WorldWideScience

Sample records for projective imaging distortion

  1. Correction of projective distortion in long-image-sequence mosaics without prior information

    Science.gov (United States)

    Yang, Chenhui; Mao, Hongwei; Abousleman, Glen; Si, Jennie

    2010-04-01

    Image mosaicking is the process of piecing together multiple video frames or still images from a moving camera to form a wide-area or panoramic view of the scene being imaged. Mosaics have widespread applications in many areas such as security surveillance, remote sensing, geographical exploration, agricultural field surveillance, virtual reality, digital video, and medical image analysis, among others. When mosaicking a large number of still images or video frames, the quality of the resulting mosaic is compromised by projective distortion. That is, during the mosaicking process, the image frames that are transformed and pasted to the mosaic become significantly scaled down and appear out of proportion with respect to the mosaic. As more frames continue to be transformed, important target information in the frames can be lost since the transformed frames become too small, which eventually leads to the inability to continue further. Some projective distortion correction techniques make use of prior information such as GPS information embedded within the image, or camera internal and external parameters. Alternatively, this paper proposes a new algorithm to reduce the projective distortion without using any prior information whatsoever. Based on the analysis of the projective distortion, we approximate the projective matrix that describes the transformation between image frames using an affine model. Using singular value decomposition, we can deduce the affine model scaling factor that is usually very close to 1. By resetting the image scale of the affine model to 1, the transformed image size remains unchanged. Even though the proposed correction introduces some error in the image matching, this error is typically acceptable and more importantly, the final mosaic preserves the original image size after transformation. We demonstrate the effectiveness of this new correction algorithm on two real-world unmanned air vehicle (UAV) sequences. The proposed method is

  2. Correction for polychromatic X-ray image distortion in computer tomography images

    International Nuclear Information System (INIS)

    1979-01-01

    A method and apparatus are described which correct the polychromatic distortion of CT images that is produced by the non-linear interaction of body constituents with a polychromatic X-ray beam. A CT image is processed to estimate the proportion of the attenuation coefficients of the constituents in each pixel element. A multiplicity of projections for each constituent are generated from the original image and are combined utilizing a multidimensional polynomial which approximates the non-linear interaction involved. An error image is then generated from the combined projections and is subtracted from the original image to correct for the polychromatic distortion. (Auth.)

  3. Fisheye image rectification using spherical and digital distortion models

    Science.gov (United States)

    Li, Xin; Pi, Yingdong; Jia, Yanling; Yang, Yuhui; Chen, Zhiyong; Hou, Wenguang

    2018-02-01

    Fisheye cameras have been widely used in many applications including close range visual navigation and observation and cyber city reconstruction because its field of view is much larger than that of a common pinhole camera. This means that a fisheye camera can capture more information than a pinhole camera in the same scenario. However, the fisheye image contains serious distortion, which may cause trouble for human observers in recognizing the objects within. Therefore, in most practical applications, the fisheye image should be rectified to a pinhole perspective projection image to conform to human cognitive habits. The traditional mathematical model-based methods cannot effectively remove the distortion, but the digital distortion model can reduce the image resolution to some extent. Considering these defects, this paper proposes a new method that combines the physical spherical model and the digital distortion model. The distortion of fisheye images can be effectively removed according to the proposed approach. Many experiments validate its feasibility and effectiveness.

  4. The effect of the observer vantage point on perceived distortions in linear perspective images.

    Science.gov (United States)

    Todorović, Dejan

    2009-01-01

    Some features of linear perspective images may look distorted. Such distortions appear in two drawings by Jan Vredeman de Vries involving perceived elliptical, instead of circular, pillars and tilted, instead of upright, columns. Distortions may be due to factors intrinsic to the images, such as violations of the so-called Perkins's laws, or factors extrinsic to them, such as observing the images from positions different from their center of projection. When the correct projection centers for the two drawings were reconstructed, it was found that they were very close to the images and, therefore, practically unattainable in normal observation. In two experiments, enlarged versions of images were used as stimuli, making the positions of the projection centers attainable for observers. When observed from the correct positions, the perceived distortions disappeared or were greatly diminished. Distortions perceived from other positions were smaller than would be predicted by geometrical analyses, possibly due to flatness cues in the images. The results are relevant for the practical purposes of creating faithful impressions of 3-D spaces using 2-D images.

  5. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model.

    Science.gov (United States)

    Lee, Sangyeol; Reinhardt, Joseph M; Cattin, Philippe C; Abràmoff, Michael D

    2010-08-01

    Fundus camera imaging of the retina is widely used to diagnose and manage ophthalmologic disorders including diabetic retinopathy, glaucoma, and age-related macular degeneration. Retinal images typically have a limited field of view, and multiple images can be joined together using an image registration technique to form a montage with a larger field of view. A variety of methods for retinal image registration have been proposed, but evaluating such methods objectively is difficult due to the lack of a reference standard for the true alignment of the individual images that make up the montage. A method of generating simulated retinal images by modeling the geometric distortions due to the eye geometry and the image acquisition process is described in this paper. We also present a validation process that can be used for any retinal image registration method by tracing through the distortion path and assessing the geometric misalignment in the coordinate system of the reference standard. The proposed method can be used to perform an accuracy evaluation over the whole image, so that distortion in the non-overlapping regions of the montage components can be easily assessed. We demonstrate the technique by generating test image sets with a variety of overlap conditions and compare the accuracy of several retinal image registration models. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Reduce blurring and distortion in a projection type virtual image display using integrated small optics

    Science.gov (United States)

    Hasegawa, Tatsuya; Yendo, Tomohiro

    2015-03-01

    Head Up Display (HUD) is being applied to automobile. HUD displays information as far virtual image on the windshield. Existing HUD usually displays planar information. If the image corresponding to scenery on the road like Augmented Reality (AR) is displayed on the HUD, driver can efficiently get the information. To actualize this, HUD covering large viewing field is needed. However existing HUD cannot cover large viewing field. Therefore we have proposed system consisting of projector and many small diameter convex lenses. However observed virtual image has blurring and distortion . In this paper, we propose two methods to reduce blurring and distortion of images. First, to reduce blurring of images, distance between each of screen and lens comprised in lens array is adjusted. We inferred from the more distant the lens from center of the array is more blurred that the cause of blurring is curvature of field of lens in the array. Second, to avoid distortion of images, each lens in the array is curved spherically. We inferred from the more distant the lens from center of the array is more distorted that the cause of distortion is incident angle of ray. We confirmed effectiveness of both methods.

  7. Distorted Images of Islam: The Case of Former Yugoslavia

    Directory of Open Access Journals (Sweden)

    Fikret Karčić

    1995-12-01

    Full Text Available Since the 1980s, the former Yugoslavia has witnessed increasing distortion of images of Islam in academic publications, media, and public life. This process has been connected with the changes in power structure in Serbia, and with the new ideological orientation of the Serbian leadership which opted for national exclusivism (ethno fascism. The Muslims have been portrayed as a threat to the realization of the Serbian hegemonist project. In order to mobilize domestic public opinion against the Muslims and to justify future acts against them in the eyes of the West, the Serbian leadership needed an image of Islam as a totalitarian, inherently violent, and culturally alien system on European soil. Such a distorted image has been provided by some influential Serbian orientalists, the Orthodox Church, and some historians. Due to these distortions, these Serbian intellectual circles have become accomplices in the crimes committed against the Muslims in former Yugoslavia during 1992-1995.

  8. Applying image quality in cell phone cameras: lens distortion

    Science.gov (United States)

    Baxter, Donald; Goma, Sergio R.; Aleksic, Milivoje

    2009-01-01

    This paper describes the framework used in one of the pilot studies run under the I3A CPIQ initiative to quantify overall image quality in cell-phone cameras. The framework is based on a multivariate formalism which tries to predict overall image quality from individual image quality attributes and was validated in a CPIQ pilot program. The pilot study focuses on image quality distortions introduced in the optical path of a cell-phone camera, which may or may not be corrected in the image processing path. The assumption is that the captured image used is JPEG compressed and the cellphone camera is set to 'auto' mode. As the used framework requires that the individual attributes to be relatively perceptually orthogonal, in the pilot study, the attributes used are lens geometric distortion (LGD) and lateral chromatic aberrations (LCA). The goal of this paper is to present the framework of this pilot project starting with the definition of the individual attributes, up to their quantification in JNDs of quality, a requirement of the multivariate formalism, therefore both objective and subjective evaluations were used. A major distinction in the objective part from the 'DSC imaging world' is that the LCA/LGD distortions found in cell-phone cameras, rarely exhibit radial behavior, therefore a radial mapping/modeling cannot be used in this case.

  9. Quality Evaluation and Nonuniform Compression of Geometrically Distorted Images Using the Quadtree Distortion Map

    Directory of Open Access Journals (Sweden)

    Cristina Costa

    2004-09-01

    Full Text Available The paper presents an analysis of the effects of lossy compression algorithms applied to images affected by geometrical distortion. It will be shown that the encoding-decoding process results in a nonhomogeneous image degradation in the geometrically corrected image, due to the different amount of information associated to each pixel. A distortion measure named quadtree distortion map (QDM able to quantify this aspect is proposed. Furthermore, QDM is exploited to achieve adaptive compression of geometrically distorted pictures, in order to ensure a uniform quality on the final image. Tests are performed using JPEG and JPEG2000 coding standards in order to quantitatively and qualitatively assess the performance of the proposed method.

  10. Effects of image distortion correction on voxel-based morphometry

    International Nuclear Information System (INIS)

    Goto, Masami; Abe, Osamu; Kabasawa, Hiroyuki

    2012-01-01

    We aimed to show that correcting image distortion significantly affects brain volumetry using voxel-based morphometry (VBM) and to assess whether the processing of distortion correction reduces system dependency. We obtained contiguous sagittal T 1 -weighted images of the brain from 22 healthy participants using 1.5- and 3-tesla magnetic resonance (MR) scanners, preprocessed images using Statistical Parametric Mapping 5, and tested the relation between distortion correction and brain volume using VBM. Local brain volume significantly increased or decreased on corrected images compared with uncorrected images. In addition, the method used to correct image distortion for gradient nonlinearity produced fewer volumetric errors from MR system variation. This is the first VBM study to show more precise volumetry using VBM with corrected images. These results indicate that multi-scanner or multi-site imaging trials require correction for distortion induced by gradient nonlinearity. (author)

  11. Characterization, prediction, and correction of geometric distortion in 3 T MR images

    International Nuclear Information System (INIS)

    Baldwin, Lesley N.; Wachowicz, Keith; Thomas, Steven D.; Rivest, Ryan; Gino Fallone, B.

    2007-01-01

    The work presented herein describes our methods and results for predicting, measuring and correcting geometric distortions in a 3 T clinical magnetic resonance (MR) scanner for the purpose of image guidance in radiation treatment planning. Geometric inaccuracies due to both inhomogeneities in the background field and nonlinearities in the applied gradients were easily visualized on the MR images of a regularly structured three-dimensional (3D) grid phantom. From a computed tomography scan, the locations of just under 10 000 control points within the phantom were accurately determined in three dimensions using a MATLAB-based computer program. MR distortion was then determined by measuring the corresponding locations of the control points when the phantom was imaged using the MR scanner. Using a reversed gradient method, distortions due to gradient nonlinearities were separated from distortions due to inhomogeneities in the background B 0 field. Because the various sources of machine-related distortions can be individually characterized, distortions present in other imaging sequences (for which 3D distortion cannot accurately be measured using phantom methods) can be predicted negating the need for individual distortion calculation for a variety of other imaging sequences. Distortions were found to be primarily caused by gradient nonlinearities and maximum image distortions were reported to be less than those previously found by other researchers at 1.5 T. Finally, the image slices were corrected for distortion in order to provide geometrically accurate phantom images

  12. Factors associated with body image distortion in Korean adolescents

    Directory of Open Access Journals (Sweden)

    Hyun MY

    2014-05-01

    Full Text Available Mi-Yeul Hyun,1 Young-Eun Jung,2 Moon-Doo Kim,2 Young-Sook Kwak,2 Sung-Chul Hong,3 Won-Myong Bahk,4 Bo-Hyun Yoon,5 Hye Won Yoon,6 Bora Yoo61College of Nursing, Jeju National University, Jeju, Korea; 2Department of Psychiatry, School of Medicine, Jeju National University, Jeju, Korea; 3Department of Preventive Medicine, School of Medicine, Jeju National University, Jeju, Korea; 4Department of Psychiatry, Yeouido St Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea; 5Department of Psychiatry, Naju National Hospital, Naju, Korea; 6School of Medicine, Jeju National University, Jeju, KoreaPurpose: Body image incorporates cognitive and affective components as well as behaviors related to own body perception. This study evaluated the occurrence of body image distortion and its correlates in Korean adolescents.Methods: In a school-based cross-sectional survey, a total of 2,117 adolescents were recruited. They filled out self-completing questionnaires on body image distortion, eating attitudes, and behaviors (Eating Attitude Test-26 and related factors.Results: Body image distortions were found in 51.8 percent of adolescents. Univariate analyses showed that boys and older adolescents had higher rates of body image distortion. In the multivariate analyses, body image distortion was associated with high risk for eating disorders (odds ratio [OR] =1.69; 95% confidence interval [CI] 1.11–2.58; P=0.015 and being over weight (OR =33.27; 95% CI 15.51–71.35; P<0.001 or obese (OR =9.37; 95% CI 5.06–17.34; P<0.001.Conclusion: These results suggest that body image distortion is relatively common in Korean adolescents, which has implications for adolescents at risk of developing eating disorders.Keywords: body image distortion, high risk for eating disorders, Korean adolescent

  13. Correcting the Chromatic Aberration in Barrel Distortion of Endoscopic Images

    Directory of Open Access Journals (Sweden)

    Y. M. Harry Ng

    2003-04-01

    Full Text Available Modern endoscopes offer physicians a wide-angle field of view (FOV for minimally invasive therapies. However, the high level of barrel distortion may prevent accurate perception of image. Fortunately, this kind of distortion may be corrected by digital image processing. In this paper we investigate the chromatic aberrations in the barrel distortion of endoscopic images. In the past, chromatic aberration in endoscopes is corrected by achromatic lenses or active lens control. In contrast, we take a computational approach by modifying the concept of image warping and the existing barrel distortion correction algorithm to tackle the chromatic aberration problem. In addition, an error function for the determination of the level of centroid coincidence is proposed. Simulation and experimental results confirm the effectiveness of our method.

  14. Face detection on distorted images using perceptual quality-aware features

    Science.gov (United States)

    Gunasekar, Suriya; Ghosh, Joydeep; Bovik, Alan C.

    2014-02-01

    We quantify the degradation in performance of a popular and effective face detector when human-perceived image quality is degraded by distortions due to additive white gaussian noise, gaussian blur or JPEG compression. It is observed that, within a certain range of perceived image quality, a modest increase in image quality can drastically improve face detection performance. These results can be used to guide resource or bandwidth allocation in a communication/delivery system that is associated with face detection tasks. A new face detector based on QualHOG features is also proposed that augments face-indicative HOG features with perceptual quality-aware spatial Natural Scene Statistics (NSS) features, yielding improved tolerance against image distortions. The new detector provides statistically significant improvements over a strong baseline on a large database of face images representing a wide range of distortions. To facilitate this study, we created a new Distorted Face Database, containing face and non-face patches from images impaired by a variety of common distortion types and levels. This new dataset is available for download and further experimentation at www.ideal.ece.utexas.edu/˜suriya/DFD/.

  15. Accuracy evaluation of optical distortion calibration by digital image correlation

    Science.gov (United States)

    Gao, Zeren; Zhang, Qingchuan; Su, Yong; Wu, Shangquan

    2017-11-01

    Due to its convenience of operation, the camera calibration algorithm, which is based on the plane template, is widely used in image measurement, computer vision and other fields. How to select a suitable distortion model is always a problem to be solved. Therefore, there is an urgent need for an experimental evaluation of the accuracy of camera distortion calibrations. This paper presents an experimental method for evaluating camera distortion calibration accuracy, which is easy to implement, has high precision, and is suitable for a variety of commonly used lens. First, we use the digital image correlation method to calculate the in-plane rigid body displacement field of an image displayed on a liquid crystal display before and after translation, as captured with a camera. Next, we use a calibration board to calibrate the camera to obtain calibration parameters which are used to correct calculation points of the image before and after deformation. The displacement field before and after correction is compared to analyze the distortion calibration results. Experiments were carried out to evaluate the performance of two commonly used industrial camera lenses for four commonly used distortion models.

  16. Qualitative and quantitative analysis of reconstructed images using projections with noises

    International Nuclear Information System (INIS)

    Lopes, R.T.; Assis, J.T. de

    1988-01-01

    The reconstruction of a two-dimencional image from one-dimensional projections in an analytic algorithm ''convolution method'' is simulated on a microcomputer. In this work it was analysed the effects caused in the reconstructed image in function of the number of projections and noise level added to the projection data. Qualitative and quantitative (distortion and image noise) comparison were done with the original image and the reconstructed images. (author) [pt

  17. Towards distortion-free robust image authentication

    International Nuclear Information System (INIS)

    Coltuc, D

    2007-01-01

    This paper investigates a general framework for distortion-free robust image authentication by multiple marking. First, by robust watermarking a subsampled version of image edges is embedded. Then, by reversible watermarking the information needed to recover the original image is inserted, too. The hiding capacity of the reversible watermarking is the essential requirement for this approach. Thus in case of no attacks not only image is authenticated but also the original is exactly recovered. In case of attacks, reversibility is lost, but image can still be authenticated. Preliminary results providing very good robustness against JPEG compression are presented

  18. The effect of redshift-space distortions on projected 2-pt clustering measurements

    OpenAIRE

    Nock, Kelly; Percival, Will J.; Ross, Ashley J.

    2010-01-01

    Although redshift-space distortions only affect inferred distances and not angles, they still distort the projected angular clustering of galaxy samples selected using redshift dependent quantities. From an Eulerian view-point, this effect is caused by the apparent movement of galaxies into or out of the sample. From a Lagrangian view-point, we find that projecting the redshift-space overdensity field over a finite radial distance does not remove all the anisotropic distortions. We investigat...

  19. Forensic image analysis - CCTV distortion and artefacts.

    Science.gov (United States)

    Seckiner, Dilan; Mallett, Xanthé; Roux, Claude; Meuwly, Didier; Maynard, Philip

    2018-04-01

    As a result of the worldwide deployment of surveillance cameras, authorities have gained a powerful tool that captures footage of activities of people in public areas. Surveillance cameras allow continuous monitoring of the area and allow footage to be obtained for later use, if a criminal or other act of interest occurs. Following this, a forensic practitioner, or expert witness can be required to analyse the footage of the Person of Interest. The examination ultimately aims at evaluating the strength of evidence at source and activity levels. In this paper, both source and activity levels are inferred from the trace, obtained in the form of CCTV footage. The source level alludes to features observed within the anatomy and gait of an individual, whilst the activity level relates to activity undertaken by the individual within the footage. The strength of evidence depends on the value of the information recorded, where the activity level is robust, yet source level requires further development. It is therefore suggested that the camera and the associated distortions should be assessed first and foremost and, where possible, quantified, to determine the level of each type of distortion present within the footage. A review of the 'forensic image analysis' review is presented here. It will outline the image distortion types and detail the limitations of differing surveillance camera systems. The aim is to highlight various types of distortion present particularly from surveillance footage, as well as address gaps in current literature in relation to assessment of CCTV distortions in tandem with gait analysis. Future work will consider the anatomical assessment from surveillance footage. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. A distortion correction method for image intensifier and electronic portal images used in radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Ioannidis, G T; Geramani, K N; Zamboglou, N [Strahlenklinik, Stadtische Kliniken Offenbach, Offenbach (Germany); Uzunoglu, N [Department of Electrical and Computer Engineering, National Technical University of Athens, Athens (Greece)

    1999-12-31

    At the most of radiation departments a simulator and an `on line` verification system of the treated volume, in form of an electronic portal imaging device (EPID), are available. Networking and digital handling (saving, archiving etc.) of the image information is a necessity in the image processing procedures in order to evaluate verification and simulation recordings at the computer screen. Distortion is on the other hand prerequisite for quantitative comparison of both image modalities. Another limitation factor, in order to make quantitative assertions, is the fact that the irradiation fields in radiotherapy are usually bigger than the field of view of an image intensifier. Several segments of the irradiation field must therefore be acquired. Using pattern recognition techniques these segments can be composed into a single image. In this paper a distortion correction method will be presented. The method is based upon a well defined Grid which is embedded during the registration process on the image. The video signal from the image intensifier is acquired and processed. The grid is then recognised using image processing techniques. Ideally if all grid points are recognised, various methods can be applied in order to correct the distortion. But in practice this is not the case. Overlapping structures (bones etc.) have as a consequence that not all of the grid points can be recognised. Mathematical models from the Graph theory are applied in order to reconstruct the whole grid. The deviation of the grid points positions from the rated value is then used to calculate correction coefficients. This method (well defined grid, grid recognition, correction factors) can also be applied in verification images from the EPID or in other image modalities, and therefore a quantitative comparison in radiation treatment is possible. The distortion correction method and the application on simulator images will be presented. (authors)

  1. Quantitation of structural distortion with gradient-echo imaging techniques

    International Nuclear Information System (INIS)

    Tien, R.D.; Schwaighofer, B.W.; Hesselink, J.R.; Chu, P.K.

    1990-01-01

    This paper determines the structural distortion and measurement error associated with fast MR imaging of the spinal neural foramina. Dry skeletal specimens and a thin cadaveric sagittal section through the neural foramina were placed in a water bath. MR images were obtained with a 1.5-T unit in different planes and with various pulse sequences. The size and shape of each neural foramen were carefully measured on the images and on the skeletal specimens. Gradient-echo (GRE) techniques (gradient recalled acquisition in a steady state, MPGR, three-dimensional volume acquisition) resulted in structural distortion in up to 10% on the fresh skeleton and 30% of the dry skeleton specimens when a small TE was used (the foramina appear narrower on the images)

  2. A content-based digital image watermarking scheme resistant to local geometric distortions

    International Nuclear Information System (INIS)

    Yang, Hong-ying; Chen, Li-li; Wang, Xiang-yang

    2011-01-01

    Geometric distortion is known as one of the most difficult attacks to resist, as it can desynchronize the location of the watermark and hence cause incorrect watermark detection. Geometric distortion can be decomposed into two classes: global affine transforms and local geometric distortions. Most countermeasures proposed in the literature only address the problem of global affine transforms. It is a challenging problem to design a robust image watermarking scheme against local geometric distortions. In this paper, we propose a new content-based digital image watermarking scheme with good visual quality and reasonable resistance against local geometric distortions. Firstly, the robust feature points, which can survive various common image processing and global affine transforms, are extracted by using a multi-scale SIFT (scale invariant feature transform) detector. Then, the affine covariant local feature regions (LFRs) are constructed adaptively according to the feature scale and local invariant centroid. Finally, the digital watermark is embedded into the affine covariant LFRs by modulating the magnitudes of discrete Fourier transform (DFT) coefficients. By binding the watermark with the affine covariant LFRs, the watermark detection can be done without synchronization error. Experimental results show that the proposed image watermarking is not only invisible and robust against common image processing operations such as sharpening, noise addition, and JPEG compression, etc, but also robust against global affine transforms and local geometric distortions

  3. Correcting geometric and photometric distortion of document images on a smartphone

    Science.gov (United States)

    Simon, Christian; Williem; Park, In Kyu

    2015-01-01

    A set of document image processing algorithms for improving the optical character recognition (OCR) capability of smartphone applications is presented. The scope of the problem covers the geometric and photometric distortion correction of document images. The proposed framework was developed to satisfy industrial requirements. It is implemented on an off-the-shelf smartphone with limited resources in terms of speed and memory. Geometric distortions, i.e., skew and perspective distortion, are corrected by sending horizontal and vertical vanishing points toward infinity in a downsampled image. Photometric distortion includes image degradation from moiré pattern noise and specular highlights. Moiré pattern noise is removed using low-pass filters with different sizes independently applied to the background and text region. The contrast of the text in a specular highlighted area is enhanced by locally enlarging the intensity difference between the background and text while the noise is suppressed. Intensive experiments indicate that the proposed methods show a consistent and robust performance on a smartphone with a runtime of less than 1 s.

  4. A method based on moving least squares for XRII image distortion correction

    International Nuclear Information System (INIS)

    Yan Shiju; Wang Chengtao; Ye Ming

    2007-01-01

    This paper presents a novel integrated method to correct geometric distortions of XRII (x-ray image intensifier) images. The method has been compared, in terms of mean-squared residual error measured at control and intermediate points, with two traditional local methods and a traditional global methods. The proposed method is based on the methods of moving least squares (MLS) and polynomial fitting. Extensive experiments were performed on simulated and real XRII images. In simulation, the effect of pincushion distortion, sigmoidal distortion, local distortion, noise, and the number of control points was tested. The traditional local methods were sensitive to pincushion and sigmoidal distortion. The traditional global method was only sensitive to sigmoidal distortion. The proposed method was found neither sensitive to pincushion distortion nor sensitive to sigmoidal distortion. The sensitivity of the proposed method to local distortion was lower than or comparable with that of the traditional global method. The sensitivity of the proposed method to noise was higher than that of all three traditional methods. Nevertheless, provided the standard deviation of noise was not greater than 0.1 pixels, accuracy of the proposed method is still higher than the traditional methods. The sensitivity of the proposed method to the number of control points was greatly lower than that of the traditional methods. Provided that a proper cutoff radius is chosen, accuracy of the proposed method is higher than that of the traditional methods. Experiments on real images, carried out by using a 9 in. XRII, showed that residual error of the proposed method (0.2544±0.2479 pixels) is lower than that of the traditional global method (0.4223±0.3879 pixels) and local methods (0.4555±0.3518 pixels and 0.3696±0.4019 pixels, respectively)

  5. Distortion of DNA Origami on Graphene Imaged with Advanced TEM Techniques.

    Science.gov (United States)

    Kabiri, Yoones; Ananth, Adithya N; van der Torre, Jaco; Katan, Allard; Hong, Jin-Yong; Malladi, Sairam; Kong, Jing; Zandbergen, Henny; Dekker, Cees

    2017-08-01

    While graphene may appear to be the ultimate support membrane for transmission electron microscopy (TEM) imaging of DNA nanostructures, very little is known if it poses an advantage over conventional carbon supports in terms of resolution and contrast. Microscopic investigations are carried out on DNA origami nanoplates that are supported onto freestanding graphene, using advanced TEM techniques, including a new dark-field technique that is recently developed in our lab. TEM images of stained and unstained DNA origami are presented with high contrast on both graphene and amorphous carbon membranes. On graphene, the images of the origami plates show severe unwanted distortions, where the rectangular shape of the nanoplates is significantly distorted. From a number of comparative control experiments, it is demonstrated that neither staining agents, nor screening ions, nor the level of electron-beam irradiation cause this distortion. Instead, it is suggested that origami nanoplates are distorted due to hydrophobic interaction of the DNA bases with graphene upon adsorption of the DNA origami nanoplates. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Image-projection ion-beam lithography

    International Nuclear Information System (INIS)

    Miller, P.A.

    1989-01-01

    Image-projection ion-beam lithography is an attractive alternative for submicron patterning because it may provide high throughput; it uses demagnification to gain advantages in reticle fabrication, inspection, and lifetime; and it enjoys the precise deposition characteristics of ions which cause essentially no collateral damage. This lithographic option involves extracting low-mass ions (e.g., He + ) from a plasma source, transmitting the ions at low voltage through a stencil reticle, and then accelerating and focusing the ions electrostatically onto a resist-coated wafer. While the advantages of this technology have been demonstrated experimentally by the work of IMS (Austria), many difficulties still impede extension of the technology to the high-volume production of microelectronic devices. We report a computational study of a lithography system designed to address problem areas in field size, telecentricity, and chromatic and geometric aberration. We present a novel ion-column-design approach and conceptual ion-source and column designs which address these issues. We find that image-projection ion-beam technology should in principle meet high-volume-production requirements. The technical success of our present relatively compact-column design requires that a glow-discharge-based ion source (or equivalent cold source) be developed and that moderate further improvement in geometric aberration levels be obtained. Our system requires that image predistortion be employed during reticle fabrication to overcome distortion due to residual image nonlinearity and space-charge forces. This constitutes a software data preparation step, as do correcting for distortions in electron lithography columns and performing proximity-effect corrections. Areas needing further fundamental work are identified

  7. Perceptual distortion analysis of color image VQ-based coding

    Science.gov (United States)

    Charrier, Christophe; Knoblauch, Kenneth; Cherifi, Hocine

    1997-04-01

    It is generally accepted that a RGB color image can be easily encoded by using a gray-scale compression technique on each of the three color planes. Such an approach, however, fails to take into account correlations existing between color planes and perceptual factors. We evaluated several linear and non-linear color spaces, some introduced by the CIE, compressed with the vector quantization technique for minimum perceptual distortion. To study these distortions, we measured contrast and luminance of the video framebuffer, to precisely control color. We then obtained psychophysical judgements to measure how well these methods work to minimize perceptual distortion in a variety of color space.

  8. Image Registration to Compensate for EPI Distortion in Patients with Brain Tumors: An Evaluation of Tract-Specific Effects.

    Science.gov (United States)

    Albi, Angela; Meola, Antonio; Zhang, Fan; Kahali, Pegah; Rigolo, Laura; Tax, Chantal M W; Ciris, Pelin Aksit; Essayed, Walid I; Unadkat, Prashin; Norton, Isaiah; Rathi, Yogesh; Olubiyi, Olutayo; Golby, Alexandra J; O'Donnell, Lauren J

    2018-03-01

    Diffusion magnetic resonance imaging (dMRI) provides preoperative maps of neurosurgical patients' white matter tracts, but these maps suffer from echo-planar imaging (EPI) distortions caused by magnetic field inhomogeneities. In clinical neurosurgical planning, these distortions are generally not corrected and thus contribute to the uncertainty of fiber tracking. Multiple image processing pipelines have been proposed for image-registration-based EPI distortion correction in healthy subjects. In this article, we perform the first comparison of such pipelines in neurosurgical patient data. Five pipelines were tested in a retrospective clinical dMRI dataset of 9 patients with brain tumors. Pipelines differed in the choice of fixed and moving images and the similarity metric for image registration. Distortions were measured in two important tracts for neurosurgery, the arcuate fasciculus and corticospinal tracts. Significant differences in distortion estimates were found across processing pipelines. The most successful pipeline used dMRI baseline and T2-weighted images as inputs for distortion correction. This pipeline gave the most consistent distortion estimates across image resolutions and brain hemispheres. Quantitative results of mean tract distortions on the order of 1-2 mm are in line with other recent studies, supporting the potential need for distortion correction in neurosurgical planning. Novel results include significantly higher distortion estimates in the tumor hemisphere and greater effect of image resolution choice on results in the tumor hemisphere. Overall, this study demonstrates possible pitfalls and indicates that care should be taken when implementing EPI distortion correction in clinical settings. Copyright © 2018 by the American Society of Neuroimaging.

  9. Investigation of support vector machine for the detection of architectural distortion in mammographic images

    International Nuclear Information System (INIS)

    Guo, Q; Shao, J; Ruiz, V

    2005-01-01

    This paper investigates detection of architectural distortion in mammographic images using support vector machine. Hausdorff dimension is used to characterise the texture feature of mammographic images. Support vector machine, a learning machine based on statistical learning theory, is trained through supervised learning to detect architectural distortion. Compared to the Radial Basis Function neural networks, SVM produced more accurate classification results in distinguishing architectural distortion abnormality from normal breast parenchyma

  10. Investigation of support vector machine for the detection of architectural distortion in mammographic images

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Q [Department of Cybernetics, University of Reading, Reading RG6 6AY (United Kingdom); Shao, J [Department of Electronics, University of Kent at Canterbury, Kent CT2 7NT (United Kingdom); Ruiz, V [Department of Cybernetics, University of Reading, Reading RG6 6AY (United Kingdom)

    2005-01-01

    This paper investigates detection of architectural distortion in mammographic images using support vector machine. Hausdorff dimension is used to characterise the texture feature of mammographic images. Support vector machine, a learning machine based on statistical learning theory, is trained through supervised learning to detect architectural distortion. Compared to the Radial Basis Function neural networks, SVM produced more accurate classification results in distinguishing architectural distortion abnormality from normal breast parenchyma.

  11. Reducing Field Distortion in Magnetic Resonance Imaging

    Science.gov (United States)

    Eom, Byeong Ho; Penanen, Konstantin; Hahn, Inseob

    2010-01-01

    A concept for a magnetic resonance imaging (MRI) system that would utilize a relatively weak magnetic field provides for several design features that differ significantly from the corresponding features of conventional MRI systems. Notable among these features are a magnetic-field configuration that reduces (relative to the conventional configuration) distortion and blurring of the image, the use of a superconducting quantum interference device (SQUID) magnetometer as the detector, and an imaging procedure suited for the unconventional field configuration and sensor. In a typical application of MRI, a radio-frequency pulse is used to excite precession of the magnetic moments of protons in an applied magnetic field, and the decaying precession is detected for a short time following the pulse. The precession occurs at a resonance frequency proportional to the strengths of the magnetic field and the proton magnetic moment. The magnetic field is configured to vary with position in a known way; hence, by virtue of the aforesaid proportionality, the resonance frequency varies with position in a known way. In other words, position is encoded as resonance frequency. MRI using magnetic fields weaker than those of conventional MRI offers several advantages, including cheaper and smaller equipment, greater compatibility with metallic objects, and higher image quality because of low susceptibility distortion and enhanced spin-lattice-relaxation- time contrast. SQUID MRI is being developed into a practical MRI method for applied magnetic flux densities of the order of only 100 T

  12. Distortion correction algorithm for UAV remote sensing image based on CUDA

    International Nuclear Information System (INIS)

    Wenhao, Zhang; Yingcheng, Li; Delong, Li; Changsheng, Teng; Jin, Liu

    2014-01-01

    In China, natural disasters are characterized by wide distribution, severe destruction and high impact range, and they cause significant property damage and casualties every year. Following a disaster, timely and accurate acquisition of geospatial information can provide an important basis for disaster assessment, emergency relief, and reconstruction. In recent years, Unmanned Aerial Vehicle (UAV) remote sensing systems have played an important role in major natural disasters, with UAVs becoming an important technique of obtaining disaster information. UAV is equipped with a non-metric digital camera with lens distortion, resulting in larger geometric deformation for acquired images, and affecting the accuracy of subsequent processing. The slow speed of the traditional CPU-based distortion correction algorithm cannot meet the requirements of disaster emergencies. Therefore, we propose a Compute Unified Device Architecture (CUDA)-based image distortion correction algorithm for UAV remote sensing, which takes advantage of the powerful parallel processing capability of the GPU, greatly improving the efficiency of distortion correction. Our experiments show that, compared with traditional CPU algorithms and regardless of image loading and saving times, the maximum acceleration ratio using our proposed algorithm reaches 58 times that using the traditional algorithm. Thus, data processing time can be reduced by one to two hours, thereby considerably improving disaster emergency response capability

  13. Correction of distortions in optical coherence tomography imaging of the eye

    Energy Technology Data Exchange (ETDEWEB)

    Podoleanu, Adrian [Applied Optics Group, University of Kent, Canterbury (United Kingdom); Charalambous, Ismini [Applied Optics Group, University of Kent, Canterbury (United Kingdom); Plesea, Lucian [Applied Optics Group, University of Kent, Canterbury (United Kingdom); Dogariu, Aristide [School of Optics, CREOL, University of Central Florida, Orlando, FL (United States); Rosen, Richard [Advanced Retinal Imaging Center, New York Eye and Ear Infirmary, NY (United States)

    2004-04-07

    Optical coherence tomography (OCT) images are affected by artefacts. These artefacts are the result of different factors such as refraction, curvature of the intermediate layers up to the depth of interest and the scanning procedure. The effect of such errors is different, depending on the way the image is acquired, either en-face or longitudinal OCT. We quantify the distortions by evaluating a lateral and an axial error. These measure the lateral and axial deviations of each image point from the object point inside the tissue. We show that the axial distortion can be larger than the achievable depth resolution in modern OCT systems. We have investigated these errors in imaging different tissue: cornea and retina in vivo and an intraocular lens in vitro.

  14. A high precision recipe for correcting images distorted by a tapered fiber optic

    International Nuclear Information System (INIS)

    Islam, M Sirajul; Kitchen, M J; Lewis, R A; Uesugi, K

    2010-01-01

    Images captured with a tapered fiber optic camera show significant spatial distortion mainly because the spatial orientation of the fiber bundles is not identical at each end of the taper. We present three different techniques for the automatic distortion correction of images acquired with a charge-coupled device (CCD) camera bonded to a tapered optical fiber. In this paper we report - (i) comparison of various methods for distortion correction (ii) extensive quantitative analysis of the techniques and (iii) experiments carried out using a high resolution fiber optic camera. A pinhole array was used to find control points in the distorted image space. These control points were then associated with their known true coordinates. To apply geometric correction, three different approaches were investigated - global polynomial fitting, local polynomial fitting and triangulated interpolation. Sub-pixel accuracy was achieved in all approaches, but the experimental results reveal that the triangulated interpolation gave the most satisfactory result for the distortion correction. The effect of proper alignment of the mask with the fiber optic taper (FOT) camera was also investigated. It was found that the overall dewarping error is minimal when the mask is almost parallel to the CCD.

  15. Review and comparison of geometric distortion correction schemes in MR images used in stereotactic radiosurgery applications

    Science.gov (United States)

    Pappas, E. P.; Dellios, D.; Seimenis, I.; Moutsatsos, A.; Georgiou, E.; Karaiskos, P.

    2017-11-01

    In Stereotactic Radiosurgery (SRS), MR-images are widely used for target localization and delineation in order to take advantage of the superior soft tissue contrast they exhibit. However, spatial dose delivery accuracy may be deteriorated due to geometric distortions which are partly attributed to static magnetic field inhomogeneity and patient/object-induced chemical shift and susceptibility related artifacts, known as sequence-dependent distortions. Several post-imaging sequence-dependent distortion correction schemes have been proposed which mainly employ the reversal of read gradient polarity. The scope of this work is to review, evaluate and compare the efficacy of two proposed correction approaches. A specially designed phantom which incorporates 947 control points (CPs) for distortion detection was utilized. The phantom was MR scanned at 1.5T using the head coil and the clinically employed pulse sequence for SRS treatment planning. An additional scan was performed with identical imaging parameters except for reversal of read gradient polarity. In-house MATLAB routines were developed for implementation of the signal integration and average-image distortion correction techniques. The mean CP locations of the two MR scans were regarded as the reference CP distribution. Residual distortion was assessed by comparing the corrected CP locations with corresponding reference positions. Mean absolute distortion on frequency encoding direction was reduced from 0.34mm (original images) to 0.15mm and 0.14mm following application of signal integration and average-image methods, respectively. However, a maximum residual distortion of 0.7mm was still observed for both techniques. The signal integration method relies on the accuracy of edge detection and requires 3-4 hours of post-imaging computational time. The average-image technique is a more efficient (processing time of the order of seconds) and easier to implement method to improve geometric accuracy in such

  16. Image reconstruction technique using projection data from neutron tomography system

    Directory of Open Access Journals (Sweden)

    Waleed Abd el Bar

    2015-12-01

    Full Text Available Neutron tomography is a very powerful technique for nondestructive evaluation of heavy industrial components as well as for soft hydrogenous materials enclosed in heavy metals which are usually difficult to image using X-rays. Due to the properties of the image acquisition system, the projection images are distorted by several artifacts, and these reduce the quality of the reconstruction. In order to eliminate these harmful effects the projection images should be corrected before reconstruction. This paper gives a description of a filter back projection (FBP technique, which is used for reconstruction of projected data obtained from transmission measurements by neutron tomography system We demonstrated the use of spatial Discrete Fourier Transform (DFT and the 2D Inverse DFT in the formulation of the method, and outlined the theory of reconstruction of a 2D neutron image from a sequence of 1D projections taken at different angles between 0 and π in MATLAB environment. Projections are generated by applying the Radon transform to the original image at different angles.

  17. Novel grid combined with peripheral distortion correction for ultra-widefield image grading of age-related macular degeneration

    Directory of Open Access Journals (Sweden)

    Oellers P

    2017-11-01

    Full Text Available Patrick Oellers,1,* Inês Laíns,1,2,* Steven Mach,1 Shady Garas,1 Ivana K Kim,1 Demetrios G Vavvas,1 Joan W Miller,1 Deeba Husain,1 John B Miller1 1Retina Service, Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; 2Faculty of Medicine, University of Coimbra, Coimbra, Portugal *These authors contributed equally to this work Purpose: Eyes with age-related macular degeneration (AMD often harbor pathological changes in the retinal periphery and perimacular region. These extramacular changes have not been well classified, but may be phenotypically and functionally relevant. The purpose of this study was to demonstrate a novel grid to systematically study peripheral retinal abnormalities in AMD using geometric distortion-corrected ultra-widefield (UWF imaging.Methods: This is a cross-sectional observational case series. Consecutive patients with AMD without any other coexisting vitreoretinal disease and control patients over age 50 without AMD or any other vitreoretinal disease were imaged using Optos 200 Tx. Captured 200° UWF images were corrected for peripheral geometric distortion using Optos transformation software. A newly developed grid to study perimacular and peripheral abnormalities in AMD was then projected onto the images.Results: Peripheral and perimacular changes such as drusen, retinal pigment epithelium changes and atrophy were found in patients with AMD. The presented grid in conjunction with geometric distortion-corrected UWF images allowed for systematic study of these peripheral changes in AMD.Conclusion: We present a novel grid to study peripheral and posterior pole changes in AMD. The grid is unique in that it adds a perimacular zone, which may be important in characterizing certain phenotypes in AMD. Our UWF images were corrected for geometric peripheral distortion to accurately reflect the anatomical dimensions of the retina. This grid offers a reliable and reproducible foundation

  18. A methodology to investigate the impact of image distortions on the radiation dose when using magnetic resonance images for planning

    Science.gov (United States)

    Yan, Yue; Yang, Jinzhong; Beddar, Sam; Ibbott, Geoffrey; Wen, Zhifei; Court, Laurence E.; Hwang, Ken-Pin; Kadbi, Mo; Krishnan, Sunil; Fuller, Clifton D.; Frank, Steven J.; Yang, James; Balter, Peter; Kudchadker, Rajat J.; Wang, Jihong

    2018-04-01

    We developed a novel technique to study the impact of geometric distortion of magnetic resonance imaging (MRI) on intensity-modulated radiation therapy treatment planning. The measured 3D datasets of residual geometric distortion (a 1.5 T MRI component of an MRI linear accelerator system) was fitted with a second-order polynomial model to map the spatial dependence of geometric distortions. Then the geometric distortion model was applied to computed tomography (CT) image and structure data to simulate the distortion of MRI data and structures. Fourteen CT-based treatment plans were selected from patients treated for gastrointestinal, genitourinary, thoracic, head and neck, or spinal tumors. Plans based on the distorted CT and structure data were generated (as the distorted plans). Dose deviations of the distorted plans were calculated and compared with the original plans to study the dosimetric impact of MRI distortion. The MRI geometric distortion led to notable dose deviations in five of the 14 patients, causing loss of target coverage of up to 3.68% and dose deviations to organs at risk in three patients, increasing the mean dose to the chest wall by up to 6.19 Gy in a gastrointestinal patient, and increases the maximum dose to the lung by 5.17 Gy in a thoracic patient.

  19. Correction method and software for image distortion and nonuniform response in charge-coupled device-based x-ray detectors utilizing x-ray image intensifier

    International Nuclear Information System (INIS)

    Ito, Kazuki; Kamikubo, Hironari; Yagi, Naoto; Amemiya, Yoshiyuki

    2005-01-01

    An on-site method of correcting the image distortion and nonuniform response of a charge-coupled device (CCD)-based X-ray detector was developed using the response of the imaging plate as a reference. The CCD-based X-ray detector consists of a beryllium-windowed X-ray image intensifier (Be-XRII) and a CCD as the image sensor. An image distortion of 29% was improved to less than 1% after the correction. In the correction of nonuniform response due to image distortion, subpixel approximation was performed for the redistribution of pixel values. The optimal number of subpixels was also discussed. In an experiment with polystyrene (PS) latex, it was verified that the correction of both image distortion and nonuniform response worked properly. The correction for the 'contrast reduction' problem was also demonstrated for an isotropic X-ray scattering pattern from the PS latex. (author)

  20. Rate dependent image distortions in proportional counters

    International Nuclear Information System (INIS)

    Trow, M.W.; Bento, A.C.; Smith, A.

    1994-01-01

    The positional linearity of imaging proportional counters is affected by the intensity distribution of the incident radiation. A mechanism for this effect is described, in which drifting positive ions in the gas produce a distorting electric field which perturbs the trajectories of the primary electrons. In certain cases, the phenomenon causes an apparent improvement of the position resolution. We demonstrate the effect in a detector filled with a xenon-argon-CO 2 mixture. The images obtained are compared with the results of a simulation. If quantitative predictions for a particular detector are required, accurate values of the absolute detector gain, ion mobility and electron drift velocity are needed. ((orig.))

  1. Selecting Map Projections in Minimizing Area Distortions in GIS Applications

    Directory of Open Access Journals (Sweden)

    Ahmet Kaya

    2008-12-01

    Full Text Available Varioussoftware for Geographical Information Systems (GISs have been developed and used in many different engineering projects. In GIS applications, map coverage is important in terms of performing reliable and meaningful queries. Map projections can be conformal, equal-area and equidistant. The goal of an application plays an important role in choosing one of those projections. Choosing the equal-area projection for an application in which area information is used (forestry, agriculture, ecosystem etc reduces the amount of distortion on the area, but many users using GIS ignore this fact and continue to use applications with present map sheets no matter in what map projection it is. For example, extracting area information from data whose country system’s map sheet is in conformal projection is relatively more distorted, compared to an equal-area projection one. The goal of this study is to make the best decision in choosing the most proper equal-area projection among the choices provided by ArcGIS 9.0, which is a popular GIS software package, and making a comparison on area errors when conformal projection is used. In this study, the area of parcels chosen in three different regions and geographic coordinates and whose sizes vary between 0.01 to 1,000,000 ha are calculated according to Transversal Mercator (TM, 3°, Universal Transversal Mercator (UTM, 6° and 14 different equal-area projections existing in the ArcGIS 9.0 GIS software package. The parcel areas calculated with geographical coordinates are accepted as definite. The difference between the sizes calculated according to projection coordinates and real sizes of the parcels are determined. Consequently, the appropriate projections are decided for the areas smaller and equal than 1,000 ha and greater than 1,000 ha in the GIS software package.

  2. Characterization of system-related geometric distortions in MR images employed in Gamma Knife radiosurgery applications

    Science.gov (United States)

    Pappas, E. P.; Seimenis, I.; Moutsatsos, A.; Georgiou, E.; Nomikos, P.; Karaiskos, P.

    2016-10-01

    This work provides characterization of system-related geometric distortions present in MRIs used in Gamma Knife (GK) stereotactic radiosurgery (SRS) treatment planning. A custom-made phantom, compatible with the Leksell stereotactic frame model G and encompassing 947 control points (CPs), was utilized. MR images were obtained with and without the frame, thus allowing discrimination of frame-induced distortions. In the absence of the frame and following compensation for field inhomogeneities, measured average CP disposition owing to gradient nonlinearities was 0.53 mm. In presence of the frame, contrarily, detected distortion was greatly increased (up to about 5 mm) in the vicinity of the frame base due to eddy currents induced in the closed loop of its aluminum material. Frame-related distortion was obliterated at approximately 90 mm from the frame base. Although the region with the maximum observed distortion may not lie within the GK treatable volume, the presence of the frame results in distortion of the order of 1.5 mm at a 7 cm distance from the center of the Leksell space. Additionally, severe distortions observed outside the treatable volume could possibly impinge on the delivery accuracy mainly by adversely affecting the registration process (e.g. the position of the lower part of the N-shaped fiducials used to define the stereotactic space may be miss-registered). Images acquired with a modified version of the frame developed by replacing its front side with an acrylic bar, thus interrupting the closed aluminum loop and reducing the induced eddy currents, were shown to benefit from relatively reduced distortion. System-related distortion was also identified in patient MR images. Using corresponding CT angiography images as a reference, an offset of 1.1 mm was detected for two vessels lying in close proximity to the frame base, while excellent spatial agreement was observed for a vessel far apart from the frame base.

  3. Correction of distortions in a discontinuous image

    International Nuclear Information System (INIS)

    Geagan, M.J.; Chase, B.B.; Muehllehner, G.

    1994-01-01

    Large area position-sensitive NaI detectors have been successfully applied to positron emission tomography (PET). Typical PET studies involve detector singles rates in excess of 500 kcps, which can lead to pile-up and image degradation as a function of countrate. Better high countrate performance can be achieved with a local centroid algorithm, in which the position of each event is calculated from a small group of photomultipliers (PMTs) immediately surrounding the PMT with the highest signal (the peak PMT). The local centroid contains most of the light from the scintillation. If a local centroid of only seven PMTs is used, the position resolution becomes quite stable at high countrates, however, discontinuities appear in the detector flood image as events cluster around each PMT. We therefore developed a method for distortion correction of a discontinuous flood image. For each PMT on the detector, a peak PMT domain is defined. The peak PMT domain is the area on the detector where that PMT could have the highest signal. The peak PMT domains overlap slightly, so that all combinations of peak PMT and position are represented. A collimated source is moved through a regular grid of points - a template - over each peak PMT region. A short collection is performed at each point, and the real and measured position data are recorded. For each point in the spatial range of a given PMT, distortion correction offsets are computed by interpolating between the data points which correspond to that PMT. This new method has been implemented and evaluated. System resolution has been measured at low and high countrates. The high countrate resolution is better with the new method, with no degradation in low countrate resolution. The axial sensitivity profile is also more stable at high countrates, compared to the previously developed method. 3-D brain phantom images show a clear improvement in image quality at high countrates. ((orig.))

  4. Medical-grade Sterilizable Target for Fluid-immersed Fetoscope Optical Distortion Calibration.

    Science.gov (United States)

    Nikitichev, Daniil I; Shakir, Dzhoshkun I; Chadebecq, François; Tella, Marcel; Deprest, Jan; Stoyanov, Danail; Ourselin, Sébastien; Vercauteren, Tom

    2017-02-23

    We have developed a calibration target for use with fluid-immersed endoscopes within the context of the GIFT-Surg (Guided Instrumentation for Fetal Therapy and Surgery) project. One of the aims of this project is to engineer novel, real-time image processing methods for intra-operative use in the treatment of congenital birth defects, such as spina bifida and the twin-to-twin transfusion syndrome. The developed target allows for the sterility-preserving optical distortion calibration of endoscopes within a few minutes. Good optical distortion calibration and compensation are important for mitigating undesirable effects like radial distortions, which not only hamper accurate imaging using existing endoscopic technology during fetal surgery, but also make acquired images less suitable for potentially very useful image computing applications, like real-time mosaicing. In this paper proposes a novel fabrication method to create an affordable, sterilizable calibration target suitable for use in a clinical setup. This method involves etching a calibration pattern by laser cutting a sandblasted stainless steel sheet. This target was validated using the camera calibration module provided by OpenCV, a state-of-the-art software library popular in the computer vision community.

  5. Image distortion due to refraction by planar surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Arizaga, R; Cap, N; Rabal, H; Trivi, M [Centro de Investigaciones Opticas (CONICET La Plata-CIC) and OPTIMO Dto de Ciencias Basicas, Fac. de Ingenieria UNLP, PO Box 3, 1897 Gonnet, La Plata (Argentina)

    2010-01-15

    The term 'apparent depth' is commonly treated in textbooks as an issue easily understandable from the point of view of paraxial optical geometrical optics. Nevertheless, everyday life tells us that most of the time the observation of objects immersed in water is made under a great range of visual angles where the paraxial approximation is not valid. Here we developed a non-paraxial treatment to calculate the position and shape of the image of objects immersed in liquids of different refractive indices. The approach was focused on the parametric positions of the images of a single point at different viewing angles. Then we calculated how the image of an extended object is distorted. By using the Matlab software, it is possible to visualize the images for different geometrical conditions. We also include the analysis for refractive index with negative values as is the case of metamaterials.

  6. Image distortion due to refraction by planar surfaces

    International Nuclear Information System (INIS)

    Arizaga, R; Cap, N; Rabal, H; Trivi, M

    2010-01-01

    The term 'apparent depth' is commonly treated in textbooks as an issue easily understandable from the point of view of paraxial optical geometrical optics. Nevertheless, everyday life tells us that most of the time the observation of objects immersed in water is made under a great range of visual angles where the paraxial approximation is not valid. Here we developed a non-paraxial treatment to calculate the position and shape of the image of objects immersed in liquids of different refractive indices. The approach was focused on the parametric positions of the images of a single point at different viewing angles. Then we calculated how the image of an extended object is distorted. By using the Matlab software, it is possible to visualize the images for different geometrical conditions. We also include the analysis for refractive index with negative values as is the case of metamaterials.

  7. Diffusion tensor imaging of the brain. Effects of distortion correction with correspondence to numbers of encoding directions

    International Nuclear Information System (INIS)

    Yoshikawa, Takeharu; Aoki, Shigeki; Abe, Osamu; Hayashi, Naoto; Masutani, Yoshitaka; Masumoto, Tomohiko; Mori, Harushi; Satake, Yoshiroh; Ohtomo, Kuni

    2008-01-01

    The aim of the study was to estimate the effect of distortion correction with correspondence to numbers of encoding directions to acquire diffusion tensor imaging (DTI) of improved quality. Ten volunteers underwent DTI of the head using echo planar imaging with 6, 13, 27, and 55 encoding directions. Fractional anisotropy (FA) maps and apparent diffusion coefficient (ADC) maps were created before and after distortion correction. Regions of interest were placed in the corpus callosum on each map, and standard deviations of FA and ADC were calculated. FA maps were also evaluated visually by experienced neuroradiologists. Dispersion of standard deviations tended to be reduced after distortion correction, with significant differences found in FA maps with 6 encoding directions, ADC maps with 6 directions, and ADC maps with 13 directions (P<0.001, P<0.005, and P<0.05, respectively). Visual image quality was improved after distortion correction (P<0.01 for all of the visual comparisons). Distortion correction is effective in providing DTI of enhanced quality, notwithstanding the number of encoding directions. (author)

  8. The clinical utility of reduced-distortion readout-segmented echo-planar imaging in the head and neck region: initial experience

    Energy Technology Data Exchange (ETDEWEB)

    Koyasu, Sho; Iima, Mami; Umeoka, Shigeaki; Morisawa, Nobuko; Togashi, Kaori [Kyoto University, Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Sakyo-Ku, Kyoto (Japan); Porter, David A. [Siemens AG, MED MR PLM AW Neurology, Allee am Roethelheimpark 2, Erlangen (Germany); Ito, Juichi [Kyoto University, Department of Otolaryngology, Head and Neck Surgery, Graduate School of Medicine, Sakyo-Ku, Kyoto (Japan); Le Bihan, Denis [Kyoto University, Human Brain Research Center, Graduate School of Medicine, Sakyo-Ku, Kyoto (Japan); Neurospin, CEA-Saclay Center, Gif-sur-Yvette Cedex (France)

    2014-12-15

    To evaluate whether readout-segmented echo-planar imaging (RS-EPI) diffusion weighted image (DWI) can diminish image distortion in the head and neck area, compared with single-shot (SS)-EPI DWI. We conducted phantom and patient studies using 3 T magnetic resonance imaging (MRI) with a 16-channel coil. For the phantom study, we evaluated distortion and signal homogeneity in gel phantoms. For the patient study, 29 consecutive patients with clinically suspicious parotid lesions were prospectively enrolled. RS-EPI and SS-EPI DWI were evaluated by two independent readers for identification of organ/lesion and distortion, using semiquantitative scales and quantitative scores. Apparent diffusion coefficient (ADC) values and contrast-noise ratios of parotid tumours (if present; n = 15) were also compared. The phantom experiments showed that RS-EPI provided less distorted and more homogeneous ADC maps than SS-EPI. In the patient study, RS-EPI was found to provide significantly less distortion in almost all organs/lesions (p < 0.05), according to both semiquantitative scales and quantitative scores. There was no significant difference in ADC values and contrast-noise ratios between the two DWI techniques. The distortion in DWI was significantly reduced with RS-EPI in both phantom and patient studies. The RS-EPI technique provided more homogenous images than SS-EPI, and can potentially offer higher image quality in the head and neck area. (orig.)

  9. Centi-pixel accurate real-time inverse distortion correction

    CSIR Research Space (South Africa)

    De Villiers, Johan P

    2008-11-01

    Full Text Available Inverse distortion is used to create an undistorted image from a distorted image. For each pixel in the undistorted image it is required to determine which pixel in the distorted image should be used. However the process of characterizing a lens...

  10. Analysis of Brown camera distortion model

    Science.gov (United States)

    Nowakowski, Artur; Skarbek, Władysław

    2013-10-01

    Contemporary image acquisition devices introduce optical distortion into image. It results in pixel displacement and therefore needs to be compensated for many computer vision applications. The distortion is usually modeled by the Brown distortion model, which parameters can be included in camera calibration task. In this paper we describe original model, its dependencies and analyze orthogonality with regard to radius for its decentering distortion component. We also report experiments with camera calibration algorithm included in OpenCV library, especially a stability of distortion parameters estimation is evaluated.

  11. Projective aspects on cognitive performance: distortions in emotional perception correlate with personality

    Directory of Open Access Journals (Sweden)

    Fabiano Koich Miguel

    2016-01-01

    Full Text Available Abstract Several approaches in psychology converge with the concept that individual characteristics may interfere with the perception and interpretation of the world. We hypothesized that such phenomenon could be identified in instruments that were not only projective techniques. The research’s goal was to study perceptive distortions in a cognitive test and their relations with personality instruments. Responses from 222 participants in the Computerized Test of Primary Emotions Perception (PEP were rated in distortion scores, which related to perceiving emotions that were not present. We used Spearman correlations between these scores and the Rorschach Inkblot test, Dimensional Clinical Personality Inventory, and tasks of Verbal and Abstract Reasoning. Results showed that the distortions were not related to intellectual abilities. Distortions of joy were associated with greater interest in interpersonal contact; love with positive view of the interactions and need for attention; fear with concerns about aggressiveness and autonomy; sadness with lower perception of damaged objects; disgust with feelings of loneliness; and anger with criticism avoidance, distrust, feelings of loneliness, and aggressive behaviour. The results support the proposal that altered perception of reality is related to affective or personality characteristics.

  12. Phantom limb phenomenon as an example of body image distortion

    Directory of Open Access Journals (Sweden)

    Razmus Magdalena

    2017-06-01

    Full Text Available Introduction: The perception of one’s own body, its mental representation, and emotional attitude to it are the components of so-called “body image” [1]. The aim of the research was to analyse phantom pain and non-painful phantom sensations as results of limb loss and to explain them in terms of body image distortion.

  13. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging.

    Science.gov (United States)

    Yeo, Desmond T B; Fessler, Jeffrey A; Kim, Boklye

    2008-06-01

    The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is "corrected" with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection.

  14. Mediating Effect of Body Image Distortion on Weight Loss Efforts in Normal-Weight and Underweight Korean Adolescent Girls

    Science.gov (United States)

    Choi, Jeong-Sil; Kim, Ji-Soo

    2017-01-01

    Background: We explored the relationship between body mass index-for-age percentile, body image distortion, and unnecessary weight loss efforts in Korean adolescent girls who are underweight and normal weight and examined the mediating effect of body image distortion on weight loss efforts. Methods: This study used data from the 2013 Korea Youth…

  15. Detection of chromatic and luminance distortions in natural scenes.

    Science.gov (United States)

    Jennings, Ben J; Wang, Karen; Menzies, Samantha; Kingdom, Frederick A A

    2015-09-01

    A number of studies have measured visual thresholds for detecting spatial distortions applied to images of natural scenes. In one study, Bex [J. Vis.10(2), 1 (2010)10.1167/10.2.231534-7362] measured sensitivity to sinusoidal spatial modulations of image scale. Here, we measure sensitivity to sinusoidal scale distortions applied to the chromatic, luminance, or both layers of natural scene images. We first established that sensitivity does not depend on whether the undistorted comparison image was of the same or of a different scene. Next, we found that, when the luminance but not chromatic layer was distorted, performance was the same regardless of whether the chromatic layer was present, absent, or phase-scrambled; in other words, the chromatic layer, in whatever form, did not affect sensitivity to the luminance layer distortion. However, when the chromatic layer was distorted, sensitivity was higher when the luminance layer was intact compared to when absent or phase-scrambled. These detection threshold results complement the appearance of periodic distortions of the image scale: when the luminance layer is distorted visibly, the scene appears distorted, but when the chromatic layer is distorted visibly, there is little apparent scene distortion. We conclude that (a) observers have a built-in sense of how a normal image of a natural scene should appear, and (b) the detection of distortion in, as well as the apparent distortion of, natural scene images is mediated predominantly by the luminance layer and not chromatic layer.

  16. Distorted images of one's own body activates the prefrontal cortex and limbic/paralimbic system in young women: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Kurosaki, Mitsuhaya; Shirao, Naoko; Yamashita, Hidehisa; Okamoto, Yasumasa; Yamawaki, Shigeto

    2006-02-15

    Our aim was to study the gender differences in brain activation upon viewing visual stimuli of distorted images of one's own body. We performed functional magnetic resonance imaging on 11 healthy young men and 11 healthy young women using the "body image tasks" which consisted of fat, real, and thin shapes of the subject's own body. Comparison of the brain activation upon performing the fat-image task versus real-image task showed significant activation of the bilateral prefrontal cortex and left parahippocampal area including the amygdala in the women, and significant activation of the right occipital lobe including the primary and secondary visual cortices in the men. Comparison of brain activation upon performing the thin-image task versus real-image task showed significant activation of the left prefrontal cortex, left limbic area including the cingulate gyrus and paralimbic area including the insula in women, and significant activation of the occipital lobe including the left primary and secondary visual cortices in men. These results suggest that women tend to perceive distorted images of their own bodies by complex cognitive processing of emotion, whereas men tend to perceive distorted images of their own bodies by object visual processing and spatial visual processing.

  17. Research and implementation of the algorithm for unwrapped and distortion correction basing on CORDIC for panoramic image

    Science.gov (United States)

    Zhang, Zhenhai; Li, Kejie; Wu, Xiaobing; Zhang, Shujiang

    2008-03-01

    The unwrapped and correcting algorithm based on Coordinate Rotation Digital Computer (CORDIC) and bilinear interpolation algorithm was presented in this paper, with the purpose of processing dynamic panoramic annular image. An original annular panoramic image captured by panoramic annular lens (PAL) can be unwrapped and corrected to conventional rectangular image without distortion, which is much more coincident with people's vision. The algorithm for panoramic image processing is modeled by VHDL and implemented in FPGA. The experimental results show that the proposed panoramic image algorithm for unwrapped and distortion correction has the lower computation complexity and the architecture for dynamic panoramic image processing has lower hardware cost and power consumption. And the proposed algorithm is valid.

  18. Implementation and Application of PSF-Based EPI Distortion Correction to High Field Animal Imaging

    Directory of Open Access Journals (Sweden)

    Dominik Paul

    2009-01-01

    Full Text Available The purpose of this work is to demonstrate the functionality and performance of a PSF-based geometric distortion correction for high-field functional animal EPI. The EPI method was extended to measure the PSF and a postprocessing chain was implemented in Matlab for offline distortion correction. The correction procedure was applied to phantom and in vivo imaging of mice and rats at 9.4T using different SE-EPI and DWI-EPI protocols. Results show the significant improvement in image quality for single- and multishot EPI. Using a reduced FOV in the PSF encoding direction clearly reduced the acquisition time for PSF data by an acceleration factor of 2 or 4, without affecting the correction quality.

  19. Effects of perceptual body image distortion and early weight gain on long-term outcome of adolescent anorexia nervosa.

    Science.gov (United States)

    Boehm, Ilka; Finke, Beatrice; Tam, Friederike I; Fittig, Eike; Scholz, Michael; Gantchev, Krassimir; Roessner, Veit; Ehrlich, Stefan

    2016-12-01

    Anorexia nervosa (AN), a severe mental disorder with an onset during adolescence, has been found to be difficult to treat. Identifying variables that predict long-term outcome may help to develop better treatment strategies. Since body image distortion and weight gain are central elements of diagnosis and treatment of AN, the current study investigated perceptual body image distortion, defined as the accuracy of evaluating one's own perceived body size in relation to the actual body size, as well as total and early weight gain during inpatient treatment as predictors for long-term outcome in a sample of 76 female adolescent AN patients. Long-term outcome was defined by physical, psychological and psychosocial adjustment using the Morgan-Russell outcome assessment schedule as well as by the mere physical outcome consisting of menses and/or BMI approximately 3 years after treatment. Perceptual body image distortion and early weight gain predicted long-term outcome (explained variance 13.3 %), but not the physical outcome alone. This study provides first evidence for an association of perceptual body image distortion with long-term outcome of adolescent anorexia nervosa and underlines the importance of sufficient early weight gain.

  20. Spatial and spectral image distortions caused by diffraction of an ordinary polarised light beam by an ultrasonic wave

    Energy Technology Data Exchange (ETDEWEB)

    Machikhin, A S; Pozhar, V E [Scientific and Technological Centre of Unique Instrumentation, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-02-28

    We consider the problem of determining the spatial and spectral image distortions arising from anisotropic diffraction by ultrasonic waves in crystals with ordinary polarised light (o → e). By neglecting the small-birefringence approximation, we obtain analytical solutions that describe the dependence of the diffraction angles and wave mismatch on the acousto-optic (AO) interaction geometry and crystal parameters. The formulas derived allow one to calculate and analyse the magnitude of diffraction-induced spatial and spectral image distortions and to identify the main types of distortions: chromatic compression and trapezoidal deformation. A comparison of the values of these distortions in the diffraction of ordinary and extraordinary polarised light shows that they are almost equal in magnitude and opposite in signs, so that consistent diffraction (o → e → o or e → o → e) in two identical AO cells rotated through 180° in the plane of diffraction can compensate for these distortions. (diffraction of radiation)

  1. Studies of field distortions in a time projection chamber for the International Linear Collider

    International Nuclear Information System (INIS)

    Zenker, Klaus

    2014-12-01

    The International Linear Collider (ILC) will allow to do precision measurements of Standard Model parameter and to search for new physics. The ILD detector concept, which is developed for the ILC, uses a Time Projection Chamber (TPC) as central tracking device. The momentum resolution goal for the ILD TPC is δ(1/p t ) ≅ 10 -4 (GeV/c) -1 at a magnetic field of B=3.5 T. Field distortions of the magnetic or electric field inside the sensitive volume of the TPC distort the momentum measurements. Therefore, one needs to keep them under control and correct them with high precision. In this thesis the main sources of field distortions in the TPC are identified and their effects are determined. Furthermore, possibilities to reduce the identified field distortions are presented. One known source of distortions of the electric field are ions, produced by the gas amplification in the TPC anode, that drift into the sensitive volume of the TPC. In the first part of this work the creation of these ions in Gas Electron Multiplier (GEM), which are used for the gas amplification, is studied. It will be shown that the resulting field distortions are not acceptable at the ILD TPC. By tuning the parameters of the gas amplification at the anode the field distortion can be reduced, which is shown in measurements and simulations. In addition measurements using a modified GEM show that it is possible to further reduce the field distortions with such a GEM. In the second part of this work field distortions arising at boundaries between individual readout modules are investigated using simulation studies. It will be shown in simulations, which are verified by measurement results, that these field distortions significantly influence the readout module performance. Based on the simulation results the GEM based readout module developed at DESY is optimised and the field distortions are reduced. These performance improvements could also be verified in measurements. Finally, a laser

  2. Laser display system for multi-depth screen projection scenarios.

    Science.gov (United States)

    La Torre, J Pablo; Mayes, Nathan; Riza, Nabeel A

    2017-11-10

    Proposed is a laser projection display system that uses an electronically controlled variable focus lens (ECVFL) to achieve sharp and in-focus image projection over multi-distance three-dimensional (3D) conformal screens. The system also functions as an embedded distance sensor that enables 3D mapping of the multi-level screen platform before the desired laser scanned beam focused/defocused projected spot sizes are matched to the different localized screen distances on the 3D screen. Compared to conventional laser scanning and spatial light modulator (SLM) based projection systems, the proposed design offers in-focus non-distorted projection over a multi-distance screen zone with varying depths. An experimental projection system for a screen depth variation of 65 cm is demonstrated using a 633 nm laser beam, 3 KHz scan speed galvo-scanning mirrors, and a liquid-based ECVFL. As a basic demonstration, an in-house developed MATLAB based graphic user interface is deployed to work along with the laser projection display, enabling user inputs like text strings or predefined image projection. The user can specify projection screen distance, scanned laser linewidth, projected text font size, projected image dimensions, and laser scanning rate. Projected images are shown highlighting the 3D control capabilities of the display, including the production of a non-distorted image onto two-depths versus a distorted image via dominant prior-art projection methods.

  3. Numerical correction of distorted images in full-field optical coherence tomography

    Science.gov (United States)

    Min, Gihyeon; Kim, Ju Wan; Choi, Woo June; Lee, Byeong Ha

    2012-03-01

    We propose a numerical method which can numerically correct the distorted en face images obtained with a full field optical coherence tomography (FF-OCT) system. It is shown that the FF-OCT image of the deep region of a biological sample is easily blurred or degraded because the sample has a refractive index (RI) much higher than its surrounding medium in general. It is analyzed that the focal plane of the imaging system is segregated from the imaging plane of the coherence-gated system due to the RI mismatch. This image-blurring phenomenon is experimentally confirmed by imaging the chrome pattern of a resolution test target through its glass substrate in water. Moreover, we demonstrate that the blurred image can be appreciably corrected by using the numerical correction process based on the Fresnel-Kirchhoff diffraction theory. The proposed correction method is applied to enhance the image of a human hair, which permits the distinct identification of the melanin granules inside the cortex layer of the hair shaft.

  4. Generic distortion model for metrology under optical microscopes

    Science.gov (United States)

    Liu, Xingjian; Li, Zhongwei; Zhong, Kai; Chao, YuhJin; Miraldo, Pedro; Shi, Yusheng

    2018-04-01

    For metrology under optical microscopes, lens distortion is the dominant source of error. Previous distortion models and correction methods mostly rely on the assumption that parametric distortion models require a priori knowledge of the microscopes' lens systems. However, because of the numerous optical elements in a microscope, distortions can be hardly represented by a simple parametric model. In this paper, a generic distortion model considering both symmetric and asymmetric distortions is developed. Such a model is obtained by using radial basis functions (RBFs) to interpolate the radius and distortion values of symmetric distortions (image coordinates and distortion rays for asymmetric distortions). An accurate and easy to implement distortion correction method is presented. With the proposed approach, quantitative measurement with better accuracy can be achieved, such as in Digital Image Correlation for deformation measurement when used with an optical microscope. The proposed technique is verified by both synthetic and real data experiments.

  5. Switched capacitor charge pump used for low-distortion imaging in atomic force microscope.

    Science.gov (United States)

    Zhang, Jie; Zhang, Lian Sheng; Feng, Zhi Hua

    2015-01-01

    The switched capacitor charge pump (SCCP) is an effective method of linearizing charges on piezoelectric actuators and therefore constitute a significant approach to nano-positioning. In this work, it was for the first time implemented in an atomic force microscope for low-distortion imaging. Experimental results showed that the image quality was improved evidently under the SCCP drive compared with that under traditional linear voltage drive. © Wiley Periodicals, Inc.

  6. Technical Note: Harmonic analysis applied to MR image distortion fields specific to arbitrarily shaped volumes.

    Science.gov (United States)

    Stanescu, T; Jaffray, D

    2018-05-25

    Magnetic resonance imaging is expected to play a more important role in radiation therapy given the recent developments in MR-guided technologies. MR images need to consistently show high spatial accuracy to facilitate RT specific tasks such as treatment planning and in-room guidance. The present study investigates a new harmonic analysis method for the characterization of complex 3D fields derived from MR images affected by system-related distortions. An interior Dirichlet problem based on solving the Laplace equation with boundary conditions (BCs) was formulated for the case of a 3D distortion field. The second-order boundary value problem (BVP) was solved using a finite elements method (FEM) for several quadratic geometries - i.e., sphere, cylinder, cuboid, D-shaped, and ellipsoid. To stress-test the method and generalize it, the BVP was also solved for more complex surfaces such as a Reuleaux 9-gon and the MR imaging volume of a scanner featuring a high degree of surface irregularities. The BCs were formatted from reference experimental data collected with a linearity phantom featuring a volumetric grid structure. The method was validated by comparing the harmonic analysis results with the corresponding experimental reference fields. The harmonic fields were found to be in good agreement with the baseline experimental data for all geometries investigated. In the case of quadratic domains, the percentage of sampling points with residual values larger than 1 mm were 0.5% and 0.2% for the axial components and vector magnitude, respectively. For the general case of a domain defined by the available MR imaging field of view, the reference data showed a peak distortion of about 12 mm and 79% of the sampling points carried a distortion magnitude larger than 1 mm (tolerance intrinsic to the experimental data). The upper limits of the residual values after comparison with the harmonic fields showed max and mean of 1.4 mm and 0.25 mm, respectively, with only 1.5% of

  7. Measures and visualization methods of map projection distortions with the use of “python matplotlib library” as an example

    Directory of Open Access Journals (Sweden)

    Pędzich Paweł

    2016-09-01

    Full Text Available The aim of the author of this article is to show the users of Geographical Information Systems how to present the distortions in a simple way. The intention of the author is also to popularize the knowledge in the scope of map projections and to inform the users of the maps that, despite all the advanced modern tools, an elimination of the problem, connected with the map projections and cartographical distortions occurring in them, has failed so far.

  8. Spatial distortion in MRI with application to stereotactic neurosurgery

    International Nuclear Information System (INIS)

    Morgan, P.S.

    1999-05-01

    The aim of this work was to implement a thorough method for quantifying the errors introduced to frame-based neurosurgical stereotactic procedures by the use of MRI. Chang and Fitzpatrick's reversed gradient distortion correction method was used, in combination with a phantom, to measure these errors. Spatial distortion in MR images of between 1 mm and 2 mm was measured. Further analysis showed that this typically introduced an additional error in the coordinate of the actual treatment point of 0.7 mm. The implications of this are discussed. The main source of distortion in the MR images used for stereotaxis was found to be the head ring. A comparison between imaging sequences and MR scanners revealed that the spatial distortion depends mainly on the bandwidth per pixel of the sequence rather than other differences in the imaging sequences. By comparison with a phase map distortion correction technique, the imaging parameters required to allow successful distortion correction with the reversed gradient method were identified. The most important was the use of full Fourier spin echo acquisitions. The reversed gradient correction method was applied to two contemporary EPI techniques. Considerable improvement was seen in the production of ADC maps after the images had been corrected for distortion. The method also was shown to be valid in application to BOLD fMRl data. (author)

  9. Micropapillary Lung Cancer with Breast Metastasis Simulating Primary Breast Cancer due to Architectural Distortion on Images

    Energy Technology Data Exchange (ETDEWEB)

    Ko, Kyung Ran; Hong, Eun Kyung; Lee, See Yeon [Center for Breast Cancer, National Cancer Center, Goyang (Korea, Republic of); Ro, Jae Yoon [The Methodist Hospital, Weill Medical College of Cornell University, Houston (United States)

    2012-03-15

    A 47-year-old Korean woman with right middle lobe lung adenocarcinoma, malignant pleural effusion, and multiple lymph node and bone metastases, after three months of lung cancer diagnosis, presented with a palpable right breast mass. Images of the right breast demonstrated architectural distortion that strongly suggested primary breast cancer. Breast biopsy revealed metastatic lung cancer with a negative result for estrogen receptor (ER), progesterone receptor (PR) and mammaglobin, and a positive result for thyroid transcription factor-1 (TTF-1). We present a case of breast metastasis from a case of lung cancer with an extensive micropapillary component, which was initially misinterpreted as a primary breast cancer due to unusual image findings with architectural distortion.

  10. Limited distortion in LSB steganography

    Science.gov (United States)

    Kim, Younhee; Duric, Zoran; Richards, Dana

    2006-02-01

    It is well known that all information hiding methods that modify the least significant bits introduce distortions into the cover objects. Those distortions have been utilized by steganalysis algorithms to detect that the objects had been modified. It has been proposed that only coefficients whose modification does not introduce large distortions should be used for embedding. In this paper we propose an effcient algorithm for information hiding in the LSBs of JPEG coefficients. Our algorithm uses parity coding to choose the coefficients whose modifications introduce minimal additional distortion. We derive the expected value of the additional distortion as a function of the message length and the probability distribution of the JPEG quantization errors of cover images. Our experiments show close agreement between the theoretical prediction and the actual additional distortion.

  11. Investigation of the 4D composite MR image distortion field associated with tumor motion for MR-guided radiotherapy.

    Science.gov (United States)

    Stanescu, T; Jaffray, D

    2016-03-01

    Magnetic resonance (MR) images are affected by geometric distortions due to the specifics of the MR scanner and patient anatomy. Quantifying the distortions associated with mobile tumors is particularly challenging due to real anatomical changes in the tumor's volume, shape, and relative location within the MR imaging volume. In this study, the authors investigate the 4D composite distortion field, which combines the effects of the susceptibility-induced and system-related distortion fields, experienced by mobile lung tumors. The susceptibility (χ) effects were numerically simulated for two specific scenarios: (a) a full motion cycle of a lung tumor due to breathing as depicted on ten phases of a 4D CBCT data set and (b) varying the tumor size and location in lung tissue via a synthetically generated sphere with variable diameter (4-80 mm). The χ simulation procedure relied on the segmentation and generation of 3D susceptibility (χ) masks and computation of the magnetic field by means of finite difference methods. A system-related distortion field, determined with a phantom and image processing algorithm, was used as a reference. The 4D composite distortion field was generated as the vector summation of the χ-induced and system-related fields. The analysis was performed for two orientations of the main magnetic field (B0), which correspond to several MRIgRT system configurations. Specifically, B0 was set along the z-axis as in the case of a cylindrical-bore scanner and in the (x,y)-plane as for a biplanar MR. Computations were also performed for a full revolution at 15° increments in the case of a rotating biplanar magnet. Histograms and metrics such as maximum, mean, and range were used to evaluate the characteristics of the 4D distortion field. The χ-induced field depends on the change in volume and shape of the moving tumor as well as the local surrounding anatomy. In the case of system-related distortions, the tumor experiences increased field

  12. Self-consistent EXAFS PDF Projection Method by Matched Correction of Fourier Filter Signal Distortion

    International Nuclear Information System (INIS)

    Lee, Jay Min; Yang, Dong-Seok

    2007-01-01

    Inverse problem solving computation was performed for solving PDF (pair distribution function) from simulated data EXAFS based on data FEFF. For a realistic comparison with experimental data, we chose a model of the first sub-shell Mn-0 pair showing the Jahn Teller distortion in crystalline LaMnO3. To restore the Fourier filtering signal distortion, involved in the first sub-shell information isolated from higher shell contents, relevant distortion matching function was computed initially from the proximity model, and iteratively from the prior-guess during consecutive regularization computation. Adaptive computation of EXAFS background correction is an issue of algorithm development, but our preliminary test was performed under the simulated background correction perfectly excluding the higher shell interference. In our numerical result, efficient convergence of iterative solution indicates a self-consistent tendency that a true PDF solution is convinced as a counterpart of genuine chi-data, provided that a background correction function is iteratively solved using an extended algorithm of MEPP (Matched EXAFS PDF Projection) under development

  13. Combined prospective and retrospective correction to reduce motion-induced image misalignment and geometric distortions in EPI.

    Science.gov (United States)

    Ooi, Melvyn B; Muraskin, Jordan; Zou, Xiaowei; Thomas, William J; Krueger, Sascha; Aksoy, Murat; Bammer, Roland; Brown, Truman R

    2013-03-01

    Despite rigid-body realignment to compensate for head motion during an echo-planar imaging time-series scan, nonrigid image deformations remain due to changes in the effective shim within the brain as the head moves through the B(0) field. The current work presents a combined prospective/retrospective solution to reduce both rigid and nonrigid components of this motion-related image misalignment. Prospective rigid-body correction, where the scan-plane orientation is dynamically updated to track with the subject's head, is performed using an active marker setup. Retrospective distortion correction is then applied to unwarp the remaining nonrigid image deformations caused by motion-induced field changes. Distortion correction relative to a reference time-frame does not require any additional field mapping scans or models, but rather uses the phase information from the echo-planar imaging time-series itself. This combined method is applied to compensate echo-planar imaging scans of volunteers performing in-plane and through-plane head motions, resulting in increased image stability beyond what either prospective or retrospective rigid-body correction alone can achieve. The combined method is also assessed in a blood oxygen level dependent functional MRI task, resulting in improved Z-score statistics. Copyright © 2012 Wiley Periodicals, Inc.

  14. Rate-distortion analysis of steganography for conveying stereovision disparity maps

    Science.gov (United States)

    Umeda, Toshiyuki; Batolomeu, Ana B. D. T.; Francob, Filipe A. L.; Delannay, Damien; Macq, Benoit M. M.

    2004-06-01

    3-D images transmission in a way which is compliant with traditional 2-D representations can be done through the embedding of disparity maps within the 2-D signal. This approach enables the transmission of stereoscopic video sequences or images on traditional analogue TV channels (PAL or NTSC) or printed photographic images. The aim of this work is to study the achievable performances of such a technique. The embedding of disparity maps has to be seen as a global rate-distortion problem. The embedding capacity through steganography is determined by the transmission channel noise and by the bearable distortion on the watermarked image. The distortion of the 3-D image displayed as two stereo views depends on the rate allocated to the complementary information required to build those two views from one reference 2-D image. Results from the works on the scalar Costa scheme are used to optimize the embedding of the disparity map compressed bit stream into the reference image. A method for computing the optimal trade off between the disparity map distortion and embedding distortion as a function of the channel impairments is proposed. The goal is to get a similar distortion on the left (the reference image) and the right (the disparity compensated image) images. We show that in typical situations the embedding of 2 bits/pixels in the left image, while the disparity map is compressed at 1 bit per pixel leads to a good trade-off. The disparity map is encoded with a strong error correcting code, including synchronisation bits.

  15. [An improved low spectral distortion PCA fusion method].

    Science.gov (United States)

    Peng, Shi; Zhang, Ai-Wu; Li, Han-Lun; Hu, Shao-Xing; Meng, Xian-Gang; Sun, Wei-Dong

    2013-10-01

    Aiming at the spectral distortion produced in PCA fusion process, the present paper proposes an improved low spectral distortion PCA fusion method. This method uses NCUT (normalized cut) image segmentation algorithm to make a complex hyperspectral remote sensing image into multiple sub-images for increasing the separability of samples, which can weaken the spectral distortions of traditional PCA fusion; Pixels similarity weighting matrix and masks were produced by using graph theory and clustering theory. These masks are used to cut the hyperspectral image and high-resolution image into some sub-region objects. All corresponding sub-region objects between the hyperspectral image and high-resolution image are fused by using PCA method, and all sub-regional integration results are spliced together to produce a new image. In the experiment, Hyperion hyperspectral data and Rapid Eye data were used. And the experiment result shows that the proposed method has the same ability to enhance spatial resolution and greater ability to improve spectral fidelity performance.

  16. Deviation rectification for dynamic measurement of rail wear based on coordinate sets projection

    International Nuclear Information System (INIS)

    Wang, Chao; Ma, Ziji; Li, Yanfu; Liu, Hongli; Zeng, Jiuzhen; Jin, Tan

    2017-01-01

    Dynamic measurement of rail wear using a laser imaging system suffers from random vibrations in the laser-based imaging sensor which cause distorted rail profiles. In this paper, a simple and effective method for rectifying profile deviation is presented to address this issue. There are two main steps: profile recognition and distortion calibration. According to the constant camera and projector parameters, efficient recognition of measured profiles is achieved by analyzing the geometric difference between normal profiles and distorted ones. For a distorted profile, by constructing coordinate sets projecting from it to the standard one on triple projecting primitives, including the rail head inner line, rail waist curve and rail jaw, iterative extrinsic camera parameter self-compensation is implemented. The distortion is calibrated by projecting the distorted profile onto the x – y plane of a measuring coordinate frame, which is parallel to the rail cross section, to eliminate the influence of random vibrations in the laser-based imaging sensor. As well as evaluating the implementation with comprehensive experiments, we also compare our method with other published works. The results exhibit the effectiveness and superiority of our method for the dynamic measurement of rail wear. (paper)

  17. Deviation rectification for dynamic measurement of rail wear based on coordinate sets projection

    Science.gov (United States)

    Wang, Chao; Ma, Ziji; Li, Yanfu; Zeng, Jiuzhen; Jin, Tan; Liu, Hongli

    2017-10-01

    Dynamic measurement of rail wear using a laser imaging system suffers from random vibrations in the laser-based imaging sensor which cause distorted rail profiles. In this paper, a simple and effective method for rectifying profile deviation is presented to address this issue. There are two main steps: profile recognition and distortion calibration. According to the constant camera and projector parameters, efficient recognition of measured profiles is achieved by analyzing the geometric difference between normal profiles and distorted ones. For a distorted profile, by constructing coordinate sets projecting from it to the standard one on triple projecting primitives, including the rail head inner line, rail waist curve and rail jaw, iterative extrinsic camera parameter self-compensation is implemented. The distortion is calibrated by projecting the distorted profile onto the x-y plane of a measuring coordinate frame, which is parallel to the rail cross section, to eliminate the influence of random vibrations in the laser-based imaging sensor. As well as evaluating the implementation with comprehensive experiments, we also compare our method with other published works. The results exhibit the effectiveness and superiority of our method for the dynamic measurement of rail wear.

  18. Distortion compensation in interferometric testing of mirrors

    International Nuclear Information System (INIS)

    Robinson, Brian M.; Reardon, Patrick J.

    2009-01-01

    We present a method to compensate for the imaging distortion encountered in interferometric testing of mirrors, which is introduced by interferometer optics as well as from geometric projection errors. Our method involves placing a mask, imprinted with a regular square grid, over the mirror and finding a transformation that relates the grid coordinates to coordinates in the base plane of the parent surface. This method can be used on finished mirrors since no fiducials have to be applied to the surfaces. A critical step in the process requires that the grid coordinates be projected onto the mirror base plane before the regression is performed. We apply the method successfully during a center-of-curvature null test of an F/2 off-axis paraboloid

  19. A GENERALIZED NON-LINEAR METHOD FOR DISTORTION CORRECTION AND TOP-DOWN VIEW CONVERSION OF FISH EYE IMAGES

    Directory of Open Access Journals (Sweden)

    Vivek Singh Bawa

    2017-06-01

    Full Text Available Advanced driver assistance systems (ADAS have been developed to automate and modify vehicles for safety and better driving experience. Among all computer vision modules in ADAS, 360-degree surround view generation of immediate surroundings of the vehicle is very important, due to application in on-road traffic assistance, parking assistance etc. This paper presents a novel algorithm for fast and computationally efficient transformation of input fisheye images into required top down view. This paper also presents a generalized framework for generating top down view of images captured by cameras with fish-eye lenses mounted on vehicles, irrespective of pitch or tilt angle. The proposed approach comprises of two major steps, viz. correcting the fish-eye lens images to rectilinear images, and generating top-view perspective of the corrected images. The images captured by the fish-eye lens possess barrel distortion, for which a nonlinear and non-iterative method is used. Thereafter, homography is used to obtain top-down view of corrected images. This paper also targets to develop surroundings of the vehicle for wider distortion less field of view and camera perspective independent top down view, with minimum computation cost which is essential due to limited computation power on vehicles.

  20. Distortion of self-image: risk factor for obesity in children and teenagers

    Directory of Open Access Journals (Sweden)

    Mercedes Rizo-Baeza

    2014-12-01

    Full Text Available Introduction: Self-image is important in the behaviour and lifestyle of children and adolescents. Analysing the self-image they have and the factors that might influence their distortion, can be used to prevent problems of obesity and anorexia. The main objective of present publication was to analyse the risk factors that may contribute to self-image distortion.Material and Methods: A descriptive survey study was conducted among 659 children and adolescents in two social classes (low and medium-high, measuring height and weight, calculating BMI percentile for age and gender. Body image and self-perception were registered.Results: The percentage of overweight-obesity is higher in scholars (41.8% boys, 28.7% girls than in adolescents (30.1% and 22.2% respectively, with no difference between socioeconomic classes. The multinomial logistic regression analysis gives a risk of believing thinner higher (p=0.000 among boys OR=2.9(95%CI:1.43-3.37, school (p=0.000 OR=2.42(95%CI:1.56-3.76 and much lower (p=0.000 between normally nourished OR=0.08(95%CI:0.05-0.13, with no differences according to socioeconomic status. The risk of believing fatter is lower (p=0.000 between boys OR=0.28(95%CI:0.14-0.57, school(p=0.072 OR=0.54(95%CI:0.27-1.6, and much higher among underweight (p=0.000 OR=9x108 (95% CI:4x108-19x108.Conclusions: Are risk factors of believing thinner: males, being in a group of schoolchildren and overweight-obesity. Conversely, are risk factors of believing fatter: females, teen and above all, be thin.  

  1. Real-time distortion correction for visual inspection systems based on FPGA

    Science.gov (United States)

    Liang, Danhua; Zhang, Zhaoxia; Chen, Xiaodong; Yu, Daoyin

    2008-03-01

    Visual inspection is a kind of new technology based on the research of computer vision, which focuses on the measurement of the object's geometry and location. It can be widely used in online measurement, and other real-time measurement process. Because of the defects of the traditional visual inspection, a new visual detection mode -all-digital intelligent acquisition and transmission is presented. The image processing, including filtering, image compression, binarization, edge detection and distortion correction, can be completed in the programmable devices -FPGA. As the wide-field angle lens is adopted in the system, the output images have serious distortion. Limited by the calculating speed of computer, software can only correct the distortion of static images but not the distortion of dynamic images. To reach the real-time need, we design a distortion correction system based on FPGA. The method of hardware distortion correction is that the spatial correction data are calculated first under software circumstance, then converted into the address of hardware storage and stored in the hardware look-up table, through which data can be read out to correct gray level. The major benefit using FPGA is that the same circuit can be used for other circularly symmetric wide-angle lenses without being modified.

  2. Goal-oriented rectification of camera-based document images.

    Science.gov (United States)

    Stamatopoulos, Nikolaos; Gatos, Basilis; Pratikakis, Ioannis; Perantonis, Stavros J

    2011-04-01

    Document digitization with either flatbed scanners or camera-based systems results in document images which often suffer from warping and perspective distortions that deteriorate the performance of current OCR approaches. In this paper, we present a goal-oriented rectification methodology to compensate for undesirable document image distortions aiming to improve the OCR result. Our approach relies upon a coarse-to-fine strategy. First, a coarse rectification is accomplished with the aid of a computationally low cost transformation which addresses the projection of a curved surface to a 2-D rectangular area. The projection of the curved surface on the plane is guided only by the textual content's appearance in the document image while incorporating a transformation which does not depend on specific model primitives or camera setup parameters. Second, pose normalization is applied on the word level aiming to restore all the local distortions of the document image. Experimental results on various document images with a variety of distortions demonstrate the robustness and effectiveness of the proposed rectification methodology using a consistent evaluation methodology that encounters OCR accuracy and a newly introduced measure using a semi-automatic procedure.

  3. Tomosynthesis-detected Architectural Distortion: Management Algorithm with Radiologic-Pathologic Correlation.

    Science.gov (United States)

    Durand, Melissa A; Wang, Steven; Hooley, Regina J; Raghu, Madhavi; Philpotts, Liane E

    2016-01-01

    As use of digital breast tomosynthesis becomes increasingly widespread, new management challenges are inevitable because tomosynthesis may reveal suspicious lesions not visible at conventional two-dimensional (2D) full-field digital mammography. Architectural distortion is a mammographic finding associated with a high positive predictive value for malignancy. It is detected more frequently at tomosynthesis than at 2D digital mammography and may even be occult at conventional 2D imaging. Few studies have focused on tomosynthesis-detected architectural distortions to date, and optimal management of these distortions has yet to be well defined. Since implementing tomosynthesis at our institution in 2011, we have learned some practical ways to assess architectural distortion. Because distortions may be subtle, tomosynthesis localization tools plus improved visualization of adjacent landmarks are crucial elements in guiding mammographic identification of elusive distortions. These same tools can guide more focused ultrasonography (US) of the breast, which facilitates detection and permits US-guided tissue sampling. Some distortions may be sonographically occult, in which case magnetic resonance imaging may be a reasonable option, both to increase diagnostic confidence and to provide a means for image-guided biopsy. As an alternative, tomosynthesis-guided biopsy, conventional stereotactic biopsy (when possible), or tomosynthesis-guided needle localization may be used to achieve tissue diagnosis. Practical uses for tomosynthesis in evaluation of architectural distortion are highlighted, potential complications are identified, and a working algorithm for management of tomosynthesis-detected architectural distortion is proposed. (©)RSNA, 2016.

  4. TU-H-206-07: Assessment of Geometric Distortion in EPI with a SPAMM Tagged Acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, K; Meier, J; Yung, J; Stafford, R [The University of Texas MD Anderson Cancer Center, Houston, TX (United States)

    2016-06-15

    Purpose: Echo planar imaging (EPI) is known to exhibit gross geometric distortion caused by multiple factors, including B0 inhomgeneity and transient eddy currents. However, diffusion weighted (DW) EPI has become indispensable for diagnosis and therapy assessment. We propose a methodology for quantifying distortion in EPI sequences that does not require the use of dedicated spatial accuracy phantoms, enabling flexibility in phantom design for QA of distortion effects in EPI protocols. Methods: The proposed methodology utilizes a saturation technique known as Spatial Modulation of Magnetization (SPAMM) that tags the imaging subject with saturated grid lines. Originally intended for tracking cardiac motion, these grids are applied to assess differences between diffusion weighting directions and b-values, or against a more geometrically robust sequence such as fast spin echo (FSE). The saturation preparation sequence consists of binomially weighted (e.g. 1-3-3-1) pulses interleaved with gradient blips along the frequency encode direction, followed by the same sequence with gradient blips in the phase encode direction. Three phantoms were assessed with these sequences: a spherical head-sized phantom, a large shimming phantom, and a modified PET ACR phantom that included compartments of water, air, oil, and Teflon. Each phantom was acquired with three sequences using parameters from a clinically appropriate protocol (22 cm head or 46 cm abdomen): a conventional DW-EPI sequence (3 DW directions), and both the DW-EPI and FSE sequences with tagging. Differences in grid locations were visualized with minimum intensity projection between images, and measured using intersecting locations on the grids. Results: Grid lines were clearly visualized on tagged images and enabled quantification of distortions. Maximum eddy current induced errors of 10.8 to 14.8 mm were observed in areas away from isocenter with DW gradients applied in various directions. Conclusion: SPAMM tagging

  5. 3D fingerprint imaging system based on full-field fringe projection profilometry

    Science.gov (United States)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  6. System for objective assessment of image differences in digital cinema

    Science.gov (United States)

    Fliegel, Karel; Krasula, Lukáš; Páta, Petr; Myslík, Jiří; Pecák, Josef; Jícha, Marek

    2014-09-01

    There is high demand for quick digitization and subsequent image restoration of archived film records. Digitization is very urgent in many cases because various invaluable pieces of cultural heritage are stored on aging media. Only selected records can be reconstructed perfectly using painstaking manual or semi-automatic procedures. This paper aims to answer the question what are the quality requirements on the restoration process in order to obtain acceptably close visual perception of the digitally restored film in comparison to the original analog film copy. This knowledge is very important to preserve the original artistic intention of the movie producers. Subjective experiment with artificially distorted images has been conducted in order to answer the question what is the visual impact of common image distortions in digital cinema. Typical color and contrast distortions were introduced and test images were presented to viewers using digital projector. Based on the outcome of this subjective evaluation a system for objective assessment of image distortions has been developed and its performance tested. The system utilizes calibrated digital single-lens reflex camera and subsequent analysis of suitable features of images captured from the projection screen. The evaluation of captured image data has been optimized in order to obtain predicted differences between the reference and distorted images while achieving high correlation with the results of subjective assessment. The system can be used to objectively determine the difference between analog film and digital cinema images on the projection screen.

  7. Just Noticeable Distortion Model and Its Application in Color Image Watermarking

    Science.gov (United States)

    Liu, Kuo-Cheng

    In this paper, a perceptually adaptive watermarking scheme for color images is proposed in order to achieve robustness and transparency. A new just noticeable distortion (JND) estimator for color images is first designed in the wavelet domain. The key issue of the JND model is to effectively integrate visual masking effects. The estimator is an extension to the perceptual model that is used in image coding for grayscale images. Except for the visual masking effects given coefficient by coefficient by taking into account the luminance content and the texture of grayscale images, the crossed masking effect given by the interaction between luminance and chrominance components and the effect given by the variance within the local region of the target coefficient are investigated such that the visibility threshold for the human visual system (HVS) can be evaluated. In a locally adaptive fashion based on the wavelet decomposition, the estimator applies to all subbands of luminance and chrominance components of color images and is used to measure the visibility of wavelet quantization errors. The subband JND profiles are then incorporated into the proposed color image watermarking scheme. Performance in terms of robustness and transparency of the watermarking scheme is obtained by means of the proposed approach to embed the maximum strength watermark while maintaining the perceptually lossless quality of the watermarked color image. Simulation results show that the proposed scheme with inserting watermarks into luminance and chrominance components is more robust than the existing scheme while retaining the watermark transparency.

  8. Expression-dependent susceptibility to face distortions in processing of facial expressions of emotion.

    Science.gov (United States)

    Guo, Kun; Soornack, Yoshi; Settle, Rebecca

    2018-03-05

    Our capability of recognizing facial expressions of emotion under different viewing conditions implies the existence of an invariant expression representation. As natural visual signals are often distorted and our perceptual strategy changes with external noise level, it is essential to understand how expression perception is susceptible to face distortion and whether the same facial cues are used to process high- and low-quality face images. We systematically manipulated face image resolution (experiment 1) and blur (experiment 2), and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. Our analysis revealed a reasonable tolerance to face distortion in expression perception. Reducing image resolution up to 48 × 64 pixels or increasing image blur up to 15 cycles/image had little impact on expression assessment and associated gaze behaviour. Further distortion led to decreased expression categorization accuracy and intensity rating, increased reaction time and fixation duration, and stronger central fixation bias which was not driven by distortion-induced changes in local image saliency. Interestingly, the observed distortion effects were expression-dependent with less deterioration impact on happy and surprise expressions, suggesting this distortion-invariant facial expression perception might be achieved through the categorical model involving a non-linear configural combination of local facial features. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. TPC track distortions III: fiat lux

    CERN Document Server

    Boyko, I; Dydak, F; Elagin, A; Gostkin, M; Guskov, A; Koreshev, V; Nefedov, Y; Nikolaev, K; Veenhof, R; Wotschack, J; Zhemchugov, A

    2005-01-01

    We present a comprehensive overview and final summary of all four types of static track distortions seen in the HARP TPC, in terms of physical origins, mathematical modelling, and correction algorithms. 'Static'™ distortions are defined as not depending on the event time within the 400 ms long accelerator spill. Calculated static distortions are compared with measurements from cosmic-muon tracks. We characterize track distortions by the r phi residuals of cluster positions with respect to the transverse projection of a helical trajectory constrained by hits in the RPC overlap regions. This method provides a fixed TPC-external reference system (by contrast to the co-moving coordinate system associated with a fit) which solely permits to identify individually, and measure quantitatively, the static TPC track distortions arising from (i) the inhomogeneity of the solenoidal magnetic field, (ii) the inhomogeneity of the electric field from the high-voltage mismatch between the inner and outer TPC field cages, (...

  10. Deferred slanted-edge analysis: a unified approach to spatial frequency response measurement on distorted images and color filter array subsets.

    Science.gov (United States)

    van den Bergh, F

    2018-03-01

    The slanted-edge method of spatial frequency response (SFR) measurement is usually applied to grayscale images under the assumption that any distortion of the expected straight edge is negligible. By decoupling the edge orientation and position estimation step from the edge spread function construction step, it is shown in this paper that the slanted-edge method can be extended to allow it to be applied to images suffering from significant geometric distortion, such as produced by equiangular fisheye lenses. This same decoupling also allows the slanted-edge method to be applied directly to Bayer-mosaicked images so that the SFR of the color filter array subsets can be measured directly without the unwanted influence of demosaicking artifacts. Numerical simulation results are presented to demonstrate the efficacy of the proposed deferred slanted-edge method in relation to existing methods.

  11. An Iterative Optimization Algorithm for Lens Distortion Correction Using Two-Parameter Models

    Directory of Open Access Journals (Sweden)

    Daniel Santana-Cedrés

    2016-12-01

    Full Text Available We present a method for the automatic estimation of two-parameter radial distortion models, considering polynomial as well as division models. The method first detects the longest distorted lines within the image by applying the Hough transform enriched with a radial distortion parameter. From these lines, the first distortion parameter is estimated, then we initialize the second distortion parameter to zero and the two-parameter model is embedded into an iterative nonlinear optimization process to improve the estimation. This optimization aims at reducing the distance from the edge points to the lines, adjusting two distortion parameters as well as the coordinates of the center of distortion. Furthermore, this allows detecting more points belonging to the distorted lines, so that the Hough transform is iteratively repeated to extract a better set of lines until no improvement is achieved. We present some experiments on real images with significant distortion to show the ability of the proposed approach to automatically correct this type of distortion as well as a comparison between the polynomial and division models.

  12. Objective and expert-independent validation of retinal image registration algorithms by a projective imaging distortion model

    NARCIS (Netherlands)

    Lee, Sangyeol; Reinhardt, Joseph M.; Cattin, Philippe C.; Abramoff, M.D.

    2010-01-01

    Fundus camera imaging of the retina is widely used to diagnose and manage ophthalmologic disorders including diabetic retinopathy, glaucoma, and age-related macular degeneration. Retinal images typically have a limited field of view, and multiple images can be joined together using an image

  13. Distortion

    OpenAIRE

    Schultz, Isabella Odorico; Zmylon, Nanna Nielsen; Britze, Juliane

    2014-01-01

    This paper investigates the audience’s perception of the music festival Distortion. By conducting a field-study focusing on the subject’s perception of Distortion, their perception of the Distortion-attendants, and their perception on the promotion of Distortion, the paper will relate the audience perception to the promotion of the event. Using the group’s own research on the promotion of Distortion, the paper points out both the consistencies and the inconsistencies between the promotion and...

  14. Distortion definition and correction in off-axis systems

    Science.gov (United States)

    Da Deppo, Vania; Simioni, Emanuele; Naletto, Giampiero; Cremonese, Gabriele

    2015-09-01

    Off-axis optical configurations are becoming more and more used in a variety of applications, in particular they are the most preferred solution for cameras devoted to Solar System planets and small bodies (i.e. asteroids and comets) study. Off-axis designs, being devoid of central obstruction, are able to guarantee better PSF and MTF performance, and thus higher contrast imaging capabilities with respect to classical on-axis designs. In particular they are suitable for observing extended targets with intrinsic low contrast features, or scenes where a high dynamical signal range is present. Classical distortion theory is able to well describe the performance of the on-axis systems, but it has to be adapted for the off-axis case. A proper way to deal with off-axis distortion definition is thus needed together with dedicated techniques to accurately measure and hence remove the distortion effects present in the acquired images. In this paper, a review of the distortion definition for off-axis systems will be given. In particular the method adopted by the authors to deal with the distortion related issues (definition, measure, removal) in some off-axis instruments will be described in detail.

  15. THE COMPARISON OF ALGORITHMS OF RECOGNITION OF IMAGES HOPFILD’S NEURAL NETWORKS

    Directory of Open Access Journals (Sweden)

    Anna Illarionovna Pavlova

    2016-05-01

    Full Text Available The main advantage of artificial neural networks (ANN in recognition of the cottages, is in their functioning like a human brain. The paper deals with image recognition neuron Hopfield’s networks, a comparative analysis of the recognition images by a projection’s method and the Hebb’s rule. For these purposes, was developed program with C# in Microsoft Visual Studio 2012. In this article to recognition for images with different levels of distortion were used. The analysis of results of recognition of images has shown that the method of projections allows to restore strongly distorted images (level of distortions up to 25–30 percent

  16. Concave omnidirectional imaging device for cylindrical object based on catadioptric panoramic imaging

    Science.gov (United States)

    Wu, Xiaojun; Wu, Yumei; Wen, Peizhi

    2018-03-01

    To obtain information on the outer surface of a cylinder object, we propose a catadioptric panoramic imaging system based on the principle of uniform spatial resolution for vertical scenes. First, the influence of the projection-equation coefficients on the spatial resolution and astigmatism of the panoramic system are discussed, respectively. Through parameter optimization, we obtain the appropriate coefficients for the projection equation, and so the imaging quality of the entire imaging system can reach an optimum value. Finally, the system projection equation is calibrated, and an undistorted rectangular panoramic image is obtained using the cylindrical-surface projection expansion method. The proposed 360-deg panoramic-imaging device overcomes the shortcomings of existing surface panoramic-imaging methods, and it has the advantages of low cost, simple structure, high imaging quality, and small distortion, etc. The experimental results show the effectiveness of the proposed method.

  17. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas

    Directory of Open Access Journals (Sweden)

    Zhenwei Chen

    2016-09-01

    Full Text Available Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  18. An Improved InSAR Image Co-Registration Method for Pairs with Relatively Big Distortions or Large Incoherent Areas.

    Science.gov (United States)

    Chen, Zhenwei; Zhang, Lei; Zhang, Guo

    2016-09-17

    Co-registration is one of the most important steps in interferometric synthetic aperture radar (InSAR) data processing. The standard offset-measurement method based on cross-correlating uniformly distributed patches takes no account of specific geometric transformation between images or characteristics of ground scatterers. Hence, it is inefficient and difficult to obtain satisfying co-registration results for image pairs with relatively big distortion or large incoherent areas. Given this, an improved co-registration strategy is proposed in this paper which takes both the geometric features and image content into consideration. Firstly, some geometric transformations including scale, flip, rotation, and shear between images were eliminated based on the geometrical information, and the initial co-registration polynomial was obtained. Then the registration points were automatically detected by integrating the signal-to-clutter-ratio (SCR) thresholds and the amplitude information, and a further co-registration process was performed to refine the polynomial. Several comparison experiments were carried out using 2 TerraSAR-X data from the Hong Kong airport and 21 PALSAR data from the Donghai Bridge. Experiment results demonstrate that the proposed method brings accuracy and efficiency improvements for co-registration and processing abilities in the cases of big distortion between images or large incoherent areas in the images. For most co-registrations, the proposed method can enhance the reliability and applicability of co-registration and thus promote the automation to a higher level.

  19. Balanced steady-state free precession with parallel imaging gives distortion-free fMRI with high temporal resolution.

    Science.gov (United States)

    Chappell, Michael; Håberg, Asta K; Kristoffersen, Anders

    2011-01-01

    Research on the functions of the human brain requires that functional magnetic resonance imaging (MRI) moves towards producing images with less distortion and higher temporal and spatial resolution. This study compares passband balanced steady-state free precession (bSSFP) acquisitions with and without parallel imaging (PI) to investigate whether combining PI with this pulse sequence is a viable option for functional MRI. Such a novel combination has the potential to offer the distortion-free advantages of bSSFP with the reduced acquisition time of PI. Scans were done on a Philips 3T Intera, using the installed bSSFP pulse sequence, both with and without the sensitivity encoding (SENSE) PI option. The task was a visual flashing checkerboard, and the viewing window covered the visual cortex. Sensitivity comparisons with and without PI were done using the same manually drawn region of interest for each time course of the subject, and comparing the z-score summary statistics: number of voxels with z>2.3, the mean of those voxels, their 90th percentile and their maximum value. We show that PI greatly improves the temporal resolution in bSSFP, reducing the volume acquisition time by more than half in this study to 0.67 s with 3-mm isotropic voxels. At the same time, a statistically significant increase was found for the maximum z-score using bSSFP with PI as compared to without it (P=.02). This improvement can be understood in terms of physiological noise, as demonstrated by noise measurements. This produces observed increases in the overall temporal signal to noise of the functional time series, giving greater sensitivity to functional activations with PI. This study demonstrates for the first time the possibility of combining PI with bSSFP to achieve distortion-free functional images without loss of sensitivity and with high temporal resolution. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. GOATS Image Projection Component

    Science.gov (United States)

    Haber, Benjamin M.; Green, Joseph J.

    2011-01-01

    When doing mission analysis and design of an imaging system in orbit around the Earth, answering the fundamental question of imaging performance requires an understanding of the image products that will be produced by the imaging system. GOATS software represents a series of MATLAB functions to provide for geometric image projections. Unique features of the software include function modularity, a standard MATLAB interface, easy-to-understand first-principles-based analysis, and the ability to perform geometric image projections of framing type imaging systems. The software modules are created for maximum analysis utility, and can all be used independently for many varied analysis tasks, or used in conjunction with other orbit analysis tools.

  1. 3D reconstruction of laser projective point with projection invariant generated from five points on 2D target.

    Science.gov (United States)

    Xu, Guan; Yuan, Jing; Li, Xiaotao; Su, Jian

    2017-08-01

    Vision measurement on the basis of structured light plays a significant role in the optical inspection research. The 2D target fixed with a line laser projector is designed to realize the transformations among the world coordinate system, the camera coordinate system and the image coordinate system. The laser projective point and five non-collinear points that are randomly selected from the target are adopted to construct a projection invariant. The closed form solutions of the 3D laser points are solved by the homogeneous linear equations generated from the projection invariants. The optimization function is created by the parameterized re-projection errors of the laser points and the target points in the image coordinate system. Furthermore, the nonlinear optimization solutions of the world coordinates of the projection points, the camera parameters and the lens distortion coefficients are contributed by minimizing the optimization function. The accuracy of the 3D reconstruction is evaluated by comparing the displacements of the reconstructed laser points with the actual displacements. The effects of the image quantity, the lens distortion and the noises are investigated in the experiments, which demonstrate that the reconstruction approach is effective to contribute the accurate test in the measurement system.

  2. Design and implementation of a 3D-MR/CT geometric image distortion phantom/analysis system for stereotactic radiosurgery

    Science.gov (United States)

    Damyanovich, A. Z.; Rieker, M.; Zhang, B.; Bissonnette, J.-P.; Jaffray, D. A.

    2018-04-01

    The design, construction and application of a multimodality, 3D magnetic resonance/computed tomography (MR/CT) image distortion phantom and analysis system for stereotactic radiosurgery (SRS) is presented. The phantom is characterized by (1) a 1 × 1 × 1 (cm)3 MRI/CT-visible 3D-Cartesian grid; (2) 2002 grid vertices that are 3D-intersections of MR-/CT-visible ‘lines’ in all three orthogonal planes; (3) a 3D-grid that is MR-signal positive/CT-signal negative; (4) a vertex distribution sufficiently ‘dense’ to characterize geometrical parameters properly, and (5) a grid/vertex resolution consistent with SRS localization accuracy. When positioned correctly, successive 3D-vertex planes along any orthogonal axis of the phantom appear as 1 × 1 (cm)2-2D grids, whereas between vertex planes, images are defined by 1 × 1 (cm)2-2D arrays of signal points. Image distortion is evaluated using a centroid algorithm that automatically identifies the center of each 3D-intersection and then calculates the deviations dx, dy, dz and dr for each vertex point; the results are presented as a color-coded 2D or 3D distribution of deviations. The phantom components and 3D-grid are machined to sub-millimeter accuracy, making the device uniquely suited to SRS applications; as such, we present it here in a form adapted for use with a Leksell stereotactic frame. Imaging reproducibility was assessed via repeated phantom imaging across ten back-to-back scans; 80%–90% of the differences in vertex deviations dx, dy, dz and dr between successive 3 T MRI scans were found to be  ⩽0.05 mm for both axial and coronal acquisitions, and over  >95% of the differences were observed to be  ⩽0.05 mm for repeated CT scans, clearly demonstrating excellent reproducibility. Applications of the 3D-phantom/analysis system are presented, using a 32-month time-course assessment of image distortion/gradient stability and statistical control chart for 1.5 T and 3 T GE TwinSpeed MRI

  3. Direct Fourier imaging of distortions in LaAlO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Schlueter, Christoph; Zegenhagen, Joerg [ESRF, Grenoble (France); Lee, Tien-Lin [Diamond Light Source Ltd, Didcot (United Kingdom); Aruta, Carmela [CNR-SPIN, Naples (Italy)

    2012-07-01

    The formation of a quasi-2dimensional electron gas at interface of SrTiO{sub 3} (STO) and LaAlO{sub 3} (LAO) attracted considerable attention in the recent years. The polar LAO layer was expected to cause the build-up of an electric potential. Distortions in the overlayer are discussed as one possible response of the system. The highly sensitive X-ray standing wave (XSW) imaging technique is well suited to study theses films because of its chemical and spacial resolution. LAO thin films below and above the critical thickness for conductivity were studied at the hard X-ray photo electron spectroscopy end station of ID32 at the ESRF. The XSW modulated core level photo electron yield was recorded for the five elements present in film and substrate for seven different Bragg reflections. Subsequent analysis provided for each reflection and element the amplitude and phase of one Fourier coefficient of the elemental atomic distribution function. The three dimensional real space image of the atomic distribution for each of the elements is reconstructed by direct Fourier inversion. The reconstructed 3D images obtained by this model free approach reveal significant atomic displacements.

  4. Robust and efficient method for matching features in omnidirectional images

    Science.gov (United States)

    Zhu, Qinyi; Zhang, Zhijiang; Zeng, Dan

    2018-04-01

    Binary descriptors have been widely used in many real-time applications due to their efficiency. These descriptors are commonly designed for perspective images but perform poorly on omnidirectional images, which are severely distorted. To address this issue, this paper proposes tangent plane BRIEF (TPBRIEF) and adapted log polar grid-based motion statistics (ALPGMS). TPBRIEF projects keypoints to a unit sphere and applies the fixed test set in BRIEF descriptor on the tangent plane of the unit sphere. The fixed test set is then backprojected onto the original distorted images to construct the distortion invariant descriptor. TPBRIEF directly enables keypoint detecting and feature describing on original distorted images, whereas other approaches correct the distortion through image resampling, which introduces artifacts and adds time cost. With ALPGMS, omnidirectional images are divided into circular arches named adapted log polar grids. Whether a match is true or false is then determined by simply thresholding the match numbers in a grid pair where the two matched points located. Experiments show that TPBRIEF greatly improves the feature matching accuracy and ALPGMS robustly removes wrong matches. Our proposed method outperforms the state-of-the-art methods.

  5. Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom.

    Science.gov (United States)

    Maikusa, Norihide; Yamashita, Fumio; Tanaka, Kenichiro; Abe, Osamu; Kawaguchi, Atsushi; Kabasawa, Hiroyuki; Chiba, Shoma; Kasahara, Akihiro; Kobayashi, Nobuhisa; Yuasa, Tetsuya; Sato, Noriko; Matsuda, Hiroshi; Iwatsubo, Takeshi

    2013-06-01

    Serial magnetic resonance imaging (MRI) images acquired from multisite and multivendor MRI scanners are widely used in measuring longitudinal structural changes in the brain. Precise and accurate measurements are important in understanding the natural progression of neurodegenerative disorders such as Alzheimer's disease. However, geometric distortions in MRI images decrease the accuracy and precision of volumetric or morphometric measurements. To solve this problem, the authors suggest a commercially available phantom-based distortion correction method that accommodates the variation in geometric distortion within MRI images obtained with multivendor MRI scanners. The authors' method is based on image warping using a polynomial function. The method detects fiducial points within a phantom image using phantom analysis software developed by the Mayo Clinic and calculates warping functions for distortion correction. To quantify the effectiveness of the authors' method, the authors corrected phantom images obtained from multivendor MRI scanners and calculated the root-mean-square (RMS) of fiducial errors and the circularity ratio as evaluation values. The authors also compared the performance of the authors' method with that of a distortion correction method based on a spherical harmonics description of the generic gradient design parameters. Moreover, the authors evaluated whether this correction improves the test-retest reproducibility of voxel-based morphometry in human studies. A Wilcoxon signed-rank test with uncorrected and corrected images was performed. The root-mean-square errors and circularity ratios for all slices significantly improved (p Wilcoxon signed-rank test, p test-retest reproducibility. The results showed that distortion was corrected significantly using the authors' method. In human studies, the reproducibility of voxel-based morphometry analysis for the whole gray matter significantly improved after distortion correction using the authors

  6. Radial lens distortion correction with sub-pixel accuracy for X-ray micro-tomography.

    Science.gov (United States)

    Vo, Nghia T; Atwood, Robert C; Drakopoulos, Michael

    2015-12-14

    Distortion correction or camera calibration for an imaging system which is highly configurable and requires frequent disassembly for maintenance or replacement of parts needs a speedy method for recalibration. Here we present direct techniques for calculating distortion parameters of a non-linear model based on the correct determination of the center of distortion. These techniques are fast, very easy to implement, and accurate at sub-pixel level. The implementation at the X-ray tomography system of the I12 beamline, Diamond Light Source, which strictly requires sub-pixel accuracy, shows excellent performance in the calibration image and in the reconstructed images.

  7. Contrast distortion induced by modulation voltage in scanning capacitance microscopy

    Science.gov (United States)

    Chang, M. N.; Hu, C. W.; Chou, T. H.; Lee, Y. J.

    2012-08-01

    With a dark-mode scanning capacitance microscopy (SCM), we directly observed the influence of SCM modulation voltage (MV) on image contrasts. For electrical junctions, an extensive modulated area induced by MV may lead to noticeable changes in the SCM signal phase and intensity, resulting in a narrowed junction image and a broadened carrier concentration profile. This contrast distortion in SCM images may occur even if the peak-to-peak MV is down to 0.3 V. In addition, MV may shift the measured electrical junction depth. The balance of SCM signals components explain these MV-induced contrast distortions.

  8. Spatial Precision in Magnetic Resonance Imaging–Guided Radiation Therapy: The Role of Geometric Distortion

    Energy Technology Data Exchange (ETDEWEB)

    Weygand, Joseph, E-mail: jw2899@columbia.edu [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (United States); Fuller, Clifton David [The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (United States); Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Ibbott, Geoffrey S. [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (United States); Mohamed, Abdallah S.R. [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Department of Clinical Oncology and Nuclear Medicine, Alexandria University, Alexandria (Egypt); Ding, Yao [Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Yang, Jinzhong [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (United States); Hwang, Ken-Pin [Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); Wang, Jihong [Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas (United States); The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas (United States)

    2016-07-15

    Because magnetic resonance imaging–guided radiation therapy (MRIgRT) offers exquisite soft tissue contrast and the ability to image tissues in arbitrary planes, the interest in this technology has increased dramatically in recent years. However, intrinsic geometric distortion stemming from both the system hardware and the magnetic properties of the patient affects MR images and compromises the spatial integrity of MRI-based radiation treatment planning, given that for real-time MRIgRT, precision within 2 mm is desired. In this article, we discuss the causes of geometric distortion, describe some well-known distortion correction algorithms, and review geometric distortion measurements from 12 studies, while taking into account relevant imaging parameters. Eleven of the studies reported phantom measurements quantifying system-dependent geometric distortion, while 2 studies reported simulation data quantifying magnetic susceptibility–induced geometric distortion. Of the 11 studies investigating system-dependent geometric distortion, 5 reported maximum measurements less than 2 mm. The simulation studies demonstrated that magnetic susceptibility–induced distortion is typically smaller than system-dependent distortion but still nonnegligible, with maximum distortion ranging from 2.1 to 2.6 mm at a field strength of 1.5 T. As expected, anatomic landmarks containing interfaces between air and soft tissue had the largest distortions. The evidence indicates that geometric distortion reduces the spatial integrity of MRI-based radiation treatment planning and likely diminishes the efficacy of MRIgRT. Better phantom measurement techniques and more effective distortion correction algorithms are needed to achieve the desired spatial precision.

  9. Spatial Precision in Magnetic Resonance Imaging–Guided Radiation Therapy: The Role of Geometric Distortion

    International Nuclear Information System (INIS)

    Weygand, Joseph; Fuller, Clifton David; Ibbott, Geoffrey S.; Mohamed, Abdallah S.R.; Ding, Yao; Yang, Jinzhong; Hwang, Ken-Pin; Wang, Jihong

    2016-01-01

    Because magnetic resonance imaging–guided radiation therapy (MRIgRT) offers exquisite soft tissue contrast and the ability to image tissues in arbitrary planes, the interest in this technology has increased dramatically in recent years. However, intrinsic geometric distortion stemming from both the system hardware and the magnetic properties of the patient affects MR images and compromises the spatial integrity of MRI-based radiation treatment planning, given that for real-time MRIgRT, precision within 2 mm is desired. In this article, we discuss the causes of geometric distortion, describe some well-known distortion correction algorithms, and review geometric distortion measurements from 12 studies, while taking into account relevant imaging parameters. Eleven of the studies reported phantom measurements quantifying system-dependent geometric distortion, while 2 studies reported simulation data quantifying magnetic susceptibility–induced geometric distortion. Of the 11 studies investigating system-dependent geometric distortion, 5 reported maximum measurements less than 2 mm. The simulation studies demonstrated that magnetic susceptibility–induced distortion is typically smaller than system-dependent distortion but still nonnegligible, with maximum distortion ranging from 2.1 to 2.6 mm at a field strength of 1.5 T. As expected, anatomic landmarks containing interfaces between air and soft tissue had the largest distortions. The evidence indicates that geometric distortion reduces the spatial integrity of MRI-based radiation treatment planning and likely diminishes the efficacy of MRIgRT. Better phantom measurement techniques and more effective distortion correction algorithms are needed to achieve the desired spatial precision.

  10. Track distortion in a micromegas based large prototype of a Time Projection Chamber for the International Linear Collider

    International Nuclear Information System (INIS)

    Bhattacharya, Deb Sankar; Majumdar, Nayana; Sarkar, S.; Bhattacharya, S.; Mukhopadhyay, Supratik; Bhattacharya, P.; Attie, D.; Colas, P.; Ganjour, S.; Bhattacharya, Aparajita

    2016-01-01

    The principal particle tracker at the International Linear Collider (ILC) is planned to be a large Time Projection Chamber (TPC) where different Micro Pattern Gaseous Detector (MPGDs) candidate as the gaseous amplifier. A Micromegas (MM) based TPC can meet the ILC requirement of continuous and precise pattern recognition. Seven MM modules, working as the end-plate of a Large Prototype TPC (LPTPC) installed at DESY, have been tested with a 5 GeV electron beam. Due to the grounded peripheral frame of the MM modules, at low drift, the electric field lines near the detector edge remain no longer parallel to the TPC axis. This causes signal loss along the boundaries of the MM modules as well as distortion in the reconstructed track. In presence of magnetic field, the distorted electric field introduces ExB effect

  11. Distorted eikonal cross sections: A time-dependent view

    International Nuclear Information System (INIS)

    Turner, R.E.

    1982-01-01

    For Hamiltonians with two potentials, differential cross sections are written as time-correlation functions of reference and distorted transition operators. Distorted eikonal differential cross sections are defined in terms of straight-line and reference classical trajectories. Both elastic and inelastic results are obtained. Expressions for the inelastic cross sections are presented in terms of time-ordered cosine and sine memory functions through the use of the Zwanzig-Feshbach projection-operator method

  12. Spatial Distortion in MRI-Guided Stereotactic Procedures: Evaluation in 1.5-, 3- and 7-Tesla MRI Scanners.

    Science.gov (United States)

    Neumann, Jan-Oliver; Giese, Henrik; Biller, Armin; Nagel, Armin M; Kiening, Karl

    2015-01-01

    Magnetic resonance imaging (MRI) is replacing computed tomography (CT) as the main imaging modality for stereotactic transformations. MRI is prone to spatial distortion artifacts, which can lead to inaccuracy in stereotactic procedures. Modern MRI systems provide distortion correction algorithms that may ameliorate this problem. This study investigates the different options of distortion correction using standard 1.5-, 3- and 7-tesla MRI scanners. A phantom was mounted on a stereotactic frame. One CT scan and three MRI scans were performed. At all three field strengths, two 3-dimensional sequences, volumetric interpolated breath-hold examination (VIBE) and magnetization-prepared rapid acquisition with gradient echo, were acquired, and automatic distortion correction was performed. Global stereotactic transformation of all 13 datasets was performed and two stereotactic planning workflows (MRI only vs. CT/MR image fusion) were subsequently analysed. Distortion correction on the 1.5- and 3-tesla scanners caused a considerable reduction in positional error. The effect was more pronounced when using the VIBE sequences. By using co-registration (CT/MR image fusion), even a lower positional error could be obtained. In ultra-high-field (7 T) MR imaging, distortion correction introduced even higher errors. However, the accuracy of non-corrected 7-tesla sequences was comparable to CT/MR image fusion 3-tesla imaging. MRI distortion correction algorithms can reduce positional errors by up to 60%. For stereotactic applications of utmost precision, we recommend a co-registration to an additional CT dataset. © 2015 S. Karger AG, Basel.

  13. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    Science.gov (United States)

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. TRANSFORMATION ALGORITHM FOR IMAGES OBTAINED BY OMNIDIRECTIONAL CAMERAS

    Directory of Open Access Journals (Sweden)

    V. P. Lazarenko

    2015-01-01

    Full Text Available Omnidirectional optoelectronic systems find their application in areas where a wide viewing angle is critical. However, omnidirectional optoelectronic systems have a large distortion that makes their application more difficult. The paper compares the projection functions of traditional perspective lenses and omnidirectional wide angle fish-eye lenses with a viewing angle not less than 180°. This comparison proves that distortion models of omnidirectional cameras cannot be described as a deviation from the classic model of pinhole camera. To solve this problem, an algorithm for transforming omnidirectional images has been developed. The paper provides a brief comparison of the four calibration methods available in open source toolkits for omnidirectional optoelectronic systems. Geometrical projection model is given used for calibration of omnidirectional optical system. The algorithm consists of three basic steps. At the first step, we calculate he field of view of a virtual pinhole PTZ camera. This field of view is characterized by an array of 3D points in the object space. At the second step the array of corresponding pixels for these three-dimensional points is calculated. Then we make a calculation of the projection function that expresses the relation between a given 3D point in the object space and a corresponding pixel point. In this paper we use calibration procedure providing the projection function for calibrated instance of the camera. At the last step final image is formed pixel-by-pixel from the original omnidirectional image using calculated array of 3D points and projection function. The developed algorithm gives the possibility for obtaining an image for a part of the field of view of an omnidirectional optoelectronic system with the corrected distortion from the original omnidirectional image. The algorithm is designed for operation with the omnidirectional optoelectronic systems with both catadioptric and fish-eye lenses

  15. Continuous table acquisition MRI for radiotherapy treatment planning: Distortion assessment with a new extended 3D volumetric phantom

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Amy, E-mail: aw554@uowmail.edu.au; Metcalfe, Peter [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522, Australia and Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); Liney, Gary [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Holloway, Lois [Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW 2522 (Australia); Liverpool and Macarthur Cancer Therapy Centres and Ingham Institute for Applied Medical Research, Liverpool, NSW 2170 (Australia); South West Clinical School, University of New South Wales, Sydney, NSW 2170 (Australia); Institute of Medical Physics, School of Physics, University of Sydney, Sydney, NSW 2006 (Australia); Dowling, Jason; Rivest-Henault, David [Commonwealth Scientific and Industrial Research Organisation, Australian E-Health Research Centre, Herston, QLD 4029 (Australia)

    2015-04-15

    Purpose: Accurate geometry is required for radiotherapy treatment planning (RTP). When considering the use of magnetic resonance imaging (MRI) for RTP, geometric distortions observed in the acquired images should be considered. While scanner technology and vendor supplied correction algorithms provide some correction, large distortions are still present in images, even when considering considerably smaller scan lengths than those typically acquired with CT in conventional RTP. This study investigates MRI acquisition with a moving table compared with static scans for potential geometric benefits for RTP. Methods: A full field of view (FOV) phantom (diameter 500 mm; length 513 mm) was developed for measuring geometric distortions in MR images over volumes pertinent to RTP. The phantom consisted of layers of refined plastic within which vitamin E capsules were inserted. The phantom was scanned on CT to provide the geometric gold standard and on MRI, with differences in capsule location determining the distortion. MRI images were acquired with two techniques. For the first method, standard static table acquisitions were considered. Both 2D and 3D acquisition techniques were investigated. With the second technique, images were acquired with a moving table. The same sequence was acquired with a static table and then with table speeds of 1.1 mm/s and 2 mm/s. All of the MR images acquired were registered to the CT dataset using a deformable B-spline registration with the resulting deformation fields providing the distortion information for each acquisition. Results: MR images acquired with the moving table enabled imaging of the whole phantom length while images acquired with a static table were only able to image 50%–70% of the phantom length of 513 mm. Maximum distortion values were reduced across a larger volume when imaging with a moving table. Increased table speed resulted in a larger contribution of distortion from gradient nonlinearities in the through

  16. Acousto-optic laser projection systems for displaying TV information

    International Nuclear Information System (INIS)

    Gulyaev, Yu V; Kazaryan, M A; Mokrushin, Yu M; Shakin, O V

    2015-01-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation. (review)

  17. Acousto-optic laser projection systems for displaying TV information

    Science.gov (United States)

    Gulyaev, Yu V.; Kazaryan, M. A.; Mokrushin, Yu M.; Shakin, O. V.

    2015-04-01

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation.

  18. Acousto-optic laser projection systems for displaying TV information

    Energy Technology Data Exchange (ETDEWEB)

    Gulyaev, Yu V [V.A.Kotel' nikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences, Moscow (Russian Federation); Kazaryan, M A [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation); Mokrushin, Yu M [D.V. Efremov Scientific Research Institute of Electrophysical Apparatus (Russian Federation); Shakin, O V [Ioffe Physical Technical Institute, Russian Academy of Sciences, St. Petersburg (Russian Federation)

    2015-04-30

    This review addresses various approaches to television projection imaging on large screens using lasers. Results are presented of theoretical and experimental studies of an acousto-optic projection system operating on the principle of projecting an image of an entire amplitude-modulated television line in a single laser pulse. We consider characteristic features of image formation in such a system and the requirements for its individual components. Particular attention is paid to nonlinear distortions of the image signal, which show up most severely at low modulation signal frequencies. We discuss the feasibility of improving the process efficiency and image quality using acousto-optic modulators and pulsed lasers. Real-time projectors with pulsed line imaging can be used for controlling high-intensity laser radiation. (review)

  19. SU-G-IeP1-08: MR Geometric Distortion Dependency On Imaging Sequence, Acquisition Orientation and Receiver Bandwidth of a Dedicated 1.5T MR-Simulator

    International Nuclear Information System (INIS)

    Law, M; Yuan, J; Wong, O; Yu, S

    2016-01-01

    Purpose: To investigate the 3D geometric distortion of four potential MR sequences for radiotheraptic applications, and its dependency on sequence-type, acquisition-orientation and receiver-bandwidth from a dedicated 1.5T 700mm-wide bore MR-simulator (Magnetom-Aera, Sienmens Healthcare, Erlangen, Germany), using a large customized geometric accuracy phantom. Methods: This work studied 3D gradient-echo (VIBE) and spin-echo (SPACE) sequences for anatomical imaging; a specific ultra-short-TE sequence (PETRA) potentially for bone imaging and MR-based dosimetry; and a motion-insensitive sequence (BLADE) for dynamic applications like 4D-MRI. Integrated geometric-correction was employed, three orthogonal acquisition-orientations and up to three receiver-bandwidths were used, yielding 27 acquisitions for testing (Table 1a).A customized geometric accuracy phantom (polyurethane, MR/CT invisible, W×L×H:55×55×32.5cm3) was constructed and filled with 3892 spherical markers (6mm diameter, MR/CT visible) arranged on a 25mm-interval 3D isotropic-grid (Fig.1). The marker positions in MR images were quantitatively calculated and compared against those in the CT-reference using customized MatLab scripts. Results: The average distortion within various diameter-of-spherical-volumes (DSVs) and the usable DSVs under various distortion limits were measured (Tables 1b-c). It was observed that distortions fluctuated when sequence-type, acquisition-orientation or receiver-bandwidth changed (e.g. within 300mm-DSV, the lowest/highest average distortions of VIBE were 0.40mm/0.59mm, a 47.5% difference). According to AAPM-TG66 (<1mm distortion, left-most column of Table 1c), PETRA (Largest-DSV:253.9mm) has the potential on brain treatment, while BLADE (Largest-DSV:207.2mm) may need improvement for thoracic/abdominal applications. The results of VIBE (Largest-DSVs:294.3mm, the best among tested acquisitions) and SPACE (Largest-DSVs:267.7mm) suggests their potentials on head and neck

  20. SU-G-IeP1-08: MR Geometric Distortion Dependency On Imaging Sequence, Acquisition Orientation and Receiver Bandwidth of a Dedicated 1.5T MR-Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Law, M; Yuan, J; Wong, O; Yu, S [Hong Kong Sanatorium & Hospital, Hong Kong, Hong Kong (Hong Kong)

    2016-06-15

    Purpose: To investigate the 3D geometric distortion of four potential MR sequences for radiotheraptic applications, and its dependency on sequence-type, acquisition-orientation and receiver-bandwidth from a dedicated 1.5T 700mm-wide bore MR-simulator (Magnetom-Aera, Sienmens Healthcare, Erlangen, Germany), using a large customized geometric accuracy phantom. Methods: This work studied 3D gradient-echo (VIBE) and spin-echo (SPACE) sequences for anatomical imaging; a specific ultra-short-TE sequence (PETRA) potentially for bone imaging and MR-based dosimetry; and a motion-insensitive sequence (BLADE) for dynamic applications like 4D-MRI. Integrated geometric-correction was employed, three orthogonal acquisition-orientations and up to three receiver-bandwidths were used, yielding 27 acquisitions for testing (Table 1a).A customized geometric accuracy phantom (polyurethane, MR/CT invisible, W×L×H:55×55×32.5cm3) was constructed and filled with 3892 spherical markers (6mm diameter, MR/CT visible) arranged on a 25mm-interval 3D isotropic-grid (Fig.1). The marker positions in MR images were quantitatively calculated and compared against those in the CT-reference using customized MatLab scripts. Results: The average distortion within various diameter-of-spherical-volumes (DSVs) and the usable DSVs under various distortion limits were measured (Tables 1b-c). It was observed that distortions fluctuated when sequence-type, acquisition-orientation or receiver-bandwidth changed (e.g. within 300mm-DSV, the lowest/highest average distortions of VIBE were 0.40mm/0.59mm, a 47.5% difference). According to AAPM-TG66 (<1mm distortion, left-most column of Table 1c), PETRA (Largest-DSV:253.9mm) has the potential on brain treatment, while BLADE (Largest-DSV:207.2mm) may need improvement for thoracic/abdominal applications. The results of VIBE (Largest-DSVs:294.3mm, the best among tested acquisitions) and SPACE (Largest-DSVs:267.7mm) suggests their potentials on head and neck

  1. SU-F-P-48: The Quantitative Evaluation and Comparison of Image Distortion and Loss of X-Ray Images Between Anti-Scattered Grid and Moire Compensation Processing in Digital Radiography

    International Nuclear Information System (INIS)

    Chung, W; Jung, J; Kang, Y; Chung, W

    2016-01-01

    Purpose: To quantitatively analyze the influence image processing for Moire elimination has in digital radiography by comparing the image acquired from optimized anti-scattered grid only and the image acquired from software processing paired with misaligned low-frequency grid. Methods: Special phantom, which does not create scattered radiation, was used to acquire non-grid reference images and they were acquired without any grids. A set of images was acquired with optimized grid, aligned to pixel of a detector and other set of images was acquired with misaligned low-frequency grid paired with Moire elimination processing algorithm. X-ray technique used was based on consideration to Bucky factor derived from non-grid reference images. For evaluation, we analyze by comparing pixel intensity of acquired images with grids to that of reference images. Results: When compared to image acquired with optimized grid, images acquired with Moire elimination processing algorithm showed 10 to 50% lower mean contrast value of ROI. Severe distortion of images was found with when the object’s thickness was measured at 7 or less pixels. In this case, contrast value measured from images acquired with Moire elimination processing algorithm was under 30% of that taken from reference image. Conclusion: This study shows the potential risk of Moire compensation images in diagnosis. Images acquired with misaligned low-frequency grid results in Moire noise and Moire compensation processing algorithm used to remove this Moire noise actually caused an image distortion. As a result, fractures and/or calcifications which are presented in few pixels only may not be diagnosed properly. In future work, we plan to evaluate the images acquired without grid but based on 100% image processing and the potential risks it possesses.

  2. Effect of Phase-Encoding Reduction on Geometric Distortion and BOLD Signal Changes in fMRI

    Directory of Open Access Journals (Sweden)

    Golestan karami

    2013-03-01

    Full Text Available Introduction Echo-planar imaging (EPI is a group of fast data acquisition methods commonly used in fMRI studies. It acquires multiple image lines in k-space after a single excitation, which leads to a very short scan time. A well-known problem with EPI is that it is more sensitive to distortions due to the used encoding scheme. Source of distortion is inhomogeneity in the static B0 field that causes more geometric distortion in phase encoding direction. This inhomogeneity is induced mainly by the magnetic susceptibility differences between various structures within the object placed inside the scanner, often at air-tissue or bone-tissue interfaces. Methods of reducing EPI distortion are mainly based on decreasing steps of the phase encoding. Reducing steps of phase encoding can be applied by reducing field of view, slice thickness, and/or the use of parallel acquisition technique. Materials and Methods We obtained three data acquisitions with different FOVs including: conventional low resolution, conventional high resolution, and zoomed high resolution EPIs. Moreover we used SENSE technique for phase encoding reduction. All experiments were carried out on three Tesla scanners (Siemens, TIM, and Germany equipped with 12 channel head coil. Ten subjects participated in the experiments. Results The data were processed by FSL software and were evaluated by ANOVA. Distortion was assessed by obtaining low displacement voxels map, and calculated from a field map image. Conclusion We showed that image distortion can be reduced by decreasing slice thickness and phase encoding steps. Distortion reduction in zoomed technique resulted the lowest level, but at the cost of signal-to-noise loss. Moreover, the SENSE technique was shown to decrease the amount of image distortion, efficiently.

  3. Distortion Correction in Fetal EPI Using Non-Rigid Registration With a Laplacian Constraint.

    Science.gov (United States)

    Kuklisova-Murgasova, Maria; Lockwood Estrin, Georgia; Nunes, Rita G; Malik, Shaihan J; Rutherford, Mary A; Rueckert, Daniel; Hajnal, Joseph V

    2018-01-01

    Geometric distortion induced by the main B0 field disrupts the consistency of fetal echo planar imaging (EPI) data, on which diffusion and functional magnetic resonance imaging is based. In this paper, we present a novel data-driven method for simultaneous motion and distortion correction of fetal EPI. A motion-corrected and reconstructed T2 weighted single shot fast spin echo (ssFSE) volume is used as a model of undistorted fetal brain anatomy. Our algorithm interleaves two registration steps: estimation of fetal motion parameters by aligning EPI slices to the model; and deformable registration of EPI slices to slices simulated from the undistorted model to estimate the distortion field. The deformable registration is regularized by a physically inspired Laplacian constraint, to model distortion induced by a source-free background B0 field. Our experiments show that distortion correction significantly improves consistency of reconstructed EPI volumes with ssFSE volumes. In addition, the estimated distortion fields are consistent with fields calculated from acquired field maps, and the Laplacian constraint is essential for estimation of plausible distortion fields. The EPI volumes reconstructed from different scans of the same subject were more consistent when the proposed method was used in comparison with EPI volumes reconstructed from data distortion corrected using a separately acquired B0 field map.

  4. Magnetic field perturbation in proton MR imaging - A study of a contrast agent and of distortions due to metallic implants

    International Nuclear Information System (INIS)

    Olsson, M.

    1992-01-01

    Perturbations of the static magnetic field in proton MR imaging (NMR imaging, MRI, MRT) result in image distortion and/or signal loss. An investigation of a superparamagnetic contrast agent for MR imaging has been performed. Magnetite particles were embedded in biodegradable starch spheres with a diameter of one micrometer. Animal experiments showed that the agent was quickly accumulated in the reticulo-endothelial system (RES), causing a decrease in signal intensity in this region. Diffusion within the locally generated magnetic field perturbation is responsible for signal loss in spin-echo images. Furthermore, the magnetic properties of various aneurysm clips were investigated to determine which clips could be used safely in a clinical MR investigation. MR artifacts caused by the metallic clips were studied using a geometric phantom. Non-ferromagnetic clips were concluded to be safe for examinations with medium field (0.3 tesla) MR imaging systems. A comparison study between MR and CT was performed on patients harbouring intracranial, nonferromagnetic aneurysm clips. The artifacts close to the clips were equally serve for MR and CT, but at some distance, the MR images were much less affected than the CT images. Finally, a computer program capable of simulating any realistic MR imaging situation has been developed. Raw data matrices are obtained by solving the Bloch equations. Corrections for intravascular spin behaviour have been implemented together with efficient algorithms. A quantitative investigation of signal displacement and signal loss, caused by small metallic implants, has been performed by computer simulation. An exact expression for the magnetic field outside a homogeneous ellipsoid in an external magnetic field has been derived. Distortions in MR images, caused by perturbing ellipsoids of different shapes and orientations, were studied. (30 refs.) (au)

  5. Color correction for chromatic distortion in a multi-wavelength digital holographic system

    International Nuclear Information System (INIS)

    Lin, Li-Chien; Huang, Yi-Lun; Tu, Han-Yen; Lai, Xin-Ji; Cheng, Chau-Jern

    2011-01-01

    A multi-wavelength digital holographic (MWDH) system has been developed to record and reconstruct color images. In comparison to working with digital cameras, however, high-quality color reproduction is difficult to achieve, because of the imperfections from the light sources, optical components, optical recording devices and recording processes. Thus, we face the problem of correcting the colors altered during the digital holographic process. We therefore propose a color correction scheme to correct the chromatic distortion caused by the MWDH system. The scheme consists of two steps: (1) creating a color correction profile and (2) applying it to the correction of the distorted colors. To create the color correction profile, we generate two algorithms: the sequential algorithm and the integrated algorithm. The ColorChecker is used to generate the distorted colors and their desired corrected colors. The relationship between these two color patches is fixed into a specific mathematical model, the parameters of which are estimated, creating the profile. Next, the profile is used to correct the color distortion of images, capturing and preserving the original vibrancy of the reproduced colors for different reconstructed images

  6. Effects Of Field Distortions In Ih-apf Linac

    CERN Document Server

    Kapin, Valery; Yamada, S

    2004-01-01

    The project on developing compact medical accelera-tors for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-MeV/u 200 MHz IH-APF linac are considered. The intrinsic field distortions in IH-cavity are caused by the asymmetry of the gap field due to presence of the drift-tube supporting stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the voltage distribution from programmed law. The RF fields in IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically.

  7. Research on geometric rectification of the Large FOV Linear Array Whiskbroom Image

    Science.gov (United States)

    Liu, Dia; Liu, Hui-tong; Dong, Hao; Liu, Xiao-bo

    2015-08-01

    To solve the geometric distortion problem of large FOV linear array whiskbroom image, a model of multi center central projection collinearity equation was founded considering its whiskbroom and linear CCD imaging feature, and the principle of distortion was analyzed. Based on the rectification method with POS, we introduced the angular position sensor data of the servo system, and restored the geometric imaging process exactly. An indirect rectification scheme aiming at linear array imaging with best scanline searching method was adopted, matrixes for calculating the exterior orientation elements was redesigned. We improved two iterative algorithms for this device, and did comparison and analysis. The rectification for the images of airborne imaging experiment showed ideal effect.

  8. A Comparison of Three Methods for Measuring Distortion in Optical Windows

    Science.gov (United States)

    Youngquist, Robert C.; Nurge, Mark A.; Skow, Miles

    2015-01-01

    It's important that imagery seen through large-area windows, such as those used on space vehicles, not be substantially distorted. Many approaches are described in the literature for measuring the distortion of an optical window, but most suffer from either poor resolution or processing difficulties. In this paper a new definition of distortion is presented, allowing accurate measurement using an optical interferometer. This new definition is shown to be equivalent to the definitions provided by the military and the standards organizations. In order to determine the advantages and disadvantages of this new approach, the distortion of an acrylic window is measured using three different methods: image comparison, moiré interferometry, and phase-shifting interferometry.

  9. Kernel based subspace projection of hyperspectral images

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Nielsen, Allan Aasbjerg; Arngren, Morten

    In hyperspectral image analysis an exploratory approach to analyse the image data is to conduct subspace projections. As linear projections often fail to capture the underlying structure of the data, we present kernel based subspace projections of PCA and Maximum Autocorrelation Factors (MAF...

  10. [Landmark-based automatic registration of serial cross-sectional images of Chinese digital human using Photoshop and Matlab software].

    Science.gov (United States)

    Su, Xiu-yun; Pei, Guo-xian; Yu, Bin; Hu, Yan-ling; Li, Jin; Huang, Qian; Li, Xu; Zhang, Yuan-zhi

    2007-12-01

    This paper describes automatic registration of the serial cross-sectional images of Chinese digital human by projective registration method based on the landmarks using the commercially available software Photoshop and Matlab. During cadaver embedment for acquisition of the Chinese digital human images, 4 rods were placed parallel to the vertical axis of the frozen cadaver to allow orientation. Projective distortion of the rod positions on the cross-sectional images was inevitable due to even slight changes of the relative position of the camera. The original cross-sectional images were first processed using Photoshop software firstly to obtain the images of the orientation rods, and the centroid coordinate of every rod image was acquired with Matlab software. With the average coordinate value of the rods as the fiducial point, two-dimensional projective transformation coefficient of each image was determined. Projective transformation was then carried out and projective distortion from each original serial image was eliminated. The rectified cross-sectional images were again processed using Photoshop to obtain the image of the first orientation rod, the coordinate value of first rod image was calculated using Matlab software, and the cross-sectional images were cut into images of the same size according to the first rod spatial coordinate, to achieve automatic registration of the serial cross-sectional images. sing Photoshop and Matlab softwares, projective transformation can accurately accomplish the image registration for the serial images with simpler calculation processes and easier computer processing.

  11. Numerical convergence in simulations of multiaxial ratcheting with directional distortional hardening

    Czech Academy of Sciences Publication Activity Database

    Welling, CH.A.; Marek, René; Feigenbaum, H. P.; Dafalias, Y.F.; Plešek, Jiří; Hrubý, Zbyněk; Parma, Slavomír

    2017-01-01

    Roč. 126, November (2017), s. 105-121 ISSN 0020-7683 R&D Projects: GA MŠk(CZ) EF15_003/0000493; GA MŠk LH14018 Keywords : plastic ity * yield * ratcheting * yield surface distortion * directional distortional hardening Subject RIV: JG - Metallurgy OBOR OECD: Materials engineering Impact factor: 2.760, year: 2016 http://www.sciencedirect.com/science/article/pii/S0020768317303499

  12. Influence of Digital Camera Errors on the Photogrammetric Image Processing

    Science.gov (United States)

    Sužiedelytė-Visockienė, Jūratė; Bručas, Domantas

    2009-01-01

    The paper deals with the calibration of digital camera Canon EOS 350D, often used for the photogrammetric 3D digitalisation and measurements of industrial and construction site objects. During the calibration data on the optical and electronic parameters, influencing the distortion of images, such as correction of the principal point, focal length of the objective, radial symmetrical and non-symmetrical distortions were obtained. The calibration was performed by means of the Tcc software implementing the polynomial of Chebichev and using a special test-field with the marks, coordinates of which are precisely known. The main task of the research - to determine how parameters of the camera calibration influence the processing of images, i. e. the creation of geometric model, the results of triangulation calculations and stereo-digitalisation. Two photogrammetric projects were created for this task. In first project the non-corrected and in the second the corrected ones, considering the optical errors of the camera obtained during the calibration, images were used. The results of analysis of the images processing is shown in the images and tables. The conclusions are given.

  13. Expecting the unexpected: applying the Develop-Distort Dilemma to maximize positive market impacts in health.

    Science.gov (United States)

    Peters, David H; Paina, Ligia; Bennett, Sara

    2012-10-01

    Although health interventions start with good intentions to develop services for disadvantaged populations, they often distort the health market, making the delivery or financing of services difficult once the intervention is over: a condition called the 'Develop-Distort Dilemma' (DDD). In this paper, we describe how to examine whether a proposed intervention may develop or distort the health market. Our goal is to produce a tool that facilitates meaningful and systematic dialogue for practitioners and researchers to ensure that well-intentioned health interventions lead to productive health systems while reducing the undesirable distortions of such efforts. We apply the DDD tool to plan for development rather than distortions in health markets, using intervention research being conducted under the Future Health Systems consortium in Bangladesh, China and Uganda. Through a review of research proposals and interviews with principal investigators, we use the DDD tool to systematically understand how a project fits within the broader health market system, and to identify gaps in planning for sustainability. We found that while current stakeholders and funding sources for activities were easily identified, future ones were not. The implication is that the projects could raise community expectations that future services will be available and paid for, despite this actually being uncertain. Each project addressed the 'rules' of the health market system differently. The China research assesses changes in the formal financing rules, whereas Bangladesh and Uganda's projects involve influencing community level providers, where informal rules are more important. In each case, we recognize the importance of building trust between providers, communities and government officials. Each project could both develop and distort local health markets. Anyone intervening in the health market must recognize the main market perturbations, whether positive or negative, and manage them so

  14. Nuclear Fuel Assembly Assessment Project and Image Categorization

    Energy Technology Data Exchange (ETDEWEB)

    Lindsey, C.S.; Lindblad, T.; Waldemark, K. [Royal Inst. of Tech., Stockholm (Sweden); Hildingsson, Lars [Swedish Nuclear Power Inspectorate, Stockholm (Sweden)

    1998-07-01

    A project has been underway to add digital imaging and processing to the inspection of nuclear fuel by the International Atomic Energy Agency. The ultimate goals are to provide the inspector not only with the advantages of Ccd imaging, such as high sensitivity and digital image enhancements, but also with an intelligent agent that can analyze the images and provide useful information about the fuel assemblies in real time. The project is still in the early stages and several interesting sub-projects have been inspired. Here we give first a review of the work on the fuel assembly image analysis and then give a brief status report on one of these sub-projects that concerns automatic categorization of fuel assembly images. The technique could be of benefit to the general challenge of image categorization

  15. Projection x-space magnetic particle imaging.

    Science.gov (United States)

    Goodwill, Patrick W; Konkle, Justin J; Zheng, Bo; Saritas, Emine U; Conolly, Steven M

    2012-05-01

    Projection magnetic particle imaging (MPI) can improve imaging speed by over 100-fold over traditional 3-D MPI. In this work, we derive the 2-D x-space signal equation, 2-D image equation, and introduce the concept of signal fading and resolution loss for a projection MPI imager. We then describe the design and construction of an x-space projection MPI scanner with a field gradient of 2.35 T/m across a 10 cm magnet free bore. The system has an expected resolution of 3.5 × 8.0 mm using Resovist tracer, and an experimental resolution of 3.8 × 8.4 mm resolution. The system images 2.5 cm × 5.0 cm partial field-of views (FOVs) at 10 frames/s, and acquires a full field-of-view of 10 cm × 5.0 cm in 4 s. We conclude by imaging a resolution phantom, a complex "Cal" phantom, mice injected with Resovist tracer, and experimentally confirm the theoretically predicted x-space spatial resolution.

  16. Flat-field response and geometric distortion measurements of optical streak cameras

    International Nuclear Information System (INIS)

    Montgomery, D.S.; Drake, R.P.; Jones, B.A.; Wiedwald, J.D.

    1987-08-01

    To accurately measure pulse amplitude, shape, and relative time histories of optical signals with an optical streak camera, it is necessary to correct each recorded image for spatially-dependent gain nonuniformity and geometric distortion. Gain nonuniformities arise from sensitivity variations in the streak-tube photocathode, phosphor screen, image-intensifier tube, and image recording system. These nonuniformities may be severe, and have been observed to be on the order of 100% for some LLNL optical streak cameras. Geometric distortion due to optical couplings, electron-optics, and sweep nonlinearity not only affects pulse position and timing measurements, but affects pulse amplitude and shape measurements as well. By using a 1.053-μm, long-pulse, high-power laser to generate a spatially and temporally uniform source as input to the streak camera, the combined effects of flat-field response and geometric distortion can be measured under the normal dynamic operation of cameras with S-1 photocathodes. Additionally, by using the same laser system to generate a train of short pulses that can be spatially modulated at the input of the streak camera, we can effectively create a two-dimensional grid of equally-spaced pulses. This allows a dynamic measurement of the geometric distortion of the streak camera. We will discuss the techniques involved in performing these calibrations, will present some of the measured results for LLNL optical streak cameras, and will discuss software methods to correct for these effects. 6 refs., 6 figs

  17. Flat-field response and geometric distortion measurements of optical streak cameras

    International Nuclear Information System (INIS)

    Montgomery, D.S.; Drake, R.P.; Jones, B.A.; Wiedwald, J.D.

    1987-01-01

    To accurately measure pulse amplitude, shape, and relative time histories of optical signals with an optical streak camera, it is necessary to correct each recorded image for spatially-dependent gain nonuniformity and geometric distortion. Gain nonuniformities arise from sensitivity variations in the streak-tube photocathode, phosphor screen, image-intensifier tube, and image recording system. By using a 1.053-μm, long-pulse, high-power laser to generate a spatially and temporally uniform source as input to the streak camera, the combined effects of flat-field response and geometric distortion can be measured under the normal dynamic operation of cameras with S-1 photocathodes. Additionally, by using the same laser system to generate a train of short pulses that can be spatially modulated at the input of the streak camera, the authors can create a two-dimensional grid of equally-spaced pulses. This allows a dynamic measurement of the geometric distortion of the streak camera. The author discusses the techniques involved in performing these calibrations, present some of the measured results for LLNL optical streak cameras, and will discuss software methods to correct for these effects

  18. Projecting Images on a Sphere

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A system for projecting images on an object with a reflective surface. A plurality of image projectors are spaced around the object and synchronized such that each...

  19. Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in EPI

    Science.gov (United States)

    Yeo, Desmond T. B.; Fessler, Jeffrey A.; Kim, Boklye

    2014-01-01

    The accuracy of measuring voxel intensity changes between stimulus and rest images in fMRI echo-planar imaging (EPI) data is severely degraded in the presence of head motion. In addition, EPI is sensitive to susceptibility-induced geometric distortions. Head motion causes image shifts and associated field map changes that induce different geometric distortion at different time points. Conventionally, geometric distortion is “corrected” with a static field map independently of image registration. That approach ignores all field map changes induced by head motion. This work evaluates the improved motion correction capability of mapping slice to volume (MSV) registration with concurrent iterative field corrected reconstruction using updated field maps derived from an initial static field map that has been spatially transformed and resampled. It accounts for motion-induced field map changes for translational and in-plane rotation motion. The results from simulated EPI time series data, in which motion, image intensity and activation ground truths are available, show improved accuracy in image registration, field corrected image reconstruction and activation detection. PMID:18280077

  20. Image of the World on polyhedral maps and globes

    Directory of Open Access Journals (Sweden)

    Pędzich Paweł

    2016-12-01

    Full Text Available Application of polyhedrons as image surface in cartographic projections has a tradition of more than 200 years. The first maps relying on polyhedrons appeared in the 19th century. One of the first maps which based on an original polyhedral projection using a regular octahedron was constructed by the Californian architect Bernard Cahill in 1909. Other well known polyhedral projections and maps included Buckminster Fuller’s projection and map into icosahedron from 1954 and S. Waterman’s projection into truncated octahedron from 1996, which resulted in the “butterfly” map. Polyhedrons as image surface have the advantage of allowing a continuous image of continents of the Earth with low projection distortion. Such maps can be used for many purposes, such as presentation of tectonic plates or geographic discoveries.

  1. The combined effect of subjective body image and body mass index (distorted body weight perception) on suicidal ideation.

    Science.gov (United States)

    Shin, Jaeyong; Choi, Young; Han, Kyu-Tae; Cheon, Sung-Youn; Kim, Jae-Hyun; Lee, Sang Gyu; Park, Eun-Cheol

    2015-03-01

    Mental health disorders and suicide are an important and growing public health concern in Korea. Evidence has shown that both globally and in Korea, obesity is associated with an increased risk of developing some psychiatric disorders. Therefore, we examined the association between distorted body weight perception (BWP) and suicidal ideation. Data were obtained from the 2007-2012 Korea National Health and Nutritional Evaluation Survey (KNHANES), an annual cross-sectional nationwide survey that included 14 276 men and 19 428 women. Multiple logistic regression analyses were conducted to investigate the associations between nine BWP categories, which combined body image (BI) and body mass index (BMI) categories, and suicidal ideation. Moreover, the fitness of our models was verified using the Akaike information criterion. Consistent with previous studies, suicidal ideation was associated with marital status, household income, education level, and perceived health status in both genders. Only women were significantly more likely to have distorted BWP; there was no relationship among men. In category B1 (low BMI and normal BI), women (odds ratio [OR], 2.25; 95% confidence interval [CI], 1.48 to 3.42) were more likely to express suicidal ideation than women in category B2 (normal BMI and normal BI) were. Women in overweight BWP category C2 (normal BMI and fat BI) also had an increased OR for suicidal ideation (OR, 2.25; 95% CI, 1.48 to 3.42). Those in normal BWP categories were not likely to have suicidal ideation. Among women in the underweight BWP categories, only the OR for those in category A2 (normal BMI and thin BI) was significant (OR, 1.34; 95% CI, 1.13 to 1.59). Distorted BWP should be considered an important factor in the prevention of suicide and for the improvement of mental health among Korean adults, especially Korean women with distorted BWPs.

  2. Image reconstruction using Monte Carlo simulation and artificial neural networks

    International Nuclear Information System (INIS)

    Emert, F.; Missimner, J.; Blass, W.; Rodriguez, A.

    1997-01-01

    PET data sets are subject to two types of distortions during acquisition: the imperfect response of the scanner and attenuation and scattering in the active distribution. In addition, the reconstruction of voxel images from the line projections composing a data set can introduce artifacts. Monte Carlo simulation provides a means for modeling the distortions and artificial neural networks a method for correcting for them as well as minimizing artifacts. (author) figs., tab., refs

  3. Applications of X-ray fluorescence holography to determine local lattice distortions

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya

    2014-01-01

    Highlights: • We summarized topics of X-ray fluorescence holography focused on the local lattice distortions. • We found details of behaviors of nearest neighbor atoms around dopants. • We found the average distributions of the atoms at the individual sites in mixed crystals. • Distorted and undistorted sires sometimes coexist in a same mixed crystal. - Abstract: X-ray fluorescence holography (XFH) is a method for investigating atomic order up to the medium ranges, and can provide 3D atomic images around specific elements within a radius of nm order. In addition to these characteristics, XFH is sensitive to positional fluctuations of atoms, and therefore it is useful for characterizing the local lattice distortions around specific elements. We have applied XFH to dopants and mixed crystals. We found interesting features in local lattice distortions, such as the displacements of first-neighbor atoms around dopants, far-sighted views of the atomistic fluctuations in mixed crystals, and the coexistence of distorted/undistorted sites in the same material

  4. Distorted Fingerprint Verification System

    Directory of Open Access Journals (Sweden)

    Divya KARTHIKAESHWARAN

    2011-01-01

    Full Text Available Fingerprint verification is one of the most reliable personal identification methods. Fingerprint matching is affected by non-linear distortion introduced in fingerprint impression during the image acquisition process. This non-linear deformation changes both the position and orientation of minutiae. The proposed system operates in three stages: alignment based fingerprint matching, fuzzy clustering and classifier framework. First, an enhanced input fingerprint image has been aligned with the template fingerprint image and matching score is computed. To improve the performance of the system, a fuzzy clustering based on distance and density has been used to cluster the feature set obtained from the fingerprint matcher. Finally a classifier framework has been developed and found that cost sensitive classifier produces better results. The system has been evaluated on fingerprint database and the experimental result shows that system produces a verification rate of 96%. This system plays an important role in forensic and civilian applications.

  5. Correction of a Depth-Dependent Lateral Distortion in 3D Super-Resolution Imaging.

    Directory of Open Access Journals (Sweden)

    Lina Carlini

    Full Text Available Three-dimensional (3D localization-based super-resolution microscopy (SR requires correction of aberrations to accurately represent 3D structure. Here we show how a depth-dependent lateral shift in the apparent position of a fluorescent point source, which we term `wobble`, results in warped 3D SR images and provide a software tool to correct this distortion. This system-specific, lateral shift is typically > 80 nm across an axial range of ~ 1 μm. A theoretical analysis based on phase retrieval data from our microscope suggests that the wobble is caused by non-rotationally symmetric phase and amplitude aberrations in the microscope's pupil function. We then apply our correction to the bacterial cytoskeletal protein FtsZ in live bacteria and demonstrate that the corrected data more accurately represent the true shape of this vertically-oriented ring-like structure. We also include this correction method in a registration procedure for dual-color, 3D SR data and show that it improves target registration error (TRE at the axial limits over an imaging depth of 1 μm, yielding TRE values of < 20 nm. This work highlights the importance of correcting aberrations in 3D SR to achieve high fidelity between the measurements and the sample.

  6. A holistic calibration method with iterative distortion compensation for stereo deflectometry

    Science.gov (United States)

    Xu, Yongjia; Gao, Feng; Zhang, Zonghua; Jiang, Xiangqian

    2018-07-01

    This paper presents a novel holistic calibration method for stereo deflectometry system to improve the system measurement accuracy. The reconstruction result of stereo deflectometry is integrated with the calculated normal data of the measured surface. The calculation accuracy of the normal data is seriously influenced by the calibration accuracy of the geometrical relationship of the stereo deflectometry system. Conventional calibration approaches introduce form error to the system due to inaccurate imaging model and distortion elimination. The proposed calibration method compensates system distortion based on an iterative algorithm instead of the conventional distortion mathematical model. The initial value of the system parameters are calculated from the fringe patterns displayed on the systemic LCD screen through a reflection of a markless flat mirror. An iterative algorithm is proposed to compensate system distortion and optimize camera imaging parameters and system geometrical relation parameters based on a cost function. Both simulation work and experimental results show the proposed calibration method can significantly improve the calibration and measurement accuracy of a stereo deflectometry. The PV (peak value) of measurement error of a flat mirror can be reduced to 69.7 nm by applying the proposed method from 282 nm obtained with the conventional calibration approach.

  7. Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT

    International Nuclear Information System (INIS)

    Stanescu, T.; Wachowicz, K.; Jaffray, D. A.

    2012-01-01

    Purpose: MR image geometric integrity is one of the building blocks of MRI-guided radiotherapy. In particular, tissue magnetic susceptibility-induced effects are patient-dependent and their behavior is difficult to assess and predict. In this study, the authors investigated in detail the characteristics of susceptibility (χ) distortions in the context of MRIgRT, including the case of two common MR-linac system configurations. Methods: The magnetic field distortions were numerically simulated for several imaging parameters and anatomical sites, i.e., brain, lung, pelvis (with air pockets), and prostate. The simulation process consisted of (a) segmentation of patient CT data into susceptibility relevant anatomical volumes (i.e., soft-tissue, bone and air/lung), (b) conversion of CT data into susceptibility masks by assigning bulk χ values to the structures defined at (a), (c) numerical computations of the local magnetic fields by using a finite difference algorithm, and (d) generation of the geometric distortion maps from the magnetic field distributions. For each patient anatomy, the distortions were quantified at the interfaces of anatomical structures with significantly different χ values. The analysis was performed for two specific orientations of the external main magnetic field (B 0 ) characteristic to the MR-linac systems, specifically along the z-axis for a bore MR scanner and in the (x,y)-plane for a biplanner magnet. The magnetic field local perturbations were reported in ppm. The metrics used to quantify the geometric distortions were the maximum, mean, and range of distortions. The numerical simulation algorithm was validated using phantom data measurements. Results: Susceptibility-induced distortions were determined for both quadratic and patient specific geometries. The numerical simulations showed a good agreement with the experimental data. The measurements were acquired at 1.5 and 3 T and with an encoding gradient varying between 3 and 20 mT/m by

  8. Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT.

    Science.gov (United States)

    Stanescu, T; Wachowicz, K; Jaffray, D A

    2012-12-01

    MR image geometric integrity is one of the building blocks of MRI-guided radiotherapy. In particular, tissue magnetic susceptibility-induced effects are patient-dependent and their behavior is difficult to assess and predict. In this study, the authors investigated in detail the characteristics of susceptibility (χ) distortions in the context of MRIgRT, including the case of two common MR-linac system configurations. The magnetic field distortions were numerically simulated for several imaging parameters and anatomical sites, i.e., brain, lung, pelvis (with air pockets), and prostate. The simulation process consisted of (a) segmentation of patient CT data into susceptibility relevant anatomical volumes (i.e., soft-tissue, bone and air∕lung), (b) conversion of CT data into susceptibility masks by assigning bulk χ values to the structures defined at (a), (c) numerical computations of the local magnetic fields by using a finite difference algorithm, and (d) generation of the geometric distortion maps from the magnetic field distributions. For each patient anatomy, the distortions were quantified at the interfaces of anatomical structures with significantly different χ values. The analysis was performed for two specific orientations of the external main magnetic field (B(0)) characteristic to the MR-linac systems, specifically along the z-axis for a bore MR scanner and in the (x,y)-plane for a biplanner magnet. The magnetic field local perturbations were reported in ppm. The metrics used to quantify the geometric distortions were the maximum, mean, and range of distortions. The numerical simulation algorithm was validated using phantom data measurements. Susceptibility-induced distortions were determined for both quadratic and patient specific geometries. The numerical simulations showed a good agreement with the experimental data. The measurements were acquired at 1.5 and 3 T and with an encoding gradient varying between 3 and 20 mT∕m by using an annular

  9. MRI, geometric distortion of the image and stereotaxy

    International Nuclear Information System (INIS)

    Derosier, C.; Delegue, G.; Munier, T.; Pharaboz, C.; Cosnard, G.

    1991-01-01

    The MRI technology may be the starting-point of geometric distortion. The mathematical preciseness of a spatial location may be disturbed and alter the guidance of a MRI interventional act, especially in stereotactic brain biopsy. A review of the literature shows errors of 1 to 1.5 mm. Our results show an error of 0.16±0.66. The control of quality: homogeneity and calibration of magnetic-field gradients, permit an improve of the ballistic preciseness and give permission to realize the guidance of a stereotactic brain biopsy with the alone MRI

  10. Reduction of false positives in the detection of architectural distortion in mammograms by using a geometrically constrained phase portrait model

    International Nuclear Information System (INIS)

    Ayres, Fabio J.; Rangayyan, Rangaraj M.

    2007-01-01

    Objective One of the commonly missed signs of breast cancer is architectural distortion. We have developed techniques for the detection of architectural distortion in mammograms, based on the analysis of oriented texture through the application of Gabor filters and a linear phase portrait model. In this paper, we propose constraining the shape of the general phase portrait model as a means to reduce the false-positive rate in the detection of architectural distortion. Material and methods The methods were tested with one set of 19 cases of architectural distortion and 41 normal mammograms, and with another set of 37 cases of architectural distortion. Results Sensitivity rates of 84% with 4.5 false positives per image and 81% with 10 false positives per image were obtained for the two sets of images. Conclusion The adoption of a constrained phase portrait model with a symmetric matrix and the incorporation of its condition number in the analysis resulted in a reduction in the false-positive rate in the detection of architectural distortion. The proposed techniques, dedicated for the detection and localization of architectural distortion, should lead to efficient detection of early signs of breast cancer. (orig.)

  11. 'Distorted structure modelling' - a more physical approach to Rapid Distortion Theory

    International Nuclear Information System (INIS)

    Savill, A.M.

    1979-11-01

    Rapid Distortion Theory is reviewed in the light of the modern mechanistic approach to turbulent motion. The apparent failure of current models, based on this theory, to predict stress intensity ratios accurately in distorted shear flows is attributed to their oversimplistic assumptions concerning the inherent turbulence structure of such flows. A more realistic picture of this structure and the manner in which it responds to distortion is presented in terms of interactions between the mean flow and three principal types of eddies. If Rapid Distortion Theory is modified to account for this it is shown that the stress intensity ratios can be accurately predicted in three test flows. It is concluded that a computational scheme based on Rapid Distortion Theory might ultimately be capable of predicting turbulence parameters in the highly complex geometries of reactor cooling systems. (author)

  12. New technique for real-time distortion-invariant multiobject recognition and classification

    Science.gov (United States)

    Hong, Rutong; Li, Xiaoshun; Hong, En; Wang, Zuyi; Wei, Hongan

    2001-04-01

    A real-time hybrid distortion-invariant OPR system was established to make 3D multiobject distortion-invariant automatic pattern recognition. Wavelet transform technique was used to make digital preprocessing of the input scene, to depress the noisy background and enhance the recognized object. A three-layer backpropagation artificial neural network was used in correlation signal post-processing to perform multiobject distortion-invariant recognition and classification. The C-80 and NOA real-time processing ability and the multithread programming technology were used to perform high speed parallel multitask processing and speed up the post processing rate to ROIs. The reference filter library was constructed for the distortion version of 3D object model images based on the distortion parameter tolerance measuring as rotation, azimuth and scale. The real-time optical correlation recognition testing of this OPR system demonstrates that using the preprocessing, post- processing, the nonlinear algorithm os optimum filtering, RFL construction technique and the multithread programming technology, a high possibility of recognition and recognition rate ere obtained for the real-time multiobject distortion-invariant OPR system. The recognition reliability and rate was improved greatly. These techniques are very useful to automatic target recognition.

  13. Distortion correction for x-ray image intensifiers: Local unwarping polynomials and RBF neural networks

    International Nuclear Information System (INIS)

    Cerveri, P.; Forlani, C.; Borghese, N.A.; Ferrigno, G.

    2002-01-01

    In this paper we present two novel techniques, namely a local unwarping polynomial (LUP) and a hierarchical radial basis function (HRBF) network, to correct geometric distortions in XRII images. The two techniques have been implemented and compared, in terms of residual error measured at control and intermediate points, with local and global methods reported in the previous literature. In particular, LUP rests on a locally optimized 3rd degree polynomial applied within each quadrilateral cell on the rectilinear calibration grid of points. HRBF, based on a feed-forward neural network paradigm, is constituted by a set of hierarchical layers at increasing cut-off frequency, each characterized by a set of Gaussian functions. Extensive experiments have been performed both on simulated and real data. In simulation, we tested the effect of pincushion, sigmoidal and local distortions, along with the number of calibration points. Provided that a sufficient number of cells of the calibration grid is available, the obtained accuracy for both LUP and HRBF is comparable to or better than that of global polynomial technique. Tests on real data, carried out by using two different (12 in. and 16 in.) XRIIs, showed that the global polynomial accuracy (0.16±0.08 pixels) is slightly worse than that of LUP (0.07±0.05 pixels) and HRBF (0.08±0.04 pixels). The effects of the discontinuity at the border of the local areas and the decreased accuracy at intermediate points, typical of local techniques, have been proved to be smoothed for both LUP and HRBF

  14. Photoacoustic projection imaging using an all-optical detector array

    Science.gov (United States)

    Bauer-Marschallinger, J.; Felbermayer, K.; Berer, T.

    2018-02-01

    We present a prototype for all-optical photoacoustic projection imaging. By generating projection images, photoacoustic information of large volumes can be retrieved with less effort compared to common photoacoustic computed tomography where many detectors and/or multiple measurements are required. In our approach, an array of 60 integrating line detectors is used to acquire photoacoustic waves. The line detector array consists of fiber-optic MachZehnder interferometers, distributed on a cylindrical surface. From the measured variation of the optical path lengths of the interferometers, induced by photoacoustic waves, a photoacoustic projection image can be reconstructed. The resulting images represent the projection of the three-dimensional spatial light absorbance within the imaged object onto a two-dimensional plane, perpendicular to the line detector array. The fiber-optic detectors achieve a noise-equivalent pressure of 24 Pascal at a 10 MHz bandwidth. We present the operational principle, the structure of the array, and resulting images. The system can acquire high-resolution projection images of large volumes within a short period of time. Imaging large volumes at high frame rates facilitates monitoring of dynamic processes.

  15. Variance in parametric images: direct estimation from parametric projections

    International Nuclear Information System (INIS)

    Maguire, R.P.; Leenders, K.L.; Spyrou, N.M.

    2000-01-01

    Recent work has shown that it is possible to apply linear kinetic models to dynamic projection data in PET in order to calculate parameter projections. These can subsequently be back-projected to form parametric images - maps of parameters of physiological interest. Critical to the application of these maps, to test for significant changes between normal and pathophysiology, is an assessment of the statistical uncertainty. In this context, parametric images also include simple integral images from, e.g., [O-15]-water used to calculate statistical parametric maps (SPMs). This paper revisits the concept of parameter projections and presents a more general formulation of the parameter projection derivation as well as a method to estimate parameter variance in projection space, showing which analysis methods (models) can be used. Using simulated pharmacokinetic image data we show that a method based on an analysis in projection space inherently calculates the mathematically rigorous pixel variance. This results in an estimation which is as accurate as either estimating variance in image space during model fitting, or estimation by comparison across sets of parametric images - as might be done between individuals in a group pharmacokinetic PET study. The method based on projections has, however, a higher computational efficiency, and is also shown to be more precise, as reflected in smooth variance distribution images when compared to the other methods. (author)

  16. Preliminary investigations into macroscopic attenuated total reflection-fourier transform infrared imaging of intact spherical domains: spatial resolution and image distortion.

    Science.gov (United States)

    Everall, Neil J; Priestnall, Ian M; Clarke, Fiona; Jayes, Linda; Poulter, Graham; Coombs, David; George, Michael W

    2009-03-01

    This paper describes preliminary investigations into the spatial resolution of macro attenuated total reflection (ATR) Fourier transform infrared (FT-IR) imaging and the distortions that arise when imaging intact, convex domains, using spheres as an extreme example. The competing effects of shallow evanescent wave penetration and blurring due to finite spatial resolution meant that spheres within the range 20-140 microm all appeared to be approximately the same size ( approximately 30-35 microm) when imaged with a numerical aperture (NA) of approximately 0.2. A very simple model was developed that predicted this extreme insensitivity to particle size. On the basis of these studies, it is anticipated that ATR imaging at this NA will be insensitive to the size of intact highly convex objects. A higher numerical aperture device should give a better estimate of the size of small spheres, owing to superior spatial resolution, but large spheres should still appear undersized due to the shallow sampling depth. An estimate of the point spread function (PSF) was required in order to develop and apply the model. The PSF was measured by imaging a sharp interface; assuming an Airy profile, the PSF width (distance from central maximum to first minimum) was estimated to be approximately 20 and 30 microm for IR bands at 1600 and 1000 cm(-1), respectively. This work has two significant limitations. First, underestimation of domain size only arises when imaging intact convex objects; if surfaces are prepared that randomly and representatively section through domains, the images can be analyzed to calculate parameters such as domain size, area, and volume. Second, the model ignores reflection and refraction and assumes weak absorption; hence, the predicted intensity profiles are not expected to be accurate; they merely give a rough estimate of the apparent sphere size. Much further work is required to place the field of quantitative ATR-FT-IR imaging on a sound basis.

  17. Holographic measurement of distortion during laser melting: Additive distortion from overlapping pulses

    Science.gov (United States)

    Haglund, Peter; Frostevarg, Jan; Powell, John; Eriksson, Ingemar; Kaplan, Alexander F. H.

    2018-03-01

    Laser - material interactions such as welding, heat treatment and thermal bending generate thermal gradients which give rise to thermal stresses and strains which often result in a permanent distortion of the heated object. This paper investigates the thermal distortion response which results from pulsed laser surface melting of a stainless steel sheet. Pulsed holography has been used to accurately monitor, in real time, the out-of-plane distortion of stainless steel samples melted on one face by with both single and multiple laser pulses. It has been shown that surface melting by additional laser pulses increases the out of plane distortion of the sample without significantly increasing the melt depth. The distortion differences between the primary pulse and subsequent pulses has also been analysed for fully and partially overlapping laser pulses.

  18. The Combined Effect of Subjective Body Image and Body Mass Index (Distorted Body Weight Perception on Suicidal Ideation

    Directory of Open Access Journals (Sweden)

    Jaeyong Shin

    2015-03-01

    Full Text Available Objectives: Mental health disorders and suicide are an important and growing public health concern in Korea. Evidence has shown that both globally and in Korea, obesity is associated with an increased risk of developing some psychiatric disorders. Therefore, we examined the association between distorted body weight perception (BWP and suicidal ideation. Methods: Data were obtained from the 2007-2012 Korea National Health and Nutritional Evaluation Survey (KNHANES, an annual cross-sectional nationwide survey that included 14 276 men and 19 428 women. Multiple logistic regression analyses were conducted to investigate the associations between nine BWP categories, which combined body image (BI and body mass index (BMI categories, and suicidal ideation. Moreover, the fitness of our models was verified using the Akaike information criterion. Results: Consistent with previous studies, suicidal ideation was associated with marital status, household income, education level, and perceived health status in both genders. Only women were significantly more likely to have distorted BWP; there was no relationship among men. In category B1 (low BMI and normal BI, women (odds ratio [OR], 2.25; 95% confidence interval [CI], 1.48 to 3.42 were more likely to express suicidal ideation than women in category B2 (normal BMI and normal BI were. Women in overweight BWP category C2 (normal BMI and fat BI also had an increased OR for suicidal ideation (OR, 2.25; 95% CI, 1.48 to 3.42. Those in normal BWP categories were not likely to have suicidal ideation. Among women in the underweight BWP categories, only the OR for those in category A2 (normal BMI and thin BI was significant (OR, 1.34; 95% CI, 1.13 to 1.59. Conclusions: Distorted BWP should be considered an important factor in the prevention of suicide and for the improvement of mental health among Korean adults, especially Korean women with distorted BWPs.

  19. Fast image matching algorithm based on projection characteristics

    Science.gov (United States)

    Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun

    2011-06-01

    Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.

  20. Body Dysmorphic Disorder: Easing the Distress of Distortion.

    Science.gov (United States)

    Fore, Cynthia M.

    People who suffer from body dysmorphic disorder believe that their body is defected and that this defect makes them ugly. Their distorted body image can be precipitated by many internal and external factors and as a result of their imagined defect, these normal-appearing individuals exhibit self-defeating behaviors. The disorder can lead to the…

  1. 3D palmprint and hand imaging system based on full-field composite color sinusoidal fringe projection technique.

    Science.gov (United States)

    Zhang, Zonghua; Huang, Shujun; Xu, Yongjia; Chen, Chao; Zhao, Yan; Gao, Nan; Xiao, Yanjun

    2013-09-01

    Palmprint and hand shape, as two kinds of important biometric characteristics, have been widely studied and applied to human identity recognition. The existing research is based mainly on 2D images, which lose the third-dimensional information. The biological features extracted from 2D images are distorted by pressure and rolling, so the subsequent feature matching and recognition are inaccurate. This paper presents a method to acquire accurate 3D shapes of palmprint and hand by projecting full-field composite color sinusoidal fringe patterns and the corresponding color texture information. A 3D imaging system is designed to capture and process the full-field composite color fringe patterns on hand surface. Composite color fringe patterns having the optimum three fringe numbers are generated by software and projected onto the surface of human hand by a digital light processing projector. From another viewpoint, a color CCD camera captures the deformed fringe patterns and saves them for postprocessing. After compensating for the cross talk and chromatic aberration between color channels, three fringe patterns are extracted from three color channels of a captured composite color image. Wrapped phase information can be calculated from the sinusoidal fringe patterns with high precision. At the same time, the absolute phase of each pixel is determined by the optimum three-fringe selection method. After building up the relationship between absolute phase map and 3D shape data, the 3D palmprint and hand are obtained. Color texture information can be directly captured or demodulated from the captured composite fringe pattern images. Experimental results show that the proposed method and system can yield accurate 3D shape and color texture information of the palmprint and hand shape.

  2. Modeling susceptibility difference artifacts produced by metallic implants in magnetic resonance imaging with point-based thin-plate spline image registration.

    Science.gov (United States)

    Pauchard, Y; Smith, M; Mintchev, M

    2004-01-01

    Magnetic resonance imaging (MRI) suffers from geometric distortions arising from various sources. One such source are the non-linearities associated with the presence of metallic implants, which can profoundly distort the obtained images. These non-linearities result in pixel shifts and intensity changes in the vicinity of the implant, often precluding any meaningful assessment of the entire image. This paper presents a method for correcting these distortions based on non-rigid image registration techniques. Two images from a modelled three-dimensional (3D) grid phantom were subjected to point-based thin-plate spline registration. The reference image (without distortions) was obtained from a grid model including a spherical implant, and the corresponding test image containing the distortions was obtained using previously reported technique for spatial modelling of magnetic susceptibility artifacts. After identifying the nonrecoverable area in the distorted image, the calculated spline model was able to quantitatively account for the distortions, thus facilitating their compensation. Upon the completion of the compensation procedure, the non-recoverable area was removed from the reference image and the latter was compared to the compensated image. Quantitative assessment of the goodness of the proposed compensation technique is presented.

  3. Development and validation of a novel large field of view phantom and a software module for the quality assurance of geometric distortion in magnetic resonance imaging.

    Science.gov (United States)

    Torfeh, Tarraf; Hammoud, Rabih; McGarry, Maeve; Al-Hammadi, Noora; Perkins, Gregory

    2015-09-01

    To develop and validate a large field of view phantom and quality assurance software tool for the assessment and characterization of geometric distortion in MRI scanners commissioned for radiation therapy planning. A purpose built phantom was developed consisting of 357 rods (6mm in diameter) of polymethyl-methacrylat separated by 20mm intervals, providing a three dimensional array of control points at known spatial locations covering a large field of view up to a diameter of 420mm. An in-house software module was developed to allow automatic geometric distortion assessment. This software module was validated against a virtual dataset of the phantom that reproduced the exact geometry of the physical phantom, but with known translational and rotational displacements and warping. For validation experiments, clinical MRI sequences were acquired with and without the application of a commercial 3D distortion correction algorithm (Gradwarp™). The software module was used to characterize and assess system-related geometric distortion in the sequences relative to a benchmark CT dataset, and the efficacy of the vendor geometric distortion correction algorithms (GDC) was also assessed. Results issued from the validation of the software against virtual images demonstrate the algorithm's ability to accurately calculate geometric distortion with sub-pixel precision by the extraction of rods and quantization of displacements. Geometric distortion was assessed for the typical sequences used in radiotherapy applications and over a clinically relevant 420mm field of view (FOV). As expected and towards the edges of the field of view (FOV), distortion increased with increasing FOV. For all assessed sequences, the vendor GDC was able to reduce the mean distortion to below 1mm over a field of view of 5, 10, 15 and 20cm radius respectively. Results issued from the application of the developed phantoms and algorithms demonstrate a high level of precision. The results indicate that this

  4. Adolescence and Body Image.

    Science.gov (United States)

    Weinshenker, Naomi

    2002-01-01

    Discusses body image among adolescents, explaining that today's adolescents are more prone to body image distortions and dissatisfaction than ever and examining the historical context; how self-image develops; normative discontent; body image distortions; body dysmorphic disorder (BDD); vulnerability of boys (muscle dysmorphia); who is at risk;…

  5. Discriminative Projection Selection Based Face Image Hashing

    Science.gov (United States)

    Karabat, Cagatay; Erdogan, Hakan

    Face image hashing is an emerging method used in biometric verification systems. In this paper, we propose a novel face image hashing method based on a new technique called discriminative projection selection. We apply the Fisher criterion for selecting the rows of a random projection matrix in a user-dependent fashion. Moreover, another contribution of this paper is to employ a bimodal Gaussian mixture model at the quantization step. Our simulation results on three different databases demonstrate that the proposed method has superior performance in comparison to previously proposed random projection based methods.

  6. Reconstruction of a cone-beam CT image via forward iterative projection matching

    International Nuclear Information System (INIS)

    Brock, R. Scott; Docef, Alen; Murphy, Martin J.

    2010-01-01

    Purpose: To demonstrate the feasibility of reconstructing a cone-beam CT (CBCT) image by deformably altering a prior fan-beam CT (FBCT) image such that it matches the anatomy portrayed in the CBCT projection data set. Methods: A prior FBCT image of the patient is assumed to be available as a source image. A CBCT projection data set is obtained and used as a target image set. A parametrized deformation model is applied to the source FBCT image, digitally reconstructed radiographs (DRRs) that emulate the CBCT projection image geometry are calculated and compared to the target CBCT projection data, and the deformation model parameters are adjusted iteratively until the DRRs optimally match the CBCT projection data set. The resulting deformed FBCT image is hypothesized to be an accurate representation of the patient's anatomy imaged by the CBCT system. The process is demonstrated via numerical simulation. A known deformation is applied to a prior FBCT image and used to create a synthetic set of CBCT target projections. The iterative projection matching process is then applied to reconstruct the deformation represented in the synthetic target projections; the reconstructed deformation is then compared to the known deformation. The sensitivity of the process to the number of projections and the DRR/CBCT projection mismatch is explored by systematically adding noise to and perturbing the contrast of the target projections relative to the iterated source DRRs and by reducing the number of projections. Results: When there is no noise or contrast mismatch in the CBCT projection images, a set of 64 projections allows the known deformed CT image to be reconstructed to within a nRMS error of 1% and the known deformation to within a nRMS error of 7%. A CT image nRMS error of less than 4% is maintained at noise levels up to 3% of the mean projection intensity, at which the deformation error is 13%. At 1% noise level, the number of projections can be reduced to 8 while maintaining

  7. Pulse-coupled neural nets: translation, rotation, scale, distortion, and intensity signal invariance for images.

    Science.gov (United States)

    Johnson, J L

    1994-09-10

    The linking-field neural network model of Eckhorn et al. [Neural Comput. 2, 293-307 (1990)] was introduced to explain the experimentally observed synchronous activity among neural assemblies in the cat cortex induced by feature-dependent visual activity. The model produces synchronous bursts of pulses from neurons with similar activity, effectively grouping them by phase and pulse frequency. It gives a basic new function: grouping by similarity. The synchronous bursts are obtained in the limit of strong linking strengths. The linking-field model in the limit of moderate-to-weak linking characterized by few if any multiple bursts is investigated. In this limit dynamic, locally periodic traveling waves exist whose time signal encodes the geometrical structure of a two-dimensional input image. The signal can be made insensitive to translation, scale, rotation, distortion, and intensity. The waves transmit information beyond the physical interconnect distance. The model is implemented in an optical hybrid demonstration system. Results of the simulations and the optical system are presented.

  8. Removing Distortion of Periapical Radiographs in Dental Digital Radiography Using Embedded Markers in an External frame.

    Science.gov (United States)

    Kafieh, Rahele; Shahamoradi, Mahdi; Hekmatian, Ehsan; Foroohandeh, Mehrdad; Emamidoost, Mostafa

    2012-10-01

    To carry out in vivo and in vitro comparative pilot study to evaluate the preciseness of a newly proposed digital dental radiography setup. This setup was based on markers placed on an external frame to eliminate the measurement errors due to incorrect geometry in relative positioning of cone, teeth and the sensor. Five patients with previous panoramic images were selected to undergo the proposed periapical digital imaging for in vivo phase. For in vitro phase, 40 extracted teeth were replanted in dry mandibular sockets and periapical digital images were prepared. The standard reference for real scales of the teeth were obtained through extracted teeth measurements for in vitro application and were calculated through panoramic imaging for in vivo phases. The proposed image processing thechnique was applied on periapical digital images to distinguish the incorrect geometry. The recognized error was inversely applied on the image and the modified images were compared to the correct values. The measurement findings after the distortion removal were compared to our gold standards (results of panoramic imaging or measurements from extracted teeth) and showed the accuracy of 96.45% through in vivo examinations and 96.0% through in vitro tests. The proposed distortion removal method is perfectly able to identify the possible inaccurate geometry during image acquisition and is capable of applying the inverse transform to the distorted radiograph to obtain the correctly modified image. This can be really helpful in applications like root canal therapy, implant surgical procedures and digital subtraction radiography, which are essentially dependent on precise measurements.

  9. Medical imaging projects meet at CERN

    CERN Multimedia

    CERN Bulletin

    2013-01-01

    ENTERVISION, the Research Training Network in 3D Digital Imaging for Cancer Radiation Therapy, successfully passed its mid-term review held at CERN on 11 January. This multidisciplinary project aims at qualifying experts in medical imaging techniques for improved hadron therapy.   ENTERVISION provides training in physics, medicine, electronics, informatics, radiobiology and engineering, as well as a wide range of soft skills, to 16 researchers of different backgrounds and nationalities. The network is funded by the European Commission within the Marie Curie Initial Training Network, and relies on the EU-funded research project ENVISION to provide a training platform for the Marie Curie researchers. The two projects hold their annual meetings jointly, allowing the young researchers to meet senior scientists and to have a full picture of the latest developments in the field beyond their individual research project. ENVISION and ENTERVISION are both co-ordinated by CERN, and the Laboratory hosts t...

  10. SU-E-J-220: Assessment of MRI Geometric Distortion in Head and Neck Cancer Patients Scanned in Immobilized Radiation Treatment Position

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, C; Mohamed, A; Weygand, J; Ding, Y; Fuller, C; Frank, S; Wang, J [MD Anderson Cancer Center, Houston, TX (United States)

    2015-06-15

    Purpose: Uncertainties about geometric distortion have somewhat hindered MRI simulation in radiation therapy. Most of the geometric distortion studies were performed with phantom measurements but another major aspect of MR distortion is patient related. We studied the geometric distortion in patient images by comparing their MRI scans with the corresponding CT, using CT as the non-distorted gold standard. Methods: Ten H&N cancer patients were imaged with MRI as part of a prospective IRB approved study. All patients had their treatment planning CT done on the same day or within one week of the MRI. MR Images were acquired with a T2 SE sequence (1×1×2.5mm voxel size) in the same immobilization position as in the CT scans. MRI to CT rigid registration was then done and geometric distortion comparison was done by measuring the corresponding anatomical landmarks on both the MRI and the CT images by two observers. Several skin to skin (9 landmarks), bone to bone (8 landmarks), and soft tissue (3 landmarks) were measured at specific levels in horizontal and vertical planes of both scans. Results: The mean distortion for all landmark measurements in all scans was 1.8±1.9mm. For each patient 11 measurements were done in the horizontal plane while 9 were done in the vertical plane. The measured geometric distortion were significantly lower in the horizontal axis compared to the vertical axis (1.3±0.16 mm vs 2.2±0.19 mm, respectively, P=0.003*). The magnitude of distortion was lower in the bone to bone landmarks compared to the combined soft tissue and skin to skin landmarks (1.2±0.19 mm vs 2.3±0.17 mm, P=0.0006*). The mean distortion measured by observer one was not significantly different compared toobserver 2 (2.3 vs 2.4 mm, P=0.4). Conclusion: MRI geometric distortions were quantified in H&N patients with mean error of less than 2 mm. JW received a corporate sponsored research grant from Elekta.

  11. Reconstruction of CT images by the Bayes- back projection method

    CERN Document Server

    Haruyama, M; Takase, M; Tobita, H

    2002-01-01

    In the course of research on quantitative assay of non-destructive measurement of radioactive waste, the have developed a unique program based on the Bayesian theory for reconstruction of transmission computed tomography (TCT) image. The reconstruction of cross-section images in the CT technology usually employs the Filtered Back Projection method. The new imaging reconstruction program reported here is based on the Bayesian Back Projection method, and it has a function of iterative improvement images by every step of measurement. Namely, this method has the capability of prompt display of a cross-section image corresponding to each angled projection data from every measurement. Hence, it is possible to observe an improved cross-section view by reflecting each projection data in almost real time. From the basic theory of Baysian Back Projection method, it can be not only applied to CT types of 1st, 2nd, and 3rd generation. This reported deals with a reconstruction program of cross-section images in the CT of ...

  12. Reflective optical imaging system for extreme ultraviolet wavelengths

    Science.gov (United States)

    Viswanathan, V.K.; Newnam, B.E.

    1993-05-18

    A projection reflection optical system has two mirrors in a coaxial, four reflection configuration to reproduce the image of an object. The mirrors have spherical reflection surfaces to provide a very high resolution of object feature wavelengths less than 200 [mu]m, and preferably less than 100 [mu]m. An image resolution of features less than 0.05-0.1 [mu]m, is obtained over a large area field; i.e., 25.4 mm [times] 25.4 mm, with a distortion less than 0.1 of the resolution over the image field.

  13. Partial Rarefaction as Way to Reduce Distortion Curve of double-glazed unit

    Science.gov (United States)

    Plotnikov, Alexander

    2017-10-01

    Use of Insulated Glass Units (IGU) as glazing on building façades causes optical distortions of mirrored images of neighboring buildings in glazed surfaces. Optical distortions are caused by varying distances between glass panes in IGUs as a result of climate factors. This paper examines available engineering solutions that reduce such distortions: use of more rigid outer glasses, encasing the building in a shell of single glass panes, known as the ‘double façade’, and use of vacuum IGUs. A new way is proposed to reduce optical distortions by installing additional pointed or linear supports and creating pre-stress with partial rarefaction inside the IGU. Overpressure that can cause IGU expansion and glass deformation was calculated. In the urban environment of Moscow, reduction of air pressure with simultaneous increase of air pressure inside the IGU during summer heat waves can be as high as 5%, and this figure determines the level of rarefaction.

  14. Face distortion aftereffects evoked by featureless first-order stimulus configurations

    Directory of Open Access Journals (Sweden)

    Pál eVakli

    2012-12-01

    Full Text Available After prolonged exposure to a distorted face with expanded or contracted inner features, a subsequently presented normal face appears distorted towards the opposite direction. This phenomenon, termed as face distortion aftereffect (FDAE, is thought to occur as a result of changes in the mechanisms involved in higher order visual processing. However, the extent to which FDAE is mediated by face-specific configural processing is less known. In the present study, we investigated whether similar aftereffects can be induced by stimuli lacking all the typical characteristics of a human face except for its first-order configural properties. We found a significant FDAE after adaptation to a stimulus consisting of three white dots arranged in a triangular fashion and placed in a grey oval. FDAEs occurred also when the adapting and test stimuli differed in size or when the contrast polarity of the adaptor image was changed. However, the inversion of the adapting image as well as the reduction of its contrast abolished the aftereffect entirely. Taken together, our results suggest that higher-level visual areas, which are involved in the processing of facial configurations, mediate the FDAE. Further, while adaptation seems to be largely invariant to contrast polarity, it appears sensitive to orientation and to lower level manipulations that affect the saliency of the inner features.

  15. Distortion Correction for a Brewster Angle Microscope Using an Optical Grating.

    Science.gov (United States)

    Sun, Zhe; Zheng, Desheng; Baldelli, Steven

    2017-02-21

    A distortion-corrected Brewster angle microscope (DC-BAM) is designed, constructed, and tested based on the combination of an optical grating and a relay lens. Avoiding the drawbacks of most conventional BAM instruments, this configuration corrects the image propagation direction and consequently provides an image in focus over the entire field of view without any beam scanning or imaging reconstruction. This new BAM can be applied to both liquid and solid subphases with good spatial resolution in static and dynamic studies.

  16. Correction of distortion of MR pictures for MR-guided robotic sterotactic procedures

    International Nuclear Information System (INIS)

    Jonckheere, E.A.; Kwoh, Y.S.

    1988-01-01

    Ever since magnetic resonance (MR) invaded the medical imaging field, it has played an increasingly important role and is even currently being considered for stereotactic guidance of probes in the brain. While MR pictures indeed convey more clinical information than CT, the geometry of MR pictures is, unfortunately, not as accurate as the geometry of CT pictures. In other words, if a square grid phantom is scanned, then the CT picture will show a square grid, while the MR picture will rather reveal a distorted grid. This distortion is primarily due to small variations in the static magnetic field. This small distortion does not impede radiological diagnosis; however, it is a source of concern if one contemplates utilizing the MR pictures for accurate stereotactic positioning of a probe at a very precise point in the brain. Another area of application where the distortion of the MR picture should be compensated for is the superposition of CT and MR pictures so that both informations could be used for diagnosis or stereotactic purposes. This paper essentially addresses the nonlinear distortion of MR pictures and how it could be compensated for through software manipulation of the MR picture

  17. Effects of Field Distortions in IH-APF Linac for a Compact Medical Accelerator

    CERN Document Server

    Kapin, Valery; Yamada, Satoru

    2004-01-01

    The project on developing compact medical accelerators for the tumor therapy using carbon ions has been started at the National Institute of Radiological Sciences (NIRS). Alternating-phase-focused (APF) linac using an interdigital H-mode (IH) cavity has been proposed for the injector linac. The IH-cavity is a doubly ridged circular resonator loaded by the drift-tubes mounted on ridges with supporting stems. The effects of intrinsic and random field distortions in a practical design of the 4-Mev/u 200-MHz IH-APF linac are considered. The intrinsic field distortions in the IH-cavity are caused by an asymmetry of the gap fields due to presence of the stems and pair of ridges. The random field distortions are caused by drift-tube misalignments and non-regular deviations of the gap voltages from programmed values. The RF fields in the IH-cavity have been calculated using Microwave Studio (MWS) code. The effects of field distortions on beam dynamics have been simulated numerically. The intrinsic field distortions a...

  18. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space

    International Nuclear Information System (INIS)

    Chawla, Amarpreet S.; Lo, Joseph Y.; Baker, Jay A.; Samei, Ehsan

    2009-01-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigated the effects of these acquisition parameters on the overall diagnostic image quality of breast tomosynthesis in both the projection and reconstruction space. Five mastectomy specimens were imaged using a prototype tomosynthesis system. 25 angular projections of each specimen were acquired at 6.2 times typical single-view clinical dose level. Images at lower dose levels were then simulated using a noise modification routine. Each projection image was supplemented with 84 simulated 3 mm 3D lesions embedded at the center of 84 nonoverlapping ROIs. The projection images were then reconstructed using a filtered backprojection algorithm at different combinations of acquisition parameters to investigate which of the many possible combinations maximizes the performance. Performance was evaluated in terms of a Laguerre-Gauss channelized Hotelling observer model-based measure of lesion detectability. The analysis was also performed without reconstruction by combining the model results from projection images using Bayesian decision fusion algorithm. The effect of acquisition parameters on projection images and reconstructed slices were then compared to derive an optimization rule for tomosynthesis. The results indicated that projection images yield comparable but higher performance than reconstructed images. Both modes, however, offered similar trends: Performance improved with an increase in the total acquisition dose level and the angular span. Using a constant dose level and angular

  19. Quantitative studies with the gamma-camera: correction for spatial and energy distortion

    International Nuclear Information System (INIS)

    Soussaline, F.; Todd-Pokropek, A.E.; Raynaud, C.

    1977-01-01

    The gamma camera sensitivity distribution is an important source of error in quantitative studies. In addition, spatial distortion produces apparent variations in count density which degrades quantitative studies. The flood field image takes into account both effects and is influenced by the pile-up of the tail distribution. It is essential to measure separately each of these parameters. These were investigated using a point source displaced by a special scanning table with two X, Y stepping motors of 10 micron precision. The spatial distribution of the sensitivity, spatial distortion and photopeak in the field of view were measured and compared for different setting-up of the camera and PM gains. For well-tuned cameras, the sensitivity is fairly constant, while the variations appearing in the flood field image are primarily due to spatial distortion, the former more dependent than the latter on the energy window setting. This indicates why conventional flood field uniformity correction must not be applied. A correction technique to improve the results in quantitative studies has been tested using a continuously matched energy window at every point within the field. A method for correcting spatial distortion is also proposed, where, after an adequately sampled measurement of this error, a transformation can be applied to calculate the true position of events. The knowledge of the magnitude of these parameters is essential in the routine use and design of detector systems

  20. Tomographic image via background subtraction using an x-ray projection image and a priori computed tomography

    International Nuclear Information System (INIS)

    Zhang Jin; Yi Byongyong; Lasio, Giovanni; Suntharalingam, Mohan; Yu, Cedric

    2009-01-01

    Kilovoltage x-ray projection images (kV images for brevity) are increasingly available in image guided radiotherapy (IGRT) for patient positioning. These images are two-dimensional (2D) projections of a three-dimensional (3D) object along the x-ray beam direction. Projecting a 3D object onto a plane may lead to ambiguities in the identification of anatomical structures and to poor contrast in kV images. Therefore, the use of kV images in IGRT is mainly limited to bony landmark alignments. This work proposes a novel subtraction technique that isolates a slice of interest (SOI) from a kV image with the assistance of a priori information from a previous CT scan. The method separates structural information within a preselected SOI by suppressing contributions to the unprocessed projection from out-of-SOI-plane structures. Up to a five-fold increase in the contrast-to-noise ratios (CNRs) was observed in selected regions of the isolated SOI, when compared to the original unprocessed kV image. The tomographic image via background subtraction (TIBS) technique aims to provide a quick snapshot of the slice of interest with greatly enhanced image contrast over conventional kV x-ray projections for fast and accurate image guidance of radiation therapy. With further refinements, TIBS could, in principle, provide real-time tumor localization using gantry-mounted x-ray imaging systems without the need for implanted markers.

  1. Rectification of aerial images using piecewise linear transformation

    International Nuclear Information System (INIS)

    Liew, L H; Lee, B Y; Wang, Y C; Cheah, W S

    2014-01-01

    Aerial images are widely used in various activities by providing visual records. This type of remotely sensed image is helpful in generating digital maps, managing ecology, monitoring crop growth and region surveying. Such images could provide insight into areas of interest that have lower altitude, particularly in regions where optical satellite imaging is prevented due to cloudiness. Aerial images captured using a non-metric cameras contain real details of the images as well as unexpected distortions. Distortions would affect the actual length, direction and shape of objects in the images. There are many sources that could cause distortions such as lens, earth curvature, topographic relief and the attitude of the aircraft that is used to carry the camera. These distortions occur differently, collectively and irregularly in the entire image. Image rectification is an essential image pre-processing step to eliminate or at least reduce the effect of distortions. In this paper, a non-parametric approach with piecewise linear transformation is investigated in rectifying distorted aerial images. The non-parametric approach requires a set of corresponding control points obtained from a reference image and a distorted image. The corresponding control points are then applied with piecewise linear transformation as geometric transformation. Piecewise linear transformation divides the image into regions by triangulation. Different linear transformations are employed separately to triangular regions instead of using a single transformation as the rectification model for the entire image. The result of rectification is evaluated using total root mean square error (RMSE). Experiments show that piecewise linear transformation could assist in improving the limitation of using global transformation to rectify images

  2. Alternative agricultural price distortions for CGE analysis, 2007 and 2011

    DEFF Research Database (Denmark)

    Jensen, Hans Grinsted; Anderson, Kym

    A recent World Bank research project has generated an annual time series of distortions to agricultural incentives over the past half century for 82 countries, the majority of which are low-and middle-income countries. In this memorandum, the current GTAP version 8 Data Base may be modified to in...

  3. Jet Engine Fan Response to Inlet Distortions Generated by Ingesting Boundary Layer Flow

    Science.gov (United States)

    Giuliani, James Edward

    Future civil transport designs may incorporate engines integrated into the body of the aircraft to take advantage of efficiency increases due to weight and drag reduction. Additional increases in engine efficiency are predicted if the inlets ingest the lower momentum boundary layer flow that develops along the surface of the aircraft. Previous studies have shown, however, that the efficiency benefits of Boundary Layer Ingesting (BLI) inlets are very sensitive to the magnitude of fan and duct losses, and blade structural response to the non-uniform flow field that results from a BLI inlet has not been studied in-depth. This project represents an effort to extend the modeling capabilities of TURBO, an existing rotating turbomachinery unsteady analysis code, to include the ability to solve the external and internal flow fields of a BLI inlet. The TURBO code has been a successful tool in evaluating fan response to flow distortions for traditional engine/inlet integrations. Extending TURBO to simulate the external and inlet flow field upstream of the fan will allow accurate pressure distortions that result from BLI inlet configurations to be computed and used to analyze fan aerodynamics and structural response. To validate the modifications for the BLI inlet flow field, an experimental NASA project to study flush-mounted S-duct inlets with large amounts of boundary layer ingestion was modeled. Results for the flow upstream and in the inlet are presented and compared to experimental data for several high Reynolds number flows to validate the modifications to the solver. Once the inlet modifications were validated, a hypothetical compressor fan was connected to the inlet, matching the inlet operating conditions so that the effect on the distortion could be evaluated. Although the total pressure distortion upstream of the fan was symmetrical for this geometry, the pressure rise generated by the fan blades was not, because of the velocity non-uniformity of the distortion

  4. Analysis of welding distortion due to narrow-gap welding of upper port plug

    International Nuclear Information System (INIS)

    Biswas, Pankaj; Mandal, N.R.; Vasu, Parameswaran; Padasalag, Shrishail B.

    2010-01-01

    Narrow-gap welding is a low distortion welding process. This process allows very thick plates to be joined using fewer weld passes as compared to conventional V-groove or double V-groove welding. In case of narrow-gap arc welding as the heat input and weld volume is low, it reduces thermal stress leading to reduction of both residual stress and distortion. In this present study the effect of narrow-gap welding was studied on fabrication of a scaled down port plug in the form of a trapezoidal box made of 10 mm thick mild steel (MS) plates using gas tungsten arc welding (GTAW). Inherent strain method was used for numerical prediction of resulting distortions. The numerical results compared well with that of the experimentally measured distortion. The validated numerical scheme was used for prediction of weld induced distortion due to narrow-gap welding of full scale upper port plug made of 60 mm thick SS316LN material as is proposed for use in ITER project. It was observed that it is feasible to fabricate the said port plug keeping the distortions minimum within about 7 mm using GTAW for root pass welding followed by SMAW for filler runs.

  5. Methods of filtering the graph images of the functions

    Directory of Open Access Journals (Sweden)

    Олександр Григорович Бурса

    2017-06-01

    Full Text Available The theoretical aspects of cleaning raster images of scanned graphs of functions from digital, chromatic and luminance distortions by using computer graphics techniques have been considered. The basic types of distortions characteristic of graph images of functions have been stated. To suppress the distortion several methods, providing for high-quality of the resulting images and saving their topological features, were suggested. The paper describes the techniques developed and improved by the authors: the method of cleaning the image of distortions by means of iterative contrasting, based on the step-by-step increase in image contrast in the graph by 1%; the method of small entities distortion restoring, based on the thinning of the known matrix of contrast increase filter (the allowable dimensions of the nucleus dilution radius convolution matrix, which provide for the retention of the graph lines have been established; integration technique of the noise reduction method by means of contrasting and distortion restoring method of small entities with known σ-filter. Each method in the complex has been theoretically substantiated. The developed methods involve treatment of graph images as the entire image (global processing and its fragments (local processing. The metrics assessing the quality of the resulting image with the global and local processing have been chosen, the substantiation of the choice as well as the formulas have been given. The proposed complex methods of cleaning the graphs images of functions from grayscale image distortions is adaptive to the form of an image carrier, the distortion level in the image and its distribution. The presented results of testing the developed complex of methods for a representative sample of images confirm its effectiveness

  6. Numerical implementation of a model with directional distortional hardening

    Czech Academy of Sciences Publication Activity Database

    Marek, René; Plešek, Jiří; Hrubý, Zbyněk; Parma, Slavomír; Feigenbaum, H. P.; Dafalias, Y.F.

    2015-01-01

    Roč. 141, č. 12 (2015), 04015048-04015048 ISSN 0733-9399 R&D Projects: GA MŠk LH14018; GA ČR(CZ) GA15-20666S Institutional support: RVO:61388998 Keywords : plasticity * directional distortional hardening * finite-element procedures Subject RIV: JG - Metallurgy Impact factor: 1.346, year: 2015 http://ascelibrary.org/doi/abs/10.1061/%28ASCE%29EM.1943-7889.0000954

  7. SU-E-J-209: Geometric Distortion at 3T in a Commercial 4D MRI-Compatible Phantom

    International Nuclear Information System (INIS)

    Fatemi-Ardekani, A; Wronski, M; Kim, A; Stanisz, G; Sarfehnia, A; Keller, B

    2015-01-01

    Purpose: There are very few commercial 4D phantoms that are marketed as MRI compatible. We are evaluating one such commercial phantom, made to be used with an MRI-Linear accelerator. The focus of this work is to characterize the geometric distortions produced in this phantom at 3T using 3 clinical MR pulse sequences. Methods: The CIRS MRI-Linac Dynamic Phantom (CIRSTM) under investigation in this study consists of a softwaredriven moving tumour volume within a thorax phantom body and enables dose accumulation by placing a dosimeter within the tumour volume. Our initial investigation is to evaluate the phantom in static mode prior to examining its 4D capability. The water-filled thorax phantom was scanned using a wide-bore Philips 3T Achieva MRI scanner employing a Thoracic xl coil and clinical 2D T1W FFE, 2D T1W TSE and 3D T1W TFE pulse sequences. Each of the MR image sets was rigidly fused with a reference CT image of the phantom employing a rigid registration with 6 degrees of freedom. Geometric distortions between the MR and CT image sets were measured in 3 dimensions at selected points along the periphery of the distortion grid embedded within the phantom body (11.5, 7.5 and 3 cm laterally, ant/post and sup/inf of magnetic isocenter respectively). Results: The maximal measured geometric distortions between the MR and reference CT points of interest were 0.9, 1.8 and 1.3 mm in the lateral, anteriorposterior and cranio-caudal directions, respectively. For all 3 spatial dimensions, the maximal distortions occurred for the FFE pulse sequence. Maximal distortions for the 2D FFE, 2D TSE and 3D TFE sequences were 1, 0.7 and 1.8 mm, respectively. Conclusion: Our initial static investigation of this phantom shows minimal geometric distortions at 3T along the periphery of the embedded grid. CIRS has provided us with a phantom at no charge for evaluation at 3 Tesla

  8. Image processing of small protein-crystals in electron microscopy

    International Nuclear Information System (INIS)

    Feinberg, D.A.

    1978-11-01

    This electron microscope study was undertaken to determine whether high resolution reconstructed images could be obtained from statistically noisy micrographs by the super-position of several small areas of images of well-ordered crystals of biological macromolecules. Methods of rotational and translational alignment which use Fourier space data were demonstrated to be superior to methods which use Real space image data. After alignment, the addition of the diffraction patterns of four small areas did not produce higher resolution because of unexpected image distortion effects. A method was developed to determine the location of the distortion origin and the coefficients of spiral distortion and pincushion/barrel distortion in order to make future correction of distortions in electron microscope images of large area crystals

  9. Accelerated Optical Projection Tomography Applied to In Vivo Imaging of Zebrafish.

    Directory of Open Access Journals (Sweden)

    Teresa Correia

    Full Text Available Optical projection tomography (OPT provides a non-invasive 3-D imaging modality that can be applied to longitudinal studies of live disease models, including in zebrafish. Current limitations include the requirement of a minimum number of angular projections for reconstruction of reasonable OPT images using filtered back projection (FBP, which is typically several hundred, leading to acquisition times of several minutes. It is highly desirable to decrease the number of required angular projections to decrease both the total acquisition time and the light dose to the sample. This is particularly important to enable longitudinal studies, which involve measurements of the same fish at different time points. In this work, we demonstrate that the use of an iterative algorithm to reconstruct sparsely sampled OPT data sets can provide useful 3-D images with 50 or fewer projections, thereby significantly decreasing the minimum acquisition time and light dose while maintaining image quality. A transgenic zebrafish embryo with fluorescent labelling of the vasculature was imaged to acquire densely sampled (800 projections and under-sampled data sets of transmitted and fluorescence projection images. The under-sampled OPT data sets were reconstructed using an iterative total variation-based image reconstruction algorithm and compared against FBP reconstructions of the densely sampled data sets. To illustrate the potential for quantitative analysis following rapid OPT data acquisition, a Hessian-based method was applied to automatically segment the reconstructed images to select the vasculature network. Results showed that 3-D images of the zebrafish embryo and its vasculature of sufficient visual quality for quantitative analysis can be reconstructed using the iterative algorithm from only 32 projections-achieving up to 28 times improvement in imaging speed and leading to total acquisition times of a few seconds.

  10. [Managing digital medical imaging projects in healthcare services: lessons learned].

    Science.gov (United States)

    Rojas de la Escalera, D

    2013-01-01

    Medical imaging is one of the most important diagnostic instruments in clinical practice. The technological development of digital medical imaging has enabled healthcare services to undertake large scale projects that require the participation and collaboration of many professionals of varied backgrounds and interests as well as substantial investments in infrastructures. Rather than focusing on systems for dealing with digital medical images, this article deals with the management of projects for implementing these systems, reviewing various organizational, technological, and human factors that are critical to ensure the success of these projects and to guarantee the compatibility and integration of digital medical imaging systems with other health information systems. To this end, the author relates several lessons learned from a review of the literature and the author's own experience in the technical coordination of digital medical imaging projects. Copyright © 2012 SERAM. Published by Elsevier Espana. All rights reserved.

  11. Multiaxial ratcheting with advanced kinematic and directional distortional hardening rules

    Czech Academy of Sciences Publication Activity Database

    Feigenbaum, H. P.; Dugdale, J.; Dafalias, Y.F.; Kourousis, K. I.; Plešek, Jiří

    2012-01-01

    Roč. 49, č. 22 (2012), s. 3063-3076 ISSN 0020-7683 R&D Projects: GA MŠk(CZ) ME10024 Institutional research plan: CEZ:AV0Z20760514 Keywords : plasticity * directional distortional hardening * thermodynamics Subject RIV: JJ - Other Materials Impact factor: 1.871, year: 2012 http://www.sciencedirect.com/science/article/pii/S0020768312002612

  12. Cognitive Distortions, Humor Styles, and Depression.

    Science.gov (United States)

    Rnic, Katerina; Dozois, David J A; Martin, Rod A

    2016-08-01

    Cognitive distortions are negative biases in thinking that are theorized to represent vulnerability factors for depression and dysphoria. Despite the emphasis placed on cognitive distortions in the context of cognitive behavioural theory and practice, a paucity of research has examined the mechanisms through which they impact depressive symptomatology. Both adaptive and maladaptive styles of humor represent coping strategies that may mediate the relation between cognitive distortions and depressive symptoms. The current study examined the correlations between the frequency and impact of cognitive distortions across both social and achievement-related contexts and types of humor. Cognitive distortions were associated with reduced use of adaptive Affiliative and Self-Enhancing humor styles and increased use of maladaptive Aggressive and Self-Defeating humor. Reduced use of Self-Enhancing humor mediated the relationship between most types of cognitive distortions and depressed mood, indicating that distorted negative thinking may interfere with an individual's ability to adopt a humorous and cheerful outlook on life (i.e., use Self-Enhancing humor) as a way of regulating emotions and coping with stress, thereby resulting in elevated depressive symptoms. Similarly, Self-Defeating humor mediated the association of the social impact of cognitive distortions with depression, such that this humor style may be used as a coping strategy for dealing with distorted thinking that ultimately backfires and results in increased dysphoria.

  13. A segmentation algorithm based on image projection for complex text layout

    Science.gov (United States)

    Zhu, Wangsheng; Chen, Qin; Wei, Chuanyi; Li, Ziyang

    2017-10-01

    Segmentation algorithm is an important part of layout analysis, considering the efficiency advantage of the top-down approach and the particularity of the object, a breakdown of projection layout segmentation algorithm. Firstly, the algorithm will algorithm first partitions the text image, and divided into several columns, then for each column scanning projection, the text image is divided into several sub regions through multiple projection. The experimental results show that, this method inherits the projection itself and rapid calculation speed, but also can avoid the effect of arc image information page segmentation, and also can accurate segmentation of the text image layout is complex.

  14. Din, Min og Alles fest: Nuging som løsningsmodel for Distortion

    OpenAIRE

    Jakobsen, Sofie Damgaard; Pedersen, Maria Haarbye; Ahlbom, Anna Lohmann

    2012-01-01

    The project aims to investigate whether nudging can serve as a possible solution to Distortions waste problem. To investigate this we will use the Thaler and Sunstein nudge theory combining the underlying dual process theory for a self-selected nudge. Furthermore the project will discuss the use of libertarian paternalism as a composite concept. The project concludes that a chosen nudge can have an effect in terms of signal value, but does not function as a comprehensive solution to the probl...

  15. Distortion Control during Welding

    NARCIS (Netherlands)

    Akbari Pazooki, A.M.

    2014-01-01

    The local material expansion and contraction involved in welding result in permanent deformations or instability i.e., welding distortion. Considerable efforts have been made in controlling welding distortion prior to, during or after welding. Thermal Tensioning (TT) describes a group of in-situ

  16. TPC track distortions IV: post tenebras lux

    CERN Document Server

    Ammosov, V; Boyko, I; Chelkov, G; Dedovitch, D; Dydak, F; Elagin, A; Gostkin, M; Guskov, A; Koreshev, V; Krumshtein, Z; Nefedov, Y; Nikolaev, K; Wotschack, J; Zhemchugov, A

    2007-01-01

    We present a comprehensive discussion and summary of static and dynamic track distortions in the HARP TPC in terms of physical origin, mathematical modelling and correction algorithms. `Static' distortions are constant with time, while `dynamic' distortions are distortions that occur only during the 400 ms long accelerator spill. The measurement of dynamic distortions, their mathematical modelling and the correction algorithms build on our understanding of static distortions. In the course of corroborating the validity of our static distortion corrections, their reliability and precision was further improved. Dynamic TPC distortions originate dominantly from the `stalactite' effect: a column of positive-ion charge starts growing at the begin of the accelerator spill, and continues growing with nearly constant velocity out from the sense-wire plane into the active TPC volume. However, the `stalactite' effect is not able to describe the distortions that are present already at the start of the spill and which ha...

  17. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    International Nuclear Information System (INIS)

    Frohwein, Lynn J.; Schäfers, Klaus P.; Hoerr, Verena; Faber, Cornelius

    2015-01-01

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  18. Correction of MRI-induced geometric distortions in whole-body small animal PET-MRI

    Energy Technology Data Exchange (ETDEWEB)

    Frohwein, Lynn J., E-mail: frohwein@uni-muenster.de; Schäfers, Klaus P. [European Institute for Molecular Imaging, University of Münster, Münster 48149 (Germany); Hoerr, Verena; Faber, Cornelius [Department of Clinical Radiology, University Hospital of Münster, Münster 48149 (Germany)

    2015-07-15

    Purpose: The fusion of positron emission tomography (PET) and magnetic resonance imaging (MRI) data can be a challenging task in whole-body PET-MRI. The quality of the registration between these two modalities in large field-of-views (FOV) is often degraded by geometric distortions of the MRI data. The distortions at the edges of large FOVs mainly originate from MRI gradient nonlinearities. This work describes a method to measure and correct for these kind of geometric distortions in small animal MRI scanners to improve the registration accuracy of PET and MRI data. Methods: The authors have developed a geometric phantom which allows the measurement of geometric distortions in all spatial axes via control points. These control points are detected semiautomatically in both PET and MRI data with a subpixel accuracy. The spatial transformation between PET and MRI data is determined with these control points via 3D thin-plate splines (3D TPS). The transformation derived from the 3D TPS is finally applied to real MRI mouse data, which were acquired with the same scan parameters used in the phantom data acquisitions. Additionally, the influence of the phantom material on the homogeneity of the magnetic field is determined via field mapping. Results: The spatial shift according to the magnetic field homogeneity caused by the phantom material was determined to a mean of 0.1 mm. The results of the correction show that distortion with a maximum error of 4 mm could be reduced to less than 1 mm with the proposed correction method. Furthermore, the control point-based registration of PET and MRI data showed improved congruence after correction. Conclusions: The developed phantom has been shown to have no considerable negative effect on the homogeneity of the magnetic field. The proposed method yields an appropriate correction of the measured MRI distortion and is able to improve the PET and MRI registration. Furthermore, the method is applicable to whole-body small animal

  19. WE-E-18A-11: Fluoro-Tomographic Images From Projections of On-Board Imager (OBI) While Gantry Is Moving

    Energy Technology Data Exchange (ETDEWEB)

    Yi, B; Hu, E; Yu, C; Lasio, G [Univ. of Maryland School Of Medicine, Baltimore, MD (United States)

    2014-06-15

    Purpose: A method to generate a series of fluoro-tomographic images (FTI) of the slice of interest (SOI) from the projection images of the On-board imager (OBI) while gantry is moving is developed and tested. Methods: Tomographic image via background subtraction, TIBS has been published by our group. TIBS uses a priori anatomical information from a previous CT scan to isolate a SOI from a planar kV image by factoring out the attenuations by tissues outside the SOI (background). We extended the idea to 4D TIBS, which enables to generate from the projection of different gantry angles. A set of background images for different angles are prepared. A background image at a given gantry angle is subtracted from the projection image at the same angle to generate a TIBS image. Then the TIBS image is converted to a reference angle. The 4D TIBS is the set of TIBS that originated from gantry angles other than the reference angle. Projection images of lung patients for CBCT acquisition are used to test the 4D TIBS. Results: Fluoroscopic images of a coronal plane of lung patients are acquired from the CBCT projections at different gantry angles and times. Change of morphology of hilar vessels due to breathing and heart beating are visible in the coronal plane, which are generated from the set of the projection images at gantry angles other than antero-posterior. Breathing surrogate or sorting process is not needed. Unlike tomosynthesis, FTI from 4D TIBS maintains the independence of each of the projections thereby reveals temporal variations within the SOI. Conclusion: FTI, fluoroscopic imaging of a SOI with x-ray projections, directly generated from the x-ray projection images at different gantry angles is tested with a lung case and proven feasible. This technique can be used for on-line imaging of moving targets. NIH Grant R01CA133539.

  20. Color correction of projected image on color-screen for mobile beam-projector

    Science.gov (United States)

    Son, Chang-Hwan; Sung, Soo-Jin; Ha, Yeong-Ho

    2008-01-01

    With the current trend of digital convergence in mobile phones, mobile manufacturers are researching how to develop a mobile beam-projector to cope with the limitations of a small screen size and to offer a better feeling of movement while watching movies or satellite broadcasting. However, mobile beam-projectors may project an image on arbitrary surfaces, such as a colored wall and paper, not on a white screen mainly used in an office environment. Thus, color correction method for the projected image is proposed to achieve good image quality irrespective of the surface colors. Initially, luminance values of original image transformed into the YCbCr space are changed to compensate for spatially nonuniform luminance distribution of arbitrary surface, depending on the pixel values of surface image captured by mobile camera. Next, the chromaticity values for each surface and white-screen image are calculated using the ratio of the sum of three RGB values to one another. Then their chromaticity ratios are multiplied by converted original image through an inverse YCbCr matrix to reduce an influence of modulating the appearance of projected image due to spatially different reflectance on the surface. By projecting corrected original image on a texture pattern or single color surface, the image quality of projected image can be improved more, as well as that of projected image on white screen.

  1. Tomography of images with poisson miose: pre-processing of projections

    International Nuclear Information System (INIS)

    Furuie, S.S.

    1989-01-01

    This work present an alternative approach in order to reconstruct images with low signal to noise ratio. Basically it consist of smoothing projections taking into account that the noise is Poisson. These filtered projections are used to reconstruct the original image, applying direct Fourier method. This approach is compared with convolution back projection and EM (Expectation-Maximization). (author) [pt

  2. Projection Operators and Moment Invariants to Image Blurring

    Czech Academy of Sciences Publication Activity Database

    Flusser, Jan; Suk, Tomáš; Boldyš, Jiří; Zitová, Barbara

    2015-01-01

    Roč. 37, č. 4 (2015), s. 786-802 ISSN 0162-8828 R&D Projects: GA ČR GA13-29225S; GA ČR GAP103/11/1552 Institutional support: RVO:67985556 Keywords : Blurred image * N-fold rotation symmetry * projection operators * image moments * moment invariants * blur invariants * object recognition Subject RIV: JD - Computer Applications, Robotics Impact factor: 6.077, year: 2015 http://library.utia.cas.cz/separaty/2014/ZOI/flusser-0434521.pdf

  3. Investigation of image distortion due to MCP electronic readout misalignment and correction via customized GUI application

    Science.gov (United States)

    Vitucci, G.; Minniti, T.; Tremsin, A. S.; Kockelmann, W.; Gorini, G.

    2018-04-01

    The MCP-based neutron counting detector is a novel device that allows high spatial resolution and time-resolved neutron radiography and tomography with epithermal, thermal and cold neutrons. Time resolution is possible by the high readout speeds of ~ 1200 frames/sec, allowing high resolution event counting with relatively high rates without spatial resolution degradation due to event overlaps. The electronic readout is based on a Timepix sensor, a CMOS pixel readout chip developed at CERN. Currently, a geometry of a quad Timepix detector is used with an active format of 28 × 28 mm2 limited by the size of the Timepix quad (2 × 2 chips) readout. Measurements of a set of high-precision micrometers test samples have been performed at the Imaging and Materials Science & Engineering (IMAT) beamline operating at the ISIS spallation neutron source (U.K.). The aim of these experiments was the full characterization of the chip misalignment and of the gaps between each pad in the quad Timepix sensor. Such misalignment causes distortions of the recorded shape of the sample analyzed. We present in this work a post-processing image procedure that considers and corrects these effects. Results of the correction will be discussed and the efficacy of this method evaluated.

  4. Frequency modulation television analysis: Distortion analysis

    Science.gov (United States)

    Hodge, W. H.; Wong, W. H.

    1973-01-01

    Computer simulation is used to calculate the time-domain waveform of standard T-pulse-and-bar test signal distorted in passing through an FM television system. The simulator includes flat or preemphasized systems and requires specification of the RF predetection filter characteristics. The predetection filters are modeled with frequency-symmetric Chebyshev (0.1-db ripple) and Butterworth filters. The computer was used to calculate distorted output signals for sixty-four different specified systems, and the output waveforms are plotted for all sixty-four. Comparison of the plotted graphs indicates that a Chebyshev predetection filter of four poles causes slightly more signal distortion than a corresponding Butterworth filter and the signal distortion increases as the number of poles increases. An increase in the peak deviation also increases signal distortion. Distortion also increases with the addition of preemphasis.

  5. Hybrid wavefront sensing and image correction algorithm for imaging through turbulent media

    Science.gov (United States)

    Wu, Chensheng; Robertson Rzasa, John; Ko, Jonathan; Davis, Christopher C.

    2017-09-01

    It is well known that passive image correction of turbulence distortions often involves using geometry-dependent deconvolution algorithms. On the other hand, active imaging techniques using adaptive optic correction should use the distorted wavefront information for guidance. Our work shows that a hybrid hardware-software approach is possible to obtain accurate and highly detailed images through turbulent media. The processing algorithm also takes much fewer iteration steps in comparison with conventional image processing algorithms. In our proposed approach, a plenoptic sensor is used as a wavefront sensor to guide post-stage image correction on a high-definition zoomable camera. Conversely, we show that given the ground truth of the highly detailed image and the plenoptic imaging result, we can generate an accurate prediction of the blurred image on a traditional zoomable camera. Similarly, the ground truth combined with the blurred image from the zoomable camera would provide the wavefront conditions. In application, our hybrid approach can be used as an effective way to conduct object recognition in a turbulent environment where the target has been significantly distorted or is even unrecognizable.

  6. MR image-guided portal verification for brain treatment field

    International Nuclear Information System (INIS)

    Yin, F.-F.; Gao, Q.H.; Xie, H.; Nelson, D.F.; Yu, Y.; Kwok, W.E.; Totterman, S.; Schell, M.C.; Rubin, P.

    1996-01-01

    Purpose/Objective: Although MR images have been extensively used for the treatment planning of radiation therapy of cancers, especially for brain cancers, they are not effectively used for the portal verification due to lack of bone/air information in MR images and geometric distortions. Typically, MR images are utilized through correlation with CT images, and this procedure is usually very labor and time consuming. For many brain cancer patients to be treated using conventional external beam radiation, MR images with proper distortion correction provide sufficient information for treatment planning and dose calculation, and a projection images may be generated for each specific treatment port and to be used as a reference image for treatment verification. The question is how to transfer anatomical features in MR images to the projection image as landmarks which could be correlated automatically to those in the portal image. The goal of this study is to generate digitally reconstructed projection images from MR brain images with some important anatomical features (brain contour, skull and gross tumor) as well as their relative locations to be used as references for the development of computerized portal verification scheme. Materials/Methods: Compared to conventional digital reconstructed radiograph from CT images, generation of digitally reconstructed projection images from MR images is heavily involved with pixel manipulation of MR images to correlate information from two types of images (MR, portal x-ray images) which are produced based on totally different imaging principles. Initially a wavelet based multi-resolution adaptive thresholding method is used to segment the skull slice-by-slice in MR brain axial images, and identified skull pixels are re-assigned to relatively higher intensities so that projection images will have comparable grey-level information as that in typical brain portal images. Both T1- and T2-weighted images are utilized to eliminate fat

  7. Analysis of perturbation methods for rearrangement collisions: Comparison of distorted-wave and coupled-channel-wave transition amplitudes

    International Nuclear Information System (INIS)

    Suck Salk, S.H.

    1985-01-01

    With the use of projection operators, the formal expressions of distorted-wave and coupled-channel-wave transition amplitudes for rearrangement collisions are derived. Use of projection operators (for the transition amplitudes) sharpens our understanding of the structural differences between the two transition amplitudes. The merit of each representation of the transition amplitudes is discussed. Derived perturbation potentials are found to have different structures. The rigorously derived distorted-wave Born-approximation (DWBA) transition amplitude is shown to be a generalization of the earlier DWBA expression obtained from the assumption of the dominance of elastic scattering in rearrangement collisions

  8. Quality evaluation of no-reference MR images using multidirectional filters and image statistics.

    Science.gov (United States)

    Jang, Jinseong; Bang, Kihun; Jang, Hanbyol; Hwang, Dosik

    2018-09-01

    This study aimed to develop a fully automatic, no-reference image-quality assessment (IQA) method for MR images. New quality-aware features were obtained by applying multidirectional filters to MR images and examining the feature statistics. A histogram of these features was then fitted to a generalized Gaussian distribution function for which the shape parameters yielded different values depending on the type of distortion in the MR image. Standard feature statistics were established through a training process based on high-quality MR images without distortion. Subsequently, the feature statistics of a test MR image were calculated and compared with the standards. The quality score was calculated as the difference between the shape parameters of the test image and the undistorted standard images. The proposed IQA method showed a >0.99 correlation with the conventional full-reference assessment methods; accordingly, this proposed method yielded the best performance among no-reference IQA methods for images containing six types of synthetic, MR-specific distortions. In addition, for authentically distorted images, the proposed method yielded the highest correlation with subjective assessments by human observers, thus demonstrating its superior performance over other no-reference IQAs. Our proposed IQA was designed to consider MR-specific features and outperformed other no-reference IQAs designed mainly for photographic images. Magn Reson Med 80:914-924, 2018. © 2018 International Society for Magnetic Resonance in Medicine. © 2018 International Society for Magnetic Resonance in Medicine.

  9. Optimization of a novel large field of view distortion phantom for MR-only treatment planning.

    Science.gov (United States)

    Price, Ryan G; Knight, Robert A; Hwang, Ken-Pin; Bayram, Ersin; Nejad-Davarani, Siamak P; Glide-Hurst, Carri K

    2017-07-01

    MR-only treatment planning requires images of high geometric fidelity, particularly for large fields of view (FOV). However, the availability of large FOV distortion phantoms with analysis software is currently limited. This work sought to optimize a modular distortion phantom to accommodate multiple bore configurations and implement distortion characterization in a widely implementable solution. To determine candidate materials, 1.0 T MR and CT images were acquired of twelve urethane foam samples of various densities and strengths. Samples were precision-machined to accommodate 6 mm diameter paintballs used as landmarks. Final material candidates were selected by balancing strength, machinability, weight, and cost. Bore sizes and minimum aperture width resulting from couch position were tabulated from the literature (14 systems, 5 vendors). Bore geometry and couch position were simulated using MATLAB to generate machine-specific models to optimize the phantom build. Previously developed software for distortion characterization was modified for several magnet geometries (1.0 T, 1.5 T, 3.0 T), compared against previously published 1.0 T results, and integrated into the 3D Slicer application platform. All foam samples provided sufficient MR image contrast with paintball landmarks. Urethane foam (compressive strength ∼1000 psi, density ~20 lb/ft 3 ) was selected for its accurate machinability and weight characteristics. For smaller bores, a phantom version with the following parameters was used: 15 foam plates, 55 × 55 × 37.5 cm 3 (L×W×H), 5,082 landmarks, and weight ~30 kg. To accommodate > 70 cm wide bores, an extended build used 20 plates spanning 55 × 55 × 50 cm 3 with 7,497 landmarks and weight ~44 kg. Distortion characterization software was implemented as an external module into 3D Slicer's plugin framework and results agreed with the literature. The design and implementation of a modular, extendable distortion phantom was optimized for several bore

  10. The caBIG annotation and image Markup project.

    Science.gov (United States)

    Channin, David S; Mongkolwat, Pattanasak; Kleper, Vladimir; Sepukar, Kastubh; Rubin, Daniel L

    2010-04-01

    Image annotation and markup are at the core of medical interpretation in both the clinical and the research setting. Digital medical images are managed with the DICOM standard format. While DICOM contains a large amount of meta-data about whom, where, and how the image was acquired, DICOM says little about the content or meaning of the pixel data. An image annotation is the explanatory or descriptive information about the pixel data of an image that is generated by a human or machine observer. An image markup is the graphical symbols placed over the image to depict an annotation. While DICOM is the standard for medical image acquisition, manipulation, transmission, storage, and display, there are no standards for image annotation and markup. Many systems expect annotation to be reported verbally, while markups are stored in graphical overlays or proprietary formats. This makes it difficult to extract and compute with both of them. The goal of the Annotation and Image Markup (AIM) project is to develop a mechanism, for modeling, capturing, and serializing image annotation and markup data that can be adopted as a standard by the medical imaging community. The AIM project produces both human- and machine-readable artifacts. This paper describes the AIM information model, schemas, software libraries, and tools so as to prepare researchers and developers for their use of AIM.

  11. Calibration, Projection, and Final Image Products of MESSENGER's Mercury Dual Imaging System

    Science.gov (United States)

    Denevi, Brett W.; Chabot, Nancy L.; Murchie, Scott L.; Becker, Kris J.; Blewett, David T.; Domingue, Deborah L.; Ernst, Carolyn M.; Hash, Christopher D.; Hawkins, S. Edward; Keller, Mary R.; Laslo, Nori R.; Nair, Hari; Robinson, Mark S.; Seelos, Frank P.; Stephens, Grant K.; Turner, F. Scott; Solomon, Sean C.

    2018-02-01

    We present an overview of the operations, calibration, geodetic control, photometric standardization, and processing of images from the Mercury Dual Imaging System (MDIS) acquired during the orbital phase of the MESSENGER spacecraft's mission at Mercury (18 March 2011-30 April 2015). We also provide a summary of all of the MDIS products that are available in NASA's Planetary Data System (PDS). Updates to the radiometric calibration included slight modification of the frame-transfer smear correction, updates to the flat fields of some wide-angle camera (WAC) filters, a new model for the temperature dependence of narrow-angle camera (NAC) and WAC sensitivity, and an empirical correction for temporal changes in WAC responsivity. Further, efforts to characterize scattered light in the WAC system are described, along with a mosaic-dependent correction for scattered light that was derived for two regional mosaics. Updates to the geometric calibration focused on the focal lengths and distortions of the NAC and all WAC filters, NAC-WAC alignment, and calibration of the MDIS pivot angle and base. Additionally, two control networks were derived so that the majority of MDIS images can be co-registered with sub-pixel accuracy; the larger of the two control networks was also used to create a global digital elevation model. Finally, we describe the image processing and photometric standardization parameters used in the creation of the MDIS advanced products in the PDS, which include seven large-scale mosaics, numerous targeted local mosaics, and a set of digital elevation models ranging in scale from local to global.

  12. Multiple shadows from distorted static black holes

    Science.gov (United States)

    Grover, Jai; Kunz, Jutta; Nedkova, Petya; Wittig, Alexander; Yazadjiev, Stoytcho

    2018-04-01

    We study the local shadow of the Schwarzschild black hole with a quadrupole distortion and the influence of the external gravitational field on the photon dynamics. The external matter sources modify the light ring structure and lead to the appearance of multiple shadow images. In the case of negative quadrupole moments we identify the most prominent mechanism causing multiple shadow formation. Furthermore, we obtain a condition under which this mechanism can be realized. This condition depends on the quadrupole moment, but also on the position of the observer and the celestial sphere.

  13. Distortion of depth perception in virtual environments using stereoscopic displays: quantitative assessment and corrective measures

    Science.gov (United States)

    Kleiber, Michael; Winkelholz, Carsten

    2008-02-01

    The aim of the presented research was to quantify the distortion of depth perception when using stereoscopic displays. The visualization parameters of the used virtual reality system such as perspective, haploscopic separation and width of stereoscopic separation were varied. The experiment was designed to measure distortion in depth perception according to allocentric frames of reference. The results of the experiments indicate that some of the parameters have an antithetic effect which allows to compensate the distortion of depth perception for a range of depths. In contrast to earlier research which reported underestimation of depth perception we found that depth was overestimated when using true projection parameters according to the position of the eyes of the user and display geometry.

  14. Comparison of Turbo Spin Echo and Echo Planar Imaging for intravoxel incoherent motion and diffusion tensor imaging of the kidney at 3 Tesla

    Energy Technology Data Exchange (ETDEWEB)

    Hilbert, Fabian; Wech, Tobias; Neubauer, Henning; Veldhoen, Simon; Bley, Thorsten Alexander; Koestler, Herbert [Wuerzburg Univ. (Germany). Inst. fuer Diagnostische und Interventionelle Radiologie

    2017-10-01

    Echo Planar Imaging (EPI) is most commonly applied to acquire diffusion-weighted MR-images. EPI is able to capture an entire image in very short time, but is prone to distortions and artifacts. In diffusion-weighted EPI of the kidney severe distortions may occur due to intestinal gas. Turbo Spin Echo (TSE) is robust against distortions and artifacts, but needs more time to acquire an entire image compared to EPI. Therefore, TSE is more sensitive to motion during the readout. In this study we compare diffusion-weighted TSE and EPI of the human kidney with regard to intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI). Images were acquired with b-values between 0 and 750 s/mm{sup 2} with TSE and EPI. Distortions were observed with the EPI readout in all volunteers, while the TSE images were virtually distortion-free. Fractional anisotropy of the diffusion tensor was significantly lower for TSE than for EPI. All other parameters of DTI and IVIM were comparable for TSE and EPI. Especially the main diffusion directions yielded by TSE and EPI were similar. The results demonstrate that TSE is a worthwhile distortion-free alternative to EPI for diffusion-weighted imaging of the kidney at 3 Tesla.

  15. SU-G-IeP1-15: Towards Accurate Cerebral Blood Flow Quantification with Distortion- Corrected Pseudo-Continuous Arterial Spin Labeling

    Energy Technology Data Exchange (ETDEWEB)

    Hoff, M; Rane-Levandovsky, S; Andre, J [University of Washington, Seattle, WA (United States)

    2016-06-15

    Purpose: Traditional arterial spin labeling (ASL) acquisitions with echo planar imaging (EPI) readouts suffer from image distortion due to susceptibility effects, compromising ASL’s ability to accurately quantify cerebral blood flow (CBF) and assess disease-specific patterns associated with CBF abnormalities. Phase labeling for additional coordinate encoding (PLACE) can remove image distortion; our goal is to apply PLACE to improve the quantitative accuracy of ASL CBF in humans. Methods: Four subjects were imaged on a 3T Philips Ingenia scanner using a 16-channel receive coil with a 21/21/10cm (frequency/phase/slice direction) field-of-view. An ASL sequence with a pseudo-continuous ASL (pCASL) labeling scheme was employed to acquire thirty dynamics of single-shot EPI data, with control and label datasets for all dynamics, and PLACE gradients applied on odd dynamics. Parameters included a post-labeling delay = 2s, label duration = 1.8s, flip angle = 90°, TR/TE = 5000/23.5ms, and 2.9/2.9/5.0mm (frequency/phase/slice direction) voxel size. “M0” EPI-reference images and T1-weighted spin-echo images with 0.8/1.0/3.3mm (frequency/phase/slice directions) voxel size were also acquired. Complex conjugate image products of pCASL odd and even dynamics were formed, a linear phase ramp applied, and data expanded and smoothed. Data phase was extracted to map control, label, and M0 magnitude image pixels to their undistorted locations, and images were rebinned to original size. All images were corrected for motion artifacts in FSL 5.0. pCASL images were registered to M0 images, and control and label images were subtracted to compute quantitative CBF maps. Results: pCASL image and CBF map distortions were removed by PLACE in all subjects. Corrected images conformed well to the anatomical T1-weighted reference image, and deviations in corrected CBF maps were evident. Conclusion: Eliminating pCASL distortion with PLACE can improve CBF quantification accuracy using minimal

  16. SU-G-IeP1-15: Towards Accurate Cerebral Blood Flow Quantification with Distortion- Corrected Pseudo-Continuous Arterial Spin Labeling

    International Nuclear Information System (INIS)

    Hoff, M; Rane-Levandovsky, S; Andre, J

    2016-01-01

    Purpose: Traditional arterial spin labeling (ASL) acquisitions with echo planar imaging (EPI) readouts suffer from image distortion due to susceptibility effects, compromising ASL’s ability to accurately quantify cerebral blood flow (CBF) and assess disease-specific patterns associated with CBF abnormalities. Phase labeling for additional coordinate encoding (PLACE) can remove image distortion; our goal is to apply PLACE to improve the quantitative accuracy of ASL CBF in humans. Methods: Four subjects were imaged on a 3T Philips Ingenia scanner using a 16-channel receive coil with a 21/21/10cm (frequency/phase/slice direction) field-of-view. An ASL sequence with a pseudo-continuous ASL (pCASL) labeling scheme was employed to acquire thirty dynamics of single-shot EPI data, with control and label datasets for all dynamics, and PLACE gradients applied on odd dynamics. Parameters included a post-labeling delay = 2s, label duration = 1.8s, flip angle = 90°, TR/TE = 5000/23.5ms, and 2.9/2.9/5.0mm (frequency/phase/slice direction) voxel size. “M0” EPI-reference images and T1-weighted spin-echo images with 0.8/1.0/3.3mm (frequency/phase/slice directions) voxel size were also acquired. Complex conjugate image products of pCASL odd and even dynamics were formed, a linear phase ramp applied, and data expanded and smoothed. Data phase was extracted to map control, label, and M0 magnitude image pixels to their undistorted locations, and images were rebinned to original size. All images were corrected for motion artifacts in FSL 5.0. pCASL images were registered to M0 images, and control and label images were subtracted to compute quantitative CBF maps. Results: pCASL image and CBF map distortions were removed by PLACE in all subjects. Corrected images conformed well to the anatomical T1-weighted reference image, and deviations in corrected CBF maps were evident. Conclusion: Eliminating pCASL distortion with PLACE can improve CBF quantification accuracy using minimal

  17. In situ visualization of thermal distortions of synchrotron radiation optics

    International Nuclear Information System (INIS)

    Revesz, P.; Kazimirov, A.; Bazarov, I.

    2007-01-01

    We have developed a new in situ method to measure heating-induced distortions of the surface of the first monochromator crystal exposed to high-power white synchrotron radiation beam. The method is based on recording the image of a stationary grid of dots captured by a CCD camera as reflected from the surface of a crystal with and without a heat load. The three-dimensional surface profile (heat bump) is then reconstructed from the distortions of the original pattern. In experiments performed at the CHESS A2 wiggler beam line we measured the heat bumps with the heights of up to 600 nm produced by a wiggler beam with total power in the range of 15-60 W incident on the (1 1 1) Si crystal at various angles between 3 deg. and 15 deg

  18. A new texture descriptor based on local micro-pattern for detection of architectural distortion in mammographic images

    Science.gov (United States)

    de Oliveira, Helder C. R.; Moraes, Diego R.; Reche, Gustavo A.; Borges, Lucas R.; Catani, Juliana H.; de Barros, Nestor; Melo, Carlos F. E.; Gonzaga, Adilson; Vieira, Marcelo A. C.

    2017-03-01

    This paper presents a new local micro-pattern texture descriptor for the detection of Architectural Distortion (AD) in digital mammography images. AD is a subtle contraction of breast parenchyma that may represent an early sign of breast cancer. Due to its subtlety and variability, AD is more difficult to detect compared to microcalcifications and masses, and is commonly found in retrospective evaluations of false-negative mammograms. Several computer-based systems have been proposed for automatic detection of AD, but their performance are still unsatisfactory. The proposed descriptor, Local Mapped Pattern (LMP), is a generalization of the Local Binary Pattern (LBP), which is considered one of the most powerful feature descriptor for texture classification in digital images. Compared to LBP, the LMP descriptor captures more effectively the minor differences between the local image pixels. Moreover, LMP is a parametric model which can be optimized for the desired application. In our work, the LMP performance was compared to the LBP and four Haralick's texture descriptors for the classification of 400 regions of interest (ROIs) extracted from clinical mammograms. ROIs were selected and divided into four classes: AD, normal tissue, microcalcifications and masses. Feature vectors were used as input to a multilayer perceptron neural network, with a single hidden layer. Results showed that LMP is a good descriptor to distinguish AD from other anomalies in digital mammography. LMP performance was slightly better than the LBP and comparable to Haralick's descriptors (mean classification accuracy = 83%).

  19. Guessing and compression subject to distortion

    OpenAIRE

    Hanawal, Manjesh Kumar; Sundaresan, Rajesh

    2010-01-01

    The problem of guessing a random string is revisited. The relation-ship between guessing without distortion and compression is extended to the case when source alphabet size is countably in¯nite. Further, similar relationship is established for the case when distortion allowed by establishing a tight relationship between rate distortion codes and guessing strategies.

  20. Discriminating Projections for Estimating Face Age in Wild Images

    Energy Technology Data Exchange (ETDEWEB)

    Tokola, Ryan A [ORNL; Bolme, David S [ORNL; Ricanek, Karl [ORNL; Barstow, Del R [ORNL; Boehnen, Chris Bensing [ORNL

    2014-01-01

    We introduce a novel approach to estimating the age of a human from a single uncontrolled image. Current face age estimation algorithms work well in highly controlled images, and some are robust to changes in illumination, but it is usually assumed that images are close to frontal. This bias is clearly seen in the datasets that are commonly used to evaluate age estimation, which either entirely or mostly consist of frontal images. Using pose-specific projections, our algorithm maps image features into a pose-insensitive latent space that is discriminative with respect to age. Age estimation is then performed using a multi-class SVM. We show that our approach outperforms other published results on the Images of Groups dataset, which is the only age-related dataset with a non-trivial number of off-axis face images, and that we are competitive with recent age estimation algorithms on the mostly-frontal FG-NET dataset. We also experimentally demonstrate that our feature projections introduce insensitivity to pose.

  1. An Improved Distortion Operator for Insurance Risks

    Institute of Scientific and Technical Information of China (English)

    GAO Jian-wei; QIU Wan-hua

    2002-01-01

    This paper reviews the distortion function approach developed in the actuarial literature for insurance risks. The main aim of this paper is to derive an extensive distortion operator, and to propose a new premium principle based on this extensive distortion operator. Furthermore, the non-robustness of general distortion operator is also discussed. Examples are provided using Bernoulli, Pareto, Lognormal and Gamma distribution assumptions.

  2. Rate-distortion analysis of directional wavelets.

    Science.gov (United States)

    Maleki, Arian; Rajaei, Boshra; Pourreza, Hamid Reza

    2012-02-01

    The inefficiency of separable wavelets in representing smooth edges has led to a great interest in the study of new 2-D transformations. The most popular criterion for analyzing these transformations is the approximation power. Transformations with near-optimal approximation power are useful in many applications such as denoising and enhancement. However, they are not necessarily good for compression. Therefore, most of the nearly optimal transformations such as curvelets and contourlets have not found any application in image compression yet. One of the most promising schemes for image compression is the elegant idea of directional wavelets (DIWs). While these algorithms outperform the state-of-the-art image coders in practice, our theoretical understanding of them is very limited. In this paper, we adopt the notion of rate-distortion and calculate the performance of the DIW on a class of edge-like images. Our theoretical analysis shows that if the edges are not "sharp," the DIW will compress them more efficiently than the separable wavelets. It also demonstrates the inefficiency of the quadtree partitioning that is often used with the DIW. To solve this issue, we propose a new partitioning scheme called megaquad partitioning. Our simulation results on real-world images confirm the benefits of the proposed partitioning algorithm, promised by our theoretical analysis. © 2011 IEEE

  3. Image restoration, uncertainty, and information.

    Science.gov (United States)

    Yu, F T

    1969-01-01

    Some of the physical interpretations about image restoration are discussed. From the theory of information the unrealizability of an inverse filter can be explained by degradation of information, which is due to distortion on the recorded image. The image restoration is a time and space problem, which can be recognized from the theory of relativity (the problem of image restoration is related to Heisenberg's uncertainty principle in quantum mechanics). A detailed discussion of the relationship between information and energy is given. Two general results may be stated: (1) the restoration of the image from the distorted signal is possible only if it satisfies the detectability condition. However, the restored image, at the best, can only approach to the maximum allowable time criterion. (2) The restoration of an image by superimposing the distorted signal (due to smearing) is a physically unrealizable method. However, this restoration procedure may be achieved by the expenditure of an infinite amount of energy.

  4. Image/patient registration from (partial) projection data by the Fourier phase matching method

    International Nuclear Information System (INIS)

    Weiguo Lu; You, J.

    1999-01-01

    A technique for 2D or 3D image/patient registration, PFPM (projection based Fourier phase matching method), is proposed. This technique provides image/patient registration directly from sequential tomographic projection data. The method can also deal with image files by generating 2D Radon transforms slice by slice. The registration in projection space is done by calculating a Fourier invariant (FI) descriptor for each one-dimensional projection datum, and then registering the FI descriptor by the Fourier phase matching (FPM) method. The algorithm has been tested on both synthetic and experimental data. When dealing with translated, rotated and uniformly scaled 2D image registration, the performance of the PFPM method is comparable to that of the IFPM (image based Fourier phase matching) method in robustness, efficiency, insensitivity to the offset between images, and registration time. The advantages of the former are that subpixel resolution is feasible, and it is more insensitive to image noise due to the averaging effect of the projection acquisition. Furthermore, the PFPM method offers the ability to generalize to 3D image/patient registration and to register partial projection data. By applying patient registration directly from tomographic projection data, image reconstruction is not needed in the therapy set-up verification, thus reducing computational time and artefacts. In addition, real time registration is feasible. Registration from partial projection data meets the geometry and dose requirements in many application cases and makes dynamic set-up verification possible in tomotherapy. (author)

  5. Volterra Series Based Distortion Effect

    DEFF Research Database (Denmark)

    Agerkvist, Finn T.

    2010-01-01

    A large part of the characteristic sound of the electric guitar comes from nonlinearities in the signal path. Such nonlinearities may come from the input- or output-stage of the amplier, which is often equipped with vacuum tubes or a dedicated distortion pedal. In this paper the Volterra series...... expansion for non linear systems is investigated with respect to generating good distortion. The Volterra series allows for unlimited adjustment of the level and frequency dependency of each distortion component. Subjectively relevant ways of linking the dierent orders are discussed....

  6. Robust Fringe Projection Profilometry via Sparse Representation.

    Science.gov (United States)

    Budianto; Lun, Daniel P K

    2016-04-01

    In this paper, a robust fringe projection profilometry (FPP) algorithm using the sparse dictionary learning and sparse coding techniques is proposed. When reconstructing the 3D model of objects, traditional FPP systems often fail to perform if the captured fringe images have a complex scene, such as having multiple and occluded objects. It introduces great difficulty to the phase unwrapping process of an FPP system that can result in serious distortion in the final reconstructed 3D model. For the proposed algorithm, it encodes the period order information, which is essential to phase unwrapping, into some texture patterns and embeds them to the projected fringe patterns. When the encoded fringe image is captured, a modified morphological component analysis and a sparse classification procedure are performed to decode and identify the embedded period order information. It is then used to assist the phase unwrapping process to deal with the different artifacts in the fringe images. Experimental results show that the proposed algorithm can significantly improve the robustness of an FPP system. It performs equally well no matter the fringe images have a simple or complex scene, or are affected due to the ambient lighting of the working environment.

  7. A Reliable Image Watermarking Scheme Based on Redistributed Image Normalization and SVD

    Directory of Open Access Journals (Sweden)

    Musrrat Ali

    2016-01-01

    Full Text Available Digital image watermarking is the process of concealing secret information in a digital image for protecting its rightful ownership. Most of the existing block based singular value decomposition (SVD digital watermarking schemes are not robust to geometric distortions, such as rotation in an integer multiple of ninety degree and image flipping, which change the locations of the pixels but don’t make any changes to the pixel’s intensity of the image. Also, the schemes have used a constant scaling factor to give the same weightage to the coefficients of different magnitudes that results in visible distortion in some regions of the watermarked image. Therefore, to overcome the problems mentioned here, this paper proposes a novel image watermarking scheme by incorporating the concepts of redistributed image normalization and variable scaling factor depending on the coefficient’s magnitude to be embedded. Furthermore, to enhance the security and robustness the watermark is shuffled by using the piecewise linear chaotic map before the embedding. To investigate the robustness of the scheme several attacks are applied to seriously distort the watermarked image. Empirical analysis of the results has demonstrated the efficiency of the proposed scheme.

  8. Impact of the MLC on the MRI field distortion of a prototype MRI-linac

    International Nuclear Information System (INIS)

    Kolling, Stefan; Keall, Paul; Oborn, Brad

    2013-01-01

    Purpose: To cope with intrafraction tumor motion, integrated MRI-linac systems for real-time image guidance are currently under development. The multileaf collimator (MLC) is a key component in every state-of-the-art radiotherapy treatment system, allowing for accurate field shaping and tumor tracking. This work quantifies the magnetic impact of a widely used MLC on the MRI field homogeneity for such a modality.Methods: The finite element method was employed to model a MRI-linac assembly comprised of a 1.0 T split-bore MRI magnet and the key ferromagnetic components of a Varian Millennium 120 MLC, namely, the leaves and motors. Full 3D magnetic field maps of the system were generated. From these field maps, the peak-to-peak distortion within the MRI imaging volume was evaluated over a 30 cm diameter sphere volume (DSV) around the isocenter and compared to a maximum preshim inhomogeneity of 300 μT. Five parametric studies were performed: (1) The source-to-isocenter distance (SID) was varied from 100 to 200 cm, to span the range of a compact system to that with lower magnetic coupling. (2) The MLC model was changed from leaves only to leaves with motors, to determine the contribution to the total distortion caused by MLC leaves and motors separately. (3) The system was configured in the inline or perpendicular orientation, i.e., the linac treatment beam was oriented parallel or perpendicular to the magnetic field direction. (4) The treatment field size was varied from 0 × 0 to 20×20 cm 2 , to span the range of clinical treatment fields. (5) The coil currents were scaled linearly to produce magnetic field strengths B 0 of 0.5, 1.0, and 1.5 T, to estimate how the MLC impact changes with B 0 .Results: (1) The MLC-induced MRI field distortion fell continuously with increasing SID. (2) MLC leaves and motors were found to contribute to the distortion in approximately equal measure. (3) Due to faster falloff of the fringe field, the field distortion was

  9. l0 regularization based on a prior image incorporated non-local means for limited-angle X-ray CT reconstruction.

    Science.gov (United States)

    Zhang, Lingli; Zeng, Li; Guo, Yumeng

    2018-03-15

    Restricted by the scanning environment in some CT imaging modalities, the acquired projection data are usually incomplete, which may lead to a limited-angle reconstruction problem. Thus, image quality usually suffers from the slope artifacts. The objective of this study is to first investigate the distorted domains of the reconstructed images which encounter the slope artifacts and then present a new iterative reconstruction method to address the limited-angle X-ray CT reconstruction problem. The presented framework of new method exploits the structural similarity between the prior image and the reconstructed image aiming to compensate the distorted edges. Specifically, the new method utilizes l0 regularization and wavelet tight framelets to suppress the slope artifacts and pursue the sparsity. New method includes following 4 steps to (1) address the data fidelity using SART; (2) compensate for the slope artifacts due to the missed projection data using the prior image and modified nonlocal means (PNLM); (3) utilize l0 regularization to suppress the slope artifacts and pursue the sparsity of wavelet coefficients of the transformed image by using iterative hard thresholding (l0W); and (4) apply an inverse wavelet transform to reconstruct image. In summary, this method is referred to as "l0W-PNLM". Numerical implementations showed that the presented l0W-PNLM was superior to suppress the slope artifacts while preserving the edges of some features as compared to the commercial and other popular investigative algorithms. When the image to be reconstructed is inconsistent with the prior image, the new method can avoid or minimize the distorted edges in the reconstructed images. Quantitative assessments also showed that applying the new method obtained the highest image quality comparing to the existing algorithms. This study demonstrated that the presented l0W-PNLM yielded higher image quality due to a number of unique characteristics, which include that (1) it utilizes

  10. Body Image Distortion and Exposure to Extreme Body Types: Contingent Adaptation and Cross Adaptation for Self and Other.

    Science.gov (United States)

    Brooks, Kevin R; Mond, Jonathan M; Stevenson, Richard J; Stephen, Ian D

    2016-01-01

    Body size misperception is common amongst the general public and is a core component of eating disorders and related conditions. While perennial media exposure to the "thin ideal" has been blamed for this misperception, relatively little research has examined visual adaptation as a potential mechanism. We examined the extent to which the bodies of "self" and "other" are processed by common or separate mechanisms in young women. Using a contingent adaptation paradigm, experiment 1 gave participants prolonged exposure to images both of the self and of another female that had been distorted in opposite directions (e.g., expanded other/contracted self), and assessed the aftereffects using test images both of the self and other. The directions of the resulting perceptual biases were contingent on the test stimulus, establishing at least some separation between the mechanisms encoding these body types. Experiment 2 used a cross adaptation paradigm to further investigate the extent to which these mechanisms are independent. Participants were adapted either to expanded or to contracted images of their own body or that of another female. While adaptation effects were largest when adapting and testing with the same body type, confirming the separation of mechanisms reported in experiment 1, substantial misperceptions were also demonstrated for cross adaptation conditions, demonstrating a degree of overlap in the encoding of self and other. In addition, the evidence of misperception of one's own body following exposure to "thin" and to "fat" others demonstrates the viability of visual adaptation as a model of body image disturbance both for those who underestimate and those who overestimate their own size.

  11. Invisibility cloak with image projection capability.

    Science.gov (United States)

    Banerjee, Debasish; Ji, Chengang; Iizuka, Hideo

    2016-12-13

    Investigations of invisibility cloaks have been led by rigorous theories and such cloak structures, in general, require extreme material parameters. Consequently, it is challenging to realize them, particularly in the full visible region. Due to the insensitivity of human eyes to the polarization and phase of light, cloaking a large object in the full visible region has been recently realized by a simplified theory. Here, we experimentally demonstrate a device concept where a large object can be concealed in a cloak structure and at the same time any images can be projected through it by utilizing a distinctively different approach; the cloaking via one polarization and the image projection via the other orthogonal polarization. Our device structure consists of commercially available optical components such as polarizers and mirrors, and therefore, provides a significant further step towards practical application scenarios such as transparent devices and see-through displays.

  12. Digital image processing an algorithmic approach with Matlab

    CERN Document Server

    Qidwai, Uvais

    2009-01-01

    Introduction to Image Processing and the MATLAB EnvironmentIntroduction Digital Image Definitions: Theoretical Account Image Properties MATLAB Algorithmic Account MATLAB CodeImage Acquisition, Types, and File I/OImage Acquisition Image Types and File I/O Basics of Color Images Other Color Spaces Algorithmic Account MATLAB CodeImage ArithmeticIntroduction Operator Basics Theoretical TreatmentAlgorithmic Treatment Coding ExamplesAffine and Logical Operations, Distortions, and Noise in ImagesIntroduction Affine Operations Logical Operators Noise in Images Distortions in ImagesAlgorithmic Account

  13. A Bayesian approach to PET reconstruction using image-modeling Gibbs priors: Implementation and comparison

    International Nuclear Information System (INIS)

    Chan, M.T.; Herman, G.T.; Levitan, E.

    1996-01-01

    We demonstrate that (i) classical methods of image reconstruction from projections can be improved upon by considering the output of such a method as a distorted version of the original image and applying a Bayesian approach to estimate from it the original image (based on a model of distortion and on a Gibbs distribution as the prior) and (ii) by selecting an open-quotes image-modelingclose quotes prior distribution (i.e., one which is such that it is likely that a random sample from it shares important characteristics of the images of the application area) one can improve over another Gibbs prior formulated using only pairwise interactions. We illustrate our approach using simulated Positron Emission Tomography (PET) data from realistic brain phantoms. Since algorithm performance ultimately depends on the diagnostic task being performed. we examine a number of different medically relevant figures of merit to give a fair comparison. Based on a training-and-testing evaluation strategy, we demonstrate that statistically significant improvements can be obtained using the proposed approach

  14. Spectral Distortion in Lossy Compression of Hyperspectral Data

    Directory of Open Access Journals (Sweden)

    Bruno Aiazzi

    2012-01-01

    Full Text Available Distortion allocation varying with wavelength in lossy compression of hyperspectral imagery is investigated, with the aim of minimizing the spectral distortion between original and decompressed data. The absolute angular error, or spectral angle mapper (SAM, is used to quantify spectral distortion, while radiometric distortions are measured by maximum absolute deviation (MAD for near-lossless methods, for example, differential pulse code modulation (DPCM, or mean-squared error (MSE for lossy methods, for example, spectral decorrelation followed by JPEG 2000. Two strategies of interband distortion allocation are compared: given a target average bit rate, distortion may be set to be constant with wavelength. Otherwise, it may be allocated proportionally to the noise level of each band, according to the virtually lossless protocol. Comparisons with the uncompressed originals show that the average SAM of radiance spectra is minimized by constant distortion allocation to radiance data. However, variable distortion allocation according to the virtually lossless protocol yields significantly lower SAM in case of reflectance spectra obtained from compressed radiance data, if compared with the constant distortion allocation at the same compression ratio.

  15. Comparison of digital mammography and digital breast tomosynthesis in the detection of architectural distortion.

    Science.gov (United States)

    Dibble, Elizabeth H; Lourenco, Ana P; Baird, Grayson L; Ward, Robert C; Maynard, A Stanley; Mainiero, Martha B

    2018-01-01

    To compare interobserver variability (IOV), reader confidence, and sensitivity/specificity in detecting architectural distortion (AD) on digital mammography (DM) versus digital breast tomosynthesis (DBT). This IRB-approved, HIPAA-compliant reader study used a counterbalanced experimental design. We searched radiology reports for AD on screening mammograms from 5 March 2012-27 November 2013. Cases were consensus-reviewed. Controls were selected from demographically matched non-AD examinations. Two radiologists and two fellows blinded to outcomes independently reviewed images from two patient groups in two sessions. Readers recorded presence/absence of AD and confidence level. Agreement and differences in confidence and sensitivity/specificity between DBT versus DM and attendings versus fellows were examined using weighted Kappa and generalised mixed modeling, respectively. There were 59 AD patients and 59 controls for 1,888 observations (59 × 2 (cases and controls) × 2 breasts × 2 imaging techniques × 4 readers). For all readers, agreement improved with DBT versus DM (0.61 vs. 0.37). Confidence was higher with DBT, p = .001. DBT achieved higher sensitivity (.59 vs. .32), p .90). DBT achieved higher positive likelihood ratio values, smaller negative likelihood ratio values, and larger ROC values. DBT decreases IOV, increases confidence, and improves sensitivity while maintaining high specificity in detecting AD. • Digital breast tomosynthesis decreases interobserver variability in the detection of architectural distortion. • Digital breast tomosynthesis increases reader confidence in the detection of architectural distortion. • Digital breast tomosynthesis improves sensitivity in the detection of architectural distortion.

  16. Measurement of pulmonary vascular resistance of Fontan candidates with pulmonary arterial distortion by means of pulmonary perfusion imaging

    International Nuclear Information System (INIS)

    Park, In-Sam; Mizukami, Ayumi; Tomimatsu, Hirofumi; Kondou, Chisato; Nakanishi, Toshio; Nakazawa, Makoto; Momma, Kazuo

    1998-01-01

    We measured the distribution of blood flow to the right (R) and left lung (L) by means of pulmonary perfusion imaging and calculated pulmonary vascular resistance (Rp) in 13 patients, whose right and left pulmonary artery pressures were different by 2 to 9 mmHg due to pulmonary arterial distortion (5 interruption, 8 stenosis). The right lung/left lung blood flow ratio was determined and from the ratio and the total pulmonary blood flow, which was determined using the Fick's principle, the absolute values of right and left pulmonary blood flow were calculated. Using the right and left pulmonary blood flow and the right and left pulmonary arterial pressures, right and left pulmonary vascular resistance were calculated, separately. Vascular resistance of the whole lung (Rp) was then calculated using the following equation. 1/(Rp of total lung)=1/(Rp of right lung)+1/(Rp of left lung). Rp calculated from this equation was 1.8+/-0.8 U·m 2 and all values were less than 3 U·m 2 (range 0.3-2.8). Rp estimated from the conventional method using the total pulmonary blood flow and pulmonary arterial pressures, without using the right/left blood flow ratio, ranging from 0.4 to 3.8 U·m 2 and 5 of 13 patients showed Rp>3 U·m 2 . All patients underwent Fontan operation successfully. These data indicated that this method is useful to estimate Rp and to determine the indication of Fontan operation in patients with pulmonary arterial distortions. (author)

  17. Real-Time Correction By Optical Tracking with Integrated Geometric Distortion Correction for Reducing Motion Artifacts in fMRI

    Science.gov (United States)

    Rotenberg, David J.

    Artifacts caused by head motion are a substantial source of error in fMRI that limits its use in neuroscience research and clinical settings. Real-time scan-plane correction by optical tracking has been shown to correct slice misalignment and non-linear spin-history artifacts, however residual artifacts due to dynamic magnetic field non-uniformity may remain in the data. A recently developed correction technique, PLACE, can correct for absolute geometric distortion using the complex image data from two EPI images, with slightly shifted k-space trajectories. We present a correction approach that integrates PLACE into a real-time scan-plane update system by optical tracking, applied to a tissue-equivalent phantom undergoing complex motion and an fMRI finger tapping experiment with overt head motion to induce dynamic field non-uniformity. Experiments suggest that including volume by volume geometric distortion correction by PLACE can suppress dynamic geometric distortion artifacts in a phantom and in vivo and provide more robust activation maps.

  18. Dual scan CT image recovery from truncated projections

    Science.gov (United States)

    Sarkar, Shubhabrata; Wahi, Pankaj; Munshi, Prabhat

    2017-12-01

    There are computerized tomography (CT) scanners available commercially for imaging small objects and they are often categorized as mini-CT X-ray machines. One major limitation of these machines is their inability to scan large objects with good image quality because of the truncation of projection data. An algorithm is proposed in this work which enables such machines to scan large objects while maintaining the quality of the recovered image.

  19. Distortions in Judged Spatial Relations.

    Science.gov (United States)

    Stevens, Albert

    1978-01-01

    Distortions in judgments of relative geographical relations were observed, particularly when the locations were in different geographical or political units. Subjects distorted the judged relation to conform with the relation of the superordinate political unit. A model for the hierachical storage of spatial information is presented. (Author/RD)

  20. New Geometric-distortion Solution for STIS FUV-MAMA

    Science.gov (United States)

    Sohn, S. Tony

    2018-04-01

    We derived a new geometric distortion solution for the STIS FUV-MAMA detector. To do this, positions of stars in 89 FUV-MAMA observations of NGC 6681 were compared to an astrometric standard catalog created using WFC3/UVIS imaging data to derive a fourth-order polynomial solution that transforms raw (x, y) positions to geometrically- corrected (x, y) positions. When compared to astrometric catalog positions, the FUV- MAMA position measurements based on the IDCTAB showed residuals with an RMS of ∼ 30 mas in each coordinate. Using the new IDCTAB, the RMS is reduced to ∼ 4 mas, or 0.16 FUV-MAMA pixels, in each coordinate. The updated IDCTAB is now being used in the HST STIS pipeline to process all STIS FUV-MAMA images.

  1. Object-Image Correspondence for Algebraic Curves under Projections

    Directory of Open Access Journals (Sweden)

    Joseph M. Burdis

    2013-03-01

    Full Text Available We present a novel algorithm for deciding whether a given planar curve is an image of a given spatial curve, obtained by a central or a parallel projection with unknown parameters. The motivation comes from the problem of establishing a correspondence between an object and an image, taken by a camera with unknown position and parameters. A straightforward approach to this problem consists of setting up a system of conditions on the projection parameters and then checking whether or not this system has a solution. The computational advantage of the algorithm presented here, in comparison to algorithms based on the straightforward approach, lies in a significant reduction of a number of real parameters that need to be eliminated in order to establish existence or non-existence of a projection that maps a given spatial curve to a given planar curve. Our algorithm is based on projection criteria that reduce the projection problem to a certain modification of the equivalence problem of planar curves under affine and projective transformations. To solve the latter problem we make an algebraic adaptation of signature construction that has been used to solve the equivalence problems for smooth curves. We introduce a notion of a classifying set of rational differential invariants and produce explicit formulas for such invariants for the actions of the projective and the affine groups on the plane.

  2. Quantitative imaging studies with PET VI. Project II

    International Nuclear Information System (INIS)

    Copper, M.; Chen, C.T.; Yasillo, N.; Gatley, J.; Ortega, C.; DeJesus, O.; Friedman, A.

    1985-01-01

    This project is focused upon the development of hardware and software to improve PET image analysis and upon clinical applications of PET. In this report the laboratory's progress in various attenuation correction methods for brain imaging are described. The use of time-of-flight information for image reconstruction is evaluated. The location of dopamine D1 and D2 receptors in brain was found to be largely in the basal ganghia. 1 tab. (DT)

  3. The Van Sant AVHRR image projected onto a rhombicosidodecahedron

    Science.gov (United States)

    Baron, Michael; Morain, Stan

    1996-03-01

    IDEATION, a design and development corporation, Santa Fe, New Mexico, has modeled Tom Van Sant's ``The Earth From Space'' image to a rhombicosidodecahedron. ``The Earth from Space'' image, produced by the Geosphere® Project in Santa Monica, California, was developed from hundreds of AVHRR pictures and published as a Mercator projection. IDEATION, utilizing a digitized Robinson Projection, fitted the image to foldable, paper components which, when interconnected by means of a unique tabular system, results in a rhombicosidodecahedron representation of the Earth exposing 30 square, 20 triangular, and 12 pentagonal faces. Because the resulting model is not spherical, the borders of the represented features were rectified to match the intersecting planes of the model's faces. The resulting product will be licensed and commercially produced for use by elementary and secondary students. Market research indicates the model will be used in both the demonstration of geometric principles and the teaching of fundamental spatial relations of the Earth's lands and oceans.

  4. METHOD OF RADIOMETRIC DISTORTION CORRECTION OF MULTISPECTRAL DATA FOR THE EARTH REMOTE SENSING

    Directory of Open Access Journals (Sweden)

    A. N. Grigoriev

    2015-07-01

    Full Text Available The paper deals with technologies of ground secondary processing of heterogeneous multispectral data. The factors of heterogeneous data include uneven illumination of objects on the Earth surface caused by different properties of the relief. A procedure for the image restoration of spectral channels by means of terrain distortion compensation is developed. The object matter of this paper is to improve the quality of the results during image restoration of areas with large and medium landforms. Methods. Researches are based on the elements of the digital image processing theory, statistical processing of the observation results and the theory of multi-dimensional arrays. Main Results. The author has introduced operations on multidimensional arrays: concatenation and elementwise division. Extended model description for input data about the area is given. The model contains all necessary data for image restoration. Correction method for multispectral data radiometric distortions of the Earth remote sensing has been developed. The method consists of two phases: construction of empirical dependences for spectral reflectance on the relief properties and restoration of spectral images according to semiempirical data. Practical Relevance. Research novelty lies in developme nt of the application theory of multidimensional arrays with respect to the processing of multispectral data, together with data on the topography and terrain objects. The results are usable for development of radiometric data correction tools. Processing is performed on the basis of a digital terrain model without carrying out ground works connected with research of the objects reflective properties.

  5. Survey of on-road image projection with pixel light systems

    Science.gov (United States)

    Rizvi, Sadiq; Knöchelmann, Marvin; Ley, Peer-Phillip; Lachmayer, Roland

    2017-12-01

    HID, LED and laser-based high resolution automotive headlamps, as of late known as `pixel light systems', are at the forefront of the developing technologies paving the way for autonomous driving. In addition to light distribution capabilities that outperform Adaptive Front Lighting and Matrix Beam systems, pixel light systems provide the possibility of image projection directly onto the street. The underlying objective is to improve the driving experience, in any given scenario, in terms of safety, comfort and interaction for all road users. The focus of this work is to conduct a short survey on this state-of-the-art image projection functionality. A holistic research regarding the image projection functionality can be divided into three major categories: scenario selection, technological development and evaluation design. Consequently, the work presented in this paper is divided into three short studies. Section 1 provides a brief introduction to pixel light systems and a justification for the approach adopted for this study. Section 2 deals with the selection of scenarios (and driving maneuvers) where image projection can play a critical role. Section 3 discusses high power LED and LED array based prototypes that are currently under development. Section 4 demonstrates results from an experiment conducted to evaluate the illuminance of an image space projected using a pixel light system prototype developed at the Institute of Product Development (IPeG). Findings from this work can help to identify and advance future research work relating to: further development of pixel light systems, scenario planning, examination of optimal light sources, behavioral response studies etc.

  6. Body Image Distortion and Exposure to Extreme Body Types: Contingent Adaptation and Cross Adaptation for Self and Other

    Directory of Open Access Journals (Sweden)

    Kevin R. Brooks

    2016-07-01

    Full Text Available Body size misperception is common amongst the general public and is a core component of eating disorders and related conditions. While perennial media exposure to the thin ideal has been blamed for this misperception, relatively little research has examined visual adaptation as a potential mechanism. We examined the extent to which the bodies of self and other are processed by common or separate mechanisms in young women. Using a contingent adaptation paradigm, experiment 1 gave participants prolonged exposure to images both of the self and of another female that had been distorted in opposite directions (e.g. expanded other/contracted self, and assessed the aftereffects using test images both of the self and other. The directions of the resulting perceptual biases were contingent on the test stimulus, establishing at least some separation between the mechanisms encoding these body types. Experiment 2 used a cross adaptation paradigm to further investigate the extent to which these mechanisms are independent. Participants were adapted either to expanded or to contracted images of their own body or that of another female. While adaptation effects were largest when adapting and testing with the same body type, confirming the separation of mechanisms reported in experiment 1, substantial misperceptions were also demonstrated for cross adaptation conditions, demonstrating a degree of overlap in the encoding of self and other. In addition, the evidence of misperception of one’s own body following exposure to thin and to fat others demonstrates the viability of visual adaptation as a model of body image disturbance both for those who underestimate and those who overestimate their own size.

  7. JET ENGINE INLET DISTORTION SCREEN AND DESCRIPTOR EVALUATION

    Directory of Open Access Journals (Sweden)

    Jiří Pečinka

    2017-02-01

    Full Text Available Total pressure distortion is one of the three basic flow distortions (total pressure, total temperature and swirl distortion that might appear at the inlet of a gas turbine engine (GTE during operation. Different numerical parameters are used for assessing the total pressure distortion intensity and extent. These summary descriptors are based on the distribution of total pressure in the aerodynamic interface plane. There are two descriptors largely spread around the world, however, three or four others are still in use and can be found in current references. The staff at the University of Defence decided to compare the most common descriptors using basic flow distortion patterns in order to select the most appropriate descriptor for future department research. The most common descriptors were identified based on their prevalence in widely accessible publications. The construction and use of these descriptors are reviewed in the paper. Subsequently, they are applied to radial, angular, and combined distortion patterns of different intensities and with varied mass flow rates. The tests were performed on a specially designed test bench using an electrically driven standalone industrial centrifugal compressor, sucking air through the inlet of a TJ100 small turbojet engine. Distortion screens were placed into the inlet channel to create the desired total pressure distortions. Of the three basic distortions, only the total pressure distortion descriptors were evaluated. However, both total and static pressures were collected using a multi probe rotational measurement system.

  8. Design of retinal-projection-based near-eye display with contact lens.

    Science.gov (United States)

    Wu, Yuhang; Chen, Chao Ping; Mi, Lantian; Zhang, Wenbo; Zhao, Jingxin; Lu, Yifan; Guo, Weiqian; Yu, Bing; Li, Yang; Maitlo, Nizamuddin

    2018-04-30

    We propose a design of a retinal-projection-based near-eye display for achieving ultra-large field of view, vision correction, and occlusion. Our solution is highlighted by a contact lens combo, a transparent organic light-emitting diode panel, and a twisted nematic liquid crystal panel. Its design rules are set forth in detail, followed by the results and discussion regarding the field of view, angular resolution, modulation transfer function, contrast ratio, distortion, and simulated imaging.

  9. An accelerated threshold-based back-projection algorithm for Compton camera image reconstruction

    International Nuclear Information System (INIS)

    Mundy, Daniel W.; Herman, Michael G.

    2011-01-01

    Purpose: Compton camera imaging (CCI) systems are currently under investigation for radiotherapy dose reconstruction and verification. The ability of such a system to provide real-time images during dose delivery will be limited by the computational speed of the image reconstruction algorithm. In this work, the authors present a fast and simple method by which to generate an initial back-projected image from acquired CCI data, suitable for use in a filtered back-projection algorithm or as a starting point for iterative reconstruction algorithms, and compare its performance to the current state of the art. Methods: Each detector event in a CCI system describes a conical surface that includes the true point of origin of the detected photon. Numerical image reconstruction algorithms require, as a first step, the back-projection of each of these conical surfaces into an image space. The algorithm presented here first generates a solution matrix for each slice of the image space by solving the intersection of the conical surface with the image plane. Each element of the solution matrix is proportional to the distance of the corresponding voxel from the true intersection curve. A threshold function was developed to extract those pixels sufficiently close to the true intersection to generate a binary intersection curve. This process is repeated for each image plane for each CCI detector event, resulting in a three-dimensional back-projection image. The performance of this algorithm was tested against a marching algorithm known for speed and accuracy. Results: The threshold-based algorithm was found to be approximately four times faster than the current state of the art with minimal deficit to image quality, arising from the fact that a generically applicable threshold function cannot provide perfect results in all situations. The algorithm fails to extract a complete intersection curve in image slices near the detector surface for detector event cones having axes nearly

  10. Robust image registration for multiple exposure high dynamic range image synthesis

    Science.gov (United States)

    Yao, Susu

    2011-03-01

    Image registration is an important preprocessing technique in high dynamic range (HDR) image synthesis. This paper proposed a robust image registration method for aligning a group of low dynamic range images (LDR) that are captured with different exposure times. Illumination change and photometric distortion between two images would result in inaccurate registration. We propose to transform intensity image data into phase congruency to eliminate the effect of the changes in image brightness and use phase cross correlation in the Fourier transform domain to perform image registration. Considering the presence of non-overlapped regions due to photometric distortion, evolutionary programming is applied to search for the accurate translation parameters so that the accuracy of registration is able to be achieved at a hundredth of a pixel level. The proposed algorithm works well for under and over-exposed image registration. It has been applied to align LDR images for synthesizing high quality HDR images..

  11. Improvement of image quality using interpolated projection data estimation method in SPECT

    International Nuclear Information System (INIS)

    Takaki, Akihiro; Soma, Tsutomu; Murase, Kenya; Kojima, Akihiro; Asao, Kimie; Kamada, Shinya; Matsumoto, Masanori

    2009-01-01

    General data acquisition for single photon emission computed tomography (SPECT) is performed in 90 or 60 directions, with a coarse pitch of approximately 4-6 deg for a rotation of 360 deg or 180 deg, using a gamma camera. No data between adjacent projections will be sampled under these circumstances. The aim of the study was to develop a method to improve SPECT image quality by generating lacking projection data through interpolation of data obtained with a coarse pitch such as 6 deg. The projection data set at each individual degree in 360 directions was generated by a weighted average interpolation method from the projection data acquired with a coarse sampling angle (interpolated projection data estimation processing method, IPDE method). The IPDE method was applied to the numerical digital phantom data, actual phantom data and clinical brain data with Tc-99m ethyle cysteinate dimer (ECD). All SPECT images were reconstructed by the filtered back-projection method and compared with the original SPECT images. The results confirmed that streak artifacts decreased by apparently increasing a sampling number in SPECT after interpolation and also improved signal-to-noise (S/N) ratio of the root mean square uncertainty value. Furthermore, the normalized mean square error values, compared with standard images, had similar ones after interpolation. Moreover, the contrast and concentration ratios increased their effects after interpolation. These results indicate that effective improvement of image quality can be expected with interpolation. Thus, image quality and the ability to depict images can be improved while maintaining the present acquisition time and image quality. In addition, this can be achieved more effectively than at present even if the acquisition time is reduced. (author)

  12. Harmonic analysis for the characterization and correction of geometric distortion in MRI.

    Science.gov (United States)

    Tadic, Tony; Jaffray, David A; Stanescu, Teodor

    2014-11-01

    Magnetic resonance imaging (MRI) is gaining widespread use in radiation therapy planning, patient setup verification, and real-time guidance of radiation delivery. Successful implementation of these technologies relies on the development of simple and efficient methods to characterize and monitor the geometric distortions arising due to system imperfections and gradient nonlinearities. To this end, the authors present the theory and validation of a novel harmonic approach to the quantification of system-related distortions in MRI. The theory of spatial encoding in MRI is applied to demonstrate that the 3D distortion vector field (DVF) is given by the solution of a second-order boundary value problem (BVP). This BVP is comprised of Laplace's equation and a limited measurement of the distortion on the boundary of a specified region of interest (ROI). An analytical series expansion solving this BVP within a spherical ROI is obtained, and a statistical uncertainty analysis is performed to determine how random errors in the boundary measurements propagate to the ROI interior. This series expansion is then evaluated to obtain volumetric DVF mappings that are compared to reference data obtained on a 3 T full-body scanner. This validation is performed within two spheres of 20 cm diameter (one centered at the scanner origin and the other offset +3 cm along each of the transverse directions). Initially, a high-order mapping requiring measurements at 5810 boundary points is used. Then, after exploring the impact of the boundary sampling density and the effect of series truncation, a reduced-order mapping requiring measurements at 302 boundary points is evaluated. The volumetric DVF mappings obtained from the harmonic analysis are in good agreement with the reference data. Following distortion correction using the high-order mapping, the authors estimate a reduction in the mean distortion magnitude from 0.86 to 0.42 mm and from 0.93 to 0.39 mm within the central and offset

  13. Kernel based subspace projection of near infrared hyperspectral images of maize kernels

    DEFF Research Database (Denmark)

    Larsen, Rasmus; Arngren, Morten; Hansen, Per Waaben

    2009-01-01

    In this paper we present an exploratory analysis of hyper- spectral 900-1700 nm images of maize kernels. The imaging device is a line scanning hyper spectral camera using a broadband NIR illumi- nation. In order to explore the hyperspectral data we compare a series of subspace projection methods ......- tor transform outperform the linear methods as well as kernel principal components in producing interesting projections of the data.......In this paper we present an exploratory analysis of hyper- spectral 900-1700 nm images of maize kernels. The imaging device is a line scanning hyper spectral camera using a broadband NIR illumi- nation. In order to explore the hyperspectral data we compare a series of subspace projection methods...... including principal component analysis and maximum autocorrelation factor analysis. The latter utilizes the fact that interesting phenomena in images exhibit spatial autocorrelation. However, linear projections often fail to grasp the underlying variability on the data. Therefore we propose to use so...

  14. Correction of rotational distortion for catheter-based en face OCT and OCT angiography

    Science.gov (United States)

    Ahsen, Osman O.; Lee, Hsiang-Chieh; Giacomelli, Michael G.; Wang, Zhao; Liang, Kaicheng; Tsai, Tsung-Han; Potsaid, Benjamin; Mashimo, Hiroshi; Fujimoto, James G.

    2015-01-01

    We demonstrate a computationally efficient method for correcting the nonuniform rotational distortion (NURD) in catheter-based imaging systems to improve endoscopic en face optical coherence tomography (OCT) and OCT angiography. The method performs nonrigid registration using fiducial markers on the catheter to correct rotational speed variations. Algorithm performance is investigated with an ultrahigh-speed endoscopic OCT system and micromotor catheter. Scan nonuniformity is quantitatively characterized, and artifacts from rotational speed variations are significantly reduced. Furthermore, we present endoscopic en face OCT and OCT angiography images of human gastrointestinal tract in vivo to demonstrate the image quality improvement using the correction algorithm. PMID:25361133

  15. Distortional Modes of Thin-Walled Beams

    DEFF Research Database (Denmark)

    Jönsson, Jeppe; Andreassen, Michael Joachim

    2009-01-01

    The classic thin-walled beam theory for open and closed cross-sections can be generalized by including distortional displacement modes. The introduction of additional displacement modes leads to coupled differential equations, which seems to have prohibited the use of exact shape functions...... in the modelling of coupled torsion and distortion. However, if the distortional displacement modes are chosen as those which decouple the differential equations as in non proportionally damped modal dynamic analysis then it may be possible to use exact shape functions and perform analysis on a reduced problem....... In the recently developed generalized beam theory (GBT) the natural distortional displacement modes are determined on the basis of a quadratic eigenvalue problem. However, as in linear modal dynamic analysis of proportionally damped structures this problem has been solved approximately using linear eigenvalue...

  16. The main postulates of adaptive correction of distortions of the wave front in large-size optical systems

    Directory of Open Access Journals (Sweden)

    V. V. Sychev

    2014-01-01

    Full Text Available In the development of optical telescopes, striving to increase the penetrating power of a telescope has been always the main trend. A real way to solve this problem is to raise the quality of the image (reduction of the image angular size under real conditions of distorting factor and increase a diameter of the main mirror. This is counteracted by the various distorting factors or interference occurring in realtime use of telescopes, as well as by complicated manufacturing processes of large mirrors.It is shown that the most effective method to deal with the influence of distorting factors on the image quality in the telescope is the minimization (through selecting the place to mount a telescope and choosing the rational optical scheme, creating materials and new technologies, improving a design, unloading the mirrors, mounting choice, etc., and then the adaptive compensation of remaining distortions.It should be noted that a domestic concept to design large-sized telescopes allows us to use, in our opinion, the most efficient ways to do this. It means to abandon the creation of "an absolutely rigid and well-ordered" design, providing the passively aligned state telescope optics under operating conditions. The design must just have such a level of residual deformations that their effect can be efficiently compensated by the adaptive system using the segmented elements of the primary mirror and the secondary mirror as a corrector.It has been found that in the transmission optical systems to deliver laser power to a remote object, it is necessary not only to overcome the distorting effect of factors inherent in optical information systems, but, additionally, find a way to overcome a number of new difficulties. The main ones have been identified to be as follows:• the influence of laser radiation on the structure components and the propagation medium and, as a consequence, the opposite effect of the structure components and the propagation

  17. Prediction of transmission distortion for wireless video communication: analysis.

    Science.gov (United States)

    Chen, Zhifeng; Wu, Dapeng

    2012-03-01

    Transmitting video over wireless is a challenging problem since video may be seriously distorted due to packet errors caused by wireless channels. The capability of predicting transmission distortion (i.e., video distortion caused by packet errors) can assist in designing video encoding and transmission schemes that achieve maximum video quality or minimum end-to-end video distortion. This paper is aimed at deriving formulas for predicting transmission distortion. The contribution of this paper is twofold. First, we identify the governing law that describes how the transmission distortion process evolves over time and analytically derive the transmission distortion formula as a closed-form function of video frame statistics, channel error statistics, and system parameters. Second, we identify, for the first time, two important properties of transmission distortion. The first property is that the clipping noise, which is produced by nonlinear clipping, causes decay of propagated error. The second property is that the correlation between motion-vector concealment error and propagated error is negative and has dominant impact on transmission distortion, compared with other correlations. Due to these two properties and elegant error/distortion decomposition, our formula provides not only more accurate prediction but also lower complexity than the existing methods.

  18. Ultrasonographic Findings of Mammographic Architectural Distortion

    International Nuclear Information System (INIS)

    Ma, Jeong Hyun; Kang, Bong Joo; Cha, Eun Suk; Hwangbo, Seol; Kim, Hyeon Sook; Park, Chang Suk; Kim, Sung Hun; Choi, Jae Jeong; Chung, Yong An

    2008-01-01

    To review the sonographic findings of various diseases showing architectural distortion depicted under mammography. We collected and reviewed architectural distortions observed under mammography at our health institution between 1 March 2004, and 28 February 2007. We collected 23 cases of sonographically-detected mammographic architectural distortions that confirmed lesions after surgical resection. The sonographic findings of mammographic architectural distortion were analyzed by use of the BI-RADS lexicon for shape, margin, lesion boundary, echo pattern, posterior acoustic feature and orientation. There were variable diseases that showed architectural distortion depicted under mammography. Fibrocystic disease was the most common presentation (n = 6), followed by adenosis (n = 2), stromal fibrosis (n = 2), radial scar (n = 3), usual ductal hyperplasia (n = 1), atypical ductal hyperplasia (n = 1) and mild fibrosis with microcalcification (n = 1). Malignant lesions such as ductal carcinoma in situ (DCIS) (n = 2), lobular carcinoma in situ (LCIS) (n = 2), invasive ductal carcinoma (n = 2) and invasive lobular carcinoma (n = 1) were observed. As observed by sonography, shape was divided as irregular (n = 22) and round (n = 1). Margin was divided as circumscribed (n = 1), indistinct (n = 7), angular (n = 1), microlobulated (n = 1) and sipculated (n = 13). Lesion boundary was divided as abrupt interface (n = 11) and echogenic halo (n = 12). Echo pattern was divided as hypoechoic (n = 20), anechoic (n = 1), hyperechoic (n = 1) and isoechoic (n = 1). Posterior acoustic feature was divided as posterior acoustic feature (n = 7), posterior acoustic shadow (n = 15) and complex posterior acoustic feature (n = 1). Orientation was divided as parallel (n = 12) and not parallel (n = 11). There were no differential sonographic findings between benign and malignant lesions. This study presented various sonographic findings of mammographic architectural distortion and that it is

  19. Neural mechanisms of reactivation-induced updating that enhance and distort memory

    OpenAIRE

    St. Jacques, Peggy L.; Olm, Christopher; Schacter, Daniel L.

    2013-01-01

    We remember a considerable number of personal experiences because we are frequently reminded of them, a process known as memory reactivation. Although memory reactivation helps to stabilize and update memories, reactivation may also introduce distortions if novel information becomes incorporated with memory. Here we used functional magnetic resonance imaging (fMRI) to investigate the neural mechanisms mediating reactivation-induced updating in memory for events experienced during a museum tou...

  20. Components of segregation distortion in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Ganetzky, B.

    1977-01-01

    The segregation distorter (SD) complex is a naturally occurring meiotic drive system with the property that males heterozygous for an SD-bearing chromosome 2 and an SD+-bearing homolog transmit the SD-bearing chromosome almost exclusively. This distorted segregation is the consequence of an induced dysfunction of those sperm that receive the SD+ homolog. From previous studies, two loci have been implicated in this phenomenon: the Sd locus which is required to produce distortion, and the Responder (Rsp) locus that is the site at which Sd acts. There are two allelic alternatives of Rsp-sensitive (Rsp/sup sens/) and insensitive (Rsp/sup ins/); a chromosome carrying Rsp/sup ins/ is not distorted by SD. In the present study, the function and location of each of these elements was examined by a genetic and cytological characterization of x-ray-induced mutations at each locus. The results indicate the following: the Rsp locus is located in the proximal heterochromatin of 2R; a deletion for the Rsp locus renders a chromosome insensitive to distortion; the Sd locus is located to the left of pr (2-54.5), in the region from 37D2-D7 to 38A6-B2 of the salivary chromosome map; an SD chromosome deleted for Sd loses its ability to distort; there is another important component of the SD system, E(SD), in or near the proximal heterochromatin of 2L, that behaves as a strong enhancer of distortion. The results of these studies allow a reinterpretation of results from earlier analyses of the SD system and serve to limit the possible mechanisms to account for segregation distortion

  1. Multi-example feature-constrained back-projection method for image super-resolution

    Institute of Scientific and Technical Information of China (English)

    Junlei Zhang; Dianguang Gai; Xin Zhang; Xuemei Li

    2017-01-01

    Example-based super-resolution algorithms,which predict unknown high-resolution image information using a relationship model learnt from known high- and low-resolution image pairs, have attracted considerable interest in the field of image processing. In this paper, we propose a multi-example feature-constrained back-projection method for image super-resolution. Firstly, we take advantage of a feature-constrained polynomial interpolation method to enlarge the low-resolution image. Next, we consider low-frequency images of different resolutions to provide an example pair. Then, we use adaptive k NN search to find similar patches in the low-resolution image for every image patch in the high-resolution low-frequency image, leading to a regression model between similar patches to be learnt. The learnt model is applied to the low-resolution high-frequency image to produce high-resolution high-frequency information. An iterative back-projection algorithm is used as the final step to determine the final high-resolution image.Experimental results demonstrate that our method improves the visual quality of the high-resolution image.

  2. Quality assurance for MR stereotactic imaging for three Siemens scanners

    International Nuclear Information System (INIS)

    Kozubikova, P.; Novotny, J. Jr.; Kulhova, K.; Mihalova, P.; Tamasova, J.; Veselsk, T.

    2014-01-01

    Quality assurance of stereotactic imaging, especially with MRI (magnetic resonance imaging), is a complex issue. It can be divided in the basic verification and commissioning of a particular new scanner or a new scanning MRI protocol that is being implemented into a clinical practice and the routine quality assurance performed for each single radiosurgical case. The aim of this study was geometric distortion assessment in MRI with a special PTGR (Physikalisch-Technische Gesellschaft fuer Radiologie - GmbH, Tuebingen, Germany) target phantom. PTGR phantom consists of 21 three-dimensional cross-hairs filled with contrast medium. Cross hairs are positioned at known Leksell coordinates with a precision of better than 0.1 mm and covering the whole stereotactic space. The phantom can be fixed in the Leksell stereotactic frame and thus stereotactic imaging procedures can be reproduced following exactly the same steps as for a real patient, including also the stereotactic image definition in the Leksell GammaPlan. Since the geometric position (stereotactic coordinates) of each cross-hair is known based on the construction of the phantom, it can be compared with the actual measured Leksell coordinates based on the stereotactic MRI. Deviations between expected and actual coordinates provide information about the level of distortion. The measured distortions proved satisfactory accuracy precision for stereotactic localization at 1.5 T Siemens Magnetom Avanto scanner, Siemens Magnetom Symphony scanner and 3T Siemens Magnetom Skyra scanner (Na Homolce Hospital, Prague). The mean distortion for these MR scanners for standard imaging protocol (T1 weighted 3D images) were 0.8 mm, 1.1 mm and 1.1 mm and maximum distortions were 1.3 mm, 1.9 mm and 2.2 mm, respectively.There was detected dependence of the distortions on the slice orientation and the type of imaging protocol. Image distortions are also property of each particular scanner, the worst distortion were observed for 3T

  3. Augmented reality-guided neurosurgery: accuracy and intraoperative application of an image projection technique.

    Science.gov (United States)

    Besharati Tabrizi, Leila; Mahvash, Mehran

    2015-07-01

    An augmented reality system has been developed for image-guided neurosurgery to project images with regions of interest onto the patient's head, skull, or brain surface in real time. The aim of this study was to evaluate system accuracy and to perform the first intraoperative application. Images of segmented brain tumors in different localizations and sizes were created in 10 cases and were projected to a head phantom using a video projector. Registration was performed using 5 fiducial markers. After each registration, the distance of the 5 fiducial markers from the visualized tumor borders was measured on the virtual image and on the phantom. The difference was considered a projection error. Moreover, the image projection technique was intraoperatively applied in 5 patients and was compared with a standard navigation system. Augmented reality visualization of the tumors succeeded in all cases. The mean time for registration was 3.8 minutes (range 2-7 minutes). The mean projection error was 0.8 ± 0.25 mm. There were no significant differences in accuracy according to the localization and size of the tumor. Clinical feasibility and reliability of the augmented reality system could be proved intraoperatively in 5 patients (projection error 1.2 ± 0.54 mm). The augmented reality system is accurate and reliable for the intraoperative projection of images to the head, skull, and brain surface. The ergonomic advantage of this technique improves the planning of neurosurgical procedures and enables the surgeon to use direct visualization for image-guided neurosurgery.

  4. Simulation of 3D-treatment plans in head and neck tumors aided by matching of digitally reconstructed radiographs (DRR) and on-line distortion corrected simulator images

    International Nuclear Information System (INIS)

    Lohr, Frank; Schramm, Oliver; Schraube, Peter; Sroka-Perez, Gabriele; Seeber, Steffen; Schlepple, Gerd; Schlegel, Wolfgang; Wannenmacher, Michael

    1997-01-01

    Background and purpose: Simulation of 3D-treatment plans for head and neck malignancy is difficult due to complex anatomy. Therefore, CT-simulation and stereotactic techniques are becoming more common in the treatment preparation, overcoming the need for simulation. However, if simulation is still performed, it is an important step in the treatment preparation/execution chain, since simulation errors, if not detected immediately, can compromise the success of treatment. A recently developed PC-based system for on-line image matching and comparison of digitally reconstructed radiographs (DRR) and distortion corrected simulator monitor images that enables instant correction of field placement errors during the simulation process was evaluated. The range of field placement errors with noncomputer aided simulation is reported. Materials and methods: For 14 patients either a primary 3D-treatment plan or a 3D-boost plan after initial treatment with opposing laterals for head and neck malignancy with a coplanar or non-coplanar two- or three-field technique was simulated. After determining the robustness of the matching process and the accuracy of field placement error detection with phantom measurements, DRRs were generated from the treatment planning CT-dataset of each patient and were interactively matched with on-line simulator images that had undergone correction for geometrical distortion, using a landmark algorithm. Translational field placement errors in all three planes as well as in-plane rotational errors were studied and were corrected immediately. Results: The interactive matching process is very robust with a tolerance of <2 mm when suitable anatomical landmarks are chosen. The accuracy for detection of translational errors in phantom measurements was <1 mm and for in-plane rotational errors the accuracy had a maximum of only 1.5 deg.. For patient simulation, the mean absolute distance of the planned versus simulated isocenter was 6.4 ± 3.9 mm. The in

  5. Intensity-based bayesian framework for image reconstruction from sparse projection data

    International Nuclear Information System (INIS)

    Rashed, E.A.; Kudo, Hiroyuki

    2009-01-01

    This paper presents a Bayesian framework for iterative image reconstruction from projection data measured over a limited number of views. The classical Nyquist sampling rule yields the minimum number of projection views required for accurate reconstruction. However, challenges exist in many medical and industrial imaging applications in which the projection data is undersampled. Classical analytical reconstruction methods such as filtered backprojection (FBP) are not a good choice for use in such cases because the data undersampling in the angular range introduces aliasing and streak artifacts that degrade lesion detectability. In this paper, we propose a Bayesian framework for maximum likelihood-expectation maximization (ML-EM)-based iterative reconstruction methods that incorporates a priori knowledge obtained from expected intensity information. The proposed framework is based on the fact that, in tomographic imaging, it is often possible to expect a set of intensity values of the reconstructed object with relatively high accuracy. The image reconstruction cost function is modified to include the l 1 norm distance to the a priori known information. The proposed method has the potential to regularize the solution to reduce artifacts without missing lesions that cannot be expected from the a priori information. Numerical studies showed a significant improvement in image quality and lesion detectability under the condition of highly undersampled projection data. (author)

  6. Color image quality in projection displays: a case study

    Science.gov (United States)

    Strand, Monica; Hardeberg, Jon Y.; Nussbaum, Peter

    2005-01-01

    Recently the use of projection displays has increased dramatically in different applications such as digital cinema, home theatre, and business and educational presentations. Even if the color image quality of these devices has improved significantly over the years, it is still a common situation for users of projection displays that the projected colors differ significantly from the intended ones. This study presented in this paper attempts to analyze the color image quality of a large set of projection display devices, particularly investigating the variations in color reproduction. As a case study, a set of 14 projectors (LCD and DLP technology) at Gjovik University College have been tested under four different conditions: dark and light room, with and without using an ICC-profile. To find out more about the importance of the illumination conditions in a room, and the degree of improvement when using an ICC-profile, the results from the measurements was processed and analyzed. Eye-One Beamer from GretagMacbeth was used to make the profiles. The color image quality was evaluated both visually and by color difference calculations. The results from the analysis indicated large visual and colorimetric differences between the projectors. Our DLP projectors have generally smaller color gamut than LCD projectors. The color gamuts of older projectors are significantly smaller than that of newer ones. The amount of ambient light reaching the screen is of great importance for the visual impression. If too much reflections and other ambient light reaches the screen, the projected image gets pale and has low contrast. When using a profile, the differences in colors between the projectors gets smaller and the colors appears more correct. For one device, the average ΔE*ab color difference when compared to a relative white reference was reduced from 22 to 11, for another from 13 to 6. Blue colors have the largest variations among the projection displays and makes them

  7. Refraction in the lower troposphere: Higher order image distortion effects due to refractive profile curvature

    Science.gov (United States)

    Short, Daniel J.

    There are many applications that rely on the propagation of light through the atmosphere - all of which are subject to atmospheric conditions. While there are obvious processes such as scattering due to particulates like clouds and dust that affect the received intensity of the radiation, the clear atmosphere can also cause significant effects. Refraction is a clear air effect that can cause a variety of phenomena such as apparent relocation, stretching and compression of objects when viewed through the atmosphere. Recently, there has been significant interest in studying the refractive effects for low angle paths within the troposphere, and in particular, near-horizontal paths in the Earth's boundary layer, which is adjacent to the ground. Refractive effects in this case become problematic for many terrestrial optical applications. For example, the pointing of a free space optical communication or a remote sensing system can suffer wandering effects, high-resolution imagery can present distorted and/or dislocated targets, optical tracking of targets can be inaccurate, and optical geodetic surveying accuracy is also very sensitive to the effects of refraction. The work in this dissertation was inspired by data from a time-lapse camera system that collects images of distant targets over a near-horizontal path along the ground. This system was used previously to study apparent diurnal image displacement and this dissertation extends that work by exploring the higher order effects that result from curvature in the vertical refractive index profile of the atmosphere. There are surprisingly few experiments involving atmospheric refractive effects that carefully correlate field data to analytical expressions and other factors such as meteorological data. In working with the time-lapse data, which is comprised of sequences of hundreds or thousands of images collected over durations of weeks or months, it is important to develop straightforward analysis techniques that can

  8. Adaptive fringe-pattern projection for image saturation avoidance in 3D surface-shape measurement.

    Science.gov (United States)

    Li, Dong; Kofman, Jonathan

    2014-04-21

    In fringe-projection 3D surface-shape measurement, image saturation results in incorrect intensities in captured images of fringe patterns, leading to phase and measurement errors. An adaptive fringe-pattern projection (AFPP) method was developed to adapt the maximum input gray level in projected fringe patterns to the local reflectivity of an object surface being measured. The AFPP method demonstrated improved 3D measurement accuracy by avoiding image saturation in highly-reflective surface regions while maintaining high intensity modulation across the entire surface. The AFPP method can avoid image saturation and handle varying surface reflectivity, using only two prior rounds of fringe-pattern projection and image capture to generate the adapted fringe patterns.

  9. Fluorescence guided lymph node biopsy in large animals using direct image projection device

    Science.gov (United States)

    Ringhausen, Elizabeth; Wang, Tylon; Pitts, Jonathan; Akers, Walter J.

    2016-03-01

    The use of fluorescence imaging for aiding oncologic surgery is a fast growing field in biomedical imaging, revolutionizing open and minimally invasive surgery practices. We have designed, constructed, and tested a system for fluorescence image acquisition and direct display on the surgical field for fluorescence guided surgery. The system uses a near-infrared sensitive CMOS camera for image acquisition, a near-infra LED light source for excitation, and DLP digital projector for projection of fluorescence image data onto the operating field in real time. Instrument control was implemented in Matlab for image capture, processing of acquired data and alignment of image parameters with the projected pattern. Accuracy of alignment was evaluated statistically to demonstrate sensitivity to small objects and alignment throughout the imaging field. After verification of accurate alignment, feasibility for clinical application was demonstrated in large animal models of sentinel lymph node biopsy. Indocyanine green was injected subcutaneously in Yorkshire pigs at various locations to model sentinel lymph node biopsy in gynecologic cancers, head and neck cancer, and melanoma. Fluorescence was detected by the camera system during operations and projected onto the imaging field, accurately identifying tissues containing the fluorescent tracer at up to 15 frames per second. Fluorescence information was projected as binary green regions after thresholding and denoising raw intensity data. Promising results with this initial clinical scale prototype provided encouraging results for the feasibility of optical projection of acquired luminescence during open oncologic surgeries.

  10. The research on multi-projection correction based on color coding grid array

    Science.gov (United States)

    Yang, Fan; Han, Cheng; Bai, Baoxing; Zhang, Chao; Zhao, Yunxiu

    2017-10-01

    There are many disadvantages such as lower timeliness, greater manual intervention in multi-channel projection system, in order to solve the above problems, this paper proposes a multi-projector correction technology based on color coding grid array. Firstly, a color structured light stripe is generated by using the De Bruijn sequences, then meshing the feature information of the color structured light stripe image. We put the meshing colored grid intersection as the center of the circle, and build a white solid circle as the feature sample set of projected images. It makes the constructed feature sample set not only has the perceptual localization, but also has good noise immunity. Secondly, we establish the subpixel geometric mapping relationship between the projection screen and the individual projectors by using the structure of light encoding and decoding based on the color array, and the geometrical mapping relation is used to solve the homography matrix of each projector. Lastly the brightness inconsistency of the multi-channel projection overlap area is seriously interfered, it leads to the corrected image doesn't fit well with the observer's visual needs, and we obtain the projection display image of visual consistency by using the luminance fusion correction algorithm. The experimental results show that this method not only effectively solved the problem of distortion of multi-projection screen and the issue of luminance interference in overlapping region, but also improved the calibration efficient of multi-channel projective system and reduced the maintenance cost of intelligent multi-projection system.

  11. Mathematical models for correction of images, obtained at radioisotope scan

    International Nuclear Information System (INIS)

    Glaz, A.; Lubans, A.

    2002-01-01

    The images, which obtained at radioisotope scintigraphy, contain distortions. Distortions appear as a result of absorption of radiation by patient's body's tissues. Two mathematical models for reducing of such distortions are proposed. Image obtained by only one gamma camera is used in the first mathematical model. Unfortunately, this model allows processing of the images only in case, when it can be assumed, that the investigated organ has a symmetric form. The images obtained by two gamma cameras are used in the second model. It gives possibility to assume that the investigated organ has non-symmetric form and to acquire more precise results. (authors)

  12. Sonographic ally Detected Architectural Distortion: Clinical Significance

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Shin Kee; Seo, Bo Kyoung; Yi, Ann; Cha, Sang Hoon; Kim, Baek Hyun; Cho, Kyu Ran; Kim, Young Sik; Son, Gil Soo; Kim, Young Soo; Kim, Hee Young [Korea University Ansan Hospital, Ansan (Korea, Republic of)

    2008-12-15

    Architectural distortion is a suspicious abnormality for the diagnosis of breast cancer. The aim of this study was to investigate the clinical significance of sonographic ally detected architectural distortion. From January 2006 to June 2008, 20 patients were identified who had sonographic ally detected architectural distortions without a history of trauma or surgery and abnormal mammographic findings related to an architectural distortion. All of the lesions were pathologically verified. We evaluated the clinical and pathological findings and then assessed the clinical significance of the sonographic ally detected architectural distortions. Based on the clinical findings, one (5%) of the 20 patients had a palpable lump and the remaining 19 patients had no symptoms. No patient had a family history of breast cancer. Based on the pathological findings, three (15%) patients had malignancies. The malignant lesions included invasive ductal carcinomas (n = 2) and ductal carcinoma in situ (n = 1). Four (20%) patients had high-risk lesions: atypical ductal hyperplasia (n = 3) and lobular carcinoma in situ (n = 1). The remaining 13 (65%) patients had benign lesions, however, seven (35%) out of 13 patients had mild-risk lesions (three intraductal papillomas, three moderate or florid epithelial hyperplasia and one sclerosing adenosis). Of the sonographic ally detected architectural distortions, 35% were breast cancers or high-risk lesions and 35% were mild-risk lesions. Thus, a biopsy might be needed for an architectural distortion without an associated mass as depicted on breast ultrasound, even though the mammographic findings are normal

  13. Sonographic ally Detected Architectural Distortion: Clinical Significance

    International Nuclear Information System (INIS)

    Kim, Shin Kee; Seo, Bo Kyoung; Yi, Ann; Cha, Sang Hoon; Kim, Baek Hyun; Cho, Kyu Ran; Kim, Young Sik; Son, Gil Soo; Kim, Young Soo; Kim, Hee Young

    2008-01-01

    Architectural distortion is a suspicious abnormality for the diagnosis of breast cancer. The aim of this study was to investigate the clinical significance of sonographic ally detected architectural distortion. From January 2006 to June 2008, 20 patients were identified who had sonographic ally detected architectural distortions without a history of trauma or surgery and abnormal mammographic findings related to an architectural distortion. All of the lesions were pathologically verified. We evaluated the clinical and pathological findings and then assessed the clinical significance of the sonographic ally detected architectural distortions. Based on the clinical findings, one (5%) of the 20 patients had a palpable lump and the remaining 19 patients had no symptoms. No patient had a family history of breast cancer. Based on the pathological findings, three (15%) patients had malignancies. The malignant lesions included invasive ductal carcinomas (n = 2) and ductal carcinoma in situ (n = 1). Four (20%) patients had high-risk lesions: atypical ductal hyperplasia (n = 3) and lobular carcinoma in situ (n = 1). The remaining 13 (65%) patients had benign lesions, however, seven (35%) out of 13 patients had mild-risk lesions (three intraductal papillomas, three moderate or florid epithelial hyperplasia and one sclerosing adenosis). Of the sonographic ally detected architectural distortions, 35% were breast cancers or high-risk lesions and 35% were mild-risk lesions. Thus, a biopsy might be needed for an architectural distortion without an associated mass as depicted on breast ultrasound, even though the mammographic findings are normal

  14. Constraints in distortion-invariant target recognition system simulation

    Science.gov (United States)

    Iftekharuddin, Khan M.; Razzaque, Md A.

    2000-11-01

    Automatic target recognition (ATR) is a mature but active research area. In an earlier paper, we proposed a novel ATR approach for recognition of targets varying in fine details, rotation, and translation using a Learning Vector Quantization (LVQ) Neural Network (NN). The proposed approach performed segmentation of multiple objects and the identification of the objects using LVQNN. In this current paper, we extend the previous approach for recognition of targets varying in rotation, translation, scale, and combination of all three distortions. We obtain the analytical results of the system level design to show that the approach performs well with some constraints. The first constraint determines the size of the input images and input filters. The second constraint shows the limits on amount of rotation, translation, and scale of input objects. We present the simulation verification of the constraints using DARPA's Moving and Stationary Target Recognition (MSTAR) images with different depression and pose angles. The simulation results using MSTAR images verify the analytical constraints of the system level design.

  15. Selectivity of face distortion aftereffects for differences in expression or gender

    Directory of Open Access Journals (Sweden)

    Megan eTillman

    2012-01-01

    Full Text Available The perceived configuration of a face can be strongly biased by prior adaptation to a face with a distorted configuration. These aftereffects have been found to be weaker when the adapt and test faces differ along a number of dimensions. We asked whether the adaptation shows more transfer between faces that share a common identity, by comparing the strength of aftereffects when the adapt and test faces differed either in expression (a configural change in the same face identity or gender (a configural change between identities. Observers adapted to expanded or contracted images of either male or female faces with either happy or fearful expressions, and then judged the perceived configuration in either the same faces or faces with a different gender and/or expression. The adaptation included exposure to a single face (e.g. expanded happy or to alternated faces where the distortion was contingent on the attribute (e.g. expanded happy vs. contracted fearful. In all cases the aftereffects showed strong transfer and thus only weak selectivity. However, selectivity was equal or stronger for the change in expression than gender. Our results thus suggest that the distortion aftereffects between faces can be weakly modulated by both variant and invariant attributes of the face.

  16. WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection

    International Nuclear Information System (INIS)

    Xu, Y; Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X; Zhou, L

    2014-01-01

    Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung

  17. WE-G-BRF-04: Robust Real-Time Volumetric Imaging Based On One Single Projection

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y [UT Southwestern Medical Center, Dallas, TX (United States); Southern Medical University, Guangzhou (China); Yan, H; Ouyang, L; Wang, J; Jiang, S; Jia, X [UT Southwestern Medical Center, Dallas, TX (United States); Zhou, L [Southern Medical University, Guangzhou (China)

    2014-06-15

    Purpose: Real-time volumetric imaging is highly desirable to provide instantaneous image guidance for lung radiation therapy. This study proposes a scheme to achieve this goal using one single projection by utilizing sparse learning and a principal component analysis (PCA) based lung motion model. Methods: A patient-specific PCA-based lung motion model is first constructed by analyzing deformable vector fields (DVFs) between a reference image and 4DCT images at each phase. At the training stage, we “learn” the relationship between the DVFs and the projection using sparse learning. Specifically, we first partition the projections into patches, and then apply sparse learning to automatically identify patches that best correlate with the principal components of the DVFs. Once the relationship is established, at the application stage, we first employ a patchbased intensity correction method to overcome the problem of different intensity scale between the calculated projection in the training stage and the measured projection in the application stage. The corrected projection image is then fed to the trained model to derive a DVF, which is applied to the reference image, yielding a volumetric image corresponding to the projection. We have validated our method through a NCAT phantom simulation case and one experiment case. Results: Sparse learning can automatically select those patches containing motion information, such as those around diaphragm. For the simulation case, over 98% of the lung region pass the generalized gamma test (10HU/1mm), indicating combined accuracy in both intensity and spatial domain. For the experimental case, the average tumor localization errors projected to the imager are 0.68 mm and 0.4 mm on the axial and tangential direction, respectively. Conclusion: The proposed method is capable of accurately generating a volumetric image using one single projection. It will potentially offer real-time volumetric image guidance to facilitate lung

  18. Study of scattering in bi-dimensional neutron radiographic images

    International Nuclear Information System (INIS)

    Oliveira, K.A.M. de; Crispim, V.R.; Silva, F.C.

    2009-01-01

    The effect of neutron scattering frequently causes distortions in neutron radiographic images and, thus, reduces the quality. In this project, a type of filter, comprised of cadmium (a neutron absorber), was used in the form of a grid to correct this effect. This device generated image data in the discrete shadow bands of the absorber, components relative to neutron scattering on the test object and surroundings. Scattering image data processing, together with the original neutron radiographic image, resulted in a corrected image with improved edge delineation and, thus, greater definition in the neutron radiographic image of the test object. The objective of this study is to propose a theoretical/experimental methodology that is capable of eliminating the components relative to neutron scattering in neutron radiographic images, coming from the material that composes the test object and the materials that compose the surrounding area. (author)

  19. Harmonic analysis for the characterization and correction of geometric distortion in MRI

    International Nuclear Information System (INIS)

    Tadic, Tony; Stanescu, Teodor; Jaffray, David A.

    2014-01-01

    Purpose: Magnetic resonance imaging (MRI) is gaining widespread use in radiation therapy planning, patient setup verification, and real-time guidance of radiation delivery. Successful implementation of these technologies relies on the development of simple and efficient methods to characterize and monitor the geometric distortions arising due to system imperfections and gradient nonlinearities. To this end, the authors present the theory and validation of a novel harmonic approach to the quantification of system-related distortions in MRI. Methods: The theory of spatial encoding in MRI is applied to demonstrate that the 3D distortion vector field (DVF) is given by the solution of a second-order boundary value problem (BVP). This BVP is comprised of Laplace’s equation and a limited measurement of the distortion on the boundary of a specified region of interest (ROI). An analytical series expansion solving this BVP within a spherical ROI is obtained, and a statistical uncertainty analysis is performed to determine how random errors in the boundary measurements propagate to the ROI interior. This series expansion is then evaluated to obtain volumetric DVF mappings that are compared to reference data obtained on a 3 T full-body scanner. This validation is performed within two spheres of 20 cm diameter (one centered at the scanner origin and the other offset +3 cm along each of the transverse directions). Initially, a high-order mapping requiring measurements at 5810 boundary points is used. Then, after exploring the impact of the boundary sampling density and the effect of series truncation, a reduced-order mapping requiring measurements at 302 boundary points is evaluated. Results: The volumetric DVF mappings obtained from the harmonic analysis are in good agreement with the reference data. Following distortion correction using the high-order mapping, the authors estimate a reduction in the mean distortion magnitude from 0.86 to 0.42 mm and from 0.93 to 0.39 mm

  20. Direct image reconstruction with limited angle projection data for computerized tomography

    International Nuclear Information System (INIS)

    Inouye, T.

    1980-01-01

    Discussions are made on the minimum angle range for projection data necessary to reconstruct the complete CT image. As is easily shown from the image reconstruction theorem, the lack of projection angle provides no data for the Fourier transformed function of the object on the corresponding angular directions, where the projections are missing. In a normal situation, the Fourier transformed function of an object image holds an analytic characteristic with respect to two-dimensional orthogonal parameters. This characteristic enables uniquely prolonging the function outside the obtained region employing a sort of analytic continuation with respect to both parameters. In the method reported here, an object pattern, which is confined within a finite range, is shifted to a specified region to have complete orthogonal function expansions without changing the projection angle directions. These orthogonal functions are analytically extended to the missing projection angle range and the whole function is determined. This method does not include any estimation process, whose effectiveness is often seriously jeopardized by the presence of a slight fluctuation component. Computer simulations were carried out to demonstrate the effectiveness of the method

  1. Prediction of welding residual distortions of large structures using a local/global approach

    International Nuclear Information System (INIS)

    Duan, Y. G.; Bergheau, J. M.; Vincent, Y.; Boitour, F.; Leblond, J. B.

    2007-01-01

    Prediction of welding residual distortions is more difficult than that of the microstructure and residual stresses. On the one hand, a fine mesh (often 3D) has to be used in the heat affected zone for the sake of the sharp variations of thermal, metallurgical and mechanical fields in this region. On the other hand, the whole structure is required to be meshed for the calculation of residual distortions. But for large structures, a 3D mesh is inconceivable caused by the costs of the calculation. Numerous methods have been developed to reduce the size of models. A local/global approach has been proposed to determine the welding residual distortions of large structures. The plastic strains and the microstructure due to welding are supposed can be determined from a local 3D model which concerns only the weld and its vicinity. They are projected as initial strains into a global 3D model which consists of the whole structure and obviously much less fine in the welded zone than the local model. The residual distortions are then calculated using a simple elastic analysis, which makes this method particularly effective in an industrial context. The aim of this article is to present the principle of the local/global approach then show the capacity of this method in an industrial context and finally study the definition of the local model

  2. The influence of head frame distortions on stereotactic localization and targeting

    Energy Technology Data Exchange (ETDEWEB)

    Treuer, H; Hunsche, S; Hoevels, M; Luyken, K; Maarouf, M; Voges, J; Sturm, V [Department of Stereotaxy and Functional Neurosurgery, University of Cologne, 50924 Cologne (Germany)

    2004-09-07

    A strong attachment of a stereotactic head frame to the patient's skull may cause distortions of the head frame. The aim of this work was to identify possible distortions of the head frame, to measure the degree of distortion occurring in clinical practice and to investigate its influence on stereotactic localization and targeting. A model to describe and quantify the distortion of the Riechert-Mundinger (RM) head frame was developed. Distortions were classified as (a) bending and (b) changes from the circular ring shape. Ring shape changes were derived from stereotactic CT scans and frame bending was determined from intraoperative stereotactic x-ray images of patients with implanted {sup 125}I-seeds acting as landmarks. From the examined patient data frame bending was determined to be 0.74 mm {+-} 0.32 mm and 1.30 mm in maximum. If a CT-localizer with a top ring is used, frame bending has no influence on stereotactic CT-localization. In stereotactic x-ray localization, frame bending leads to an overestimation of the z-coordinate by 0.37 mm {+-} 0.16 mm on average and by 0.65 mm in maximum. The accuracy of patient positioning in radiosurgery is not affected by frame bending. But in stereotactic surgery with an RM aiming bow trajectory displacements are expected. These displacements were estimated to be 0.36 mm {+-} 0.16 mm (max. 0.74 mm) at the target point and 0.65 mm {+-} 0.30 mm (max. 1.31 mm) at the entry point level. Changes from the circular ring shape are small and do not compromise the accuracy of stereotactic targeting and localization. The accuracy of CT-localization was found to be close to the resolution limit due to voxel size. Our findings for frame bending of the RM frame could be validated by statistical analysis and by comparison with an independent patient examination. The results depend on the stereotactic system and details of the localizers and instruments and also reflect our clinical practice. Therefore, a generalization is not possible

  3. FSD: Frequency Space Differential measurement of CMB spectral distortions

    Science.gov (United States)

    Mukherjee, Suvodip; Silk, Joseph; Wandelt, Benjamin D.

    2018-04-01

    Although the Cosmic Microwave Background agrees with a perfect blackbody spectrum within the current experimental limits, it is expected to exhibit certain spectral distortions with known spectral properties. We propose a new method, Frequency Space Differential (FSD) to measure the spectral distortions in the CMB spectrum by using the inter-frequency differences of the brightness temperature. The difference between the observed CMB temperature at different frequencies must agree with the frequency derivative of the blackbody spectrum, in the absence of any distortion. However, in the presence of spectral distortions, the measured inter-frequency differences would also exhibit deviations from blackbody which can be modeled for known sources of spectral distortions like y & μ. Our technique uses FSD information for the CMB blackbody, y, μ or any other sources of spectral distortions to model the observed signal. Successful application of this method in future CMB missions can provide an alternative method to extract spectral distortion signals and can potentially make it feasible to measure spectral distortions without an internal blackbody calibrator.

  4. Parametric image reconstruction using spectral analysis of PET projection data

    International Nuclear Information System (INIS)

    Meikle, Steven R.; Matthews, Julian C.; Cunningham, Vincent J.; Bailey, Dale L.; Livieratos, Lefteris; Jones, Terry; Price, Pat

    1998-01-01

    Spectral analysis is a general modelling approach that enables calculation of parametric images from reconstructed tracer kinetic data independent of an assumed compartmental structure. We investigated the validity of applying spectral analysis directly to projection data motivated by the advantages that: (i) the number of reconstructions is reduced by an order of magnitude and (ii) iterative reconstruction becomes practical which may improve signal-to-noise ratio (SNR). A dynamic software phantom with typical 2-[ 11 C]thymidine kinetics was used to compare projection-based and image-based methods and to assess bias-variance trade-offs using iterative expectation maximization (EM) reconstruction. We found that the two approaches are not exactly equivalent due to properties of the non-negative least-squares algorithm. However, the differences are small ( 1 and, to a lesser extent, VD). The optimal number of EM iterations was 15-30 with up to a two-fold improvement in SNR over filtered back projection. We conclude that projection-based spectral analysis with EM reconstruction yields accurate parametric images with high SNR and has potential application to a wide range of positron emission tomography ligands. (author)

  5. Iterative Object Localization Algorithm Using Visual Images with a Reference Coordinate

    Directory of Open Access Journals (Sweden)

    We-Duke Cho

    2008-09-01

    Full Text Available We present a simplified algorithm for localizing an object using multiple visual images that are obtained from widely used digital imaging devices. We use a parallel projection model which supports both zooming and panning of the imaging devices. Our proposed algorithm is based on a virtual viewable plane for creating a relationship between an object position and a reference coordinate. The reference point is obtained from a rough estimate which may be obtained from the preestimation process. The algorithm minimizes localization error through the iterative process with relatively low-computational complexity. In addition, nonlinearity distortion of the digital image devices is compensated during the iterative process. Finally, the performances of several scenarios are evaluated and analyzed in both indoor and outdoor environments.

  6. Integrated variable projection approach (IVAPA) for parallel magnetic resonance imaging.

    Science.gov (United States)

    Zhang, Qiao; Sheng, Jinhua

    2012-10-01

    Parallel magnetic resonance imaging (pMRI) is a fast method which requires algorithms for the reconstructing image from a small number of measured k-space lines. The accurate estimation of the coil sensitivity functions is still a challenging problem in parallel imaging. The joint estimation of the coil sensitivity functions and the desired image has recently been proposed to improve the situation by iteratively optimizing both the coil sensitivity functions and the image reconstruction. It regards both the coil sensitivities and the desired images as unknowns to be solved for jointly. In this paper, we propose an integrated variable projection approach (IVAPA) for pMRI, which integrates two individual processing steps (coil sensitivity estimation and image reconstruction) into a single processing step to improve the accuracy of the coil sensitivity estimation using the variable projection approach. The method is demonstrated to be able to give an optimal solution with considerably reduced artifacts for high reduction factors and a low number of auto-calibration signal (ACS) lines, and our implementation has a fast convergence rate. The performance of the proposed method is evaluated using a set of in vivo experiment data. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Variable Rate, Adaptive Transform Tree Coding Of Images

    Science.gov (United States)

    Pearlman, William A.

    1988-10-01

    A tree code, asymptotically optimal for stationary Gaussian sources and squared error distortion [2], is used to encode transforms of image sub-blocks. The variance spectrum of each sub-block is estimated and specified uniquely by a set of one-dimensional auto-regressive parameters. The expected distortion is set to a constant for each block and the rate is allowed to vary to meet the given level of distortion. Since the spectrum and rate are different for every block, the code tree differs for every block. Coding simulations for target block distortion of 15 and average block rate of 0.99 bits per pel (bpp) show that very good results can be obtained at high search intensities at the expense of high computational complexity. The results at the higher search intensities outperform a parallel simulation with quantization replacing tree coding. Comparative coding simulations also show that the reproduced image with variable block rate and average rate of 0.99 bpp has 2.5 dB less distortion than a similarly reproduced image with a constant block rate equal to 1.0 bpp.

  8. Impact of loudspeaker nonlinear distortion on personal sound zones

    DEFF Research Database (Denmark)

    Ma, Xiaohui; J. Hegarty, Patrick; Abildgaard Pedersen, Jan

    2018-01-01

    Personal sound zone systems aim at creating multiple listening zones within a shared space with minimum interference between zones, but the performance is often poorer than simulations predict and effects of nonlinear distortion are sometimes audible. This paper assesses the impact of nonlinear...... distortion on sound zones through simulations and measurements performed under anechoic conditions. Two sound zones, one bright and one dark, are created with acoustic contrast control using two loudspeaker arrays driven at 250 Hz. Nonlinear distortion is modelled using second or third order nonlinearities....... Simulations show that nonlinear distortion degrades the acoustic contrast, which is confirmed by experimental measurements. The harmonic distortion is audible in the dark zone. Frequency resolved measurements reveal that harmonic distortion contributes to contrast loss, but nonlinear effects...

  9. Cross Cultural Images: The ETSU/NAU Special Photography Project.

    Science.gov (United States)

    Montgomery, Donna; Sluss, Dorothy; Lewis, Jamie; Vervelde, Peggy; Prater, Greg; Minner, Sam

    Recreation is a significant part of a full and rich life but is frequently overlooked in relation to handicapped children. A project called Cross-Cultural Images aimed to improve the quality of life for handicapped children by teaching them avocational photography skills. The project involved mildly handicapped children aged 7-11 in Appalachia, on…

  10. SU-E-J-216: A Sequence Independent Approach for Quantification of MR Image Deformations From Brachytherapy Applicators

    Energy Technology Data Exchange (ETDEWEB)

    Wieringen, N van; Heerden, L van; Gurney-Champion, O; Kesteren, Z van; Houweling, A; Pieters, B; Bel, A [Academic Medical Center, Amsterdam (Netherlands)

    2015-06-15

    Purpose: MRI is increasingly used as a single imaging modality for brachytherapy treatment planning. The presence of a brachytherapy applicator may cause distortions in the images, especially at higher field strengths. Our aim is to develop a procedure to quantify these distortions theoretically for any MR-sequence and to verify the estimated deformations for clinical sequences. Methods: Image distortions due to perturbation of the B0-field are proportional to the ratio of the induced frequency shift and the read-out bandwidth of the applied sequence. By reconstructing a frequency-shift map from the phase data from a multi-echo sequence, distortions can be calculated for any MR-sequence. Verification of this method for estimating distortions was performed by acquiring images with opposing read-out directions and consequently opposing distortions. The applicator shift can be determined by rigidly matching these images. Clinically, T2W-TSE-images are used for this purpose. For pre-clinical tests, EPI-sequences with narrow read-out bandwidth (19.5–47.5Hz), consequently large distortions, were added to the set of clinical MRsequences. To quantify deformations of the Utrecht Interstitial CT/MR applicator (Elekta Brachytherapy) on a Philips Ingenia 3T MRI, pre-clinical tests were performed in a phantom with the applicator in water, followed by clinical validation. Results: Deformations observed in the narrow bandwidth EPI-images were well predicted using the frequency-shift, the latter giving an overestimation up to 30%/up to 1 voxel. For clinically applied MR-sequences distortions were well below the voxel size. In patient setup distortions determined from the frequency-shift map were at sub-voxel level (<0.7mm). Using T2W-images larger distortions were found (1–2mm). This discrepancy was caused by patient movement between/during acquisition of the T2W-images with opposing read-out directions. Conclusion: Phantom experiments demonstrated the feasibility of a

  11. Hologram production and representation for corrected image

    Science.gov (United States)

    Jiao, Gui Chao; Zhang, Rui; Su, Xue Mei

    2015-12-01

    In this paper, a CCD sensor device is used to record the distorted homemade grid images which are taken by a wide angle camera. The distorted images are corrected by using methods of position calibration and correction of gray with vc++ 6.0 and opencv software. Holography graphes for the corrected pictures are produced. The clearly reproduced images are obtained where Fresnel algorithm is used in graph processing by reducing the object and reference light from Fresnel diffraction to delete zero-order part of the reproduced images. The investigation is useful in optical information processing and image encryption transmission.

  12. A Spherical Model Based Keypoint Descriptor and Matching Algorithm for Omnidirectional Images

    Directory of Open Access Journals (Sweden)

    Guofeng Tong

    2014-04-01

    Full Text Available Omnidirectional images generally have nonlinear distortion in radial direction. Unfortunately, traditional algorithms such as scale-invariant feature transform (SIFT and Descriptor-Nets (D-Nets do not work well in matching omnidirectional images just because they are incapable of dealing with the distortion. In order to solve this problem, a new voting algorithm is proposed based on the spherical model and the D-Nets algorithm. Because the spherical-based keypoint descriptor contains the distortion information of omnidirectional images, the proposed matching algorithm is invariant to distortion. Keypoint matching experiments are performed on three pairs of omnidirectional images, and comparison is made among the proposed algorithm, the SIFT and the D-Nets. The result shows that the proposed algorithm is more robust and more precise than the SIFT, and the D-Nets in matching omnidirectional images. Comparing with the SIFT and the D-Nets, the proposed algorithm has two main advantages: (a there are more real matching keypoints; (b the coverage range of the matching keypoints is wider, including the seriously distorted areas.

  13. Structural Change Accounting with Labor Market Distortions

    OpenAIRE

    Wenbiao Cai

    2014-01-01

    This paper quantifies the relative importance of sectoral productivity and labor market distortions for structural change. I use a model in which labor productivity is the product of TFP and human capital in each sector, but distortions generate wedges in wage per efficiency worker across sectors. I calculate human capital by sector using micro census data, and use the model to infer TFP and distortions such that it replicates structural change in the US, India, Mexico and Brazil between 1960...

  14. Influence of initial state distortion in ion-atom collisions

    Energy Technology Data Exchange (ETDEWEB)

    Ciappina, M F [CONICET and Departamento de FIsica, Universidad Nacional del Sur, 8000 BahIa Blanca (Argentina); Cravero, W R [CONICET and Departamento de FIsica, Universidad Nacional del Sur, 8000 BahIa Blanca (Argentina); Garibotti, C R [CONICET and Division Colisiones Atomicas, Centro Atomico Bariloche, 8400 Bariloche (Argentina)

    2004-05-28

    We have studied the influence of initial state distortion in a single ionization by ion impact. We have taken a continuum distorted wave type distortion and by taking up to the first order in its asymptotic series expansion we build an eikonal-spherical distortion. In this way the influence of each term in the transition amplitude can be stated. This approximation can be considered an intermediate one between the eikonal initial state and the continuum distorted wave approaches for initial state distortion. We have computed doubly differential cross sections for helium ionization by protons and highly charged ions at high and intermediate impact energy. We have also discussed the contribution of the different terms in electron energy spectra, specially in the vicinity of ECC peak. Very good agreement is found with the available experimental data.

  15. Influence of initial state distortion in ion-atom collisions

    International Nuclear Information System (INIS)

    Ciappina, M F; Cravero, W R; Garibotti, C R

    2004-01-01

    We have studied the influence of initial state distortion in a single ionization by ion impact. We have taken a continuum distorted wave type distortion and by taking up to the first order in its asymptotic series expansion we build an eikonal-spherical distortion. In this way the influence of each term in the transition amplitude can be stated. This approximation can be considered an intermediate one between the eikonal initial state and the continuum distorted wave approaches for initial state distortion. We have computed doubly differential cross sections for helium ionization by protons and highly charged ions at high and intermediate impact energy. We have also discussed the contribution of the different terms in electron energy spectra, specially in the vicinity of ECC peak. Very good agreement is found with the available experimental data

  16. Information and image integration: project spectrum

    Science.gov (United States)

    Blaine, G. James; Jost, R. Gilbert; Martin, Lori; Weiss, David A.; Lehmann, Ron; Fritz, Kevin

    1998-07-01

    The BJC Health System (BJC) and the Washington University School of Medicine (WUSM) formed a technology alliance with industry collaborators to develop and implement an integrated, advanced clinical information system. The industry collaborators include IBM, Kodak, SBC and Motorola. The activity, called Project Spectrum, provides an integrated clinical repository for the multiple hospital facilities of the BJC. The BJC System consists of 12 acute care hospitals serving over one million patients in Missouri and Illinois. An interface engine manages transactions from each of the hospital information systems, lab systems and radiology information systems. Data is normalized to provide a consistent view for the primary care physician. Access to the clinical repository is supported by web-based server/browser technology which delivers patient data to the physician's desktop. An HL7 based messaging system coordinates the acquisition and management of radiological image data and sends image keys to the clinical data repository. Access to the clinical chart browser currently provides radiology reports, laboratory data, vital signs and transcribed medical reports. A chart metaphor provides tabs for the selection of the clinical record for review. Activation of the radiology tab facilitates a standardized view of radiology reports and provides an icon used to initiate retrieval of available radiology images. The selection of the image icon spawns an image browser plug-in and utilizes the image key from the clinical repository to access the image server for the requested image data. The Spectrum system is collecting clinical data from five hospital systems and imaging data from two hospitals. Domain specific radiology imaging systems support the acquisition and primary interpretation of radiology exams. The spectrum clinical workstations are deployed to over 200 sites utilizing local area networks and ISDN connectivity.

  17. Coalescence measurements for evolving foams monitored by real-time projection imaging

    International Nuclear Information System (INIS)

    Myagotin, A; Helfen, L; Baumbach, T

    2009-01-01

    Real-time radiographic projection imaging together with novel spatio-temporal image analysis is presented to be a powerful technique for the quantitative analysis of coalescence processes accompanying the generation and temporal evolution of foams and emulsions. Coalescence events can be identified as discontinuities in a spatio-temporal image representing a sequence of projection images. Detection, identification of intensity and localization of the discontinuities exploit a violation criterion of the Fourier shift theorem and are based on recursive spatio-temporal image partitioning. The proposed method is suited for automated measurements of discontinuity rates (i.e., discontinuity intensity per unit time), so that large series of radiographs can be analyzed without user intervention. The application potential is demonstrated by the quantification of coalescence during the formation and decay of metal foams monitored by real-time x-ray radiography

  18. Density distortion within a rotating body

    International Nuclear Information System (INIS)

    Lanzano, P.

    1975-01-01

    This paper ascertains the distortion of the density distribution within a self-gravitating body in hydrostatic equilibrium under the influence of rotation. For this purpose, the Poisson equation has been solved by using the undistorted density profile within the Laplacian to obtain the distorted density. The Laplacian has been expressed in terms of a system of curvilinear coordinates for which the equipotential surfaces constitute a family of fundamental surfaces. In performing the requisite algebraic manipulations, the Clairaut and Radau equations developed in a previous paper (Lanzano,1974) were utilized to eliminate the derivatives of the elements pertaining to the equipotential surfaces. The density distortion has been obtained up to third-order terms in a small rotational parameter. (Auth.)

  19. Cognitive Distortions in Depressed Women: Trait, or State Dependent?

    Directory of Open Access Journals (Sweden)

    Sedat BATMAZ

    2015-12-01

    Conclusion: The results have revealed that self-criticism, helplessness, hopelessness and preoccupation with danger related distortions had trait-like features, whereas self-blame related distortions were state dependent. This has clinical implications for the psychotherapeutic treatment of cognitive distortions in depression. Specifically, self-criticism related distortions should be managed during cognitive therapy for depression since the other subscales seem rather problematic. [JCBPR 2015; 4(3.000: 147-152

  20. Readout-Segmented Echo-Planar Imaging in Diffusion-Weighted MR Imaging in Breast Cancer: Comparison with Single-Shot Echo-Planar Imaging in Image Quality

    International Nuclear Information System (INIS)

    Kim, Yun Ju; Kim, Sung Hun; Kang, Bong Joo; Park, Chang Suk; Kim, Hyeon Sook; Son, Yo Han; Porter, David Andrew; Song, Byung Joo

    2014-01-01

    The purpose of this study was to compare the image quality of standard single-shot echo-planar imaging (ss-EPI) and that of readout-segmented EPI (rs-EPI) in patients with breast cancer. Seventy-one patients with 74 breast cancers underwent both ss-EPI and rs-EPI. For qualitative comparison of image quality, three readers independently assessed the two sets of diffusion-weighted (DW) images. To evaluate geometric distortion, a comparison was made between lesion lengths derived from contrast enhanced MR (CE-MR) images and those obtained from the corresponding DW images. For assessment of image parameters, signal-to-noise ratio (SNR), lesion contrast, and contrast-to-noise ratio (CNR) were calculated. The rs-EPI was superior to ss-EPI in most criteria regarding the qualitative image quality. Anatomical structure distinction, delineation of the lesion, ghosting artifact, and overall image quality were significantly better in rs-EPI. Regarding the geometric distortion, lesion length on ss-EPI was significantly different from that of CE-MR, whereas there were no significant differences between CE-MR and rs-EPI. The rs-EPI was superior to ss-EPI in SNR and CNR. Readout-segmented EPI is superior to ss-EPI in the aspect of image quality in DW MR imaging of the breast

  1. From Women's Struggles to Distorted Emancipation. The Interplay of Care Practices and Global Capitalism

    Czech Academy of Sciences Publication Activity Database

    Uhde, Zuzana

    2016-01-01

    Roč. 18, č. 3 (2016), s. 390-408 ISSN 1461-6742 R&D Projects: GA ČR GA15-07898S Institutional support: RVO:68378025 Keywords : feminist critical theory * distorted emancipation * transnational care practices Subject RIV: AO - Sociology, Demography Impact factor: 1.246, year: 2016 http://www.tandfonline.com/doi/full/10.1080/14616742.2015.1121603

  2. Advanced Machining Toolpath for Low Distortion

    Science.gov (United States)

    2017-02-28

    Advanced Machining Toolpath for Low Distortion FINAL STATUS REPORT Prepared by Brian Becker R&D Technology Manager Third Wave Systems, Inc... Machining Toolpath for Low Distortion December 2016 Contract No.: W911W6-16-P-0044 2 Table of Contents 1.0 EXECUTIVE SUMMARY...2 2.1 Task 1: Collect Details of Machining Lab to Support

  3. Reconstruction of tomographic image from x-ray projections of a few views

    International Nuclear Information System (INIS)

    Kobayashi, Fujio; Yamaguchi, Shoichiro

    1982-01-01

    Computer tomographs have progressed rapidly, and in the latest high performance types, the photographing time has been shortened to less than 5 sec, but the clear images of hearts have not yet been obtained. The X-ray tomographs used so far irradiate X-ray from many directions and measure the projected data, but by limiting projection direction to a small number, it was planned to shorter the X-ray photographing time and to reduce X-ray exposure as the objective of this study. In this paper, a method is proposed, by which tomographic images are reconstructed from projected data in a small number of direction by generalized inverse matrix penalty method. This method is the calculation method newly devised by the authors for this purpose. It is a kind of the nonlinear planning method added with the restrictive condition using a generalized inverse matrix, and it is characterized by the simple calculation procedure and rapid convergence. Moreover, the effect on reconstructed images when errors are included in projected data was examined. Also, the simple computer simulation to reconstruct tomographic images using the projected data in four directions was performed, and the usefulness of this method was confirmed. It contributes to the development of superhigh speed tomographs in future. (Kako, I.)

  4. A study of images of Projective Angles of pulmonary veins

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jue [Beijing Anzhen Hospital, Beijing (China); Zhaoqi, Zhang [Beijing Anzhen Hospital, Beijing (China)], E-mail: zhaoqi5000@vip.sohu.com; Yu Wei; Miao Cuilian; Yan Zixu; Zhao Yike [Beijing Anzhen Hospital, Beijing (China)

    2009-09-15

    Aims: In images of magnetic resonance and computed tomography (CT) there are visible angles between pulmonary veins and the coronary, transversal or sagittal section of body. In this study these angles are measured and defined as Projective Angles of pulmonary veins. Several possible influential factors and characters of distribution are studied and analyzed for a better understanding of this imaging anatomic character of pulmonary veins. And it could be the anatomic base of adjusting correctly the angle of the central X-ray of the angiography of pulmonary veins undergoing the catheter ablation of atrial fibrillation (AF). Method: Images of contrast enhanced magnetic resonance angiography (CEMRA) and contrast enhanced computer tomography (CECT) of the left atrium and pulmonary veins of 137 health objects and patients with atrial fibrillation (AF) are processed with the technique of post-processing, and Projective Angles to the coronary and transversal sections are measured and analyzed statistically. Result: Project Angles of pulmonary veins are one of real and steady imaging anatomic characteristics of pulmonary veins. The statistical distribution of variables is relatively concentrated, with a fairly good representation of average value. It is possible to improve the angle of the central X-ray according to the average value in the selective angiography of pulmonary veins undergoing the catheter ablation of AF.

  5. Effects of Visual Feedback Distortion on Gait Adaptation: Comparison of Implicit Visual Distortion Versus Conscious Modulation on Retention of Motor Learning.

    Science.gov (United States)

    Kim, Seung-Jae; Ogilvie, Mitchell; Shimabukuro, Nathan; Stewart, Trevor; Shin, Joon-Ho

    2015-09-01

    Visual feedback can be used during gait rehabilitation to improve the efficacy of training. We presented a paradigm called visual feedback distortion; the visual representation of step length was manipulated during treadmill walking. Our prior work demonstrated that an implicit distortion of visual feedback of step length entails an unintentional adaptive process in the subjects' spatial gait pattern. Here, we investigated whether the implicit visual feedback distortion, versus conscious correction, promotes efficient locomotor adaptation that relates to greater retention of a task. Thirteen healthy subjects were studied under two conditions: (1) we implicitly distorted the visual representation of their gait symmetry over 14 min, and (2) with help of visual feedback, subjects were told to walk on the treadmill with the intent of attaining the gait asymmetry observed during the first implicit trial. After adaptation, the visual feedback was removed while subjects continued walking normally. Over this 6-min period, retention of preserved asymmetric pattern was assessed. We found that there was a greater retention rate during the implicit distortion trial than that of the visually guided conscious modulation trial. This study highlights the important role of implicit learning in the context of gait rehabilitation by demonstrating that training with implicit visual feedback distortion may produce longer lasting effects. This suggests that using visual feedback distortion could improve the effectiveness of treadmill rehabilitation processes by influencing the retention of motor skills.

  6. Kinematic Measurement of Knee Prosthesis from Single-Plane Projection Images

    Science.gov (United States)

    Hirokawa, Shunji; Ariyoshi, Shogo; Takahashi, Kenji; Maruyama, Koichi

    In this paper, the measurement of 3D motion from 2D perspective projections of knee prosthesis is described. The technique reported by Banks and Hodge was further developed in this study. The estimation was performed in two steps. The first-step estimation was performed on the assumption of orthogonal projection. Then, the second-step estimation was subsequently carried out based upon the perspective projection to accomplish more accurate estimation. The simulation results have demonstrated that the technique archived sufficient accuracies of position/orientation estimation for prosthetic kinematics. Then we applied our algorithm to the CCD images, thereby examining the influences of various artifacts, possibly incorporated through an imaging process, on the estimation accuracies. We found that accuracies in the experiment were influenced mainly by the geometric discrepancies between the prosthesis component and computer generated model and by the spacial inconsistencies between the coordinate axes of the positioner and that of the computer model. However, we verified that our algorithm could achieve proper and consistent estimation even for the CCD images.

  7. Total reduction of distorted echelle spectrograms - An automatic procedure. [for computer controlled microdensitometer

    Science.gov (United States)

    Peterson, R. C.; Title, A. M.

    1975-01-01

    A total reduction procedure, notable for its use of a computer-controlled microdensitometer for semi-automatically tracing curved spectra, is applied to distorted high-dispersion echelle spectra recorded by an image tube. Microdensitometer specifications are presented and the FORTRAN, TRACEN and SPOTS programs are outlined. The intensity spectrum of the photographic or electrographic plate is plotted on a graphic display. The time requirements are discussed in detail.

  8. Research on Wide-field Imaging Technologies for Low-frequency Radio Array

    Science.gov (United States)

    Lao, B. Q.; An, T.; Chen, X.; Wu, X. C.; Lu, Y.

    2017-09-01

    Wide-field imaging of low-frequency radio telescopes are subject to a number of difficult problems. One particularly pernicious problem is the non-coplanar baseline effect. It will lead to distortion of the final image when the phase of w direction called w-term is ignored. The image degradation effects are amplified for telescopes with the wide field of view. This paper summarizes and analyzes several w-term correction methods and their technical principles. Their advantages and disadvantages have been analyzed after comparing their computational cost and computational complexity. We conduct simulations with two of these methods, faceting and w-projection, based on the configuration of the first-phase Square Kilometre Array (SKA) low frequency array. The resulted images are also compared with the two-dimensional Fourier transform method. The results show that image quality and correctness derived from both faceting and w-projection are better than the two-dimensional Fourier transform method in wide-field imaging. The image quality and run time affected by the number of facets and w steps have been evaluated. The results indicate that the number of facets and w steps must be reasonable. Finally, we analyze the effect of data size on the run time of faceting and w-projection. The results show that faceting and w-projection need to be optimized before the massive amounts of data processing. The research of the present paper initiates the analysis of wide-field imaging techniques and their application in the existing and future low-frequency array, and fosters the application and promotion to much broader fields.

  9. A Cognitive Distortions and Deficits Model of Suicide Ideation

    Directory of Open Access Journals (Sweden)

    Laura L. Fazakas-DeHoog

    2017-05-01

    Full Text Available Although cognitive distortions and deficits are known risk factors for the development and escalation of suicide ideation and behaviour, no empirical work has examined how these variables interact to predict suicide ideation. The current study proposes an integrative model of cognitive distortions (hopelessness and negative evaluations of self and future and deficits (problem solving deficits, problem solving avoidance, and cognitive rigidity. To test the integrity of this model, a sample of 397 undergraduate students completed measures of deficits, distortions, and current suicide ideation. A structural equation model demonstrated excellent fit, and findings indicated that only distortions have a direct effect on suicidal thinking, whereas cognitive deficits may exert their effects on suicide ideation via their reciprocal relation with distortions. Findings underscore the importance of both cognitive distortions and deficits for understanding suicidality, which may have implications for preventative efforts and treatment.

  10. Real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy.

    Science.gov (United States)

    Li, Ruijiang; Jia, Xun; Lewis, John H; Gu, Xuejun; Folkerts, Michael; Men, Chunhua; Jiang, Steve B

    2010-06-01

    To develop an algorithm for real-time volumetric image reconstruction and 3D tumor localization based on a single x-ray projection image for lung cancer radiotherapy. Given a set of volumetric images of a patient at N breathing phases as the training data, deformable image registration was performed between a reference phase and the other N-1 phases, resulting in N-1 deformation vector fields (DVFs). These DVFs can be represented efficiently by a few eigenvectors and coefficients obtained from principal component analysis (PCA). By varying the PCA coefficients, new DVFs can be generated, which, when applied on the reference image, lead to new volumetric images. A volumetric image can then be reconstructed from a single projection image by optimizing the PCA coefficients such that its computed projection matches the measured one. The 3D location of the tumor can be derived by applying the inverted DVF on its position in the reference image. The algorithm was implemented on graphics processing units (GPUs) to achieve real-time efficiency. The training data were generated using a realistic and dynamic mathematical phantom with ten breathing phases. The testing data were 360 cone beam projections corresponding to one gantry rotation, simulated using the same phantom with a 50% increase in breathing amplitude. The average relative image intensity error of the reconstructed volumetric images is 6.9% +/- 2.4%. The average 3D tumor localization error is 0.8 +/- 0.5 mm. On an NVIDIA Tesla C1060 GPU card, the average computation time for reconstructing a volumetric image from each projection is 0.24 s (range: 0.17 and 0.35 s). The authors have shown the feasibility of reconstructing volumetric images and localizing tumor positions in 3D in near real-time from a single x-ray image.

  11. An improved ASIFT algorithm for indoor panorama image matching

    Science.gov (United States)

    Fu, Han; Xie, Donghai; Zhong, Ruofei; Wu, Yu; Wu, Qiong

    2017-07-01

    The generation of 3D models for indoor objects and scenes is an attractive tool for digital city, virtual reality and SLAM purposes. Panoramic images are becoming increasingly more common in such applications due to their advantages to capture the complete environment in one single image with large field of view. The extraction and matching of image feature points are important and difficult steps in three-dimensional reconstruction, and ASIFT is a state-of-the-art algorithm to implement these functions. Compared with the SIFT algorithm, more feature points can be generated and the matching accuracy of ASIFT algorithm is higher, even for the panoramic images with obvious distortions. However, the algorithm is really time-consuming because of complex operations and performs not very well for some indoor scenes under poor light or without rich textures. To solve this problem, this paper proposes an improved ASIFT algorithm for indoor panoramic images: firstly, the panoramic images are projected into multiple normal perspective images. Secondly, the original ASIFT algorithm is simplified from the affine transformation of tilt and rotation with the images to the only tilt affine transformation. Finally, the results are re-projected to the panoramic image space. Experiments in different environments show that this method can not only ensure the precision of feature points extraction and matching, but also greatly reduce the computing time.

  12. Bilateral Symmetry of Distortions of Tactile Size Perception.

    Science.gov (United States)

    Longo, Matthew R; Ghosh, Arko; Yahya, Tasneem

    2015-01-01

    The perceived distance between touches on the limbs is generally bigger for distances oriented across the width of the limb than for distances oriented along the length of the limb. The present study aimed to investigate the coherence of such distortions of tactile size perception across different skin surfaces. We investigated distortions of tactile size perception on the dorsal and palmar surfaces of both the left and right hands as well as the forehead. Participants judged which of two tactile distances felt larger. One distance was aligned with the proximodistal axis (along the body), the other with the mediolateral axis (across the body). Clear distortions were found on all five skin surfaces, with stimuli oriented across the width of the body being perceived as farther apart than those oriented along the length of the body. Consistent with previous results, distortions were smaller on the palmar than on the dorsal hand surface. Distortion on the forehead was intermediate between the dorsal and palmar surfaces. There were clear correlations between distortion on the left and right hands, for both the dorsal and palmar skin surfaces. In contrast, within each hand, there was no significant correlation between the two skin surfaces. Distortion on the forehead was not significantly correlated with that on any of the other skin surfaces. These results provide evidence for bilaterally symmetric representations underlying tactile size perception. © The Author(s) 2015.

  13. Performance comparison of different graylevel image fusion schemes through a universal image quality index

    NARCIS (Netherlands)

    Toet, A.; Hogervorst, M.A.

    2003-01-01

    We applied a recently introduced universal image quality index Q that quantifies the distortion of a processed image relative to its original version, to assess the performance of different graylevel image fusion schemes. The method is as follows. First, we adopt an original test image as the

  14. National Land Imaging Requirements (NLIR) Pilot Project summary report: summary of moderate resolution imaging user requirements

    Science.gov (United States)

    Vadnais, Carolyn; Stensaas, Gregory

    2014-01-01

    Under the National Land Imaging Requirements (NLIR) Project, the U.S. Geological Survey (USGS) is developing a functional capability to obtain, characterize, manage, maintain and prioritize all Earth observing (EO) land remote sensing user requirements. The goal is a better understanding of community needs that can be supported with land remote sensing resources, and a means to match needs with appropriate solutions in an effective and efficient way. The NLIR Project is composed of two components. The first component is focused on the development of the Earth Observation Requirements Evaluation System (EORES) to capture, store and analyze user requirements, whereas, the second component is the mechanism and processes to elicit and document the user requirements that will populate the EORES. To develop the second component, the requirements elicitation methodology was exercised and refined through a pilot project conducted from June to September 2013. The pilot project focused specifically on applications and user requirements for moderate resolution imagery (5–120 meter resolution) as the test case for requirements development. The purpose of this summary report is to provide a high-level overview of the requirements elicitation process that was exercised through the pilot project and an early analysis of the moderate resolution imaging user requirements acquired to date to support ongoing USGS sustainable land imaging study needs. The pilot project engaged a limited set of Federal Government users from the operational and research communities and therefore the information captured represents only a subset of all land imaging user requirements. However, based on a comparison of results, trends, and analysis, the pilot captured a strong baseline of typical applications areas and user needs for moderate resolution imagery. Because these results are preliminary and represent only a sample of users and application areas, the information from this report should only

  15. Improved Life of Die Casting Dies of H13 Steel by Attaining Improved Mechanical Properties and Distortion Control During Heat Treatment

    Energy Technology Data Exchange (ETDEWEB)

    J. F. Wallace; D. Schwam

    1998-10-01

    The ultimate goal of this project is to increase die casting die life by using fast enough quenching rates to obtain good toughness and fatigue resistance in premium grade H-13 steel dies. The main tasks of the project were to compile a database on physical and mechanical properties of H-13; conduct gas quenching experiments to determine cooling rates of dies in difference vacuum furnaces; measure the as-quenched distortion of dies and the residual stresses; generate finite element analysis models to predict cooling rates, distortion, and residual stress of gas quenched dies; and establish rules and create PC-based expert system for prediction of cooling rates, distortion, and residual stress in vacuum/gas quenched H-13 dies. Cooling curves during gas quenching of H-13 blocks and die shapes have been measured under a variety of gas pressure. Dimensional changes caused by the gas quenching processes have been determined by accurate mapping of all surfaces with coordinate measuring machines before and after the quench. Residual stresses were determined by the ASTM E837 hole-drilling strain gage method. To facilitate the computer modeling work, a comprehensive database of H-13 mechanical and physical properties has been compiled. Finite element analysis of the heat treated shapes has been conducted using the TRAST/ABAQUS codes. There is a good fit between the predicted and measured distortion contours. However, the magnitude of the predicted distortion and residual stresses does not match well the measured values. Further fine tuning of the model is required before it can be used to predict distortion and residual stress in a quantitative manner. This last step is a prerequisite to generating rules for a reliable expert system.

  16. Systems and methods for mirror mounting with minimized distortion

    Science.gov (United States)

    Antonille, Scott R. (Inventor); Wallace, Thomas E. (Inventor); Content, David A. (Inventor); Wake, Shane W. (Inventor)

    2012-01-01

    A method for mounting a mirror for use in a telescope includes attaching the mirror to a plurality of adjustable mounts; determining a distortion in the mirror caused by the plurality adjustable mounts, and, if the distortion is determined to be above a predetermined level: adjusting one or more of the adjustable mounts; and determining the distortion in the mirror caused by the adjustable mounts; and in the event the determined distortion is determined to be at or below the predetermined level, rigidizing the adjustable mounts.

  17. Image reconstruction from multiple fan-beam projections

    International Nuclear Information System (INIS)

    Jelinek, J.; Overton, T.R.

    1984-01-01

    Special-purpose third-generation fan-beam CT systems can be greatly simplified by limiting the number of detectors, but this requires a different mode of data collection to provide a set of projections appropriate to the required spatial resolution in the reconstructed image. Repeated rotation of the source-detector fan, combined with shift of the detector array and perhaps offset of the source with respect to the fan's axis after each 360 0 rotation(cycle), provides a fairly general pattern of projection space filling. The authors' investigated the problem of optimal data-collection geometry for a multiple-rotation fan-beam scanner and of corresponding reconstruction algorithm

  18. Modelling the Perceptual Components of Loudspeaker Distortion

    DEFF Research Database (Denmark)

    Olsen, Sune L.; Agerkvist, Finn T.; MacDonald, Ewen

    2016-01-01

    While non-linear distortion in loudspeakers decreases audio quality, the perceptual consequences can vary substantially. This paper investigates the metric Rnonlin [1] which was developed to predict subjective measurements of sound quality in nonlinear systems. The generalisability of the metric...... the perceptual consequences of non-linear distortion....

  19. Differences in the Nature of Body Image Disturbances between Female Obese Individuals with versus without a Comorbid Binge Eating Disorder: An Exploratory Study Including Static and Dynamic Aspects of Body Image

    Science.gov (United States)

    Legenbauer, Tanja; Vocks, Silja; Betz, Sabrina; Puigcerver, Maria Jose Baguena; Benecke, Andrea; Troje, Nikolaus F.; Ruddel, Heinz

    2011-01-01

    Various components of body image were measured to assess body image disturbances in patients with obesity. To overcome limitations of previous studies, a photo distortion technique and a biological motion distortion device were included to assess static and dynamic aspects of body image. Questionnaires assessed cognitive-affective aspects, bodily…

  20. Off-shell distortions of multichannel atomic processes

    Science.gov (United States)

    Barrachina, R. O.; Clauser, C. F.

    2017-10-01

    Any multichannel problem can be reduced to a succession of two-body events. However, these basic building blocks of many-body theories do not correspond to elastic processes but are off-the-energy-shell. In view of this difficulty, the great majority of the Distorted-Wave models includes a subsidiary approximation where these off-shell terms are arbitrarily forced to lie on the energy shell. At a first glance, since the energy deficiency is negligible for high enough velocities, the on-shell assumption seems to be completely justified. However, for the case of Coulomb interactions, the two-body off-shell distortions have branch-point singularities on the on-shell limit. In this article we demonstrate that these singularities might produce sizeable distortions of multiple scattering amplitudes, mainly when dealing with ion-ion collisions. Finally, we propose a method of including these distortions that might lead to better results that removing them completely.

  1. Image processing of integrated video image obtained with a charged-particle imaging video monitor system

    International Nuclear Information System (INIS)

    Iida, Takao; Nakajima, Takehiro

    1988-01-01

    A new type of charged-particle imaging video monitor system was constructed for video imaging of the distributions of alpha-emitting and low-energy beta-emitting nuclides. The system can display not only the scintillation image due to radiation on the video monitor but also the integrated video image becoming gradually clearer on another video monitor. The distortion of the image is about 5% and the spatial resolution is about 2 line pairs (lp)mm -1 . The integrated image is transferred to a personal computer and image processing is performed qualitatively and quantitatively. (author)

  2. Fluorescence In Situ Hybridization (FISH Signal Analysis Using Automated Generated Projection Images

    Directory of Open Access Journals (Sweden)

    Xingwei Wang

    2012-01-01

    Full Text Available Fluorescence in situ hybridization (FISH tests provide promising molecular imaging biomarkers to more accurately and reliably detect and diagnose cancers and genetic disorders. Since current manual FISH signal analysis is low-efficient and inconsistent, which limits its clinical utility, developing automated FISH image scanning systems and computer-aided detection (CAD schemes has been attracting research interests. To acquire high-resolution FISH images in a multi-spectral scanning mode, a huge amount of image data with the stack of the multiple three-dimensional (3-D image slices is generated from a single specimen. Automated preprocessing these scanned images to eliminate the non-useful and redundant data is important to make the automated FISH tests acceptable in clinical applications. In this study, a dual-detector fluorescence image scanning system was applied to scan four specimen slides with FISH-probed chromosome X. A CAD scheme was developed to detect analyzable interphase cells and map the multiple imaging slices recorded FISH-probed signals into the 2-D projection images. CAD scheme was then applied to each projection image to detect analyzable interphase cells using an adaptive multiple-threshold algorithm, identify FISH-probed signals using a top-hat transform, and compute the ratios between the normal and abnormal cells. To assess CAD performance, the FISH-probed signals were also independently visually detected by an observer. The Kappa coefficients for agreement between CAD and observer ranged from 0.69 to 1.0 in detecting/counting FISH signal spots in four testing samples. The study demonstrated the feasibility of automated FISH signal analysis that applying a CAD scheme to the automated generated 2-D projection images.

  3. Modeling Kinetics of Distortion in Porous Bi-layered Structures

    DEFF Research Database (Denmark)

    Tadesse Molla, Tesfaye; Frandsen, Henrik Lund; Bjørk, Rasmus

    2013-01-01

    because of different sintering rates of the materials resulting in undesired distortions of the component. An analytical model based on the continuum theory of sintering has been developed to describe the kinetics of densification and distortion in the sintering processes. A new approach is used...... to extract the material parameters controlling shape distortion through optimizing the model to experimental data of free shrinkage strains. The significant influence of weight of the sample (gravity) on the kinetics of distortion is taken in to consideration. The modeling predictions indicate good agreement...

  4. Harmonic distortion in microwave photonic filters.

    Science.gov (United States)

    Rius, Manuel; Mora, José; Bolea, Mario; Capmany, José

    2012-04-09

    We present a theoretical and experimental analysis of nonlinear microwave photonic filters. Far from the conventional condition of low modulation index commonly used to neglect high-order terms, we have analyzed the harmonic distortion involved in microwave photonic structures with periodic and non-periodic frequency responses. We show that it is possible to design microwave photonic filters with reduced harmonic distortion and high linearity even under large signal operation.

  5. Distributed MIMO-ISAR Sub-image Fusion Method

    Directory of Open Access Journals (Sweden)

    Gu Wenkun

    2017-02-01

    Full Text Available The fast fluctuation associated with maneuvering a target’s radar cross-section often affects the imaging performance stability of traditional monostatic Inverse Synthetic Aperture Radar (ISAR. To address this problem, in this study, we propose an imaging method based on the fusion of sub-images of frequencydiversity-distributed multiple Input-Multiple Output-Inverse Synthetic Aperture Radar (MIMO-ISAR. First, we establish the analytic expression of a two-dimensional ISAR sub-image acquired by different channels of distributed MIMO-ISAR. Then, we derive the distance and azimuth distortion factors of the image acquired by the different channels. By compensating for the distortion of the ISAR image, we ultimately realize distributed MIMO-ISAR fusion imaging. Simulations verify the validity of this imaging method using distributed MIMO-ISAR.

  6. CMB spectral distortions as solutions to the Boltzmann equations

    Energy Technology Data Exchange (ETDEWEB)

    Ota, Atsuhisa, E-mail: a.ota@th.phys.titech.ac.jp [Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551 (Japan)

    2017-01-01

    We propose to re-interpret the cosmic microwave background spectral distortions as solutions to the Boltzmann equation. This approach makes it possible to solve the second order Boltzmann equation explicitly, with the spectral y distortion and the momentum independent second order temperature perturbation, while generation of μ distortion cannot be explained even at second order in this framework. We also extend our method to higher order Boltzmann equations systematically and find new type spectral distortions, assuming that the collision term is linear in the photon distribution functions, namely, in the Thomson scattering limit. As an example, we concretely construct solutions to the cubic order Boltzmann equation and show that the equations are closed with additional three parameters composed of a cubic order temperature perturbation and two cubic order spectral distortions. The linear Sunyaev-Zel'dovich effect whose momentum dependence is different from the usual y distortion is also discussed in the presence of the next leading order Kompaneets terms, and we show that higher order spectral distortions are also generated as a result of the diffusion process in a framework of higher order Boltzmann equations. The method may be applicable to a wider class of problems and has potential to give a general prescription to non-equilibrium physics.

  7. Distortional solutions for loaded semi-discretized thin-walled beams

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2012-01-01

    distortional displacement fields which decouple the reduced order differential equations. In this process the cross section is discretized into finite cross-section elements, and the natural distortional modes as well as the related axial variations are found as solutions to the established coupled fourth...... order homogeneous differential equations of GBT.In this paper the non-homogeneous distortional differential equations of GBT are formulated using this novel semi-discretization process. Transforming these non-homogeneous distortional differential equations into the natural eigenmode space by using...... the distortional modal matrix found for the homogeneous system, we get the uncoupled set of differential equations including the distributed loads. This uncoupling is very important in GBT, since the shear stiffness contribution from St. Venant torsional shear stress as well as “Bredt's shear flow” cannot...

  8. Deep subcritical levels measurements dependents upon kinetic distortion factors

    International Nuclear Information System (INIS)

    Pan Shibiao; Li Xiang; Fu Guo'en; Huang Liyuan; Mu Keliang

    2013-01-01

    The measurement of deep subcritical levels, with the increase of subcriticality, showed that the results impact on the kinetic distortion effect, along with neutron flux strongly deteriorated. Using the diffusion theory, calculations have been carried out to quantify the kinetic distortion correction factors in subcritical systems, and these indicate that epithermal neutron distributions are strongly affected by kinetic distortion. Subcriticality measurements in four different rod-state combination at the zero power device was carried out. The test data analysis shows that, with increasing subcriticality, kinetic distortion effect correction factor gradually increases from 1.052 to 1.065, corresponding reactive correction amount of 0.78β eff ∼ 3.01β eff . Thus, it is necessary to consider the kinetic distortion effect in the deep subcritical reactivity measurements. (authors)

  9. Geometric distortion of F255W for WFPC2 Cycle 12

    Science.gov (United States)

    Kozhurina-Platais, Vera

    2003-07-01

    The goal of astrometric calibration of the HST WFPC2 is to obtain a coordinate system free of distortion down to the precision level of 1 mas. That precision is necessary for future astrometric work {e.g., on proper motions} involving a combination of the archival WFPC2 and recent ACS images. So far such a calibration has only been obtained for the wide bandpass F555W filter {Anderson and King, 2003}. Recently V. Kozhurina-Platais {ISR, 2003-002} has expanded the analysis of the geometric distortion of WFPC2 as a function of wavelength for two other broadband filters, {F814W and F300W}, and has also established the plate scale and skew parameters {non-perpendicularity of X and Y axes} for these filters. This study points to the importance of astrometric calibration at wavelengths shorter than 400 nanometers. This proposal seeks observations in the FUV filter F255W of the Inner Calibration Field in the globular cluster omega Cen. It is expected that the amount of distortion in the F255W filter with respect to the F555W filter will be higher by 5% but this must be established from observations. A total of four astrometric calibrations in F255W {proposed here}, and F300W, F555, F814W {already completed} will allow us to interpolate such a calibration for any other filter from FUV to near infrared.

  10. Distorsión en imágenes obtenidas mediante tomografía computarizada de cono Distortion in cone-beam computed tomography images

    Directory of Open Access Journals (Sweden)

    Gloria Baena

    2013-06-01

    Full Text Available Objetivo: Cuantificar la distorsión presente en imágenes de diferentes regiones del cráneo y la mandíbula humanos obtenidas mediante tomografía computarizada de cono. Metodología: Mediante el trazo de 3 planos horizontales y 4 verticales se delimitaron 15 cuadrantes en 30 cráneos secos humanos con las mandíbulas articuladas y se colocaron en cada cuadrante alambres de acero inoxidable en los planos sagital, coronal y axial (transversal. A cada espécimen debidamente posicionado se le tomó una tomografía computarizada de cono (CBCT. Se midió la longitud de los alambres, tanto en los especímenes óseos (medida real, como en las imágenes (medida tomográfica, para compararlas entre sí. Como pruebas estadísticas se utilizaron el Coeficiente de Correlación de Concordancia (CCC y la Media de las Diferencias. Resultados: Dado que el CCC encontrado en todos los cuadrantes fue siempre mayor de 0,80, las medidas tomográficas que se hagan en estos cuadrantes pueden ser consideradas estadísticamente confiables. Sin embargo, los valores obtenidos en todas las medidas espaciales revelan que en todos los cuadrantes se presenta algún porcentaje de distorsión, siendo este de magnificación para algunos o de minimización para otros. La mayor distorsión se presentó en las medidas verticales de los cuadrantes situados en la línea mediana o próximos a ella, y el menor porcentaje en las medidas horizontales. Conclusión: La distorsión presente en las diferentes regiones del cráneo y la mandíbula no es estadísticamente significativa, pero es aconsejable tenerla en cuenta para minimizar los errores que puedan presentarse en la práctica clínica.Objective: To quantify the distortion in Cone-Beam Computed Tomography images of different regions of the human skull and mandible. Methods: With the tracing of three horizontal and four vertical planes, fifteen quadrants were delimited in thirty dry human skulls with their articulated jaws

  11. Lattice shear distortions in fluorite structure oxides

    International Nuclear Information System (INIS)

    Faber, J. Jr.; Mueller, M.H.; Hitterman, R.L.

    1979-01-01

    Crystallographic shear distortions have been observed in fluorite structure, single crystals of UO 2 and Zr(Ca)O 2 /sub-x/ by neutron-diffraction techniques. These distortions localize on the oxygen sublattice and do not require the presence of an external strain. The internal rearrangement mode in UO 2 is a transverse, zone boundary q vector = 2π/a (0.5, 0.0) deformation with amplitude 0.014 A. In Zr(Ca)O/sub 2-x/, the mode is a longitudinal, q vector = 2-/a (0,0,0.5) deformation with amplitude 0.23 A. Cation-anion elastic interactions dominate in selecting the nature of the internal distortion

  12. Development and Analysis of Image Registration Program for the Communication, Ocean, Meteorological Satellite (COMS

    Directory of Open Access Journals (Sweden)

    Un-Seob Lee

    2007-09-01

    Full Text Available We developed a software for simulations and analyses of the Image Navigation and Registration (INR system, and compares the characteristics of Image Motion Compensation (IMC algorithms for the INR system. According to the orbit errors and attitude errors, the capabilities of the image distortions are analyzed. The distortions of images can be compensated by GOES IMC algorithm and Modified IMC (MIMC algorithm. The capabilities of each IMC algorithm are confirmed based on compensated images. The MIMC yields better results than GOES IMC although both the algorithms well compensate distorted images. The results of this research can be used as valuable asset to design of INR system for the Communication, Ocean, Meteorological Satellite (COMS.

  13. Ultraviolet light imaging technology and applications

    Science.gov (United States)

    Yokoi, Takane; Suzuki, Kenji; Oba, Koichiro

    1991-06-01

    Demands on the high-quality imaging in ultraviolet (UV) light region have been increasing recently, especially in fields such as forensic investigations, laser experiments, spent fuel identification, and so on. Important requirements on the UV imaging devices in such applications are high sensitivity, excellent solar blindness, and small image distortion, since the imaging of very weak UV images are usually carried out under natural sunlight or room illuminations and the image data have to be processed to produce useful two-dimensional quantitative data. A new photocathode has been developed to meet these requirements. It is specially made of RbTe on a sapphire window and its quantum efficiency is as high as 20% with the solar blindness of 10,000. The tube is specially designed to meet UV light optics and to minimize image distortion. It has an invertor type image intensifier tube structure and intensifies the incident UV light up to approximately 10,000 times. The distortion of the output image is suppressed less than 1.8%, because of a specially designed electron optic lens system. The device has shown excellent results in the observation of such objects as fingerprints and footprints in forensic investigations, the Cherenkov light produced by the spent fuels stored in a cooling water pool in the nuclear power station, and UV laser beam path in excimer laser experiments. Furthermore, many other applications of the UV light imaging will be expected in various fields such as semiconductors, cosmetics, and electrical power.

  14. EFFECTS OF X-RAY BEAM ANGLE AND GEOMETRIC DISTORTION ON WIDTH OF EQUINE THORACOLUMBAR INTERSPINOUS SPACES USING RADIOGRAPHY AND COMPUTED TOMOGRAPHY

    DEFF Research Database (Denmark)

    Djernaes, Julie D.; Nielsen, Jon V.; Berg, Lise C.

    2017-01-01

    The widths of spaces between the thoracolumbar processi spinosi (interspinous spaces) are frequently assessed using radiography in sports horses; however effects of varying X-ray beam angles and geometric distortion have not been previously described. The aim of this prospective, observational...... study was to determine whether X-ray beam angle has an effect on apparent widths of interspinous spaces. Thoracolumbar spine specimens were collected from six equine cadavers and left-right lateral radiographs and sagittal and dorsal reconstructed computed tomographic (CT) images were acquired...... measurements. Effect of geometric distortion was evaluated by comparing the interspinous space in radiographs with sagittal and dorsal reconstructed CT images. A total of 49 interspinous spaces were sampled, yielding 274 measurements. X-ray beam angle significantly affected measured width of interspinous...

  15. SU-G-JeP2-10: On the Need for a Dynamic Model for Patient-Specific Distortion Corrections for MR-Only Pelvis Treatment Planning

    Energy Technology Data Exchange (ETDEWEB)

    Glide-Hurst, C; Zheng, W [Henry Ford Health System, Detroit, MI (United States); Stehning, C; Weiss, S; Renisch, S [Philips Research Laboratories, Hamburg (Germany)

    2016-06-15

    Purpose: Patient-specific distortions, particularly near tissue/air interfaces, require assessment and possible corrections for MRI-only radiation treatment planning (RTP). However, patients are dynamic due to changes in physiological status and motion during imaging sessions. This work investigated the need for dynamic patient-specific distortion corrections to support pelvis MR-only RTP. Methods: The pelvises of healthy volunteers were imaged at 1.0T, 1.5T, and 3.0T. Patient-specific distortion field maps were generated using a dual-echo gradient-recalled echo (GRE) sequence with B0 field maps obtained from the phase difference between the two echoes acquired at two timepoints: empty and full bladders. To quantify changes arising from respiratory state, end-inhalation and end-expiration data were acquired. Distortion map differences were computed between the empty/full bladder and inhalation/expiration to characterize local changes. The normalized frequency distortion distributions in T2-weighted TSE images were characterized, particularly for simulated prostate planning target volumes (PTVs). Results: Changes in rectal and bowel air location were observed, likely due to changes in bladder filling. Within the PTVs, displacement differences (mean ± stdev, range) were −0.02 ± 0.02 mm (−0.13 to 0.07 mm) for 1.0T, −0.1 ± 0.2 mm (−0.92 to 0.74 mm) for 1.5T, and −0.20 ± 0.03 mm (−0.61 to 0.38 mm) for 3.0T. Local changes of ∼1 mm at the prostate-rectal interface were observed for an extreme case at 1.5T. For end-inhale and end-exhale scans at 3.0T, 99% of the voxels had Δx differences within ±0.25mm, thus the displacement differences due to respiratory state appear negligible in the pelvis. Conclusion: Our work suggests that transient bowel/rectal gas due to bladder filling may yield non-negligible patient-specific distortion differences near the prostate/rectal interface, whereas respiration had minimal effect. A temporal patient model for patient

  16. Dosimetric impact of image artifact from a wide-bore CT scanner in radiotherapy treatment planning

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Vincent; Podgorsak, Matthew B.; Tran, Tuan-Anh; Malhotra, Harish K.; Wang, Iris Z. [Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 (United States); Department of Radiation Medicine, Roswell Park Cancer Institute, Buffalo, New York 14263 and Department of Physiology and Biophysics, State University of New York at Buffalo, Buffalo, New York 14214 (United States)

    2011-07-15

    Purpose: Traditional computed tomography (CT) units provide a maximum scan field-of-view (sFOV) diameter of 50 cm and a limited bore size, which cannot accommodate a large patient habitus or an extended simulation setup in radiation therapy (RT). Wide-bore CT scanners with increased bore size were developed to address these needs. Some scanners have the capacity to reconstruct the CT images at an extended FOV (eFOV), through data interpolation or extrapolation, using projection data acquired with a conventional sFOV. Objects that extend past the sFOV for eFOV reconstruction may generate image artifacts resulting from truncated projection data; this may distort CT numbers and structure contours in the region beyond the sFOV. The purpose of this study was to evaluate the dosimetric impact of image artifacts from eFOV reconstruction with a wide-bore CT scanner in radiotherapy (RT) treatment planning. Methods: Testing phantoms (i.e., a mini CT phantom with equivalent tissue inserts, a set of CT normal phantoms and anthropomorphic phantoms of the thorax and the pelvis) were used to evaluate eFOV artifacts. Reference baseline images of these phantoms were acquired with the phantom centrally positioned within the sFOV. For comparison, the phantoms were then shifted laterally and scanned partially outside the sFOV, but still within the eFOV. Treatment plans were generated for the thoracic and pelvic anthropomorphic phantoms utilizing the Eclipse treatment planning system (TPS) to study the potential effects of eFOV artifacts on dose calculations. All dose calculations of baseline and test treatment plans were carried out using the same MU. Results: Results show that both body contour and CT numbers are altered by image artifacts in eFOV reconstruction. CT number distortions of up to -356 HU for bone tissue and up to 323 HU for lung tissue were observed in the mini CT phantom. Results from the large body normal phantom, which is close to a clinical patient size, show

  17. Detection of architectural distortion in prior screening mammograms using Gabor filters, phase portraits, fractal dimension, and texture analysis

    International Nuclear Information System (INIS)

    Rangayyan, Rangaraj M.; Prajna, Shormistha; Ayres, Fabio J.; Desautels, J.E.L.

    2008-01-01

    Mammography is a widely used screening tool for the early detection of breast cancer. One of the commonly missed signs of breast cancer is architectural distortion. The purpose of this study is to explore the application of fractal analysis and texture measures for the detection of architectural distortion in screening mammograms taken prior to the detection of breast cancer. A method based on Gabor filters and phase portrait analysis was used to detect initial candidates for sites of architectural distortion. A total of 386 regions of interest (ROIs) were automatically obtained from 14 ''prior mammograms'', including 21 ROIs related to architectural distortion. From the corresponding set of 14 ''detection mammograms'', 398 ROIs were obtained, including 18 related to breast cancer. For each ROI, the fractal dimension and Haralick's texture features were computed. The fractal dimension of the ROIs was calculated using the circular average power spectrum technique. The average fractal dimension of the normal (false-positive) ROIs was significantly higher than that of the ROIs with architectural distortion (p = 0.006). For the ''prior mammograms'', the best receiver operating characteristics (ROC) performance achieved, in terms of the area under the ROC curve, was 0.80 with a Bayesian classifier using four features including fractal dimension, entropy, sum entropy, and inverse difference moment. Analysis of the performance of the methods with free-response receiver operating characteristics indicated a sensitivity of 0.79 at 8.4 false positives per image in the detection of sites of architectural distortion in the ''prior mammograms''. Fractal dimension offers a promising way to detect the presence of architectural distortion in prior mammograms. (orig.)

  18. Coulomb Distortion in the Inelastic Regime

    Energy Technology Data Exchange (ETDEWEB)

    Patricia Solvignon, Dave Gaskell, John Arrington

    2009-09-01

    The Coulomb distortion effects have been for a long time neglected in deep inelastic scattering for the good reason that the incident energies were very high. But for energies in the range of earlier data from SLAC or at JLab, the Coulomb distortion could have the potential consequence of affecting the A-dependence of the EMC effect and of the longitudinal to transverse virtual photon absorption cross section ratio $R(x,Q^2)$.

  19. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images

    Science.gov (United States)

    Yothers, Mitchell P.; Browder, Aaron E.; Bumm, Lloyd A.

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  20. Real-space post-processing correction of thermal drift and piezoelectric actuator nonlinearities in scanning tunneling microscope images.

    Science.gov (United States)

    Yothers, Mitchell P; Browder, Aaron E; Bumm, Lloyd A

    2017-01-01

    We have developed a real-space method to correct distortion due to thermal drift and piezoelectric actuator nonlinearities on scanning tunneling microscope images using Matlab. The method uses the known structures typically present in high-resolution atomic and molecularly resolved images as an internal standard. Each image feature (atom or molecule) is first identified in the image. The locations of each feature's nearest neighbors are used to measure the local distortion at that location. The local distortion map across the image is simultaneously fit to our distortion model, which includes thermal drift in addition to piezoelectric actuator hysteresis and creep. The image coordinates of the features and image pixels are corrected using an inverse transform from the distortion model. We call this technique the thermal-drift, hysteresis, and creep transform. Performing the correction in real space allows defects, domain boundaries, and step edges to be excluded with a spatial mask. Additional real-space image analyses are now possible with these corrected images. Using graphite(0001) as a model system, we show lattice fitting to the corrected image, averaged unit cell images, and symmetry-averaged unit cell images. Statistical analysis of the distribution of the image features around their best-fit lattice sites measures the aggregate noise in the image, which can be expressed as feature confidence ellipsoids.

  1. An X-ray wave theory for heavily distorted crystals. 1

    International Nuclear Information System (INIS)

    Ohkawa, T.; Hashimoto, H.

    1985-01-01

    An X-ray diffraction theory is developed of monochromatic waves having spherical wave front, which is applicable to an interpretation of divergent X-ray diffraction images of crystals containing arbitral types of strain field. The theory is divided into two parts. In part I, Takagi's theory is expanded by introducing amplitude and phase correction functions and a new improved representation for the X-ray diffraction theory is given. In part II dispersion surfaces in heavily distorted crystals are discussed, and in the discussion the resonance shift functions are introduced. These formulations can lead to a complete understanding of the extinction phenomena. (author)

  2. Structural matching of ferroelectric domains and associated distortion in potassium titanyl phosphate crystals

    CERN Document Server

    Pernot-Rejmankova, P; Cloetens, P; Lyford, T; Baruchel, J

    2003-01-01

    The surface deformation and atomic-level distortions associated with crystal structural matching at ferroelectric inversion domain walls are investigated in periodically poled potassium titanyl phosphate (KTP) crystals. A deformation, of the order of 10 sup - sup 8 m in scale and having the periodicity of the domains, is observed at the surfaces by optical interferometry. It is discussed in terms of the piezoelectric effect. The matching of the crystal structures at the domain walls is studied by combining the hard x-ray Fresnel phase-imaging technique with Bragg diffraction imaging methods ('Bragg-Fresnel imaging') and using synchrotron radiation. Quantitative analysis of the contrast of the Bragg-Fresnel images recorded as a function of the propagation distance is demonstrated to allow the determination of how the domains are matched at the atomic (unit cell) level, even though the spatial resolution of the images is on the scale of micrometres. The atom P(1) is determined as the linking atom for connecting...

  3. A Color Image Watermarking Scheme Resistant against Geometrical Attacks

    Directory of Open Access Journals (Sweden)

    Y. Xing

    2010-04-01

    Full Text Available The geometrical attacks are still a problem for many digital watermarking algorithms at present. In this paper, we propose a watermarking algorithm for color images resistant to geometrical distortions (rotation and scaling. The singular value decomposition is used for watermark embedding and extraction. The log-polar map- ping (LPM and phase correlation method are used to register the position of geometrical distortion suffered by the watermarked image. Experiments with different kinds of color images and watermarks demonstrate that the watermarking algorithm is robust to common image processing attacks, especially geometrical attacks.

  4. The evolution of costly mate choice against segregation distorters.

    Science.gov (United States)

    Manser, Andri; Lindholm, Anna K; Weissing, Franz J

    2017-12-01

    The evolution of female preference for male genetic quality remains a controversial topic in sexual selection research. One well-known problem, known as the lek paradox, lies in understanding how variation in genetic quality is maintained in spite of natural selection and sexual selection against low-quality alleles. Here, we theoretically investigate a scenario where females pay a direct fitness cost to avoid males carrying an autosomal segregation distorter. We show that preference evolution is greatly facilitated under such circumstances. Because the distorter is transmitted in a non-Mendelian fashion, it can be maintained in the population despite directional sexual selection. The preference helps females avoid fitness costs associated with the distorter. Interestingly, we find that preference evolution is limited if the choice allele induces a very strong preference or if distortion is very strong. Moreover, the preference can only persist in the presence of a signal that reliably indicates a male's distorter genotype. Hence, even in a system where the lek paradox does not play a major role, costly preferences can only spread under specific circumstances. We discuss the importance of distorter systems for the evolution of costly female choice and potential implications for the use of artificial distorters in pest control. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  5. Distortion dependent intersystem crossing

    DEFF Research Database (Denmark)

    Stephansen, Anne Boutrup; Sølling, Theis Ivan

    2017-01-01

    . The effect is observed to increase in the presence of methyl-groups on the pinnacle carbon-atoms, where largest extents of r and p orbital-mixing are observed. This is fully consistent with the time-resolved spectroscopy data: Toluene and p-xylene show evidence for ultrafast triplet formation competing......The competition between ultrafast intersystem crossing and internal conversion in benzene, toluene, and p-xylene is investigated with time-resolved photoelectron spectroscopy and quantum chemical calculations. By exciting to S2 out-of-plane symmetry breaking, distortions are activated at early...... times whereupon spin-forbidden intersystem crossing becomes (partly) allowed. Natural bond orbital analysis suggests that the pinnacle carbon atoms distorting from the aromatic plane change hybridization between the planar Franck-Condon geometry and the deformed (boat-shaped) S2 equilibrium geometry...

  6. A projection graphic display for the computer aided analysis of bubble chamber images

    International Nuclear Information System (INIS)

    Solomos, E.

    1979-01-01

    A projection graphic display for aiding the analysis of bubble chamber photographs has been developed by the Instrumentation Group of EF Division at CERN. The display image is generated on a very high brightness cathode ray tube and projected on to the table of the scanning-measuring machines as a superposition to the image of the bubble chamber. The display can send messages to the operator and aid the measurement by indicating directly on the chamber image the tracks which are measured correctly or not. (orig.)

  7. Trends in medical image processing

    International Nuclear Information System (INIS)

    Robilotta, C.C.

    1987-01-01

    The function of medical image processing is analysed, mentioning the developments, the physical agents, and the main categories, as conection of distortion in image formation, detectability increase, parameters quantification, etc. (C.G.C.) [pt

  8. A universal color image quality metric

    NARCIS (Netherlands)

    Toet, A.; Lucassen, M.P.

    2003-01-01

    We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated color space. The resulting color image quality index quantifies the distortion of a processed color image relative to its original version. We evaluated the new color image quality

  9. Robust Dehaze Algorithm for Degraded Image of CMOS Image Sensors

    Directory of Open Access Journals (Sweden)

    Chen Qu

    2017-09-01

    Full Text Available The CMOS (Complementary Metal-Oxide-Semiconductor is a new type of solid image sensor device widely used in object tracking, object recognition, intelligent navigation fields, and so on. However, images captured by outdoor CMOS sensor devices are usually affected by suspended atmospheric particles (such as haze, causing a reduction in image contrast, color distortion problems, and so on. In view of this, we propose a novel dehazing approach based on a local consistent Markov random field (MRF framework. The neighboring clique in traditional MRF is extended to the non-neighboring clique, which is defined on local consistent blocks based on two clues, where both the atmospheric light and transmission map satisfy the character of local consistency. In this framework, our model can strengthen the restriction of the whole image while incorporating more sophisticated statistical priors, resulting in more expressive power of modeling, thus, solving inadequate detail recovery effectively and alleviating color distortion. Moreover, the local consistent MRF framework can obtain details while maintaining better results for dehazing, which effectively improves the image quality captured by the CMOS image sensor. Experimental results verified that the method proposed has the combined advantages of detail recovery and color preservation.

  10. Prospective analysis of in vivo landmark point-based MRI geometric distortion in head and neck cancer patients scanned in immobilized radiation treatment position: Results of a prospective quality assurance protocol

    Directory of Open Access Journals (Sweden)

    Abdallah S.R. Mohamed

    2017-12-01

    Full Text Available Purpose: Uncertainties related to geometric distortion are a major obstacle for effectively utilizing MRI in radiation oncology. We aim to quantify the geometric distortion in patient images by comparing their in-treatment position MRIs with the corresponding planning CTs, using CT as the non-distorted gold standard. Methods: Twenty-one head and neck cancer patients were imaged with MRI as part of a prospective Institutional Review Board approved study. MR images were acquired with a T2 SE sequence (0.5 × 0.5 × 2.5 mm voxel size in the same immobilization position as in the CTs. MRI to CT rigid registration was then done and geometric distortion comparison was assessed by measuring the corresponding anatomical landmarks on both the MRI and the CT images. Several landmark measurements were obtained including; skin to skin (STS, bone to bone, and soft tissue to soft tissue at specific levels in horizontal and vertical planes of both scans. Inter-observer variability was assessed and interclass correlation (ICC was calculated. Results: A total of 430 landmark measurements were obtained. The median distortion for all landmarks in all scans was 1.06 mm (IQR 0.6–1.98. For each patient 48% of the measurements were done in the right-left direction and 52% were done in the anteroposterior direction. The measured geometric distortion was not statistically different in the right-left direction compared to the anteroposterior direction (1.5 ± 1.6 vs. 1.6 ± 1.7 mm, respectively, p = 0.4. The magnitude of distortion was higher in the STS peripheral landmarks compared to the more central landmarks (2.0 ± 1.9 vs. 1.2 ± 1.3 mm, p < 0.0001. The mean distortion measured by observer one was not significantly different compared to observer 2, 3, and 4 (1.05, 1.23, 1.06 and 1.05 mm, respectively, p = 0.4 with ICC = 0.84. Conclusion: MRI geometric distortions were

  11. A method for volumetric imaging in radiotherapy using single x-ray projection

    International Nuclear Information System (INIS)

    Xu, Yuan; Yan, Hao; Ouyang, Luo; Wang, Jing; Jiang, Steve B.; Jia, Xun; Zhou, Linghong; Cervino, Laura

    2015-01-01

    Purpose: It is an intriguing problem to generate an instantaneous volumetric image based on the corresponding x-ray projection. The purpose of this study is to develop a new method to achieve this goal via a sparse learning approach. Methods: To extract motion information hidden in projection images, the authors partitioned a projection image into small rectangular patches. The authors utilized a sparse learning method to automatically select patches that have a high correlation with principal component analysis (PCA) coefficients of a lung motion model. A model that maps the patch intensity to the PCA coefficients was built along with the patch selection process. Based on this model, a measured projection can be used to predict the PCA coefficients, which are then further used to generate a motion vector field and hence a volumetric image. The authors have also proposed an intensity baseline correction method based on the partitioned projection, in which the first and the second moments of pixel intensities at a patch in a simulated projection image are matched with those in a measured one via a linear transformation. The proposed method has been validated in both simulated data and real phantom data. Results: The algorithm is able to identify patches that contain relevant motion information such as the diaphragm region. It is found that an intensity baseline correction step is important to remove the systematic error in the motion prediction. For the simulation case, the sparse learning model reduced the prediction error for the first PCA coefficient to 5%, compared to the 10% error when sparse learning was not used, and the 95th percentile error for the predicted motion vector was reduced from 2.40 to 0.92 mm. In the phantom case with a regular tumor motion, the predicted tumor trajectory was successfully reconstructed with a 0.82 mm error for tumor center localization compared to a 1.66 mm error without using the sparse learning method. When the tumor motion

  12. Physics of tissue harmonic imaging by ultrasound

    Science.gov (United States)

    Jing, Yuan

    Tissue Harmonic Imaging (THI) is an imaging modality that is currently deployed on diagnostic ultrasound scanners. In THI the amplitude of the ultrasonic pulse that is used to probe the tissue is large enough that the pulse undergoes nonlinear distortion as it propagates into the tissue. One result of the distortion is that as the pulse propagates energy is shifted from the fundamental frequency of the source pulse into its higher harmonics. These harmonics will scatter off objects in the tissue and images formed from the scattered higher harmonics are considered to have superior quality to the images formed from the fundamental frequency. Processes that have been suggested as possibly responsible for the improved imaging in THI include: (1) reduced sensitivity to reverberation, (2) reduced sensitivity to aberration, and (3) reduction in side lobes. By using a combination of controlled experiments and numerical simulations, these three reasons have been investigated. A single element transducer and a clinical ultrasound scanner with a phased array transducer were used to image a commercial tissue-mimicking phantom with calibrated targets. The higher image quality achieved with THI was quantified in terms of spatial resolution and "clutter" signals. A three-dimensional model of the forward propagation of nonlinear sound beams in media with arbitrary spatial properties (a generalized KZK equation) was developed. A time-domain code for solving the KZK equation was validated with measurements of the acoustic field generated by the single element transducer and the phased array transducer. The code was used to investigate the impact of aberration using tissue-like media with three-dimensional variations in all acoustic properties. The three-dimensional maps of tissue properties were derived from the datasets available through the Visible Female project. The experiments and simulations demonstrated that second harmonic imaging (1) suffers less clutter associated with

  13. Microarray BASICA: Background Adjustment, Segmentation, Image Compression and Analysis of Microarray Images

    Directory of Open Access Journals (Sweden)

    Jianping Hua

    2004-01-01

    Full Text Available This paper presents microarray BASICA: an integrated image processing tool for background adjustment, segmentation, image compression, and analysis of cDNA microarray images. BASICA uses a fast Mann-Whitney test-based algorithm to segment cDNA microarray images, and performs postprocessing to eliminate the segmentation irregularities. The segmentation results, along with the foreground and background intensities obtained with the background adjustment, are then used for independent compression of the foreground and background. We introduce a new distortion measurement for cDNA microarray image compression and devise a coding scheme by modifying the embedded block coding with optimized truncation (EBCOT algorithm (Taubman, 2000 to achieve optimal rate-distortion performance in lossy coding while still maintaining outstanding lossless compression performance. Experimental results show that the bit rate required to ensure sufficiently accurate gene expression measurement varies and depends on the quality of cDNA microarray images. For homogeneously hybridized cDNA microarray images, BASICA is able to provide from a bit rate as low as 5 bpp the gene expression data that are 99% in agreement with those of the original 32 bpp images.

  14. Design and Development of a New Multi-Projection X-Ray System for Chest Imaging

    Science.gov (United States)

    Chawla, Amarpreet S.; Boyce, Sarah; Washington, Lacey; McAdams, H. Page; Samei, Ehsan

    2009-02-01

    Overlapping anatomical structures may confound the detection of abnormal pathology, including lung nodules, in conventional single-projection chest radiography. To minimize this fundamental limiting factor, a dedicated digital multi-projection system for chest imaging was recently developed at the Radiology Department of Duke University. We are reporting the design of the multi-projection imaging system and its initial performance in an ongoing clinical trial. The system is capable of acquiring multiple full-field projections of the same patient along both the horizontal and vertical axes at variable speeds and acquisition frame rates. These images acquired in rapid succession from slightly different angles about the posterior-anterior (PA) orientation can be correlated to minimize the influence of overlying anatomy. The developed system has been tested for repeatability and motion blur artifacts to investigate its robustness for clinical trials. Excellent geometrical consistency was found in the tube motion, with positional errors for clinical settings within 1%. The effect of tube-motion on the image quality measured in terms of impact on the modulation transfer function (MTF) was found to be minimal. The system was deemed clinic-ready and a clinical trial was subsequently launched. The flexibility of image acquisition built into the system provides a unique opportunity to easily modify it for different clinical applications, including tomosynthesis, correlation imaging (CI), and stereoscopic imaging.

  15. Economic choices reveal probability distortion in macaque monkeys.

    Science.gov (United States)

    Stauffer, William R; Lak, Armin; Bossaerts, Peter; Schultz, Wolfram

    2015-02-18

    Economic choices are largely determined by two principal elements, reward value (utility) and probability. Although nonlinear utility functions have been acknowledged for centuries, nonlinear probability weighting (probability distortion) was only recently recognized as a ubiquitous aspect of real-world choice behavior. Even when outcome probabilities are known and acknowledged, human decision makers often overweight low probability outcomes and underweight high probability outcomes. Whereas recent studies measured utility functions and their corresponding neural correlates in monkeys, it is not known whether monkeys distort probability in a manner similar to humans. Therefore, we investigated economic choices in macaque monkeys for evidence of probability distortion. We trained two monkeys to predict reward from probabilistic gambles with constant outcome values (0.5 ml or nothing). The probability of winning was conveyed using explicit visual cues (sector stimuli). Choices between the gambles revealed that the monkeys used the explicit probability information to make meaningful decisions. Using these cues, we measured probability distortion from choices between the gambles and safe rewards. Parametric modeling of the choices revealed classic probability weighting functions with inverted-S shape. Therefore, the animals overweighted low probability rewards and underweighted high probability rewards. Empirical investigation of the behavior verified that the choices were best explained by a combination of nonlinear value and nonlinear probability distortion. Together, these results suggest that probability distortion may reflect evolutionarily preserved neuronal processing. Copyright © 2015 Stauffer et al.

  16. Word Recognition for Temporally and Spectrally Distorted Materials

    DEFF Research Database (Denmark)

    Smith, Sherri L.; Pichora-Fuller, Margaret Kathleen; Wilson, Richard H.

    2012-01-01

    listeners with near-normal hearing and hearing loss performed best in the unaltered condition, followed by the jitter and smear conditions, with the poorest performance in the combined jitter-smear condition in both quiet and noise. Overall, listeners with near-normal hearing performed better than listeners...... to predict group differences, but not the effects of distortion. Individual differences in performance were similar across all distortion conditions with both age and hearing loss being implicated. The speech materials needed to be both spectrally and temporally distorted to mimic the effects of age...

  17. Projection correction for the pixel-by-pixel basis in diffraction enhanced imaging

    International Nuclear Information System (INIS)

    Huang Zhifeng; Kang Kejun; Li Zheng

    2006-01-01

    Theories and methods of x-ray diffraction enhanced imaging (DEI) and computed tomography of the DEI (DEI-CT) have been investigated recently. But the phenomenon of projection offsets which may affect the accuracy of the results of extraction methods of refraction-angle images and reconstruction algorithms of the DEI-CT is seldom of concern. This paper focuses on it. Projection offsets are revealed distinctly according to the equivalent rectilinear propagation model of the DEI. Then, an effective correction method using the equivalent positions of projection data is presented to eliminate the errors induced by projection offsets. The correction method is validated by a computer simulation experiment and extraction methods or reconstruction algorithms based on the corrected data can give more accurate results. The limitations of the correction method are discussed at the end

  18. Rate-distortion theory and human perception.

    Science.gov (United States)

    Sims, Chris R

    2016-07-01

    The fundamental goal of perception is to aid in the achievement of behavioral objectives. This requires extracting and communicating useful information from noisy and uncertain sensory signals. At the same time, given the complexity of sensory information and the limitations of biological information processing, it is necessary that some information must be lost or discarded in the act of perception. Under these circumstances, what constitutes an 'optimal' perceptual system? This paper describes the mathematical framework of rate-distortion theory as the optimal solution to the problem of minimizing the costs of perceptual error subject to strong constraints on the ability to communicate or transmit information. Rate-distortion theory offers a general and principled theoretical framework for developing computational-level models of human perception (Marr, 1982). Models developed in this framework are capable of producing quantitatively precise explanations for human perceptual performance, while yielding new insights regarding the nature and goals of perception. This paper demonstrates the application of rate-distortion theory to two benchmark domains where capacity limits are especially salient in human perception: discrete categorization of stimuli (also known as absolute identification) and visual working memory. A software package written for the R statistical programming language is described that aids in the development of models based on rate-distortion theory. Copyright © 2016 The Author. Published by Elsevier B.V. All rights reserved.

  19. SU-E-T-431: Feasiblity of Using CT Scout Images for 2D LDR Brachytherpay Planning

    Energy Technology Data Exchange (ETDEWEB)

    Ha, J; Weaver, R [LAC+USC Medical Center, Los Angeles, CA, M. Mariscal (United States)

    2015-06-15

    Purpose: i) To show the feasibility of using CT scout images for 2D low-dose rate brachytherapy planning with BrachyVision (version 10.4); ii) to show their advantages and disadvantages over DRRs. Methods: A phantom was constructed to house a Fletcher-Suite applicator. The phantom is made of Styrofoam with metal BBs positioned at well-defined separations. These markers are used to assess the image distortion in the scout images. Unlike DRRs, scout images are distorted only in the direction normal to the couch direction; therefore, they needed to be scaled unidirectionally prior to importing into BrachyVision. In addition to confirming the scaling is performed correctly by measuring distances between well-positioned BB, we also compare a LDR plan using scout images to a 3D CT-based plan. Results: There is no distortion of the image along the couch direction due to the collimation of the CT scanner. The distortion in the transverse plane can be corrected by multiplying by the ratio of distances between source-to-isocenter and source-to-detector. The results show the distance separations between BBs as measured in scout images and by a caliber are within a few millimeters. Dosimetrically, the difference between the dose rates to points A and B based on scout images and on 3D CT are less than a few percents. The accuracy can be improved by correcting for the distortion on the transverse plane. Conclusion: It is possible to use CT scout images for 2D planning in BrachyVision. This is an advantage because scout images have no metal artifacts often present in CT images or DRRs. Another advantage is the lack of distortion in the couch direction. One major disadvantage is that the image distortion due to beam divergence can be large. This is due to the inherent short distance between source-to-isocenter and source-to-detector on a CT scanner.

  20. THE IMAGE REGISTRATION OF FOURIER-MELLIN BASED ON THE COMBINATION OF PROJECTION AND GRADIENT PREPROCESSING

    Directory of Open Access Journals (Sweden)

    D. Gao

    2017-09-01

    Full Text Available Image registration is one of the most important applications in the field of image processing. The method of Fourier Merlin transform, which has the advantages of high precision and good robustness to change in light and shade, partial blocking, noise influence and so on, is widely used. However, not only this method can’t obtain the unique mutual power pulse function for non-parallel image pairs, even part of image pairs also can’t get the mutual power function pulse. In this paper, an image registration method based on Fourier-Mellin transformation in the view of projection-gradient preprocessing is proposed. According to the projection conformational equation, the method calculates the matrix of image projection transformation to correct the tilt image; then, gradient preprocessing and Fourier-Mellin transformation are performed on the corrected image to obtain the registration parameters. Eventually, the experiment results show that the method makes the image registration of Fourier-Mellin transformation not only applicable to the registration of the parallel image pairs, but also to the registration of non-parallel image pairs. What’s more, the better registration effect can be obtained

  1. The role of visual similarity and memory in body model distortions.

    Science.gov (United States)

    Saulton, Aurelie; Longo, Matthew R; Wong, Hong Yu; Bülthoff, Heinrich H; de la Rosa, Stephan

    2016-02-01

    Several studies have shown that the perception of one's own hand size is distorted in proprioceptive localization tasks. It has been suggested that those distortions mirror somatosensory anisotropies. Recent research suggests that non-corporeal items also show some spatial distortions. In order to investigate the psychological processes underlying the localization task, we investigated the influences of visual similarity and memory on distortions observed on corporeal and non-corporeal items. In experiment 1, participants indicated the location of landmarks on: their own hand, a rubber hand (rated as most similar to the real hand), and a rake (rated as least similar to the real hand). Results show no significant differences between rake and rubber hand distortions but both items were significantly less distorted than the hand. Experiments 2 and 3 explored the role of memory in spatial distance judgments of the hand, the rake and the rubber hand. Spatial representations of items measured in experiments 2 and 3 were also distorted but showed the tendency to be smaller than in localization tasks. While memory and visual similarity seem to contribute to explain qualitative similarities in distortions between the hand and non-corporeal items, those factors cannot explain the larger magnitude observed in hand distortions. Copyright © 2015. Published by Elsevier B.V.

  2. Decoding using back-project algorithm from coded image in ICF

    International Nuclear Information System (INIS)

    Jiang shaoen; Liu Zhongli; Zheng Zhijian; Tang Daoyuan

    1999-01-01

    The principle of the coded imaging and its decoding in inertial confinement fusion is described simply. The authors take ring aperture microscope for example and use back-project (BP) algorithm to decode the coded image. The decoding program has been performed for numerical simulation. Simulations of two models are made, and the results show that the accuracy of BP algorithm is high and effect of reconstruction is good. Thus, it indicates that BP algorithm is applicable to decoding for coded image in ICF experiments

  3. Distortions in the output signals of conventional spectrum analyzers

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-08-01

    We show that the output signals of conventional spectrum analysers contain distortions which basically originate from the signal processing performed inside the analysers' frequency convertors. Total elimination of these distortions through normal filtering techniques is difficult owing to the closeness of some of their frequencies to the corresponding frequencies of the required signals. Simple design adjustments that can minimize these distortions are suggested. (author). 7 refs, 2 figs

  4. Comparison of power spectra for tomosynthesis projections and reconstructed images

    International Nuclear Information System (INIS)

    Engstrom, Emma; Reiser, Ingrid; Nishikawa, Robert

    2009-01-01

    Burgess et al. [Med. Phys. 28, 419-437 (2001)] showed that the power spectrum of mammographic breast background follows a power law and that lesion detectability is affected by the power-law exponent β which measures the amount of structure in the background. Following the study of Burgess et al., the authors measured and compared the power-law exponent of mammographic backgrounds in tomosynthesis projections and reconstructed slices to investigate the effect of tomosynthesis imaging on background structure. Our data set consisted of 55 patient cases. For each case, regions of interest (ROIs) were extracted from both projection images and reconstructed slices. The periodogram of each ROI was computed by taking the squared modulus of the Fourier transform of the ROI. The power-law exponent was determined for each periodogram and averaged across all ROIs extracted from all projections or reconstructed slices for each patient data set. For the projections, the mean β averaged across the 55 cases was 3.06 (standard deviation of 0.21), while it was 2.87 (0.24) for the corresponding reconstructions. The difference in β for a given patient between the projection ROIs and the reconstructed ROIs averaged across the 55 cases was 0.194, which was statistically significant (p<0.001). The 95% CI for the difference between the mean value of β for the projections and reconstructions was [0.170, 0.218]. The results are consistent with the observation that the amount of breast structure in the tomosynthesis slice is reduced compared to projection mammography and that this may lead to improved lesion detectability.

  5. Appraisal Distortions and Intimate Partner Violence: Gender, Power, and Interaction

    Science.gov (United States)

    Whiting, Jason B.; Oka, Megan; Fife, Stephen T.

    2012-01-01

    In relationships characterized by control, abuse, or violence, many appraisal distortions occur including denial and minimization. However, the nature of the distortion varies depending on the individual's role in the relationship (i.e., abuser or victim). Reducing these distortions is an important component in treatment success and involves…

  6. Evidence of two-channel distortion effects in positronium formation reactions

    International Nuclear Information System (INIS)

    Macri, P A; Miraglia, J E; Hanssen, J; Fojon, O A; Rivarola, R D

    2004-01-01

    The formation of ground-state positronium in collisions of positrons on hydrogen-like atoms is considered. In previous theoretical works, two-centre distorted wavefunctions were employed to approximate either the initial or the final channel. Here we report results obtained by means of the eikonal final state continuum distorted wave approximation for which asymptotically correct distorted wavefunctions are used for both the initial and final states of the scattering system. Comparison of the present theoretical total cross sections with experimental data reveals that distortion effects become important in both channels as the impact energy decreases. This work also shows that distorted-wave theories may be extended from their usual domain of high impact energies to lower ones. (letter to the editor)

  7. Evidence of two-channel distortion effects in positronium formation reactions

    Energy Technology Data Exchange (ETDEWEB)

    Macri, P A [Instituto de AstronomIa y FIsica del Espacio, Consejo Nacional de Investigaciones CientIficas y Tecnicas-Universidad de Buenos Aires, Casilla de Correo 67, Suc. 28, 1428 Buenos Aires (Argentina); Miraglia, J E [Instituto de AstronomIa y FIsica del Espacio, Consejo Nacional de Investigaciones CientIficas y Tecnicas-Universidad de Buenos Aires, Casilla de Correo 67, Suc. 28, 1428 Buenos Aires (Argentina); Hanssen, J [Laboratoire de Physique Moleculaire et des Collisions, Institute de Physique Rue Arago, Tecnopole 2000, Metz (France); Fojon, O A [Instituto de FIsica de Rosario, Consejo Nacional de Investigaciones CientIficas y Tecnicas-Universidad Nacional de Rosario, Av. Pellegrini 250, 2000 Rosario (Argentina); Rivarola, R D [Instituto de FIsica de Rosario, Consejo Nacional de Investigaciones CientIficas y Tecnicas-Universidad Nacional de Rosario, Av. Pellegrini 250, 2000 Rosario (Argentina)

    2004-03-28

    The formation of ground-state positronium in collisions of positrons on hydrogen-like atoms is considered. In previous theoretical works, two-centre distorted wavefunctions were employed to approximate either the initial or the final channel. Here we report results obtained by means of the eikonal final state continuum distorted wave approximation for which asymptotically correct distorted wavefunctions are used for both the initial and final states of the scattering system. Comparison of the present theoretical total cross sections with experimental data reveals that distortion effects become important in both channels as the impact energy decreases. This work also shows that distorted-wave theories may be extended from their usual domain of high impact energies to lower ones. (letter to the editor)

  8. A new universal colour image fidelity metric

    NARCIS (Netherlands)

    Toet, A.; Lucassen, M.P.

    2003-01-01

    We extend a recently introduced universal grayscale image quality index to a newly developed perceptually decorrelated colour space. The resulting colour image fidelity metric quantifies the distortion of a processed colour image relative to its original version. We evaluated the new colour image

  9. From whole-body counting to imaging: The computer aided collimation gamma camera project (CACAO)

    Energy Technology Data Exchange (ETDEWEB)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Ballongue, P

    2000-07-01

    Whole-body counting is the method of choice for in vivo detection of contamination. To extend this well established method, the possible advantages of imaging radiocontaminants are examined. The use of the CACAO project is then studied. A comparison of simulated reconstructed images obtained by the CACAO project and by a conventional gamma camera used in nuclear medicine follows. Imaging a radionuclide contaminant with a geometrical sensitivity of 10{sup -2} seems possible in the near future. (author)

  10. From whole-body counting to imaging: The computer aided collimation gamma camera project (CACAO)

    International Nuclear Information System (INIS)

    Jeanguillaume, C.; Begot, S.; Quartuccio, M.; Douiri, A.; Ballongue, P.

    2000-01-01

    Whole-body counting is the method of choice for in vivo detection of contamination. To extend this well established method, the possible advantages of imaging radiocontaminants are examined. The use of the CACAO project is then studied. A comparison of simulated reconstructed images obtained by the CACAO project and by a conventional gamma camera used in nuclear medicine follows. Imaging a radionuclide contaminant with a geometrical sensitivity of 10 -2 seems possible in the near future. (author)

  11. Testing inflation and curvaton scenarios with CMB distortions

    International Nuclear Information System (INIS)

    Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi

    2014-01-01

    Prior to recombination, Silk damping causes the dissipation of energy from acoustic waves into the monopole of the Cosmic Microwave Background (CMB), resulting in spectral distortions. These can be used to probe the primordial scalar power spectrum on smaller scales than it is possible with CMB anisotropies. An enhancement of power on these scales is nevertheless required for the resulting distortions to be detectable by future experiments like PIXIE. In this paper, we examine all 49 single-field inflation models listed by Martin et al. in the Encyclopaedia Inflationaris [1] and find that only one of these may lead to a detectable level of distortions in a tuned region of its parameter space, namely the original hybrid model. Three effective multi-field scenarios are also studied: with softly and suddenly turning trajectories, and with a mild waterfall trajectory. Softly turning trajectories do not induce distortions at any detectable level, whereas a sudden turn in the field space or a mild waterfall trajectory predicts a peak (plus damped oscillations in the sudden turn case) in the scalar power spectrum, which can lead to an observable amount of CMB distortions. Finally, another scenario leading to potentially detectable distortions involves a curvaton whose blue spectrum is subdominant on CMB angular scales and overtakes the inflaton spectrum on smaller scales. In this case however, we show that the bounds from ultra compact minihaloes are not satisfied. Expectations for an ultimate PRISM-class experiment characterized by an improvement in sensitivity by a factor of ten are discussed for some models

  12. Testing inflation and curvaton scenarios with CMB distortions

    Science.gov (United States)

    Clesse, Sébastien; Garbrecht, Björn; Zhu, Yi

    2014-10-01

    Prior to recombination, Silk damping causes the dissipation of energy from acoustic waves into the monopole of the Cosmic Microwave Background (CMB), resulting in spectral distortions. These can be used to probe the primordial scalar power spectrum on smaller scales than it is possible with CMB anisotropies. An enhancement of power on these scales is nevertheless required for the resulting distortions to be detectable by future experiments like PIXIE. In this paper, we examine all 49 single-field inflation models listed by Martin et al. in the Encyclopaedia Inflationaris [1] and find that only one of these may lead to a detectable level of distortions in a tuned region of its parameter space, namely the original hybrid model. Three effective multi-field scenarios are also studied: with softly and suddenly turning trajectories, and with a mild waterfall trajectory. Softly turning trajectories do not induce distortions at any detectable level, whereas a sudden turn in the field space or a mild waterfall trajectory predicts a peak (plus damped oscillations in the sudden turn case) in the scalar power spectrum, which can lead to an observable amount of CMB distortions. Finally, another scenario leading to potentially detectable distortions involves a curvaton whose blue spectrum is subdominant on CMB angular scales and overtakes the inflaton spectrum on smaller scales. In this case however, we show that the bounds from ultra compact minihaloes are not satisfied. Expectations for an ultimate PRISM-class experiment characterized by an improvement in sensitivity by a factor of ten are discussed for some models.

  13. Quantitative estimation of brain atrophy and function with PET and MRI two-dimensional projection images

    International Nuclear Information System (INIS)

    Saito, Reiko; Uemura, Koji; Uchiyama, Akihiko; Toyama, Hinako; Ishii, Kenji; Senda, Michio

    2001-01-01

    The purpose of this paper is to estimate the extent of atrophy and the decline in brain function objectively and quantitatively. Two-dimensional (2D) projection images of three-dimensional (3D) transaxial images of positron emission tomography (PET) and magnetic resonance imaging (MRI) were made by means of the Mollweide method which keeps the area of the brain surface. A correlation image was generated between 2D projection images of MRI and cerebral blood flow (CBF) or 18 F-fluorodeoxyglucose (FDG) PET images and the sulcus was extracted from the correlation image clustered by K-means method. Furthermore, the extent of atrophy was evaluated from the extracted sulcus on 2D-projection MRI and the cerebral cortical function such as blood flow or glucose metabolic rate was assessed in the cortex excluding sulcus on 2D-projection PET image, and then the relationship between the cerebral atrophy and function was evaluated. This method was applied to the two groups, the young and the aged normal subjects, and the relationship between the age and the rate of atrophy or the cerebral blood flow was investigated. This method was also applied to FDG-PET and MRI studies in the normal controls and in patients with corticobasal degeneration. The mean rate of atrophy in the aged group was found to be higher than that in the young. The mean value and the variance of the cerebral blood flow for the young are greater than those of the aged. The sulci were similarly extracted using either CBF or FDG PET images. The purposed method using 2-D projection images of MRI and PET is clinically useful for quantitative assessment of atrophic change and functional disorder of cerebral cortex. (author)

  14. Signal restoration for NMR imaging using time-dependent gradients

    International Nuclear Information System (INIS)

    Frahm, J.; Haenicke, W.

    1984-01-01

    NMR imaging experiments that employ linear but time-dependent gradients for encoding spatial information in the time-domain signals result in distorted images when treated with conventional image reconstruction techniques. It is shown here that the phase and amplitude distortions can be entirely removed if the timeshape of the gradient is known. The method proposed is of great theoretical and experimental simplicity. It consists of a retransformation of the measured time-domain signal and corresponds to synchronisation of the signal sampling with the time-development of the gradient field strength. The procedure complements other treatments of periodically oscillating gradients in NMR imaging. (author)

  15. Effect of Jahn-Teller distortion on the short range magnetic order in copper ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Abdellatif, M.H., E-mail: Mohamed.abdellatif@iit.it [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Innocenti, Claudia [INSTM—Department of Chemistry, University of Florence, via della Lastruccia 3, I-50019 Sesto Fiorentino, FI (Italy); Liakos, Ioannis [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Scarpellini, Alice; Marras, Sergio [Nanochemistry Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Salerno, Marco [Nanostrctures Department, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy)

    2017-02-15

    Copper ferrite of spinel crystal structure was synthesized in the form of nano-particles using citrate-gel auto-combustion method. The sample morphology and composition were identified using scanning electron microscopy, X-ray diffraction, and X-ray spectroscopy. The latter technique reveals an inverse spinel structure with Jahn-Teller tetragonal distortion. The static magnetization was measured using vibrating sample magnetometer. Magnetic force microscopy was used in combination with the magnetization data to demonstrate the finite size effect of the magnetic spins and their casting behavior due to the introduction of copper ions in the tetrahedral magnetic sub-lattices, which results in tetragonal distorting the spinel structure of the copper ferrite. The magnetic properties of materials are a result of the collective behavior of the magnetic spins, and magnetic force microscopy can probe the collective behavior of the magnetic spins in copper ferrite, yet providing a sufficient resolution to map the effects below the micrometer size scale, such as the magnetic spin canting. A theoretical study was done to clarify the finite size effect of Jahn-Teller distortion on the magnetic properties of the material. When the particles are in the nano-scale, below the single domain size, their magnetic properties are very sensitive to their size change. - Highlights: • The spin canting due to Jahn-Teller distortion in Copper ferrite can be detected using magnetic force microscope. • The contrast in the magnetic AFM image can be analyzed to give information not only about the surface spins but also about the canting of the core spins inside the aggregated cluster of magnetic nanoparticle.

  16. Cone beam computed tomography: A boon for maxillofacial imaging

    Directory of Open Access Journals (Sweden)

    Sreenivas Rao Ghali

    2017-01-01

    Full Text Available In day to day practice, the radiographic techniques used individually or in combination suffer from some inherent limits of all planar two-dimensional (2D projections such as magnification, distortion, superimposition, and misrepresentation of anatomic structures. The introduction of cone-beam computed tomography (CBCT, specifically dedicated to imaging the maxillofacial region, heralds a major shift from 2D to three-dimensional (3D approach. It provides a complete 3D view of the maxilla, mandible, teeth, and supporting structures with relatively high resolution allowing a more accurate diagnosis, treatment planning and monitoring, and analysis of outcomes than conventional 2D images, along with low radiation exposure to the patient. CBCT has opened up new vistas for the use of 3D imaging as a diagnostic and treatment planning tool in dentistry. This paper provides an overview of the imaging principles, underlying technology, dental applications, and in particular focuses on the emerging role of CBCT in dentistry.

  17. Parallax handling of image stitching using dominant-plane homography

    Science.gov (United States)

    Pang, Zhaofeng; Li, Cheng; Zhao, Baojun; Tang, Linbo

    2015-10-01

    In this paper, we present a novel image stitching method to handle parallax in practical application. For images with significant amount of parallax, the more effective approach is to align roughly and globally the overlapping regions and then apply a seam-cutting method to composite naturally stitched images. It is well known that images can be modeled by various planes result from the projective parallax under non-ideal imaging condition. The dominant-plane homography has important advantages of warping an image globally and avoiding some local distortions. The proposed method primarily addresses large parallax problem through two steps: (1) selecting matching point pairs located on the dominant plane, by clustering matching correspondences and then measuring the cost of each cluster; and (2) in order to obtain a plausible seam, edge maps of overlapped area incorporation arithmetic is adopted to modify the standard seam-cutting method. Furthermore, our approach is demonstrated to achieve reliable performance of handling parallax through a mass of experimental comparisons with state-of-the-art methods.

  18. Distortion-Based Link Adaptation for Wireless Video Transmission

    Directory of Open Access Journals (Sweden)

    Andrew Nix

    2008-06-01

    Full Text Available Wireless local area networks (WLANs such as IEEE 802.11a/g utilise numerous transmission modes, each providing different throughputs and reliability levels. Most link adaptation algorithms proposed in the literature (i maximise the error-free data throughput, (ii do not take into account the content of the data stream, and (iii rely strongly on the use of ARQ. Low-latency applications, such as real-time video transmission, do not permit large numbers of retransmission. In this paper, a novel link adaptation scheme is presented that improves the quality of service (QoS for video transmission. Rather than maximising the error-free throughput, our scheme minimises the video distortion of the received sequence. With the use of simple and local rate distortion measures and end-to-end distortion models at the video encoder, the proposed scheme estimates the received video distortion at the current transmission rate, as well as on the adjacent lower and higher rates. This allows the system to select the link-speed which offers the lowest distortion and to adapt to the channel conditions. Simulation results are presented using the MPEG-4/AVC H.264 video compression standard over IEEE 802.11g. The results show that the proposed system closely follows the optimum theoretic solution.

  19. The media's impact on body image: Implications for prevention and treatment

    OpenAIRE

    Shaw, J.; Waller, G.

    1995-01-01

    Recent research has demonstrated that media images of “ideal” female models have an impact upon women's body image, leading to dissatisfaction and perceptual distortion. The evidence for this link between media presentation and body image distortion is reviewed, and theoretical models are advanced to explain the link. In particular, women's use of social comparison in establishing their self-concept seems to be an important psychological construct in understanding the impact of the media upon...

  20. Structures and properties of spatially distorted porphyrins

    International Nuclear Information System (INIS)

    Golubchikov, Oleg A; Kuvshinova, Elizaveta M; Pukhovskaya, Svetlana G

    2005-01-01

    The published data on the structures and properties of porphyrins with distorted aromatic macrocycles are generalised and analysed. Data on the crystal structures, spectra and kinetics of formation and dissociation of their coordination derivatives are summarised. It is demonstrated that the distortion of the planar structure of the tetrapyrrole core is one of the most efficient means of controlling spectral, physicochemical and coordination properties of these compounds.

  1. Oxygen octahedra picker: A software tool to extract quantitative information from STEM images

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yi, E-mail: y.wang@fkf.mpg.de; Salzberger, Ute; Sigle, Wilfried; Eren Suyolcu, Y.; Aken, Peter A. van

    2016-09-15

    In perovskite oxide based materials and hetero-structures there are often strong correlations between oxygen octahedral distortions and functionality. Thus, atomistic understanding of the octahedral distortion, which requires accurate measurements of atomic column positions, will greatly help to engineer their properties. Here, we report the development of a software tool to extract quantitative information of the lattice and of BO{sub 6} octahedral distortions from STEM images. Center-of-mass and 2D Gaussian fitting methods are implemented to locate positions of individual atom columns. The precision of atomic column distance measurements is evaluated on both simulated and experimental images. The application of the software tool is demonstrated using practical examples. - Highlights: • We report a software tool for mapping atomic positions from HAADF and ABF images. • It enables quantification of both crystal lattice and oxygen octahedral distortions. • We test the measurement accuracy and precision on simulated and experimental images. • It works well for different orientations of perovskite structures and interfaces.

  2. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... based on clinical judgment. This is because traction devices and many types of life support equipment may distort the MR images and as a result, must be kept away from the area to be imaged. Furthermore, the examination takes longer than other imaging modalities (typically x-ray ...

  3. Three-dimensional tomosynthetic image restoration for brachytherapy source localization

    International Nuclear Information System (INIS)

    Persons, Timothy M.

    2001-01-01

    Tomosynthetic image reconstruction allows for the production of a virtually infinite number of slices from a finite number of projection views of a subject. If the reconstructed image volume is viewed in toto, and the three-dimensional (3D) impulse response is accurately known, then it is possible to solve the inverse problem (deconvolution) using canonical image restoration methods (such as Wiener filtering or solution by conjugate gradient least squares iteration) by extension to three dimensions in either the spatial or the frequency domains. This dissertation presents modified direct and iterative restoration methods for solving the inverse tomosynthetic imaging problem in 3D. The significant blur artifact that is common to tomosynthetic reconstructions is deconvolved by solving for the entire 3D image at once. The 3D impulse response is computed analytically using a fiducial reference schema as realized in a robust, self-calibrating solution to generalized tomosynthesis. 3D modulation transfer function analysis is used to characterize the tomosynthetic resolution of the 3D reconstructions. The relevant clinical application of these methods is 3D imaging for brachytherapy source localization. Conventional localization schemes for brachytherapy implants using orthogonal or stereoscopic projection radiographs suffer from scaling distortions and poor visibility of implanted seeds, resulting in compromised source tracking (reported errors: 2-4 mm) and dosimetric inaccuracy. 3D image reconstruction (using a well-chosen projection sampling scheme) and restoration of a prostate brachytherapy phantom is used for testing. The approaches presented in this work localize source centroids with submillimeter error in two Cartesian dimensions and just over one millimeter error in the third

  4. Expertise and processing distorted structure in chess.

    Science.gov (United States)

    Bartlett, James C; Boggan, Amy L; Krawczyk, Daniel C

    2013-01-01

    A classic finding in research on human expertise and knowledge is that of enhanced memory for stimuli in a domain of expertise as compared to either stimuli outside that domain, or within-domain stimuli that have been degraded or distorted in some way. However, we do not understand how experts process degradation or distortion of stimuli within the expert domain (e.g., a face with the eyes, nose, and mouth in the wrong positions, or a chessboard with pieces placed randomly). Focusing on the domain of chess, we present new fMRI evidence that when experts view such distorted/within-domain stimuli, they engage an active search for structure-a kind of exploratory chunking-that involves a component of a prefrontal-parietal network linked to consciousness, attention and working memory.

  5. Fourier transform based scalable image quality measure.

    Science.gov (United States)

    Narwaria, Manish; Lin, Weisi; McLoughlin, Ian; Emmanuel, Sabu; Chia, Liang-Tien

    2012-08-01

    We present a new image quality assessment (IQA) algorithm based on the phase and magnitude of the 2D (twodimensional) Discrete Fourier Transform (DFT). The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the Human Visual Systems (HVSs) sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of nonuniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Lastly, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is therefore further scalable for RR scenarios. We report extensive experimental results using a total of 9 publicly available databases: 7 image (with a total of 3832 distorted images with diverse distortions) and 2 video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing fullreference (FR) algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at http://www.ntu.edu.sg/home/wslin/reduced_phase.rar.

  6. Could unstable relic particles distort the microwave background radiation?

    International Nuclear Information System (INIS)

    Dar, A.; Loeb, A.; Nussinov, S.

    1989-01-01

    Three general classes of possible scenarios for the recently reported distortion of the microwave background radiation (MBR) via decaying relic weakly interacting particles are analyzed. The analysis shows that such particles could not reheat the universe and cause the spectral distortion of the MBR. Gravitational processes such as the early formation of massive black holes may still be plausible energy sources for producing the reported spectral distortion of the MBR at an early cosmological epoch. 24 references

  7. Anisotropic extinction distortion of the galaxy correlation function

    International Nuclear Information System (INIS)

    Fang Wenjuan; Hui Lam; Menard, Brice; May, Morgan; Scranton, Ryan

    2011-01-01

    Similar to the magnification of the galaxies' fluxes by gravitational lensing, the extinction of the fluxes by comic dust, whose existence is recently detected by [B. Menard, R. Scranton, M. Fukugita, and G. Richards, Mon. Not. R. Astron. Soc. 405, 1025 (2010).], also modifies the distribution of a flux-selected galaxy sample. We study the anisotropic distortion by dust extinction to the 3D galaxy correlation function, including magnification bias and redshift distortion at the same time. We find the extinction distortion is most significant along the line of sight and at large separations, similar to that by magnification bias. The correction from dust extinction is negative except at sufficiently large transverse separations, which is almost always opposite to that from magnification bias (we consider a number count slope s>0.4). Hence, the distortions from these two effects tend to reduce each other. At low z (< or approx. 1), the distortion by extinction is stronger than that by magnification bias, but at high z, the reverse holds. We also study how dust extinction affects probes in real space of the baryon acoustic oscillations (BAO) and the linear redshift distortion parameter β. We find its effect on BAO is negligible. However, it introduces a positive scale-dependent correction to β that can be as large as a few percent. At the same time, we also find a negative scale-dependent correction from magnification bias, which is up to percent level at low z, but to ∼40% at high z. These corrections are non-negligible for precision cosmology, and should be considered when testing General Relativity through the scale-dependence of β.

  8. Carrier Distortion in Hysteretic Self-Oscillating Class-D Audio Power

    DEFF Research Database (Denmark)

    Høyerby, Mikkel Christian Kofod; Andersen, Michael A. E.

    2009-01-01

    An important distortion mechanism in hysteretic self-oscillating (SO) class-D (switch mode) power amplifiers-–carrier distortion-–is analyzed and an optimization method is proposed. This mechanism is an issue in any power amplifier application where a high degree of proportionality between input...... and output is required, such as in audio power amplifiers or xDSL drivers. From an average-mode point of view, carrier distortion is shown to be caused by nonlinear variation of the hysteretic comparator input average voltage with the output average voltage. This easily causes total harmonic distortion...... figures in excess of 0.1–0.2%, inadequate for high-quality audio applications. Carrier distortion is shown to be minimized when the feedback system is designed to provide a triangular carrier (sliding) signal at the input of a hysteretic comparator. The proposed optimization method is experimentally...

  9. The design of visible system for improving the measurement accuracy of imaging points

    Science.gov (United States)

    Shan, Qiu-sha; Li, Gang; Zeng, Luan; Liu, Kai; Yan, Pei-pei; Duan, Jing; Jiang, Kai

    2018-02-01

    It has a widely applications in robot vision and 3D measurement for binocular stereoscopic measurement technology. And the measure precision is an very important factor, especially in 3D coordination measurement, high measurement accuracy is more stringent to the distortion of the optical system. In order to improving the measurement accuracy of imaging points, to reducing the distortion of the imaging points, the optical system must be satisfied the requirement of extra low distortion value less than 0.1#65285;, a transmission visible optical lens was design, which has characteristic of telecentric beam path in image space, adopted the imaging model of binocular stereo vision, and imaged the drone at the finity distance. The optical system was adopted complex double Gauss structure, and put the pupil stop on the focal plane of the latter groups, maked the system exit pupil on the infinity distance, and realized telecentric beam path in image space. The system mainly optical parameter as follows: the system spectrum rangement is visible light wave band, the optical effective length is f '=30mm, the relative aperture is 1/3, and the fields of view is 21°. The final design results show that the RMS value of the spread spots of the optical lens in the maximum fields of view is 2.3μm, which is less than one pixel(3.45μm) the distortion value is less than 0.1%, the system has the advantage of extra low distortion value and avoids the latter image distortion correction; the proposed modulation transfer function of the optical lens is 0.58(@145 lp/mm), the imaging quality of the system is closed to the diffraction limited; the system has simply structure, and can satisfies the requirements of the optical indexes. Ultimately, based on the imaging model of binocular stereo vision was achieved to measuring the drone at the finity distance.

  10. ROI-based DICOM image compression for telemedicine

    Indian Academy of Sciences (India)

    ground and reconstruct the image portions losslessly. The compressed image can ... If the image is compressed by 8:1 compression without any perceptual distortion, the ... Figure 2. Cross-sectional view of medical image (statistical representation). ... The Integer Wavelet Transform (IWT) is used to have lossless processing.

  11. University of California, San Diego (UCSD) Sky Imager Cloud Position Study Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Kleissl, J. [Univ. of California, San Diego, CA (United States); Urquhart, B. [Univ. of California, San Diego, CA (United States); Ghonima, M. [Univ. of California, San Diego, CA (United States); Dahlin, E. [Univ. of California, San Diego, CA (United States); Nguyen, A. [Univ. of California, San Diego, CA (United States); Kurtz, B. [Univ. of California, San Diego, CA (United States); Chow, C. W. [Univ. of California, San Diego, CA (United States); Mejia, F. A. [Univ. of California, San Diego, CA (United States)

    2016-04-01

    During the University of California, San Diego (UCSD) Sky Imager Cloud Position Study, two University of California, San Diego Sky Imagers (USI) (Figure 1) were deployed the U.S. Department of Energy(DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Southern Great Plains SGP) research facility. The UCSD Sky Imagers were placed 1.7 km apart to allow for stereographic determination of the cloud height for clouds over approximately 1.5 km. Images with a 180-degree field of view were captured from both systems during daylight hours every 30 seconds beginning on March 11, 2013 and ending on November 4, 2013. The spatial resolution of the images was 1,748 × 1,748, and the intensity resolution was 16 bits using a high-dynamic-range capture process. The cameras use a fisheye lens, so the images are distorted following an equisolid angle projection.

  12. Improvement of vector compensation method for vehicle magnetic distortion field

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Hongfeng, E-mail: panghongfeng@126.com; Zhang, Qi; Li, Ji; Luo, Shitu; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2014-03-15

    Magnetic distortions such as eddy-current field and low frequency magnetic field have not been considered in vector compensation methods. A new compensation method is proposed to suppress these magnetic distortions and improve compensation performance, in which the magnetic distortions related to measurement vectors and time are considered. The experimental system mainly consists of a three-axis fluxgate magnetometer (DM-050), an underwater vehicle and a proton magnetometer, in which the scalar value of magnetic field is obtained with the proton magnetometer and considered to be the true value. Comparing with traditional compensation methods, experimental results show that the magnetic distortions can be further reduced by two times. After compensation, error intensity and RMS error are reduced from 11684.013 nT and 7794.604 nT to 16.219 nT and 5.907 nT respectively. It suggests an effective way to improve the compensation performance of magnetic distortions. - Highlights: • A new vector compensation method is proposed for vehicle magnetic distortion. • The proposed model not only includes magnetometer error but also considers magnetic distortion. • Compensation parameters are computed directly by solving nonlinear equations. • Compared with traditional methods, the proposed method is not related with rotation angle rate. • Error intensity and RMS error can be reduced to 1/2 of the error with traditional methods.

  13. Improvement of vector compensation method for vehicle magnetic distortion field

    International Nuclear Information System (INIS)

    Pang, Hongfeng; Zhang, Qi; Li, Ji; Luo, Shitu; Chen, Dixiang; Pan, Mengchun; Luo, Feilu

    2014-01-01

    Magnetic distortions such as eddy-current field and low frequency magnetic field have not been considered in vector compensation methods. A new compensation method is proposed to suppress these magnetic distortions and improve compensation performance, in which the magnetic distortions related to measurement vectors and time are considered. The experimental system mainly consists of a three-axis fluxgate magnetometer (DM-050), an underwater vehicle and a proton magnetometer, in which the scalar value of magnetic field is obtained with the proton magnetometer and considered to be the true value. Comparing with traditional compensation methods, experimental results show that the magnetic distortions can be further reduced by two times. After compensation, error intensity and RMS error are reduced from 11684.013 nT and 7794.604 nT to 16.219 nT and 5.907 nT respectively. It suggests an effective way to improve the compensation performance of magnetic distortions. - Highlights: • A new vector compensation method is proposed for vehicle magnetic distortion. • The proposed model not only includes magnetometer error but also considers magnetic distortion. • Compensation parameters are computed directly by solving nonlinear equations. • Compared with traditional methods, the proposed method is not related with rotation angle rate. • Error intensity and RMS error can be reduced to 1/2 of the error with traditional methods

  14. Market distortions and aggregate productivity: Evidence from Chinese energy enterprises

    International Nuclear Information System (INIS)

    Dai, Xiaoyong; Cheng, Liwei

    2016-01-01

    Market distortions can generate resource misallocations across heterogeneous firms and reduce aggregate productivity. This paper measures market distortions and aggregate productivity growth in China's energy sector. We use the wedge between output elasticities and factor shares in revenues to recover a measure of firm-level market distortions. Using data on a large sample of Chinese energy enterprises from 1999 to 2007, our estimations provide strong evidence of the existence of both factor and product market distortions within and across China's various energy industries. The productivity aggregation and decomposition results demonstrate that the estimated aggregate productivity growth (APG) is, on average, 2.595% points per year, of which technological change, resource reallocation, and firm entries and exits account for 1.981, 0.068, and 0.546% points, respectively. The weak contributions of resource reallocation and firm turnover to APG are also found in energy sub-industries, except in the coal industry. Our research suggests that China's energy sector has major potential for productivity gains from resource reallocation through the reduction of market distortions. - Highlights: •We estimate market distortions and productivity growth of China's energy sector. •We use a large sample of Chinese energy enterprises. •There are evidences of the existence of factor and product market distortions. •Aggregate productivity growth is largely driven by firm-level technological change. •China's energy sector can realize productivity gains from resource reallocations.

  15. The harmonic distortion evolution of current in computers; A evolucao da distorcao harmonica de corrente em computadores

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, Math; Larsson, Anders; Lundmark, Martin [Universidade de Tecnologia de Lulea (LTU) (Sweden); Wahlberg, Mats; Roennberg, Sarah [Skelleftea Kraft (Sweden)

    2010-05-15

    This project made feeding measurements of large group of computers during games between 2002 and 2008, including the magnitude of current in each phase and in the neutral conductor, the energy consumption and the harmonic spectrum. The presented results show that the harmonic distortion has been diminishing significantly, while the energy consumption by computer do not register important increase.

  16. Assessing body image in anorexia nervosa using biometric self-avatars in virtual reality: Attitudinal components rather than visual body size estimation are distorted.

    Science.gov (United States)

    Mölbert, S C; Thaler, A; Mohler, B J; Streuber, S; Romero, J; Black, M J; Zipfel, S; Karnath, H-O; Giel, K E

    2018-03-01

    Body image disturbance (BID) is a core symptom of anorexia nervosa (AN), but as yet distinctive features of BID are unknown. The present study aimed at disentangling perceptual and attitudinal components of BID in AN. We investigated n = 24 women with AN and n = 24 controls. Based on a three-dimensional (3D) body scan, we created realistic virtual 3D bodies (avatars) for each participant that were varied through a range of ±20% of the participants' weights. Avatars were presented in a virtual reality mirror scenario. Using different psychophysical tasks, participants identified and adjusted their actual and their desired body weight. To test for general perceptual biases in estimating body weight, a second experiment investigated perception of weight and shape matched avatars with another identity. Women with AN and controls underestimated their weight, with a trend that women with AN underestimated more. The average desired body of controls had normal weight while the average desired weight of women with AN corresponded to extreme AN (DSM-5). Correlation analyses revealed that desired body weight, but not accuracy of weight estimation, was associated with eating disorder symptoms. In the second experiment, both groups estimated accurately while the most attractive body was similar to Experiment 1. Our results contradict the widespread assumption that patients with AN overestimate their body weight due to visual distortions. Rather, they illustrate that BID might be driven by distorted attitudes with regard to the desired body. Clinical interventions should aim at helping patients with AN to change their desired weight.

  17. Convergence of the Distorted Wave Born series

    International Nuclear Information System (INIS)

    MacMillan, D.S.

    1981-01-01

    The aim of this thesis is to begin to understand the idea of reaction mechanisms in nonrelativistic scattering systems. If we have a complete reaction theory of a particular scattering system, then we claim that the theory itself must contain information about important reaction mechanisms in the system. This information can be used to decide what reaction mechanisms should be included in an approximate calculation. To investigate this claim, we studied several solvable models. The primary concept employed in studying our models is the convergence of the multistep series generated by iterating the corresponding scattering integral equation. We known that the eigenvalues of the kernel of the Lippmann-Schwinger equation for potential scattering determine the rate of convergence of the Born series. The Born series will converge only if these eigenvalues all life within the unit circle. We extend these results to a study of the distorted wave Born series for inelastic scattering. The convergence criterion tells us when approximations are valid. We learn how the convergence of the distorted wave series depends upon energy, coupling constants, angular momentum, and angular momentum transfer. In one of our models, we look at several possible distorting potentials to see which one gives the best convergence. We have also applied our results to several actual DWBA or coupled channel calculations in the literature. In addition to the study of models of two-body scattering systems, we have considered the case of rearrangement scattering. We have discussed the formulation of (N greater than or equal to 3)-body distorted wave equations in which the interior dynamics have been redistributed by introducing compact N-body distortion potentials

  18. Helical Peierls distortion: Formation of helices of polyketone and polyisocyanide

    Science.gov (United States)

    Cui, Chang-Xing; Kertesz, Miklos

    1990-06-01

    A new type of Peierls-like distortion, the formation of a helix due to the existence of partially filled crossing bands, is reported for polyketone and polyisocyanide. The torsional potential curves, optimized geometries, band structures and phonon dispersion curves are derived. A comparison with the well-known Peierls-distorted all-trans polyacetylene indicates close similarity between the two types of Peierls distortions.

  19. Band co-registration modeling of LAPAN-A3/IPB multispectral imager based on satellite attitude

    Science.gov (United States)

    Hakim, P. R.; Syafrudin, A. H.; Utama, S.; Jayani, A. P. S.

    2018-05-01

    One of significant geometric distortion on images of LAPAN-A3/IPB multispectral imager is co-registration error between each color channel detector. Band co-registration distortion usually can be corrected by using several approaches, which are manual method, image matching algorithm, or sensor modeling and calibration approach. This paper develops another approach to minimize band co-registration distortion on LAPAN-A3/IPB multispectral image by using supervised modeling of image matching with respect to satellite attitude. Modeling results show that band co-registration error in across-track axis is strongly influenced by yaw angle, while error in along-track axis is fairly influenced by both pitch and roll angle. Accuracy of the models obtained is pretty good, which lies between 1-3 pixels error for each axis of each pair of band co-registration. This mean that the model can be used to correct the distorted images without the need of slower image matching algorithm, nor the laborious effort needed in manual approach and sensor calibration. Since the calculation can be executed in order of seconds, this approach can be used in real time quick-look image processing in ground station or even in satellite on-board image processing.

  20. No-reference image quality assessment based on statistics of convolution feature maps

    Science.gov (United States)

    Lv, Xiaoxin; Qin, Min; Chen, Xiaohui; Wei, Guo

    2018-04-01

    We propose a Convolutional Feature Maps (CFM) driven approach to accurately predict image quality. Our motivation bases on the finding that the Nature Scene Statistic (NSS) features on convolution feature maps are significantly sensitive to distortion degree of an image. In our method, a Convolutional Neural Network (CNN) is trained to obtain kernels for generating CFM. We design a forward NSS layer which performs on CFM to better extract NSS features. The quality aware features derived from the output of NSS layer is effective to describe the distortion type and degree an image suffered. Finally, a Support Vector Regression (SVR) is employed in our No-Reference Image Quality Assessment (NR-IQA) model to predict a subjective quality score of a distorted image. Experiments conducted on two public databases demonstrate the promising performance of the proposed method is competitive to state of the art NR-IQA methods.

  1. Two-dimensional maximum entropy image restoration

    International Nuclear Information System (INIS)

    Brolley, J.E.; Lazarus, R.B.; Suydam, B.R.; Trussell, H.J.

    1977-07-01

    An optical check problem was constructed to test P LOG P maximum entropy restoration of an extremely distorted image. Useful recovery of the original image was obtained. Comparison with maximum a posteriori restoration is made. 7 figures

  2. Shape distortion and dimensional precision in tungsten heavy alloy liquid phase sintering

    International Nuclear Information System (INIS)

    Wuwen Yi; German, R.M.; Lu, P.K.

    2001-01-01

    Microstructure effects on densification and shape distortion in liquid phase sintering of tungsten heavy alloy were investigated. Microstructure parameters such as the solid volume fraction, dihedral angle, initial porosity, and pore size were varied to measure densification and distortion behavior during LPS using W-Ni-Cu alloys. Green compacts were formed using ethylene-bis-stearamide as a pore-forming agent with the amount of polymer controlling the initial porosity. Different initial pore sizes were generated by varying the polymer particle size. Dihedral angle was varied by changing the Ni:Cu ratio in the alloys. Finally, the solid volume fraction was adjusted via the tungsten content. Distortion was quantified using profiles determined with a coordinate measuring machine to calculate a distortion parameter. Sintering results showed that solid volume fraction and dihedral angle are the dominant factors on densification and distortion during liquid phase sintering. Distortion decreases with increasing solid volume fraction and dihedral angle, while initial porosity and pore size have no observable effect on distortion at nearly full densification. Various strategies emerge to improve distortion control in liquid phase sintering. (author)

  3. Distorted representation in visual tourism research

    DEFF Research Database (Denmark)

    Jensen, Martin Trandberg

    2016-01-01

    how photographic materialities, performativities and sensations contribute to new tourism knowledges. While highlighting the potential of distorted representation, the paper posits a cautionary note in regards to the influential role of academic journals in determining the qualities of visual data....... The paper exemplifies distorted representation through three impressionistic tales derived from ethnographic research on the European rail travel phenomenon: interrail.......Tourism research has recently been informed by non-representational theories to highlight the socio-material, embodied and heterogeneous composition of tourist experiences. These advances have contributed to further reflexivity and called for novel ways to animate representations...

  4. The Dimensionality of Body Image Disturbance.

    Science.gov (United States)

    Galgan, Richard J.; And Others

    1987-01-01

    Examined personality variables in 75 male and 75 female college students. Found two dimensions underlying body image disturbance variables, one loading on body image dissatisfaction and one loading on body image disturbance. Low negative correlation between two factors suggests that distortion and dissatisfaction are fairly distinct and that body…

  5. Learning-Based Just-Noticeable-Quantization- Distortion Modeling for Perceptual Video Coding.

    Science.gov (United States)

    Ki, Sehwan; Bae, Sung-Ho; Kim, Munchurl; Ko, Hyunsuk

    2018-07-01

    Conventional predictive video coding-based approaches are reaching the limit of their potential coding efficiency improvements, because of severely increasing computation complexity. As an alternative approach, perceptual video coding (PVC) has attempted to achieve high coding efficiency by eliminating perceptual redundancy, using just-noticeable-distortion (JND) directed PVC. The previous JNDs were modeled by adding white Gaussian noise or specific signal patterns into the original images, which were not appropriate in finding JND thresholds due to distortion with energy reduction. In this paper, we present a novel discrete cosine transform-based energy-reduced JND model, called ERJND, that is more suitable for JND-based PVC schemes. Then, the proposed ERJND model is extended to two learning-based just-noticeable-quantization-distortion (JNQD) models as preprocessing that can be applied for perceptual video coding. The two JNQD models can automatically adjust JND levels based on given quantization step sizes. One of the two JNQD models, called LR-JNQD, is based on linear regression and determines the model parameter for JNQD based on extracted handcraft features. The other JNQD model is based on a convolution neural network (CNN), called CNN-JNQD. To our best knowledge, our paper is the first approach to automatically adjust JND levels according to quantization step sizes for preprocessing the input to video encoders. In experiments, both the LR-JNQD and CNN-JNQD models were applied to high efficiency video coding (HEVC) and yielded maximum (average) bitrate reductions of 38.51% (10.38%) and 67.88% (24.91%), respectively, with little subjective video quality degradation, compared with the input without preprocessing applied.

  6. Subjective evaluation of compressed image quality

    Science.gov (United States)

    Lee, Heesub; Rowberg, Alan H.; Frank, Mark S.; Choi, Hyung-Sik; Kim, Yongmin

    1992-05-01

    Lossy data compression generates distortion or error on the reconstructed image and the distortion becomes visible as the compression ratio increases. Even at the same compression ratio, the distortion appears differently depending on the compression method used. Because of the nonlinearity of the human visual system and lossy data compression methods, we have evaluated subjectively the quality of medical images compressed with two different methods, an intraframe and interframe coding algorithms. The evaluated raw data were analyzed statistically to measure interrater reliability and reliability of an individual reader. Also, the analysis of variance was used to identify which compression method is better statistically, and from what compression ratio the quality of a compressed image is evaluated as poorer than that of the original. Nine x-ray CT head images from three patients were used as test cases. Six radiologists participated in reading the 99 images (some were duplicates) compressed at four different compression ratios, original, 5:1, 10:1, and 15:1. The six readers agree more than by chance alone and their agreement was statistically significant, but there were large variations among readers as well as within a reader. The displacement estimated interframe coding algorithm is significantly better in quality than that of the 2-D block DCT at significance level 0.05. Also, 10:1 compressed images with the interframe coding algorithm do not show any significant differences from the original at level 0.05.

  7. Operation of static series compensator under distorted utility conditions

    DEFF Research Database (Denmark)

    Awad, H.; Nelsen, H.; Blaabjerg, Frede

    2005-01-01

    in the case of distorted grid voltage. Furthermore, a selective harmonic compensation strategy is applied to filter out the grid harmonics. The operation of the SSC under distorted utility conditions and voltage dips is discussed. The validity of the proposed controller is verified by experiments, carried out...... on a 10-kV SSC laboratory setup. Experimental results have shown the ability of the SSC to mitigate voltage dips and harmonics. It is also shown that the proposed controller has improved the transient performance of the SSC even under distorted utility conditions....

  8. Text extraction method for historical Tibetan document images based on block projections

    Science.gov (United States)

    Duan, Li-juan; Zhang, Xi-qun; Ma, Long-long; Wu, Jian

    2017-11-01

    Text extraction is an important initial step in digitizing the historical documents. In this paper, we present a text extraction method for historical Tibetan document images based on block projections. The task of text extraction is considered as text area detection and location problem. The images are divided equally into blocks and the blocks are filtered by the information of the categories of connected components and corner point density. By analyzing the filtered blocks' projections, the approximate text areas can be located, and the text regions are extracted. Experiments on the dataset of historical Tibetan documents demonstrate the effectiveness of the proposed method.

  9. Projection model for flame chemiluminescence tomography based on lens imaging

    Science.gov (United States)

    Wan, Minggang; Zhuang, Jihui

    2018-04-01

    For flame chemiluminescence tomography (FCT) based on lens imaging, the projection model is essential because it formulates the mathematical relation between the flame projections captured by cameras and the chemiluminescence field, and, through this relation, the field is reconstructed. This work proposed the blurry-spot (BS) model, which takes more universal assumptions and has higher accuracy than the widely applied line-of-sight model. By combining the geometrical camera model and the thin-lens equation, the BS model takes into account perspective effect of the camera lens; by combining ray-tracing technique and Monte Carlo simulation, it also considers inhomogeneous distribution of captured radiance on the image plane. Performance of these two models in FCT was numerically compared, and results showed that using the BS model could lead to better reconstruction quality in wider application ranges.

  10. Distorted Risk Measures with Application to Military Capability Shortfalls

    Science.gov (United States)

    2005-12-15

    effects of different distortions and to make basic recommendations regarding the appropriateness of certain distortion functions and parameters using...and increased limits ratemaking by proportional hazards transforms. Insurance: Mathematics and Economics, 17: 43-54. [9] Wang, S. (1996a). Premium

  11. Measurement of inter and intra fraction organ motion in radiotherapy using cone beam CT projection images

    International Nuclear Information System (INIS)

    Marchant, T E; Amer, A M; Moore, C J

    2008-01-01

    A method is presented for extraction of intra and inter fraction motion of seeds/markers within the patient from cone beam CT (CBCT) projection images. The position of the marker is determined on each projection image and fitted to a function describing the projection of a fixed point onto the imaging panel at different gantry angles. The fitted parameters provide the mean marker position with respect to the isocentre. Differences between the theoretical function and the actual projected marker positions are used to estimate the range of intra fraction motion and the principal motion axis in the transverse plane. The method was validated using CBCT projection images of a static marker at known locations and of a marker moving with known amplitude. The mean difference between actual and measured motion range was less than 1 mm in all directions, although errors of up to 5 mm were observed when large amplitude motion was present in an orthogonal direction. In these cases it was possible to calculate the range of motion magnitudes consistent with the observed marker trajectory. The method was shown to be feasible using clinical CBCT projections of a pancreas cancer patient

  12. Improved iterative image reconstruction algorithm for the exterior problem of computed tomography

    International Nuclear Information System (INIS)

    Guo, Yumeng; Zeng, Li

    2017-01-01

    In industrial applications that are limited by the angle of a fan-beam and the length of a detector, the exterior problem of computed tomography (CT) uses only the projection data that correspond to the external annulus of the objects to reconstruct an image. Because the reconstructions are not affected by the projection data that correspond to the interior of the objects, the exterior problem is widely applied to detect cracks in the outer wall of large-sized objects, such as in-service pipelines. However, image reconstruction in the exterior problem is still a challenging problem due to truncated projection data and beam-hardening, both of which can lead to distortions and artifacts. Thus, developing an effective algorithm and adopting a scanning trajectory suited for the exterior problem may be valuable. In this study, an improved iterative algorithm that combines total variation minimization (TVM) with a region scalable fitting (RSF) model was developed for a unilateral off-centered scanning trajectory and can be utilized to inspect large-sized objects for defects. Experiments involving simulated phantoms and real projection data were conducted to validate the practicality of our algorithm. Furthermore, comparative experiments show that our algorithm outperforms others in suppressing the artifacts caused by truncated projection data and beam-hardening.

  13. Improved iterative image reconstruction algorithm for the exterior problem of computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yumeng [Chongqing University, College of Mathematics and Statistics, Chongqing 401331 (China); Chongqing University, ICT Research Center, Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing 400044 (China); Zeng, Li, E-mail: drlizeng@cqu.edu.cn [Chongqing University, College of Mathematics and Statistics, Chongqing 401331 (China); Chongqing University, ICT Research Center, Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing 400044 (China)

    2017-01-11

    In industrial applications that are limited by the angle of a fan-beam and the length of a detector, the exterior problem of computed tomography (CT) uses only the projection data that correspond to the external annulus of the objects to reconstruct an image. Because the reconstructions are not affected by the projection data that correspond to the interior of the objects, the exterior problem is widely applied to detect cracks in the outer wall of large-sized objects, such as in-service pipelines. However, image reconstruction in the exterior problem is still a challenging problem due to truncated projection data and beam-hardening, both of which can lead to distortions and artifacts. Thus, developing an effective algorithm and adopting a scanning trajectory suited for the exterior problem may be valuable. In this study, an improved iterative algorithm that combines total variation minimization (TVM) with a region scalable fitting (RSF) model was developed for a unilateral off-centered scanning trajectory and can be utilized to inspect large-sized objects for defects. Experiments involving simulated phantoms and real projection data were conducted to validate the practicality of our algorithm. Furthermore, comparative experiments show that our algorithm outperforms others in suppressing the artifacts caused by truncated projection data and beam-hardening.

  14. Audible Aliasing Distortion in Digital Audio Synthesis

    Directory of Open Access Journals (Sweden)

    J. Schimmel

    2012-04-01

    Full Text Available This paper deals with aliasing distortion in digital audio signal synthesis of classic periodic waveforms with infinite Fourier series, for electronic musical instruments. When these waveforms are generated in the digital domain then the aliasing appears due to its unlimited bandwidth. There are several techniques for the synthesis of these signals that have been designed to avoid or reduce the aliasing distortion. However, these techniques have high computing demands. One can say that today's computers have enough computing power to use these methods. However, we have to realize that today’s computer-aided music production requires tens of multi-timbre voices generated simultaneously by software synthesizers and the most of the computing power must be reserved for hard-disc recording subsystem and real-time audio processing of many audio channels with a lot of audio effects. Trivially generated classic analog synthesizer waveforms are therefore still effective for sound synthesis. We cannot avoid the aliasing distortion but spectral components produced by the aliasing can be masked with harmonic components and thus made inaudible if sufficient oversampling ratio is used. This paper deals with the assessment of audible aliasing distortion with the help of a psychoacoustic model of simultaneous masking and compares the computing demands of trivial generation using oversampling with those of other methods.

  15. Two dimensional spatial distortion correction algorithm for scintillation GAMMA cameras

    International Nuclear Information System (INIS)

    Chaney, R.; Gray, E.; Jih, F.; King, S.E.; Lim, C.B.

    1985-01-01

    Spatial distortion in an Anger gamma camera originates fundamentally from the discrete nature of scintillation light sampling with an array of PMT's. Historically digital distortion correction started with the method based on the distortion measurement by using 1-D slit pattern and the subsequent on-line bi-linear approximation with 64 x 64 look-up tables for X and Y. However, the X, Y distortions are inherently two-dimensional in nature, and thus the validity of this 1-D calibration method becomes questionable with the increasing distortion amplitude in association with the effort to get better spatial and energy resolutions. The authors have developed a new accurate 2-D correction algorithm. This method involves the steps of; data collection from 2-D orthogonal hole pattern, 2-D distortion vector measurement, 2-D Lagrangian polynomial interpolation, and transformation to X, Y ADC frame. The impact of numerical precision used in correction and the accuracy of bilinear approximation with varying look-up table size have been carefully examined through computer simulation by using measured single PMT light response function together with Anger positioning logic. Also the accuracy level of different order Lagrangian polynomial interpolations for correction table expansion from hole centroids were investigated. Detailed algorithm and computer simulation are presented along with camera test results

  16. A method to correct coordinate distortion in EBSD maps

    International Nuclear Information System (INIS)

    Zhang, Y.B.; Elbrønd, A.; Lin, F.X.

    2014-01-01

    Drift during electron backscatter diffraction mapping leads to coordinate distortions in resulting orientation maps, which affects, in some cases significantly, the accuracy of analysis. A method, thin plate spline, is introduced and tested to correct such coordinate distortions in the maps after the electron backscatter diffraction measurements. The accuracy of the correction as well as theoretical and practical aspects of using the thin plate spline method is discussed in detail. By comparing with other correction methods, it is shown that the thin plate spline method is most efficient to correct different local distortions in the electron backscatter diffraction maps. - Highlights: • A new method is suggested to correct nonlinear spatial distortion in EBSD maps. • The method corrects EBSD maps more precisely than presently available methods. • Errors less than 1–2 pixels are typically obtained. • Direct quantitative analysis of dynamic data are available after this correction

  17. Multiview Discriminative Geometry Preserving Projection for Image Classification

    Directory of Open Access Journals (Sweden)

    Ziqiang Wang

    2014-01-01

    Full Text Available In many image classification applications, it is common to extract multiple visual features from different views to describe an image. Since different visual features have their own specific statistical properties and discriminative powers for image classification, the conventional solution for multiple view data is to concatenate these feature vectors as a new feature vector. However, this simple concatenation strategy not only ignores the complementary nature of different views, but also ends up with “curse of dimensionality.” To address this problem, we propose a novel multiview subspace learning algorithm in this paper, named multiview discriminative geometry preserving projection (MDGPP for feature extraction and classification. MDGPP can not only preserve the intraclass geometry and interclass discrimination information under a single view, but also explore the complementary property of different views to obtain a low-dimensional optimal consensus embedding by using an alternating-optimization-based iterative algorithm. Experimental results on face recognition and facial expression recognition demonstrate the effectiveness of the proposed algorithm.

  18. Restoration of the analytically reconstructed OpenPET images by the method of convex projections

    Energy Technology Data Exchange (ETDEWEB)

    Tashima, Hideaki; Murayama, Hideo; Yamaya, Taiga [National Institute of Radiological Sciences, Chiba (Japan); Katsunuma, Takayuki; Suga, Mikio [Chiba Univ. (Japan). Graduate School of Engineering; Kinouchi, Shoko [National Institute of Radiological Sciences, Chiba (Japan); Chiba Univ. (Japan). Graduate School of Engineering; Obi, Takashi [Tokyo Institute of Technology (Japan). Interdisciplinary Graduate School of Science and Engineering; Kudo, Hiroyuki [Tsukuba Univ. (Japan). Graduate School of Systems and Information Engineering

    2011-07-01

    We have proposed the OpenPET geometry which has gaps between detector rings and physically opened field-of-view. The image reconstruction of the OpenPET is classified into an incomplete problem because it does not satisfy the Orlov's condition. Even so, the simulation and experimental studies have shown that applying iterative methods such as the maximum likelihood expectation maximization (ML-EM) algorithm successfully reconstruct images in the gap area. However, the imaging process of the iterative methods in the OpenPET imaging is not clear. Therefore, the aim of this study is to analytically analyze the OpenPET imaging and estimate implicit constraints involved in the iterative methods. To apply explicit constraints in the OpenPET imaging, we used the method of convex projections for restoration of the images reconstructed by the analytical way in which low-frequency components are lost. Numerical simulations showed that the similar restoration effects are involved both in the ML-EM and the method of convex projections. Therefore, the iterative methods have advantageous effect of restoring lost frequency components of the OpenPET imaging. (orig.)

  19. Motivational Distortion on 16 PF Primaries by Male Felons.

    Science.gov (United States)

    Wallbrown, Fred H.; And Others

    1989-01-01

    Investigated motivational distortion using the 16 Personality Factor Questionnaire (16 PF) for male (n=331) criminal offenders. Results indicated that ego-strength, free-floating anxiety, ability to bind anxiety, boldness, dominance, emotional sensitivity and suspiciousness contributed most to the motivational distortion scale predictions.…

  20. Susceptibility to cognitive distortions: the role of eating pathology.

    Science.gov (United States)

    Coelho, Jennifer S; Ouellet-Courtois, Catherine; Purdon, Christine; Steiger, Howard

    2015-01-01

    Thought-Shape Fusion (TSF) and Thought-Action Fusion (TAF) are cognitive distortions that are associated with eating and obsessional pathology respectively. Both involve the underlying belief that mere thoughts and mental images can lead to negative outcomes. TSF involves the belief that food-related thoughts lead to weight gain, body dissatisfaction, and perceptions of moral wrong-doing. TAF is more general, and involves the belief that merely thinking about a negative event (e.g., a loved one getting into a car accident) can make this event more likely to happen, and leads to perceptions of moral wrong-doing. However, the shared susceptibility across related cognitive distortions-TAF and TSF-has not yet been studied. The effects of TSF and TAF inductions in women with an eating disorder (n = 21) and a group of healthy control women with no history of an eating disorder (n = 23) were measured. A repeated-measures design was employed, with all participants exposed to a TSF, TAF and neutral induction during three separate experimental sessions. Participants' cognitive and behavioral responses were assessed. Individuals with eating disorders were more susceptible to TSF and TAF than were control participants, demonstrating more neutralization behavior after TSF and TAF inductions (i.e., actions to try to reduce the negative effects of the induction), and reporting higher levels of trait TAF and TSF than did controls. Individuals with eating disorders are particularly susceptible to both TAF and TSF. Clinical implications of these findings will be discussed.

  1. Scanning Electron Microscope Calibration Using a Multi-Image Non-Linear Minimization Process

    Science.gov (United States)

    Cui, Le; Marchand, Éric

    2015-04-01

    A scanning electron microscope (SEM) calibrating approach based on non-linear minimization procedure is presented in this article. A part of this article has been published in IEEE International Conference on Robotics and Automation (ICRA), 2014. . Both the intrinsic parameters and the extrinsic parameters estimations are achieved simultaneously by minimizing the registration error. The proposed approach considers multi-images of a multi-scale calibration pattern view from different positions and orientations. Since the projection geometry of the scanning electron microscope is different from that of a classical optical sensor, the perspective projection model and the parallel projection model are considered and compared with distortion models. Experiments are realized by varying the position and the orientation of a multi-scale chessboard calibration pattern from 300× to 10,000×. The experimental results show the efficiency and the accuracy of this approach.

  2. Method of orthogonally splitting imaging pose measurement

    Science.gov (United States)

    Zhao, Na; Sun, Changku; Wang, Peng; Yang, Qian; Liu, Xintong

    2018-01-01

    In order to meet the aviation's and machinery manufacturing's pose measurement need of high precision, fast speed and wide measurement range, and to resolve the contradiction between measurement range and resolution of vision sensor, this paper proposes an orthogonally splitting imaging pose measurement method. This paper designs and realizes an orthogonally splitting imaging vision sensor and establishes a pose measurement system. The vision sensor consists of one imaging lens, a beam splitter prism, cylindrical lenses and dual linear CCD. Dual linear CCD respectively acquire one dimensional image coordinate data of the target point, and two data can restore the two dimensional image coordinates of the target point. According to the characteristics of imaging system, this paper establishes the nonlinear distortion model to correct distortion. Based on cross ratio invariability, polynomial equation is established and solved by the least square fitting method. After completing distortion correction, this paper establishes the measurement mathematical model of vision sensor, and determines intrinsic parameters to calibrate. An array of feature points for calibration is built by placing a planar target in any different positions for a few times. An terative optimization method is presented to solve the parameters of model. The experimental results show that the field angle is 52 °, the focus distance is 27.40 mm, image resolution is 5185×5117 pixels, displacement measurement error is less than 0.1mm, and rotation angle measurement error is less than 0.15°. The method of orthogonally splitting imaging pose measurement can satisfy the pose measurement requirement of high precision, fast speed and wide measurement range.

  3. 76 FR 8278 - Special Conditions: Gulfstream Model GVI Airplane; Enhanced Flight Vision System

    Science.gov (United States)

    2011-02-14

    ... image transparency; --Image alignment; --Lack of significant distortion; and --The potential for pilot... projects a video image derived from a forward-looking infrared (FLIR) camera through the head-up display (HUD). The EFVS image is projected in the center of the ``pilot compartment view,'' which is governed...

  4. Measuring Brand Image Effects of Flagship Projects for Place Brands

    DEFF Research Database (Denmark)

    Zenker, Sebastian; Beckmann, Suzanne C.

    2013-01-01

    Cities invest large sums of money in ‘flagship projects’, with the aim of not only developing the city as such, but also changing the perceptions of the city brand towards a desired image. The city of Hamburg, Germany, is currently investing euro575 million in order to build a new symphony hall...... (Elbphilharmonie), euro400 million to develop the ‘International Architectural Fair’ and it is also considering candidature again for the ‘Olympic Games’ in 2024/2028. As assessing the image effects of such projects is rather difficult, this article introduces an improved version of the Brand Concept Map approach......, which was originally developed for product brands. An experimental design was used to first measure the Hamburg brand as such and then the changes in the brand perceptions after priming the participants (N=209) for one of the three different flagship projects. The findings reveal several important...

  5. Fast, accurate, and robust automatic marker detection for motion correction based on oblique kV or MV projection image pairs

    International Nuclear Information System (INIS)

    Slagmolen, Pieter; Hermans, Jeroen; Maes, Frederik; Budiharto, Tom; Haustermans, Karin; Heuvel, Frank van den

    2010-01-01

    Purpose: A robust and accurate method that allows the automatic detection of fiducial markers in MV and kV projection image pairs is proposed. The method allows to automatically correct for inter or intrafraction motion. Methods: Intratreatment MV projection images are acquired during each of five treatment beams of prostate cancer patients with four implanted fiducial markers. The projection images are first preprocessed using a series of marker enhancing filters. 2D candidate marker locations are generated for each of the filtered projection images and 3D candidate marker locations are reconstructed by pairing candidates in subsequent projection images. The correct marker positions are retrieved in 3D by the minimization of a cost function that combines 2D image intensity and 3D geometric or shape information for the entire marker configuration simultaneously. This optimization problem is solved using dynamic programming such that the globally optimal configuration for all markers is always found. Translational interfraction and intrafraction prostate motion and the required patient repositioning is assessed from the position of the centroid of the detected markers in different MV image pairs. The method was validated on a phantom using CT as ground-truth and on clinical data sets of 16 patients using manual marker annotations as ground-truth. Results: The entire setup was confirmed to be accurate to around 1 mm by the phantom measurements. The reproducibility of the manual marker selection was less than 3.5 pixels in the MV images. In patient images, markers were correctly identified in at least 99% of the cases for anterior projection images and 96% of the cases for oblique projection images. The average marker detection accuracy was 1.4±1.8 pixels in the projection images. The centroid of all four reconstructed marker positions in 3D was positioned within 2 mm of the ground-truth position in 99.73% of all cases. Detecting four markers in a pair of MV images

  6. Mode distortion measurements on the Jefferson lab IR FEL

    CERN Document Server

    Benson, S V; Shinn, M

    2002-01-01

    We have previously reported on the analytical calculations of mirror distortion in a high-power FEL with a near-concentric cavity. This analysis allowed us to estimate the power level at which the FEL interaction would be affected, though no exact theory of FEL power vs. distortion exists at this point. Recently we have directly measured the mode size and beam quality as a function of power using a resonator with a center wavelength of 5 mu m. The resonator mirrors were calcium fluoride. This particular material exhibits a large amount of distortion for a given power but, due to the negative slope of refractive index vs. temperature, adds almost no optical phase distortion on the laser output. The mode in the cavity can thus be directly calculated from the measurements at the resonator output. The presence of angular jitter produced raw measurements inconsistent with cold cavity expectations. Removing the effects of the angular jitter, we derive results in agreement with cold cavity measurements. The result i...

  7. The Feeding Behavior and Dissatisfaction With Body Image of Female Basketball Athletes' A City Central São Paulo

    Directory of Open Access Journals (Sweden)

    Micheli Bordonal Gazolla

    2015-12-01

    Full Text Available The most important eating disorders are anorexia and bulimia nervosa. This study intended to appraise athletes' behavior related to food , weight control and body image. The obtained results were: 25% present light distortions of their body image and 16,66% show moderate distortions. Based on the silhouettes of Stunkard et al., 66,66% overestimate their weight, 16,66% show dissatisfaction in relation to their thinness, 16,67% are pleased with their body weight. The majority of the athletes presents proper body composition, but presents a distortion of their body image.

  8. Mobile Watermarking against Geometrical Distortions

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2015-08-01

    Full Text Available Mobile watermarking robust to geometrical distortions is still a great challenge. In mobile watermarking, efficient computation is necessary because mobile devices have very limited resources due to power consumption. In this paper, we propose a low-complexity geometrically resilient watermarking approach based on the optimal tradeoff circular harmonic function (OTCHF correlation filter and the minimum average correlation energy Mellin radial harmonic (MACE-MRH correlation filter. By the rotation, translation and scale tolerance properties of the two kinds of filter, the proposed watermark detector can be robust to geometrical attacks. The embedded watermark is weighted by a perceptual mask which matches very well with the properties of the human visual system. Before correlation, a whitening process is utilized to improve watermark detection reliability. Experimental results demonstrate that the proposed watermarking approach is computationally efficient and robust to geometrical distortions.

  9. Pump-induced optical distortions in disk amplifier modules: holographic and interferometric measurements

    International Nuclear Information System (INIS)

    Linford, G.J.; Chau, H.H.; Glaze, J.A.; Layne, C.B.; Rainer, F.

    1975-01-01

    Interferometric measurements have been made of the optical distortions induced in laser disk amplifiers during the flashlamp pumping pulse. Both conventional interferometric methods and the techniques of double exposure holographic interferometry were used to identify four major sources of pump-induced optical distortions: subsonic intrusion of hot gas (traced to leakage of atmospheric oxygen into the amplifier), microexplosions of dust particles, thermally induced optical distortions in the glass disks, and gaseous optical distortion effects caused by turbulent flow of the purging nitrogen gas supply used within the laser amplifier head. Methods for reducing or eliminating the effects of each of these optical distortions are described

  10. Distortion of gravitational-wave packets due to their self-gravity

    International Nuclear Information System (INIS)

    Kocsis, Bence; Loeb, Abraham

    2007-01-01

    When a source emits a gravity-wave (GW) pulse over a short period of time, the leading edge of the GW signal is redshifted more than the inner boundary of the pulse. The GW pulse is distorted by the gravitational effect of the self-energy residing in between these shells. We illustrate this distortion for GW pulses from the final plunge of black hole binaries, leading to the evolution of the GW profile as a function of the radial distance from the source. The distortion depends on the total GW energy released ε and the duration of the emission τ, scaled by the total binary mass M. The effect should be relevant in finite box simulations where the waveforms are extracted within a radius of 2 M. For characteristic emission parameters at the final plunge between binary black holes of arbitrary spins, this effect could distort the simulated GW templates for LIGO and LISA by a fraction of 10 -3 . Accounting for the wave distortion would significantly decrease the waveform extraction errors in numerical simulations

  11. Influence of light refraction on the image reconstruction in transmission optical tomography of scattering media

    International Nuclear Information System (INIS)

    Tereshchenko, Sergei A; Potapov, D A; Podgaetskii, Vitalii M; Smirnov, A V

    2002-01-01

    A distorting influence of light refraction at the boundaries of scattering media on the results of tomographic reconstruction of images of radially symmetric objects is investigated. The methods for the correction of such refraction-caused distortions are described. The results of the image reconstruction for two model cylindrical objects are presented.

  12. Visual quality analysis for images degraded by different types of noise

    Science.gov (United States)

    Ponomarenko, Nikolay N.; Lukin, Vladimir V.; Ieremeyev, Oleg I.; Egiazarian, Karen O.; Astola, Jaakko T.

    2013-02-01

    Modern visual quality metrics take into account different peculiarities of the Human Visual System (HVS). One of them is described by the Weber-Fechner law and deals with the different sensitivity to distortions in image fragments with different local mean values (intensity, brightness). We analyze how this property can be incorporated into a metric PSNRHVS- M. It is shown that some improvement of its performance can be provided. Then, visual quality of color images corrupted by three types of i.i.d. noise (pure additive, pure multiplicative, and signal dependent, Poisson) is analyzed. Experiments with a group of observers are carried out for distorted color images created on the basis of TID2008 database. Several modern HVS-metrics are considered. It is shown that even the best metrics are unable to assess visual quality of distorted images adequately enough. The reasons for this deal with the observer's attention to certain objects in the test images, i.e., with semantic aspects of vision, which are worth taking into account in design of HVS-metrics.

  13. 2-Step scalar deadzone quantization for bitplane image coding.

    Science.gov (United States)

    Auli-Llinas, Francesc

    2013-12-01

    Modern lossy image coding systems generate a quality progressive codestream that, truncated at increasing rates, produces an image with decreasing distortion. Quality progressivity is commonly provided by an embedded quantizer that employs uniform scalar deadzone quantization (USDQ) together with a bitplane coding strategy. This paper introduces a 2-step scalar deadzone quantization (2SDQ) scheme that achieves same coding performance as that of USDQ while reducing the coding passes and the emitted symbols of the bitplane coding engine. This serves to reduce the computational costs of the codec and/or to code high dynamic range images. The main insights behind 2SDQ are the use of two quantization step sizes that approximate wavelet coefficients with more or less precision depending on their density, and a rate-distortion optimization technique that adjusts the distortion decreases produced when coding 2SDQ indexes. The integration of 2SDQ in current codecs is straightforward. The applicability and efficiency of 2SDQ are demonstrated within the framework of JPEG2000.

  14. MR angiography of stenosis and aneurysm models in the pulsatile flow: variation with imaging parameters and concentration of contrast media

    International Nuclear Information System (INIS)

    Park, Kyung Joo; Park, Jae Hyung; Lee, Hak Jong; Won, Hyung Jin; Lee, Dong Hyuk; Min, Byung Goo; Chang, Kee Hyun

    1997-01-01

    The image quality of magnetic resonance angiography (MRA) varies according to the imaging techniques applied and the parameters affected by blood flow patterns, as well as by the shape of the blood vessels. This study was designed to assess the influence on signal intensity and its distribution of the geometry of these vessels, the imaging parameters, and the concentration of contrast media in MRA of stenosis and aneurysm models. MRA was performed in stenosis and aneurysm models made of glass tubes, using pulsatile flow with viscosity and flow profile similar to those of blood. Slice and maximum intensity projection (MIP) images were obtained using various imaging techniques and parameters;there was variation in repetition time, flip angle, imaging planes, and concentrations of contrast media. On slice images of three-dimensional (3D) time-of-flight (TOF) techniques, flow signal intensity was measured at five locations in the models, and contrast ratio was calculated as the difference between flow signal intensity (SI) and background signal intensity (SIb) divided by background signal intensity or (SI-SIb)/SIb. MIP images obtained by various techniques and using various parameters were also analyzed, with emphasis in the stenosis model on demonstrated degree of stenosis, severity of signal void and image distortion, and in the aneurysm model, on degree of visualization, distortion of contour and distribution of signals. In 3D TOF, the shortest TR (36 msec) and the largest FA (50 deg ) resulted in the highest contrast ratio, but larger flip angles did not effectively demonstrate the demonstration of the peripheral part of the aneurysm. Loss of signal was most prominent in images of the stenosis model obtained with parallel or oblique planes to the flow direction. The two-dimensional TOF technique also caused signal void in stenosis, but precisely demonstrated the aneurysm, with dense opacification of the peripheral part. The phase contrast technique showed some

  15. Cognitive distortions among older adult gamblers in an Asian context.

    Directory of Open Access Journals (Sweden)

    Mythily Subramaniam

    Full Text Available The study aims to describe the construct of cognitive distortions based on the narratives of older adult gamblers (aged 60 years and above in Singapore.Singapore residents (citizens or permanent residents aged 60 years and above, who were current or past regular gamblers were included in the study. Participants were recruited using a combination of venue based approach, referrals from service providers as well as by snowball sampling. In all, 25 in-depth interviews were conducted with older adult gamblers. The six-step thematic network analysis methodology was adopted for data analysis.The mean age of the participants was 66.2 years. The majority were male (n = 18, of Chinese ethnicity (n = 16, with a mean age of gambling initiation at 24.5 years. Among older adult gamblers, cognitive distortions emerged as a significant global theme comprising three organizing themes-illusion of control, probability control and interpretive control. The organizing themes comprised nine basic themes: perception of gambling as a skill, near miss, concept of luck, superstitious beliefs, entrapment, gambler's fallacy, chasing wins, chasing losses, and beliefs that wins are more than losses.Cognitive distortions were endorsed by all gamblers in the current study and were shown to play a role in both maintaining and escalating the gambling behaviour. While the surface characteristics of the distortions had a culture-specific appearance, the deeper characteristics of the distortions may in fact be more universal than previously thought. Future research must include longitudinal studies to understand causal relationships between cognitive distortions and gambling as well as the role of culture-specific distortions both in the maintenance and treatment of the disorder.

  16. Magnetic resonance imaging of respiratory movement and lung function

    International Nuclear Information System (INIS)

    Tetzlaff, R.; Eichinger, M.

    2009-01-01

    Lung function measurements are the domain of spirometry or plethysmography. These methods have proven their value in clinical practice, nevertheless, being global measurements the functional indices only describe the sum of all functional units of the lung. Impairment of only a single component of the respiratory pump or of a small part of lung parenchyma can be compensated by unaffected lung tissue. Dynamic imaging can help to detect such local changes and lead to earlier adapted therapy. Magnetic resonance imaging (MRI) seems to be perfect for this application as it is not hampered by image distortion as is projection radiography and it does not expose the patient to potentially harmful radiation like computed tomography. Unfortunately, lung parenchyma is not easy to image using MRI due to its low signal intensity. For this reason first applications of MRI in lung function measurements concentrated on the movement of the thoracic wall and the diaphragm. Recent technical advances in MRI however might allow measurements of regional dynamics of the lungs. (orig.) [de

  17. Cognitive distortions as a component and treatment focus of pathological gambling: a review.

    Science.gov (United States)

    Fortune, Erica E; Goodie, Adam S

    2012-06-01

    The literature on the role of cognitive distortions in the understanding and treatment of pathological gambling (PG) is reviewed, with sections focusing on (a) conceptual underpinnings of cognitive distortions, (b) cognitive distortions related to PG, (c) PG therapies that target cognitive distortions, (d) methodological factors and outcome variations, and (e) conclusions and prescriptive recommendations. The conceptual background for distortions related to PG lies in the program of heuristics and biases (Kahneman & Tversky, 1974) as well as other errors identified in basic psychology. The literature has focused on distortions arising from the representativeness heuristic (gambler's fallacy, overconfidence, and trends in number picking), the availability heuristic (illusory correlation, other individuals' wins, and inherent memory bias), and other sources (the illusion of control and double switching). Some therapies have incorporated cognitive restructuring within broader cognitive-behavioral therapies, with success. Other therapies have focused more narrowly on correcting distorted beliefs, more often with limited success. It is concluded that the literature establishes the role of cognitive distortions in PG and suggests therapies with particularly good promise, but is in need of further enrichment.

  18. Development of an image reconstruction algorithm for a few number of projection data

    International Nuclear Information System (INIS)

    Vieira, Wilson S.; Brandao, Luiz E.; Braz, Delson

    2007-01-01

    An image reconstruction algorithm was developed for specific cases of radiotracer applications in industry (rotating cylindrical mixers), involving a very few number of projection data. The algorithm was planned for imaging radioactive isotope distributions around the center of circular planes. The method consists of adapting the original expectation maximization algorithm (EM) to solve the ill-posed emission tomography inverse problem in order to reconstruct transversal 2D images of an object with only four projections. To achieve this aim, counts of photons emitted by selected radioactive sources in the plane, after they had been simulated using the commercial software MICROSHIELD 5.05, constitutes the projections and a computational code (SPECTEM) was developed to generate activity vectors or images related to those sources. SPECTEM is flexible to support simultaneous changes of the detectors's geometry, the medium under investigation and the properties of the gamma radiation. As a consequence of the code had been followed correctly the proposed method, good results were obtained and they encouraged us to continue the next step of the research: the validation of SPECTEM utilizing experimental data to check its real performance. We aim this code will improve considerably radiotracer methodology, making easier the diagnosis of fails in industrial processes. (author)

  19. Development of an image reconstruction algorithm for a few number of projection data

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Wilson S.; Brandao, Luiz E. [Instituto de Engenharia Nuclear (IEN-CNEN/RJ), Rio de Janeiro , RJ (Brazil)]. E-mails: wilson@ien.gov.br; brandao@ien.gov.br; Braz, Delson [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programa de Pos-graduacao de Engenharia (COPPE). Lab. de Instrumentacao Nuclear]. E-mail: delson@mailhost.lin.ufrj.br

    2007-07-01

    An image reconstruction algorithm was developed for specific cases of radiotracer applications in industry (rotating cylindrical mixers), involving a very few number of projection data. The algorithm was planned for imaging radioactive isotope distributions around the center of circular planes. The method consists of adapting the original expectation maximization algorithm (EM) to solve the ill-posed emission tomography inverse problem in order to reconstruct transversal 2D images of an object with only four projections. To achieve this aim, counts of photons emitted by selected radioactive sources in the plane, after they had been simulated using the commercial software MICROSHIELD 5.05, constitutes the projections and a computational code (SPECTEM) was developed to generate activity vectors or images related to those sources. SPECTEM is flexible to support simultaneous changes of the detectors's geometry, the medium under investigation and the properties of the gamma radiation. As a consequence of the code had been followed correctly the proposed method, good results were obtained and they encouraged us to continue the next step of the research: the validation of SPECTEM utilizing experimental data to check its real performance. We aim this code will improve considerably radiotracer methodology, making easier the diagnosis of fails in industrial processes. (author)

  20. Motion illusions in optical art presented for long durations are temporally distorted.

    Science.gov (United States)

    Nather, Francisco Carlos; Mecca, Fernando Figueiredo; Bueno, José Lino Oliveira

    2013-01-01

    Static figurative images implying human body movements observed for shorter and longer durations affect the perception of time. This study examined whether images of static geometric shapes would affect the perception of time. Undergraduate participants observed two Optical Art paintings by Bridget Riley for 9 or 36 s (group G9 and G36, respectively). Paintings implying different intensities of movement (2.0 and 6.0 point stimuli) were randomly presented. The prospective paradigm in the reproduction method was used to record time estimations. Data analysis did not show time distortions in the G9 group. In the G36 group the paintings were differently perceived: that for the 2.0 point one are estimated to be shorter than that for the 6.0 point one. Also for G36, the 2.0 point painting was underestimated in comparison with the actual time of exposure. Motion illusions in static images affected time estimation according to the attention given to the complexity of movement by the observer, probably leading to changes in the storage velocity of internal clock pulses.

  1. Distortion of Probability and Outcome Information in Risky Decisions

    Science.gov (United States)

    DeKay, Michael L.; Patino-Echeverri, Dalia; Fischbeck, Paul S.

    2009-01-01

    Substantial evidence indicates that information is distorted during decision making, but very few studies have assessed the distortion of probability and outcome information in risky decisions. In two studies involving six binary decisions (e.g., banning blood donations from people who have visited England, because of "mad cow disease"),…

  2. Audiovisual Cues and Perceptual Learning of Spectrally Distorted Speech

    Science.gov (United States)

    Pilling, Michael; Thomas, Sharon

    2011-01-01

    Two experiments investigate the effectiveness of audiovisual (AV) speech cues (cues derived from both seeing and hearing a talker speak) in facilitating perceptual learning of spectrally distorted speech. Speech was distorted through an eight channel noise-vocoder which shifted the spectral envelope of the speech signal to simulate the properties…

  3. Image reconstruction for digital breast tomosynthesis (DBT) by using projection-angle-dependent filter functions

    Energy Technology Data Exchange (ETDEWEB)

    Park, Yeonok; Park, Chulkyu; Cho, Hyosung; Je, Uikyu; Hong, Daeki; Lee, Minsik; Cho, Heemoon; Choi, Sungil; Koo, Yangseo [Yonsei University, Wonju (Korea, Republic of)

    2014-09-15

    Digital breast tomosynthesis (DBT) is considered in clinics as a standard three-dimensional imaging modality, allowing the earlier detection of cancer. It typically acquires only 10-30 projections over a limited angle range of 15 - 60 .deg. with a stationary detector and typically uses a computationally-efficient filtered-backprojection (FBP) algorithm for image reconstruction. However, a common FBP algorithm yields poor image quality resulting from the loss of average image value and the presence of severe image artifacts due to the elimination of the dc component of the image by the ramp filter and to the incomplete data, respectively. As an alternative, iterative reconstruction methods are often used in DBT to overcome these difficulties, even though they are still computationally expensive. In this study, as a compromise, we considered a projection-angle dependent filtering method in which one-dimensional geometry-adapted filter kernels are computed with the aid of a conjugate-gradient method and are incorporated into the standard FBP framework. We implemented the proposed algorithm and performed systematic simulation works to investigate the imaging characteristics. Our results indicate that the proposed method is superior to a conventional FBP method for DBT imaging and has a comparable computational cost, while preserving good image homogeneity and edge sharpening with no serious image artifacts.

  4. Three-dimensional DNA image cytometry by optical projection tomographic microscopy for early cancer diagnosis.

    Science.gov (United States)

    Agarwal, Nitin; Biancardi, Alberto M; Patten, Florence W; Reeves, Anthony P; Seibel, Eric J

    2014-04-01

    Aneuploidy is typically assessed by flow cytometry (FCM) and image cytometry (ICM). We used optical projection tomographic microscopy (OPTM) for assessing cellular DNA content using absorption and fluorescence stains. OPTM combines some of the attributes of both FCM and ICM and generates isometric high-resolution three-dimensional (3-D) images of single cells. Although the depth of field of the microscope objective was in the submicron range, it was extended by scanning the objective's focal plane. The extended depth of field image is similar to a projection in a conventional x-ray computed tomography. These projections were later reconstructed using computed tomography methods to form a 3-D image. We also present an automated method for 3-D nuclear segmentation. Nuclei of chicken, trout, and triploid trout erythrocyte were used to calibrate OPTM. Ratios of integrated optical densities extracted from 50 images of each standard were compared to ratios of DNA indices from FCM. A comparison of mean square errors with thionin, hematoxylin, Feulgen, and SYTOX green was done. Feulgen technique was preferred as it showed highest stoichiometry, least variance, and preserved nuclear morphology in 3-D. The addition of this quantitative biomarker could further strengthen existing classifiers and improve early diagnosis of cancer using 3-D microscopy.

  5. Psychological Vulnerability and Problem Gambling: The Mediational Role of Cognitive Distortions.

    Science.gov (United States)

    Lévesque, David; Sévigny, Serge; Giroux, Isabelle; Jacques, Christian

    2018-01-03

    Despite numerous studies demonstrating the influence of cognitive distortions on gambling problem severity, empirical data regarding the role of psychological vulnerability on the latter is limited. Hence, this study assesses the mediating effect of cognitive distortions between psychological vulnerability (personality and mood), and gambling problem severity. It also verifies whether the relationships between these variables differs according to the preferred gambling activity. The sample is composed of 272 male gamblers [191 poker players; 81 video lottery terminal (VLT) players] aged between 18 and 82 years (M = 35.2). Bootstrap analysis results revealed that cognitive distortions mediate the effect of narcissism on gambling problem severity for both groups. The level of depression for VLT players significantly predicted gambling problem severity, both directly and indirectly via the mediating effect of cognitive distortions. Mediation analyses also indicated that narcissism had an indirect impact on problem gambling through cognitive distortions for both groups. These findings suggest that certain vulnerabilities related to personality and mood may influence cognitive distortion intensity and gambling problem severity. In addition, psychological vulnerabilities could differ based on preferred gambling activity. These results may be useful for prevention policies, identifying high risk gamblers and planning psychological interventions.

  6. Model-Based Referenceless Quality Metric of 3D Synthesized Images Using Local Image Description.

    Science.gov (United States)

    Gu, Ke; Jakhetiya, Vinit; Qiao, Jun-Fei; Li, Xiaoli; Lin, Weisi; Thalmann, Daniel

    2017-07-28

    New challenges have been brought out along with the emerging of 3D-related technologies such as virtual reality (VR), augmented reality (AR), and mixed reality (MR). Free viewpoint video (FVV), due to its applications in remote surveillance, remote education, etc, based on the flexible selection of direction and viewpoint, has been perceived as the development direction of next-generation video technologies and has drawn a wide range of researchers' attention. Since FVV images are synthesized via a depth image-based rendering (DIBR) procedure in the "blind" environment (without reference images), a reliable real-time blind quality evaluation and monitoring system is urgently required. But existing assessment metrics do not render human judgments faithfully mainly because geometric distortions are generated by DIBR. To this end, this paper proposes a novel referenceless quality metric of DIBR-synthesized images using the autoregression (AR)-based local image description. It was found that, after the AR prediction, the reconstructed error between a DIBR-synthesized image and its AR-predicted image can accurately capture the geometry distortion. The visual saliency is then leveraged to modify the proposed blind quality metric to a sizable margin. Experiments validate the superiority of our no-reference quality method as compared with prevailing full-, reduced- and no-reference models.

  7. MATLAB-based Applications for Image Processing and Image Quality Assessment – Part II: Experimental Results

    Directory of Open Access Journals (Sweden)

    L. Krasula

    2012-04-01

    Full Text Available The paper provides an overview of some possible usage of the software described in the Part I. It contains the real examples of image quality improvement, distortion simulations, objective and subjective quality assessment and other ways of image processing that can be obtained by the individual applications.

  8. Spectral Behavior of Weakly Compressible Aero-Optical Distortions

    Science.gov (United States)

    Mathews, Edwin; Wang, Kan; Wang, Meng; Jumper, Eric

    2016-11-01

    In classical theories of optical distortions by atmospheric turbulence, an appropriate and key assumption is that index-of-refraction variations are dominated by fluctuations in temperature and the effects of turbulent pressure fluctuations are negligible. This assumption is, however, not generally valid for aero-optical distortions caused by turbulent flow over an optical aperture, where both temperature and pressures fluctuations may contribute significantly to the index-of-refraction fluctuations. A general expression for weak fluctuations in refractive index is derived using the ideal gas law and Gladstone-Dale relation and applied to describe the spectral behavior of aero-optical distortions. Large-eddy simulations of weakly compressible, temporally evolving shear layers are then used to verify the theoretical results. Computational results support theoretical findings and confirm that if the log slope of the 1-D density spectrum in the inertial range is -mρ , the optical phase distortion spectral slope is given by - (mρ + 1) . The value of mρ is then shown to be dependent on the ratio of shear-layer free-stream densities and bounded by the spectral slopes of temperature and pressure fluctuations. Supported by HEL-JTO through AFOSR Grant FA9550-13-1-0001 and Blue Waters Graduate Fellowship Program.

  9. Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling

    International Nuclear Information System (INIS)

    Chung, Hyekyun; Poulsen, Per Rugaard; Keall, Paul J.; Cho, Seungryong; Cho, Byungchul

    2016-01-01

    Purpose: Cone-beam CT (CBCT) is a widely used imaging modality for image-guided radiotherapy. Most vendors provide CBCT systems that are mounted on a linac gantry. Thus, CBCT can be used to estimate the actual 3-dimensional (3D) position of moving respiratory targets in the thoracic/abdominal region using 2D projection images. The authors have developed a method for estimating the 3D trajectory of respiratory-induced target motion from CBCT projection images using interdimensional correlation modeling. Methods: Because the superior–inferior (SI) motion of a target can be easily analyzed on projection images of a gantry-mounted CBCT system, the authors investigated the interdimensional correlation of the SI motion with left–right and anterior–posterior (AP) movements while the gantry is rotating. A simple linear model and a state-augmented model were implemented and applied to the interdimensional correlation analysis, and their performance was compared. The parameters of the interdimensional correlation models were determined by least-square estimation of the 2D error between the actual and estimated projected target position. The method was validated using 160 3D tumor trajectories from 46 thoracic/abdominal cancer patients obtained during CyberKnife treatment. The authors’ simulations assumed two application scenarios: (1) retrospective estimation for the purpose of moving tumor setup used just after volumetric matching with CBCT; and (2) on-the-fly estimation for the purpose of real-time target position estimation during gating or tracking delivery, either for full-rotation volumetric-modulated arc therapy (VMAT) in 60 s or a stationary six-field intensity-modulated radiation therapy (IMRT) with a beam delivery time of 20 s. Results: For the retrospective CBCT simulations, the mean 3D root-mean-square error (RMSE) for all 4893 trajectory segments was 0.41 mm (simple linear model) and 0.35 mm (state-augmented model). In the on-the-fly simulations, prior

  10. Reconstruction of implanted marker trajectories from cone-beam CT projection images using interdimensional correlation modeling

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Hyekyun [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea and Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 138-736 (Korea, Republic of); Poulsen, Per Rugaard [Department of Oncology, Aarhus University Hospital, Nørrebrogade 44, 8000 Aarhus C (Denmark); Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, NSW 2006 (Australia); Cho, Seungryong [Department of Nuclear and Quantum Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141 (Korea, Republic of); Cho, Byungchul, E-mail: cho.byungchul@gmail.com, E-mail: bcho@amc.seoul.kr [Department of Radiation Oncology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505 (Korea, Republic of)

    2016-08-15

    Purpose: Cone-beam CT (CBCT) is a widely used imaging modality for image-guided radiotherapy. Most vendors provide CBCT systems that are mounted on a linac gantry. Thus, CBCT can be used to estimate the actual 3-dimensional (3D) position of moving respiratory targets in the thoracic/abdominal region using 2D projection images. The authors have developed a method for estimating the 3D trajectory of respiratory-induced target motion from CBCT projection images using interdimensional correlation modeling. Methods: Because the superior–inferior (SI) motion of a target can be easily analyzed on projection images of a gantry-mounted CBCT system, the authors investigated the interdimensional correlation of the SI motion with left–right and anterior–posterior (AP) movements while the gantry is rotating. A simple linear model and a state-augmented model were implemented and applied to the interdimensional correlation analysis, and their performance was compared. The parameters of the interdimensional correlation models were determined by least-square estimation of the 2D error between the actual and estimated projected target position. The method was validated using 160 3D tumor trajectories from 46 thoracic/abdominal cancer patients obtained during CyberKnife treatment. The authors’ simulations assumed two application scenarios: (1) retrospective estimation for the purpose of moving tumor setup used just after volumetric matching with CBCT; and (2) on-the-fly estimation for the purpose of real-time target position estimation during gating or tracking delivery, either for full-rotation volumetric-modulated arc therapy (VMAT) in 60 s or a stationary six-field intensity-modulated radiation therapy (IMRT) with a beam delivery time of 20 s. Results: For the retrospective CBCT simulations, the mean 3D root-mean-square error (RMSE) for all 4893 trajectory segments was 0.41 mm (simple linear model) and 0.35 mm (state-augmented model). In the on-the-fly simulations, prior

  11. CMB spectral distortion constraints on thermal inflation

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Kihyun; Stewart, Ewan D. [Department of Physics, KAIST, Daejeon 34141 (Korea, Republic of); Hong, Sungwook E. [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Zoe, Heeseung, E-mail: cho_physics@kaist.ac.kr, E-mail: heezoe@dgist.ac.kr, E-mail: jcap@profstewart.org, E-mail: heezoe@dgist.ac.kr [School of Undergraduate Studies, College of Transdisciplinary Studies, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988 (Korea, Republic of)

    2017-08-01

    Thermal inflation is a second epoch of exponential expansion at typical energy scales V {sup 1/4} ∼ 10{sup 6} {sup ∼} {sup 8} GeV. If the usual primordial inflation is followed by thermal inflation, the primordial power spectrum is only modestly redshifted on large scales, but strongly suppressed on scales smaller than the horizon size at the beginning of thermal inflation, k > k {sub b} = a {sub b} H {sub b}. We calculate the spectral distortion of the cosmic microwave background generated by the dissipation of acoustic waves in this context. For k {sub b} || 10{sup 3} Mpc{sup −1}, thermal inflation results in a large suppression of the μ-distortion amplitude, predicting that it falls well below the standard value of μ ≅ 2× 10{sup −8}. Thus, future spectral distortion experiments, similar to PIXIE, can place new limits on the thermal inflation scenario, constraining k {sub b} ∼> 10{sup 3} Mpc{sup −1} if μ ≅ 2× 10{sup −8} were found.

  12. Systematic Calibration for a Backpacked Spherical Photogrammetry Imaging System

    Science.gov (United States)

    Rau, J. Y.; Su, B. W.; Hsiao, K. W.; Jhan, J. P.

    2016-06-01

    A spherical camera can observe the environment for almost 720 degrees' field of view in one shoot, which is useful for augmented reality, environment documentation, or mobile mapping applications. This paper aims to develop a spherical photogrammetry imaging system for the purpose of 3D measurement through a backpacked mobile mapping system (MMS). The used equipment contains a Ladybug-5 spherical camera, a tactical grade positioning and orientation system (POS), i.e. SPAN-CPT, and an odometer, etc. This research aims to directly apply photogrammetric space intersection technique for 3D mapping from a spherical image stereo-pair. For this purpose, several systematic calibration procedures are required, including lens distortion calibration, relative orientation calibration, boresight calibration for direct georeferencing, and spherical image calibration. The lens distortion is serious on the ladybug-5 camera's original 6 images. Meanwhile, for spherical image mosaicking from these original 6 images, we propose the use of their relative orientation and correct their lens distortion at the same time. However, the constructed spherical image still contains systematic error, which will reduce the 3D measurement accuracy. Later for direct georeferencing purpose, we need to establish a ground control field for boresight/lever-arm calibration. Then, we can apply the calibrated parameters to obtain the exterior orientation parameters (EOPs) of all spherical images. In the end, the 3D positioning accuracy after space intersection will be evaluated, including EOPs obtained by structure from motion method.

  13. Distortion of digital panoramic radiographs used for implant site assessment

    Directory of Open Access Journals (Sweden)

    Rayyan Abdulhamid Kayal

    2016-01-01

    Full Text Available Aims: This study is conducted to determine the amount of distortion of digital panoramic radiographs. Materials and Methods: Panoramic radiographs of all patients who received dental implants in the years 2012 and 2013 were selected from the records at the faculty of dentistry, King Abdulaziz University. Radiographs were analyzed using the R4 Kodak Software for linear measurements of implants length and width. The measurements were compared to the actual size of the implant, and the amount of distortion was calculated. Results: A total of 169 implants were analyzed. Horizontally, there was a statistically significant increase of 0.4 mm in width in the radiographic measurement compared to the actual size in the incisor region. Vertically, the sample overall exhibited a decrease by 0.4 mm compared to the actual size. Incisors had the highest difference with a decrease of 1.7 mm in the radiographic measurements compared to actual size. The highest distortion was found in the incisor region for both diameter and length (1.1 and 0.86, respectively. Conclusion: Digital panoramic radiographs show minimal to no distortion. The highest distortion is found in the anterior area.

  14. Analysis of tractable distortion metrics for EEG compression applications

    International Nuclear Information System (INIS)

    Bazán-Prieto, Carlos; Blanco-Velasco, Manuel; Cruz-Roldán, Fernando; Cárdenas-Barrera, Julián

    2012-01-01

    Coding distortion in lossy electroencephalographic (EEG) signal compression methods is evaluated through tractable objective criteria. The percentage root-mean-square difference, which is a global and relative indicator of the quality held by reconstructed waveforms, is the most widely used criterion. However, this parameter does not ensure compliance with clinical standard guidelines that specify limits to allowable noise in EEG recordings. As a result, expert clinicians may have difficulties interpreting the resulting distortion of the EEG for a given value of this parameter. Conversely, the root-mean-square error is an alternative criterion that quantifies distortion in understandable units. In this paper, we demonstrate that the root-mean-square error is better suited to control and to assess the distortion introduced by compression methods. The experiments conducted in this paper show that the use of the root-mean-square error as target parameter in EEG compression allows both clinicians and scientists to infer whether coding error is clinically acceptable or not at no cost for the compression ratio. (paper)

  15. WE-AB-207A-12: HLCC Based Quantitative Evaluation Method of Image Artifact in Dental CBCT

    International Nuclear Information System (INIS)

    Chen, Y; Wu, S; Qi, H; Xu, Y; Zhou, L

    2016-01-01

    Purpose: Image artifacts are usually evaluated qualitatively via visual observation of the reconstructed images, which is susceptible to subjective factors due to the lack of an objective evaluation criterion. In this work, we propose a Helgason-Ludwig consistency condition (HLCC) based evaluation method to quantify the severity level of different image artifacts in dental CBCT. Methods: Our evaluation method consists of four step: 1) Acquire Cone beam CT(CBCT) projection; 2) Convert 3D CBCT projection to fan-beam projection by extracting its central plane projection; 3) Convert fan-beam projection to parallel-beam projection utilizing sinogram-based rebinning algorithm or detail-based rebinning algorithm; 4) Obtain HLCC profile by integrating parallel-beam projection per view and calculate wave percentage and variance of the HLCC profile, which can be used to describe the severity level of image artifacts. Results: Several sets of dental CBCT projections containing only one type of artifact (i.e. geometry, scatter, beam hardening, lag and noise artifact), were simulated using gDRR, a GPU tool developed for efficient, accurate, and realistic simulation of CBCT Projections. These simulated CBCT projections were used to test our proposed method. HLCC profile wave percentage and variance induced by geometry distortion are about 3∼21 times and 16∼393 times as large as that of the artifact-free projection, respectively. The increase factor of wave percentage and variance are 6 and133 times for beam hardening, 19 and 1184 times for scatter, and 4 and16 times for lag artifacts, respectively. In contrast, for noisy projection the wave percentage, variance and inconsistency level are almost the same with those of the noise-free one. Conclusion: We have proposed a quantitative evaluation method of image artifact based on HLCC theory. According to our simulation results, the severity of different artifact types is found to be in a following order: Scatter

  16. WE-AB-207A-12: HLCC Based Quantitative Evaluation Method of Image Artifact in Dental CBCT

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Y; Wu, S; Qi, H; Xu, Y; Zhou, L [Southern Medical University, Guangzhou, Guangdong (China)

    2016-06-15

    Purpose: Image artifacts are usually evaluated qualitatively via visual observation of the reconstructed images, which is susceptible to subjective factors due to the lack of an objective evaluation criterion. In this work, we propose a Helgason-Ludwig consistency condition (HLCC) based evaluation method to quantify the severity level of different image artifacts in dental CBCT. Methods: Our evaluation method consists of four step: 1) Acquire Cone beam CT(CBCT) projection; 2) Convert 3D CBCT projection to fan-beam projection by extracting its central plane projection; 3) Convert fan-beam projection to parallel-beam projection utilizing sinogram-based rebinning algorithm or detail-based rebinning algorithm; 4) Obtain HLCC profile by integrating parallel-beam projection per view and calculate wave percentage and variance of the HLCC profile, which can be used to describe the severity level of image artifacts. Results: Several sets of dental CBCT projections containing only one type of artifact (i.e. geometry, scatter, beam hardening, lag and noise artifact), were simulated using gDRR, a GPU tool developed for efficient, accurate, and realistic simulation of CBCT Projections. These simulated CBCT projections were used to test our proposed method. HLCC profile wave percentage and variance induced by geometry distortion are about 3∼21 times and 16∼393 times as large as that of the artifact-free projection, respectively. The increase factor of wave percentage and variance are 6 and133 times for beam hardening, 19 and 1184 times for scatter, and 4 and16 times for lag artifacts, respectively. In contrast, for noisy projection the wave percentage, variance and inconsistency level are almost the same with those of the noise-free one. Conclusion: We have proposed a quantitative evaluation method of image artifact based on HLCC theory. According to our simulation results, the severity of different artifact types is found to be in a following order: Scatter

  17. Laboratory simulation of atmospheric turbulence induced optical wavefront distortion

    Science.gov (United States)

    Taylor, Travis Shane

    1999-11-01

    Mathcad[2]. The phase screens can then be manipulated and displayed on the LCTV using a computer with an appropriate framegrabber and software. The present system consists of an Epson liquid crystal television (which was optimized to modulate up to 2π of phase), a Macintosh IIci with a framegrabber card, a QuickTime movie consisting of multiple video frames of two dimensional arrays of spatially correlated grayscale images, and two polarizers. The movie is displayed on the television via the framegrabber, and the polarizers are used to operate the television in a mode that mostly modulates the spatial phase distribution of the optical wavefront. The frames of the movie are created using an accepted turbulence model for spatially correlated variations in index of refraction, and each subsequent frame of the movie is calculated following an accepted model for temporally varying turbulence. The model used for generating spatial functions or ``phase screens'' which simulate turbulence is the well known Kolmogorov model. These ``phase screens'' are then used, employing a Taylor's frozen flow model, to simulate temporally varying turbulence. A single ``phase screen'' is given a random velocity vector between 0 and.55 meters per second to simulate temporally varying turbulence. The system is used to distort optical beams as if the beams had propagated through a long pathlength of wavefront distorting medium, such as the atmosphere.

  18. SU-G-IeP4-06: Feasibility of External Beam Treatment Field Verification Using Cherenkov Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Black, P; Na, Y; Wuu, C [Columbia University, New York, NY (United States)

    2016-06-15

    Purpose: Cherenkov light emission has been shown to correlate with ionizing radiation (IR) dose delivery in solid tissue. In order to properly correlate Cherenkov light images with real time dose delivery in a patient, we must account for geometric and intensity distortions arising from observation angle, as well as the effect of monitor units (MU) and field size on Cherenkov light emission. To test the feasibility of treatment field verification, we first focused on Cherenkov light emission efficiency based on MU and known field size (FS). Methods: Cherenkov light emission was captured using a PI-MAX4 intensified charge coupled device(ICCD) system (Princeton Instruments), positioned at a fixed angle of 40° relative to the beam central axis. A Varian TrueBeam linear accelerator (linac) was operated at 6MV and 600MU/min to deliver an Anterior-Posterior beam to a 5cm thick block phantom positioned at 100cm Source-to-Surface-Distance(SSD). FS of 10×10, 5×5, and 2×2cm{sup 2} were used. Before beam delivery projected light field images were acquired, ensuring that geometric distortions were consistent when measuring Cherenkov field discrepancies. Cherenkov image acquisition was triggered by linac target current. 500 frames were acquired for each FS. Composite images were created through summation of frames and background subtraction. MU per image was calculated based on linac pulse delay of 2.8ms. Cherenkov and projected light FS were evaluated using ImageJ software. Results: Mean Cherenkov FS discrepancies compared to light field were <0.5cm for 5.6, 2.8, and 8.6 MU for 10×10, 5×5, and 2×2cm{sup 2} FS, respectably. Discrepancies were reduced with increasing field size and MU. We predict a minimum of 100 frames is needed for reliable confirmation of delivered FS. Conclusion: Current discrepancies in Cherenkov field sizes are within a usable range to confirm treatment delivery in standard and respiratory gated clinical scenarios at MU levels appropriate to

  19. Effects of Field-Map Distortion Correction on Resting State Functional Connectivity MRI

    Directory of Open Access Journals (Sweden)

    Hiroki Togo

    2017-12-01

    Full Text Available Magnetic field inhomogeneities cause geometric distortions of echo planar images used for functional magnetic resonance imaging (fMRI. To reduce this problem, distortion correction (DC with field map is widely used for both task and resting-state fMRI (rs-fMRI. Although DC with field map has been reported to improve the quality of task fMRI, little is known about its effects on rs-fMRI. Here, we tested the influence of field-map DC on rs-fMRI results using two rs-fMRI datasets derived from 40 healthy subjects: one with DC (DC+ and the other without correction (DC−. Independent component analysis followed by the dual regression approach was used for evaluation of resting-state functional connectivity networks (RSN. We also obtained the ratio of low-frequency to high-frequency signal power (0.01–0.1 Hz and above 0.1 Hz, respectively; LFHF ratio to assess the quality of rs-fMRI signals. For comparison of RSN between DC+ and DC− datasets, the default mode network showed more robust functional connectivity in the DC+ dataset than the DC− dataset. Basal ganglia RSN showed some decreases in functional connectivity primarily in white matter, indicating imperfect registration/normalization without DC. Supplementary seed-based and simulation analyses supported the utility of DC. Furthermore, we found a higher LFHF ratio after field map correction in the anterior cingulate cortex, posterior cingulate cortex, ventral striatum, and cerebellum. In conclusion, field map DC improved detection of functional connectivity derived from low-frequency rs-fMRI signals. We encourage researchers to include a DC step in the preprocessing pipeline of rs-fMRI analysis.

  20. Does energy-price regulation benefit China's economy and environment? Evidence from energy-price distortions

    International Nuclear Information System (INIS)

    Ju, Keyi; Su, Bin; Zhou, Dequn; Wu, Junmin

    2017-01-01

    China's energy prices have long been regulated due to the critical role energy plays in economic growth and social development, which leads to energy-price distortion to some extent. To figure out whether energy-price regulations will benefit China's economy (measured by GDP growth) and environment (measured by carbon emissions), we conducted an in-depth simulation using path analysis, where five energy products (natural gas, gasoline, fuel oil, steam coal, and coking coal) are selected and three measurements (absolute, relative, and moving) of energy-price distortions are calculated. The results indicate that, with a series of energy pricing policies, the price distortion for a single type of energy has gradually transformed, while the energy pricing system in China is not fully market-oriented yet. Furthermore, China's economy benefits from relative and moving distortions, while the absolute distortions of energy prices have negative impacts on economic growth. Finally, with regard to the environment, carbon emissions call for fewer distortions. - Highlights: • Price distortion for a single type of energy has gradually transformed. • Energy pricing system in China is not yet fully market-oriented. • China's economy benefits from relative and moving distortions. • Absolute distortions of energy prices have negative effects on economic growth. • Carbon emissions call for less pricing distortions.

  1. System performance enhancement with pre-distorted OOFDM signal waveforms in DM/DD systems.

    Science.gov (United States)

    Sánchez, C; Ortega, B; Capmany, J

    2014-03-24

    In this work we propose a pre-distortion technique for the mitigation of the nonlinear distortion present in directly modulated/detected OOFDM systems and explore the system performance achieved under varying system parameters. Simulation results show that the proposed pre-distortion technique efficiently mitigates the nonlinear distortion, achieving transmission information rates around 40 Gbits/s and 18.5 Gbits/s over 40 km and 100 km of single mode fiber links, respectively, under optimum operating conditions. Moreover, the proposed pre-distortion technique can potentially provide higher system performance to that obtained with nonlinear equalization at the receiver.

  2. Learning binary code via PCA of angle projection for image retrieval

    Science.gov (United States)

    Yang, Fumeng; Ye, Zhiqiang; Wei, Xueqi; Wu, Congzhong

    2018-01-01

    With benefits of low storage costs and high query speeds, binary code representation methods are widely researched for efficiently retrieving large-scale data. In image hashing method, learning hashing function to embed highdimensions feature to Hamming space is a key step for accuracy retrieval. Principal component analysis (PCA) technical is widely used in compact hashing methods, and most these hashing methods adopt PCA projection functions to project the original data into several dimensions of real values, and then each of these projected dimensions is quantized into one bit by thresholding. The variances of different projected dimensions are different, and with real-valued projection produced more quantization error. To avoid the real-valued projection with large quantization error, in this paper we proposed to use Cosine similarity projection for each dimensions, the angle projection can keep the original structure and more compact with the Cosine-valued. We used our method combined the ITQ hashing algorithm, and the extensive experiments on the public CIFAR-10 and Caltech-256 datasets validate the effectiveness of the proposed method.

  3. Automated processing for proton spectroscopic imaging using water reference deconvolution.

    Science.gov (United States)

    Maudsley, A A; Wu, Z; Meyerhoff, D J; Weiner, M W

    1994-06-01

    Automated formation of MR spectroscopic images (MRSI) is necessary before routine application of these methods is possible for in vivo studies; however, this task is complicated by the presence of spatially dependent instrumental distortions and the complex nature of the MR spectrum. A data processing method is presented for completely automated formation of in vivo proton spectroscopic images, and applied for analysis of human brain metabolites. This procedure uses the water reference deconvolution method (G. A. Morris, J. Magn. Reson. 80, 547(1988)) to correct for line shape distortions caused by instrumental and sample characteristics, followed by parametric spectral analysis. Results for automated image formation were found to compare favorably with operator dependent spectral integration methods. While the water reference deconvolution processing was found to provide good correction of spatially dependent resonance frequency shifts, it was found to be susceptible to errors for correction of line shape distortions. These occur due to differences between the water reference and the metabolite distributions.

  4. Effect of pion external distortion on low energy pion double-charge-exchange

    International Nuclear Information System (INIS)

    Khankhasaev, M.Kh.; Kurmanov, Zh.B.; Johnson, M.B.

    1993-01-01

    The effects of the external pion distortion for iso-elastic charge exchange scattering (within the framework of the isospin invariant optical model) is considered. An approximated method of taking into account the distortion based on the separable expansion of the optical potential in momentum space is developed. The result of external distortions for sequential scattering 14 C(π + , π - ) 14 O at 50 MeV is presented. It is shown that this distortion gives a small enhancement to forward and reduced the differential cross sections at large angels. 22 refs., 5 figs., 1 tab

  5. Image reconstruction from projections and its application in emission computer tomography

    International Nuclear Information System (INIS)

    Kuba, Attila; Csernay, Laszlo

    1989-01-01

    Computer tomography is an imaging technique for producing cross sectional images by reconstruction from projections. Its two main branches are called transmission and emission computer tomography, TCT and ECT, resp. After an overview of the theory and practice of TCT and ECT, the first Hungarian ECT type MB 9300 SPECT consisting of a gamma camera and Ketronic Medax N computer is described, and its applications to radiological patient observations are discussed briefly. (R.P.) 28 refs.; 4 figs

  6. Optimized image acquisition for breast tomosynthesis in projection and reconstruction space

    OpenAIRE

    Chawla, Amarpreet S.; Lo, Joseph Y.; Baker, Jay A.; Samei, Ehsan

    2009-01-01

    Breast tomosynthesis has been an exciting new development in the field of breast imaging. While the diagnostic improvement via tomosynthesis is notable, the full potential of tomosynthesis has not yet been realized. This may be attributed to the dependency of the diagnostic quality of tomosynthesis on multiple variables, each of which needs to be optimized. Those include dose, number of angular projections, and the total angular span of those projections. In this study, the authors investigat...

  7. Short Project-Based Learning with MATLAB Applications to Support the Learning of Video-Image Processing

    Science.gov (United States)

    Gil, Pablo

    2017-10-01

    University courses concerning Computer Vision and Image Processing are generally taught using a traditional methodology that is focused on the teacher rather than on the students. This approach is consequently not effective when teachers seek to attain cognitive objectives involving their students' critical thinking. This manuscript covers the development, implementation and assessment of a short project-based engineering course with MATLAB applications Multimedia Engineering being taken by Bachelor's degree students. The principal goal of all course lectures and hands-on laboratory activities was for the students to not only acquire image-specific technical skills but also a general knowledge of data analysis so as to locate phenomena in pixel regions of images and video frames. This would hopefully enable the students to develop skills regarding the implementation of the filters, operators, methods and techniques used for image processing and computer vision software libraries. Our teaching-learning process thus permits the accomplishment of knowledge assimilation, student motivation and skill development through the use of a continuous evaluation strategy to solve practical and real problems by means of short projects designed using MATLAB applications. Project-based learning is not new. This approach has been used in STEM learning in recent decades. But there are many types of projects. The aim of the current study is to analyse the efficacy of short projects as a learning tool when compared to long projects during which the students work with more independence. This work additionally presents the impact of different types of activities, and not only short projects, on students' overall results in this subject. Moreover, a statistical study has allowed the author to suggest a link between the students' success ratio and the type of content covered and activities completed on the course. The results described in this paper show that those students who took part

  8. The Ilac-Project Supporting Ancient Coin Classification by Means of Image Analysis

    Science.gov (United States)

    Kavelar, A.; Zambanini, S.; Kampel, M.; Vondrovec, K.; Siegl, K.

    2013-07-01

    This paper presents the ILAC project, which aims at the development of an automated image-based classification system for ancient Roman Republican coins. The benefits of such a system are manifold: operating at the suture between computer vision and numismatics, ILAC can reduce the day-to-day workload of numismatists by assisting them in classification tasks and providing a preselection of suitable coin classes. This is especially helpful for large coin hoard findings comprising several thousands of coins. Furthermore, this system could be implemented in an online platform for hobby numismatists, allowing them to access background information about their coin collection by simply uploading a photo of obverse and reverse for the coin of interest. ILAC explores different computer vision techniques and their combinations for the use of image-based coin recognition. Some of these methods, such as image matching, use the entire coin image in the classification process, while symbol or legend recognition exploit certain characteristics of the coin imagery. An overview of the methods explored so far and the respective experiments is given as well as an outlook on the next steps of the project.

  9. THE ILAC-PROJECT: SUPPORTING ANCIENT COIN CLASSIFICATION BY MEANS OF IMAGE ANALYSIS

    Directory of Open Access Journals (Sweden)

    A. Kavelar

    2013-07-01

    Full Text Available This paper presents the ILAC project, which aims at the development of an automated image-based classification system for ancient Roman Republican coins. The benefits of such a system are manifold: operating at the suture between computer vision and numismatics, ILAC can reduce the day-to-day workload of numismatists by assisting them in classification tasks and providing a preselection of suitable coin classes. This is especially helpful for large coin hoard findings comprising several thousands of coins. Furthermore, this system could be implemented in an online platform for hobby numismatists, allowing them to access background information about their coin collection by simply uploading a photo of obverse and reverse for the coin of interest. ILAC explores different computer vision techniques and their combinations for the use of image-based coin recognition. Some of these methods, such as image matching, use the entire coin image in the classification process, while symbol or legend recognition exploit certain characteristics of the coin imagery. An overview of the methods explored so far and the respective experiments is given as well as an outlook on the next steps of the project.

  10. Assessing MRI susceptibility artefact through an indicator of image distortion

    Directory of Open Access Journals (Sweden)

    Illanes Alfredo

    2016-09-01

    Full Text Available Susceptibility artefacts in magnetic resonance imaging (MRI caused by medical devices can result in a severe degradation of the MR image quality. The quantification of susceptibility artefacts is regulated by the ASTM standard which defines a manual method to assess the size of an artefact. This means that the estimated artefact size can be user dependent. To cope with this problem, we propose an algorithm to automatically quantify the size of such susceptibility artefacts. The algorithm is based on the analysis of a 3D surface generated from the 2D MR images. The results obtained by the automatic algorithm were compared to the manual measurements performed by study participants. The results show that the automatic and manual measurements follow the same trend. The clear advantage of the automated algorithm is the absence of the inter- and intra-observer variability. In addition, the algorithm also detects the slice containing the largest artefact which was not the case for the manual measurements.

  11. An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT).

    Science.gov (United States)

    Li, Ran; Duan, Xiaomeng; Li, Xu; He, Wei; Li, Yanling

    2018-04-17

    Aimed at a low-energy consumption of Green Internet of Things (IoT), this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS) theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE) criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.

  12. An Energy-Efficient Compressive Image Coding for Green Internet of Things (IoT

    Directory of Open Access Journals (Sweden)

    Ran Li

    2018-04-01

    Full Text Available Aimed at a low-energy consumption of Green Internet of Things (IoT, this paper presents an energy-efficient compressive image coding scheme, which provides compressive encoder and real-time decoder according to Compressive Sensing (CS theory. The compressive encoder adaptively measures each image block based on the block-based gradient field, which models the distribution of block sparse degree, and the real-time decoder linearly reconstructs each image block through a projection matrix, which is learned by Minimum Mean Square Error (MMSE criterion. Both the encoder and decoder have a low computational complexity, so that they only consume a small amount of energy. Experimental results show that the proposed scheme not only has a low encoding and decoding complexity when compared with traditional methods, but it also provides good objective and subjective reconstruction qualities. In particular, it presents better time-distortion performance than JPEG. Therefore, the proposed compressive image coding is a potential energy-efficient scheme for Green IoT.

  13. Tiny Devices Project Sharp, Colorful Images

    Science.gov (United States)

    2009-01-01

    Displaytech Inc., based in Longmont, Colorado and recently acquired by Micron Technology Inc. of Boise, Idaho, first received a Small Business Innovation Research contract in 1993 from Johnson Space Center to develop tiny, electronic, color displays, called microdisplays. Displaytech has since sold over 20 million microdisplays and was ranked one of the fastest growing technology companies by Deloitte and Touche in 2005. Customers currently incorporate the microdisplays in tiny pico-projectors, which weigh only a few ounces and attach to media players, cell phones, and other devices. The projectors can convert a digital image from the typical postage stamp size into a bright, clear, four-foot projection. The company believes sales of this type of pico-projector may exceed $1.1 billion within 5 years.

  14. Ultrasonic imaging of projected components of PFBR

    Energy Technology Data Exchange (ETDEWEB)

    Sylvia, J.I., E-mail: sylvia@igcar.gov.in [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India); Jeyan, M.R.; Anbucheliyan, M.; Asokane, C.; Babu, V. Rajan; Babu, B.; Rajan, K.K.; Velusamy, K.; Jayakumar, T. [Indira Gandhi Centre for Atomic Research, Kalpakkam 603 102, Tamil Nadu (India)

    2013-05-15

    Highlights: ► Under sodium ultrasonic scanner in PFBR is for detecting protruding objects. ► Feasibility study for detecting Absorber rods and its drive mechanisms. ► Developed in-house PC based ultrasonic imaging system. ► Different case studies were carried out on simulated ARDM's. ► Implemented the experimental results to PFBR application. -- Abstract: The 500 MWe, sodium cooled, Prototype Fast Breeder Reactor (PFBR) is under advanced stage of construction at Kalpakkam in India. Opacity of sodium restricts visual inspection of components immersed in sodium by optical means. Ultrasonic wave passes through sodium hence ultrasonic techniques using under sodium ultrasonic scanners are developed to obtain under sodium images. The main objective of such an Under Sodium Ultrasonic Scanner (USUSS) for Prototype Fast Breeder Reactor (PFBR) is to detect and ensure that no core Sub Assembly (SA) or Absorber Rod or its Drive Mechanism is protruded in the above core plenum before starting the fuel handling operation. Hence, it is necessary to detect and locate the object, if it is protruding the above core plenum. To study the feasibility of detecting the absorber rods and their drive mechanisms using direct ultrasonic imaging technique, experiments were carried out for different orientations and profiles of the projected components in a 5 m diameter water tank. The in-house developed PC based ultrasonic scanning system is used for acquisition and analysis of data. The pseudo three dimensional color images obtained are discussed and the results are applicable for PFBR. This paper gives the details of the features of the absorber rods and their drive mechanisms, their orientation in the reactor core, experimental setup, PC based ultrasonic scanning system, ultrasonic images and the discussion on the results.

  15. Methods of X-ray CT image reconstruction from few projections

    International Nuclear Information System (INIS)

    Wang, H.

    2011-01-01

    To improve the safety (low dose) and the productivity (fast acquisition) of a X-ray CT system, we want to reconstruct a high quality image from a small number of projections. The classical reconstruction algorithms generally fail since the reconstruction procedure is unstable and suffers from artifacts. A new approach based on the recently developed 'Compressed Sensing' (CS) theory assumes that the unknown image is in some sense 'sparse' or 'compressible', and the reconstruction is formulated through a non linear optimization problem (TV/l1 minimization) by enhancing the sparsity. Using the pixel (or voxel in 3D) as basis, to apply the CS framework in CT one usually needs a 'sparsifying' transform, and combines it with the 'X-ray projector' which applies on the pixel image. In this thesis, we have adapted a 'CT-friendly' radial basis of Gaussian family called 'blob' to the CS-CT framework. The blob has better space-frequency localization properties than the pixel, and many operations, such as the X-ray transform, can be evaluated analytically and are highly parallelizable (on GPU platform). Compared to the classical Kaisser-Bessel blob, the new basis has a multi-scale structure: an image is the sum of dilated and translated radial Mexican hat functions. The typical medical objects are compressible under this basis, so the sparse representation system used in the ordinary CS algorithms is no more needed. 2D simulations show that the existing TV and l1 algorithms are more efficient and the reconstructions have better visual quality than the equivalent approach based on the pixel or wavelet basis. The new approach has also been validated on 2D experimental data, where we have observed that in general the number of projections can be reduced to about 50%, without compromising the image quality. (author) [fr

  16. Motion nature projection reduces patient's psycho-physiological anxiety during CT imaging.

    NARCIS (Netherlands)

    Zijlstra, Emma; Hagedoorn, Mariët; Krijnen, Wim; van der Schans, Cees; Mobach, Mark P.

    2017-01-01

    A growing body of evidence indicates that natural environments can positively influence people. This study investigated whether the use of motion nature projection in computed tomography (CT) imaging rooms is effective in mitigating psycho-physiological anxiety (vs. no intervention) using a

  17. A locally adaptive algorithm for shadow correction in color images

    Science.gov (United States)

    Karnaukhov, Victor; Kober, Vitaly

    2017-09-01

    The paper deals with correction of color images distorted by spatially nonuniform illumination. A serious distortion occurs in real conditions when a part of the scene containing 3D objects close to a directed light source is illuminated much brighter than the rest of the scene. A locally-adaptive algorithm for correction of shadow regions in color images is proposed. The algorithm consists of segmentation of shadow areas with rank-order statistics followed by correction of nonuniform illumination with human visual perception approach. The performance of the proposed algorithm is compared to that of common algorithms for correction of color images containing shadow regions.

  18. Analyzing Reaction Rates with the Distortion/Interaction-Activation Strain Model

    NARCIS (Netherlands)

    Bickelhaupt, F. Matthias; Houk, Kendall N.

    2017-01-01

    The activation strain or distortion/interaction model is a tool to analyze activation barriers that determine reaction rates. For bimolecular reactions, the activation energies are the sum of the energies to distort the reactants into geometries they have in transition states plus the interaction

  19. A study on the effect of different image centres on stereo triangulation accuracy

    CSIR Research Space (South Africa)

    De Villiers, J

    2015-11-01

    Full Text Available This paper evaluates the effect of mixing the distortion centre, principal point and arithmetic image centre on the distortion correction, focal length determination and resulting real-world stereo vision triangulation. A robotic arm is used...

  20. Redshift distortions of galaxy correlation functions

    International Nuclear Information System (INIS)

    Fry, J.N.; Florida Univ., Gainesville, FL; Gaztanaga, E.; Oxford Univ.

    1993-01-01

    To examine how peculiar velocities can affect the 2-, 3-, and 4-point correlation functions, we evaluate volume-average correlations for configurations that emphasize and minimize distortions for four different volume-limited samples from each of the CfA, SSRS, and IRAS redshift catalogs. We present the results as the correlation length r 0 and power index γ of the 2-point correlation, anti Ξ 2 = (r 0 /r) γ , and as the hierarchical amplitudes of the 3- and 4-point functions, S 3 = anti Ξ 3 /anti Ξ 2 2 and S 4 = anti Ξ/anti Ξ 2 3 . We find a characteristic distortion for anti Ξ 2 : The slope γ is flatter and the correlation length is larger in redshift space than in real space; that is, redshift distortions ''move'' correlations from small to large scales. At the largest scales, extra power in the redshift distribution is compatible with Ω 4/7 /b ∼ 1; we find 0.53 ± 0.15, 1.10 ± 0.16 and 0.84 ± 0.45 for the CfA, SSRS and IRAS catalogs. Higher order correlations anti Ξ 3 and anti Ξ 4 suffer similar redshift distortions, but in such a way that, within the accuracy of our analysis, the normalized amplitudes S 3 and S 4 are insensitive to this effect. The hierarchical amplitudes S 3 and S 4 are constant as a function of scale between 1-12 h -1 Mpc and have similar values in all samples and catalogues, S 3 ∼ 2 and S 4 ∼ 6, despite the fact that anti Ξ 2 , anti Ξ 3 , and anti Ξ 4 differ from one sample to another by large factors. The agreement between the independent estimations of S 3 and S 4 is remarkable given the different criteria in the selection of galaxies and also the difference in the resulting range of densities, luminosities and locations between samples

  1. Watermarking patient data in encrypted medical images

    Indian Academy of Sciences (India)

    Due to the advancement of technology, internet has become an ... area including important information and must be stored without any distortion. .... Although someone with the knowledge of encryption key can obtain a decrypted image and ... ical image management, in: Engineering in Medicine and Biology Society.

  2. Evaluation of noise limits to improve image processing in soft X-ray projection microscopy.

    Science.gov (United States)

    Jamsranjav, Erdenetogtokh; Kuge, Kenichi; Ito, Atsushi; Kinjo, Yasuhito; Shiina, Tatsuo

    2017-03-03

    Soft X-ray microscopy has been developed for high resolution imaging of hydrated biological specimens due to the availability of water window region. In particular, a projection type microscopy has advantages in wide viewing area, easy zooming function and easy extensibility to computed tomography (CT). The blur of projection image due to the Fresnel diffraction of X-rays, which eventually reduces spatial resolution, could be corrected by an iteration procedure, i.e., repetition of Fresnel and inverse Fresnel transformations. However, it was found that the correction is not enough to be effective for all images, especially for images with low contrast. In order to improve the effectiveness of image correction by computer processing, we in this study evaluated the influence of background noise in the iteration procedure through a simulation study. In the study, images of model specimen with known morphology were used as a substitute for the chromosome images, one of the targets of our microscope. Under the condition that artificial noise was distributed on the images randomly, we introduced two different parameters to evaluate noise effects according to each situation where the iteration procedure was not successful, and proposed an upper limit of the noise within which the effective iteration procedure for the chromosome images was possible. The study indicated that applying the new simulation and noise evaluation method was useful for image processing where background noises cannot be ignored compared with specimen images.

  3. SU-E-J-112: Intensity-Based Pulmonary Image Registration: An Evaluation Study

    Energy Technology Data Exchange (ETDEWEB)

    Yang, F; Meyer, J; Sandison, G [Department of Radiation Oncology, University of Washington Medical Center, Seattle, WA (United States)

    2015-06-15

    Purpose: Accurate alignment of thoracic CT images is essential for dose tracking and to safely implement adaptive radiotherapy in lung cancers. At the same time it is challenging given the highly elastic nature of lung tissue deformations. The objective of this study was to assess the performances of three state-of-art intensity-based algorithms in terms of their ability to register thoracic CT images subject to affine, barrel, and sinusoid transformation. Methods: Intensity similarity measures of the evaluated algorithms contained sum-of-squared difference (SSD), local mutual information (LMI), and residual complexity (RC). Five thoracic CT scans obtained from the EMPIRE10 challenge database were included and served as reference images. Each CT dataset was distorted by realistic affine, barrel, and sinusoid transformations. Registration performances of the three algorithms were evaluated for each distortion type in terms of intensity root mean square error (IRMSE) between the reference and registered images in the lung regions. Results: For affine distortions, the three algorithms differed significantly in registration of thoracic images both visually and nominally in terms of IRMSE with a mean of 0.011 for SSD, 0.039 for RC, and 0.026 for LMI (p<0.01; Kruskal-Wallis test). For barrel distortion, the three algorithms showed nominally no significant difference in terms of IRMSE with a mean of 0.026 for SSD, 0.086 for RC, and 0.054 for LMI (p=0.16) . A significant difference was seen for sinusoid distorted thoracic CT data with mean lung IRMSE of 0.039 for SSD, 0.092 for RC, and 0.035 for LMI (p=0.02). Conclusion: Pulmonary deformations might vary to a large extent in nature in a daily clinical setting due to factors ranging from anatomy variations to respiratory motion to image quality. It can be appreciated from the results of the present study that the suitability of application of a particular algorithm for pulmonary image registration is deformation-dependent.

  4. Computational simulation of weld microstructure and distortion by considering process mechanics

    Science.gov (United States)

    Mochizuki, M.; Mikami, Y.; Okano, S.; Itoh, S.

    2009-05-01

    Highly precise fabrication of welded materials is in great demand, and so microstructure and distortion controls are essential. Furthermore, consideration of process mechanics is important for intelligent fabrication. In this study, the microstructure and hardness distribution in multi-pass weld metal are evaluated by computational simulations under the conditions of multiple heat cycles and phase transformation. Because conventional CCT diagrams of weld metal are not available even for single-pass weld metal, new diagrams for multi-pass weld metals are created. The weld microstructure and hardness distribution are precisely predicted when using the created CCT diagram for multi-pass weld metal and calculating the weld thermal cycle. Weld distortion is also investigated by using numerical simulation with a thermal elastic-plastic analysis. In conventional evaluations of weld distortion, the average heat input has been used as the dominant parameter; however, it is difficult to consider the effect of molten pool configurations on weld distortion based only on the heat input. Thus, the effect of welding process conditions on weld distortion is studied by considering molten pool configurations, determined by temperature distribution and history.

  5. Evaluation of core distortion in FBR

    International Nuclear Information System (INIS)

    Ikarimoto, I.; Tanaka, M.; Okubo, Y.

    1984-01-01

    The analyses of FBR's core distortion are mainly performed in order to evaluate the following items: 1) Change of reactivity; 2) Force at pads on core assemblies; 3) Withdrawal force at refueling; 4) Loading, refueling and residual deviations of wrapper tubes (core assemblies) at the top; 5) Bowing modes of guide tubes for control rods. The analysis of core distortion are performed by using computer program for two-dimensional row deformation analysis or three-dimensional core deformation if necessary, considering these evaluated items which become design conditions. This report shows the relationship between core deformation analysis and component design, a point of view of choosing an analysis program for design considering core characteristics, and computing examples of core deformation of prototype class reactor by the above code. (author)

  6. Lawful Distortion of Consumers’ Economic Behaviour

    DEFF Research Database (Denmark)

    Trzaskowski, Jan

    2016-01-01

    ‘collateral damage’. In that vein this article discusses situations where consumers may have their economic behaviour distorted by commercial practices that are not unfair under the Directive. It is expected that many consumers will make relatively good decisions most of the time...... Visitors’). The article suggests how behavioural sciences may be applied to understand these situations in order to protect more consumers from having their economic behaviour distorted by commercial practices. It is suggested that per se prohibitions may be advantageous in some instances as long......The Unfair Commercial Practices Directive prohibits unfair business-to-consumer commercial practices with a view to protect consumers’ economic interests. In a market economy such regulation cannot protect the economic interests of all consumers in all situations – there must inevitably be some...

  7. Redshift-space distortions from vector perturbations

    Science.gov (United States)

    Bonvin, Camille; Durrer, Ruth; Khosravi, Nima; Kunz, Martin; Sawicki, Ignacy

    2018-02-01

    We compute a general expression for the contribution of vector perturbations to the redshift space distortion of galaxy surveys. We show that they contribute to the same multipoles of the correlation function as scalar perturbations and should thus in principle be taken into account in data analysis. We derive constraints for next-generation surveys on the amplitude of two sources of vector perturbations, namely non-linear clustering and topological defects. While topological defects leave a very small imprint on redshift space distortions, we show that the multipoles of the correlation function are sensitive to vorticity induced by non-linear clustering. Therefore future redshift surveys such as DESI or the SKA should be capable of measuring such vector modes, especially with the hexadecapole which appears to be the most sensitive to the presence of vorticity.

  8. High-speed adaptive optics line scan confocal retinal imaging for human eye.

    Science.gov (United States)

    Lu, Jing; Gu, Boyu; Wang, Xiaolin; Zhang, Yuhua

    2017-01-01

    Continuous and rapid eye movement causes significant intraframe distortion in adaptive optics high resolution retinal imaging. To minimize this artifact, we developed a high speed adaptive optics line scan confocal retinal imaging system. A high speed line camera was employed to acquire retinal image and custom adaptive optics was developed to compensate the wave aberration of the human eye's optics. The spatial resolution and signal to noise ratio were assessed in model eye and in living human eye. The improvement of imaging fidelity was estimated by reduction of intra-frame distortion of retinal images acquired in the living human eyes with frame rates at 30 frames/second (FPS), 100 FPS, and 200 FPS. The device produced retinal image with cellular level resolution at 200 FPS with a digitization of 512×512 pixels/frame in the living human eye. Cone photoreceptors in the central fovea and rod photoreceptors near the fovea were resolved in three human subjects in normal chorioretinal health. Compared with retinal images acquired at 30 FPS, the intra-frame distortion in images taken at 200 FPS was reduced by 50.9% to 79.7%. We demonstrated the feasibility of acquiring high resolution retinal images in the living human eye at a speed that minimizes retinal motion artifact. This device may facilitate research involving subjects with nystagmus or unsteady fixation due to central vision loss.

  9. Gambling Motives: Do They Explain Cognitive Distortions in Male Poker Gamblers?

    Science.gov (United States)

    Mathieu, Sasha; Barrault, Servane; Brunault, Paul; Varescon, Isabelle

    2018-03-01

    Gambling behavior is partly the result of varied motivations leading individuals to participate in gambling activities. Specific motivational profiles are found in gamblers, and gambling motives are closely linked to the development of cognitive distortions. This cross-sectional study aimed to predict cognitive distortions from gambling motives in poker players. The population was recruited in online gambling forums. Participants reported gambling at least once a week. Data included sociodemographic characteristics, the South Oaks Gambling Screen, the Gambling Motives Questionnaire-Financial and the Gambling-Related Cognition Scale. This study was conducted on 259 male poker gamblers (aged 18-69 years, 14.3% probable pathological gamblers). Univariate analyses showed that cognitive distortions were independently predicted by overall gambling motives (34.8%) and problem gambling (22.4%) (p gambling problems, showing a close inter-relationship between gambling motives, cognitive distortions and the severity of gambling. These data are consistent with the following theoretical process model: gambling motives lead individuals to practice and repeat the gambling experience, which may lead them to develop cognitive distortions, which in turn favor problem gambling. This study opens up new research perspectives to understand better the mechanisms underlying gambling practice and has clinical implications in terms of prevention and treatment. For example, a coupled motivational and cognitive intervention focused on gambling motives/cognitive distortions could be beneficial for individuals with gambling problems.

  10. Image Retargeting by Content-Aware Synthesis

    OpenAIRE

    Dong, Weiming; Wu, Fuzhang; Kong, Yan; Mei, Xing; Lee, Tong-Yee; Zhang, Xiaopeng

    2014-01-01

    Real-world images usually contain vivid contents and rich textural details, which will complicate the manipulation on them. In this paper, we design a new framework based on content-aware synthesis to enhance content-aware image retargeting. By detecting the textural regions in an image, the textural image content can be synthesized rather than simply distorted or cropped. This method enables the manipulation of textural & non-textural regions with different strategy since they have different...

  11. How Distorted Thinking Influence Arab Children Academic Achievement in Israel?

    Science.gov (United States)

    Gith, Emad

    2018-01-01

    The purpose of the current study was to examine the relation between the parents Cognitive Distortion and Arab children academic achievements in Israel. 52 fifth grade Arab Children and their parents from Israel were participated. The results indicated that parent's cognitive distortion related negatively to children academic achievements; there…

  12. On the relationship between perceptual impact of source and channel distortions in video sequences

    DEFF Research Database (Denmark)

    Korhonen, Jari; Reiter, Ulrich; You, Junyong

    2010-01-01

    It is known that peak signal-to-noise ratio (PSNR) can be used for assessing the relative qualities of distorted video sequences meaningfully only if the compared sequences contain similar types of distortions. In this paper, we propose a model for rough assessment of the bias in PSNR results, when...... video sequences with both channel and source distortion are compared against video sequences with source distortion only. The proposed method can be used to compare the relative perceptual quality levels of video sequences with different distortion types more reliably than using plain PSNR....

  13. Amplifier Distortion

    Science.gov (United States)

    Keeports, David

    2006-12-01

    By definition, a high fidelity amplifier's instantaneous output voltage is directly proportional to its instantaneous input voltage. While high fidelity is generally valued in the amplification of recorded music, nonlinearity, also known as distortion, is desirable in the amplification of some musical instruments. In particular, guitar amplifiers exploit nonlinearity to increase both the harmonic content and sustain of a guitar's sound. I will discuss how both modifications in sound result from saturation of triode tubes and transistors. Additionally, I will describe the difference in the symmetry of saturation curves for transistors and tubes and the reason why tube guitar amplifiers are generally considered to be superior to solid-state amplifiers. Finally, I will discuss attempts to use solid-state electronics to replicate the sound of tube amplifiers.

  14. Experimental Investigation of Inlet Distortion in a Multistage Axial Compressor

    Science.gov (United States)

    Rusu, Razvan

    The primary objective of this research is to present results and methodologies used to study total pressure inlet distortion in a multi-stage axial compressor environment. The study was performed at the Purdue 3-Stage Axial Compressor Facility (P3S) which models the final three stages of a production turbofan engine's high-pressure compressor (HPC). The goal of this study was twofold; first, to design, implement, and validate a circumferentially traversable total pressure inlet distortion generation system, and second, to demonstrate data acquisition methods to characterize the inter-stage total pressure flow fields to study the propagation and attenuation of a one-per-rev total pressure distortion. The datasets acquired for this study are intended to support the development and validation of novel computational tools and flow physics models for turbomachinery flow analysis. Total pressure inlet distortion was generated using a series of low-porosity wire gauze screens placed upstream of the compressor in the inlet duct. The screens are mounted to a rotatable duct section that can be precisely controlled. The P3S compressor features fixed instrumentation stations located at the aerodynamic interface plane (AIP) and downstream and upstream of each vane row. Furthermore, the compressor features individually indexable stator vanes which can be traverse by up to two vane passages. Using a series of coordinated distortion and vane traverses, the total pressure flow field at the AIP and subsequent inter-stage stations was characterized with a high circumferential resolution. The uniformity of the honeycomb carrier was demonstrated by characterizing the flow field at the AIP while no distortion screens where installed. Next, the distortion screen used for this study was selected following three iterations of porosity reduction. The selected screen consisted of a series of layered screens with a 100% radial extent and a 120° circumferential extent. A detailed total

  15. Metering error quantification under voltage and current waveform distortion

    Science.gov (United States)

    Wang, Tao; Wang, Jia; Xie, Zhi; Zhang, Ran

    2017-09-01

    With integration of more and more renewable energies and distortion loads into power grid, the voltage and current waveform distortion results in metering error in the smart meters. Because of the negative effects on the metering accuracy and fairness, it is an important subject to study energy metering combined error. In this paper, after the comparing between metering theoretical value and real recorded value under different meter modes for linear and nonlinear loads, a quantification method of metering mode error is proposed under waveform distortion. Based on the metering and time-division multiplier principles, a quantification method of metering accuracy error is proposed also. Analyzing the mode error and accuracy error, a comprehensive error analysis method is presented which is suitable for new energy and nonlinear loads. The proposed method has been proved by simulation.

  16. Children's (Pediatric) Magnetic Resonance Imaging

    Medline Plus

    Full Text Available ... items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a ...

  17. Magnetic Resonance Imaging (MRI) -- Head

    Medline Plus

    Full Text Available ... items, which can distort MRI images removable dental work pens, pocket knives and eyeglasses body piercings In most cases, an MRI exam is safe for patients with metal implants, except for a ...

  18. Image restoration by the method of convex projections: part 2 applications and numerical results.

    Science.gov (United States)

    Sezan, M I; Stark, H

    1982-01-01

    The image restoration theory discussed in a previous paper by Youla and Webb [1] is applied to a simulated image and the results compared with the well-known method known as the Gerchberg-Papoulis algorithm. The results show that the method of image restoration by projection onto convex sets, by providing a convenient technique for utilizing a priori information, performs significantly better than the Gerchberg-Papoulis method.

  19. Distortions caused by the signal processing in analog AM modulators

    International Nuclear Information System (INIS)

    Njau, E.C.

    1988-08-01

    Complete analytical expressions for distortions caused by signal processing in analog AM modulators are developed. The salient features in these expressions are shown to be consistent with displays of actual spectra of AM signals. Finally suggestions are given on how the distortions may be practically minimized. (author). 6 refs, 3 figs

  20. Project Blue: Optical Coronagraphic Imaging Search for Terrestrial-class Exoplanets in Alpha Centauri

    Science.gov (United States)

    Morse, Jon; Project Blue team

    2018-01-01

    Project Blue is a coronagraphic imaging space telescope mission designed to search for habitable worlds orbiting the nearest Sun-like stars in the Alpha Centauri system. With a 45-50 cm baseline primary mirror size, Project Blue will perform a reconnaissance of the habitable zones of Alpha Centauri A and B in blue light and one or two longer wavelength bands to determine the hue of any planets discovered. Light passing through the off-axis telescope feeds into a coronagraphic instrument that forms the heart of the mission. Various coronagraph designs are being considered, such as phase induced amplitude apodization (PIAA), vector vortex, etc. Differential orbital image processing techniques will be employed to analyze the data for faint planets embedded in the residual glare of the parent star. Project Blue will advance our knowledge about the presence or absence of terrestrial-class exoplanets in the habitable zones and measure the brightness of zodiacal dust around each star, which will aid future missions in planning their observational surveys of exoplanets. It also provides on-orbit demonstration of high-contrast coronagraphic imaging technologies and techniques that will be useful for planning and implementing future space missions by NASA and other space agencies. We present an overview of the science goals, mission concept and development schedule. As part of our cooperative agreement with NASA, the Project Blue team intends to make the data available in a publicly accessible archive.