenclature. Proposal of Neomegalonema gen. nov. and Neomegalonema perideroedes comb. nov. as replacements for the prokaryotic generic name Meganema and the species name Meganema perideroedes.

    Science.gov (United States)

    Oren, Aharon

    2017-10-01

    I here present a survey of generic names with standing in the prokaryotic nomenclature that have homonyms with standing under the International Code of Zoological Nomenclature and/or the International Code of Nomenclature for algae, fungi, and plants. I especially discuss such names added after Principle 2 of the Bacteriological Code/Prokaryotic Code was changed in 1999 to make the prokaryote nomenclature not independent of botanical and zoological nomenclature. Cases include the genera Micromonas, Quadrococcus, Yania, Sinococcus, and Meganema. The generic name Meganema was not previously recognized as a homonym of two genera with standing in the zoological nomenclature. Therefore, I here propose renaming Meganema and Meganema perideroedes as Neomegalonema gen. nov. and Neomegalonema perideroedes comb. nov., respectively.

  5. Next-generation sequencing and culture-based techniques offer complementary insights into fungi and prokaryotes in beach sands.

    Science.gov (United States)

    Romão, Daniela; Staley, Christopher; Ferreira, Filipa; Rodrigues, Raquel; Sabino, Raquel; Veríssimo, Cristina; Wang, Ping; Sadowsky, Michael; Brandão, João

    2017-06-15

    A next-generation sequencing (NGS) approach, in conjunction with culture-based methods, was used to examine fungal and prokaryotic communities for the presence of potential pathogens in beach sands throughout Portugal. Culture-based fungal enumeration revealed low and variable concentrations of the species targeted (yeasts and dermatophytes), which were underrepresented in the community characterized by NGS targeting the ITS1 region. Conversely, NGS indicated that the potentially pathogenic species Purpureocillium liliacinum comprised nearly the entire fungal community. Culturable fecal indicator bacterial concentrations were low throughout the study and unrelated to communities characterized by NGS. Notably, the prokaryotic communities characterized revealed a considerable abundance of archaea. Results highlight differences in communities between methods in beach sand monitoring but indicate the techniques offer complementary insights. Thus, there is a need to leverage culture-based methods with NGS methods, using a toolbox approach, to determine appropriate targets and metrics for beach sand monitoring to adequately protect public health. Copyright © 2017. Published by Elsevier Ltd.

  6. Expression of Recombinant Human Coagulation Factor VII by the Lizard Leishmania Expression System

    Directory of Open Access Journals (Sweden)

    Sina Mirzaahmadi

    2011-01-01

    Full Text Available The variety of recombinant protein expression systems have been developed as a resource of FVII gene expression. In the current study, the authors used a novel protein expression system based on the Iranian Lizard Leishmania, a trypanosomatid protozoan as a host for expression of FVII. Plasmid containing cDNA encoding full-length human FVII was introduced into Lizard Leishmania and positive transfectants were analyzed by SDS-PAGE and Western blot analysis. Furthermore, biological activity of purified protein was detected by PT assay. The recombinant strain harboring a construct was analyzed for expression of FVII at the mRNA and protein level. Purified rFVII was obtained and in order to confirm the purified compound was in fact rFVII. Western blot analysis was carried out. Clotting time in PT assay was reduced about 30 seconds with the purified rFVII. In Conclusion, this study has demonstrated, for the first time, that Leishmania cells can be used as an expression system for producing recombinant FVII.

  7. Diversity of 23S rRNA genes within individual prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Anna Pei

    Full Text Available BACKGROUND: The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. METHODOLOGY/PRINCIPAL FINDINGS: Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4% genomes (mean 0.40%, range 0.01%-4.04%. Significant (1.17%-4.04% intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition. In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS, ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes. CONCLUSIONS/SIGNIFICANCE: These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.

  8. Prokaryotic diversity, composition structure, and phylogenetic analysis of microbial communities in leachate sediment ecosystems.

    Science.gov (United States)

    Liu, Jingjing; Wu, Weixiang; Chen, Chongjun; Sun, Faqian; Chen, Yingxu

    2011-09-01

    In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.

  9. Neutralization of Bacterial YoeBSpn Toxicity and Enhanced Plant Growth in Arabidopsis thaliana via Co-Expression of the Toxin-Antitoxin Genes

    Science.gov (United States)

    Abu Bakar, Fauziah; Yeo, Chew Chieng; Harikrishna, Jennifer Ann

    2016-01-01

    Bacterial toxin-antitoxin (TA) systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP) fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells. PMID:27104531

  10. Neutralization of Bacterial YoeBSpn Toxicity and Enhanced Plant Growth in Arabidopsis thaliana via Co-Expression of the Toxin-Antitoxin Genes

    Directory of Open Access Journals (Sweden)

    Fauziah Abu Bakar

    2016-04-01

    Full Text Available Bacterial toxin-antitoxin (TA systems have various cellular functions, including as part of the general stress response. The genome of the Gram-positive human pathogen Streptococcus pneumoniae harbors several putative TA systems, including yefM-yoeBSpn, which is one of four systems that had been demonstrated to be biologically functional. Overexpression of the yoeBSpn toxin gene resulted in cell stasis and eventually cell death in its native host, as well as in Escherichia coli. Our previous work showed that induced expression of a yoeBSpn toxin-Green Fluorescent Protein (GFP fusion gene apparently triggered apoptosis and was lethal in the model plant, Arabidopsis thaliana. In this study, we investigated the effects of co-expression of the yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic A. thaliana. When co-expressed in Arabidopsis, the YefMSpn antitoxin was found to neutralize the toxicity of YoeBSpn-GFP. Interestingly, the inducible expression of both yefMSpn antitoxin and yoeBSpn toxin-GFP fusion in transgenic hybrid Arabidopsis resulted in larger rosette leaves and taller plants with a higher number of inflorescence stems and increased silique production. To our knowledge, this is the first demonstration of a prokaryotic antitoxin neutralizing its cognate toxin in plant cells.

  11. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging

    Science.gov (United States)

    Cyprinid herpesvirus 3 (CyHV-3) is causing severe economic losses worldwide in the carp industry, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open...

  12. Prokaryotic Selectivity, Anti-endotoxic Activity and Protease Stability of Diastereomeric and Enantiomeric Analogs of Human Antimicrobial Peptide LL-37

    International Nuclear Information System (INIS)

    Nan, Yong Hai; Lee, Bongju; Shin, Song Yub

    2012-01-01

    LL-37 is the only antimicrobial peptide (AMP) of the human cathelicidin family. In addition to potent antimicrobial activity, LL-37 is known to have the potential to inhibit lipolysaccharide (LPS)-induced endotoxic effects. To provide the stability to proteolytic digestion and increase prokaryotic selectivity and/or anti-endotoxic activity of two Lys/Trp-substituted 19-meric anti-microbial peptides (a4-W1 and a4-W2) designed from IG-19 (residues 13-31 of LL-37), we synthesized the diastereomeric peptides (a4-W1-D and a4-W2-D) with D-amino acid substitution at positions 3, 7, 10, 13 and 17 of a4-W1 and a4-W2, respectively and the enantiomeric peptides (a4-W1-E and a4-W2-E) composed D-amino acids. The diastereomeric peptides exhibited the best prokaryotic selectivity and effective protease stability, but no or less anti-endotoxic activity. In contrast, the enantiomeric peptides had not only prokaryotic selectivity and anti-endotoxic activity but also protease stability. Our results suggest that the hydrophobicity and α-helicity of the peptide is important for anti-endotoxic activity. In particular, the enantiomeric peptides showed potent anti-endotoxic and LPS-neutralizing activities comparable to that of LL-37. Taken together, both a4-W1-E and a4-W2-E holds promise as a template for the development of peptide antibiotics for the treatment of endotoxic shock and sepsis

  13. Prokaryotic Selectivity, Anti-endotoxic Activity and Protease Stability of Diastereomeric and Enantiomeric Analogs of Human Antimicrobial Peptide LL-37

    Energy Technology Data Exchange (ETDEWEB)

    Nan, Yong Hai; Lee, Bongju; Shin, Song Yub [Chosun Univ., Gwangju (Korea, Republic of)

    2012-09-15

    LL-37 is the only antimicrobial peptide (AMP) of the human cathelicidin family. In addition to potent antimicrobial activity, LL-37 is known to have the potential to inhibit lipolysaccharide (LPS)-induced endotoxic effects. To provide the stability to proteolytic digestion and increase prokaryotic selectivity and/or anti-endotoxic activity of two Lys/Trp-substituted 19-meric anti-microbial peptides (a4-W1 and a4-W2) designed from IG-19 (residues 13-31 of LL-37), we synthesized the diastereomeric peptides (a4-W1-D and a4-W2-D) with D-amino acid substitution at positions 3, 7, 10, 13 and 17 of a4-W1 and a4-W2, respectively and the enantiomeric peptides (a4-W1-E and a4-W2-E) composed D-amino acids. The diastereomeric peptides exhibited the best prokaryotic selectivity and effective protease stability, but no or less anti-endotoxic activity. In contrast, the enantiomeric peptides had not only prokaryotic selectivity and anti-endotoxic activity but also protease stability. Our results suggest that the hydrophobicity and α-helicity of the peptide is important for anti-endotoxic activity. In particular, the enantiomeric peptides showed potent anti-endotoxic and LPS-neutralizing activities comparable to that of LL-37. Taken together, both a4-W1-E and a4-W2-E holds promise as a template for the development of peptide antibiotics for the treatment of endotoxic shock and sepsis.

  14. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites

    DEFF Research Database (Denmark)

    Nielsen, Henrik; Engelbrecht, Jacob; Brunak, Søren

    1997-01-01

    We have developed a new method for the identication of signal peptides and their cleavage sites based on neural networks trained on separate sets of prokaryotic and eukaryotic sequences. The method performs signicantly better than previous prediction schemes, and can easily be applied to genome...

  15. Expression in E. coli systems

    DEFF Research Database (Denmark)

    Krogsdam, Anne-M; Kristiansen, Karsten; Nøhr, Jane

    2003-01-01

    intracellularly in soluble form. In E. coli, proteins containing disulfide bonds are best produced by secretion because the disulfide forming foldases reside in the periplasm. Likewise, a correct N-terminus is more likely to be obtained upon secretion. Moreover, potentially toxic proteins are more likely......Owing to cost advantage, speed of production, and often high product yield (up to 50% of total cell protein), expression in Escherichia coli is generally the first choice when attempting to express a recombinant protein. Expression systems exist to produce recombinant protein intracellularly...

  16. Impact of an intense water column mixing (0-1500 m) on prokaryotic diversity and activities during an open-ocean convection event in the NW Mediterranean Sea.

    Science.gov (United States)

    Severin, Tatiana; Sauret, Caroline; Boutrif, Mehdi; Duhaut, Thomas; Kessouri, Fayçal; Oriol, Louise; Caparros, Jocelyne; Pujo-Pay, Mireille; Durrieu de Madron, Xavier; Garel, Marc; Tamburini, Christian; Conan, Pascal; Ghiglione, Jean-François

    2016-12-01

    Open-ocean convection is a fundamental process for thermohaline circulation and biogeochemical cycles that causes spectacular mixing of the water column. Here, we tested how much the depth-stratified prokaryotic communities were influenced by such an event, and also by the following re-stratification. The deep convection event (0-1500 m) that occurred in winter 2010-2011 in the NW Mediterranean Sea resulted in a homogenization of the prokaryotic communities over the entire convective cell, resulting in the predominance of typical surface Bacteria, such as Oceanospirillale and Flavobacteriales. Statistical analysis together with numerical simulation of vertical homogenization evidenced that physical turbulence only was not enough to explain the new distribution of the communities, but acted in synergy with other parameters such as exported particulate and dissolved organic matters. The convection also stimulated prokaryotic abundance (+21%) and heterotrophic production (+43%) over the 0-1500 m convective cell, and resulted in a decline of cell-specific extracellular enzymatic activities (-67%), thus suggesting an intensification of the labile organic matter turnover during the event. The rapid re-stratification of the prokaryotic diversity and activities in the intermediate layer 5 days after the intense mixing indicated a marked resilience of the communities, apart from the residual deep mixed water patch. © 2016 The Authors. Environmental Microbiology published by Society for Applied Microbiology and John Wiley & Sons Ltd.

  17. High-level expression of soluble recombinant proteins in Escherichia coli using an HE-maltotriose-binding protein fusion tag.

    Science.gov (United States)

    Han, Yingqian; Guo, Wanying; Su, Bingqian; Guo, Yujie; Wang, Jiang; Chu, Beibei; Yang, Guoyu

    2018-02-01

    Recombinant proteins are commonly expressed in prokaryotic expression systems for large-scale production. The use of genetically engineered affinity and solubility enhancing fusion proteins has increased greatly in recent years, and there now exists a considerable repertoire of these that can be used to enhance the expression, stability, solubility, folding, and purification of their fusion partner. Here, a modified histidine tag (HE) used as an affinity tag was employed together with a truncated maltotriose-binding protein (MBP; consisting of residues 59-433) from Pyrococcus furiosus as a solubility enhancing tag accompanying a tobacco etch virus protease-recognition site for protein expression and purification in Escherichia coli. Various proteins tagged at the N-terminus with HE-MBP(Pyr) were expressed in E. coli BL21(DE3) cells to determine expression and solubility relative to those tagged with His6-MBP or His6-MBP(Pyr). Furthermore, four HE-MBP(Pyr)-fused proteins were purified by immobilized metal affinity chromatography to assess the affinity of HE with immobilized Ni 2+ . Our results showed that HE-MBP(Pyr) represents an attractive fusion protein allowing high levels of soluble expression and purification of recombinant protein in E. coli. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. Cloning, Expression and Characterization of PprI gene in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Amir Mirzaie

    2014-03-01

    Conclusion: The results of this study indicated that PprI protein could be a potential candidate to be considered as a radioresistant protein. However, the UV-C radioresistance potency of recombinant PprI should be analyzed in prokaryotic and eukaryotic systems

  19. Exploiting translational coupling for the selection of cells producing toxic recombinant proteins from expression vectors.

    Science.gov (United States)

    Tagliavia, Marcello; Cuttitta, Angela

    2016-01-01

    High rates of plasmid instability are associated with the use of some expression vectors in Escherichia coli, resulting in the loss of recombinant protein expression. This is due to sequence alterations in vector promoter elements caused by the background expression of the cloned gene, which leads to the selection of fast-growing, plasmid-containing cells that do not express the target protein. This phenomenon, which is worsened when expressing toxic proteins, results in preparations containing very little or no recombinant protein, or even in clone loss; however, no methods to prevent loss of recombinant protein expression are currently available. We have exploited the phenomenon of translational coupling, a mechanism of prokaryotic gene expression regulation, in order to select cells containing plasmids still able to express recombinant proteins. Here we designed an expression vector in which the cloned gene and selection marker are co-expressed. Our approach allowed for the selection of the recombinant protein-expressing cells and proved effective even for clones encoding toxic proteins.

  20. Organelle-localized potassium transport systems in plants.

    Science.gov (United States)

    Hamamoto, Shin; Uozumi, Nobuyuki

    2014-05-15

    Some intracellular organelles found in eukaryotes such as plants have arisen through the endocytotic engulfment of prokaryotic cells. This accounts for the presence of plant membrane intrinsic proteins that have homologs in prokaryotic cells. Other organelles, such as those of the endomembrane system, are thought to have evolved through infolding of the plasma membrane. Acquisition of intracellular components (organelles) in the cells supplied additional functions for survival in various natural environments. The organelles are surrounded by biological membranes, which contain membrane-embedded K(+) transport systems allowing K(+) to move across the membrane. K(+) transport systems in plant organelles act coordinately with the plasma membrane intrinsic K(+) transport systems to maintain cytosolic K(+) concentrations. Since it is sometimes difficult to perform direct studies of organellar membrane proteins in plant cells, heterologous expression in yeast and Escherichia coli has been used to elucidate the function of plant vacuole K(+) channels and other membrane transporters. The vacuole is the largest organelle in plant cells; it has an important task in the K(+) homeostasis of the cytoplasm. The initial electrophysiological measurements of K(+) transport have categorized three classes of plant vacuolar cation channels, and since then molecular cloning approaches have led to the isolation of genes for a number of K(+) transport systems. Plants contain chloroplasts, derived from photoautotrophic cyanobacteria. A novel K(+) transport system has been isolated from cyanobacteria, which may add to our understanding of K(+) flux across the thylakoid membrane and the inner membrane of the chloroplast. This chapter will provide an overview of recent findings regarding plant organellar K(+) transport proteins. Copyright © 2014 Elsevier GmbH. All rights reserved.

  1. A functional glycogen biosynthesis pathway in Lactobacillus acidophilus: expression and analysis of the glg operon

    OpenAIRE

    Goh, Yong Jun; Klaenhammer, Todd R

    2013-01-01

    Glycogen metabolism contributes to energy storage and various physiological functions in some prokaryotes, including colonization persistence. A role for glycogen metabolism is proposed on the survival and fitness of Lactobacillus acidophilus, a probiotic microbe, in the human gastrointestinal environment. L.?acidophilus?NCFM possesses a glycogen metabolism (glg) operon consisting of glgBCDAP - amy - pgm genes. Expression of the glg operon and glycogen accumulation were carbon source- and gro...

  2. Establishing homology between mitochondrial calcium uniporters, prokaryotic magnesium channels and chlamydial IncA proteins.

    Science.gov (United States)

    Lee, Andre; Vastermark, Ake; Saier, Milton H

    2014-08-01

    Mitochondrial calcium uniporters (MCUs) (TC no. 1.A.77) are oligomeric channel proteins found in the mitochondrial inner membrane. MCUs have two well-conserved transmembrane segments (TMSs), connected by a linker, similar to bacterial MCU homologues. These proteins and chlamydial IncA proteins (of unknown function; TC no. 9.B.159) are homologous to prokaryotic Mg(2+) transporters, AtpI and AtpZ, based on comparison scores of up to 14.5 sds. A phylogenetic tree containing all of these proteins showed that the AtpZ proteins cluster coherently as a subset within the large and diverse AtpI cluster, which branches separately from the MCUs and IncAs, both of which cluster coherently. The MCUs and AtpZs share the same two TMS topology, but the AtpIs have four TMSs, and IncAs can have either two (most frequent) or four (less frequent) TMSs. Binary alignments, comparison scores and motif analyses showed that TMSs 1 and 2 align with TMSs 3 and 4 of the AtpIs, suggesting that the four TMS AtpI proteins arose via an intragenic duplication event. These findings establish an evolutionary link interconnecting eukaryotic and prokaryotic Ca(2+) and Mg(2+) transporters with chlamydial IncAs, and lead us to suggest that all members of the MCU superfamily, including IncAs, function as divalent cation channels. © 2014 The Authors.

  3. Distribution of the prokaryotic biomass and community respiration in the main water masses of the Southern Tyrrhenian Sea (June and December 2005

    Directory of Open Access Journals (Sweden)

    Rosabruna La Ferla

    2010-12-01

    Full Text Available The distribution of the prokaryotic biomass (from both abundance and cell volume measurements and microbial community respiration (by ETS activity in the main water masses of the Southern Tyrrhenian Sea were studied. The data were collected from surface to the bottom depth (max 3600 m in July and December 2005. Prokaryotic abundance and microbial respiration were higher in summer than late-autumn and decreased with depth in accordance with the water masses. The opposite was found for the prokaryotic cell volumes that increased with depth and were higher in December. The cell carbon content varied within the water masses and study periods (range 9–34 fg C cell−1 and overestimations and underestimations of biomass there would have been by using the routinely adopted conversion factor (20 fg C cell−1. The depth-integrated respiratory rates resulted comparable in the photic and aphotic layers. In July, 210 and 225 mg C m−2 day−1 in the euphotic and aphotic zones, respectively, were remineralized while in December, 112 and 134 mg C m−2 day−1, respectively, were. Speculations to quantify the carbon flow mediated by microbial community suggested the occurrence of different microbial behavior within the different water masses.

  4. Regulation of gene expression in Escherichia coli and its bacteriophage

    International Nuclear Information System (INIS)

    Higgins, C.F.

    1986-01-01

    This chapter reviews the study of prokaryotic gene expression beginning with a look at the regulation of the lactose operon and the mechanism of attenuation in the tryptophan operon to the more recent development of recombinant DNA technology. The chapter deals almost entirely with escherichia coli and its bacteriophage. The only experimental technique which the authors explore in some detail is the construction and use of gene and operon fusions which have revolutionized the study of gene expression. Various mechanisms by which E. Coli regulate the cellular levels of individual messenger-RNA species are described. Translational regulation of the cellular levels of messenger-RNA include signals encoded within the messenger-RNA molecule itself and regulatory molecules which interact with the messenger-RNA and alter it translational efficiency

  5. New Insight Into the Diversity of SemiSWEET Sugar Transporters and the Homologs in Prokaryotes

    Directory of Open Access Journals (Sweden)

    Baolei Jia

    2018-05-01

    Full Text Available Sugars will eventually be exported transporters (SWEETs and SemiSWEETs represent a family of sugar transporters in eukaryotes and prokaryotes, respectively. SWEETs contain seven transmembrane helices (TMHs, while SemiSWEETs contain three. The functions of SemiSWEETs are less studied. In this perspective article, we analyzed the diversity and conservation of SemiSWEETs and further proposed the possible functions. 1,922 SemiSWEET homologs were retrieved from the UniProt database, which is not proportional to the sequenced prokaryotic genomes. However, these proteins are very diverse in sequences and can be classified into 19 clusters when >50% sequence identity is required. Moreover, a gene context analysis indicated that several SemiSWEETs are located in the operons that are related to diverse carbohydrate metabolism. Several proteins with seven TMHs can be found in bacteria, and sequence alignment suggested that these proteins in bacteria may be formed by the duplication and fusion. Multiple sequence alignments showed that the amino acids for sugar translocation are still conserved and coevolved, although the sequences show diversity. Among them, the functions of a few amino acids are still not clear. These findings highlight the challenges that exist in SemiSWEETs and provide future researchers the foundation to explore these uncharted areas.

  6. MicrO: an ontology of phenotypic and metabolic characters, assays, and culture media found in prokaryotic taxonomic descriptions.

    Science.gov (United States)

    Blank, Carrine E; Cui, Hong; Moore, Lisa R; Walls, Ramona L

    2016-01-01

    MicrO is an ontology of microbiological terms, including prokaryotic qualities and processes, material entities (such as cell components), chemical entities (such as microbiological culture media and medium ingredients), and assays. The ontology was built to support the ongoing development of a natural language processing algorithm, MicroPIE (or, Microbial Phenomics Information Extractor). During the MicroPIE design process, we realized there was a need for a prokaryotic ontology which would capture the evolutionary diversity of phenotypes and metabolic processes across the tree of life, capture the diversity of synonyms and information contained in the taxonomic literature, and relate microbiological entities and processes to terms in a large number of other ontologies, most particularly the Gene Ontology (GO), the Phenotypic Quality Ontology (PATO), and the Chemical Entities of Biological Interest (ChEBI). We thus constructed MicrO to be rich in logical axioms and synonyms gathered from the taxonomic literature. MicrO currently has ~14550 classes (~2550 of which are new, the remainder being microbiologically-relevant classes imported from other ontologies), connected by ~24,130 logical axioms (5,446 of which are new), and is available at (http://purl.obolibrary.org/obo/MicrO.owl) and on the project website at https://github.com/carrineblank/MicrO. MicrO has been integrated into the OBO Foundry Library (http://www.obofoundry.org/ontology/micro.html), so that other ontologies can borrow and re-use classes. Term requests and user feedback can be made using MicrO's Issue Tracker in GitHub. We designed MicrO such that it can support the ongoing and future development of algorithms that can leverage the controlled vocabulary and logical inference power provided by the ontology. By connecting microbial classes with large numbers of chemical entities, material entities, biological processes, molecular functions, and qualities using a dense array of logical axioms, we

  7. Characteristic Variations and Similarities in Biochemical, Molecular, and Functional Properties of Glyoxalases across Prokaryotes and Eukaryotes.

    Science.gov (United States)

    Kaur, Charanpreet; Sharma, Shweta; Hasan, Mohammad Rokebul; Pareek, Ashwani; Singla-Pareek, Sneh L; Sopory, Sudhir K

    2017-03-30

    The glyoxalase system is the ubiquitous pathway for the detoxification of methylglyoxal (MG) in the biological systems. It comprises two enzymes, glyoxalase I (GLYI) and glyoxalase II (GLYII), which act sequentially to convert MG into d-lactate, thereby helping living systems get rid of this otherwise cytotoxic byproduct of metabolism. In addition, a glutathione-independent GLYIII enzyme activity also exists in the biological systems that can directly convert MG to d-lactate. Humans and Escherichia coli possess a single copy of GLYI (encoding either the Ni- or Zn-dependent form) and GLYII genes, which through MG detoxification provide protection against various pathological and disease conditions. By contrast, the plant genome possesses multiple GLYI and GLYII genes with a role in abiotic stress tolerance. Plants possess both Ni 2+ - and Zn 2+ -dependent forms of GLYI, and studies on plant glyoxalases reveal the various unique features of these enzymes distinguishing them from prokaryotic and other eukaryotic glyoxalases. Through this review, we provide an overview of the plant glyoxalase family along with a comparative analysis of glyoxalases across various species, highlighting similarities as well as differences in the biochemical, molecular, and physiological properties of these enzymes. We believe that the evolution of multiple glyoxalases isoforms in plants is an important component of their robust defense strategies.

  8. A guild of 45 CRISPR-associated (Cas protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Daniel H Haft

    2005-11-01

    Full Text Available Clustered regularly interspaced short palindromic repeats (CRISPRs are a family of DNA direct repeats found in many prokaryotic genomes. Repeats of 21-37 bp typically show weak dyad symmetry and are separated by regularly sized, nonrepetitive spacer sequences. Four CRISPR-associated (Cas protein families, designated Cas1 to Cas4, are strictly associated with CRISPR elements and always occur near a repeat cluster. Some spacers originate from mobile genetic elements and are thought to confer "immunity" against the elements that harbor these sequences. In the present study, we have systematically investigated uncharacterized proteins encoded in the vicinity of these CRISPRs and found many additional protein families that are strictly associated with CRISPR loci across multiple prokaryotic species. Multiple sequence alignments and hidden Markov models have been built for 45 Cas protein families. These models identify family members with high sensitivity and selectivity and classify key regulators of development, DevR and DevS, in Myxococcus xanthus as Cas proteins. These identifications show that CRISPR/cas gene regions can be quite large, with up to 20 different, tandem-arranged cas genes next to a repeat cluster or filling the region between two repeat clusters. Distinctive subsets of the collection of Cas proteins recur in phylogenetically distant species and correlate with characteristic repeat periodicity. The analyses presented here support initial proposals of mobility of these units, along with the likelihood that loci of different subtypes interact with one another as well as with host cell defensive, replicative, and regulatory systems. It is evident from this analysis that CRISPR/cas loci are larger, more complex, and more heterogeneous than previously appreciated.

  9. Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis.

    Science.gov (United States)

    Linares, Daniel M; Alvarez-Sieiro, Patricia; del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Martin, Ma Cruz; Fernandez, Maria; Alvarez, Miguel A

    2015-12-30

    Lactococcus lactis has been safely consumed in fermented foods for millennia. This Gram-positive bacterium has now become of industrial importance as an expression host for the overproduction of lipopolysaccharide-free recombinant proteins used as food ingredients, therapeutic proteins and biotechnological enzymes. This paper reports an agmatine-controlled expression (ACE) system for L. lactis, comprising the lactococcal agmatine-sensor/transcriptional activator AguR and its target promoter P(aguB). The usefulness and efficiency of this system was checked via the reporter gene gfp and by producing PEP (Myxococcus xanthus prolyl-endopeptidase), an enzyme of biomedical interest able to degrade the immunotoxic peptides produced during the gastrointestinal breakdown of gluten. The ACE system developed in this work was suitable for the efficient expression of the functional recombinant proteins GFP and PEP. The expression system was tightly regulated by the agmatine concentration and allowed high protein production without leakiness.

  10. Bacterial expression and one-step purification of an isotope-labeled heterotrimeric G-protein α-subunit

    International Nuclear Information System (INIS)

    Abdulaev, Najmoutin G.; Zhang Cheng; Dinh, Andy; Ngo, Tony; Bryan, Philip N.; Brabazon, Danielle M.; Marino, John P.; Ridge, Kevin D.

    2005-01-01

    Heterologous expression systems are often employed to generate sufficient quantities of isotope-labeled proteins for high-resolution NMR studies. Recently, the interaction between the prodomain region of subtilisin and an active, mutant form of the mature enzyme has been exploited to develop a cleavable affinity tag fusion system for one-step generation and purification of full-length soluble proteins obtained by inducible prokaryotic expression. As a first step towards applying high-resolution NMR methods to study heterotrimeric G-protein α-subunit (G α ) conformation and dynamics, the utility of this subtilisin prodomain fusion system for expressing and purifying an isotope-labeled G α chimera (∼40 kDa polypeptide) has been tested. The results show that a prodomain fused G α chimera can be expressed to levels approaching 6-8 mg/l in minimal media and that the processed, mature protein exhibits properties similar to those of G α isolated from natural sources. To assay for the functional integrity of the purified G α chimera at NMR concentrations and probe for changes in the structure and dynamics of G α that result from activation, 15 N-HSQC spectra of the GDP/Mg 2+ bound form of G α obtained in the absence and presence of aluminum fluoride, a well known activator of the GDP bound state, have been acquired. Comparisons of the 15 N-HSQC spectra reveals a number of changes in chemical shifts of the 1 HN, 15 N crosspeaks that are discussed with respect to expected changes in the protein conformation associated with G α activation

  11. Spatial changes in the prokaryotic community structure across a soil catena

    Science.gov (United States)

    Semenov, Mikhail; Zhuravleva, Anna; Tkhakakhova, Azida

    2017-04-01

    ; Verrucomicrobia, Proteobacteria and Acidobacteria - in transitional site (both soils with the total dominance of Chthoniobacter flavus). In Fluvisol of accumulative landscape position, it was revealed a completely different prokaryotic community with the dominance of Bacillus, Clostridium, Desulfovibrio, Saccharopolyspora, and Gallionella. B. longiquaesitum and B. nealsonii were the two most abundant species. In general, prokaryotic community of Fluvisol was characterized by a wide range of microorganisms involved in the biogeochemical cycles of iron (Gallionella ferruginea, Rhodoferax ferrireducens, Carboxydocella ferrireducens, Gallionella capsiferriformans, etc.) and sulfur (Desulfomonile iedjei, Sulfurospirillum sp., Desulfonatronum thiosulfatophilum, Thermodesulfovibrio thiophilus, Thermodesulfovibrio aggregans, Ammonifex thiophilus, etc.). Metabolically active archaea of soils across the catena included Thaumarchaeota and Euryarchaeota phyla. In general, 23 species of methanogens were detected in AC position characterized by excessive moisture which explains prevailing of methane emission over consumption. It was also revealed that Methanolobus taylori, Methanococcoides methylutens, and Methanosaeta concilii were the dominant methanogens, while Methylosinus pucelana and Methylosinus acidophilus were the main methanotrophs in prokaryotic communities of studied soils. This research was supported by the Russian Science Foundation, Projects No 14-26-00625 and No 14-26-00079.

  12. Systems Biology

    Indian Academy of Sciences (India)

    IAS Admin

    study and understand the function of biological systems, particu- larly, the response of such .... understand the organisation and behaviour of prokaryotic sys- tems. ... relationship of the structure of a target molecule to its ability to bind a certain ...

  13. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.

    Science.gov (United States)

    Panigrahi, Rashmi; Lemieux, M Joanne

    2015-01-01

    Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.

  14. GenomePeek—an online tool for prokaryotic genome and metagenome analysis

    Directory of Open Access Journals (Sweden)

    Katelyn McNair

    2015-06-01

    Full Text Available As more and more prokaryotic sequencing takes place, a method to quickly and accurately analyze this data is needed. Previous tools are mainly designed for metagenomic analysis and have limitations; such as long runtimes and significant false positive error rates. The online tool GenomePeek (edwards.sdsu.edu/GenomePeek was developed to analyze both single genome and metagenome sequencing files, quickly and with low error rates. GenomePeek uses a sequence assembly approach where reads to a set of conserved genes are extracted, assembled and then aligned against the highly specific reference database. GenomePeek was found to be faster than traditional approaches while still keeping error rates low, as well as offering unique data visualization options.

  15. New insights into the structural organization of eukaryotic and prokaryotic cytoskeletons using cryo-electron tomography

    International Nuclear Information System (INIS)

    Kuerner, Julia; Medalia, Ohad; Linaroudis, Alexandros A.; Baumeister, Wolfgang

    2004-01-01

    Cryo-electron tomography (cryo-ET) is an emerging imaging technology that combines the potential of three-dimensional (3-D) imaging at molecular resolution (<5 nm) with a close-to-life preservation of the specimen. In conjunction with pattern recognition techniques, it enables us to map the molecular landscape inside cells. The application of cryo-ET to intact cells provides novel insights into the structure and the spatial organization of the cytoskeleton in prokaryotic and eukaryotic cells

  16. Production of lysosomal enzymes in plant-based expression systems

    OpenAIRE

    1996-01-01

    The invention relates to the production of enzymatically active recombinant human and animal lysosomal enzymes involving construction and expression of recombinant expression constructs comprising coding sequences of human or animal lysosomal enzymes in a plant expression system. The plant expression system provides for post-translational modification and processing to produce a recombinant gene product exhibiting enzymatic activity. The invention is demonstrated by working examples in which ...

  17. Cyclic Dinucleotides in the Scope of the Mammalian Immune System.

    Science.gov (United States)

    Mankan, Arun K; Müller, Martina; Witte, Gregor; Hornung, Veit

    2017-01-01

    First discovered in prokaryotes and more recently in eukaryotes, cyclic dinucleotides (CDNs) constitute a unique branch of second messenger signaling systems. Within prokaryotes CDNs regulate a wide array of different biological processes, whereas in the vertebrate system CDN signaling is largely dedicated to activation of the innate immune system. In this book chapter we summarize the occurrence and signaling pathways of these small-molecule second messengers, most importantly in the scope of the mammalian immune system. In this regard, our main focus is the role of the cGAS-STING axis in the context of microbial infection and sterile inflammation and its implications for therapeutic applications.

  18. Review of the recombinant human interferon gamma as an immunotherapeutic: Impacts of production platforms and glycosylation.

    Science.gov (United States)

    Razaghi, Ali; Owens, Leigh; Heimann, Kirsten

    2016-12-20

    Human interferon gamma is a cytokine belonging to a diverse group of interferons which have a crucial immunological function against mycobacteria and a wide variety of viral infections. To date, it has been approved for treatment of chronic granulomatous disease and malignant osteopetrosis, and its application as an immunotherapeutic agent against cancer is an increasing prospect. Recombinant human interferon gamma, as a lucrative biopharmaceutical, has been engineered in different expression systems including prokaryotic, protozoan, fungal (yeasts), plant, insect and mammalian cells. Human interferon gamma is commonly expressed in Escherichia coli, marketed as ACTIMMUNE ® , however, the resulting product of the prokaryotic expression system is unglycosylated with a short half-life in the bloodstream; the purification process is tedious and makes the product costlier. Other expression systems also did not show satisfactory results in terms of yields, the biological activity of the protein or economic viability. Thus, the review aims to synthesise available information from previous studies on the production of human interferon gamma and its glycosylation patterns in different expression systems, to provide direction to future research in this field. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Similarities and Differences in the Glycosylation Mechanisms in Prokaryotes and Eukaryotes

    Directory of Open Access Journals (Sweden)

    Anne Dell

    2010-01-01

    Full Text Available Recent years have witnessed a rapid growth in the number and diversity of prokaryotic proteins shown to carry N- and/or O-glycans, with protein glycosylation now considered as fundamental to the biology of these organisms as it is in eukaryotic systems. This article overviews the major glycosylation pathways that are known to exist in eukarya, bacteria and archaea. These are (i oligosaccharyltransferase (OST-mediated N-glycosylation which is abundant in eukarya and archaea, but is restricted to a limited range of bacteria; (ii stepwise cytoplasmic N-glycosylation that has so far only been confirmed in the bacterial domain; (iii OST-mediated O-glycosylation which appears to be characteristic of bacteria; and (iv stepwise O-glycosylation which is common in eukarya and bacteria. A key aim of the review is to integrate information from the three domains of life in order to highlight commonalities in glycosylation processes. We show how the OST-mediated N- and O-glycosylation pathways share cytoplasmic assembly of lipid-linked oligosaccharides, flipping across the ER/periplasmic/cytoplasmic membranes, and transferring “en bloc” to the protein acceptor. Moreover these hallmarks are mirrored in lipopolysaccharide biosynthesis. Like in eukaryotes, stepwise O-glycosylation occurs on diverse bacterial proteins including flagellins, adhesins, autotransporters and lipoproteins, with O-glycosylation chain extension often coupled with secretory mechanisms.

  20. The phosphatomes of the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum in comparison with other prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Anke Treuner-Lange

    Full Text Available BACKGROUND: Analysis of the complete genomes from the multicellular myxobacteria Myxococcus xanthus and Sorangium cellulosum identified the highest number of eukaryotic-like protein kinases (ELKs compared to all other genomes analyzed. High numbers of protein phosphatases (PPs could therefore be anticipated, as reversible protein phosphorylation is a major regulation mechanism of fundamental biological processes. METHODOLOGY: Here we report an intensive analysis of the phosphatomes of M. xanthus and S. cellulosum in which we constructed phylogenetic trees to position these sequences relative to PPs from other prokaryotic organisms. PRINCIPAL FINDINGS: PREDOMINANT OBSERVATIONS WERE: (i M. xanthus and S. cellulosum possess predominantly Ser/Thr PPs; (ii S. cellulosum encodes the highest number of PP2c-type phosphatases so far reported for a prokaryotic organism; (iii in contrast to M. xanthus only S. cellulosum encodes high numbers of SpoIIE-like PPs; (iv there is a significant lack of synteny among M. xanthus and S. cellulosum, and (v the degree of co-organization between kinase and phosphatase genes is extremely low in these myxobacterial genomes. CONCLUSIONS: We conclude that there has been a greater expansion of ELKs than PPs in multicellular myxobacteria.

  1. ATGC: a database of orthologous genes from closely related prokaryotic genomes and a research platform for microevolution of prokaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Novichkov, Pavel S.; Ratnere, Igor; Wolf, Yuri I.; Koonin, Eugene V.; Dubchak, Inna

    2009-07-23

    The database of Alignable Tight Genomic Clusters (ATGCs) consists of closely related genomes of archaea and bacteria, and is a resource for research into prokaryotic microevolution. Construction of a data set with appropriate characteristics is a major hurdle for this type of studies. With the current rate of genome sequencing, it is difficult to follow the progress of the field and to determine which of the available genome sets meet the requirements of a given research project, in particular, with respect to the minimum and maximum levels of similarity between the included genomes. Additionally, extraction of specific content, such as genomic alignments or families of orthologs, from a selected set of genomes is a complicated and time-consuming process. The database addresses these problems by providing an intuitive and efficient web interface to browse precomputed ATGCs, select appropriate ones and access ATGC-derived data such as multiple alignments of orthologous proteins, matrices of pairwise intergenomic distances based on genome-wide analysis of synonymous and nonsynonymous substitution rates and others. The ATGC database will be regularly updated following new releases of the NCBI RefSeq. The database is hosted by the Genomics Division at Lawrence Berkeley National laboratory and is publicly available at http://atgc.lbl.gov.

  2. Recombinant expression systems: the obstacle to helminth vaccines?

    Science.gov (United States)

    Geldhof, Peter; De Maere, Veerle; Vercruysse, Jozef; Claerebout, Edwin

    2007-11-01

    The need for alternative ways to control helminth parasites has in recent years led to a boost in vaccination experiments with recombinant antigens. Despite the use of different expression systems, only a few recombinants induced high levels of protection against helminths. This is often attributed to the limitations of the current expression systems. Therefore, the need for new systems that can modify and glycosylate the expressed antigens has been advocated. However, analysis of over 100 published vaccine trials with recombinant helminth antigens indicates that it is often not known whether the native parasite antigen itself can induce protection or, if it does, which epitopes are important. This information is vital for a well-thought-out strategy for recombinant production. So, in addition to testing more expression systems, it should be considered that prior evaluation and characterization of the native antigens might help the development of recombinant vaccines against helminths in the long term.

  3. Identification of a protein glycosylation operon from Campylobacter jejuni JCM 2013 and its heterologous expression in Escherichia coli.

    Science.gov (United States)

    Srichaisupakit, Akkaraphol; Ohashi, Takao; Fujiyama, Kazuhito

    2014-09-01

    Campylobacter jejuni is a human enteropathogenic bacterium possessing an N-glycosylation system. In this work, a protein glycosylation (pgl) operon conferring prokaryotic N-glycosylation in C. jejuni JCM 2013 was cloned and identified. Fourteen open reading frames (ORFs) were found in the pgl operon. The operon organization was similar to that of C. jejuni NCTC 11168, with 98% and 99% identities in overall nucleotide sequence and amino acid sequence, respectively. The pgl operon was heterologously co-expressed with model protein CmeA in the Escherichia coli BL21 ΔwaaL mutant. The immuno- and lectin-blotting analysis indicated the protein glycosylation on the recombinant CmeA. In addition, to analyze the glycan composition, the recombinant CmeA was purified and subjected to in-gel trypsin digestion followed by mass spectrometry analysis. The mass spectrometry analysis showed the presence of the N-acetylhexosamine residue at the reducing end but not the predicted di-N-acetylbacillosamine (diNAcBac) residue. Further glycan structural study using the conventional fluorophore-labeling method revealed the GalNAcα-GalNAcα-(Hex-)HexNAc-HexNAc-HexNAc-HexNAc structure. Transcriptional analysis showed that UDP-diNAcBac synthases and diNAcBac transferase are transcribed but might not function in the constructed system. In conclusion, a pgl operon from C. jejuni JCM 2013 successfully functioned in E. coli, resulting in the observed prokaryotic glycosylation. Copyright © 2014 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  4. Exterior Site Occupancy Infers Chloride-Induced Proton Gating in a Prokaryotic Homolog of the ClC Chloride Channel

    Science.gov (United States)

    Bostick, David L.; Berkowitz, Max L.

    2004-01-01

    The ClC family of anion channels mediates the efficient, selective permeation of Cl− across the biological membranes of living cells under the driving force of an electrochemical gradient. In some eukaryotes, these channels are known to exhibit a unique gating mechanism, which appears to be triggered by the permeant Cl− anion. We infer details of this gating mechanism by studying the free energetics of Cl− occupancy in the pore of a prokaryotic ClC homolog. These free energetics were gleaned from 30 ns of molecular dynamics simulation on an ∼133,000-atom system consisting of a hydrated membrane embedded StClC transporter. The binding sites for Cl− in the transporter were determined for the cases where the putative gating residue, Glu148, was protonated and unprotonated. When the glutamate gate is protonated, Cl− favorably occupies an exterior site, Sext, to form a queue of anions in the pore. However, when the glutamate gate is unprotonated, Cl− cannot occupy this site nor, consequently, pass through the pore. An additional, previously undetected, site was found in the pore near the outer membrane that exists regardless of the protonation state of Glu148. Although this suggests that, for the prokaryotic homolog, protonation of Glu148 may be the first step in transporting Cl− at the expense of H+ transport in the opposite direction, an evolutionary argument might suggest that Cl− opens the ClC gate in eukaryotic channels by inducing the conserved glutamate's protonation. During an additional 20 ns free dynamics simulation, the newly discovered outermost site, Sout, and the innermost site, Sint, were seen to allow spontaneous exchange of Cl− ions with the bulk electrolyte while under depolarization conditions. PMID:15345547

  5. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli.

    Science.gov (United States)

    Khademi, Farzad; Yousefi-Avarvand, Arshid; Derakhshan, Mohammad; Meshkat, Zahra; Tafaghodi, Mohsen; Ghazvini, Kiarash; Aryan, Ehsan; Sankian, Mojtaba

    2017-10-01

    The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.

  6. A universal trend of reduced mRNA stability near the translation-initiation site in prokaryotes and eukaryotes.

    Directory of Open Access Journals (Sweden)

    Wanjun Gu

    2010-02-01

    Full Text Available Recent studies have suggested that the thermodynamic stability of mRNA secondary structure near the start codon can regulate translation efficiency in Escherichia coli, and that translation is more efficient the less stable the secondary structure. We survey the complete genomes of 340 species for signals of reduced mRNA secondary structure near the start codon. Our analysis includes bacteria, archaea, fungi, plants, insects, fishes, birds, and mammals. We find that nearly all species show evidence for reduced mRNA stability near the start codon. The reduction in stability generally increases with increasing genomic GC content. In prokaryotes, the reduction also increases with decreasing optimal growth temperature. Within genomes, there is variation in the stability among genes, and this variation correlates with gene GC content, codon bias, and gene expression level. For birds and mammals, however, we do not find a genome-wide trend of reduced mRNA stability near the start codon. Yet the most GC rich genes in these organisms do show such a signal. We conclude that reduced stability of the mRNA secondary structure near the start codon is a universal feature of all cellular life. We suggest that the origin of this reduction is selection for efficient recognition of the start codon by initiator-tRNA.

  7. NMR comparison of prokaryotic and eukaryotic cytochromes c

    International Nuclear Information System (INIS)

    Chau, Meihing; Cai, Meng Li; Timkovich, R.

    1990-01-01

    1 H NMR spectroscopy has been used to examine ferrocytochrome c-551 from Pseudomonas aeruginosa (ATCC 19429) over the pH range 3.5-10.6 and the temperature range 4-60 degree C. Resonance assignments are proposed for main-chain and side-chain protons. Comparison of results for cytochrome c-551 to recently assigned spectra for horse cytochrome c and mutants of yeast iso-1 cytochrome reveals some unique resonances with unusual chemical shifts in all cytochromes that may serve as markers for the heme region. Results for cytochrome c-551 indicate that in the smaller prokaryotic cytochrome, all benzoid side chains are rapidly flipping on the NMR time scale. In contrast, in eukaryotic cytochromes there are some rings flipping slowly on the NMR time scale. The ferrocytochrome c-551 undergoes a transition linked to pH with a pK around 7. The pH behavior of assigned resonances provides evidence that the site of protonation is the inner or buried 17-propionic acid heme substituent (IUPAC-IUB porphyrin nomenclature). Conformational heterogeneity has been observed for segments near the inner heme propionate substituent

  8. Mitochondrial intermediate peptidase: Expression in Escherichia coli and improvement of its enzymatic activity detection with FRET substrates

    International Nuclear Information System (INIS)

    Marcondes, Marcelo F.; Torquato, Ricardo J.S.; Assis, Diego M.; Juliano, Maria A.; Hayashi, Mirian A.F.; Oliveira, Vitor

    2010-01-01

    In the present study, soluble, functionally-active, recombinant human mitochondrial intermediate peptidase (hMIP), a mitochondrial metalloendoprotease, was expressed in a prokaryotic system. The hMIP fusion protein, with a poly-His-tag (6x His), was obtained by cloning the coding region of hMIP cDNA into the pET-28a expression vector, which was then used to transform Escherichia coli BL21 (DE3) pLysS. After isolation and purification of the fusion protein by affinity chromatography using Ni-Sepharose resin, the protein was purified further using ion exchange chromatography with a Hi-trap resource Q column. The recombinant hMIP was characterized by Western blotting using three distinct antibodies, circular dichroism, and enzymatic assays that used the first FRET substrates developed for MIP and a series of protease inhibitors. The successful expression of enzymatically-active hMIP in addition to the FRET substrates will contribute greatly to the determination of substrate specificity of this protease and to the development of specific inhibitors that are essential for a better understanding of the role of this protease in mitochondrial functioning.

  9. Expression, purification, and characterization of a diabody against the most important angiogenesis cell receptor: Vascular endothelial growth factor receptor 2

    Directory of Open Access Journals (Sweden)

    Mahdi Behdani

    2012-01-01

    Full Text Available Antibodies and their derivative fragments have long been used as tools in a variety of applications, in fundamental research work, biotechnology, diagnosis, and therapy. Camels produce single heavy-chain antibodies (VHH in addition to usual antibodies. These minimal-sized binders are very robust and bind the antigen with high affinity in a monomeric state. Vascular endothelial growth factor recepror-2 (VEGFR2 is an important tumor-associated receptor that blockade of its signaling can lead to the inhibition of neovascularization and tumor metastasis. Here, we describe the construction, expression, and purification VEGFR2-specific Diabody. Two variable fragments of a same camel anti-VEGFR2 antibody were linked together by the upper hinge segment of antibody to make a diabody. We showed the ability of diabody to recognition of VEGFR2 on the cell surface by FACS. Diabodies can be produced in the low-cost prokaryotic expression system, so they are suitable molecules for diagnostic and therapeutic issues.

  10. OxyGene: an innovative platform for investigating oxidative-response genes in whole prokaryotic genomes

    Directory of Open Access Journals (Sweden)

    Barloy-Hubler Frédérique

    2008-12-01

    Full Text Available Abstract Background Oxidative stress is a common stress encountered by living organisms and is due to an imbalance between intracellular reactive oxygen and nitrogen species (ROS, RNS and cellular antioxidant defence. To defend themselves against ROS/RNS, bacteria possess a subsystem of detoxification enzymes, which are classified with regard to their substrates. To identify such enzymes in prokaryotic genomes, different approaches based on similarity, enzyme profiles or patterns exist. Unfortunately, several problems persist in the annotation, classification and naming of these enzymes due mainly to some erroneous entries in databases, mistake propagation, absence of updating and disparity in function description. Description In order to improve the current annotation of oxidative stress subsystems, an innovative platform named OxyGene has been developed. It integrates an original database called OxyDB, holding thoroughly tested anchor-based signatures associated to subfamilies of oxidative stress enzymes, and a new anchor-driven annotator, for ab initio detection of ROS/RNS response genes. All complete Bacterial and Archaeal genomes have been re-annotated, and the results stored in the OxyGene repository can be interrogated via a Graphical User Interface. Conclusion OxyGene enables the exploration and comparative analysis of enzymes belonging to 37 detoxification subclasses in 664 microbial genomes. It proposes a new classification that improves both the ontology and the annotation of the detoxification subsystems in prokaryotic whole genomes, while discovering new ORFs and attributing precise function to hypothetical annotated proteins. OxyGene is freely available at: http://www.umr6026.univ-rennes1.fr/english/home/research/basic/software

  11. Analysis of the expression and antioxidant activity of 2-Cys peroxiredoxin protein in Fasciola gigantica.

    Science.gov (United States)

    Sangpairoj, Kant; Changklungmoa, Narin; Vanichviriyakit, Rapeepun; Sobhon, Prasert; Chaithirayanon, Kulathida

    2014-05-01

    2-Cys peroxiredoxin (Prx) is the main antioxidant enzyme in Fasciola species for detoxifying hydrogen peroxide which is generated from the hosts' immune effector cells and the parasites' own metabolism. In this study, the recombinant Prx protein from Fasciola gigantica (rFgPrx-2) was expressed and purified in a prokaryotic expression system. This recombinant protein with molecular weight of 26 kDa was enzymatically active in reduction of hydrogen peroxide both in presence of thioredoxin and glutathione systems, and also protected the supercoiled plasmid DNA from oxidative damage in metal-catalyzed oxidation (MCO) system in a concentration-dependent manner. By immunoblotting, using antibody against rFgPrx-2 as probe, a native FgPrxs, whose MW at 25 kDa, was detected in all developmental stages of the parasite. Concentrations of native FgPrxs were increasing in all stages reaching highest level in adult stage. The antibody also showed cross reactivities with corresponding proteins in some cattle helminthes. Natural antibody to FgPrxs could be detected in the sera of mice at 3 and 4 weeks after infection with F. gigantica metacercariae. By immunofluorescence, FgPrxs was highly expressed in tegument and tegumental cells, parenchyma, moderately expressed in cecal epithelial cells in early, juvenile and adult worms. Furthermore, FgPrxs was also detected in the female reproductive organs, including eggs, ovary, vitelline cells, and testis, suggesting that FgPrxs might play an essential role in protecting parasite's tissues from free radical attack during their life cycle. Thus, FgPrxs is one potential candidate for drug therapy and vaccine development. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Bacterial expression and one-step purification of an isotope-labeled heterotrimeric G-protein {alpha}-subunit

    Energy Technology Data Exchange (ETDEWEB)

    Abdulaev, Najmoutin G. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States); Zhang Cheng; Dinh, Andy [University of Texas Health Science Center, Center for Membrane Biology, Department of Biochemistry and Molecular Biology (United States); Ngo, Tony; Bryan, Philip N. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States); Brabazon, Danielle M. [Loyola College in Maryland, Department of Chemistry (United States); Marino, John P. [University of Maryland Biotechnology Institute, Center for Advanced Research in Biotechnology (United States)], E-mail: marino@carb.nist.gov; Ridge, Kevin D. [University of Texas Health Science Center, Center for Membrane Biology, Department of Biochemistry and Molecular Biology (United States)

    2005-05-15

    Heterologous expression systems are often employed to generate sufficient quantities of isotope-labeled proteins for high-resolution NMR studies. Recently, the interaction between the prodomain region of subtilisin and an active, mutant form of the mature enzyme has been exploited to develop a cleavable affinity tag fusion system for one-step generation and purification of full-length soluble proteins obtained by inducible prokaryotic expression. As a first step towards applying high-resolution NMR methods to study heterotrimeric G-protein {alpha}-subunit (G{sub {alpha}}) conformation and dynamics, the utility of this subtilisin prodomain fusion system for expressing and purifying an isotope-labeled G{sub {alpha}} chimera ({approx}40 kDa polypeptide) has been tested. The results show that a prodomain fused G{sub {alpha}} chimera can be expressed to levels approaching 6-8 mg/l in minimal media and that the processed, mature protein exhibits properties similar to those of G{sub {alpha}} isolated from natural sources. To assay for the functional integrity of the purified G{sub {alpha}} chimera at NMR concentrations and probe for changes in the structure and dynamics of G{sub {alpha}} that result from activation, {sup 15}N-HSQC spectra of the GDP/Mg{sup 2+} bound form of G{sub {alpha}} obtained in the absence and presence of aluminum fluoride, a well known activator of the GDP bound state, have been acquired. Comparisons of the {sup 15}N-HSQC spectra reveals a number of changes in chemical shifts of the {sup 1}HN, {sup 15}N crosspeaks that are discussed with respect to expected changes in the protein conformation associated with G{sub {alpha}} activation.

  13. Transgenic Arabidopsis Gene Expression System

    Science.gov (United States)

    Ferl, Robert; Paul, Anna-Lisa

    2009-01-01

    The Transgenic Arabidopsis Gene Expression System (TAGES) investigation is one in a pair of investigations that use the Advanced Biological Research System (ABRS) facility. TAGES uses Arabidopsis thaliana, thale cress, with sensor promoter-reporter gene constructs that render the plants as biomonitors (an organism used to determine the quality of the surrounding environment) of their environment using real-time nondestructive Green Fluorescent Protein (GFP) imagery and traditional postflight analyses.

  14. Genetic Transformation of an Obligate Anaerobe, P. gingivalis for FMN-Green Fluorescent Protein Expression in Studying Host-Microbe Interaction

    OpenAIRE

    Choi, Chul Hee; DeGuzman, Jefferson V.; Lamont, Richard J.; Yilmaz, Özlem

    2011-01-01

    The recent introduction of "oxygen-independent" flavin mononucleotide (FMN)-based fluorescent proteins (FbFPs) is of major interest to both eukaryotic and prokaryotic microbial biologists. Accordingly, we demonstrate for the first time that an obligate anaerobe, the successful opportunistic pathogen of the oral cavity, Porphyromonas gingivalis, can be genetically engineered for expression of the non-toxic green FbFP. The resulting transformants are functional for studying dynamic bacterial pr...

  15. Molecular Cloning, Bioinformatic Analysis, and Expression of Bombyx mori Lebocin 5 Gene Related to Beauveria bassiana Infection.

    Science.gov (United States)

    Lü, Dingding; Hou, Chengxiang; Qin, Guangxing; Gao, Kun; Chen, Tian; Guo, Xijie

    2017-01-01

    A full-length cDNA of lebocin 5 (BmLeb5) was first cloned from silkworm, Bombyx mori , by rapid amplification of cDNA ends. The BmLeb5 gene is 808 bp in length and the open reading frame encodes a 179-amino acid hydroxyproline-rich peptide. Bioinformatic analysis results showed that BmLeb5 owns an O-glycosylation site and four RXXR motifs as other lebocins. Sequence similarity and phylogenic analysis results indicated that lebocins form a multiple gene family in silkworm as cecropins. Quantitative real-time PCR analysis revealed that BmLeb5 was highest expressed in the fat body. In the silkworm larvae infected by Beauveria bassiana , the expression level of BmLeb5 was upregulated in the fat body and hemolymph which are the most important immune tissues in silkworm. The recombinant protein of BmLeb5 was for the first time successfully expressed with prokaryotic expression system and purified. There are no reports so far that the expression of lebocins could be induced by entomopathogenic fungus. Our study suggested that BmLeb5 might play an important role in the immune response of silkworm to defend B. bassiana infection. The results also provided helpful information for further studying the lebocin family functioned in antifungal immune response in the silkworm.

  16. Amino acid composition in endothermic vertebrates is biased in the same direction as in thermophilic prokaryotes

    Directory of Open Access Journals (Sweden)

    Wang Guang-Zhong

    2010-08-01

    Full Text Available Abstract Background Among bacteria and archaea, amino acid usage is correlated with habitat temperatures. In particular, protein surfaces in species thriving at higher temperatures appear to be enriched in amino acids that stabilize protein structure and depleted in amino acids that decrease thermostability. Does this observation reflect a causal relationship, or could the apparent trend be caused by phylogenetic relatedness among sampled organisms living at different temperatures? And do proteins from endothermic and exothermic vertebrates show similar differences? Results We find that the observed correlations between the frequencies of individual amino acids and prokaryotic habitat temperature are strongly influenced by evolutionary relatedness between the species analysed; however, a proteome-wide bias towards increased thermostability remains after controlling for phylogeny. Do eukaryotes show similar effects of thermal adaptation? A small shift of amino acid usage in the expected direction is observed in endothermic ('warm-blooded' mammals and chicken compared to ectothermic ('cold-blooded' vertebrates with lower body temperatures; this shift is not simply explained by nucleotide usage biases. Conclusion Protein homologs operating at different temperatures have different amino acid composition, both in prokaryotes and in vertebrates. Thus, during the transition from ectothermic to endothermic life styles, the ancestors of mammals and of birds may have experienced weak genome-wide positive selection to increase the thermostability of their proteins.

  17. Known knowns, known unknowns and unknown unknowns in prokaryotic transposition.

    Science.gov (United States)

    Siguier, Patricia; Gourbeyre, Edith; Chandler, Michael

    2017-08-01

    Although the phenomenon of transposition has been known for over 60 years, its overarching importance in modifying and streamlining genomes took some time to recognize. In spite of a robust understanding of transposition of some TE, there remain a number of important TE groups with potential high genome impact and unknown transposition mechanisms and yet others, only recently identified by bioinformatics, yet to be formally confirmed as mobile. Here, we point to some areas of limited understanding concerning well established important TE groups with DDE Tpases, to address central gaps in our knowledge of characterised Tn with other types of Tpases and finally, to highlight new potentially mobile DNA species. It is not exhaustive. Examples have been chosen to provide encouragement in the continued exploration of the considerable prokaryotic mobilome especially in light of the current threat to public health posed by the spread of multiple Ab R . Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Soluble Prokaryotic Expression and Purification of Bioactive Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand.

    Science.gov (United States)

    Do, Bich Hang; Nguyen, Minh Tan; Song, Jung-A; Park, Sangsu; Yoo, Jiwon; Jang, Jaepyeong; Lee, Sunju; So, Seoungjun; Yoon, Yejin; Kim, Inki; Lee, Kyungjin; Jang, Yeon Jin; Choe, Han

    2017-12-28

    Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is considered as an antitumor agent owing to its ability to induce apoptosis of cancer cells without imparting toxicity toward most normal cells. TRAIL is produced in poor yield because of its insoluble expression in the cytoplasm of E. coli . In this study, we achieved soluble expression of TRAIL by fusing maltose-binding protein (MBP), b'a' domain of protein disulfide isomerase (PDIb'a'), or protein disulfide isomerase at the N-terminus of TRAIL. The TRAIL was purified using subsequent immobilized metal affinity chromatography and amylose-binding chromatography, with the tag removal using tobacco etch virus protease. Approximately 4.5 mg of pure TRAIL was produced from 125 ml flask culture with a purification yield of 71.6%. The endotoxin level of the final product was 0.4 EU/μg, as measured by the Limulus amebocyte lysate endotoxin assay. The purified TRAIL was validated and shown to cause apoptosis of HeLa cells with an EC₅₀ and Hill coefficient of 0.6 ± 0.03 nM and 2.41 ± 0.15, respectively. The high level of apoptosis in HeLa cells following administration of purified TRAIL indicates the significance and novelty of this method for producing high-grade and high-yield TRAIL.

  19. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs.

    Directory of Open Access Journals (Sweden)

    Nikita Abraham

    Full Text Available Nicotinic acetylcholine receptors (nAChR are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP. AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.

  20. Final report: FASEB Summer Research Conference on ''Post-transcriptional control of gene expression: Effectors of mRNA decay'' [agenda and attendees list

    Energy Technology Data Exchange (ETDEWEB)

    Maquat, Lynne

    2002-12-01

    The goal of this meeting was to provide an interactive forum for scientists working on prokaryotic and eukaryotic mRNA decay. A special seminar presented by a leader in the field of mRNA decay in S. cerevisiae focused on what is known and what needs to be determined, not only for yeast but for other organisms. The large attendance (110 participants) reflects the awareness that mRNA decay is a key player in gene regulation in a way that is affected by the many steps that precede mRNA formation. Sessions were held on the following topics: mRNA transport and mRNP; multicomponent eukaryotic nucleases; nonsense-mediated mRNA decay and nonsense-associated altered splicing; Cis-acting sequences/Trans-acting factors of mRNA decay; translational accuracy; multicomponent bacterial nucleases; interplay between mRNA polyadenylation, translation and decay in prokaryotes and prokaryotic organelles; and RNA interference and other RNA mediators of gene expression. In addition to the talks and two poster sessions, there were three round tables: (1) Does translation occur in the nucleus? (2) Differences and similarities in the mechanisms of mRNA decay in different eukaryotes, and (3) RNA surveillance in bacteria?

  1. Facial expression system on video using widrow hoff

    Science.gov (United States)

    Jannah, M.; Zarlis, M.; Mawengkang, H.

    2018-03-01

    Facial expressions recognition is one of interesting research. This research contains human feeling to computer application Such as the interaction between human and computer, data compression, facial animation and facial detection from the video. The purpose of this research is to create facial expression system that captures image from the video camera. The system in this research uses Widrow-Hoff learning method in training and testing image with Adaptive Linear Neuron (ADALINE) approach. The system performance is evaluated by two parameters, detection rate and false positive rate. The system accuracy depends on good technique and face position that trained and tested.

  2. Rational development of an attenuated recombinant cyprinid herpesvirus 3 vaccine using prokaryotic mutagenesis and in vivo bioluminescent imaging.

    Science.gov (United States)

    Boutier, Maxime; Ronsmans, Maygane; Ouyang, Ping; Fournier, Guillaume; Reschner, Anca; Rakus, Krzysztof; Wilkie, Gavin S; Farnir, Frédéric; Bayrou, Calixte; Lieffrig, François; Li, Hong; Desmecht, Daniel; Davison, Andrew J; Vanderplasschen, Alain

    2015-02-01

    Cyprinid herpesvirus 3 (CyHV 3) is causing severe economic losses worldwide in common and koi carp industries, and a safe and efficacious attenuated vaccine compatible with mass vaccination is needed. We produced single deleted recombinants using prokaryotic mutagenesis. When producing a recombinant lacking open reading frame 134 (ORF134), we unexpectedly obtained a clone with additional deletion of ORF56 and ORF57. This triple deleted recombinant replicated efficiently in vitro and expressed an in vivo safety/efficacy profile compatible with use as an attenuated vaccine. To determine the role of the double ORF56-57 deletion in the phenotype and to improve further the quality of the vaccine candidate, a series of deleted recombinants was produced and tested in vivo. These experiments led to the selection of a double deleted recombinant lacking ORF56 and ORF57 as a vaccine candidate. The safety and efficacy of this strain were studied using an in vivo bioluminescent imaging system (IVIS), qPCR, and histopathological examination, which demonstrated that it enters fish via skin infection similar to the wild type strain. However, compared to the parental wild type strain, the vaccine candidate replicated at lower levels and spread less efficiently to secondary sites of infection. Transmission experiments allowing water contamination with or without additional physical contact between fish demonstrated that the vaccine candidate has a reduced ability to spread from vaccinated fish to naïve sentinel cohabitants. Finally, IVIS analyses demonstrated that the vaccine candidate induces a protective mucosal immune response at the portal of entry. Thus, the present study is the first to report the rational development of a recombinant attenuated vaccine against CyHV 3 for mass vaccination of carp. We also demonstrated the relevance of the CyHV 3 carp model for studying alloherpesvirus transmission and mucosal immunity in teleost skin.

  3. dbSWEET: An Integrated Resource for SWEET Superfamily to Understand, Analyze and Predict the Function of Sugar Transporters in Prokaryotes and Eukaryotes.

    Science.gov (United States)

    Gupta, Ankita; Sankararamakrishnan, Ramasubbu

    2018-04-14

    SWEET (Sweet Will Eventually be Exported Transporter) proteins have been recently discovered and form one of the three major families of sugar transporters. Homologs of SWEET are found in both prokaryotes and eukaryotes. Bacterial SWEET homologs have three transmembrane segments forming a triple-helical bundle (THB) and the functional form is dimers. Eukaryotic SWEETs have seven transmembrane helical segments forming two THBs with a linker helix. Members of SWEET homologs have been shown to be involved in several important physiological processes in plants. However, not much is known regarding the biological significance of SWEET homologs in prokaryotes and in mammals. We have collected more than 2000 SWEET homologs from both prokaryotes and eukaryotes. For each homolog, we have modeled three different conformational states representing outward open, inward open and occluded states. We have provided details regarding substrate-interacting residues and residues forming the selectivity filter for each SWEET homolog. Several search and analysis options are available. The users can generate a phylogenetic tree and structure-based sequence alignment for selected set of sequences. With no metazoan SWEETs functionally characterized, the features observed in the selectivity filter residues can be used to predict the potential substrates that are likely to be transported across the metazoan SWEETs. We believe that this database will help the researchers to design mutational experiments and simulation studies that will aid to advance our understanding of the physiological role of SWEET homologs. This database is freely available to the scientific community at http://bioinfo.iitk.ac.in/bioinfo/dbSWEET/Home. Copyright © 2018. Published by Elsevier Ltd.

  4. Interactive analysis of systems biology molecular expression data

    Directory of Open Access Journals (Sweden)

    Prabhakar Sunil

    2008-02-01

    Full Text Available Abstract Background Systems biology aims to understand biological systems on a comprehensive scale, such that the components that make up the whole are connected to one another and work through dependent interactions. Molecular correlations and comparative studies of molecular expression are crucial to establishing interdependent connections in systems biology. The existing software packages provide limited data mining capability. The user must first generate visualization data with a preferred data mining algorithm and then upload the resulting data into the visualization package for graphic visualization of molecular relations. Results Presented is a novel interactive visual data mining application, SysNet that provides an interactive environment for the analysis of high data volume molecular expression information of most any type from biological systems. It integrates interactive graphic visualization and statistical data mining into a single package. SysNet interactively presents intermolecular correlation information with circular and heatmap layouts. It is also applicable to comparative analysis of molecular expression data, such as time course data. Conclusion The SysNet program has been utilized to analyze elemental profile changes in response to an increasing concentration of iron (Fe in growth media (an ionomics dataset. This study case demonstrates that the SysNet software is an effective platform for interactive analysis of molecular expression information in systems biology.

  5. Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions.

    Science.gov (United States)

    Cardinali-Rezende, Juliana; Colturato, Luís F D B; Colturato, Thiago D B; Chartone-Souza, Edmar; Nascimento, Andréa M A; Sanz, José L

    2012-09-01

    The prokaryotic diversity of an anaerobic reactor for the treatment of municipal solid waste was investigated over the course of 2 years with the use of 16S rDNA-targeted molecular approaches. The fermentative Bacteroidetes and Firmicutes predominated, and Proteobacteria, Actinobacteria, Tenericutes and the candidate division WWE1 were also identified. Methane production was dominated by the hydrogenotrophic Methanomicrobiales (Methanoculleus sp.) and their syntrophic association with acetate-utilizing and propionate-oxidizing bacteria. qPCR demonstrated the predominance of the hydrogenotrophic over aceticlastic Methanosarcinaceae (Methanosarcina sp. and Methanimicrococcus sp.), and Methanosaetaceae (Methanosaeta sp.) were measured in low numbers in the reactor. According to the FISH and CARD-FISH analyses, Bacteria and Archaea accounted for 85% and 15% of the cells, respectively. Different cell counts for these domains were obtained by qPCR versus FISH analyses. The use of several molecular tools increases our knowledge of the prokaryotic community dynamics from start-up to steady-state conditions in a full-scale MSW reactor. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. Phylogenetic and Comparative Sequence Analysis of Thermostable Alpha Amylases of kingdom Archea, Prokaryotes and Eukaryotes.

    Science.gov (United States)

    Huma, Tayyaba; Maryam, Arooma; Rehman, Shahid Ur; Qamar, Muhammad Tahir Ul; Shaheen, Tayyaba; Haque, Asma; Shaheen, Bushra

    2014-01-01

    Alpha amylase family is generally defined as a group of enzymes that can hydrolyse and transglycosylase α-(1, 4) or α-(1, 6) glycosidic bonds along with the preservation of anomeric configuration. For the comparative analysis of alpha amylase family, nucleotide sequences of seven thermo stable organisms of Kingdom Archea i.e. Pyrococcus furiosus (100-105°C), Kingdom Prokaryotes i.e. Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C), Bacillus amyloliquefaciens (72°C), Bacillus subtilis (70°C) and Bacillus KSM K38 (55°C) and Eukaryotes i.e. Aspergillus oryzae (60°C) were selected from NCBI. Primary structure composition analysis and Conserved sequence analysis were conducted through Bio Edit tools. Results from BioEdit shown only three conserved regions of base pairs and least similarity in MSA of the above mentioned alpha amylases. In Mega 5.1 Phylogeny of thermo stable alpha amylases of Kingdom Archea, Prokaryotes and Eukaryote was handled by Neighbor-Joining (NJ) algorithm. Mega 5.1 phylogenetic results suggested that alpha amylases of thermo stable organisms i.e. Pyrococcus furiosus (100-105°C), Bacillus licheniformis (90-95°C), Geobacillus stearothermophilus (75°C) and Bacillus amyloliquefaciens (72°C) are more distantly related as compared to less thermo stable organisms. By keeping in mind the characteristics of most thermo stable alpha amylases novel and improved features can be introduced in less thermo stable alpha amylases so that they become more thermo tolerant and productive for industry.

  7. Soil prokaryotic communities in Chernobyl waste disposal trench T22 are modulated by organic matter and radionuclide contamination.

    Science.gov (United States)

    Theodorakopoulos, Nicolas; Février, Laureline; Barakat, Mohamed; Ortet, Philippe; Christen, Richard; Piette, Laurie; Levchuk, Sviatoslav; Beaugelin-Seiller, Karine; Sergeant, Claire; Berthomieu, Catherine; Chapon, Virginie

    2017-08-01

    After the Chernobyl nuclear power plant accident in 1986, contaminated soils, vegetation from the Red Forest and other radioactive debris were buried within trenches. In this area, trench T22 has long been a pilot site for the study of radionuclide migration in soil. Here, we used 454 pyrosequencing of 16S rRNA genes to obtain a comprehensive view of the bacterial and archaeal diversity in soils collected inside and in the vicinity of the trench T22 and to investigate the impact of radioactive waste disposal on prokaryotic communities. A remarkably high abundance of Chloroflexi and AD3 was detected in all soil samples from this area. Our statistical analysis revealed profound changes in community composition at the phylum and OTUs levels and higher diversity in the trench soils as compared to the outside. Our results demonstrate that the total absorbed dose rate by cell and, to a lesser extent the organic matter content of the trench, are the principal variables influencing prokaryotic assemblages. We identified specific phylotypes affiliated to the phyla Crenarchaeota, Acidobacteria, AD3, Chloroflexi, Proteobacteria, Verrucomicrobia and WPS-2, which were unique for the trench soils. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  8. Effects of prebiotics on immune system and cytokine expression.

    Science.gov (United States)

    Shokryazdan, Parisa; Faseleh Jahromi, Mohammad; Navidshad, Bahman; Liang, Juan Boo

    2017-02-01

    Nowadays, use of prebiotics as feed and food additives has received increasing interest because of the beneficial effects of prebiotics on the health of animals and humans. One of the beneficial effects of prebiotics is stimulation of immune system, which can be direct or indirect through increasing population of beneficial microbes or probiotics, especially lactic acid bacteria and bifidobacteria, in the gut. An important mechanism of action of probiotics and prebiotics, by which they can affect the immune system, is changing the expression of cytokines. The present review tried to summarize the findings of studies that investigated the effects of prebiotics on immune system with focusing on their effects on cytokine expression. Generally, most of reviewed studies indicated beneficial effects for prebiotics in terms of improving immune system, by increasing the expression of anti-inflammatory cytokines, while reducing the expressions of proinflammatory cytokines. However, most of studies mainly considered the indirect effects of prebiotics on the immune system (through changing the composition and population of gut microbiota), and their direct effects still need to be further studied using prebiotics with different degree of polymerization in different hosts.

  9. Thrombomodulin Expression in Tissues From Dogs With Systemic Inflammatory Disease.

    Science.gov (United States)

    Kim, S D; Baker, P; DeLay, J; Wood, R D

    2016-07-01

    Thrombomodulin (TM) is a membrane glycoprotein expressed on endothelial cells, which plays a major role in the protein C anticoagulation pathway. In people with inflammation, TM expression can be down-regulated on endothelial cells and a soluble form released into circulation, resulting in increased risk of thrombosis and disseminated intravascular coagulation. TM is present in dogs; however, there has been minimal investigation of its expression in canine tissues, and the effects of inflammation on TM expression in canine tissues have not been investigated. The objective of this study was to evaluate endothelial TM expression in tissues from dogs with systemic inflammatory diseases. A retrospective evaluation of tissue samples of lung, spleen, and liver from dogs with and without systemic inflammatory diseases was performed using immunohistochemistry (IHC) and a modified manual IHC scoring system. TM expression was significantly reduced in all examined tissues in dogs diagnosed with septic peritonitis or acute pancreatitis. © The Author(s) 2016.

  10. Prokaryotic Expression, Purification and Characterization of a Novel Rice Seed Lipoxygenase Gene OsLOX1

    Directory of Open Access Journals (Sweden)

    Ren Wang

    2008-06-01

    Full Text Available Lipoxygenase (LOX, EC1.13.11.12 is a key enzyme during the degradation of lipids in animals and even plants, and also the first key enzyme responsible for the biosynthesis of jasmonate. To purify and characterize the OsLOX1 gene from rice seeds, the entire coding region of the OsLOX1 gene was inserted into an expression vector pET30a(+ and transformed into Escherichia coli BL21 (DE3. Expression of the fusion protein was successfully induced by isopropyl-β-D- thiogalactopyranoside (IPTG and the purified recombinant protein was obtained by His·Bind® Kits. Further assay showed that the purified recombinant protein exhibited the LOX activity. The optimum pH was 4.8 (acetate buffer and the optimum temperature was 30°C for the above enzyme. Thus, the recombinant might confer an available usage for the synthesis of jasmonate in vitro, and also provides a possibility for elucidating the inter-relationship between the primary structure of the plant seed lipoxygenase protein and its physiological functions.

  11. Current Developments in Prokaryotic Single Cell Whole Genome Amplification

    Energy Technology Data Exchange (ETDEWEB)

    Goudeau, Danielle; Nath, Nandita; Ciobanu, Doina; Cheng, Jan-Fang; Malmstrom, Rex

    2014-03-14

    Our approach to prokaryotic single-cell Whole Genome Amplification at the JGI continues to evolve. To increase both the quality and number of single-cell genomes produced, we explore all aspects of the process from cell sorting to sequencing. For example, we now utilize specialized reagents, acoustic liquid handling, and reduced reaction volumes eliminate non-target DNA contamination in WGA reactions. More specifically, we use a cleaner commercial WGA kit from Qiagen that employs a UV decontamination procedure initially developed at the JGI, and we use the Labcyte Echo for tip-less liquid transfer to set up 2uL reactions. Acoustic liquid handling also dramatically reduces reagent costs. In addition, we are exploring new cell lysis methods including treatment with Proteinase K, lysozyme, and other detergents, in order to complement standard alkaline lysis and allow for more efficient disruption of a wider range of cells. Incomplete lysis represents a major hurdle for WGA on some environmental samples, especially rhizosphere, peatland, and other soils. Finding effective lysis strategies that are also compatible with WGA is challenging, and we are currently assessing the impact of various strategies on genome recovery.

  12. Contribution of Bicarbonate Assimilation to Carbon Pool Dynamics in the Deep Mediterranean Sea and Cultivation of Actively Nitrifying and CO2-Fixing Bathypelagic Prokaryotic Consortia.

    Science.gov (United States)

    La Cono, Violetta; Ruggeri, Gioachino; Azzaro, Maurizio; Crisafi, Francesca; Decembrini, Franco; Denaro, Renata; La Spada, Gina; Maimone, Giovanna; Monticelli, Luis S; Smedile, Francesco; Giuliano, Laura; Yakimov, Michail M

    2018-01-01

    Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO 2 . Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the " assimilation of bicarbonate in the dark " (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 μg C m -3 d -1 , were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13-14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m -2 d -1 . This quantity of produced de novo organic carbon amounts to about 85-424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO 2 -fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota "low-ammonia-concentration" deep-sea ecotype

  13. Contribution of Bicarbonate Assimilation to Carbon Pool Dynamics in the Deep Mediterranean Sea and Cultivation of Actively Nitrifying and CO2-Fixing Bathypelagic Prokaryotic Consortia

    Science.gov (United States)

    La Cono, Violetta; Ruggeri, Gioachino; Azzaro, Maurizio; Crisafi, Francesca; Decembrini, Franco; Denaro, Renata; La Spada, Gina; Maimone, Giovanna; Monticelli, Luis S.; Smedile, Francesco; Giuliano, Laura; Yakimov, Michail M.

    2018-01-01

    Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO2. Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the “assimilation of bicarbonate in the dark” (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 μg C m−3 d−1, were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13–14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m−2 d−1. This quantity of produced de novo organic carbon amounts to about 85–424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO2-fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota “low-ammonia-concentration” deep

  14. Structural similarities between prokaryotic and eukaryotic 5S ribosomal RNAs

    International Nuclear Information System (INIS)

    Welfle, H.; Boehm, S.; Damaschun, G.; Fabian, H.; Gast, K.; Misselwitz, R.; Mueller, J.J.; Zirwer, D.; Filimonov, V.V.; Venyaminov, S.Yu.; Zalkova, T.N.

    1986-01-01

    5S RNAs from rat liver and E. coli have been studied by diffuse X-ray and dynamic light scattering and by infrared and Raman spectroscopy. Identical structures at a resolution of 1 nm can be deduced from the comparison of the experimental X-ray scattering curves and electron distance distribution functions and from the agreement of the shape parameters. A flat shape model with a compact central region and two protruding arms was derived. Double helical stems are eleven-fold helices with a mean base pair distance of 0.28 nm. The number of base pairs (26 GC, 9 AU for E. coli; 27 GC, 9 AU for rat liver) and the degree of base stacking are the same within the experimental error. A very high regularity in the ribophosphate backbone is indicated for both 5S RNAs. The observed structural similarity and the consensus secondary structure pattern derived from comparative sequence analyses suggest the conclusion that prokaryotic and eukaryotic 5S RNAs are in general very similar with respect to their fundamental structural features. (author)

  15. AVS/Express (application visualization system) user's guide

    Energy Technology Data Exchange (ETDEWEB)

    Kato, Katsumi [Research Organization for Information Science Technology, Tokai, Ibaraki (Japan); Kume, Etsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2002-09-01

    Computer and network environment for image processing has been developed and maintained under the course of establishing a distributed processing environment by the information system operating division. We introduced a server for image processing, AVS/Express for image processing software and Stereo viewing system. This report summarizes the information to use AVS/Express efficiently in the computer environment for image processing. (author)

  16. [Prokaryote diversity in water environment of land-ocean ecotone of Zhuhai City].

    Science.gov (United States)

    Huang, Xiao-Lan; Chen, Jian-Yao; Zhou, Shi-Ning; Xie, Li-Chun; Fu, Cong-Sheng

    2010-02-01

    By constructing 16S rDNA clone library with PCR-RFLP, the prokaryote diversity in the seawater and groundwater of land-ocean ecotone of Zhuhai City was investigated, and the similarity and cluster analyses were implemented with the database of the sequences in Genbank. In the seawater, Proteobacteria was dominant, followed by Archaeon, Gemmatimonadetes, Candidate division OP3 and OP8, and Planctomycetes, etc.; while in the groundwater, Archaeon was dominant, followed by Proteobacteria, Sphingobacteria, Candidate division OP3, Actinobacterium, and Pseudomonas. The dominant taxa in the groundwater had high similarity to the unculturable groups of marine microorganisms. Large amount of bacteria capable of degrading organic matter and purifying water body existed in the groundwater, suggesting that after long-term evolution, the land-ocean ecotone of Zhuhai City had the characteristics of both land and ocean.

  17. Powered by light: Phototrophy and photosynthesis in prokaryotes and its evolution.

    Science.gov (United States)

    Nowicka, Beatrycze; Kruk, Jerzy

    2016-01-01

    Photosynthesis is a complex metabolic process enabling photosynthetic organisms to use solar energy for the reduction of carbon dioxide into biomass. This ancient pathway has revolutionized life on Earth. The most important event was the development of oxygenic photosynthesis. It had a tremendous impact on the Earth's geochemistry and the evolution of living beings, as the rise of atmospheric molecular oxygen enabled the development of a highly efficient aerobic metabolism, which later led to the evolution of complex multicellular organisms. The mechanism of photosynthesis has been the subject of intensive research and a great body of data has been accumulated. However, the evolution of this process is not fully understood, and the development of photosynthesis in prokaryota in particular remains an unresolved question. This review is devoted to the occurrence and main features of phototrophy and photosynthesis in prokaryotes. Hypotheses concerning the origin and spread of photosynthetic traits in bacteria are also discussed. Copyright © 2016 Elsevier GmbH. All rights reserved.

  18. Structure of a preternary complex involving a prokaryotic NHEJ DNA polymerase.

    Science.gov (United States)

    Brissett, Nigel C; Martin, Maria J; Pitcher, Robert S; Bianchi, Julie; Juarez, Raquel; Green, Andrew J; Fox, Gavin C; Blanco, Luis; Doherty, Aidan J

    2011-01-21

    In many prokaryotes, a specific DNA primase/polymerase (PolDom) is required for nonhomologous end joining (NHEJ) repair of DNA double-strand breaks (DSBs). Here, we report the crystal structure of a catalytically active conformation of Mycobacterium tuberculosis PolDom, consisting of a polymerase bound to a DNA end with a 3' overhang, two metal ions, and an incoming nucleotide but, significantly, lacking a primer strand. This structure represents a polymerase:DNA complex in a preternary intermediate state. This polymerase complex occurs in solution, stabilizing the enzyme on DNA ends and promoting nucleotide extension of short incoming termini. We also demonstrate that the invariant Arg(220), contained in a conserved loop (loop 2), plays an essential role in catalysis by regulating binding of a second metal ion in the active site. We propose that this NHEJ intermediate facilitates extension reactions involving critically short or noncomplementary DNA ends, thus promoting break repair and minimizing sequence loss during DSB repair. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis.

    Science.gov (United States)

    Yue, Jie; Fu, Gang; Zhang, Dawei; Wen, Jianping

    2017-08-01

    To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.

  20. Succession within the prokaryotic communities during the VAHINE mesocosms experiment in the New Caledonia lagoon

    Science.gov (United States)

    Pfreundt, Ulrike; Van Wambeke, France; Caffin, Mathieu; Bonnet, Sophie; Hess, Wolfgang R.

    2016-04-01

    N2 fixation fuels ˜ 50 % of new primary production in the oligotrophic South Pacific Ocean. The VAHINE experiment has been designed to track the fate of diazotroph-derived nitrogen (DDN) and carbon within a coastal lagoon ecosystem in a comprehensive way. For this, large-volume ( ˜ 50 m3) mesocosms were deployed in the New Caledonian lagoon and were intentionally fertilized with dissolved inorganic phosphorus (DIP) to stimulate N2 fixation. This study examined the temporal dynamics of the prokaryotic community together with the evolution of biogeochemical parameters for 23 consecutive days in one of these mesocosms (M1) and in the Nouméa lagoon using MiSeq 16S rRNA gene sequencing and flow cytometry. Combining these methods allowed for inference of absolute cell numbers from 16S data. We observed clear successions within M1, some of which were not mirrored in the lagoon. The dominating classes in M1 were Alpha- and Gammaproteobacteria, Cyanobacteria, eukaryotic microalgae, Marine Group II Euryarchaeota, Flavobacteriia, and Acidimicrobia. Enclosure led to significant changes in the M1 microbial community, probably initiated by the early decay of Synechococcus and diatoms. However, we did not detect a pronounced bottle effect with a copiotroph-dominated community. The fertilization with ˜ 0.8 µM DIP on day 4 did not have directly observable effects on the overall community within M1, as the data samples obtained from before and 4 days after fertilization clustered together, but likely influenced the development of individual populations later on, like Defluviicoccus-related bacteria and UCYN-C-type diazotrophic cyanobacteria (Cyanothece). Growth of UCYN-C led to among the highest N2-fixation rates ever measured in this region and enhanced growth of nearly all abundant heterotrophic groups in M1. We further show that different Rhodobacteraceae were the most efficient heterotrophs in the investigated system and we observed niche partitioning within the SAR86 clade

  1. Gene expression programming for power system static security ...

    African Journals Online (AJOL)

    user

    Keywords: static security, gene expression programming, probabilistic neural network ... Hence digital computers are usually installed in operations control centers to gather ...... power system protection, and applications of AI in power systems.

  2. Tunable Control of an Escherichia coli Expression System for the Overproduction of Membrane Proteins by Titrated Expression of a Mutant lac Repressor.

    Science.gov (United States)

    Kim, Seong Keun; Lee, Dae-Hee; Kim, Oh Cheol; Kim, Jihyun F; Yoon, Sung Ho

    2017-09-15

    Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.

  3. Proposal to change General Consideration 5 and Principle 2 of the International Code of Nomenclature of Prokaryotes.

    Science.gov (United States)

    Oren, Aharon; Garrity, George M

    2014-01-01

    A proposal is submitted to the ICSP to change the wording of General Consideration 5 of the International Code of Nomenclature of Prokaryotes (ICNP), deleting the words Schizophycetes, Cyanophyceae and Cyanobacteria from the groups of organisms whose nomenclature is covered by the Code. It is further proposed to change the terms Zoological Code and International Code of Botanical Nomenclature in General Consideration 5 and in Principle 2 to International Code of Zoological Nomenclature and International Code of Nomenclature for algae, fungi and plants, respectively.

  4. Pyrosequencing revealed shifts of prokaryotic communities between healthy and disease-like tissues of the Red Sea sponge Crella cyathophora

    KAUST Repository

    Gao, Zhao-Ming

    2015-06-11

    Sponge diseases have been widely reported, yet the causal factors and major pathogenic microbes remain elusive. In this study, two individuals of the sponge Crella cyathophora in total that showed similar disease-like characteristics were collected from two different locations along the Red Sea coast separated by more than 30 kilometers. The disease-like parts of the two individuals were both covered by green surfaces, and the body size was much smaller compared with adjacent healthy regions. Here, using high-throughput pyrosequencing technology, we investigated the prokaryotic communities in healthy and disease-like sponge tissues as well as adjacent seawater. Microbes in healthy tissues belonged mainly to the Proteobacteria, Cyanobacteria and Bacteroidetes, and were much more diverse at the phylum level than reported previously. Interestingly, the disease-like tissues from the two sponge individuals underwent shifts of prokaryotic communities and were both enriched with a novel clade affiliated with the phylum Verrucomicrobia, implying its intimate connection with the disease-like Red Sea sponge C. cyathophora. Enrichment of the phylum Verrucomicrobia was also considered to be correlated with the presence of algae assemblages forming the green surface of the disease-like sponge tissues. This finding represents an interesting case of sponge disease and is valuable for further study.

  5. Construction and development of an auto-regulatory gene expression system in Bacillus subtilis.

    Science.gov (United States)

    Guan, Chengran; Cui, Wenjing; Cheng, Jintao; Zhou, Li; Guo, Junling; Hu, Xu; Xiao, Guoping; Zhou, Zhemin

    2015-09-21

    Bacillus subtilis is an all-important Gram-positive bacterium of valuable biotechnological utility that has been widely used to over-produce industrially and pharmaceutically relevant proteins. There are a variety of expression systems in terms of types of transcriptional patterns, among which the auto-inducible and growth-phase-dependent promoters are gaining increasing favor due to their inducer-independent feature, allowing for the potential to industrially scale-up. To expand the applicability of the auto-inducible expression system, a novel auto-regulatory expression system coupled with cell density was constructed and developed in B. subtilis using the quorum-sensing related promoter srfA (PsrfA). The promoter of the srf operon was used to construct an expression plasmid with the green fluorescent protein (GFP) downstream of PsrfA. The expression displayed a cell-density-dependent pattern in that GFP had a fairly low expression level at the early exponential stage and was highly expressed at the late exponential as well as the stationary stages. Moreover, the recombinant system had a similar expression pattern in wild-type B. subtilis 168, WB600, and WB800, as well as in B. subtilis 168 derivative strain 1681, with the complete deletion of PsrfA, indicating the excellent compatibility of this system. Noticeably, the expression strength of PsrfA was enhanced by optimizing the -10 and -35 core sequence by substituting both sequences with consensus sequences. Importantly, the expression pattern was successfully developed in an auto-regulatory cell-density coupling system by the simple addition of glucose in which GFP could not be strongly expressed until glucose was depleted, resulting in a greater amount of the GFP product and increased cell density. The expression system was eventually tested by the successful over-production of aminopeptidase to a desired level. The auto-regulatory cell density coupling system that is mediated by PsrfA is a novel expression

  6. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    Science.gov (United States)

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups.

  7. Nitrate addition has minimal short-term impacts on greenland ice sheet supraglacial prokaryotes

    DEFF Research Database (Denmark)

    Cameron, Karen A.; Stibal, Marek; Chrismas, Nathan

    2017-01-01

    Tropospheric nitrate levels are predicted to increase throughout the 21st century, with potential effects on terrestrial ecosystems, including the Greenland ice sheet (GrIS). This study considers the impacts of elevated nitrate concentrations on the abundance and composition of dominant bulk...... and active prokaryotic communities sampled from in situ nitrate fertilization plots on the GrIS surface. Nitrate concentrations were successfully elevated within sediment-filled meltwater pools, known as cryoconite holes; however, nitrate additions applied to surface ice did not persist. Estimated bulk...... cryoconite communities were not nitrate limited at the time of sampling. Instead, temporal changes in biomass and community composition were more pronounced. As these in situ incubations were short (6 weeks), and the community composition across GrIS surface ice is highly variable, we suggest that further...

  8. The impact of road salt runoff on methanogens and other lacustrine prokaryotes

    Science.gov (United States)

    Sprague, E.; Dupuis, D.; Koretsky, C.; Docherty, K. M.

    2017-12-01

    Road salt deicers are widely used in regions that experience icy winters. The resulting saline runoff can negatively impact freshwater lake ecosystems. Saline runoff can cause density stratification, resulting in persistently anoxic hypolimnia. This may result in a shift in the structure of the hypolimnetic prokaryotic community, with potential increases in anaerobic and halotolerant taxa. Specifically, anoxia creates a habitat suitable for the proliferation of obligately anaerobic Archaeal methanogens. As a result, more persistent and expanded anoxic zones due to road salt runoff have the potential to increase hypolimnetic methane concentrations. If a portion of this methane is released to the atmosphere, it could be a currently uncharacterized contributor to atmospheric greenhouse gas emissions. This study examines two urban, eutrophic lakes with significant road salt influx and one rural, eutrophic lake with little road salt influx. All three lakes are located in southwest Michigan. Samples were taken from the water column at every meter at the deepest part of each lake, with a sample from the sediment-water interface, in May, August, and November 2016 and February 2017. The V4 and V5 hypervariable regions of the 16S rRNA gene in Bacteria and Archaea were amplified and sequenced using an Illumina MiSeq approach. Abundance of the mcrA gene, a marker for Archaeal methyl coenzyme A reductase, was quantified using qPCR. Water column methane levels, sediment methane production, water surface methane flux and a suite of supporting geochemical parameters were measured to determine changes in redox stratification in each lake and across seasons. Results indicate significant changes in the 16S rRNA-based community associated with depth, season, salinity and lake. Cyanobacteria, Actinobacteria, and Proteobacteria were among the phyla with the highest overall relative abundance. Sediment samples had more copies of the mcrA gene than the water column samples. In most

  9. A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC) system.

    Science.gov (United States)

    Sudomoina, Marina; Latypova, Ekaterina; Favorova, Olga O; Golemis, Erica A; Serebriiskii, Ilya G

    2004-04-29

    Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC) system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.

  10. A gene expression system offering multiple levels of regulation: the Dual Drug Control (DDC system

    Directory of Open Access Journals (Sweden)

    Golemis Erica A

    2004-04-01

    Full Text Available Abstract Background Whether for cell culture studies of protein function, construction of mouse models to enable in vivo analysis of disease epidemiology, or ultimately gene therapy of human diseases, a critical enabling step is the ability to achieve finely controlled regulation of gene expression. Previous efforts to achieve this goal have explored inducible drug regulation of gene expression, and construction of synthetic promoters based on two-hybrid paradigms, among others. Results In this report, we describe the combination of dimerizer-regulated two-hybrid and tetracycline regulatory elements in an ordered cascade, placing expression of endpoint reporters under the control of two distinct drugs. In this Dual Drug Control (DDC system, a first plasmid expresses fusion proteins to DBD and AD, which interact only in the presence of a small molecule dimerizer; a second plasmid encodes a cassette transcriptionally responsive to the first DBD, directing expression of the Tet-OFF protein; and a third plasmid encodes a reporter gene transcriptionally responsive to binding by Tet-OFF. We evaluate the dynamic range and specificity of this system in comparison to other available systems. Conclusion This study demonstrates the feasibility of combining two discrete drug-regulated expression systems in a temporally sequential cascade, without loss of dynamic range of signal induction. The efficient layering of control levels allowed by this combination of elements provides the potential for the generation of complex control circuitry that may advance ability to regulate gene expression in vivo.

  11. Microbial platform technology for recombinant antibody fragment production: A review.

    Science.gov (United States)

    Gupta, Sanjeev Kumar; Shukla, Pratyoosh

    2017-02-01

    Recombinant antibody fragments are being used for the last few years as an important therapeutic protein to cure various critical and life threatening human diseases. Several expression platforms now days employed for the production of these recombinant fragments, out of which bacterial system has emerged a promising host for higher expression. Since, a small antibody fragment unlike full antibody does not require human-like post-translational modification therefore it is potentially expressed in prokaryotic production system. Recently, small antibody fragments such as scFvs (single-chain variable fragments) and Fabs (antibody fragments) which does not require glycosylation are successfully produced in bacteria and have commercially launched for therapeutic use as these fragments shows better tissue penetration and less immunogenic to human body compared to full-size antibody. Recently developed Wacker's ESETEC secretion technology is an efficient technology for the expression and secretion of the antibody fragment (Fab) exceeded up to 4.0 g/L while scFv up to 3.5 g/L into the fermentation broth. The Pfenex system and pOP prokaryotic expression vector are another platform used for the considerably good amount of antibody fragment production successfully. In this review, we summarize the recent progress on various expression platforms and cloning approaches for the production of different forms of antibody fragments in E. coli.

  12. Glacier inputs influence organic matter composition and prokaryotic distribution in a high Arctic fjord (Kongsfjorden, Svalbard)

    KAUST Repository

    Bourgeois, Solveig

    2016-08-23

    With climate change, the strong seasonality and tight pelagic-benthic coupling in the Arctic is expected to change in the next few decades. It is currently unclear how the benthos will be affected by changes of environmental conditions such as supplies of organic matter (OM) from the water column. In the last decade, Kongsfjorden (79°N), a high Arctic fjord in Svalbard influenced by several glaciers and Atlantic water inflow, has been a site of great interest owing to its high sensitivity to climate change, evidenced by a reduction in ice cover and an increase in melting freshwater. To investigate how spatial and seasonal changes in vertical fluxes can impact the benthic compartment of Kongsfjorden, we studied the organic matter characteristics (in terms of quantity and quality) and prokaryotic distribution in sediments from 3 stations along a transect extending from the glacier into the outer fjord in 4 different seasons (spring, summer, autumn and winter) in 2012–2013. The biochemical parameters used to describe the sedimentary organic matter were organic carbon (OC), total nitrogen, bulk stable isotope ratios, pigments (chorophyll-a and phaeopigments) and biopolymeric carbon (BPC), which is the sum of the main macromolecules, i.e. lipids, proteins and carbohydrates. Prokaryotic abundance and distribution were estimated by 4′,6-diamidino-2-phenylindole (DAPI) staining. This study identifies a well-marked quantitative gradient of biogenic compounds throughout all seasons and also highlights a discrepancy between the quantity and quality of sedimentary organic matter within the fjord. The sediments near the glacier were organic-poor (< 0.3%OC), however the high primary productivity in the water column displayed during spring was reflected in summer sediments, and exhibited higher freshness of material at the inner station compared to the outer basin (means C-chlorophyll-a/OC ~ 5 and 1.5%, respectively). However, sediments at the glacier front were depleted

  13. Flexibility and symmetry of prokaryotic genome rearrangement reveal lineage-associated core-gene-defined genome organizational frameworks.

    Science.gov (United States)

    Kang, Yu; Gu, Chaohao; Yuan, Lina; Wang, Yue; Zhu, Yanmin; Li, Xinna; Luo, Qibin; Xiao, Jingfa; Jiang, Daquan; Qian, Minping; Ahmed Khan, Aftab; Chen, Fei; Zhang, Zhang; Yu, Jun

    2014-11-25

    The prokaryotic pangenome partitions genes into core and dispensable genes. The order of core genes, albeit assumed to be stable under selection in general, is frequently interrupted by horizontal gene transfer and rearrangement, but how a core-gene-defined genome maintains its stability or flexibility remains to be investigated. Based on data from 30 species, including 425 genomes from six phyla, we grouped core genes into syntenic blocks in the context of a pangenome according to their stability across multiple isolates. A subset of the core genes, often species specific and lineage associated, formed a core-gene-defined genome organizational framework (cGOF). Such cGOFs are either single segmental (one-third of the species analyzed) or multisegmental (the rest). Multisegment cGOFs were further classified into symmetric or asymmetric according to segment orientations toward the origin-terminus axis. The cGOFs in Gram-positive species are exclusively symmetric and often reversible in orientation, as opposed to those of the Gram-negative bacteria, which are all asymmetric and irreversible. Meanwhile, all species showing strong strand-biased gene distribution contain symmetric cGOFs and often specific DnaE (α subunit of DNA polymerase III) isoforms. Furthermore, functional evaluations revealed that cGOF genes are hub associated with regard to cellular activities, and the stability of cGOF provides efficient indexes for scaffold orientation as demonstrated by assembling virtual and empirical genome drafts. cGOFs show species specificity, and the symmetry of multisegmental cGOFs is conserved among taxa and constrained by DNA polymerase-centric strand-biased gene distribution. The definition of species-specific cGOFs provides powerful guidance for genome assembly and other structure-based analysis. Prokaryotic genomes are frequently interrupted by horizontal gene transfer (HGT) and rearrangement. To know whether there is a set of genes not only conserved in position

  14. Manual of a suite of computer codes, EXPRESS (EXact PREparedness Supporting System)

    International Nuclear Information System (INIS)

    Chino, Masamichi

    1992-06-01

    The emergency response supporting system EXPRESS (EXact PREparedness Supporting System) is constructed in JAERI for low cost engineering work stations under the UNIX operation. The purpose of this system is real-time predictions of affected areas due to radioactivities discharged into atmosphere from nuclear facilities. The computational models in EXPRESS are the mass-consistent wind field model EXPRESS-I and the particle dispersion model EXPRESS-II for atmospheric dispersions. In order to attain the quick response even when the codes are used in a small-scale computer, a high-speed iteration method MILUCR (Modified Incomplete Linear Unitary Conjugate Residual) is applied to EXPRESS-I and kernel density method is to EXPRESS-II. This manual describes the model configurations, code structures, related files, namelists and sample outputs of EXPRESS-I and -II. (author)

  15. CRISPR-Cas systems: Prokaryotes upgrade to adaptive immunity.

    Science.gov (United States)

    Barrangou, Rodolphe; Marraffini, Luciano A

    2014-04-24

    Clustered regularly interspaced short palindromic repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing and can be repurposed for numerous DNA targeting applications including transcriptional control. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. CRISPR-Cas systems: prokaryotes upgrade to adaptive immunity

    Science.gov (United States)

    Barrangou, Rodolphe; Marraffini, Luciano A.

    2014-01-01

    Summary Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), and associated proteins (Cas) comprise the CRISPR-Cas system, which confers adaptive immunity against exogenic elements in many bacteria and most archaea. CRISPR-mediated immunization occurs through the uptake of DNA from invasive genetic elements such as plasmids and viruses, followed by its integration into CRISPR loci. These loci are subsequently transcribed and processed into small interfering RNAs that guide nucleases for specific cleavage of complementary sequences. Conceptually, CRISPR-Cas shares functional features with the mammalian adaptive immune system, while also exhibiting characteristics of Lamarckian evolution. Because immune markers spliced from exogenous agents are integrated iteratively in CRISPR loci, they constitute a genetic record of vaccination events and reflect environmental conditions and changes over time. Cas endonucleases, which can be reprogrammed by small guide RNAs have shown unprecedented potential and flexibility for genome editing, and can be repurposed for numerous DNA targeting applications including transcriptional control. PMID:24766887

  17. PICK1 expression in the Drosophila central nervous system primarily occurs in the neuroendocrine system

    DEFF Research Database (Denmark)

    Jansen, Anna M; Nässel, Dick R; Madsen, Kenneth L

    2009-01-01

    in the adult and larval Drosophila central nervous system. PICK1 was found in cell bodies in the subesophageal ganglion, the antennal lobe, the protocerebrum, and the neuroendocrine center pars intercerebralis. The cell types that express PICK1 were identified using GAL4 enhancer trap lines. The PICK1...... (AMPA) receptor subunit GluR2 and the dopamine transporter. PICK1 is strongly implicated in GluR2 trafficking and synaptic plasticity. In mammals, PICK1 has been characterized extensively in cell culture studies. To study PICK1 in an intact system, we characterized PICK1 expression immunohistochemically...... neurons in the neuroendocrine system, which express the transcription factor DIMM and the amidating enzyme peptidylglycine-alpha-hydroxylating monooxygenase (PHM). The PICK1-positive cells include neurosecretory cells that produce the insulin-like peptide dILP2. PICK1 expression in insulin-producing cells...

  18. Cloning and Expression Vector Construction of Glutamate Decarboxylase Gene from Lactobacillus Plantarum

    Directory of Open Access Journals (Sweden)

    B Arabpour

    2016-06-01

    Full Text Available BACKGROUND AND OBJECTIVE: Gamma-aminobutyric acid (GABA is a four-carbon non-protein amino acid used in the treatment of hypertension, diabetes, inflammation, and depression. GABA is synthesized by glutamic acid decarboxylase (GAD enzyme in many organisms, including bacteria. Therefore, cloning of this enzyme is essential to the optimization of GABA production. This study aimed to clone and construct the expression vector of GAD gene from Lactobacillus plantarum PTCC 1058 bacterium. METHODS: In this experimental study, we investigated the morphological, biochemical, genetic and 16s rDNA sequencing of L. plantarum PTCC 1058 strain. Genomic DNA of the bacterium was isolated and amplified using the GAD gene via polymerase chain reaction (PCR. Afterwards, the gene was inserted into the pJET1.2/blunt cloning vector and subcloned in vector pET32a. Plasmid pET32a-gad expression vector was transformed in Escherichia coli BL21 strain, and protein expression was assessed using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE. FINDINGS: Morphological, biochemical and genetic analyses of 16s rDNA sequencing indicated that the studied substrain was of the L. plantarum strain. In addition, results of nucleotide sequencing of the fragmented segment via PCR showed the presence of GAD gene. Results of colony PCR and SDS-PAGE analysis confirmed the accuracy of the cloning and gene expression of the recombinant Escherichia coli BL21 strain. CONCLUSION: According to the results of this study, cloning of GAD gene from L. plantarum PTCC 1058 was successful. These cloned genes could grow rapidly in prokaryotic and eukaryotic systems and be used in cost-effective culture media and even non-recyclable waste.

  19. Porcine parvovirus capsid protein expressed in Escherichia coli self-assembles into virus-like particles with high immunogenicity in mice and guinea pigs.

    Science.gov (United States)

    Ji, Pengchao; Liu, Yunchao; Chen, Yumei; Wang, Aiping; Jiang, Dawei; Zhao, Baolei; Wang, Jvcai; Chai, Shujun; Zhou, Enmin; Zhang, Gaiping

    2017-03-01

    Porcine parvovirus (PPV) is a causative agent of reproductive failure in pregnant sows. Classical inactivated vaccine is extensively used to control PPV infection, but problems concerning safety, such as incomplete inactivation may occur. In this study, a novel subunit vaccine against PPV based on virus-like particles (VLPs) formed from the complete PPV VP2 protein expressed in a prokaryotic system with co-expressed chaperones is reported. The VLPs have a similar size, shape, and hemagglutination property to the PPV. Immunization with these VLPs stimulated the neutralization antibody and hemagglutination inhibition (HI) antibody responses in mice and guinea pigs. The lymphocyte proliferation response and cytokine secretion was also induced in immunized guinea pigs comparable to those immunized with PPV inactivated vaccine. In addition, immunization with VLPs also significantly reduced the PPV content in the spleen of guinea pigs 14 days after the challenge with intact virus. These studies suggest that PPV VLPs created as described here could be a potential candidate for vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. [Construction of cTnC-linker-TnI (P) Genes, Expression of Fusion Protein and Preparation of Lyophilized Protein].

    Science.gov (United States)

    Song, Xiaoli; Liu, Xiaoyun; Cai, Lei; Wu, Jianwei; Wang, Jihua

    2015-12-01

    In order to construct and express human cardiac troponin C-linker-troponin I(P) [ cTnC-linker-TnI(P)] fusion protein, detect its activity and prepare lyophilized protein, we searched the CDs of human cTnC and cTnI from GenBank, synthesized cTnC and cTnI(30-110aa) into cloning vector by a short DNA sequence coding for 15 neutral amino acid residues. pCold I-cTnC-linker-TnI(P) was constructed and transformed into E. coli BL21(DE3). Then, cTnC-linker-TnI(P) fusion protein was induced by isopropyl-β-D-thiogalactopyranoside (IPTG). Soluable expression of cTnC-linker-TnI(P) in prokaryotic system was successfully obtained. The fusion protein was purified by Ni²⁺ Sepharose 6 Fast Flow affinity chromatography with over 95% purity and prepared into lyophilized protein. The activity of purified cTnC-linker-TnI(P) and its lyophilized protein were detected by Wondfo Finecare™ cTnI Test. Lyophilized protein of cTnC-linker-TnI(P) was stable for 10 or more days at 37 °C and 4 or more months at 25 °C and 4 °C. The expression system established in this research is feasible and efficient. Lyophilized protein is stable enough to be provided as biological raw materials for further research.

  1. Impacts of human activities on distribution of sulfate-reducing prokaryotes and antibiotic resistance genes in marine coastal sediments of Hong Kong.

    Science.gov (United States)

    Guo, Feng; Li, Bing; Yang, Ying; Deng, Yu; Qiu, Jian-Wen; Li, Xiangdong; Leung, Kenneth My; Zhang, Tong

    2016-09-01

    Sulfate-reducing prokaryotes (SRPs) and antibiotic resistance genes (ARGs) in sediments could be biomarkers for evaluating the environmental impacts of human activities, although factors governing their distribution are not clear yet. By using metagenomic approach, this study investigated the distributions of SRPs and ARGs in marine sediments collected from 12 different coastal locations of Hong Kong, which exhibited different pollution levels and were classified into two groups based on sediment parameters. Our results showed that relative abundances of major SRP genera to total prokaryotes were consistently lower in the more seriously polluted sediments (P-value human impacts. Moreover, a unimodel distribution pattern for SRPs along with the pollution gradient was observed. Although total ARGs were enriched in sediments from the polluted sites, distribution of single major ARG types could be explained neither by individual sediment parameters nor by corresponding concentration of antibiotics. It supports the hypothesis that the persistence of ARGs in sediments may not need the selection of antibiotics. In summary, our study provided important hints of the niche differentiation of SRPs and behavior of ARGs in marine coastal sediment. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Heterologous expression of chaetomium thermophilum xylanase 11-a (ctx 11-a) gene

    International Nuclear Information System (INIS)

    Wajid, S.; Shahid, S.; Mukhtar, Z.; Mansoor, S.

    2009-01-01

    Chaetomium has a potential source of xylanase and cellulase enzymes, both of which are required in the treatment of fibre in the poultry feed. The titre of the enzymes needs to be enhanced by using recombinant DNA technology for fulfilling the requirement of the industries. Efforts are made to construct prokaryotic and eukaryotic expression cassettes that can be cloned under specific strong promoters i.e., T7 and AOX1, respectively, and the enhancer elements to get the maximum gene expression. In the present study BL21 E. coli and GS115 Pichia pastoris strains are used as model organisms to express the CtX 11-A gene in the presence of 1 mM IPTG and 100% methanol upto final concentration of 0.5. In case of BL21 expression, the maximum xylanase activity was observed after 1.5 h in the presence of 1% xylose, which was 2.302 U/ml and after 7 h in the presence of 0.5% lactose, was 1.708 U/ml. However, in Pichia pastoris the maximum production of xylanase was 2.904 and 0.006 U/ml as compared to control 0.484 and 0.06 U/ml, respectively. (author)

  3. Prokaryotic phylogenetic diversity of Hungarian deep subsurface geothermal well waters.

    Science.gov (United States)

    Németh, Andrea; Szirányi, Barbara; Krett, Gergely; Janurik, Endre; Kosáros, Tünde; Pekár, Ferenc; Márialigeti, Károly; Borsodi, Andrea K

    2014-09-01

    Geothermal wells characterized by thermal waters warmer than 30°C can be found in more than 65% of the area of Hungary. The examined thermal wells located nearby Szarvas are used for heating industrial and agricultural facilities because of their relatively high hydrocarbon content. The aim of this study was to reveal the prokaryotic community structure of the water of SZR18, K87 and SZR21 geothermal wells using molecular cloning methods and Denaturing Gradient Gel Electrophoresis (DGGE). Water samples from the outflow pipes were collected in 2012 and 2013. The phylogenetic distribution of archaeal molecular clones was very similar in each sample, the most abundant groups belonged to the genera Methanosaeta, Methanothermobacter and Thermofilum. In contrast, the distribution of bacterial molecular clones was very diverse. Many of them showed the closest sequence similarities to uncultured clone sequences from similar thermal environments. From the water of the SZR18 well, phylotypes closely related to genera Fictibacillus and Alicyclobacillus (Firmicutes) were only revealed, while the bacterial diversity of the K87 well water was much higher. Here, the members of the phyla Thermodesulfobacteria, Proteobacteria, Nitrospira, Chlorobi, OP1 and OPB7 were also detected besides Firmicutes.

  4. The application of powerful promoters to enhance gene expression in industrial microorganisms.

    Science.gov (United States)

    Zhou, Shenghu; Du, Guocheng; Kang, Zhen; Li, Jianghua; Chen, Jian; Li, Huazhong; Zhou, Jingwen

    2017-02-01

    Production of useful chemicals by industrial microorganisms has been attracting more and more attention. Microorganisms screened from their natural environment usually suffer from low productivity, low stress resistance, and accumulation of by-products. In order to overcome these disadvantages, rational engineering of microorganisms to achieve specific industrial goals has become routine. Rapid development of metabolic engineering and synthetic biology strategies provide novel methods to improve the performance of industrial microorganisms. Rational regulation of gene expression by specific promoters is essential to engineer industrial microorganisms for high-efficiency production of target chemicals. Identification, modification, and application of suitable promoters could provide powerful switches at the transcriptional level for fine-tuning of a single gene or a group of genes, which are essential for the reconstruction of pathways. In this review, the characteristics of promoters from eukaryotic, prokaryotic, and archaea microorganisms are briefly introduced. Identification of promoters based on both traditional biochemical and systems biology routes are summarized. Besides rational modification, de novo design of promoters to achieve gradient, dynamic, and logic gate regulation are also introduced. Furthermore, flexible application of static and dynamic promoters for the rational engineering of industrial microorganisms is highlighted. From the perspective of powerful promoters in industrial microorganisms, this review will provide an extensive description of how to regulate gene expression in industrial microorganisms to achieve more useful goals.

  5. Baculovirus expression vector system: An efficient tool for the ...

    African Journals Online (AJOL)

    Baculovirus expression vector system is considered one of the most successful and widely acceptable means for the production of recombinant proteins in extremely large quantities. Proper posttranslational modifications of the expressed proteins in insect cells, the usual host of baculoviruses, get them soluble, correctly ...

  6. Microbes Characteristics in Groundwater Flow System in Mountainous Area

    Science.gov (United States)

    Yamamoto, Chisato; Tsujimura, Maki; Kato, Kenji; Sakakibara, Koichi; Ogawa, Mahiro; Sugiyama, Ayumi; Nagaosa, Kazuyo

    2017-04-01

    We focus on a possibility of microbes as a tracer for groundwater flow investigation. Some previous papers showed that the total number of prokaryotes in groundwater has correlation with depth and geology (Parkes et al., 1994; Griebler et al., 2009; Kato et al., 2012). However, there are few studies investigating both microbe characteristics and groundwater flow system. Therefore, we investigated a relationship between the total number of prokaryotes and age of spring water and groundwater. Intensive field survey was conducted at four mountainous areas, namely Mt. Fuji (volcano), a headwater at Mt. Setohachi, a headwater at River Oi and a headwater at River Nagano underlain by volcanic lava at Mt. Fuji, granite at Mt. Setohachi and sedimentary rock at River Oi and River Nagano. We collected totally 40 spring water/ groundwater samples in these mountainous areas in October 2015, August, October and November 2016 and analyzed concentration of inorganic ions, the stable isotopes of oxygen - 18, deuterium, CFCs and SF6. Also, we counted prokaryotic cells under the epifluorescence microscopy after fixation and filteration. The total number of prokaryotes in the spring water/ groundwater ranged from 1.0×102 to 7.0×103cells mL-1 at the Mt. Fuji, 1.3×104 to 2.7×105cells mL-1 at Mt. Setohachi, 3.1×104cells mL-1 at River Oi and 1.8×105 to 3.2×106cells mL-1 at River Nagano. The SF6 age of the spring water/ groundwater ranged from 8 to 64 years at Mt. Fuji, 2 to 32.5 years at Mt. Setohachi, 2.5 years at River Oi and 15 to 16 years at River Nagano. The total number of prokaryotes showed a clear negative correlation with residence time of spring water/ groundwater in all regions. Especially the prokaryotes number increased in the order of 102 cells mL-1 with decreasing of residence time in approximately 10 years in the groundwater and spring water with the age less than 15 years.

  7. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1982-01-01

    The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S...... stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution....... stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5....

  8. Construction of a novel, stable, food-grade expression system by engineering the endogenous toxin-antitoxin system in Bacillus subtilis.

    Science.gov (United States)

    Yang, Sen; Kang, Zhen; Cao, Wenlong; Du, Guocheng; Chen, Jian

    2016-02-10

    Bacillus subtilis as an important workhorse that has been widely used to produce enzymes and metabolites. To broaden its applications, especially in the food and feed industry, we constructed a novel, stable, food-grade expression system by engineering its type II toxin-antitoxin system. The expression of the toxin EndoA, encoded by the chromosomal ydcE gene, was regulated by an endogenous, xylose-inducible promoter, while the ydcD gene, which encodes the unstable antitoxin EndoB, was inserted into a food-grade vector backbone, where its expression was driven by the native, constitutive promoter PylxM. By maintaining the xylose concentration above 2.0 g L(-1), this auto-regulated expression system was absolutely stable after 100 generations. Compared with traditional antibiotic-dependent expression systems, this novel expression system resulted in greater biomass and higher titers of desired products (enzymes or metabolites). Our results demonstrate that this stable, food-grade expression system is suitable for enzyme production and pathway engineering, especially for the production of food-grade enzymes and metabolites. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Pangenomic Definition of Prokaryotic Species and the Phylogenetic Structure of Prochlorococcus spp.

    Directory of Open Access Journals (Sweden)

    Mikhail A. Moldovan

    2018-03-01

    Full Text Available The pangenome is the collection of all groups of orthologous genes (OGGs from a set of genomes. We apply the pangenome analysis to propose a definition of prokaryotic species based on identification of lineage-specific gene sets. While being similar to the classical biological definition based on allele flow, it does not rely on DNA similarity levels and does not require analysis of homologous recombination. Hence this definition is relatively objective and independent of arbitrary thresholds. A systematic analysis of 110 accepted species with the largest numbers of sequenced strains yields results largely consistent with the existing nomenclature. However, it has revealed that abundant marine cyanobacteria Prochlorococcus marinus should be divided into two species. As a control we have confirmed the paraphyletic origin of Yersinia pseudotuberculosis (with embedded, monophyletic Y. pestis and Burkholderia pseudomallei (with B. mallei. We also demonstrate that by our definition and in accordance with recent studies Escherichia coli and Shigella spp. are one species.

  10. [Effect of gene optimization on the expression and purification of HDV small antigen produced by genetic engineering].

    Science.gov (United States)

    Ding, Jun-Ying; Meng, Qing-Ling; Guo, Min-Zhuo; Yi, Yao; Su, Qiu-Dong; Lu, Xue-Xin; Qiu, Feng; Bi, Sheng-Li

    2012-10-01

    To study the effect of gene optimization on the expression and purification of HDV small antigen produced by genetic engineering. Based on the colon preference of E. coli, the HDV small antigen original gene from GenBank was optimized. Both the original gene and the optimized gene expressed in prokaryotic cells, SDS-PAGE was made to analyze the protein expression yield and to decide which protein expression style was more proportion than the other. Furthermore, two antigens were purified by chromatography in order to compare the purity by SDS-PAGE and Image Lab software. SDS-PAGE indicated that the molecular weight of target proteins from two groups were the same as we expected. Gene optimization resulted in the higher yield and it could make the product more soluble. After chromatography, the purity of target protein from optimized gene was up to 96.3%, obviously purer than that from original gene. Gene optimization could increase the protein expression yield and solubility of genetic engineering HDV small antigen. In addition, the product from the optimized gene group was easier to be purified for diagnosis usage.

  11. Soil classification predicts differences in prokaryotic communities across a range of geographically distant soils once pH is accounted for

    OpenAIRE

    Morales, Sergio; Trouche, Blandine; Kaminsky, Rachel

    2017-01-01

    Agricultural land is typically managed based on visible plant life at the expense of the belowground majority. However, microorganisms mediate processes sustaining plant life and the soil environment. To understand the role of microbes we first must understand what controls soil microbial community assembly. We assessed the distribution and composition of prokaryotic communities from soils representing four geographic regions on the South Island of New Zealand. These soils are under three dif...

  12. Horizontal gene transfer: essentiality and evolvability in prokaryotes, and roles in evolutionary transitions [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Eugene V. Koonin

    2016-07-01

    Full Text Available The wide spread of gene exchange and loss in the prokaryotic world has prompted the concept of ‘lateral genomics’ to the point of an outright denial of the relevance of phylogenetic trees for evolution. However, the pronounced coherence congruence of the topologies of numerous gene trees, particularly those for (nearly universal genes, translates into the notion of a statistical tree of life (STOL, which reflects a central trend of vertical evolution. The STOL can be employed as a framework for reconstruction of the evolutionary processes in the prokaryotic world. Quantitatively, however, horizontal gene transfer (HGT dominates microbial evolution, with the rate of gene gain and loss being comparable to the rate of point mutations and much greater than the duplication rate. Theoretical models of evolution suggest that HGT is essential for the survival of microbial populations that otherwise deteriorate due to the Muller’s ratchet effect. Apparently, at least some bacteria and archaea evolved dedicated vehicles for gene transfer that evolved from selfish elements such as plasmids and viruses. Recent phylogenomic analyses suggest that episodes of massive HGT were pivotal for the emergence of major groups of organisms such as multiple archaeal phyla as well as eukaryotes. Similar analyses appear to indicate that, in addition to donating hundreds of genes to the emerging eukaryotic lineage, mitochondrial endosymbiosis severely curtailed HGT. These results shed new light on the routes of evolutionary transitions, but caution is due given the inherent uncertainty of deep phylogenies.

  13. CRISPR-Cas: biology, mechanisms and relevance

    Science.gov (United States)

    Hille, Frank

    2016-01-01

    Prokaryotes have evolved several defence mechanisms to protect themselves from viral predators. Clustered regularly interspaced short palindromic repeats (CRISPR) and their associated proteins (Cas) display a prokaryotic adaptive immune system that memorizes previous infections by integrating short sequences of invading genomes—termed spacers—into the CRISPR locus. The spacers interspaced with repeats are expressed as small guide CRISPR RNAs (crRNAs) that are employed by Cas proteins to target invaders sequence-specifically upon a reoccurring infection. The ability of the minimal CRISPR-Cas9 system to target DNA sequences using programmable RNAs has opened new avenues in genome editing in a broad range of cells and organisms with high potential in therapeutical applications. While numerous scientific studies have shed light on the biochemical processes behind CRISPR-Cas systems, several aspects of the immunity steps, however, still lack sufficient understanding. This review summarizes major discoveries in the CRISPR-Cas field, discusses the role of CRISPR-Cas in prokaryotic immunity and other physiological properties, and describes applications of the system as a DNA editing technology and antimicrobial agent. This article is part of the themed issue ‘The new bacteriology’. PMID:27672148

  14. Expression, purification, crystallization and preliminary X-ray diffraction analysis of the aspartate transcarbamoylase domain of human CAD

    International Nuclear Information System (INIS)

    Ruiz-Ramos, Alba; Lallous, Nada; Grande-García, Araceli; Ramón-Maiques, Santiago

    2013-01-01

    The recombinant aspartate transcarbamoylase domain of human CAD was expressed in E. coli, purified and crystallized in the presence and absence of the inhibitor PALA. X-ray diffraction data sets were collected for both crystal forms at 2.1 Å resolution. Aspartate transcarbamoylase (ATCase) catalyzes the synthesis of N-carbamoyl-l-aspartate from carbamoyl phosphate and aspartate in the second step of the de novo biosynthesis of pyrimidines. In prokaryotes, the first three activities of the pathway, namely carbamoyl phosphate synthetase (CPSase), ATCase and dihydroorotase (DHOase), are encoded as distinct proteins that function independently or in noncovalent association. In animals, CPSase, ATCase and DHOase are part of a 243 kDa multifunctional polypeptide named CAD. Up-regulation of CAD is essential for normal and tumour cell proliferation. Although the structures of numerous prokaryotic ATCases have been determined, there is no structural information about any eukaryotic ATCase. In fact, the only detailed structural information about CAD is that it self-assembles into hexamers and trimers through interactions of the ATCase domains. Here, the expression, purification and crystallization of the ATCase domain of human CAD is reported. The recombinant protein, which was expressed in bacteria and purified with good yield, formed homotrimers in solution. Crystallization experiments both in the absence and in the presence of the inhibitor PALA yielded small crystals that diffracted X-rays to 2.1 Å resolution using synchrotron radiation. The crystals appeared to belong to the hexagonal space group P6 3 22, and Matthews coefficient calculation indicated the presence of one ATCase subunit per asymmetric unit, with a solvent content of 48%. However, analysis of the intensity statistics suggests a special case of the P2 1 lattice with pseudo-symmetry and possibly twinning

  15. The expression and genetic immunization of chimeric fragment of Hantaan virus M and S segments

    International Nuclear Information System (INIS)

    Zhang Fanglin; Wu Xingan; Luo Wen; Bai Wentao; Liu Yong; Yan Yan; Wang Haitao; Xu Zhikai

    2007-01-01

    Hemorrhagic fever with renal syndrome (HFRS), which is characterized by severe symptoms and high mortality, is caused by hantavirus. There are still no effective prophylactic vaccines directed to HFRS until now. In this research, we fused expressed G2 fragment of M segment and 0.7 kb fragment of S segment. We expect it could be a candidate vaccine. Chimeric gene G2S0.7 was first expressed in prokaryotic expression system pGEX-4T. After inducing expressed fusion proteins, GST-G2S0.7 was induced and its molecular weight was about 100 kDa. Meanwhile, the fusion protein kept the activity of its parental proteins. Further, BALB/c mice were vaccinated by the chimeric gene. ELISA, cell microculture neutralization test in vitro were used to detect the humoral immune response in immunized BALB/c mice. Lymphocyte proliferation assay was used to detect the cellular immune response. The results showed that the chimeric gene could simultaneously evoke specific antibody against nucleocapsid protein (NP) and glycoprotein (GP). And the immunized mice of every group elicited neutralizing antibodies with different titers. But the titers were low. Lymphocyte proliferation assay results showed that the stimulation indexes of splenocytes of chimeric gene to NP and GP were significantly higher than that of control. It suggested that the chimeric gene of Hantaan virus containing G2 fragment of M segment and 0.7 kb fragment of S segment could directly elicit specific anti-Hantaan virus humoral and cellular immune response in BALB/c mice

  16. High-Speed Video System for Micro-Expression Detection and Recognition

    Directory of Open Access Journals (Sweden)

    Diana Borza

    2017-12-01

    Full Text Available Micro-expressions play an essential part in understanding non-verbal communication and deceit detection. They are involuntary, brief facial movements that are shown when a person is trying to conceal something. Automatic analysis of micro-expression is challenging due to their low amplitude and to their short duration (they occur as fast as 1/15 to 1/25 of a second. We propose a fully micro-expression analysis system consisting of a high-speed image acquisition setup and a software framework which can detect the frames when the micro-expressions occurred as well as determine the type of the emerged expression. The detection and classification methods use fast and simple motion descriptors based on absolute image differences. The recognition module it only involves the computation of several 2D Gaussian probabilities. The software framework was tested on two publicly available high speed micro-expression databases and the whole system was used to acquire new data. The experiments we performed show that our solution outperforms state of the art works which use more complex and computationally intensive descriptors.

  17. Overexpression of pucC improves the heterologous protein expression level in a Rhodobacter sphaeroides expression system.

    Science.gov (United States)

    Cheng, L; Chen, G; Ding, G; Zhao, Z; Dong, T; Hu, Z

    2015-04-27

    The Rhodobacter sphaeroides system has been used to express membrane proteins. However, its low yield has substantially limited its application. In order to promote the protein expression capability of this system, the pucC gene, which plays a crucial role in assembling the R. sphaeroides light-harvesting 2 complex (LH2), was overexpressed. To build a pucC overexpression strain, a pucC overexpression vector was constructed and transformed into R. sphaeroides CQU68. The overexpression efficiency was evaluated by quantitative real-time polymerase chain reaction. A well-used reporter β-glucuronidase (GUS) was fusion-expressed with LH2 to evaluate the heterologous protein expression level. As a result, the cell culture and protein in the pucC overexpression strain showed much higher typical spectral absorption peaks at 800 and 850 nm compared with the non-overexpression strain, suggesting a higher expression level of LH2-GUS fusion protein in the pucC overexpression strain. This result was further confirmed by Western blot, which also showed a much higher level of heterologous protein expression in the pucC overexpression strain. We further compared GUS activity in pucC overexpression and non-overexpression strains, the results of which showed that GUS activity in the pucC overexpression strain was approximately ten-fold that in the non-overexpression strain. These results demonstrate that overexpressed pucC can promote heterologous protein expression levels in R. sphaeroides.

  18. Expression of monellin in a food-grade delivery system in Saccharomyces cerevisiae.

    Science.gov (United States)

    Liu, Jun; Yan, Da-zhong; Zhao, Sheng-jun

    2015-10-01

    Genetically modified (GM) foods have caused much controversy. Construction of a food-grade delivery system is a desirable technique with presumptive impact on industrial applications from the perspective of bio-safety. The aim of this study was to construct a food-grade delivery system for Saccharomyces cerevisiae and to study the expression of monellin from the berries of the West African forest plant Dioscoreophyllum cumminsii in this system. A food-grade system for S. cerevisiae was constructed based on ribosomal DNA (rDNA)-mediated homologous recombination to enable high-copy-number integration of the expression cassette inserted into the rDNA locus. A copper resistance gene (CUP1) was used as the selection marker for yeast transformation. Because variants of transformants containing different copy numbers at the CUP1 locus can be readily selected after growth in the presence of elevated copper levels, we suggest that this system would prove useful in the generation of tandemly iterated gene clusters. Using this food-grade system, a single-chain monellin gene was heterologously expressed. The yield of monellin reached a maximum of 675 mg L(-1) . This system harbors exclusively S. cerevisiae DNA with no antibiotic resistance genes, and it should therefore be appropriate for safe use in the food industry. Monellin was shown to be expressed in this food-grade delivery system. To our knowledge, this is the first report so far on expression of monellin in a food-grade expression system in S. cerevisiae. © 2014 Society of Chemical Industry.

  19. Facial Expression Emotion Detection for Real-Time Embedded Systems

    Directory of Open Access Journals (Sweden)

    Saeed Turabzadeh

    2018-01-01

    Full Text Available Recently, real-time facial expression recognition has attracted more and more research. In this study, an automatic facial expression real-time system was built and tested. Firstly, the system and model were designed and tested on a MATLAB environment followed by a MATLAB Simulink environment that is capable of recognizing continuous facial expressions in real-time with a rate of 1 frame per second and that is implemented on a desktop PC. They have been evaluated in a public dataset, and the experimental results were promising. The dataset and labels used in this study were made from videos, which were recorded twice from five participants while watching a video. Secondly, in order to implement in real-time at a faster frame rate, the facial expression recognition system was built on the field-programmable gate array (FPGA. The camera sensor used in this work was a Digilent VmodCAM — stereo camera module. The model was built on the Atlys™ Spartan-6 FPGA development board. It can continuously perform emotional state recognition in real-time at a frame rate of 30. A graphical user interface was designed to display the participant’s video in real-time and two-dimensional predict labels of the emotion at the same time.

  20. Using heterologous expression systems to characterize potassium and sodium transport activities.

    Science.gov (United States)

    Rodríguez, Alonso; Benito, Begoña; Cagnac, Olivier

    2012-01-01

    The expression of plant transporters in simple well-characterized cell systems is an irreplaceable technique for gaining insights into the kinetic and energetic features of plant transporters. Among all the available expression systems, yeast cells offer the highest simplicity and have the capacity to mimic the in vivo properties of plant transporters. Here, we describe the use of yeast mutants to express K(+) and Na(+) plant transporters and discuss some experimental problems that can produce misleading results.

  1. Arabidopsis thaliana Contains Both Ni2+ and Zn2+ Dependent Glyoxalase I Enzymes and Ectopic Expression of the Latter Contributes More towards Abiotic Stress Tolerance in E. coli.

    Directory of Open Access Journals (Sweden)

    Muskan Jain

    Full Text Available The glyoxalase pathway is ubiquitously found in all the organisms ranging from prokaryotes to eukaryotes. It acts as a major pathway for detoxification of methylglyoxal (MG, which deleteriously affects the biological system in stress conditions. The first important enzyme of this system is Glyoxalase I (GLYI. It is a metalloenzyme which requires divalent metal ions for its activity. This divalent metal ion can be either Zn2+ as found in most of eukaryotes or Ni2+ as seen in prokaryotes. In the present study, we have found three active GLYI enzymes (AtGLYI2, AtGLYI3 and AtGLYI6 belonging to different metal activation classes coexisting in Arabidopsis thaliana. These enzymes have been found to efficiently complement the GLYI yeast mutants. These three enzymes have been characterized in terms of their activity, metal dependency, kinetic parameters and their role in conferring tolerance to multiple abiotic stresses in E. coli and yeast. AtGLYI2 was found to be Zn2+ dependent whereas AtGLYI3 and AtGLYI6 were Ni2+ dependent. Enzyme activity of Zn2+ dependent enzyme, AtGLYI2, was observed to be exceptionally high (~250-670 fold as compared to Ni2+ dependent enzymes, AtGLYI3 and AtGLYI6. The activity of these GLYI enzymes correlated well to their role in stress tolerance. Heterologous expression of these enzymes in E. coli led to better tolerance against various stress conditions. This is the first report of a higher eukaryotic species having multiple active GLYI enzymes belonging to different metal activation classes.

  2. A Prokaryotic S1P Lyase Degrades Extracellular S1P In Vitro and In Vivo: Implication for Treating Hyperproliferative Disorders

    Science.gov (United States)

    Huwiler, Andrea; Bourquin, Florence; Kotelevets, Nataliya; Pastukhov, Oleksandr; Capitani, Guido; Grütter, Markus G.; Zangemeister-Wittke, Uwe

    2011-01-01

    Sphingosine-1-phosphate (S1P) regulates a broad spectrum of fundamental cellular processes like proliferation, death, migration and cytokine production. Therefore, elevated levels of S1P may be causal to various pathologic conditions including cancer, fibrosis, inflammation, autoimmune diseases and aberrant angiogenesis. Here we report that S1P lyase from the prokaryote Symbiobacterium thermophilum (StSPL) degrades extracellular S1P in vitro and in blood. Moreover, we investigated its effect on cellular responses typical of fibrosis, cancer and aberrant angiogenesis using renal mesangial cells, endothelial cells, breast (MCF-7) and colon (HCT 116) carcinoma cells as disease models. In all cell types, wild-type StSPL, but not an inactive mutant, disrupted MAPK phosphorylation stimulated by exogenous S1P. Functionally, disruption of S1P receptor signaling by S1P depletion inhibited proliferation and expression of connective tissue growth factor in mesangial cells, proliferation, migration and VEGF expression in carcinoma cells, and proliferation and migration of endothelial cells. Upon intravenous injection of StSPL in mice, plasma S1P levels rapidly declined by 70% within 1 h and then recovered to normal 6 h after injection. Using the chicken chorioallantoic membrane model we further demonstrate that also under in vivo conditions StSPL, but not the inactive mutant, inhibited tumor cell-induced angiogenesis as an S1P-dependent process. Our data demonstrate that recombinant StSPL is active under extracellular conditions and holds promise as a new enzyme therapeutic for diseases associated with increased levels of S1P and S1P receptor signaling. PMID:21829623

  3. Organization and differential expression of the GACA/GATA tagged somatic and spermatozoal transcriptomes in Buffalo Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    Srivastava Jyoti

    2008-03-01

    Full Text Available Abstract Background Simple sequence repeats (SSRs of GACA/GATA have been implicated with differentiation of sex-chromosomes and speciation. However, the organization of these repeats within genomes and transcriptomes, even in the best characterized organisms including human, remains unclear. The main objective of this study was to explore the buffalo transcriptome for its association with GACA/GATA repeats, and study the structural organization and differential expression of the GACA/GATA repeat tagged transcripts. Moreover, the distribution of GACA and GATA repeats in the prokaryotic and eukaryotic genomes was studied to highlight their significance in genome evolution. Results We explored several genomes and transcriptomes, and observed total absence of these repeats in the prokaryotes, with their gradual accumulation in higher eukaryotes. Further, employing novel microsatellite associated sequence amplification (MASA approach using varying length oligos based on GACA and GATA repeats; we identified and characterized 44 types of known and novel mRNA transcripts tagged with these repeats from different somatic tissues, gonads and spermatozoa of water buffalo Bubalus bubalis. GACA was found to be associated with higher number of transcripts compared to that with GATA. Exclusive presence of several GACA-tagged transcripts in a tissue or spermatozoa, and absence of the GATA-tagged ones in lung/heart highlights their tissue-specific significance. Of all the GACA/GATA tagged transcripts, ~30% demonstrated inter-tissue and/or tissue-spermatozoal sequence polymorphisms. Significantly, ~60% of the GACA-tagged and all the GATA-tagged transcripts showed highest or unique expression in the testis and/or spermatozoa. Moreover, ~75% GACA-tagged and all the GATA-tagged transcripts were found to be conserved across the species. Conclusion Present study is a pioneer attempt exploring GACA/GATA tagged transcriptome in any mammalian species highlighting their

  4. Phosphorelays provide tunable signal processing capabilities for the cell

    DEFF Research Database (Denmark)

    Kothamachu, Varun B; Feliu, Elisenda; Wiuf, Carsten

    2013-01-01

    present here this relation for four-layered phosphorelays, which are signaling systems that are ubiquitous in prokaryotes and also found in lower eukaryotes and plants. We derive an analytical expression that relates the shape of the signal-response relationship in a relay to the kinetic rates of forward...

  5. Oxidation of inorganic sulfur compounds in acidophilic prokaryotes

    Energy Technology Data Exchange (ETDEWEB)

    Rohwerder, T.; Sand, W. [Universitaet Duisburg-Essen, Biofilm Centre, Aquatic Biotechnology, Duisburg (Germany)

    2007-07-15

    The oxidation of reduced inorganic sulfur compounds to sulfuric acid is of great importance for biohydrometallurgical technologies as well as the formation of acidic (below pH 3) and often heavy metal-contaminated environments. The use of elemental sulfur as an electron donor is the predominant energy-yielding process in acidic natural sulfur-rich biotopes but also at mining sites containing sulfidic ores. Contrary to its significant role in the global sulfur cycle and its biotechnological importance, the microbial fundamentals of acidophilic sulfur oxidation are only incompletely understood. Besides giving an overview of sulfur-oxidizing acidophiles, this review describes the so far known enzymatic reactions related to elemental sulfur oxidation in acidophilic bacteria and archaea. Although generally similar reactions are employed in both prokaryotic groups, the stoichiometry of the key enzymes is different. Bacteria oxidize elemental sulfur by a sulfur dioxygenase to sulfite whereas in archaea, a sulfur oxygenase reductase is used forming equal amounts of sulfide and sulfite. In both cases, the activation mechanism of elemental sulfur is not known but highly reactive linear sulfur forms are assumed to be the actual substrate. Inhibition as well as promotion of these biochemical steps is highly relevant in bioleaching operations. An efficient oxidation can prevent the formation of passivating sulfur layers. In other cases, a specific inhibition of sulfur biooxidation may be beneficial for reducing cooling and neutralization costs. In conclusion, the demand for a better knowledge of the biochemistry of sulfur-oxidizing acidophiles is underlined. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  6. Positive Bioluminescence Imaging of MicroRNA Expression in Small Animal Models Using an Engineered Genetic-Switch Expression System, RILES.

    Science.gov (United States)

    Baril, Patrick; Pichon, Chantal

    2016-01-01

    MicroRNAs (miRNAs) are a class of small, noncoding RNAs which regulate gene expression by directing their target mRNA for degradation or translational repression. Since their discovery in the early 1990s, miRNAs have emerged as key components in the posttranscriptional regulation of gene networks, shaping many biological processes from development, morphogenesis, differentiation, proliferation and apoptosis. Although understanding of the molecular basis of miRNA biology is improving, methods to monitor the dynamic and the spatiotemporal aspects of miRNA expression under physiopathological conditions are required. However, monitoring of miRNAs is difficult due to their small size, low abundance, high degree of sequence similarity, and their dynamic expression pattern which is subjected to tight transcriptional and post-transcriptional controls. Recently, we developed a miRNA monitoring system called RILES, standing for RNAi-inducible expression system, which relies on an engineered regulatable expression system, to switch on the expression of the luciferase gene when the targeted miRNA is expressed in cells. We demonstrated that RILES is a specific, sensitive, and robust method to determine the fine-tuning of miRNA expression during the development of an experimental pathological process in mice. Because RILES offers the possibility for longitudinal studies on individual subjects, sharper insights into miRNA regulation can be generated, with applications in physiology, pathophysiology and development of RNAi-based therapies. This chapter describes methods and protocols to monitor the expression of myomiR-206, -1, and -133 in the tibialis anterior muscle of mice. These protocols can be used and adapted to monitor the expression of other miRNAs in other biological processes.

  7. Prokaryotic degradation of high molecular weight dissolved organic matter in the deep-sea waters of NW Mediterranean Sea under in situ temperature and pressure conditions during contrasted hydrological conditions

    Science.gov (United States)

    Tamburini, C.; Boutrif, M.; Garel, M.; Sempéré, R.; Repeta, D.; Charriere, B.; Nerini, D.; Panagiotopoulos, C.

    2016-02-01

    The contribution of the semi-labile dissolved organic carbon (DOC) to the global prokaryotic production has been assessed in very few previous studies. Some experiments show rapid utilization of semi-reactive DOC by prokaryotes, while other experiments show almost no utilization at all. However, all these studies did not take into account the role of hydrostatic pressure for the degradation of organic matter. In this study, we investigate (1) the degradation of "natural" high molecular weight DOM HMW-DOM (obtained after ultrafiltration) and (2) the uptake of labeled extracellular polymeric substances (3H-EPS) incubated with deep-sea water samples (2000 m-depth, NW Mediterranean Sea) under in situ pressure conditions (HP) and under atmospheric compression after decompression of the deep samples (ATM) during stratified and mixed water conditions (deep sea convection). Our results indicated that during HP incubations DOC exhibited the highest degradation rates (kHP DOC = 0.82 d-1) compared to the ATM conditions were no or few degradation was observed (kATM DOC= 0.007 d-1). An opposite trend was observed for the HP incubations from mixed deep water masses. HP incubation measurements displayed the lowest DOC degradation (kHP DOC=0.031 d-1) compared to the ATM conditions (kATM DOC=0.62 d-1). These results imply the presence of allochthonous prokaryotic cells in deep-sea samples after a winter water mass convection. Same trends were found using 3H-EPS uptake rates which were higher at HP than at ATM conditions during stratified period conditions whereas the opposite patterns were observed during deep-sea convection event. Moreover, we found than Euryarchaea were the main contributors to 3H-EPS assimilation at 2000m-depth, representing 58% of the total cells actively assimilating 3H-EPS. This study demonstrates that remineralization rates of semi-labile DOC in deep NW Med. Sea are controlled by the prokaryotic communities, which are influenced by the hydrological

  8. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    Science.gov (United States)

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  9. Phage Genetic Engineering Using CRISPR–Cas Systems

    Directory of Open Access Journals (Sweden)

    Asma Hatoum-Aslan

    2018-06-01

    Full Text Available Since their discovery over a decade ago, the class of prokaryotic immune systems known as CRISPR–Cas have afforded a suite of genetic tools that have revolutionized research in model organisms spanning all domains of life. CRISPR-mediated tools have also emerged for the natural targets of CRISPR–Cas immunity, the viruses that specifically infect bacteria, or phages. Despite their status as the most abundant biological entities on the planet, the majority of phage genes have unassigned functions. This reality underscores the need for robust genetic tools to study them. Recent reports have demonstrated that CRISPR–Cas systems, specifically the three major types (I, II, and III, can be harnessed to genetically engineer phages that infect diverse hosts. Here, the mechanisms of each of these systems, specific strategies used, and phage editing efficacies will be reviewed. Due to the relatively wide distribution of CRISPR–Cas systems across bacteria and archaea, it is anticipated that these immune systems will provide generally applicable tools that will advance the mechanistic understanding of prokaryotic viruses and accelerate the development of novel technologies based on these ubiquitous organisms.

  10. Sulfate-Reducing Prokaryotes from North Sea Oil reservoirs; organisms, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Beeder, Janiche

    1997-12-31

    During oil production in the North Sea, anaerobic seawater is pumped in which stimulates the growth of sulphate-reducing prokaryotes that produce hydrogen sulphide. This sulphide causes major health hazards, economical and operational problems. As told in this thesis, several strains of sulphate reducers have been isolated from North Sea oil field waters. Antibodies have been produced against these strains and used to investigate the distribution of sulphate reducers in a North Sea oil reservoir. The result showed a high diversity among sulphate reducers, with different strains belonging to different parts of the reservoir. Some of these strains have been further characterized. The physiological and phylogenetic characterization showed that strain 7324 was an archaean. Strain A8444 was a bacterium, representing a new species of a new genus. A benzoate degrading sulphate reducing bacterium was isolated from injection water, and later the same strain was detected in produced water. This is the first field observations indicating that sulphate reducers are able to penetrate an oil reservoir. It was found that the oil reservoir contains a diverse population of thermophilic sulphate reducers able to grow on carbon sources in the oil reservoir, and to live and grow in this extreme environment of high temperature and pressure. The mesophilic sulphate reducers are established in the injection water system and in the reservoir near the injection well during oil production. The thermophilic sulphate reducers are able to grow in the reservoir prior to, as well as during production. It appears that the oil reservoir is a natural habitat for thermophilic sulphate reducers and that they have been present in the reservoir long before production started. 322 refs., 9 figs., 11 tabs.

  11. Sulfate-Reducing Prokaryotes from North Sea Oil reservoirs; organisms, distribution and origin

    Energy Technology Data Exchange (ETDEWEB)

    Beeder, Janiche

    1996-12-31

    During oil production in the North Sea, anaerobic seawater is pumped in which stimulates the growth of sulphate-reducing prokaryotes that produce hydrogen sulphide. This sulphide causes major health hazards, economical and operational problems. As told in this thesis, several strains of sulphate reducers have been isolated from North Sea oil field waters. Antibodies have been produced against these strains and used to investigate the distribution of sulphate reducers in a North Sea oil reservoir. The result showed a high diversity among sulphate reducers, with different strains belonging to different parts of the reservoir. Some of these strains have been further characterized. The physiological and phylogenetic characterization showed that strain 7324 was an archaean. Strain A8444 was a bacterium, representing a new species of a new genus. A benzoate degrading sulphate reducing bacterium was isolated from injection water, and later the same strain was detected in produced water. This is the first field observations indicating that sulphate reducers are able to penetrate an oil reservoir. It was found that the oil reservoir contains a diverse population of thermophilic sulphate reducers able to grow on carbon sources in the oil reservoir, and to live and grow in this extreme environment of high temperature and pressure. The mesophilic sulphate reducers are established in the injection water system and in the reservoir near the injection well during oil production. The thermophilic sulphate reducers are able to grow in the reservoir prior to, as well as during production. It appears that the oil reservoir is a natural habitat for thermophilic sulphate reducers and that they have been present in the reservoir long before production started. 322 refs., 9 figs., 11 tabs.

  12. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    Science.gov (United States)

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  13. Engineering resistance against Tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato

    KAUST Repository

    Mahfouz, Magdy M.; Tashkandi, Manal; Ali, Zahir; Aljedaani, Fatimah R.; Shami, Ashwag

    2017-01-01

    CRISPR/Cas systems confer molecular immunity against phages and conjugative plasmids in prokaryotes. Recently, CRISPR/Cas9 systems have been used to confer interference against eukaryotic viruses. Here, we engineered Nicotiana benthamiana and tomato

  14. Orbital Express fluid transfer demonstration system

    Science.gov (United States)

    Rotenberger, Scott; SooHoo, David; Abraham, Gabriel

    2008-04-01

    Propellant resupply of orbiting spacecraft is no longer in the realm of high risk development. The recently concluded Orbital Express (OE) mission included a fluid transfer demonstration that operated the hardware and control logic in space, bringing the Technology Readiness Level to a solid TRL 7 (demonstration of a system prototype in an operational environment). Orbital Express (funded by the Defense Advanced Research Projects Agency, DARPA) was launched aboard an Atlas-V rocket on March 9th, 2007. The mission had the objective of demonstrating technologies needed for routine servicing of spacecraft, namely autonomous rendezvous and docking, propellant resupply, and orbital replacement unit transfer. The demonstration system used two spacecraft. A servicing vehicle (ASTRO) performed multiple dockings with the client (NextSat) spacecraft, and performed a variety of propellant transfers in addition to exchanges of a battery and computer. The fluid transfer and propulsion system onboard ASTRO, in addition to providing the six degree-of-freedom (6 DOF) thruster system for rendezvous and docking, demonstrated autonomous transfer of monopropellant hydrazine to or from the NextSat spacecraft 15 times while on orbit. The fluid transfer system aboard the NextSat vehicle was designed to simulate a variety of client systems, including both blowdown pressurization and pressure regulated propulsion systems. The fluid transfer demonstrations started with a low level of autonomy, where ground controllers were allowed to review the status of the demonstration at numerous points before authorizing the next steps to be performed. The final transfers were performed at a full autonomy level where the ground authorized the start of a transfer sequence and then monitored data as the transfer proceeded. The major steps of a fluid transfer included the following: mate of the coupling, leak check of the coupling, venting of the coupling, priming of the coupling, fluid transfer, gauging

  15. ExtraTrain: a database of Extragenic regions and Transcriptional information in prokaryotic organisms

    Science.gov (United States)

    Pareja, Eduardo; Pareja-Tobes, Pablo; Manrique, Marina; Pareja-Tobes, Eduardo; Bonal, Javier; Tobes, Raquel

    2006-01-01

    Background Transcriptional regulation processes are the principal mechanisms of adaptation in prokaryotes. In these processes, the regulatory proteins and the regulatory DNA signals located in extragenic regions are the key elements involved. As all extragenic spaces are putative regulatory regions, ExtraTrain covers all extragenic regions of available genomes and regulatory proteins from bacteria and archaea included in the UniProt database. Description ExtraTrain provides integrated and easily manageable information for 679816 extragenic regions and for the genes delimiting each of them. In addition ExtraTrain supplies a tool to explore extragenic regions, named Palinsight, oriented to detect and search palindromic patterns. This interactive visual tool is totally integrated in the database, allowing the search for regulatory signals in user defined sets of extragenic regions. The 26046 regulatory proteins included in ExtraTrain belong to the families AraC/XylS, ArsR, AsnC, Cold shock domain, CRP-FNR, DeoR, GntR, IclR, LacI, LuxR, LysR, MarR, MerR, NtrC/Fis, OmpR and TetR. The database follows the InterPro criteria to define these families. The information about regulators includes manually curated sets of references specifically associated to regulator entries. In order to achieve a sustainable and maintainable knowledge database ExtraTrain is a platform open to the contribution of knowledge by the scientific community providing a system for the incorporation of textual knowledge. Conclusion ExtraTrain is a new database for exploring Extragenic regions and Transcriptional information in bacteria and archaea. ExtraTrain database is available at . PMID:16539733

  16. Spatial organization of heterologous metabolic system in vivo based on TALE.

    Science.gov (United States)

    Zhu, Lv-yun; Qiu, Xin-Yuan; Zhu, Ling-Yun; Wu, Xiao-Min; Zhang, Yuan; Zhu, Qian-Hui; Fan, Dong-Yu; Zhu, Chu-Shu; Zhang, Dong-Yi

    2016-05-17

    For years, prokaryotic hosts have been widely applied in bio-engineering. However, the confined in vivo enzyme clustering of heterologous metabolic pathways in these organisms often results in low local concentrations of enzymes and substrates, leading to a low productive efficacy. We developed a new method to accelerate a heterologous metabolic system by integrating a transcription activator-like effector (TALE)-based scaffold system into an Escherichia coli chassis. The binding abilities of the TALEs to the artificial DNA scaffold were measured through ChIP-PCR. The effect of the system was determined through a split GFP study and validated through the heterologous production of indole-3-acetic acid (IAA) by incorporating TALE-fused IAA biosynthetic enzymes in E. coli. To the best of our knowledge, we are the first to use the TALE system as a scaffold for the spatial organization of bacterial metabolism. This technique might be used to establish multi-enzymatic reaction programs in a prokaryotic chassis for various applications.

  17. Biodegradation of dioxins by recombinant Escherichia coli expressing rat CYP1A1 or its mutant

    Energy Technology Data Exchange (ETDEWEB)

    Shinkyo, Raku; Inouye, Kuniyo [Kyoto Univ. (Japan). Div. of Food Science and Biotechnology; Kamakura, Masaki; Ikushiro, Shin-ichi; Sakaki, Toshiyuki [Toyama Prefectural Univ. (Japan). Biotechnology Research Center

    2006-09-15

    Among polychlorinated dibenzo-p-dioxins (PCDDs), 2,3,7,8-tetrachlorodibenzo-p-dioxin (2,3,7,8-TetraCDD) is the most toxic one. Recently, we reported that rat CYP1A1 mutant, F240A, expressed in yeast showed metabolic activity toward 2,3,7,8-TetraCDD. In this study, we successfully expressed N-terminal truncated P450s ({delta}1A1 and {delta}F240A) in Escherichia coli cells. Kinetic analysis using membrane fractions prepared from the recombinant E. coli cells revealed that {delta}F240A has enzymatic properties similar to F240A expressed in yeast. The metabolism of PCDDs by recombinant E. coli cells expressing both {delta}F240A and human NADPH-P450 reductase was also examined. When 2,3,7-TriCDD was added to the E. coli cell culture at a final concentration of 10 {mu}M, approximately 90% of the 2,3,7-TriCDD was converted into multiple metabolites within 8 h. These results indicate the possible application of prokaryotic cells expressing {delta}F240A to the bioremediation of PCDD-contaminated soil. (orig.)

  18. Cellular automata-based artificial life system of horizontal gene transfer

    Directory of Open Access Journals (Sweden)

    Ji-xin Liu

    2016-02-01

    Full Text Available Mutation and natural selection is the core of Darwin's idea about evolution. Many algorithms and models are based on this idea. However, in the evolution of prokaryotes, more and more researches have indicated that horizontal gene transfer (HGT would be much more important and universal than the authors had imagined. Owing to this mechanism, the prokaryotes not only become adaptable in nearly any environment on Earth, but also form a global genetic bank and a super communication network with all the genes of the prokaryotic world. Under this background, they present a novel cellular automata model general gene transfer to simulate and study the vertical gene transfer and HGT in the prokaryotes. At the same time, they use Schrodinger's life theory to formulate some evaluation indices and to discuss the intelligence and cognition of prokaryotes which is derived from HGT.

  19. Spatial and temporal variability of planktonic archaeal abundance in the Humboldt Current System off Chile

    Science.gov (United States)

    Quiñones, Renato A.; Levipan, Héctor A.; Urrutia, Homero

    2009-07-01

    The latest advances in the field of microbial ecology have shown that planktonic Archaea are one of the most abundant unicellular microorganisms of the oceans. However, no information is available on the contribution this group makes to the prokaryote assemblages that inhabit the eastern South Pacific Ocean. Here, we describe the relative abundance and vertical distribution of planktonic Archaea off northern and central-southern Chile. Data come from several cruises and a 45-month time series at a station located on the shelf off central-southern Chile. Both the taxonomic composition of the prokaryote community and its relative abundance were determined using quantitative dot blot 16S-rRNA hybridizations. Total Archaea in central-southern Chile made up 6-87% of the prokaryote rRNA in the water column and did not present evidence of any seasonal pattern. Crenarchaea were the most abundant archaeal group at this site and were significantly associated with the ammonium concentration ( r2=0.16, p=0.0003, n=80). Archaeal abundance in the time series was usually greater in the deeper layer (>50 m), with contributions reaching up to ˜90% of the prokaryote rRNA on certain occasions, and decreasing towards the surface. Important increments in the relative abundance of total Archaea were observed on given dates at the surface of the time-series station off central-southern Chile. Off northern Chile, total Archaea normally contributed from ˜10% to 50% of the prokaryote rRNA found between 10 and 1000 m, and were generally important in the mesopelagic realm. Our results indicate that Archaea constitute an important fraction of the prokaryote assemblage in the water column of the Humboldt Current System, especially in the oxygen minimum zone.

  20. Large gene overlaps in prokaryotic genomes: result of functional constraints or mispredictions?

    Directory of Open Access Journals (Sweden)

    Harrington Eoghan D

    2008-07-01

    Full Text Available Abstract Background Across the fully sequenced microbial genomes there are thousands of examples of overlapping genes. Many of these are only a few nucleotides long and are thought to function by permitting the coordinated regulation of gene expression. However, there should also be selective pressure against long overlaps, as the existence of overlapping reading frames increases the risk of deleterious mutations. Here we examine the longest overlaps and assess whether they are the product of special functional constraints or of erroneous annotation. Results We analysed the genes that overlap by 60 bps or more among 338 fully-sequenced prokaryotic genomes. The likely functional significance of an overlap was determined by comparing each of the genes to its respective orthologs. If a gene showed a significantly different length from its orthologs it was considered unlikely to be functional and therefore the result of an error either in sequencing or gene prediction. Focusing on 715 co-directional overlaps longer than 60 bps, we classified the erroneous ones into five categories: i 5'-end extension of the downstream gene due to either a mispredicted start codon or a frameshift at 5'-end of the gene (409 overlaps, ii fragmentation of a gene caused by a frameshift (163, iii 3'-end extension of the upstream gene due to either a frameshift at 3'-end of a gene or point mutation at the stop codon (68, iv Redundant gene predictions (4, v 5' & 3'-end extension which is a combination of i and iii (71. We also studied 75 divergent overlaps that could be classified as misannotations of group i. Nevertheless we found some convergent long overlaps (54 that might be true overlaps, although an important part of convergent overlaps could be classified as group iii (124. Conclusion Among the 968 overlaps larger than 60 bps which we analysed, we did not find a single real one among the co-directional and divergent orientations and concluded that there had been an

  1. Molecular characterisation and expression analysis of acc oxidase gene from guzmania ruiz and pav

    International Nuclear Information System (INIS)

    Jianxin, L.; Huaqiao, D.; Weiyong, W.; Danqing, T.

    2017-01-01

    ACC oxidase is the last key enzyme of ethylene synthesis pathway, while ethylene is a key factor affecting flowering in ornamental bromeliad. To understand ACC oxidase gene's characteristics and its effect on ornamental bromeliad flowering, we cloned 1504bp full-length cDNA sequence (GenBank: JX972145) and 2546bp corresponding genomic sequence (GenBank: JX972146)of GoACO1 (ACC oxidase gene) from Guzmania variety: Ostara. Prokaryotic expression study showed that expression of GoACO1 can produced a 41 KD protein precipitation in Escherichia coli DE3(BL-21); Real-time quantitative analysis showed that GoACO1 can express in all tested tissues including floral organ, bract, leaf and scape, and expression quantity in bract was the highest. Through constructing plant overexpression vector, transforming into Arabidopsis thaliana, and investigating blossom character of T2 generation seeds, we found that first flowering time of the goal Arabidopsis thaliana was 1.5 days earlier, and their peak flowering time(the number of flowering more than 50%) was 1.8 days earlier, compared with wild type one. Taken together, our results suggested that GoACO1can express in all kinds of tissues and seems to promote Arabidopsis thaliana flowering earlier. (author)

  2. Structure elucidation and chemical synthesis of stigmolone, a novel type of prokaryotic pheromone.

    Science.gov (United States)

    Hull, W E; Berkessel, A; Plaga, W

    1998-09-15

    Approximately 2 micromol of a novel prokaryotic pheromone, involved in starvation-induced aggregation and formation of fruiting bodies by the myxobacterium Stigmatella aurantiaca, were isolated by a large-scale elution procedure. The pheromone was purified by HPLC, and high-resolution MS, IR, 1H-NMR, and 13C-NMR were used to identify the active substance as the hydroxy ketone 2,5, 8-trimethyl-8-hydroxy-nonan-4-one, which has been named stigmolone. The analysis was complicated by a solvent-dependent equilibrium between stigmolone and the cyclic enol-ether 3,4-dihydro-2,2, 5-trimethyl-6-(2-methylpropyl)-2H-pyran formed by intramolecular nucleophilic attack of the 8-OH group at the ketone C4 followed by loss of H2O. Both compounds were synthesized chemically, and their structures were confirmed by NMR analysis. Natural and synthetic stigmolone have the same biological activity at ca. 1 nM concentration.

  3. Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems

    Directory of Open Access Journals (Sweden)

    Muhammad Hameed Siddiqi

    2013-12-01

    Full Text Available Over the last decade, human facial expressions recognition (FER has emerged as an important research area. Several factors make FER a challenging research problem. These include varying light conditions in training and test images; need for automatic and accurate face detection before feature extraction; and high similarity among different expressions that makes it difficult to distinguish these expressions with a high accuracy. This work implements a hierarchical linear discriminant analysis-based facial expressions recognition (HL-FER system to tackle these problems. Unlike the previous systems, the HL-FER uses a pre-processing step to eliminate light effects, incorporates a new automatic face detection scheme, employs methods to extract both global and local features, and utilizes a HL-FER to overcome the problem of high similarity among different expressions. Unlike most of the previous works that were evaluated using a single dataset, the performance of the HL-FER is assessed using three publicly available datasets under three different experimental settings: n-fold cross validation based on subjects for each dataset separately; n-fold cross validation rule based on datasets; and, finally, a last set of experiments to assess the effectiveness of each module of the HL-FER separately. Weighted average recognition accuracy of 98.7% across three different datasets, using three classifiers, indicates the success of employing the HL-FER for human FER.

  4. Hierarchical Recognition Scheme for Human Facial Expression Recognition Systems

    Science.gov (United States)

    Siddiqi, Muhammad Hameed; Lee, Sungyoung; Lee, Young-Koo; Khan, Adil Mehmood; Truc, Phan Tran Ho

    2013-01-01

    Over the last decade, human facial expressions recognition (FER) has emerged as an important research area. Several factors make FER a challenging research problem. These include varying light conditions in training and test images; need for automatic and accurate face detection before feature extraction; and high similarity among different expressions that makes it difficult to distinguish these expressions with a high accuracy. This work implements a hierarchical linear discriminant analysis-based facial expressions recognition (HL-FER) system to tackle these problems. Unlike the previous systems, the HL-FER uses a pre-processing step to eliminate light effects, incorporates a new automatic face detection scheme, employs methods to extract both global and local features, and utilizes a HL-FER to overcome the problem of high similarity among different expressions. Unlike most of the previous works that were evaluated using a single dataset, the performance of the HL-FER is assessed using three publicly available datasets under three different experimental settings: n-fold cross validation based on subjects for each dataset separately; n-fold cross validation rule based on datasets; and, finally, a last set of experiments to assess the effectiveness of each module of the HL-FER separately. Weighted average recognition accuracy of 98.7% across three different datasets, using three classifiers, indicates the success of employing the HL-FER for human FER. PMID:24316568

  5. Simple sequence proteins in prokaryotic proteomes

    Directory of Open Access Journals (Sweden)

    Ramachandran Srinivasan

    2006-06-01

    Full Text Available Abstract Background The structural and functional features associated with Simple Sequence Proteins (SSPs are non-globularity, disease states, signaling and post-translational modification. SSPs are also an important source of genetic and possibly phenotypic variation. Analysis of 249 prokaryotic proteomes offers a new opportunity to examine the genomic properties of SSPs. Results SSPs are a minority but they grow with proteome size. This relationship is exhibited across species varying in genomic GC, mutational bias, life style, and pathogenicity. Their proportion in each proteome is strongly influenced by genomic base compositional bias. In most species simple duplications is favoured, but in a few cases such as Mycobacteria, large families of duplications occur. Amino acid preference in SSPs exhibits a trend towards low cost of biosynthesis. In SSPs and in non-SSPs, Alanine, Glycine, Leucine, and Valine are abundant in species widely varying in genomic GC whereas Isoleucine and Lysine are rich only in organisms with low genomic GC. Arginine is abundant in SSPs of two species and in the non-SSPs of Xanthomonas oryzae. Asparagine is abundant only in SSPs of low GC species. Aspartic acid is abundant only in the non-SSPs of Halobacterium sp NRC1. The abundance of Serine in SSPs of 62 species extends over a broader range compared to that of non-SSPs. Threonine(T is abundant only in SSPs of a couple of species. SSPs exhibit preferential association with Cell surface, Cell membrane and Transport functions and a negative association with Metabolism. Mesophiles and Thermophiles display similar ranges in the content of SSPs. Conclusion Although SSPs are a minority, the genomic forces of base compositional bias and duplications influence their growth and pattern in each species. The preferences and abundance of amino acids are governed by low biosynthetic cost, evolutionary age and base composition of codons. Abundance of charged amino acids Arginine

  6. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes.

    Science.gov (United States)

    Yu, Nancy Y; Wagner, James R; Laird, Matthew R; Melli, Gabor; Rey, Sébastien; Lo, Raymond; Dao, Phuong; Sahinalp, S Cenk; Ester, Martin; Foster, Leonard J; Brinkman, Fiona S L

    2010-07-01

    PSORTb has remained the most precise bacterial protein subcellular localization (SCL) predictor since it was first made available in 2003. However, the recall needs to be improved and no accurate SCL predictors yet make predictions for archaea, nor differentiate important localization subcategories, such as proteins targeted to a host cell or bacterial hyperstructures/organelles. Such improvements should preferably be encompassed in a freely available web-based predictor that can also be used as a standalone program. We developed PSORTb version 3.0 with improved recall, higher proteome-scale prediction coverage, and new refined localization subcategories. It is the first SCL predictor specifically geared for all prokaryotes, including archaea and bacteria with atypical membrane/cell wall topologies. It features an improved standalone program, with a new batch results delivery system complementing its web interface. We evaluated the most accurate SCL predictors using 5-fold cross validation plus we performed an independent proteomics analysis, showing that PSORTb 3.0 is the most accurate but can benefit from being complemented by Proteome Analyst predictions. http://www.psort.org/psortb (download open source software or use the web interface). psort-mail@sfu.ca Supplementary data are available at Bioinformatics online.

  7. ATNT: an enhanced system for expression of polycistronic secondary metabolite gene clusters in Aspergillus niger.

    Science.gov (United States)

    Geib, Elena; Brock, Matthias

    2017-01-01

    Fungi are treasure chests for yet unexplored natural products. However, exploitation of their real potential remains difficult as a significant proportion of biosynthetic gene clusters appears silent under standard laboratory conditions. Therefore, elucidation of novel products requires gene activation or heterologous expression. For heterologous gene expression, we previously developed an expression platform in Aspergillus niger that is based on the transcriptional regulator TerR and its target promoter P terA . In this study, we extended this system by regulating expression of terR  by the doxycycline inducible Tet-on system. Reporter genes cloned under the control of the target promoter P terA remained silent in the absence of doxycycline, but were strongly expressed when doxycycline was added. Reporter quantification revealed that the coupled system results in about five times higher expression rates compared to gene expression under direct control of the Tet-on system. As production of secondary metabolites generally requires the expression of several biosynthetic genes, the suitability of the self-cleaving viral peptide sequence P2A was tested in this optimised expression system. P2A allowed polycistronic expression of genes required for Asp-melanin formation in combination with the gene coding for the red fluorescent protein tdTomato. Gene expression and Asp-melanin formation was prevented in the absence of doxycycline and strongly induced by addition of doxycycline. Fluorescence studies confirmed the correct subcellular localisation of the respective enzymes. This tightly regulated but strongly inducible expression system enables high level production of secondary metabolites most likely even those with toxic potential. Furthermore, this system is compatible with polycistronic gene expression and, thus, suitable for the discovery of novel natural products.

  8. Light-Dependent Expression of Four Cryptic Archaeal Circadian Gene Homologs

    Directory of Open Access Journals (Sweden)

    Michael eManiscalco

    2014-03-01

    Full Text Available Circadian rhythms are important biological signals that have been found in almost all major groups of life from bacteria to man, yet it remains unclear if any members of the second major prokaryotic domain of life, the Archaea, also possess a biological clock. To investigate this question, we examined the regulation of four cyanobacterial-like circadian gene homologs present in the genome of the haloarchaeon Haloferax volcanii. These genes, designated cirA, cirB, cirC, and cirD, display similarity to the KaiC-family of cyanobacterial clock proteins, which act to regulate rhythmic gene expression and to control the timing of cell division. Quantitative RT-PCR analysis was used to examine the expression of each of the four cir genes in response to 12 h light/12 h dark cycles (LD 12:12 during balanced growth in H. volcanii. Our data reveal that there is an approximately two to sixteen-fold increase in cir gene expression when cells are shifted from light to constant darkness and this pattern of gene expression oscillates with the light conditions in a rhythmic manner. Targeted single- and double-gene knockouts in the H. volcanii cir genes results in disruption of light-dependent, rhythmic gene expression, although it does not lead to any significant effect on growth under these conditions. Restoration of light-dependent, rhythmic gene expression was demonstrated by introducing, in trans, a wild-type copy of individual cir genes into knockout strains. These results are noteworthy as this is the first attempt to characterize the transcriptional expression and regulation of the ubiquitous kaiC homologs found among archaeal genomes.

  9. A new strategy for full-length Ebola virus glycoprotein expression in E.coli.

    Science.gov (United States)

    Zai, Junjie; Yi, Yinhua; Xia, Han; Zhang, Bo; Yuan, Zhiming

    2016-12-01

    Ebola virus (EBOV) causes severe hemorrhagic fever in humans and non-human primates with high rates of fatality. Glycoprotein (GP) is the only envelope protein of EBOV, which may play a critical role in virus attachment and entry as well as stimulating host protective immune responses. However, the lack of expression of full-length GP in Escherichia coli hinders the further study of its function in viral pathogenesis. In this study, the vp40 gene was fused to the full-length gp gene and cloned into a prokaryotic expression vector. We showed that the VP40-GP and GP-VP40 fusion proteins could be expressed in E.coli at 16 °C. In addition, it was shown that the position of vp40 in the fusion proteins affected the yields of the fusion proteins, with a higher level of production of the fusion protein when vp40 was upstream of gp compared to when it was downstream. The results provide a strategy for the expression of a large quantity of EBOV full-length GP, which is of importance for further analyzing the relationship between the structure and function of GP and developing an antibody for the treatment of EBOV infection.

  10. A system-level model for the microbial regulatory genome.

    Science.gov (United States)

    Brooks, Aaron N; Reiss, David J; Allard, Antoine; Wu, Wei-Ju; Salvanha, Diego M; Plaisier, Christopher L; Chandrasekaran, Sriram; Pan, Min; Kaur, Amardeep; Baliga, Nitin S

    2014-07-15

    Microbes can tailor transcriptional responses to diverse environmental challenges despite having streamlined genomes and a limited number of regulators. Here, we present data-driven models that capture the dynamic interplay of the environment and genome-encoded regulatory programs of two types of prokaryotes: Escherichia coli (a bacterium) and Halobacterium salinarum (an archaeon). The models reveal how the genome-wide distributions of cis-acting gene regulatory elements and the conditional influences of transcription factors at each of those elements encode programs for eliciting a wide array of environment-specific responses. We demonstrate how these programs partition transcriptional regulation of genes within regulons and operons to re-organize gene-gene functional associations in each environment. The models capture fitness-relevant co-regulation by different transcriptional control mechanisms acting across the entire genome, to define a generalized, system-level organizing principle for prokaryotic gene regulatory networks that goes well beyond existing paradigms of gene regulation. An online resource (http://egrin2.systemsbiology.net) has been developed to facilitate multiscale exploration of conditional gene regulation in the two prokaryotes. © 2014 The Authors. Published under the terms of the CC BY 4.0 license.

  11. Expression of manganese superoxide dismutase in rat blood, heart and brain during induced systemic hypoxia

    Directory of Open Access Journals (Sweden)

    Septelia I. Wanandi

    2011-02-01

    Full Text Available Background: Hypoxia results in an increased generation of ROS. Until now, little is known about the role of MnSOD - a major endogenous antioxidant enzyme - on the cell adaptation response against hypoxia. The aim of this study was to  determine the MnSOD mRNA expression and levels of specific activity in blood, heart and brain of rats during induced systemic hypoxia.Methods: Twenty-five male Sprague Dawley rats were subjected to systemic hypoxia in an hypoxic chamber (at 8-10% O2 for 0, 1, 7, 14 and 21 days, respectively. The mRNA relative expression of MnSOD was analyzed using Real Time RT-PCR. MnSOD specific activity was determined using xanthine oxidase inhibition assay.Results: The MnSOD mRNA relative expression in rat blood and heart was decreased during early induced systemic hypoxia (day 1 and increased as hypoxia continued, whereas the mRNA expression in brain was increased since day 1 and reached its maximum level at day 7. The result of MnSOD specific activity during early systemic hypoxia was similar to the mRNA expression. Under very late hypoxic condition (day 21, MnSOD specific activity in blood, heart and brain was significantly decreased. We demonstrate a positive correlation between MnSOD mRNA expression and specific activity in these 3 tissues during day 0-14 of induced systemic hypoxia. Furthermore, mRNA expression and specific activity levels in heart strongly correlate with those in blood.Conclusion: The MnSOD expression at early and late phases of induced systemic hypoxia is distinctly regulated. The MnSOD expression in brain differs from that in blood and heart revealing that brain tissue can  possibly survive better from induced systemic hypoxia than heart and blood. The determination of MnSOD expression in blood can be used to describe its expression in heart under systemic hypoxic condition. (Med J Indones 2011; 20:27-33Keywords: MnSOD, mRNA expression, ROS, specific activity, systemic hypoxia

  12. Efficient Expression of Acetylcholine-Binding Protein from Aplysia californica in Bac-to-Bac System

    Directory of Open Access Journals (Sweden)

    Bo Lin

    2014-01-01

    Full Text Available The Bac-to-Bac baculovirus expression system can efficiently produce recombinant proteins, but the system may have to be optimized to achieve high-level expression for different candidate proteins. We reported here the efficient expression of acetylcholine-binding proteins from sea hares Aplysia californica (Ac-AChBP and a convenient method to monitor protein expression level in this expression system. Three key factors affecting expression of Ac-AChBP were optimized for maximizing the yield, which included the cell density, volume of the infecting baculovirus inoculums, and the culturing time of postinfection. We have found it to reach a high yield of ∼5 mg/L, which needs 55 h incubation after infection at the cell density of 2 × 106 cells/mL with an inoculum volume ratio of 1 : 100. The optimized expression system in this study was also applied for expressing another protein Ls-AChBP from Lymnaea stagnalis successfully. Therefore, this established method is helpful to produce high yields of AChBP proteins for X-ray crystallographic structural and functional studies.

  13. Spatial variations of prokaryotic communities in surface water from India Ocean to Chinese marginal seas and their underlining environmental determinants

    Directory of Open Access Journals (Sweden)

    Xiaowei eZheng

    2016-02-01

    Full Text Available To illustrate the biogeographic patterns of prokaryotic communities in surface sea water, 24 samples were systematically collected across a large distance from Indian Ocean to Chinese marginal seas, with an average distance of 453 km between two adjacent stations. A total of 841,364 quality reads was produced by the high throughput DNA sequencing of the 16S rRNA genes. Phylogenetic analysis showed that Proteobacteria were predominant in all samples, with Alphaproteobacteria and Gammaproteobacteria being the two most abundant components. Cyanobacteria represented the second largest fraction of the total quality reads, and mainly included Prochlorococcus and Synechococcus. The semi-closed marginal seas, including South China Sea (SCS and nearby regions, exhibited a transition in community composition between oceanic and coastal seas, based on the distribution patterns of Prochlorococcus and Synechococcus as well as a non-metric multidimensional scaling (NMDS analysis. Distinct clusters of prokaryotes from coastal and open seas, and from different water masses in Indian Ocean were obtained by Bray-Curtis dissimilarity analysis at the OTU level, revealing a clear spatial heterogeneity. The major environmental factors correlated with the community variation in this broad scale were identified as salinity, temperature and geographic distance. Community comparison among regions shows that anthropogenic contamination is another dominant factor in shaping the biogeographic patterns of the microorganisms. These results suggest that environmental factors involved in complex interactions between land and sea act synergistically in driving spatial variations in coastal areas.

  14. Temperature regulation of marine heterotrophic prokaryotes increases latitudinally as a breach between bottom-up and top-down controls

    KAUST Repository

    Moran, Xose Anxelu G.

    2017-04-19

    Planktonic heterotrophic prokaryotes make up the largest living biomass and process most organic matter in the ocean. Determining when and where the biomass and activity of heterotrophic prokaryotes are controlled by resource availability (bottom-up), predation and viral lysis (top-down) or temperature will help in future carbon cycling predictions. We conducted an extensive survey across subtropical and tropical waters of the Atlantic, Indian and Pacific Oceans during the Malaspina 2010 Global Circumnavigation Expedition and assessed indices for these three types of controls at 109 stations (mostly from the surface to 4000 m depth). Temperature control was approached by the apparent activation energy in eV (ranging from 0.46 to 3.41), bottom-up control by the slope of the log-log relationship between biomass and production rate (ranging from -0.12 to 1.09) and top-down control by an index that considers the relative abundances of heterotrophic nanoflagellates and viruses (ranging from 0.82 to 4.83). We conclude that temperature becomes dominant (i.e. activation energy >1.5 eV) within a narrow window of intermediate values of bottom-up (0.3-0.6) and top-down 0.8-1.2) controls. A pervasive latitudinal pattern of decreasing temperature regulation towards the Equator, regardless of the oceanic basin, suggests that the impact of global warming on marine microbes and their biogeochemical function will be more intense at higher latitudes. Our analysis predicts that 1°C ocean warming will result in increased biomass of heterotrophic prokaryoplankton only in waters with <26°C of mean annual surface temperature. This article is protected by copyright. All rights reserved.

  15. Multilaboratory approach to preclinical evaluation of vaccine immunogens for placental malaria

    DEFF Research Database (Denmark)

    Fried, Michal; Avril, Marion; Chaturvedi, Richa

    2013-01-01

    a vaccine targeting individual Duffy binding-like (DBL) domains. In this study, a consortium of laboratories under the Pregnancy Malaria Initiative compared the functional activity of antiadhesion antibodies elicited by different VAR2CSA domains and variants produced in prokaryotic and eukaryotic expression...... systems. Antisera were initially tested against laboratory lines of maternal parasites, and the most promising reagents were evaluated in the field against fresh placental parasite samples. Recombinant proteins expressed in Escherichia coli elicited antibody levels similar to those expressed in eukaryotic...

  16. Programmable type III-A CRISPR-Cas DNA targeting modules.

    Directory of Open Access Journals (Sweden)

    H Travis Ichikawa

    Full Text Available The CRISPR-Cas systems provide invader defense in a wide variety of prokaryotes, as well as technologies for many powerful applications. The Type III-A or Csm CRISPR-Cas system is one of the most widely distributed across prokaryotic phyla, and cleaves targeted DNA and RNA molecules. In this work, we have constructed modules of Csm systems from 3 bacterial species and heterologously expressed the functional modules in E. coli. The modules include a Cas6 protein and a CRISPR locus for crRNA production, and Csm effector complex proteins. The expressed modules from L. lactis, S. epidermidis and S. thermophilus specifically eliminate invading plasmids recognized by the crRNAs of the systems. Characteristically, activation of plasmid targeting activity depends on transcription of the plasmid sequence recognized by the crRNA. Activity was not observed when transcription of the crRNA target sequence was blocked, or when the opposite strand or a non-target sequence was transcribed. Moreover, the Csm module can be programmed to recognize plasmids with novel target sequences by addition of appropriate crRNA coding sequences to the module. These systems provide a platform for investigation of Type III-A CRISPR-Cas systems in E. coli, and for introduction of programmable transcription-activated DNA targeting into novel organisms.

  17. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Directory of Open Access Journals (Sweden)

    Bernardo Bañuelos-Hernández

    2017-06-01

    Full Text Available The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin, which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture, which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins.

  18. Algevir: An Expression System for Microalgae Based on Viral Vectors

    Science.gov (United States)

    Bañuelos-Hernández, Bernardo; Monreal-Escalante, Elizabeth; González-Ortega, Omar; Angulo, Carlos; Rosales-Mendoza, Sergio

    2017-01-01

    The use of recombinant algae for the production of valuable compounds is opening promising biotechnological applications. However, the development of efficient expression approaches is still needed to expand the exploitation of microalgae in biotechnology. Herein, the concept of using viral expression vectors in microalgae was explored for the first time. An inducible geminiviral vector leading to Rep-mediated replication of the expression cassette allowed the production of antigenic proteins at high levels. This system, called Algevir, allows the production of complex viral proteins (GP1 from Zaire ebolavirus) and bacterial toxin subunits (B subunit of the heat-labile Escherichia coli enterotoxin), which retained their antigenic activity. The highest achieved yield was 1.25 mg/g fresh biomass (6 mg/L of culture), which was attained 3 days after transformation. The Algevir system allows for a fast and efficient production of recombinant proteins, overcoming the difficulties imposed by the low yields and unstable expression patterns frequently observed in stably transformed microalgae at the nuclear level; as well as the toxicity of some target proteins. PMID:28713333

  19. A novel bidirectional expression system for simultaneous expression of both the protein-coding genes and short hairpin RNAs in mammalian cells

    International Nuclear Information System (INIS)

    Hung, C.-F.; Cheng, T.-L.; Wu, R.-H.; Teng, C.-F.; Chang, W.-T.

    2006-01-01

    RNA interference (RNAi) is an extremely powerful and widely used gene silencing approach for reverse functional genomics and molecular therapeutics. In mammals, the conserved poly(ADP-ribose) polymerase 2 (PARP-2)/RNase P bidirectional control promoter simultaneously expresses both the PARP-2 protein and RNase P RNA by RNA polymerase II- and III-dependent mechanisms, respectively. To explore this unique bidirectional control system in RNAi-mediated gene silencing strategy, we have constructed two novel bidirectional expression vectors, pbiHsH1 and pbiMmH1, which contained the PARP-2/RNase P bidirectional control promoters from human and mouse, for simultaneous expression of both the protein-coding genes and short hairpin RNAs. Analyses of the dual transcriptional activities indicated that these two bidirectional expression vectors could not only express enhanced green fluorescent protein as a functional reporter but also simultaneously transcribe shLuc for inhibiting the firefly luciferase expression. In addition, to extend its utility for the establishment of inherited stable clones, we have also reconstructed this bidirectional expression system with the blasticidin S deaminase gene, an effective dominant drug resistance selectable marker, and examined both the selection and inhibition efficiencies in drug resistance and gene expression. Moreover, we have further demonstrated that this bidirectional expression system could efficiently co-regulate the functionally important genes, such as overexpression of tumor suppressor protein p53 and inhibition of anti-apoptotic protein Bcl-2 at the same time. In summary, the bidirectional expression vectors, pbiHsH1 and pbiMmH1, should provide a simple, convenient, and efficient novel tool for manipulating the gene function in mammalian cells

  20. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.

    Science.gov (United States)

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J

    2017-05-01

    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  1. DNA sequence and prokaryotic expression analysis of vitellogenin ...

    African Journals Online (AJOL)

    USER

    2010-02-08

    Feb 8, 2010 ... 2Laboratory of Silkworm Genetics and Pathology, Faculty of Textile Science and Technology, ... tera insects Bombyx mori (Yano et al., 1994a; Yano et al., ... To investigate the evolutionary ..... reveals ancient common ancestry.

  2. Algorithms for computing parsimonious evolutionary scenarios for genome evolution, the last universal common ancestor and dominance of horizontal gene transfer in the evolution of prokaryotes

    Directory of Open Access Journals (Sweden)

    Galperin Michael Y

    2003-01-01

    Full Text Available Abstract Background Comparative analysis of sequenced genomes reveals numerous instances of apparent horizontal gene transfer (HGT, at least in prokaryotes, and indicates that lineage-specific gene loss might have been even more common in evolution. This complicates the notion of a species tree, which needs to be re-interpreted as a prevailing evolutionary trend, rather than the full depiction of evolution, and makes reconstruction of ancestral genomes a non-trivial task. Results We addressed the problem of constructing parsimonious scenarios for individual sets of orthologous genes given a species tree. The orthologous sets were taken from the database of Clusters of Orthologous Groups of proteins (COGs. We show that the phyletic patterns (patterns of presence-absence in completely sequenced genomes of almost 90% of the COGs are inconsistent with the hypothetical species tree. Algorithms were developed to reconcile the phyletic patterns with the species tree by postulating gene loss, COG emergence and HGT (the latter two classes of events were collectively treated as gene gains. We prove that each of these algorithms produces a parsimonious evolutionary scenario, which can be represented as mapping of loss and gain events on the species tree. The distribution of the evolutionary events among the tree nodes substantially depends on the underlying assumptions of the reconciliation algorithm, e.g. whether or not independent gene gains (gain after loss after gain are permitted. Biological considerations suggest that, on average, gene loss might be a more likely event than gene gain. Therefore different gain penalties were used and the resulting series of reconstructed gene sets for the last universal common ancestor (LUCA of the extant life forms were analysed. The number of genes in the reconstructed LUCA gene sets grows as the gain penalty increases. However, qualitative examination of the LUCA versions reconstructed with different gain penalties

  3. Expression and immunological cross-reactivity of LALP3, a novel astacin-like metalloprotease from brown spider (Loxosceles intermedia) venom.

    Science.gov (United States)

    Morgon, Adriano M; Belisario-Ferrari, Matheus R; Trevisan-Silva, Dilza; Meissner, Gabriel O; Vuitika, Larissa; Marin, Brenda; Tashima, Alexandre K; Gremski, Luiza H; Gremski, Waldemiro; Senff-Ribeiro, Andrea; Veiga, Silvio S; Chaim, Olga M

    2016-01-01

    Loxosceles spiders' venom comprises a complex mixture of biologically active toxins, mostly consisting of low molecular mass components (2-40 kDa). Amongst, isoforms of astacin-like metalloproteases were identified through transcriptome and proteome analyses. Only LALP1 (Loxosceles Astacin-Like protease 1) has been characterized. Herein, we characterized LALP3 as a novel recombinant astacin-like metalloprotease isoform from Loxosceles intermedia venom. LALP3 cDNA was cloned in pET-SUMO vector, and its soluble heterologous expression was performed using a SUMO tag added to LALP3 to achieve solubility in Escherichia coli SHuffle T7 Express LysY cells, which express the disulfide bond isomerase DsbC. Protein purification was conducted by Ni-NTA Agarose resin and assayed for purity by SDS-PAGE under reducing conditions. Immunoblotting analyses were performed with specific antibodies recognizing LALP1 and whole venom. Western blotting showed linear epitopes from recombinant LALP3 that cross-reacted with LALP1, and dot blotting revealed conformational epitopes with native venom astacins. Mass spectrometry analysis revealed that the recombinant expressed protein is an astacin-like metalloprotease from L. intermedia venom. Furthermore, molecular modeling of LALP3 revealed that this isoform contains the zinc binding and Met-turn motifs, forming the active site, as has been observed in astacins. These data confirmed that LALP3, which was successfully obtained by heterologous expression using a prokaryote system, is a new astacin-like metalloprotease isoform present in L. intermedia venom. Copyright © 2016 Elsevier B.V. and Société Française de Biochimie et Biologie Moléculaire (SFBBM). All rights reserved.

  4. The Adaptive Immune System of Haloferax volcanii

    Directory of Open Access Journals (Sweden)

    Lisa-Katharina Maier

    2015-02-01

    Full Text Available To fight off invading genetic elements, prokaryotes have developed an elaborate defence system that is both adaptable and heritable—the CRISPR-Cas system (CRISPR is short for: clustered regularly interspaced short palindromic repeats and Cas: CRISPR associated. Comprised of proteins and multiple small RNAs, this prokaryotic defence system is present in 90% of archaeal and 40% of bacterial species, and enables foreign intruders to be eliminated in a sequence-specific manner. There are three major types (I–III and at least 14 subtypes of this system, with only some of the subtypes having been analysed in detail, and many aspects of the defence reaction remaining to be elucidated. Few archaeal examples have so far been analysed. Here we summarize the characteristics of the CRISPR-Cas system of Haloferax volcanii, an extremely halophilic archaeon originally isolated from the Dead Sea. It carries a single CRISPR-Cas system of type I-B, with a Cascade like complex composed of Cas proteins Cas5, Cas6b and Cas7. Cas6b is essential for CRISPR RNA (crRNA maturation but is otherwise not required for the defence reaction. A systematic search revealed that six protospacer adjacent motif (PAM sequences are recognised by the Haloferax defence system. For successful invader recognition, a non-contiguous seed sequence of 10 base-pairs between the crRNA and the invader is required.

  5. A Text-Based Chat System Embodied with an Expressive Agent

    Directory of Open Access Journals (Sweden)

    Lamia Alam

    2017-01-01

    Full Text Available Life-like characters are playing vital role in social computing by making human-computer interaction more easy and spontaneous. Nowadays, use of these characters to interact in online virtual environment has gained immense popularity. In this paper, we proposed a framework for a text-based chat system embodied with a life-like virtual agent that aims at natural communication between the users. To achieve this kind of system, we developed an agent that performs some nonverbal communications such as generating facial expression and motions by analyzing the text messages of the users. More specifically, this agent is capable of generating facial expressions for six basic emotions such as happy, sad, fear, angry, surprise, and disgust along with two additional emotions, irony and determined. Then to make the interaction between the users more realistic and lively, we added motions such as eye blink and head movements. We measured our proposed system from different aspects and found the results satisfactory, which make us believe that this kind of system can play a significant role in making an interaction episode more natural, effective, and interesting. Experimental evaluation reveals that the proposed agent can display emotive expressions correctly 93% of the time by analyzing the users’ text input.

  6. Prokaryotic Abundance and Activity in Permafrost of the Northern Victoria Land and Upper Victoria Valley (Antarctica).

    Science.gov (United States)

    La Ferla, Rosabruna; Azzaro, Maurizio; Michaud, Luigi; Caruso, Gabriella; Lo Giudice, Angelina; Paranhos, Rodolfo; Cabral, Anderson S; Conte, Antonella; Cosenza, Alessandro; Maimone, Giovanna; Papale, Maria; Rappazzo, Alessandro Ciro; Guglielmin, Mauro

    2017-08-01

    Victoria Land permafrost harbours a potentially large pool of cold-affected microorganisms whose metabolic potential still remains underestimated. Three cores (BC-1, BC-2 and BC-3) drilled at different depths in Boulder Clay (Northern Victoria Land) and one sample (DY) collected from a core in the Dry Valleys (Upper Victoria Valley) were analysed to assess the prokaryotic abundance, viability, physiological profiles and potential metabolic rates. The cores drilled at Boulder Clay were a template of different ecological conditions (different temperature regime, ice content, exchanges with atmosphere and with liquid water) in the same small basin while the Dry Valleys site was very similar to BC-2 conditions but with a complete different geological history and ground ice type. Image analysis was adopted to determine cell abundance, size and shape as well as to quantify the potential viable and respiring cells by live/dead and 5-cyano-2,3-ditolyl-tetrazolium chloride staining, respectively. Subpopulation recognition by apparent nucleic acid contents was obtained by flow cytometry. Moreover, the physiological profiles at community level by Biolog-Ecoplate™ as well as the ectoenzymatic potential rates on proteinaceous (leucine-aminopeptidase) and glucidic (ß-glucosidase) organic matter and on organic phosphates (alkaline-phosphatase) by fluorogenic substrates were tested. The adopted methodological approach gave useful information regarding viability and metabolic performances of microbial community in permafrost. The occurrence of a multifaceted prokaryotic community in the Victoria Land permafrost and a large number of potentially viable and respiring cells (in the order of 10 4 -10 5 ) were recognised. Subpopulations with a different apparent DNA content within the different samples were observed. The physiological profiles stressed various potential metabolic pathways among the samples and intense utilisation rates of polymeric carbon compounds and carbohydrates

  7. The Influence of Gene Expression Time Delays on Gierer–Meinhardt Pattern Formation Systems

    KAUST Repository

    Seirin Lee, S.

    2010-03-23

    There are numerous examples of morphogen gradients controlling long range signalling in developmental and cellular systems. The prospect of two such interacting morphogens instigating long range self-organisation in biological systems via a Turing bifurcation has been explored, postulated, or implicated in the context of numerous developmental processes. However, modelling investigations of cellular systems typically neglect the influence of gene expression on such dynamics, even though transcription and translation are observed to be important in morphogenetic systems. In particular, the influence of gene expression on a large class of Turing bifurcation models, namely those with pure kinetics such as the Gierer-Meinhardt system, is unexplored. Our investigations demonstrate that the behaviour of the Gierer-Meinhardt model profoundly changes on the inclusion of gene expression dynamics and is sensitive to the sub-cellular details of gene expression. Features such as concentration blow up, morphogen oscillations and radical sensitivities to the duration of gene expression are observed and, at best, severely restrict the possible parameter spaces for feasible biological behaviour. These results also indicate that the behaviour of Turing pattern formation systems on the inclusion of gene expression time delays may provide a means of distinguishing between possible forms of interaction kinetics. Finally, this study also emphasises that sub-cellular and gene expression dynamics should not be simply neglected in models of long range biological pattern formation via morphogens. © 2010 Society for Mathematical Biology.

  8. Efficient production of Trastuzumab Fab antibody fragments in Brevibacillus choshinensis expression system.

    Science.gov (United States)

    Mizukami, Makoto; Onishi, Hiromasa; Hanagata, Hiroshi; Miyauchi, Akira; Ito, Yuji; Tokunaga, Hiroko; Ishibashi, Matsujiro; Arakawa, Tsutomu; Tokunaga, Masao

    2018-10-01

    The Brevibacillus expression system has been successfully employed for the efficient productions of a variety of recombinant proteins, including enzymes, cytokines, antigens and antibody fragments. Here, we succeeded in secretory expression of Trastuzumab Fab antibody fragments using B. choshinensis/BIC (Brevibacillus in vivocloning) expression system. In the fed-batch high-density cell culture, recombinant Trastuzumab Fab with amino-terminal His-tag (His-BcFab) was secreted at high level, 1.25 g/liter, and Fab without His-tag (BcFab) at ∼145 mg/L of culture supernatant. His-BcFab and BcFab were purified to homogeneity using combination of conventional column chromatographies with a yield of 10-13%. This BcFab preparation exhibited native structure and functions evaluated by enzyme-linked immunosorbent assay, surface plasmon resonance, circular dichroism measurements and size exclusion chromatography. To our knowledge, this is the highest production of Fab antibody fragments in gram-positive bacterial expression/secretion systems. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Cancer-specific binary expression system activated in mice by bacteriophage HK022 Integrase

    DEFF Research Database (Denmark)

    Elias, Amer; Spector, Itay; Sogolovsky-Bard, Ilana

    2016-01-01

    Binary systems based on site-specific recombination have been used for tumor specific transcription targeting of suicide genes in animal models. In these binary systems a site specific recombinase or integrase that is expressed from a tumor specific promoter drives tumor specific expression of a ...

  10. Co(II) Coordination in Prokaryotic Zinc Finger Domains as Revealed by UV-Vis Spectroscopy

    Science.gov (United States)

    Sivo, Valeria; D'Abrosca, Gianluca; Russo, Luigi; Iacovino, Rosa; Pedone, Paolo Vincenzo; Fattorusso, Roberto

    2017-01-01

    Co(II) electronic configuration allows its use as a spectroscopic probe in UV-Vis experiments to characterize the metal coordination sphere that is an essential component of the functional structure of zinc-binding proteins and to evaluate the metal ion affinities of these proteins. Here, exploiting the capability of the prokaryotic zinc finger to use different combinations of residues to properly coordinate the structural metal ion, we provide the UV-Vis characterization of Co(II) addition to Ros87 and its mutant Ros87_C27D which bears an unusual CysAspHis2 coordination sphere. Zinc finger sites containing only one cysteine have been infrequently characterized. We show for the CysAspHis2 coordination an intense d-d transition band, blue-shifted with respect to the Cys2His2 sphere. These data complemented by NMR and CD data demonstrate that the tetrahedral geometry of the metal site is retained also in the case of a single-cysteine coordination sphere. PMID:29386985

  11. Type I-E CRISPR-cas systems discriminate target from non-target DNA through base pairing-independent PAM recognition

    NARCIS (Netherlands)

    Westra, E.R.; Semenova, E.; Datsenko, K.A.; Jackson, R.N.; Wiedenheft, B.; Severinov, K.; Brouns, S.J.J.

    2013-01-01

    Discriminating self and non-self is a universal requirement of immune systems. Adaptive immune systems in prokaryotes are centered around repetitive loci called CRISPRs (clustered regularly interspaced short palindromic repeat), into which invader DNA fragments are incorporated. CRISPR transcripts

  12. Cloning and functional expression of the small subunit of acetolactate synthase from Nicotiana plumbaginifolia.

    Science.gov (United States)

    Hershey, H P; Schwartz, L J; Gale, J P; Abell, L M

    1999-07-01

    Acetolactate synthase (ALS) is the first committed step of branched-chain amino acid biosynthesis in plants and bacteria. The bacterial holoenzyme has been well characterized and is a tetramer of two identical large subunits (LSUs) of 60 kDa and two identical small subunits (SSUs) ranging in molecular mass from 9 to 17 kDa depending on the isozyme. The enzyme from plants is much less well characterized. Attempts to purify the protein have yielded an enzyme which appears to be an oligomer of LSUs, with the potential existence of a SSU for the plant enzyme remaining a matter of considerable speculation. We report here the discovery of a cDNA clone that encodes a SSU of plant ALS based upon the homology of the encoded peptide with various bacterial ALS SSUs. The plant ALS SSU is more than twice as large as any of its prokaryotic homologues and contains two domains that each encode a full-length copy of the prokaryotic SSU polypeptide. The cDNA clone was used to express Nicotiana plumbaginifolia SSU in Escherichia coli. Mixing a partially purified preparation of this SSU with the LSU of ALS from either N. plumbaginifolia or Arabidopsis thaliana results in both increased specific activity and increased stability of the enzymic activity. These results are consistent with those observed for the bacterial enzyme in similar experiments and represent the first functional demonstration of the existence of a SSU for plant ALS.

  13. Orbital express capture system: concept to reality

    Science.gov (United States)

    Stamm, Shane; Motaghedi, Pejmun

    2004-08-01

    The development of autonomous servicing of on-orbit spacecraft has been a sought after objective for many years. A critical component of on-orbit servicing involves the ability to successfully capture, institute mate, and perform electrical and fluid transfers autonomously. As part of a Small Business Innovation Research (SBIR) grant, Starsys Research Corporation (SRC) began developing such a system. Phase I of the grant started in 1999, with initial work focusing on simultaneously defining the parameters associated with successful docking while designing to those parameters. Despite the challenge of working without specific requirements, SRC completed development of a prototype design in 2000. Throughout the following year, testing was conducted on the prototype to characterize its performance. Having successfully completed work on the prototype, SRC began a Phase II SBIR effort in mid-2001. The focus of the second phase was a commercialization effort designed to augment the prototype model into a more flight-like design. The technical requirements, however, still needed clear definition for the design to progress. The advent of the Orbital Express (OE) program provided much of that definition. While still in the proposal stages of the OE program, SRC began tailoring prototype redesign efforts to the OE program requirements. A primary challenge involved striking a balance between addressing the technical requirements of OE while designing within the scope of the SBIR. Upon award of the OE contract, the Phase II SBIR design has been fully developed. This new design, designated the Mechanical Docking System (MDS), successfully incorporated many of the requirements of the OE program. SRC is now completing dynamic testing on the MDS hardware, with a parallel effort of developing a flight design for OE. As testing on the MDS progresses, the design path that was once common to both SBIR effort and the OE program begins to diverge. The MDS will complete the scope of the

  14. Tetracycline-inducible gene expression system in Leishmania mexicana

    Czech Academy of Sciences Publication Activity Database

    Kraeva, N.; Ishemgulova, A.; Lukeš, Julius; Yurchenko, Vyacheslav

    2014-01-01

    Roč. 198, č. 1 (2014), s. 11-13 ISSN 0166-6851 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Leishmania mexicana * Gene expression * Tet-inducible system Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  15. Expression of Momordica charantia MAP30 and its antitumor effect on bladder cancer cells.

    Science.gov (United States)

    Hlin, Hao; Zhi-Guo, Zhang; Cong-Hui, Han; Yan, Zhao; Qing, Liang; Bo, Jiang; Hou-Guang, He; Jun-Jie, Zhang; Pei-Ying, Zhang

    2016-06-01

    Momordica charantia (MC) is an edible medicinal plant that is known for its diversified biological functions. Momordica Antiviral Protein 30kD (MAP30) is a type I single chain ribosome-inactivating protein (RIP) isolated from the mature fruit and seeds of MC. Since MAP30 content in MC is limited, the study aim was to generate the recombinant MAP30 protein using prokaryotic expression system and determine its apoptotic/growth inhibitory effects on bladder cancer 5637 cells. MAP30 gene was amplified by PCR from MC genomic DNA and identified by sequencing. The target gene was inserted into pET-28a (+) vector and transformed into E. coli BL21 (DE3) cells. Positive clones were selected by PCR. Recombinant protein was efficiently expressed under induction with 1.0 mM Isopropylthio-β-D-galactoside (IPTG) at 30° C for 4 hours. Cytotoxicity studies were performed using MTT assay by treating 5637 bladder cancer cells with 100 µg/mL, 200 µg/mL, and 400 µg/mL concentrations of MAP30 for 24 hours and 48 hours, respectively. Flow cytometry was used to measure the apoptosis of MAP30-treatedcells in time course experiments. Full-length MAP30 gene was successfully expressed in Escherichia coli (E. coli) BL21 strain and MAP30 recombinant protein inhibited the growth of bladder cancer 5637 cells at 200 µg/mL and 400 µg/mL concentrations by inducing apoptosis of target cells in a dose- and time-dependent manner. It was, therefore, concluded that the MAP30 recombinant protein displayed potent antitumor activity in vitro.

  16. Diversity, abundance and niche differentiation of ammonia-oxidizing prokaryotes in mud deposits of the eastern China marginal seas

    Directory of Open Access Journals (Sweden)

    Shaolan eYu

    2016-02-01

    Full Text Available The eastern China marginal seas are prominent examples of river-dominated ocean margins, whose most characteristic feature is the existence of isolated mud patches on sandy sediments. Ammonia-oxidizing prokaryotes play a crucial role in the nitrogen cycles of many marine environments, including marginal seas. However, few studies have attempted to address the distribution patterns of ammonia-oxidizing prokaryotes in mud deposits of these seas. The horizontal and vertical community composition and abundance of ammonia-oxidizing archaea (AOA and bacteria (AOB were investigated in mud deposits of the South Yellow Sea (SYS and the East China Sea (ECS by using amoA clone libraries and quantitative PCR. The diversity of AOB was comparable or higher in the mud zone of SYS and lower in ECS when compared with AOA. Vertically, surface sediments had generally higher diversity of AOA and AOB than middle and bottom layers. Diversity of AOA and AOB showed significant correlation with latitude. Nitrosopumilus and Nitrosospira lineages dominated AOA and AOB communities, respectively. Both AOA and AOB assemblages exhibited greater variations across different sites than those among various depths at one site. The abundance of bacterial amoA was generally higher than that of archaeal amoA, and both of them decreased with depth. Niche differentiation, which was affected by dissolved oxygen, salinity, ammonia and silicate (SiO32-, was observed between AOA and AOB and among different groups of them. The spatial distribution of AOA and AOB was significantly correlated with δ15NTN and SiO32-, and nitrate and δ13C, respectively. Both archaeal and bacterial amoA abundance correlated strongly with SiO32-. This study improves our understanding of spatial distribution of AOA and AOB in ecosystems featuring oceanic mud deposits.

  17. Diversity, Abundance, and Niche Differentiation of Ammonia-Oxidizing Prokaryotes in Mud Deposits of the Eastern China Marginal Seas.

    Science.gov (United States)

    Yu, Shaolan; Yao, Peng; Liu, Jiwen; Zhao, Bin; Zhang, Guiling; Zhao, Meixun; Yu, Zhigang; Zhang, Xiao-Hua

    2016-01-01

    The eastern China marginal seas (ECMS) are prominent examples of river-dominated ocean margins, whose most characteristic feature is the existence of isolated mud patches on sandy sediments. Ammonia-oxidizing prokaryotes play a crucial role in the nitrogen cycles of many marine environments, including marginal seas. However, few studies have attempted to address the distribution patterns of ammonia-oxidizing prokaryotes in mud deposits of these seas. The horizontal and vertical community composition and abundance of ammonia-oxidizing archaea (AOA) and bacteria (AOB) were investigated in mud deposits of the South Yellow Sea (SYS) and the East China Sea (ECS) by using amoA clone libraries and quantitative PCR. The diversity of AOB was comparable or higher in the mud zone of SYS and lower in ECS when compared with AOA. Vertically, surface sediments had generally higher diversity of AOA and AOB than middle and bottom layers. Diversity of AOA and AOB showed significant correlation with latitude. Nitrosopumilus and Nitrosospira lineages dominated AOA and AOB communities, respectively. Both AOA and AOB assemblages exhibited greater variations across different sites than those among various depths at one site. The abundance of bacterial amoA was generally higher than that of archaeal amoA, and both of them decreased with depth. Niche differentiation, which was affected by dissolved oxygen, salinity, ammonia, and silicate (SiO[Formula: see text]), was observed between AOA and AOB and among different groups of them. The spatial distribution of AOA and AOB was significantly correlated with δ(15)NTN and SiO[Formula: see text], and nitrate and δ(13)C, respectively. Both archaeal and bacterial amoA abundance correlated strongly with SiO[Formula: see text]. This study improves our understanding of spatial distribution of AOA and AOB in ecosystems featuring oceanic mud deposits.

  18. Using codon optimization, chaperone co-expression, and rational mutagenesis for production and NMR assignments of human eIF2α

    International Nuclear Information System (INIS)

    Ito, Takuhiro; Wagner, Gerhard

    2004-01-01

    Producing a well behaved sample at high concentration is one of the main hurdles when starting a new project on an interesting protein. Especially when one attempts to overexpress a eukaryotic protein in bacteria, some difficulties are encountered, such as low expression level, low solubility, or even lack of folded structure. Overexpression in prokaryotic systems is highly desirable for cost-effective production of different isotope-labeled samples needed for NMR studies. Here we describe generally applicable methods for obtaining highly concentrated protein samples efficiently. This approach was developed as we tried to produce a NMR-suitable sample of the 35 kDa human translation initiation factor eIF2α, a protein that expresses poorly in E. coli and has very low solubility. First, an E. coli codon-optimized gene was synthesized on a thermal cycler, which increased the expression level by a factor of two. Second, we used co-expression of bacterial chaperone proteins, which largely increased the fraction of correctly folded protein found in the soluble phase. Third, we used rational mutagenesis guided by both the sequence alignment among homologues and the homology of one domain to a known fold for improving solubility and stability of the target protein by tenfold. Combining all these methods made it possible to produce from a one-liter preparation a 0.5 mM sample of human eIF2α that showed well-resolved NMR spectra and enabled nearly complete assignment of the protein. These methods may be generally useful for studies of other eukaryotic proteins that are otherwise difficult to express and exhibit poor solubility

  19. [Expression and activity determination of recombinant capsid protein VP2 gene of enterovirus type 71].

    Science.gov (United States)

    Huang, Xueyong; Liu, Guohua; Hu, Xiaoning; Du, Yanhua; Li, Xingle; Xu, Yuling; Chen, Haomin; Xu, Bianli

    2014-04-01

    To clone and express the recombinant capsid protein VP2 of enterovirus type 71 (EV71) and to identify the immune activity of expressed protein in order to build a basis for the investigation work of vaccine and diagnostic antigen. VP2 gene of EV71 was amplified by PCR, and then was cut by restriction enzyme and inserted into expression vector pMAL-c2X. The positive recombinants were transferred into E.coli TB1, the genetically engineered bacteria including pMAL-c2X-VP2 plasmids were induced by isopropyl thiogalactoside ( IPTG) , and the expression products were analyzed by SDS-PAGE and western blotting method. EV71 IgM antibody detection method by ELISA was set up, and the sensitivity and specificity of this method was assessed; 60 neutralizing antibody positive serum samples from hand foot and mouth disease (HFMD) patients were determined, of which 52 samples were positive and 8 samples were negative; a total of 88 acute phase serum samples of HFMD patients diagnosed in clinical were also detected. VP2 gene of 762 bp was obtained by PCR, the gene segment inserted into the recombinant vector was identified using restriction enzyme digestion. The recombinant vector could express a specific about 71 500 fusion protein in E.coli by SDS-PAGE. The purified recombinant protein of EV71-VP2 can react with the serum of HFMD patients to produce a specific band by western blotting. The sensitivity and specificity of ELISA was 87% and 83%, respectively. Of the 88 acute phase serum samples from children with HFMD, 48 samples (55%) were positive by the ELISA assay. VP2 gene of EV71 has been cloned and a prokaryotic high expression system for VP2 gene was successfully constructed in the present study. The recombination EV71-VP2 has well antigenicity, which could be useful for developing diagnose reagent or vaccine of EV71.

  20. Theory of finite periodic systems - I: General expressions and various simple and illustrative examples

    International Nuclear Information System (INIS)

    Pereyra, Pedro; Castillo, Edith

    2001-09-01

    A comprehensive presentation of a new approach to finite periodic systems is given. The novel and general expressions obtained here, allow simple and precise calculations of various physical quantities characteristic of crystalline systems. Transmission amplitudes through n-cell multichannel quantum systems are rigorously derived. General expressions for several physical quantities are entirely expressed in terms of single-cell amplitudes and a new class of polynomials p N,n . Besides the general expressions, we study some superlattice properties as the band structure and its relation with the phase coherence phenomena, the level density and the Kronig-Penney model as its continuous espectrum limit. Bandstructure tailoring, optical multilayer systems, resonant energies and functions and channel-mixing effects in multichannel transport process are also analysed in the light of the new approach. (author)

  1. GAAP: Genome-organization-framework-Assisted Assembly Pipeline for prokaryotic genomes.

    Science.gov (United States)

    Yuan, Lina; Yu, Yang; Zhu, Yanmin; Li, Yulai; Li, Changqing; Li, Rujiao; Ma, Qin; Siu, Gilman Kit-Hang; Yu, Jun; Jiang, Taijiao; Xiao, Jingfa; Kang, Yu

    2017-01-25

    Next-generation sequencing (NGS) technologies have greatly promoted the genomic study of prokaryotes. However, highly fragmented assemblies due to short reads from NGS are still a limiting factor in gaining insights into the genome biology. Reference-assisted tools are promising in genome assembly, but tend to result in false assembly when the assigned reference has extensive rearrangements. Herein, we present GAAP, a genome assembly pipeline for scaffolding based on core-gene-defined Genome Organizational Framework (cGOF) described in our previous study. Instead of assigning references, we use the multiple-reference-derived cGOFs as indexes to assist in order and orientation of the scaffolds and build a skeleton structure, and then use read pairs to extend scaffolds, called local scaffolding, and distinguish between true and chimeric adjacencies in the scaffolds. In our performance tests using both empirical and simulated data of 15 genomes in six species with diverse genome size, complexity, and all three categories of cGOFs, GAAP outcompetes or achieves comparable results when compared to three other reference-assisted programs, AlignGraph, Ragout and MeDuSa. GAAP uses both cGOF and pair-end reads to create assemblies in genomic scale, and performs better than the currently available reference-assisted assembly tools as it recovers more assemblies and makes fewer false locations, especially for species with extensive rearranged genomes. Our method is a promising solution for reconstruction of genome sequence from short reads of NGS.

  2. Prokaryotic Heme Biosynthesis: Multiple Pathways to a Common Essential Product.

    Science.gov (United States)

    Dailey, Harry A; Dailey, Tamara A; Gerdes, Svetlana; Jahn, Dieter; Jahn, Martina; O'Brian, Mark R; Warren, Martin J

    2017-03-01

    The advent of heme during evolution allowed organisms possessing this compound to safely and efficiently carry out a variety of chemical reactions that otherwise were difficult or impossible. While it was long assumed that a single heme biosynthetic pathway existed in nature, over the past decade, it has become clear that there are three distinct pathways among prokaryotes, although all three pathways utilize a common initial core of three enzymes to produce the intermediate uroporphyrinogen III. The most ancient pathway and the only one found in the Archaea converts siroheme to protoheme via an oxygen-independent four-enzyme-step process. Bacteria utilize the initial core pathway but then add one additional common step to produce coproporphyrinogen III. Following this step, Gram-positive organisms oxidize coproporphyrinogen III to coproporphyrin III, insert iron to make coproheme, and finally decarboxylate coproheme to protoheme, whereas Gram-negative bacteria first decarboxylate coproporphyrinogen III to protoporphyrinogen IX and then oxidize this to protoporphyrin IX prior to metal insertion to make protoheme. In order to adapt to oxygen-deficient conditions, two steps in the bacterial pathways have multiple forms to accommodate oxidative reactions in an anaerobic environment. The regulation of these pathways reflects the diversity of bacterial metabolism. This diversity, along with the late recognition that three pathways exist, has significantly slowed advances in this field such that no single organism's heme synthesis pathway regulation is currently completely characterized. Copyright © 2017 American Society for Microbiology.

  3. DNA repair protocols: prokaryotic systems

    National Research Council Canada - National Science Library

    Vaughan, Patrick

    2000-01-01

    .... All authored papers, comments, opinions, conclusions, or recommendations are those of the author(s), and do not necessarily reflect the views of the publisher. This publication is printed on acid-free paper. ANSI Z39.48-1984 (American Standards Institute) Permanence of Paper for Printed Library Materials. ∞ Cover design by Patricia F. Cleary. For addi...

  4. GAPTrap: A Simple Expression System for Pluripotent Stem Cells and Their Derivatives

    Directory of Open Access Journals (Sweden)

    Tim Kao

    2016-09-01

    Full Text Available The ability to reliably express fluorescent reporters or other genes of interest is important for using human pluripotent stem cells (hPSCs as a platform for investigating cell fates and gene function. We describe a simple expression system, designated GAPTrap (GT, in which reporter genes, including GFP, mCherry, mTagBFP2, luc2, Gluc, and lacZ are inserted into the GAPDH locus in hPSCs. Independent clones harboring variations of the GT vectors expressed remarkably consistent levels of the reporter gene. Differentiation experiments showed that reporter expression was reliably maintained in hematopoietic cells, cardiac mesoderm, definitive endoderm, and ventral midbrain dopaminergic neurons. Similarly, analysis of teratomas derived from GT-lacZ hPSCs showed that β-galactosidase expression was maintained in a spectrum of cell types representing derivatives of the three germ layers. Thus, the GAPTrap vectors represent a robust and straightforward tagging system that enables indelible labeling of PSCs and their differentiated derivatives.

  5. The heterologous expression strategies of antimicrobial peptides in microbial systems.

    Science.gov (United States)

    Deng, Ting; Ge, Haoran; He, Huahua; Liu, Yao; Zhai, Chao; Feng, Liang; Yi, Li

    2017-12-01

    Antimicrobial peptides (AMPs) consist of molecules acting on the defense systems of numerous organisms toward tumor and multiple pathogens, such as bacteria, fungi, viruses, and parasites. Compared to traditional antibiotics, AMPs are more stable and have lower propensity for developing resistance through functioning in the innate immune system, thus having important applications in the fields of medicine, food and so on. However, despite of their high economic values, the low yield and the cumbersome extraction process in AMPs production are problems that limit their industrial application and scientific research. To conquer these obstacles, optimized heterologous expression technologies were developed that could provide effective ways to increase the yield of AMPs. In this review, the research progress on heterologous expression of AMPs using Escherichia coli, Bacillus subtilis, Pichia pastoris and Saccharomyces cerevisiae as host cells was mainly summarized, which might guide the expression strategies of AMPs in these cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. How to find soluble proteins: a comprehensive analysis of alpha/beta hydrolases for recombinant expression in E. coli

    Directory of Open Access Journals (Sweden)

    Barth Sandra

    2005-04-01

    Full Text Available Abstract Background In screening of libraries derived by expression cloning, expression of active proteins in E. coli can be limited by formation of inclusion bodies. In these cases it would be desirable to enrich gene libraries for coding sequences with soluble gene products in E. coli and thus to improve the efficiency of screening. Previously Wilkinson and Harrison showed that solubility can be predicted from amino acid composition (Biotechnology 1991, 9(5:443–448. We have applied this analysis to members of the alpha/beta hydrolase fold family to predict their solubility in E. coli. alpha/beta hydrolases are a highly diverse family with more than 1800 proteins which have been grouped into homologous families and superfamilies. Results The predicted solubility in E. coli depends on hydrolase size, phylogenetic origin of the host organism, the homologous family and the superfamily, to which the hydrolase belongs. In general small hydrolases are predicted to be more soluble than large hydrolases, and eukaryotic hydrolases are predicted to be less soluble in E. coli than prokaryotic ones. However, combining phylogenetic origin and size leads to more complex conclusions. Hydrolases from prokaryotic, fungal and metazoan origin are predicted to be most soluble if they are of small, medium and large size, respectively. We observed large variations of predicted solubility between hydrolases from different homologous families and from different taxa. Conclusion A comprehensive analysis of all alpha/beta hydrolase sequences allows more efficient screenings for new soluble alpha/beta hydrolases by the use of libraries which contain more soluble gene products. Screening of hydrolases from families whose members are hard to express as soluble proteins in E. coli should first be done in coding sequences of organisms from phylogenetic groups with the highest average of predicted solubility for proteins of this family. The tools developed here can be used

  7. Evolutionary tuning of protein expression levels of a positively autoregulated two-component system.

    Directory of Open Access Journals (Sweden)

    Rong Gao

    2013-10-01

    Full Text Available Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is 'appropriate' for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS. In response to phosphate (Pi-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural

  8. Bacterial toxin-antitoxin systems: more than selfish entities?

    OpenAIRE

    Laurence Van Melderen; Manuel Saavedra De Bast

    2009-01-01

    Bacterial toxin?antitoxin (TA) systems are diverse and widespread in the prokaryotic kingdom. They are composed of closely linked genes encoding a stable toxin that can harm the host cell and its cognate labile antitoxin, which protects the host from the toxin's deleterious effect. TA systems are thought to invade bacterial genomes through horizontal gene transfer. Some TA systems might behave as selfish elements and favour their own maintenance at the expense of their host. As a consequence,...

  9. Autonomous bioluminescent expression of the bacterial luciferase gene cassette (lux in a mammalian cell line.

    Directory of Open Access Journals (Sweden)

    Dan M Close

    Full Text Available The bacterial luciferase (lux gene cassette consists of five genes (luxCDABE whose protein products synergistically generate bioluminescent light signals exclusive of supplementary substrate additions or exogenous manipulations. Historically expressible only in prokaryotes, the lux operon was re-synthesized through a process of multi-bicistronic, codon-optimization to demonstrate for the first time self-directed bioluminescence emission in a mammalian HEK293 cell line in vitro and in vivo.Autonomous in vitro light production was shown to be 12-fold greater than the observable background associated with untransfected control cells. The availability of reduced riboflavin phosphate (FMNH(2 was identified as the limiting bioluminescence substrate in the mammalian cell environment even after the addition of a constitutively expressed flavin reductase gene (frp from Vibrio harveyi. FMNH(2 supplementation led to a 151-fold increase in bioluminescence in cells expressing mammalian codon-optimized luxCDE and frp genes. When injected subcutaneously into nude mice, in vivo optical imaging permitted near instantaneous light detection that persisted independently for the 60 min length of the assay with negligible background.The speed, longevity, and self-sufficiency of lux expression in the mammalian cellular environment provides a viable and powerful alternative for real-time target visualization not currently offered by existing bioluminescent and fluorescent imaging technologies.

  10. Expression of Hepatoma-derived growth factor family members in the adult central nervous system

    Directory of Open Access Journals (Sweden)

    Abouzied Mekky M

    2006-01-01

    Full Text Available Abstract Background Hepatoma-derived growth factor (HDGF belongs to a polypeptide family containing five additional members called HDGF related proteins 1–4 (HRP-1 to -4 and Lens epithelial derived growth factor. Whereas some family members such as HDGF and HRP-2 are expressed in a wide range of tissues, the expression of others is very restricted. HRP-1 and -4 are only expressed in testis, HRP-3 only in the nervous system. Here we investigated the expression of HDGF, HRP-2 and HRP-3 in the central nervous system of adult mice on the cellular level by immunohistochemistry. In addition we performed Western blot analysis of various brain regions as well as neuronal and glial cell cultures. Results HDGF was rather evenly expressed throughout all brain regions tested with the lowest expression in the substantia nigra. HRP-2 was strongly expressed in the thalamus, prefrontal and parietal cortex, neurohypophysis, and the cerebellum, HRP-3 in the bulbus olfactorius, piriform cortex and amygdala complex. HDGF and HRP-2 were found to be expressed by neurons, astrocytes and oligodendrocytes. In contrast, strong expression of HRP-3 in the adult nervous system is restricted to neurons, except for very weak expression in oligodendrocytes in the brain stem. Although the majority of neurons are HRP-3 positive, some like cerebellar granule cells are negative. Conclusion The coexpression of HDGF and HRP-2 in glia and neurons as well as the coexpression of all three proteins in many neurons suggests different functions of members of the HDGF protein family in cells of the central nervous system that might include proliferation as well as cell survival. In addition the restricted expression of HRP-3 point to a special function of this family member for neuronal cells.

  11. Expression, purification and DNA-binding activities of two putative ModE proteins of Herbaspirillum seropedicae (Burkholderiales, Oxalobacteraceae

    Directory of Open Access Journals (Sweden)

    André L.F. Souza

    2008-01-01

    Full Text Available In prokaryotes molybdenum is taken up by a high-affinity ABC-type transporter system encoded by the modABC genes. The endophyte β-Proteobacterium Herbaspirillum seropedicae has two modABC gene clusters and two genes encoding putative Mo-dependent regulator proteins (ModE1 and ModE2. Analysis of the amino acid sequence of the ModE1 protein of H. seropedicae revealed the presence of an N-terminal domain containing a DNA-binding helix-turn-helix motif (HTH and a C-terminal domain with a molybdate-binding motif. The second putative regulator protein, ModE2, contains only the helix-turn-helix motif, similar to that observed in some sequenced genomes. We cloned the modE1 (810 bp and modE2 (372 bp genes and expressed them in Escherichia coli as His-tagged fusion proteins, which we subsequently purified. The over-expressed recombinant His-ModE1 was insoluble and was purified after solubilization with urea and then on-column refolded during affinity chromatography. The His-ModE2 was expressed as a soluble protein and purified by affinity chromatography. These purified proteins were analyzed by DNA band-shift assays using the modA2 promoter region as probe. Our results indicate that His-ModE1 and His-ModE2 are able to bind to the modA2 promoter region, suggesting that both proteins may play a role in the regulation of molybdenum uptake and metabolism in H. seropedicae.

  12. Formulation and Analysis of an Approximate Expression for Voltage Sensitivity in Radial DC Distribution Systems

    Directory of Open Access Journals (Sweden)

    Ho-Yong Jeong

    2015-08-01

    Full Text Available Voltage is an important variable that reflects system conditions in DC distribution systems and affects many characteristics of a system. In a DC distribution system, there is a close relationship between the real power and the voltage magnitude, and this is one of major differences from the characteristics of AC distribution systems. One such relationship is expressed as the voltage sensitivity, and an understanding of voltage sensitivity is very useful to describe DC distribution systems. In this paper, a formulation for a novel approximate expression for the voltage sensitivity in a radial DC distribution system is presented. The approximate expression is derived from the power flow equation with some additional assumptions. The results of approximate expression is compared with an exact calculation, and relations between the voltage sensitivity and electrical quantities are analyzed analytically using both the exact form and the approximate voltage sensitivity equation.

  13. Changes in the Metagenome of Prokaryotic Community as an Indicator of Fertility of Arable Soddy-Podzolic Soils upon Fertilizer Application

    Science.gov (United States)

    Naliukhin, A. N.; Khamitova, S. M.; Glinushkin, A. P.; Avdeev, Yu. M.; Snetilova, V. S.; Laktionov, Yu. V.; Surov, V. V.; Siluyanova, O. V.; Belozerov, D. A.

    2018-03-01

    The influence of different systems of fertilization and liming on the changes in the taxonomic structure of prokaryotic community in arable soddy-podzolic soil (Albic Retisol (Loamic, Aric, Cutanic, Differentic, Ochric)) was studied in a stationary field experiment of Vologda State Dairy Farming Academy with the use of high-performance sequencing method of gene 16S rRNA. The 25-year-old fallow plot, in which the intensity of microbiological processes was close to that in the virgin soddy-podzolic soils, was used as a control. At the first stage, dominant phyla were identified: Proteobacteria (45.3-56.2%), Actinobacteria (13.6-20.4%), Bacteroidetes (7.2-19.3%), Acidobacteria (7.1-11.5%), and Verrucomicrobia (4.3-10.3%). Several groups of microorganisms-indicators, whose portion changes in the arable soil under the influence of liming, fertilizer application, and soil treatment in comparison with the control, were determined. The applied approach made it possible to relate the taxonomic structure of the soil microbial cenosis with external factors for assessing changes in the structure of soil microbial complex under the impact of different uses of the arable soil.

  14. Analysis of a Plant Transcriptional Regulatory Network Using Transient Expression Systems.

    Science.gov (United States)

    Díaz-Triviño, Sara; Long, Yuchen; Scheres, Ben; Blilou, Ikram

    2017-01-01

    In plant biology, transient expression systems have become valuable approaches used routinely to rapidly study protein expression, subcellular localization, protein-protein interactions, and transcriptional activity prior to in vivo studies. When studying transcriptional regulation, luciferase reporter assays offer a sensitive readout for assaying promoter behavior in response to different regulators or environmental contexts and to confirm and assess the functional relevance of predicted binding sites in target promoters. This chapter aims to provide detailed methods for using luciferase reporter system as a rapid, efficient, and versatile assay to analyze transcriptional regulation of target genes by transcriptional regulators. We describe a series of optimized transient expression systems consisting of Arabidopsis thaliana protoplasts, infiltrated Nicotiana benthamiana leaves, and human HeLa cells to study the transcriptional regulations of two well-characterized transcriptional regulators SCARECROW (SCR) and SHORT-ROOT (SHR) on one of their targets, CYCLIN D6 (CYCD6).Here, we illustrate similarities and differences in outcomes when using different systems. The plant-based systems revealed that the SCR-SHR complex enhances CYCD6 transcription, while analysis in HeLa cells showed that the complex is not sufficient to strongly induce CYCD6 transcription, suggesting that additional, plant-specific regulators are required for full activation. These results highlight the importance of the system and suggest that including heterologous systems, such as HeLa cells, can provide a more comprehensive analysis of a complex gene regulatory network.

  15. Candidate innate immune system gene expression in the ecological model Daphnia.

    Science.gov (United States)

    Decaestecker, Ellen; Labbé, Pierrick; Ellegaard, Kirsten; Allen, Judith E; Little, Tom J

    2011-10-01

    The last ten years have witnessed increasing interest in host-pathogen interactions involving invertebrate hosts. The invertebrate innate immune system is now relatively well characterised, but in a limited range of genetic model organisms and under a limited number of conditions. Immune systems have been little studied under real-world scenarios of environmental variation and parasitism. Thus, we have investigated expression of candidate innate immune system genes in the water flea Daphnia, a model organism for ecological genetics, and whose capacity for clonal reproduction facilitates an exceptionally rigorous control of exposure dose or the study of responses at many time points. A unique characteristic of the particular Daphnia clones and pathogen strain combinations used presently is that they have been shown to be involved in specific host-pathogen coevolutionary interactions in the wild. We choose five genes, which are strong candidates to be involved in Daphnia-pathogen interactions, given that they have been shown to code for immune effectors in related organisms. Differential expression of these genes was quantified by qRT-PCR following exposure to the bacterial pathogen Pasteuria ramosa. Constitutive expression levels differed between host genotypes, and some genes appeared to show correlated expression. However, none of the genes appeared to show a major modification of expression level in response to Pasteuria exposure. By applying knowledge from related genetic model organisms (e.g. Drosophila) to models for the study of evolutionary ecology and coevolution (i.e. Daphnia), the candidate gene approach is temptingly efficient. However, our results show that detection of only weak patterns is likely if one chooses target genes for study based on previously identified genome sequences by comparison to homologues from other related organisms. Future work on the Daphnia-Pasteuria system will need to balance a candidate gene approach with more comprehensive

  16. Cloning and expression of an iron-containing superoxide dismutase in the parasitic protist, Trichomonas vaginalis.

    Science.gov (United States)

    Viscogliosi, E; Delgado-Viscogliosi, P; Gerbod, D; Dauchez, M; Gratepanche, S; Alix, A J; Dive, D

    1998-04-01

    A superoxide dismutase (SOD) gene of the parasitic protist Trichomonas vaginalis was cloned, sequenced, expressed in Escherichia coli, and its gene product characterized. It is an iron-containing dimeric protein with a monomeric mass of 22,067 Da. Southern blots analyses suggested the presence of seven iron-containing (FeSOD) gene copies. Hydrophobic cluster analysis revealed some peculiarities in the 2D structure of the FeSOD from T. vaginalis and a strong structural conservation between prokaryotic and eukaryotic FeSODs. Phylogenetic reconstruction of the SOD sequences confirmed the dichotomy between FeSODs and manganese-containing SODs. FeSODs of protists appeared to group together with homologous proteobacterial enzymes suggesting a possible origin of eukaryotic FeSODs through an endosymbiotic event.

  17. Diverse evolutionary roots and mechanistic variations of the CRISPR-Cas systems

    NARCIS (Netherlands)

    Mohanraju, Prarthana; Makarova, Kira S.; Zetsche, Bernd; Zhang, Feng; Koonin, Eugene V.; Oost, van der John

    2016-01-01

    Adaptive immunity had been long thought of as an exclusive feature of animals. However, the discovery of the CRISPR-Cas defense system, present in almost half of prokaryotic genomes, proves otherwise. Because of the everlasting parasite-host arms race, CRISPR-Cas has rapidly evolved through

  18. Proposal to consistently apply the International Code of Nomenclature of Prokaryotes (ICNP) to names of the oxygenic photosynthetic bacteria (cyanobacteria), including those validly published under the International Code of Botanical Nomenclature (ICBN)/International Code of Nomenclature for algae, fungi and plants (ICN), and proposal to change Principle 2 of the ICNP.

    Science.gov (United States)

    Pinevich, Alexander V

    2015-03-01

    This taxonomic note was motivated by the recent proposal [Oren & Garrity (2014) Int J Syst Evol Microbiol 64, 309-310] to exclude the oxygenic photosynthetic bacteria (cyanobacteria) from the wording of General Consideration 5 of the International Code of Nomenclature of Prokaryotes (ICNP), which entails unilateral coverage of these prokaryotes by the International Code of Nomenclature for algae, fungi, and plants (ICN; formerly the International Code of Botanical Nomenclature, ICBN). On the basis of key viewpoints, approaches and rules in the systematics, taxonomy and nomenclature of prokaryotes it is reciprocally proposed to apply the ICNP to names of cyanobacteria including those validly published under the ICBN/ICN. For this purpose, a change to Principle 2 of the ICNP is proposed to enable validation of cyanobacterial names published under the ICBN/ICN rules. © 2015 IUMS.

  19. [Expression, purification and immunogenicity of human papillomavirus type 11 virus-like particles from Escherichia coli].

    Science.gov (United States)

    Yan, Chunyan; Li, Shaowei; Wang, Jin; Wei, Minxi; Huang, Bo; Zhuang, Yudi; Li, Zhongyi; Pan, Huirong; Zhang, Jun; Xia, Ningshao

    2009-11-01

    To produce human papillomavirus type 11 virus-like particles (HPV11 VLPs) from Escherichia coli and to investigate its immunogenicity and type cross neutralization nature. We expressed the major capsid protein of HPV11 (HPV11-L1) in Escherichia coli ER2566 in non fusion fashion and purified by amino sulfate precipitation, ion-exchange chromatography and hydrophobic interaction chromatography, sequentially. Then we removed the reductant DTT to have the purified HPV11-L1 self-assemble into VLPs in vitro. We investigated the morphology of these VLPs with dynamic light scattering and transmission electron microscopy. We assayed the immunogenicity of the resultant HPV11 VLPs by vaccinations on mice and evaluated by HPV6/11/16/18 pseudovirion neutralization cell models. We expressed HPV11 L1 in Escherichia coli with two forms, soluble and inclusion body. The soluble HPV11 L1 with over 95% purity can self assemble to VLPs in high efficiency. Morphologically, these VLPs were globular, homogeneous and with a diameter of - 50 nm, which is quite similar with native HPV11 virions. The half effective dosage (ED50) of HPV11 VLPs is 0.031 microg, and the maximum titer of neutralizing antibody elicited is averaged to 10(6). The cross neutralization activity (against HPV6/16/18) of the anti-HPV11 serum was found to have exact correlation to the inter-type homology in amino acid alignment. We can provide HPV11 VLPs with highly immunogenicity from prokaryote expression system, which may pave a new way for research and development of prophylactic vaccine for HPV11.

  20. The new pLAI (lux regulon based auto-inducible expression system for recombinant protein production in Escherichia coli

    Directory of Open Access Journals (Sweden)

    Nocadello Salvatore

    2012-01-01

    Full Text Available Abstract Background After many years of intensive research, it is generally assumed that no universal expression system can exist for high-level production of a given recombinant protein. Among the different expression systems, the inducible systems are the most popular for their tight regulation. However, induction is in many cases less favorable due to the high cost and/or toxicity of inducers, incompatibilities with industrial scale-up or detrimental growth conditions. Expression systems using autoinduction (or self-induction prove to be extremely versatile allowing growth and induction of recombinant proteins without the need to monitor cell density or add inducer. Unfortunately, almost all the actual auto inducible expression systems need endogenous or induced metabolic changes during the growth to trigger induction, both frequently linked to detrimental condition to cell growth. In this context, we use a simple modular approach for a cell density-based genetic regulation in order to assemble an autoinducible recombinant protein expression system in E. coli. Result The newly designed pLAI expression system places the expression of recombinant proteins in Escherichia coli under control of the regulatory genes of the lux regulon of Vibrio fischeri's Quorum Sensing (QS system. The pLAI system allows a tight regulation of the recombinant gene allowing a negligible basal expression and expression only at high cell density. Sequence optimization of regulative genes of QS of V. fischeri for expression in E. coli upgraded the system to high level expression. Moreover, partition of regulative genes between the plasmid and the host genome and introduction of a molecular safety lock permitted tighter control of gene expression. Conclusion Coupling gene expression to cell density using cell-to-cell communication provides a promising approach for recombinant protein production. The system allows the control of expression of the target recombinant gene

  1. Clonagem e expressão da glicoproteína transmembrana do vírus linfotrópico de células T humanas em sistema procarioto Cloning and expression of the transmembranic glycoprotein from human T cell lymphotropic virus in a prokaryotic system

    Directory of Open Access Journals (Sweden)

    Elisa Maria de Sousa Russo-Carbolante

    2007-06-01

    Full Text Available O HTLV-1 é o vírus causador da leucemia/linfoma de célula T no adulto e de uma desordem neurológica conhecida por mielopatia associada ao HTLV ou paraparesia espástica tropical. Um dos modos de transmissão é pelo sangue contaminado e seus subprodutos e, devido ao risco de infecções associadas ao HTLV sua pesquisa na triagem de doadores de sangue foi introduzida no Brasil a partir de 1993. Os kits diagnósticos utilizados nos bancos de sangue nacionais são na sua maioria comprados de empresas estrangeiras. O Brasil não detém a tecnologia para produção deste material e há a necessidade de produção de sistemas de diagnóstico com tecnologia nacional. Neste trabalho, mostramos a expressão da gp21/HTLV-1 em Escherichia coli e sua reatividade frente a anticorpos monoclonais e de pacientes infectados. Expressar tais proteínas é o primeiro passo para obtenção de conjuntos diagnósticos com tecnologia brasileira.HTLV-1 is the virus that causes T cell lymphoma/leukemia in adults and a neurological disorder known as HTLV-associated myelopathy or tropical spastic paraparesis. One of the transmission means is through contaminated blood and its byproducts. Because of the risk of HTLV-associated infections, screening for HTLV was introduced for Brazilian blood donors in 1993. Most of the diagnostic kits used in the national blood banks are bought from foreign companies. Brazil does not have the technology to produce this material and there is a need to produce diagnostic systems with national technology. In this study, we show the expression of gp21/HTLV-1 in Escherichia coli and its reactivity towards monoclonal antibodies and the antibodies of infected patients. Expressing these proteins is the first step towards obtaining diagnostic kits with Brazilian biotechnology.

  2. Functional expression of an ajmaline pathway-specific esterase from Rauvolfia in a novel plant-virus expression system.

    Science.gov (United States)

    Ruppert, Martin; Woll, Jörn; Giritch, Anatoli; Genady, Ezzat; Ma, Xueyan; Stöckigt, Joachim

    2005-11-01

    Acetylajmalan esterase (AAE) plays an essential role in the late stage of ajmaline biosynthesis. Based on the partial peptide sequences of AAE isolated and purified from Rauvolfia cell suspensions, a full-length AAE cDNA clone was isolated. The amino acid sequence of AAE has the highest level of identity of 40% to putative lipases known from the Arabidopsis thaliana genome project. Based on the primary structure AAE is a new member of the GDSL lipase superfamily. The expression in Escherichia coli failed although a wide range of conditions were tested. With a novel virus-based plant expression system, it was possible to express AAE functionally in leaves of Nicotiana benthamiana Domin. An extraordinarily high enzyme activity was detected in the Nicotiana tissue, which exceeded that in Rauvolfia serpentina (L.) Benth. ex Kurz cell suspension cultures about 20-fold. This expression allowed molecular analysis of AAE for the first time and increased the number of functionally expressed alkaloid genes from Rauvolfia now to eight, and the number of ajmaline pathway-specific cDNAs to a total of six.

  3. Expression of a prokaryotic P-type ATPase in E. coli Plasma Membranes and Purification by Ni2+-affinity chromatography

    Directory of Open Access Journals (Sweden)

    Geisler Markus

    1998-01-01

    Full Text Available In order to characterize the P-type ATPase from Synechocystis 6803 [Geisler (1993 et al. J. Mol. Biol. 234, 1284] and to facilitate its purification, we expressed an N-terminal 6xHis-tagged version of the ATPase in an ATPase deficient E. coli strain. The expressed ATPase was immunodetected as a dominant band of about 97 kDa localized to the E. coli plasma membranes representing about 20-25% of the membrane protein. The purification of the Synecho-cystis 6xHis-ATPase by single-step Ni-affinity chromatography under native and denaturating conditions is described. ATPase activity and the formation of phosphointermediates verify the full function of the enzyme: the ATPase is inhibited by vanadate (IC50= 119 &mgr;M and the formation of phosphorylated enzyme intermediates shown by acidic PAGE depends on calcium, indicating that the Synechocystis P-ATPase functions as a calcium pump.

  4. Regulatory Coordination between Two Major Intracellular Homeostatic Systems

    DEFF Research Database (Denmark)

    Dokladny, Karol; Zuhl, Micah Nathaniel; Mandell, Michael

    2013-01-01

    whether there are interactions between these homeostatic systems, one universally operational in all prokaryotic and eukaryotic cells, and the other one (autophagy) is limited to eukaryotes. We found that heat shock response regulates autophagy. The interaction between the two systems was demonstrated......The eukaryotic cell depends on multitiered homeostatic systems ensuring maintenance of proteostasis, organellar integrity, function and turnover, and overall cellular viability. At the two opposite ends of the homeostatic system spectrum are heat shock response and autophagy. Here, we tested...... of the homeostatic systems in the eukaryotic cell....

  5. Main Strategies of Plant Expression System Glycoengineering for Producing Humanized Recombinant Pharmaceutical Proteins.

    Science.gov (United States)

    Rozov, S M; Permyakova, N V; Deineko, E V

    2018-03-01

    Most the pharmaceutical proteins are derived not from their natural sources, rather their recombinant analogs are synthesized in various expression systems. Plant expression systems, unlike mammalian cell cultures, combine simplicity and low cost of procaryotic systems and the ability for posttranslational modifications inherent in eucaryotes. More than 50% of all human proteins and more than 40% of the currently used pharmaceutical proteins are glycosylated, that is, they are glycoproteins, and their biological activity, pharmacodynamics, and immunogenicity depend on the correct glycosylation pattern. This review examines in detail the similarities and differences between N- and O-glycosylation in plant and mammalian cells, as well as the effect of plant glycans on the activity, pharmacokinetics, immunity, and intensity of biosynthesis of pharmaceutical proteins. The main current strategies of glycoengineering of plant expression systems aimed at obtaining fully humanized proteins for pharmaceutical application are summarized.

  6. MALDI-TOF mass spectrometry for quantitative gene expression analysis of acid responses in Staphylococcus aureus.

    Science.gov (United States)

    Rode, Tone Mari; Berget, Ingunn; Langsrud, Solveig; Møretrø, Trond; Holck, Askild

    2009-07-01

    Microorganisms are constantly exposed to new and altered growth conditions, and respond by changing gene expression patterns. Several methods for studying gene expression exist. During the last decade, the analysis of microarrays has been one of the most common approaches applied for large scale gene expression studies. A relatively new method for gene expression analysis is MassARRAY, which combines real competitive-PCR and MALDI-TOF (matrix-assisted laser desorption/ionization time-of-flight) mass spectrometry. In contrast to microarray methods, MassARRAY technology is suitable for analysing a larger number of samples, though for a smaller set of genes. In this study we compare the results from MassARRAY with microarrays on gene expression responses of Staphylococcus aureus exposed to acid stress at pH 4.5. RNA isolated from the same stress experiments was analysed using both the MassARRAY and the microarray methods. The MassARRAY and microarray methods showed good correlation. Both MassARRAY and microarray estimated somewhat lower fold changes compared with quantitative real-time PCR (qRT-PCR). The results confirmed the up-regulation of the urease genes in acidic environments, and also indicated the importance of metal ion regulation. This study shows that the MassARRAY technology is suitable for gene expression analysis in prokaryotes, and has advantages when a set of genes is being analysed for an organism exposed to many different environmental conditions.

  7. Engineering Plant Immunity via CRISPR/Cas13a System

    KAUST Repository

    Aljedaani, Fatimah R.

    2018-05-01

    Viral diseases constitute a major threat to the agricultural production and food security throughout the world. Plants cope with the invading viruses by triggering immune responses and small RNA interference (RNAi) systems. In prokaryotes, CRISPR/Cas systems function as an adaptive immune system to provide bacteria with resistance against invading phages and conjugative plasmids. Interestingly, CRISPR/Cas9 system was shown to interfere with eukaryotic DNA viruses and confer resistance against plant DNA viruses. The majority of the plant viruses have RNA genomes. The aim of this study is to test the ability of the newly discovered CRISPR/Cas13a immune system, that targets and cleaves single stranded RNA (ssRNA) in prokaryotes, to provide resistance against RNA viruses in plants. Here, I employ the CRISPR/Cas13a system for molecular interference against Turnip Mosaic Virus (TuMV), a plant RNA virus. The results of this study established the CRISPR/Cas13a as a molecular interference machinery against RNA viruses in plants. Specifically, my data show that the CRISPR/Cas13a machinery is able to interfere with and degrade the TuMV (TuMV-GFP) RNA genome. In conclusion, these data indicate that the CRISPR/Cas13 systems can be employed for engineering interference and durable resistance against RNA viruses in diverse plant species.

  8. Effects of Argonaute on Gene Expression in Thermus thermophilus.

    Directory of Open Access Journals (Sweden)

    Daan C Swarts

    Full Text Available Eukaryotic Argonaute proteins mediate RNA-guided RNA interference, allowing both regulation of host gene expression and defense against invading mobile genetic elements. Recently, it has become evident that prokaryotic Argonaute homologs mediate DNA-guided DNA interference, and play a role in host defense. Argonaute of the bacterium Thermus thermophilus (TtAgo targets invading plasmid DNA during and after transformation. Using small interfering DNA guides, TtAgo can cleave single and double stranded DNAs. Although TtAgo additionally has been demonstrated to cleave RNA targets complementary to its DNA guide in vitro, RNA targeting by TtAgo has not been demonstrated in vivo.To investigate if TtAgo also has the potential to control RNA levels, we analyzed RNA-seq data derived from cultures of four T. thermophilus strain HB27 variants: wild type, TtAgo knockout (Δago, and either strain transformed with a plasmid. Additionally we determined the effect of TtAgo on expression of plasmid-encoded RNA and plasmid DNA levels.In the absence of exogenous DNA (plasmid, TtAgo presence or absence had no effect on gene expression levels. When plasmid DNA is present, TtAgo reduces plasmid DNA levels 4-fold, and a corresponding reduction of plasmid gene transcript levels was observed. We therefore conclude that TtAgo interferes with plasmid DNA, but not with plasmid-encoded RNA. Interestingly, TtAgo presence stimulates expression of specific endogenous genes, but only when exogenous plasmid DNA was present. Specifically, the presence of TtAgo directly or indirectly stimulates expression of CRISPR loci and associated genes, some of which are involved in CRISPR adaptation. This suggests that TtAgo-mediated interference with plasmid DNA stimulates CRISPR adaptation.

  9. A novel prokaryotic vector for identification and selection of recombinants: Direct use of the vector for expression studies in E. coli

    Directory of Open Access Journals (Sweden)

    Apte-Deshpande Anjali

    2010-05-01

    Full Text Available Abstract Background The selection of bacterial recombinants that harbour a desired insert, has been a key factor in molecular cloning and a series of screening procedures need to be performed for selection of clones carrying the genes of interest. The conventional cloning techniques are reported to have problems such as screening high number of colonies, generation of false positives, setting up of control ligation mix with vector alone etc. Results We describe the development of a novel dual cloning/expression vector, which enables to screen the recombinants directly and expression of the gene of interest. The vector contains Green fluorescence protein (GFP as the reporter gene and is constructed in such a way that the E. coli cells upon transformation with this vector does not show any fluorescence, but readily fluoresce upon insertion of a foreign gene of interest. The same construct could be easily used for screening of the clones and expression studies by mere switching to specific hosts. Conclusions This is the first vector reported that takes the property of colour or fluorescence to be achieved only upon cloning while all the other vectors available commercially show loss of colour or loss of fluorescence upon cloning. As the fluorescence of GFP depends on the solubility of the protein, the intensity of the fluorescence would also indicate the extent of solubility of the expressed target protein.

  10. Facial expressions : What the mirror neuron system can and cannot tell us

    NARCIS (Netherlands)

    van der Gaag, Christiaan; Minderaa, Ruud B.; Keysers, Christian

    2007-01-01

    Facial expressions contain both motor and emotional components. The inferior frontal gyrus (IFG) and posterior parietal cortex have been considered to compose a mirror neuron system (MNS) for the motor components of facial expressions, while the amygdala and insula may represent an "additional" MNS

  11. Two-stage gene regulation of the superoxide stress response soxRS system in Escherichia coli.

    Science.gov (United States)

    Nunoshiba, T

    1996-01-01

    All organisms have adapted to environmental changes by acquiring various functions controlled by gene regulation. In bacteria, a number of specific responses have been found to confer cell survival in various nutrient-limited conditions, and under physiological stresses such as high or low temperature, extreme pH, radiation, and oxidation (for review, see Neidhardt et al., 1987). In this article, I introduce an Escherichia coli (E. coli) global response induced by superoxide stress, the soxRS regulon. The functions controlled by this system consist of a wide variety of enzymes such as manganese-containing SOD (Mn-SOD); glucose 6-phosphate dehydrogenase (G6PD), the DNA repair enzyme endonuclease IV, fumarase C, NADPH:ferredoxin oxidoreductase, and aconitase. This response is positively regulated by a two-stage control system in which SoxR iron-sulfur protein senses exposure to superoxide and nitric oxide, and then activates transcription of the soxS gene, whose product stimulates the expression of the regulon genes. Our recent finding indicates that soxS transcription is initiated in a manner dependent on the rpoS gene encoding RNA polymerase sigma factor, theta s, in response to entering the stationary phase of growth. With this information, mechanisms for prokaryotic coordinating gene expression in response to superoxide stress and in stationary phase are discussed.

  12. RNA- and protein-mediated control of Listeria monocytogenes virulence gene expression

    Science.gov (United States)

    Lebreton, Alice; Cossart, Pascale

    2017-01-01

    ABSTRACT The model opportunistic pathogen Listeria monocytogenes has been the object of extensive research, aiming at understanding its ability to colonize diverse environmental niches and animal hosts. Bacterial transcriptomes in various conditions reflect this efficient adaptability. We review here our current knowledge of the mechanisms allowing L. monocytogenes to respond to environmental changes and trigger pathogenicity, with a special focus on RNA-mediated control of gene expression. We highlight how these studies have brought novel concepts in prokaryotic gene regulation, such as the ‘excludon’ where the 5′-UTR of a messenger also acts as an antisense regulator of an operon transcribed in opposite orientation, or the notion that riboswitches can regulate non-coding RNAs to integrate complex metabolic stimuli into regulatory networks. Overall, the Listeria model exemplifies that fine RNA tuners act together with master regulatory proteins to orchestrate appropriate transcriptional programmes. PMID:27217337

  13. Timing of gene expression from different genetic systems in shaping ...

    Indian Academy of Sciences (India)

    2011-12-16

    Dec 16, 2011 ... different genetic systems, nutrition quality traits were mainly controlled by the accumulative or net ... pable of providing valuable information on the expression of ...... protein, carbohydrates, and dietary fiber components.

  14. FPGA-accelerated algorithm for the regular expression matching system

    Science.gov (United States)

    Russek, P.; Wiatr, K.

    2015-01-01

    This article describes an algorithm to support a regular expressions matching system. The goal was to achieve an attractive performance system with low energy consumption. The basic idea of the algorithm comes from a concept of the Bloom filter. It starts from the extraction of static sub-strings for strings of regular expressions. The algorithm is devised to gain from its decomposition into parts which are intended to be executed by custom hardware and the central processing unit (CPU). The pipelined custom processor architecture is proposed and a software algorithm explained accordingly. The software part of the algorithm was coded in C and runs on a processor from the ARM family. The hardware architecture was described in VHDL and implemented in field programmable gate array (FPGA). The performance results and required resources of the above experiments are given. An example of target application for the presented solution is computer and network security systems. The idea was tested on nearly 100,000 body-based viruses from the ClamAV virus database. The solution is intended for the emerging technology of clusters of low-energy computing nodes.

  15. Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system

    LENUS (Irish Health Repository)

    Douillard, Francois P

    2011-08-09

    Abstract Background The development of the Nisin Inducible Controlled Expression (NICE) system in the food-grade bacterium Lactococcus lactis subsp. cremoris represents a cornerstone in the use of Gram-positive bacterial expression systems for biotechnological purposes. However, proteins that are subjected to such over-expression in L. lactis may suffer from improper folding, inclusion body formation and\\/or protein degradation, thereby significantly reducing the yield of soluble target protein. Although such drawbacks are not specific to L. lactis, no molecular tools have been developed to prevent or circumvent these recurrent problems of protein expression in L. lactis. Results Mimicking thioredoxin gene fusion systems available for E. coli, two nisin-inducible expression vectors were constructed to over-produce various proteins in L. lactis as thioredoxin fusion proteins. In this study, we demonstrate that our novel L. lactis fusion partner expression vectors allow high-level expression of soluble heterologous proteins Tuc2009 ORF40, Bbr_0140 and Tuc2009 BppU\\/BppL that were previously insoluble or not expressed using existing L. lactis expression vectors. Over-expressed proteins were subsequently purified by Ni-TED affinity chromatography. Intact heterologous proteins were detected by immunoblotting analyses. We also show that the thioredoxin moiety of the purified fusion protein was specifically and efficiently cleaved off by enterokinase treatment. Conclusions This study is the first description of a thioredoxin gene fusion expression system, purposely developed to circumvent problems associated with protein over-expression in L. lactis. It was shown to prevent protein insolubility and degradation, allowing sufficient production of soluble proteins for further structural and functional characterization.

  16. Antioxidant enzymes expression in Pseudomonas aeruginosa exposed to UV-C radiation.

    Science.gov (United States)

    Salma, Kloula Ben Ghorbal; Lobna, Maalej; Sana, Khefacha; Kalthoum, Chourabi; Imene, Ouzari; Abdelwaheb, Chatti

    2016-07-01

    It was well known that, UV-C irradiation increase considerably the reactive oxygen species (ROS) levels in eukaryotic and prokaryotic organisms. In the enzymatic ROS-scavenging pathways, superoxide dismutase (SOD), Catalase (CAT), and peroxidase (POX) were developed to deal with oxidative stress. In this study, we investigated the effects of UV-C radiations on antioxidant enzymes (catalase, superoxide dismutase, and peroxidases) expression in Pseudomonas aeruginosa. Catalase, superoxide dismutase, and peroxidases activities were determined spectrophotometrically. Isozymes of superoxide dismutase were revealed by native gel activity staining method. Lipid peroxidation was determined by measuring malondialdehyde formation. Our results showed that superoxide dismutase, catalase and peroxidase activities exhibited a gradual increase during the exposure time (30 min). However, the superoxide dismutase activity was maximized at 15 min. Native gel activity staining assays showed the presence of three superoxide dismutase isozymes. The iron-cofactored isoform activity was altered after exposure to UV-C stress. These finding suggest that catalase and peroxidase enzymes have the same importance toward UV-C rays at shorter and longer exposure times and this may confer additional protection to superoxide dismutase from damage caused by lipid peroxidation. Moreover, our data demonstrate the significant role of the antioxidant system in the resistance of this important human pathogen. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    Directory of Open Access Journals (Sweden)

    Yoichiro Ito

    Full Text Available Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.

  18. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    Science.gov (United States)

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  19. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  20. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.