WorldWideScience

Sample records for projections salinity model

  1. Dungeness Crab Dredging Entrainment Studies in the Lower Columbia River, 2002 – 2004: Loss Projections, Salinity Model, and Scenario Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Walter H.; Williams, Greg D.; Skalski, John R.

    2005-01-01

    Dungeness crab studies conducted in 2002 for the Portland District of the U.S. Army Corps of Engineers (Corps) constituted a major step forward in quantifying crab entrainment through statistical projections of adult equivalent loss (AEL) and loss to the fishery (LF) from proposed construction and maintenance dredging in the Columbia River navigation channel (Pearson et al. 2002, 2003). These studies also examined the influence of bottom salinity on crab abundance and entrainment rates. Additional sampling was conducted in 2004 to tighten loss projections, further develop the crab salinity model, and apply the model to assess correlations of entrainment rates and projected losses with seasonal salinity changes.

  2. Stochastic modeling of soil salinity

    Science.gov (United States)

    Suweis, S.; Porporato, A. M.; Daly, E.; van der Zee, S.; Maritan, A.; Rinaldo, A.

    2010-12-01

    A minimalist stochastic model of primary soil salinity is proposed, in which the rate of soil salinization is determined by the balance between dry and wet salt deposition and the intermittent leaching events caused by rainfall events. The equations for the probability density functions of salt mass and concentration are found by reducing the coupled soil moisture and salt mass balance equations to a single stochastic differential equation (generalized Langevin equation) driven by multiplicative Poisson noise. Generalized Langevin equations with multiplicative white Poisson noise pose the usual Ito (I) or Stratonovich (S) prescription dilemma. Different interpretations lead to different results and then choosing between the I and S prescriptions is crucial to describe correctly the dynamics of the model systems. We show how this choice can be determined by physical information about the timescales involved in the process. We also show that when the multiplicative noise is at most linear in the random variable one prescription can be made equivalent to the other by a suitable transformation in the jump probability distribution. We then apply these results to the generalized Langevin equation that drives the salt mass dynamics. The stationary analytical solutions for the probability density functions of salt mass and concentration provide insight on the interplay of the main soil, plant and climate parameters responsible for long term soil salinization. In particular, they show the existence of two distinct regimes, one where the mean salt mass remains nearly constant (or decreases) with increasing rainfall frequency, and another where mean salt content increases markedly with increasing rainfall frequency. As a result, relatively small reductions of rainfall in drier climates may entail dramatic shifts in longterm soil salinization trends, with significant consequences, e.g. for climate change impacts on rain fed agriculture.

  3. Stennis Space Center Salinity Drifter Project. A Collaborative Project with Hancock High School, Kiln, MS

    Science.gov (United States)

    Kalcic, Maria; Turowski, Mark; Hall, Callie

    2010-01-01

    Presentation topics include: importance of salinity of coastal waters, habitat switching algorithm, habitat switching module, salinity estimates from Landsat for Sabine Calcasieu Basin, percent of time inundated in 2006, salinity data, prototyping the system, system as packaged for field tests, salinity probe and casing, opening for water flow, cellular antenna used to transmit data, preparing to launch, system is launched in the Pearl River at Stennis Space Center, data are transmitted to Twitter by cell phone modem every 15 minutes, Google spreadsheet I used to import the data from the Twitter feed and to compute salinity (from conductivity) and display charts of salinity and temperature, results are uploaded to NASA's Applied Science and Technology Project Office Webpage.

  4. Modelling souring in a high salinity reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Michael; Crossland, Alan; Stott, Jim

    2006-03-15

    CAPCIS Ltd (Capcis) have developed a souring model for use in highly saline reservoirs where salinity limits the growth of sulphate reducing bacteria (SRB). Capcis have successfully applied the model to a field in North Africa. The conceptual basis of the model considers the course of the H2S from generation in the reservoir including dilution, sulphide retardation and scavenging and H2S fluid phase partitioning. At each stage mathematical equations governing the behaviour of the H2S were produced. In order to estimate the potential for H2S generation, it is required to know the chemistry of the injection and formation waters, as well as the properties of the indigenous SRB, i.e. the maximum salinity for their growth. This is determined by bottle testing of H2S generation by SRB at a range of injection/formation water ratios. The maximum salinity for SRB growth then determines the mixing ratios at which H2S generation takes place. Sulphide retardation due to adsorption at immobile interfaces was empirically modeled from reservoir data. Sulphide scavenging due to reaction with iron generated from corrosion was also modelled. Reservoir mineral scavenging was not modelled but could be incorporated in an extension to the model. Finally, in order to compute the gas-phase concentration of generated H2S, the H2S in the well stream is partitioned between the gas, oil and water phases. Capcis has carried out detailed computations of H2S solubility in crude oil and formation waters and the derivation of distribution ratios based on the respective partition coefficients using Gerard's line method, a modification of Henry's Law. (author) (tk)

  5. Development, Testing, and Application of a Coupled Hydrodynamic Surface-Water/Groundwater Model (FTLOADDS) with Heat and Salinity Transport in the Ten Thousand Islands/Picayune Strand Restoration Project Area, Florida

    Science.gov (United States)

    Swain, Eric D.; Decker, Jeremy D.

    2009-01-01

    A numerical model application was developed for the coastal area inland of the Ten Thousand Islands (TTI) in southwestern Florida using the Flow and Transport in a Linked Overland/Aquifer Density-Dependent System (FTLOADDS) model. This model couples a two-dimensional dynamic surface-water model with a three-dimensional groundwater model, and has been applied to several locations in southern Florida. The model application solves equations for salt transport in groundwater and surface water, and also simulates surface-water temperature using a newly enhanced heat transport algorithm. One of the purposes of the TTI application is to simulate hydrologic factors that relate to habitat suitability for the West Indian Manatee. Both salinity and temperature have been shown to be important factors for manatee survival. The inland area of the TTI domain is the location of the Picayune Strand Restoration Project, which is designed to restore predevelopment hydrology through the filling and plugging of canals, construction of spreader channels, and the construction of levees and pump stations. The effects of these changes are simulated to determine their effects on manatee habitat. The TTI application utilizes a large amount of input data for both surface-water and groundwater flow simulations. These data include topography, frictional resistance, atmospheric data including rainfall and air temperature, aquifer properties, and boundary conditions for tidal levels, inflows, groundwater heads, and salinities. Calibration was achieved by adjusting the parameters having the largest uncertainty: surface-water inflows, the surface-water transport dispersion coefficient, and evapotranspiration. A sensitivity analysis did not indicate that further parameter changes would yield an overall improvement in simulation results. The agreement between field data from GPS-tracked manatees and TTI application results demonstrates that the model can predict the salinity and temperature

  6. Modelling saline intrusion for repository performance assessment

    International Nuclear Information System (INIS)

    Jackson, C.P.

    1989-04-01

    UK Nirex Ltd are currently considering the possibility of disposal of radioactive waste by burial in deep underground repositories. The natural pathway for radionuclides from such a repository to return to Man's immediate environment (the biosphere) is via groundwater. Thus analyses of the groundwater flow in the neighbourhood of a possible repository, and consequent radionuclide transport form an important part of a performance assessment for a repository. Some of the areas in the UK that might be considered as possible locations for a repository are near the coast. If a repository is located in a coastal region seawater may intrude into the groundwater flow system. As seawater is denser than fresh water buoyancy forces acting on the intruding saline water may have significant effects on the groundwater flow system, and consequently on the time for radionuclides to return to the biosphere. Further, the chemistry of the repository near-field may be strongly influenced by the salinity of the groundwater. It is therefore important for Nirex to have a capability for reliably modelling saline intrusion to an appropriate degree of accuracy in order to make performance assessments for a repository in a coastal region. This report describes work undertaken in the Nirex Research programme to provide such a capability. (author)

  7. Projections of on-farm salinity in coastal Bangladesh.

    Science.gov (United States)

    Clarke, D; Williams, S; Jahiruddin, M; Parks, K; Salehin, M

    2015-06-01

    This paper quantifies the expected impacts of climate change, climate variability and salinity accumulation on food production in coastal Bangladesh during the dry season. This forms part of a concerted series of actions on agriculture and salinity in Bangladesh under the UK funded Ecosystems for Poverty Alleviation programme and the British Council INSPIRE scheme. The work was undertaken by developing simulation models for soil water balances, dry season irrigation requirements and the effectiveness of the monsoon season rainfall at leaching accumulated salts. Simulations were run from 1981 to 2098 using historical climate data and a daily climate data set based on the Met Office Hadley Centre HadRM3P regional climate model. Results show that inter-seasonal and inter-annual variability are key factors that affect the viability of dry season vegetable crop growing. By the end of the 21(st) century the dry season is expected to be 2-3 weeks longer than now (2014). Monsoon rainfall amounts will remain the same or possibly slightly increase but it will occur over a slightly shorter wet season. Expectations of sea level rise and additional saline intrusion into groundwater aquifers mean that dry season irrigation water is likely to become more saline by the end of the 21(st) century. A study carried out at Barisal indicates that irrigating with water at up to 4 ppt can be sustainable. Once the dry season irrigation water quality goes above 5 ppt, the monsoon rainfall is no longer able to leach the dry season salt deposits so salt accumulation becomes significant and farm productivity will reduce by as a much as 50%, threatening the livelihoods of farmers in this region.

  8. Nonlinear dynamics and synchronization of saline oscillator’s model

    International Nuclear Information System (INIS)

    Fokou Kenfack, W.; Siewe Siewe, M.; Kofane, T.C.

    2016-01-01

    Highlights: • A model of saline oscillator is derived and tested through numerical simulations. • Interaction between globally coupled saline oscillators is modeled. • Dependence of coupling coefficients on physical parameters is brought out. • Synchronization behaviors are studied using the model equations. - Abstract: The Okamura model equation of saline oscillator is refined into a non-autonomous ordinary differential equation whose coefficients are related to physical parameters of the system. The dependence of the oscillatory period and amplitude on remarkable physical parameters are computed and compared to experimental results in order to test the model. We also model globally coupled saline oscillators and bring out the dependence of coupling coefficients on physical parameters of the system. We then study the synchronization behaviors of coupled saline oscillators by the mean of numerical simulations carried out on the model equations. These simulations agree with previously reported experimental results.

  9. Salinity intrusion modeling for Sungai Selangor

    International Nuclear Information System (INIS)

    Mohamed Roseli Zainal Abidin; Abd Jalil Hassan; Suriyani Awang; Liew Yuk San; Norbaya Hashim

    2006-01-01

    Salinity intrusion into estuary of the Sungai Selangor has been carried out on a hydrodynamic numerical modeling to access the parameter that governed the amount of salt in the river. Issues such as water pollution and extraction of water from Sungai Selangor system has been said to be the cause of fading fireflies. The berembang trees on the river bank that become the fireflies habitat need some amount of salt for proper growth. Living at the lower reaches of Sungai Selangor, the fireflies are affected not only by the activities in their vicinity, but by activities in the entire river basin. Rapid economic development in the basin and the strong demand for the water resources puts pressure on the ecosystem. This research has been carried out to investigate the effect of water extraction along Sungai Selangor towards altering the amount of salt content in the river. The hydrodynamic modeling with regards to the salt content is expected to support long term assessment that may affect the berembang trees as a result of changes in the flow from upstream because of the water abstraction activity for domestic water supply. (Author)

  10. Modeling daily soil salinity dynamics in response to agricultural and environmental changes in coastal Bangladesh

    Science.gov (United States)

    Payo, Andrés.; Lázár, Attila N.; Clarke, Derek; Nicholls, Robert J.; Bricheno, Lucy; Mashfiqus, Salehin; Haque, Anisul

    2017-05-01

    Understanding the dynamics of salt movement in the soil is a prerequisite for devising appropriate management strategies for land productivity of coastal regions, especially low-lying delta regions, which support many millions of farmers around the world. At present, there are no numerical models able to resolve soil salinity at regional scale and at daily time steps. In this research, we develop a novel holistic approach to simulate soil salinization comprising an emulator-based soil salt and water balance calculated at daily time steps. The method is demonstrated for the agriculture areas of coastal Bangladesh (˜20,000 km2). This shows that we can reproduce the dynamics of soil salinity under multiple land uses, including rice crops, combined shrimp and rice farming, as well as non-rice crops. The model also reproduced well the observed spatial soil salinity for the year 2009. Using this approach, we have projected the soil salinity for three different climate ensembles, including relative sea-level rise for the year 2050. Projected soil salinity changes are significantly smaller than other reported projections. The results suggest that inter-season weather variability is a key driver of salinization of agriculture soils at coastal Bangladesh.

  11. Modelling the salinization of a coastal lagoon-aquifer system

    Science.gov (United States)

    Colombani, N.; Mastrocicco, M.

    2017-08-01

    In this study, a coastal area constituted by alternations of saline-brackish lagoons and freshwater bodies was studied and modelled to understand the hydrological processes occurring between the lagoons, the groundwater system of the Po River Delta (Italy) and the Adriatic Sea. The contribution of both evaporation and anthropogenic factors on groundwater salinization was assessed by means of soil, groundwater and surface water monitoring. Highresolution multi-level samplers were used to capture salinity gradients within the aquifer and surface water bodies. Data were employed to calibrate a density-dependent numerical transport model implemented with SEAWAT code along a transect perpendicular to the coast line. The results show that the lagoon is hydraulically well connected with the aquifer, which provides the major source of salinity because of the upcoming of paleo-seawater from the aquitard laying at the base of the unconfined aquifer. On the contrary, the seawater (diluted by the freshwater river outflow) creates only a limited saltwater wedge. The increase in groundwater salinity could be of serious concern, especially for the pinewood located in the dune near the coast, sensitive to salinity increases. This case study represents an interesting paradigm for other similar environmental setting, where the assumption of classical aquifer salinization from a saltwater wedge intruding from the sea is often not representative of the actual aquifer’s salinization mechanisms.

  12. The salinity effect in a mixed layer ocean model

    Science.gov (United States)

    Miller, J. R.

    1976-01-01

    A model of the thermally mixed layer in the upper ocean as developed by Kraus and Turner and extended by Denman is further extended to investigate the effects of salinity. In the tropical and subtropical Atlantic Ocean rapid increases in salinity occur at the bottom of a uniformly mixed surface layer. The most significant effects produced by the inclusion of salinity are the reduction of the deepening rate and the corresponding change in the heating characteristics of the mixed layer. If the net surface heating is positive, but small, salinity effects must be included to determine whether the mixed layer temperature will increase or decrease. Precipitation over tropical oceans leads to the development of a shallow stable layer accompanied by a decrease in the temperature and salinity at the sea surface.

  13. Modeling carbon dioxide sequestration in saline aquifers: Significance of elevated pressures and salinities

    International Nuclear Information System (INIS)

    Allen, D.E.; Strazisar, B.R.; Soong, Y.; Hedges, S.W.

    2005-01-01

    The ultimate capacity of saline formations to sequester carbon dioxide by solubility and mineral trapping must be determined by simulating sequestration with geochemical models. These models, however, are only as reliable as the data and reaction scheme on which they are based. Several models have been used to make estimates of carbon dioxide solubility and mineral formation as a function of pressure and fluid composition. Intercomparison of modeling results indicates that failure to adjust all equilibrium constants to account for elevated carbon dioxide pressures results in significant errors in both solubility and mineral formation estimates. Absence of experimental data at high carbon dioxide pressures and high salinities make verification of model results difficult. Results indicate standalone solubility models that do not take mineral reactions into account will underestimate the total capacity of aquifers to sequester carbon dioxide in the long term through enhanced solubility and mineral trapping mechanisms. Overall, it is difficult to confidently predict the ultimate sequestration capacity of deep saline aquifers using geochemical models. (author)

  14. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.

    2017-12-15

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  15. High salinity conveys thermotolerance in the coral model Aiptasia

    KAUST Repository

    Gegner, Hagen M.; Ziegler, Maren; Radecker, Nils; Buitrago Lopez, Carol; Aranda, Manuel; Voolstra, Christian R.

    2017-01-01

    The endosymbiosis between dinoflagellate algae of the genus Symbiodinium and stony corals provides the foundation of coral reef ecosystems. Coral bleaching, the expulsion of endosymbionts from the coral host tissue as a consequence of heat or light stress, poses a threat to reef ecosystem functioning on a global scale. Hence, a better understanding of the factors contributing to heat stress susceptibility and tolerance is needed. In this regard, some of the most thermotolerant corals also live in particularly saline habitats, but possible effects of high salinity on thermotolerance in corals are anecdotal. Here we test the hypothesis that high salinity may lead to increased thermotolerance. We conducted a heat stress experiment at low, intermediate, and high salinities using a set of host-endosymbiont combinations of the coral model Aiptasia. As expected, all host-endosymbiont combinations showed reduced photosynthetic efficiency and endosymbiont loss during heat stress, but the severity of bleaching was significantly reduced with increasing salinities for one of the host-endosymbiont combinations. Our results show that higher salinities can convey increased thermotolerance in Aiptasia, although this effect seems to be dependent on the particular host strain and/or associated symbiont type. This finding may help explain the extraordinarily high thermotolerance of corals in high salinity environments such as the Red Sea and the Persian/Arabian Gulf and provides novel insight regarding factors that contribute to thermotolerance. Since our results are based on a salinity effect in symbiotic sea anemones, it remains to be determined whether this salinity effect can also be observed in stony corals.

  16. Predictive spatial modelling for mapping soil salinity at continental scale

    Science.gov (United States)

    Bui, Elisabeth; Wilford, John; de Caritat, Patrice

    2017-04-01

    Soil salinity is a serious limitation to agriculture and one of the main causes of land degradation. Soil is considered saline if its electrical conductivity (EC) is > 4 dS/m. Maps of saline soil distribution are essential for appropriate land development. Previous attempts to map soil salinity over extensive areas have relied on satellite imagery, aerial electromagnetic (EM) and/or proximally sensed EM data; other environmental (climate, topographic, geologic or soil) datasets are generally not used. Having successfully modelled and mapped calcium carbonate distribution over the 0-80 cm depth in Australian soils using machine learning with point samples from the National Geochemical Survey of Australia (NGSA), we took a similar approach to map soil salinity at 90-m resolution over the continent. The input data were the EC1:5 measurements on the randomly sampled trees were built using the training data. The results were good with an average internal correlation (r) of 0.88 between predicted and measured logEC1:5 (training data), an average external correlation of 0.48 (test subset), and a Lin's concordance correlation coefficient (which evaluates the 1:1 fit) of 0.61. Therefore, the rules derived were mapped and the mean prediction for each 90-m pixel was used for the final logEC1:5 map. This is the most detailed picture of soil salinity over Australia since the 2001 National Land and Water Resources Audit and is generally consistent with it. Our map will be useful as a baseline salinity map circa 2008, when the NGSA samples were collected, for future State of the Environment reports.

  17. Evaluation of the Aqua‎Crop Model to Simulate Maize Yiled Response under Salinity Stress

    Directory of Open Access Journals (Sweden)

    Aida Mehrazar

    2017-01-01

    Full Text Available Introduction: Limited water resources and its salinity uptrend has caused reducing water and soil quality and consequently reducing the crop production. Thus, use of saline water is the management strategies to decrease drought and water crisis. Furthermore, simulation models are valuable tools for improving on-farm water management and study about the effects of water quality and quantity on crop yield.. The AquaCrop model has recently been developed by the FAO which has the ability to check the production process under different propositions. The initial version of the model was introduced for simulation of crop yield and soil water movement in 2007, that the effect of salinity on crop yield was not considered. Version 4 of the model was released in 2012 in which also considered the effects of salinity on crop yield and simulation of solute Transmission in soil profile. Material and methods: In this project, evaluation of the AquaCrop model and its accuracy was studied in the simulating yield of maize under salt stress. This experiment was conducted in Karaj, on maize hybrid (Zea ma ys L in a sandy soil for investigation of salinity stress on maize yield in 2011-2012. This experiment was conducted in form of randomized complete block design in four replications and five levels of salinity treatments including 0, 4.53, 9.06, 13.59 and 18.13 dS/m at the two times sampling. To evaluate the effect of different levels of salinity on the yield of maize was used Version 4 AquaCrop model and SAS ver 9.1 software .The model calibration was performed by comparing the results of the field studies and the results of simulations in the model. In calculating the yield under different scenarios of salt stress by using AquaCrop, the model needs climate data, soil data, vegetation data and information related to farm management. The effects of salinity on yield and some agronomic and physiological traits of hybrid maize (Shoot length, root length, dry weight

  18. Modelling soil salinity in Oued El Abid watershed, Morocco

    Science.gov (United States)

    Mouatassime Sabri, El; Boukdir, Ahmed; Karaoui, Ismail; Arioua, Abdelkrim; Messlouhi, Rachid; El Amrani Idrissi, Abdelkhalek

    2018-05-01

    Soil salinisation is a phenomenon considered to be a real threat to natural resources in semi-arid climates. The phenomenon is controlled by soil (texture, depth, slope etc.), anthropogenic factors (drainage system, irrigation, crops types, etc.), and climate factors. This study was conducted in the watershed of Oued El Abid in the region of Beni Mellal-Khenifra, aimed at localising saline soil using remote sensing and a regression model. The spectral indices were extracted from Landsat imagery (30 m resolution). A linear correlation of electrical conductivity, which was calculated based on soil samples (ECs), and the values extracted based on spectral bands showed a high accuracy with an R2 (Root square) of 0.80. This study proposes a new spectral salinity index using Landsat bands B1 and B4. This hydro-chemical and statistical study, based on a yearlong survey, showed a moderate amount of salinity, which threatens dam water quality. The results present an improved ability to use remote sensing and regression model integration to detect soil salinity with high accuracy and low cost, and permit intervention at an early stage of salinisation.

  19. Salinity modeling by remote sensing in central and southern Iraq

    Science.gov (United States)

    Wu, W.; Mhaimeed, A. S.; Platonov, A.; Al-Shafie, W. M.; Abbas, A. M.; Al-Musawi, H. H.; Khalaf, A.; Salim, K. A.; Chrsiten, E.; De Pauw, E.; Ziadat, F.

    2012-12-01

    Salinization, leading to a significant loss of cultivated land and crop production, is one of the most active land degradation phenomena in the Mesopotamian region in Iraq. The objectives of this study (under the auspices of ACIAR and Italian Government) are to investigate the possibility to use remote sensing technology to establish salinity-sensitive models which can be further applied to local and regional salinity mapping and assessment. Case studies were conducted in three pilot sites namely Musaib, Dujaila and West Garraf in the central and southern Iraq. Fourteen spring (February - April), seven June and four summer Landsat ETM+ images in the period 2009-2012, RapidEye data (April 2012), and 95 field EM38 measurements undertaken in this spring and summer, 16 relevant soil laboratory analysis result (Dujaila) were employed in this study. The procedure we followed includes: (1) Atmospheric correction using FLAASH model; (2) Multispectral transformation of a set of vegetation and non-vegetation indices such as GDVI (Generalized Difference Vegetation Index), NDVI (Normalized Difference Vegetation Index), EVI (Enhanced Vegetation Index), SAVI (Soil Adjusted Vegetation Index), SARVI (Soil Adjusted and Atmospherically Resistant Vegetation Index), NDII (Normalized Difference Infrared Index), Principal Components and surface temperature (T); (3) Derivation of the spring maximum (Musaib) and annual maximum (Dujaila and West Garraf) value in each pixel of each index of the observed period to avoid problems related to crop rotation (e.g. fallow) and the SLC-Off gaps in ETM+ images; (4) Extraction of the values of each vegetation and non-vegetation index corresponding to the field sampling locations (about 3 to 5 controversial samples very close to the roads or located in fallow were excluded); and (5) Coupling remote sensing indices with the available EM38 and soil electrical conductivity (EC) data using multiple linear least-square regression model at the confidence

  20. Gypsum Formation during the Messinian Salinity Crisis: an Alternative Model

    Science.gov (United States)

    Grothe, A.; Krijgsman, W.; Sangiorgi, F.; Vasiliev, I.; Baak, C. V.; Wolthers, M.; Stoica, M.; Reichart, G. J.; Davies, G.

    2016-12-01

    During the Messinian Salinity Crisis (MSC; 5.97 - 5.33 Myr ago), thick packages of evaporites (gypsum and halite) were deposited in the Mediterranean Basin. Traditionally, the occurrence of these evaporites is explained by the so-called "desiccation-model", in which evaporites are considered to result from a (partly) desiccated basin. In the last decade, it was thought that changes in the Mediterranean-Atlantic connectivity could explain the formation of gypsum. Stable isotope studies, however, show that the gypsum formed under influence of large freshwater input. Here we present new strontium isotope data from two well-dated Messinian sections in the Black and Caspian Seas. Our Sr isotope records suggest a persistent Mediterranean-Black Sea connection throughout the salinity crisis, which implies a large additional freshwater source to the Mediterranean. We claim that low saline waters from the Black Sea region are a prerequisite for gypsum formation in the Mediterranean and speculate about the mechanisms explaining this apparent paradox.

  1. Updating temperature and salinity mean values and trends in the Western Mediterranean: The RADMED project

    Science.gov (United States)

    Vargas-Yáñez, M.; García-Martínez, M. C.; Moya, F.; Balbín, R.; López-Jurado, J. L.; Serra, M.; Zunino, P.; Pascual, J.; Salat, J.

    2017-09-01

    The RADMED project is devoted to the implementation and maintenance of a multidisciplinary monitoring system around the Spanish Mediterranean waters. This observing system is based on periodic multidisciplinary cruises covering the coastal waters, continental shelf and slope waters and some deep stations (>2000 m) from the Westernmost Alboran Sea to Barcelona in the Catalan Sea, including the Balearic Islands. This project was launched in 2007 unifying and extending some previous monitoring projects which had a more reduced geographical coverage. Some of the time series currently available extend from 1992, while the more recent ones were initiated in 2007. The present work updates the available time series up to 2015 (included) and shows the capability of these time series for two main purposes: the calculation of mean values for the properties of main water masses around the Spanish Mediterranean, and the study of the interannual and decadal variability of such properties. The data set provided by the RADMED project has been merged with historical data from the MEDAR/MEDATLAS data base for the calculation of temperature and salinity trends from 1900 to 2015. The analysis of these time series shows that the intermediate and deep layers of the Western Mediterranean have increased their temperature and salinity with an acceleration of the warming and salting trends from 1943. Trends for the heat absorbed by the water column for the 1943-2015 period, range between 0.2 and 0.6 W/m2 depending on the used methodology. The temperature and salinity trends for the same period and for the intermediate layer are 0.002 °C/yr and 0.001 yr-1 respectively. Deep layers warmed and increased their salinity at a rate of 0.004 °C/yr and 0.001 yr-1.

  2. Projection Models 2010

    DEFF Research Database (Denmark)

    Illerup, J. B.; Birr-Pedersen, K.; Mikkelsen, M. H

    Models for projection of SO2-, NOx-, NMVOC- and NH3-emissions to the atmosphere have been developed and the Danish emissions have been projected until 2010 from a basis scenario including all implemented and planned measures. The projections of the four pollutants indicate that it may be difficult...

  3. Simulation of Salinity Distribution in Soil Under Drip Irrigation Tape with Saline Water Using SWAP Model

    Directory of Open Access Journals (Sweden)

    M. Tabei

    2016-02-01

    Full Text Available Introduction: The to be limited available water amount from one side and to be increased needs of world population from the other side have caused increase of cultivation for products. For this reason, employing new irrigation ways and using new water resources like using the uncommon water (salty water, water drainage are two main strategies for regulating water shortage conditions. On the other side, accumulation of salts on the soil surface in dry regions having low rainfall and much evaporation, i.e. an avoidable case. As doing experiment for determining moisture distribution form demands needs a lot of time and conducting desert experiments are costly, stimulator models are suitable alternatives in answering the problem concerning moving and saltiness distribution. Materials and Methods: In this research, simulation of soil saltiness under drip irrigation was done by the SWAP model and potency of the above model was done in comparison with evaluated relevant results. SWAP model was performed based on measured data in a corn field equipped with drip irrigation system in the farming year 1391-92 in the number one research field in the engineering faculty of water science, ShahidChamran university of Ahvaz and hydraulic parameters of soil obtained from RETC . Statistical model in the form of a random full base plan with four attendants for irrigating water saltiness including salinity S1 (Karoon River water with salinity 3 ds/m as a control treatment, S2 (S1 +0/5, S3 (S1 +1 and S4 (S1 +1/5 dS/m, in 3 repetition and in 3 intervals of 10 cm emitter, 20 cm emitters on the stack, at a depth of 0-90 cm (instead of each 30 cm from soil surface and intervals of 30, 60 and 90 days after modeling cultiviation was done. The cultivation way was done handheld in plots including four rows of 3 m in distance of 75 cm rows and with denseness of 80 bushes in a hectar. Drip irrigation system was of type strip with space of 20 cm pores. Results and Discussion

  4. Adopting adequate leaching requirement for practical response models of basil to salinity

    Science.gov (United States)

    Babazadeh, Hossein; Tabrizi, Mahdi Sarai; Darvishi, Hossein Hassanpour

    2016-07-01

    Several mathematical models are being used for assessing plant response to salinity of the root zone. Objectives of this study included quantifying the yield salinity threshold value of basil plants to irrigation water salinity and investigating the possibilities of using irrigation water salinity instead of saturated extract salinity in the available mathematical models for estimating yield. To achieve the above objectives, an extensive greenhouse experiment was conducted with 13 irrigation water salinity levels, namely 1.175 dS m-1 (control treatment) and 1.8 to 10 dS m-1. The result indicated that, among these models, the modified discount model (one of the most famous root water uptake model which is based on statistics) produced more accurate results in simulating the basil yield reduction function using irrigation water salinities. Overall the statistical model of Steppuhn et al. on the modified discount model and the math-empirical model of van Genuchten and Hoffman provided the best results. In general, all of the statistical models produced very similar results and their results were better than math-empirical models. It was also concluded that if enough leaching was present, there was no significant difference between the soil salinity saturated extract models and the models using irrigation water salinity.

  5. Interaction of tide and salinity barrier: Limitation of numerical model

    Directory of Open Access Journals (Sweden)

    Suphat Vongvisessomjai1

    2008-07-01

    Full Text Available Nowadays, the study of interaction of the tide and the salinity barrier in an estuarine area is usually accomplished vianumerical modeling, due to the speed and convenience of modern computers. However, numerical models provide littleinsight with respect to the fundamental physical mechanisms involved. In this study, it is found that all existing numericalmodels work satisfactorily when the barrier is located at some distance far from upstream and downstream boundary conditions.Results are considerably underestimate reality when the barrier is located near the downstream boundary, usually theriver mouth. Meanwhile, this analytical model provides satisfactory output for all scenarios. The main problem of thenumerical model is that the effects of barrier construction in creation of reflected tide are neglected when specifying thedownstream boundary conditions; the use of the boundary condition before construction of the barrier which are significantlydifferent from those after the barrier construction would result in an error outputs. Future numerical models shouldattempt to account for this deficiency; otherwise, using this analytical model is another choice.

  6. Using the SIMGRO regional hydrological model to evaluate salinity control measures in an irrigation area

    NARCIS (Netherlands)

    Kupper, E.; Querner, E.P.; Morábito, J.A.; Menenti, M.

    2002-01-01

    In irrigated areas with drainage and an important interaction with the groundwater system, it is often difficult to predict effects of measures to control salinity. Therefore, in order to evaluate measures to control salinity the SIMGRO integrated regional hydrological model was extended with a

  7. Re-modeling Chara action potential: II. The action potential form under salinity stress

    Directory of Open Access Journals (Sweden)

    Mary Jane Beilby

    2017-04-01

    Full Text Available In part I we established Thiel-Beilby model of the Chara action potential (AP. In part II the AP is investigated in detail at the time of saline stress. Even very short exposure of salt-sensitive Chara cells to artificial pond water with 50 mM NaCl (Saline APW modified the AP threshold and drastically altered the AP form. Detailed modeling of 14 saline APs from 3 cells established that both the Ca2+ pump and the Ca2+ channels on internal stores seem to be affected, with the changes sometimes cancelling and sometimes re-enforcing each other, leading to APs with long durations and very complex forms. The exposure to salinity offers further insights into AP mechanism and suggests future experiments. The prolonged APs lead to greater loss of chloride and potassium ions, compounding the effects of saline stress.

  8. Model Prediction of Secondary Soil Salinization in the Keriya Oasis, Northwest China

    Directory of Open Access Journals (Sweden)

    Jumeniyaz Seydehmet

    2018-02-01

    Full Text Available Significant anthropogenic and biophysical changes have caused fluctuations in the soil salinization area of the Keriya Oasis in China. The Driver-Pressure-State-Impact-Response (DPSIR sustainability framework and Bayesian networks (BNs were used to integrate information from anthropogenic and natural systems to model the trend of secondary soil salinization. The developed model predicted that light salinization (vegetation coverage of around 15–20%, soil salt 5–10 g/kg of the ecotone will increase in the near term but decelerate slightly in the future, and that farmland salinization will decrease in the near term. This trend is expected to accelerate in the future. Both trends are attributed to decreased water logging, increased groundwater exploitation, and decreased ratio of evaporation/precipitation. In contrast, severe salinization (vegetation coverage of around 2%, soil salt ≥20 g/kg of the ecotone will increase in the near term. This trend will accelerate in the future because decreased river flow will reduce the flushing of severely salinized soil crust. Anthropogenic factors have negative impacts and natural causes have positive impacts on light salinization of ecotones. In situations involving severe farmland salinization, anthropogenic factors have persistent negative impacts.

  9. Simulating Salt Movement using a Coupled Salinity Transport Model in a Variably Saturated Agricultural Groundwater System

    Science.gov (United States)

    Tavakoli Kivi, S.; Bailey, R. T.; Gates, T. K.

    2017-12-01

    Salinization is one of the major concerns in irrigated agricultural fields. Increasing salinity concentrations are due principally to a high water table that results from excessive irrigation, canal seepage, and a lack of efficient drainage systems, and lead to decreasing crop yield. High groundwater salinity loading to nearby river systems also impacts downstream areas, with saline river water diverted for application on irrigated fields. To assess the different strategies for salt remediation, we present a reactive transport model (UZF-RT3D) coupled with a salinity equilibrium chemistry module for simulating the fate and transport of salt ions in a variably-saturated agricultural groundwater system. The developed model accounts not for advection, dispersion, nitrogen and sulfur cycling, oxidation-reduction, sorption, complexation, ion exchange, and precipitation/dissolution of salt minerals. The model is applied to a 500 km2 region within the Lower Arkansas River Valley (LARV) in southeastern Colorado, an area acutely affected by salinization in the past few decades. The model is tested against salt ion concentrations in the saturated zone, total dissolved solid concentrations in the unsaturated zone, and salt groundwater loading to the Arkansas River. The model now can be used to investigate salinity remediation strategies.

  10. Myanmar Model Project

    International Nuclear Information System (INIS)

    Le Heron, John

    1998-01-01

    The National Radiation Laboratory was approached by the IAEA in 1997 to provide assistance to the government of Myanmar, as part of the Model Project, in setting up an appropriate regulatory framework for radiation protection. To this end John Le Heron spent 3 weeks in late 1997 based at the Atomic Energy Department of the Ministry of Science and Technology, Yangon, assessing the existing legal framework, assisting with the review and design of the legal framework for consistency with the Basic Safety Standards, and assisting in the preparation of a system of notification, authorisation and inspection of radiation practices. (author)

  11. Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Marojahan Simanjuntak

    2011-04-01

    Full Text Available Box Model of Freshwater, Salinity and Nutrient in the Delta Mahakam, East Kalimantan. Research has been conducted in the southern part of the Mahakam Delta, East Kalimantan. Method of measuring temperature, salinity, light transmission and turbidity by using CTD model 603 SBE and current measurement and bathymetry by using ADCP model RDI. Measurement parameters on the nutrient chemistry are based of water samples taken using Nansen bottles from two depths. The purpose of this study to determine the mechanism of freshwater, salinity and nutrient transport from the land of the Mahakam River which interact with seawater by using box models. The results illustrate that the vertical distribution of salinity in the Mahakam Delta has obtained a high stratification, where the freshwater salinity 12.30 psu at the surface of a river flowing toward the sea, and seawater of high salinity 30.07 psu flowing in the direction river under the surface that are separated by a layer of mixture. Freshwater budget of the sea (VSurf obtained for 0,0306 x 109 m3 day-1, and the sea water salinity budget is going into the bottom layer system (VDeep.SOcn-d obtained for 20,727 x 109 psu day-1. While time dilution (Syst obtained for 0.245 day-1 or 5.87 hours. Nutrient budget in the surface layer obtained by the system is autotrophic while in layers near the bottom tend to be heterotrophic

  12. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.; Zedini, Emna; Elafandy, Rami T.; Kammoun, Abla; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels

  13. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management. Part 2: Model coupling and application

    Science.gov (United States)

    Inam, Azhar; Adamowski, Jan; Prasher, Shiv; Halbe, Johannes; Malard, Julien; Albano, Raffaele

    2017-08-01

    Many simulation models focus on simulating a single physical process and do not constitute balanced representations of the physical, social and economic components of a system. The present study addresses this challenge by integrating a physical (P) model (SAHYSMOD) with a group (stakeholder) built system dynamics model (GBSDM) through a component modeling approach based on widely applied tools such as MS Excel, Python and Visual Basic for Applications (VBA). The coupled model (P-GBSDM) was applied to test soil salinity management scenarios (proposed by stakeholders) for the Haveli region of the Rechna Doab Basin in Pakistan. Scenarios such as water banking, vertical drainage, canal lining, and irrigation water reallocation were simulated with the integrated model. Spatiotemporal maps and economic and environmental trade-off criteria were used to examine the effectiveness of the selected management scenarios. After 20 years of simulation, canal lining reduced soil salinity by 22% but caused an initial reduction of 18% in farm income, which requires an initial investment from the government. The government-sponsored Salinity Control and Reclamation Project (SCARP) is a short-term policy that resulted in a 37% increase in water availability with a 12% increase in farmer income. However, it showed detrimental effects on soil salinity in the long term, with a 21% increase in soil salinity due to secondary salinization. The new P-GBSDM was shown to be an effective platform for engaging stakeholders and simulating their proposed management policies while taking into account socioeconomic considerations. This was not possible using the physically based SAHYSMOD model alone.

  14. Final Report (BMWi Project No.: 02 E 10971): Joint project: Retention of radionuclides relevant for final disposal in natural clay rock and saline systems - Subproject 2: Geochemical behavior and transport of radionuclides in saline systems in the prese

    Energy Technology Data Exchange (ETDEWEB)

    Schmeide, Katja [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Fritsch, Katharina [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Lippold, Holger [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Poetsch, Maria [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Kulenkampff, Johannes [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Lippmann-Pipke, Johanna [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Jordan, Norbert [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Joseph, Claudia [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Moll, Henry [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Cherkouk, Andrea [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology; Bader, Miriam [Helmholtz-Zentrum Dresden, (Germany). Inst. of Resource Ecology

    2016-02-29

    The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide – organics – clay – aquifer. For this, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol kg-1) and the background electrolyte (NaCl, CaCl2, MgCl2).

  15. Design of Soil Salinity Policies with Tinamit, a Flexible and Rapid Tool to Couple Stakeholder-Built System Dynamics Models with Physically-Based Models

    Science.gov (United States)

    Malard, J. J.; Baig, A. I.; Hassanzadeh, E.; Adamowski, J. F.; Tuy, H.; Melgar-Quiñonez, H.

    2016-12-01

    Model coupling is a crucial step to constructing many environmental models, as it allows for the integration of independently-built models representing different system sub-components to simulate the entire system. Model coupling has been of particular interest in combining socioeconomic System Dynamics (SD) models, whose visual interface facilitates their direct use by stakeholders, with more complex physically-based models of the environmental system. However, model coupling processes are often cumbersome and inflexible and require extensive programming knowledge, limiting their potential for continued use by stakeholders in policy design and analysis after the end of the project. Here, we present Tinamit, a flexible Python-based model-coupling software tool whose easy-to-use API and graphical user interface make the coupling of stakeholder-built SD models with physically-based models rapid, flexible and simple for users with limited to no coding knowledge. The flexibility of the system allows end users to modify the SD model as well as the linking variables between the two models themselves with no need for recoding. We use Tinamit to couple a stakeholder-built socioeconomic model of soil salinization in Pakistan with the physically-based soil salinity model SAHYSMOD. As climate extremes increase in the region, policies to slow or reverse soil salinity buildup are increasing in urgency and must take both socioeconomic and biophysical spheres into account. We use the Tinamit-coupled model to test the impact of integrated policy options (economic and regulatory incentives to farmers) on soil salinity in the region in the face of future climate change scenarios. Use of the Tinamit model allowed for rapid and flexible coupling of the two models, allowing the end user to continue making model structure and policy changes. In addition, the clear interface (in contrast to most model coupling code) makes the final coupled model easily accessible to stakeholders with

  16. Preliminary Hybrid Modeling of the Panama Canal: Operations and Salinity Diffusion

    Directory of Open Access Journals (Sweden)

    Luis Rabelo

    2012-01-01

    Full Text Available This paper deals with the initial modeling of water salinity and its diffusion into the lakes during lock operation on the Panama Canal. A hybrid operational model was implemented using the AnyLogic software simulation environment. This was accomplished by generating an operational discrete-event simulation model and a continuous simulation model based on differential equations, which modeled the salinity diffusion in the lakes. This paper presents that unique application and includes the effective integration of lock operations and its impact on the environment.

  17. Coupled geochemical/hydrogeological modelling to assess the origin of salinity at the Tono area (Japan)

    International Nuclear Information System (INIS)

    Guimera, Jordi; Ruiz, Eduardo; Luna, Miguel; Arcos, David; Jordana, Salvador; Saegusa, Hiromitsu

    2005-01-01

    Numerical models are powerful tools for the characterization of groundwater flow, especially when integrating geochemical and hydrogeological data. This paper describes modeling exercises performed in the area surrounding the Mizunami Underground Research Laboratory (MIU) Construction Site in central Japan. A particular issue being investigated at the MIU Site is the presence of saline water detected at depth in certain boreholes. The main objective of this study is to develop conceptual physical models for the origin of this salinity and to test these conceptual models using numerical modeling techniques. One scenario being investigated is that the saline fluids represent residual Miocene age seawater which has been slightly altered by water-rock interactions. It is likely that during Miocene times, seawater inundated the Tono area. This hypothesis is partially supported by carbon and oxygen isotopic data of the calcite fracture filling materials. (author)

  18. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    OpenAIRE

    M. Sarai Tabrizi; H. Babazadeh; M. Homaee; F. Kaveh Kaveh; M. Parsinejad

    2016-01-01

    Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil respon...

  19. Naesliden project: FEM modelling strategies

    Energy Technology Data Exchange (ETDEWEB)

    Borg, T.

    1980-05-15

    A schematized description is given of the different stages in the project. The aim is to show the development of the project and the strategies which have been chosen. The four different stages in the project are treated from the following points of view: the reasons for the choice of material models; the determination of model properties; and the control of the calculated values. In the origin plan for the project it was stated to only use a joint element model. However, it was shown to be a reasonable strategy to use both a general linear elastic model and a geometric restricted model with joint elements. During the course of the Project's development stages, it was found that a reduction in the number of rock types could be made without loss of generality. A modified strategy is suggested based on more studies of the rock bahavior and less advanced calculations in the first stages of the project.

  20. Kinetic model for predicting the concentrations of active halogen species in chlorinated saline cooling waters

    International Nuclear Information System (INIS)

    Lietzke, M.H.; Haag, W.R.

    1979-01-01

    A kinetic model for predicting the composition of chlorinated water discharged from power plants using fresh water for cooling was previously reported. The model has now been extended to be applicable to power plants located on estuaries or on the seacoast where saline water is used for cooling purposes. When chloride is added to seawater to prevent biofouling in cooling systems, bromine is liberated. Since this reaction proceeds at a finite rate there is a competition between the bromine (i.e., hypobromous acid) and the added chlorine (i.e., hypochlorous acid) for halogenation of any amine species present in the water. Hence not only chloramines but also bromamines and bromochloramines will be formed, with the relative concentrations a function of the pH, temperature, and salinity of the water. The kinetic model takes into account the chemical reactions leading to the formation and disappearance of the more important halamines and hypohalous acids likely to be encountered in chlorinated saline water

  1. Efficient Weibull channel model for salinity induced turbulent underwater wireless optical communications

    KAUST Repository

    Oubei, Hassan M.

    2017-12-13

    Recent advances in underwater wireless optical communications necessitate a better understanding of the underwater channel. We propose the Weibull model to characterize the fading of salinity induced turbulent underwater wireless optical channels. The model shows an excellent agreement with the measured data under all channel conditions.

  2. Modeling Phytoremediation of Cadmium Contaminated Soil with Sunflower (Helianthus annus) Under Salinity Stress

    International Nuclear Information System (INIS)

    Motesharezadeh, B.; Navabzadeh, M.; Liyaghat, A. M.

    2016-01-01

    This study was carried out as a factorial experiment with 5 levels of cadmium (Cd) (o, 25, 50, 75, and 100 mg/kg), 5 levels of salinity (Control, 4, 5, 6, and 7 dS/m), and two soil textures (sandy loam and clay loam). The results showed that the amount of Cd in root and shoot of sunflower increased as soil salinity and Cd concentration increased. The best concentrations for Cd phytoremediation were 75 mg/kg in sandy loam and 100 mg/kg in clay loam. Mass-Hoffman model in simulating transpiration Cd stress as well as Homaee model in simulating salt stress indicated the best results in light soils. By multiplying the salinity stress model by Cd stress model, the simultaneous model for each soil was calculated. These models in light soil (r2=0.68) and heavy soil (r2=0.81) were compatible with measured values. In the heavy soil, absorbed Cd by plant along with increased salinity reflected low changes, but changes in Cd absorbed by plants in the heavy soil were more uniform than in the light soil. In conclusion, for estimating the Cd uptake, the model had a better performance in the heavy soil (under salt stress).

  3. Resource competition model predicts zonation and increasing nutrient use efficiency along a wetland salinity gradient

    Science.gov (United States)

    Schoolmaster, Donald; Stagg, Camille L.

    2018-01-01

    A trade-off between competitive ability and stress tolerance has been hypothesized and empirically supported to explain the zonation of species across stress gradients for a number of systems. Since stress often reduces plant productivity, one might expect a pattern of decreasing productivity across the zones of the stress gradient. However, this pattern is often not observed in coastal wetlands that show patterns of zonation along a salinity gradient. To address the potentially complex relationship between stress, zonation, and productivity in coastal wetlands, we developed a model of plant biomass as a function of resource competition and salinity stress. Analysis of the model confirms the conventional wisdom that a trade-off between competitive ability and stress tolerance is a necessary condition for zonation. It also suggests that a negative relationship between salinity and production can be overcome if (1) the supply of the limiting resource increases with greater salinity stress or (2) nutrient use efficiency increases with increasing salinity. We fit the equilibrium solution of the dynamic model to data from Louisiana coastal wetlands to test its ability to explain patterns of production across the landscape gradient and derive predictions that could be tested with independent data. We found support for a number of the model predictions, including patterns of decreasing competitive ability and increasing nutrient use efficiency across a gradient from freshwater to saline wetlands. In addition to providing a quantitative framework to support the mechanistic hypotheses of zonation, these results suggest that this simple model is a useful platform to further build upon, simulate and test mechanistic hypotheses of more complex patterns and phenomena in coastal wetlands.

  4. River salinity on a mega-delta, an unstructured grid model approach.

    Science.gov (United States)

    Bricheno, Lucy; Saiful Islam, Akm; Wolf, Judith

    2014-05-01

    With an average freshwater discharge of around 40,000 m3/s the BGM (Brahmaputra Ganges and Meghna) river system has the third largest discharge worldwide. The BGM river delta is a low-lying fertile area covering over 100,000 km2 mainly in India and Bangladesh. Approximately two-thirds of the Bangladesh people work in agriculture and these local livelihoods depend on freshwater sources directly linked to river salinity. The finite volume coastal ocean model (FVCOM) has been applied to the BGM delta in order to simulate river salinity under present and future climate conditions. Forced by a combination of regional climate model predictions, and a basin-wide river catchment model, the 3D baroclinic delta model can determine river salinity under the current climate, and make predictions for future wet and dry years. The river salinity demonstrates a strong seasonal and tidal cycle, making it important for the model to be able to capture a wide range of timescales. The unstructured mesh approach used in FVCOM is required to properly represent the delta's structure; a complex network of interconnected river channels. The model extends 250 km inland in order to capture the full extent of the tidal influence and grid resolutions of 10s of metres are required to represent narrow inland river channels. The use of FVCOM to simulate flows so far inland is a novel challenge, which also requires knowledge of the shape and cross-section of the river channels.

  5. Modeling of Salinity Effects on Waterflooding of Petroleum Reservoirs

    DEFF Research Database (Denmark)

    Alexeev, Artem

    films on the surface of the rock. Oil ganglia are mobilized and carried by the slow flow of wetting films. Considering simplistic pore-network model, we derive the macroscopic system of equations involving description of the transport of oil ganglia. As a result of numerical modeling of the tertiary...... is produced after the active species reaches the effluent. Further extension of the model is achieved by introduction of the non-equilibrium alteration of wettability and non-instantaneous oil mobilization. Such modifications may explain the delay observed in some experiments, where mobilized oil is produced...

  6. Coupled flow and salinity transport modelling in semi-arid environments

    DEFF Research Database (Denmark)

    Bauer-Gottwein, Peter; Held, R.J.; Zimmermann, S.

    2006-01-01

    Numerical groundwater modelling is used as the base for sound aquifer system analysis and water resources assessment. In many cases, particularly in semi-arid and arid regions, groundwater flow is intricately linked to salinity transport. A case in point is the Shashe River Valley in Botswana. A ...

  7. A methodology for the geological and numerical modelling of CO2 storage in deep saline formations

    Science.gov (United States)

    Guandalini, R.; Moia, F.; Ciampa, G.; Cangiano, C.

    2009-04-01

    Several technological options have been proposed to stabilize and reduce the atmospheric concentrations of CO2 among which the most promising are the CCS technologies. The remedy proposed for large stationary CO2 sources as thermoelectric power plants is to separate the flue gas, capturing CO2 and to store it into deep subsurface geological formations. In order to support the identification of potential CO2 storage reservoirs in Italy, the project "Identification of Italian CO2 geological storage sites", financed by the Ministry of Economic Development with the Research Fund for the Italian Electrical System under the Contract Agreement established with the Ministry Decree of march 23, 2006, has been completed in 2008. The project involves all the aspects related to the selection of potential storage sites, each carried out in a proper task. The first task has been devoted to the data collection of more than 6800 wells, and their organization into a geological data base supported by GIS, of which 1911 contain information about the nature and the thickness of geological formations, the presence of fresh, saline or brackish water, brine, gas and oil, the underground temperature, the seismic velocity and electric resistance of geological materials from different logs, the permeability, porosity and geochemical characteristics. The goal of the second task was the set up of a numerical modelling integrated tool, that is the in order to allow the analysis of a potential site in terms of the storage capacity, both from solubility and mineral trapping points of view, in terms of risk assessment and long-term storage of CO2. This tool includes a fluid dynamic module, a chemical module and a module linking a geomechanical simulator. Acquirement of geological data, definition of simulation parameter, run control and final result analysis can be performed by a properly developed graphic user interface, fully integrated and calculation platform independent. The project is then

  8. A Study on the Coupled Model of Hydrothermal-Salt for Saturated Freezing Salinized Soil

    Directory of Open Access Journals (Sweden)

    Xudong Zhang

    2017-01-01

    Full Text Available Water and heat interact in the process of freezing for the saturated soil. And for the salinized soil, water, heat, and salt interact in the freezing process, because salinized soil has soluble salt. In this paper, a one-dimensional mathematical coupled model of hydraulic-thermal-salt is established. In the model, Darcy’s law, law of conservation of energy, and law of conservation of mass are applied to derive the equations. Consider that a saturated salinized soil column is subjected to the condition of freezing to model the moisture migration and salt transport. Both experiment and numerical simulation under the same condition are developed in the soil column. Then the moisture content and salt content between simulation and experiment are compared. The result indicates that simulation matches well with the experiment data, and after 96 hours, the temperature distribution becomes stable, freezing front reaches a stable position, and a lot of unfrozen water has time to migrate. Besides, the excess salt precipitates when the concentration is greater than the solubility, and the precipitation is distributed discontinuously. These results can provide reference for engineering geology and environmental engineering in cold region and saline soil area.

  9. Modeling and Analysis of Sea-level Rise Impacts on Salinity in the Lower St. Johns River

    Science.gov (United States)

    Bacopoulos, P.

    2015-12-01

    There is deliberate attention being paid to studying sea-level rise impacts on the lower St. Johns River, a drowned coastal plain-type estuary with low topographic drive, located in northeastern Florida. One area of attention is salinity in the river, which influences the entire food web, including sea and marsh grasses, juvenile crustaceans and fishes, wading birds and migratory waterfowl, marine mammals and other predator animals. It is expected that elevated ocean levels will increase the salinity of the estuarine waters, leading to deleterious effects on dependent species of the river biology. The objective of the modeling and analysis was: 1) to establish baseline conditions of salinity for the lower St. Johns River; and 2) to examine future conditions of salinity, as impacted by sea-level rise. Establishing baseline conditions entailed validation of the model for present-day salinity in the lower St. Johns River via comparison to available data. Examining future conditions entailed application of the model for sea-level rise scenarios, with comparison to the baseline conditions, for evaluation of sea-level rise impacts on salinity. While the central focus was on the physics of sea-level rise impacts on salinity, some level of salinity-biological assessment was conducted to identify sea-level rise/salinity thresholds, as related to negatively impacting different species of the river biology.

  10. The INTRACOIN model comparison project

    International Nuclear Information System (INIS)

    Lawson, G.

    1982-01-01

    The International Nuclide Transport Code Intercomparison (INTRACOIN) project is investigating the different models and associated computer codes describing the transport of radionuclides in flowing ground-water following the disposal of solid radioactive wastes in geologic formations. Level I of the project has shown good agreement in the numerical accuracy of most of the codes. In Level II the ability of the codes to model field experiments with radioactive tracers will be compared. Level III will show to what extent the adoption of different models and computer codes for the transport of radionuclides with ground water affects the results of repository assessments. (U.K.)

  11. Knowledge Model: Project Knowledge Management

    DEFF Research Database (Denmark)

    Durao, Frederico; Dolog, Peter; Grolin, Daniel

    2009-01-01

    The Knowledge model for project management serves several goals:Introducing relevant concepts of project management area for software development (Section 1). Reviewing and understanding the real case requirements from the industrial perspective. (Section 2). Giving some preliminary suggestions...... for usage in KIWI system (Sections 3). This document is intended for technological partners to understand how for example the software development concepts can be applied to a semantic wiki framework....

  12. Salinity stratification of the Mediterranean Sea during the Messinian crisis: A first model analysis

    Science.gov (United States)

    Simon, Dirk; Meijer, Paul Th.

    2017-12-01

    In the late Miocene, a thick and complex sequence of evaporites was deposited in the Mediterranean Sea during an interruption of normal marine sedimentation known as the Messinian Salinity Crisis. Because the related deposits are mostly hidden from scrutiny in the deep basin, correlation between onshore and offshore sediments is difficult, hampering the development of a comprehensive stratigraphic model. Since the various facies correspond to different salinities of the basin waters, it would help to have physics-based understanding of the spatial distribution of salt concentration. Here, we focus on modelling salinity as a function of depth, i.e., on the stratification of the water column. A box model is set up that includes a simple representation of a haline overturning circulation and of mixing. It is forced by Atlantic exchange and evaporative loss and is used to systematically explore the degree of stratification that results under a wide range of combinations of parameter values. The model demonstrates counterintuitive behaviour close to the saturation of halite. For parameter values that may well be realistic for the Messinian, we show that a significantly stratified Mediterranean water column can be established. In this case, Atlantic connectivity is limited but may be closer to modern magnitudes than previously thought. In addition, a slowing of Mediterranean overturning and a larger deep-water formation region (both in comparison to the present day) are required. Under these conditions, we would expect a longer duration of halite deposition than currently considered in the MSC stratigraphic consensus model.

  13. Growth potential of blue mussels (M. edulis) exposed to different salinities evaluated by a Dynamic Energy Budget model

    DEFF Research Database (Denmark)

    Maar, Marie; Saurel, Camille; Landes, Anja

    2015-01-01

    ) metabolic costs due to osmoregulation in different salinity environments. Themodified DEBmodel was validated with experimental data fromdifferent locations in the Western Baltic Sea (including the Limfjorden) with salinities varying from 8.5 to 29.9 psu. The identified areas suitable for mussel production......For bluemussels,Mytilus edulis, onemajor constrain in the Baltic Sea is the low salinities that reduce the efficiency of mussel production. However, the effects of living in low and variable salinity regimes are rarely considered in models describing mussel growth. The aim of the present study...... was to incorporate the effects of low salinity into an eco-physiological model of blue mussels and to identify areas suitable for mussel production. A Dynamic Energy Budget (DEB) model was modified with respect to i) the morphological parameters (DW/WW-ratio, shape factor), ii) change in ingestion rate and iii...

  14. Salinization and Saline Environments

    Science.gov (United States)

    Vengosh, A.

    2003-12-01

    One of the most conspicuous phenomena of water-quality degradation, particularly in arid and semi-arid zones, is salinization of water and soil resources. Salinization is a long-term phenomenon, and during the last century many aquifers and river basins have become unsuitable for human consumption owing to high levels of salinity. Future exploitation of thousands of wells in the Middle East and in many other water-scarce regions in the world depends, to a large extent, on the degree and rate of salinization. Moreover, every year a large fraction of agricultural land is salinized and becomes unusable.Salinization is a global environmental phenomenon that affects many different aspects of our life (Williams, 2001a, b): changing the chemical composition of natural water resources (lakes, rivers, and groundwater), degrading the quality of water supply to the domestic and agriculture sectors, contribution to loss of biodiversity, taxonomic replacement by halotolerant species ( Williams, 2001a, b), loss of fertile soil, collapse of agricultural and fishery industries, changing of local climatic conditions, and creating severe health problems (e.g., the Aral Basin). The damage due to salinity in the Colorado River Basin alone, for example, ranges between 500 and 750 million per year and could exceed 1 billion per year if the salinity in the Imperial Dam increases from 700 mg L-1 to 900 mg L-1 (Bureau of Reclamation, 2003, USA). In Australia, accelerating soil salinization has become a massive environmental and economic disaster. Western Australia is "losing an area equal to one football oval an hour" due to spreading salinity ( Murphy, 1999). The annual cost for dryland salinity in Australia is estimated as AU700 million for lost land and AU$130 million for lost production ( Williams et al., 2002). In short, the salinization process has become pervasive.Salinity in water is usually defined by the chloride content (mg L-1) or total dissolved solids content (TDS, mg L-1or g

  15. Numerical modeling of persian gulf salinity variations due to tidal effects

    International Nuclear Information System (INIS)

    Sabbagh Yazdi, S.R.

    2004-01-01

    Numerical modeling of salinity changes in marine environment of Persian Gulf is investigated in this paper. Computer simulation of the problem is performed by the solution of a convection-diffusion equation for salinity concentration coupled with the hydrodynamic equations. The hydrodynamic equations consist of shallow water equations of continuity and motion in horizontal plane. The effects of rain and evaporations are considered in the continuity equation and the effects of bed slope and friction, as well as Coriolis effects are considered in two equations of motion. The cell vertex finite volume method is applied for solving the governing equations on triangular unstructured meshes. Using unstructured meshes provides great flexibility for modeling the flow problems in arbitrary and complex geo metrics, such as Persia Gulf domain. The results of evaporation and Coriolis effects, as well as imposing river and tidal boundary conditions to the hydrodynamic model of Persian Gulf (considering variable topology rough bed) are compared with predictions of Admiralty Tide Table, Which are obtained from the harmonic analysis. The performance of the developed computer model is demonstrated by simulation of salinity changes due to inflow effects and diffusion effects as well as computed currents

  16. Microwave Remote Sensing Modeling of Ocean Surface Salinity and Winds Using an Empirical Sea Surface Spectrum

    Science.gov (United States)

    Yueh, Simon H.

    2004-01-01

    Active and passive microwave remote sensing techniques have been investigated for the remote sensing of ocean surface wind and salinity. We revised an ocean surface spectrum using the CMOD-5 geophysical model function (GMF) for the European Remote Sensing (ERS) C-band scatterometer and the Ku-band GMF for the NASA SeaWinds scatterometer. The predictions of microwave brightness temperatures from this model agree well with satellite, aircraft and tower-based microwave radiometer data. This suggests that the impact of surface roughness on microwave brightness temperatures and radar scattering coefficients of sea surfaces can be consistently characterized by a roughness spectrum, providing physical basis for using combined active and passive remote sensing techniques for ocean surface wind and salinity remote sensing.

  17. Monitoring and Modelling of Salinity Behaviour in Drinking Water Ponds in Southern Bangladesh

    Science.gov (United States)

    Hoque, M. A.; Williams, A.; Mathewson, E.; Rahman, A. K. M. M.; Ahmed, K. M.; Scheelbeek, P. F. D.; Vineis, P.; Butler, A. P.

    2015-12-01

    Drinking water in southern Bangladesh is provided by a variety of sources including constructed storage ponds, seasonal rainwater and, ubiquitously saline, shallow groundwater. The ponds, the communal reservoirs for harvested rainwater, also tend to be saline, some as high as 2 g/l. Drinking water salinity has several health impacts including high blood pressure associated major risk factor for several cardio-vascular diseases. Two representative drinking water ponds in Dacope Upazila of Khulna District in southwest Bangladesh were monitored over two years for rainfall, evaporation, pond and groundwater level, abstraction, and solute concentration, to better understand the controls on drinking water salinity. Water level monitoring at both ponds shows groundwater levels predominantly below the pond level throughout the year implying a downward gradient. The grain size analysis of the underlying sediments gives an estimated hydraulic conductivity of 3E-8 m/s allowing limited seepage loss. Water balance modelling indicates that the seepage has a relatively minor effect on the pond level and that the bulk of the losses come from the combination of evaporation and abstraction particularly in dry season when precipitation, the only inflow to the pond, is close to zero. Seasonal variation in salinity (electrical conductivities, EC, ranged between 1500 to 3000 μS/cm) has been observed, and are primarily due to dilution from rainfall and concentration from evaporation, except on one occasion when EC reached 16,000 μS/cm due to a breach in the pond levee. This event was analogous to the episodic inundation that occurs from tropical cyclone storm surges and appears to indicate that such events are important for explaining the widespread salinisation of surface water and shallow groundwater bodies in coastal areas. A variety of adaptations (either from practical protection measures) or novel alternative drinking sources (such as aquifer storage and recovery) can be applied

  18. Soil Porewater Salinity Response to Sea-level Rise in Tidal Freshwater Forested Wetlands: A Modeling Study

    Science.gov (United States)

    Stagg, C. L.; Wang, H.; Krauss, K.; Conrads, P. A.; Swarzenski, C.; Duberstein, J. A.; DeAngelis, D.

    2017-12-01

    There is a growing concern about the adverse effects of salt water intrusion via tidal rivers and creeks into tidal freshwater forested wetlands (TFFWs) due to rising sea levels and reduction of freshwater flow. The distribution and composition of plant species, vegetation productivity, and biogeochemical functions including carbon sequestration capacity and flux rates in TFFWs have been found to be affected by increasing river and soil porewater salinities, with significant shifts occurring at a porewater salinity threshold of 3 PSU. However, the drivers of soil porewater salinity, which impact the health and ecological functions of TFFWs remains unclear, limiting our capability of predicting the future impacts of saltwater intrusion on ecosystem services provided by TFFWs. In this study, we developed a soil porewater salinity model for TFFWs based on an existing salt and water balance model with modifications to several key features such as the feedback mechanisms of soil salinity on evapotranspiration reduction and hydraulic conductivity. We selected sites along the floodplains of two rivers, the Waccamaw River (SC, USA) and the Savannah River (GA and SC, USA) that represent landscape salinity gradients of both surface water and soil porewater from tidal influence of the Atlantic Ocean. These sites represent healthy, moderately and highly salt-impacted forests, and oligohaline marshes. The soil porewater salinity model was calibrated and validated using field data collected at these sites throughout 2008-2016. The model results agreed well with field measurements. Analyses of the preliminary simulation results indicate that the magnitude, seasonal and annual variability, and duration of threshold salinities (e.g., 3 PSU) tend to vary significantly with vegetation status and type (i.e., healthy, degraded forests, and oligohaline marshes), especially during drought conditions. The soil porewater salinity model could be coupled with a wetland soil biogeochemistry

  19. Thermodynamic modeling of iodine and selenium retention in solutions with high salinity

    International Nuclear Information System (INIS)

    Hagemann, Sven; Moog, Helge C.; Herbert, Horst-Juergen; Erich, Agathe

    2012-04-01

    The report on iodine and selenium retention in saline solutions includes the following chapters: (1) Introduction and scope of the work. (2) Actual status of knowledge. (3) Experimental and numerical models. (4) Thermodynamic properties of selenite and hydrogen selenite in solutions of oceanic salts. (5) Thermodynamic properties of selenate in solutions of oceanic salts. (6) Thermodynamic properties of iodide in solutions of oceanic salts. (7) Experimental studies on the retention of iodine and selenium in selected sorbents. (8) Summary and conclusions.

  20. Seasonal variability of salinity and circulation in a silled estuarine fjord: A numerical model study

    Science.gov (United States)

    Kawase, Mitsuhiro; Bang, Bohyun

    2013-12-01

    A three-dimensional hydrodynamic model is used to study seasonal variability of circulation and hydrography in Hood Canal, Washington, United States, an estuarine fjord that develops seasonally hypoxic conditions. The model is validated with data from year 2006, and is shown to be capable of quantitatively realistic simulation of hydrographic variability. Sensitivity experiments show the largest cause of seasonal variability to be that of salinity at the mouth of the fjord, which drives an annual deep water renewal in late summer-early autumn. Variability of fresh water input from the watershed also causes significant but secondary changes, especially in winter. Local wind stress has little effect over the seasonal timescale. Further experiments, in which one forcing parameter is abruptly altered while others are kept constant, show that outside salinity change induces an immediate response in the exchange circulation that, however, decays as a transient as the system equilibrates. In contrast, a change in the river input initiates gradual adjustment towards a new equilibrium value for the exchange transport. It is hypothesized that the spectral character of the system response to river variability will be redder than to salinity variability. This is demonstrated with a stochastically forced, semi-analytical model of fjord exchange circulation. While the exchange circulation in Hood Canal appears less sensitive to the river variability than to the outside hydrography at seasonal timescales, at decadal and longer timescales both could become significant factors in affecting the exchange circulation.

  1. Assessment of Water Salinity Model Using Hydrodynamic Numerical Modelling in Estuary of Selangor River, Malaysia

    International Nuclear Information System (INIS)

    Mohd Ekhwan Toriman; Mohd Ekhwan Toriman; Norbaya Hashim; Mohd Khairul Amri Kamarudin; Abdul Jalil Hassan; Ayaari Muhamad; Nor Azlina Abd Aziz

    2015-01-01

    Issues such as water pollution and extraction of water from Sungai Selangor system has been said to be the cause of fading fireflies. Salinity intrusion into estuary of the Sungai Selangor has been carried out on a hydrodynamic numerical modeling to access the parameter that governed the amount of salt in the river. The berembang trees on the river bank that become the fireflies habitat need some amount of salt for proper growth. Living at the lower reaches of Sungai Selangor, the fireflies are affected not only by the activities in their vicinity, but by activities in the entire river basin. Rapid economic development in the basin and the strong demand for the water resources puts pressure on the ecosystem. This research has been carried out to investigate the effect of water extraction along Sungai Selangor towards altering the amount of salt content in the river. The hydrodynamic modeling with regards to the salt content is expected to support long term assessment that may affect the berembang trees as a result of changes in the flow from upstream because of the water abstraction activity for domestic water supply. (author)

  2. Simulating Durum Wheat (Triticum turgidum L. Response to Root Zone Salinity based on Statistics and Macroscopic Models

    Directory of Open Access Journals (Sweden)

    Vahid Reza Jalali

    2017-10-01

    Full Text Available Introduction Salinity as an abiotic stress can cause excessive disturbance for seed germination and plant sustainable production. Salinity with three different mechanisms of osmotic potential reduction, ionic toxicity and disturbance of plant nutritional balance, can reduce performance of the final product. Planning for optimal use of available water and saline water with poor quality in agricultural activities is of great importance. Wheat is one of the eight main food sources including rice, corn, sugar beet, cattle, sorghum, millet and cassava which provide 70-90% of all calories and 66-90% of the protein consumed in developing countries. Durum wheat (Triticum turgidum L. is an important crop grows in some arid and semi-arid areas of the world such as Middle East and North Africa. In these regions, in addition to soil salinity, sharp decline in rainfall and a sharp drop in groundwater levels in recent years has emphasized on the efficient use of limited soil and water resources. Consequently, in order to use brackish water for agricultural productions, it is required to analyze its quantitative response to salinity stress by simulation models in those regions. The objective of this study is to assess the capability of statistics and macro-simulation models of yield in saline conditions. Materials and methods In this study, two general approach of simulation includes process-physical models and statistical-experimental models were investigated. For this purpose, in order to quantify the salinity effect on seed relative yield of durum wheat (Behrang Variety at different levels of soil salinity, process-physical models of Maas & Hoffman, van Genuchten & Hoffman, Dirksen et al. and Homaee et al. models were used. Also, statistical-experimental models of Modified Gompertz Function, Bi-Exponential Function and Modified Weibull Function were used too. In order to get closer to real conditions of growth circumstances in saline soils, a natural saline

  3. Simplified models of transport and reactions in conditions of CO2 storage in saline aquifers

    Science.gov (United States)

    Suchodolska, Katarzyna; Labus, Krzysztof

    2016-04-01

    and pore fluid migration within the analyzed aquifers were characterized based on the two-dimensional model. Their mechanism is controlled by, changing with time, density contrasts between supercritical CO2, the initial brine, and the brine with CO2 dissolved. When modeling the impact of CO2 storage on the aquifer and cap-rock interface we noted, that decrease in porosity, resulting from a positive balance of secondary minerals volume, was visible mainly in aquifer rocks. Porosity remained almost constant in cap-rocks, to the advantage of sealing of the repository. We also observed, that mineralogical changes at the interface zone, differ from those which occur in central parts of aquifer and cap-rock. This can be explained by high gas saturation in the aquifer roof, and by formation of a front of pore fluids migrating outwards from the interface zone. Due to these mechanisms, at the base of cap-rock, the phenomenon of CO2 desequestration may temporarily occur, associated with the dissolution of carbonate minerals. The simplified models described, may be applicable in assessment of carbon dioxide trapped by dissolution and in mineral phases, and also evaluation of petrostructural consequences of CO2 injection into saline aquifers. This allows estimation of suitability of given formations for CO2 sequestration. The project was funded by the National Science Centre (Poland) granted on the basis of the decision DEC-2012/05/B/ST10/00416.

  4. Economic impacts of climate change. Flooding and salinity in scenarios, models and cases

    International Nuclear Information System (INIS)

    Jonkhoff, W.; Koops, O.; Van der Krogt, R.; Oude Essink, G.; Rietveld, E.

    2008-07-01

    In this report, climatic and economic scenarios are combined and future risks are calculated for the consequences of climate change, such as a rising sea level, flooding, extreme draughts and salinity. The calculation of these economic effects of climate change are based on climate scenarios of the KNMI (Royal Dutch Meteorological Institute), TNO's RAEM model (Spatial General Economic Model), the high tide information system of the Dutch Ministry of Waterways and Public Works and the Space scanner of the Environmental Assessment Agency. Next to information on scenarios and models, this report also addresses damage calculations of flooding near Lopik and Ter Heide. The report ends with policy recommendations for adaptation policy. [mk] [nl

  5. Pavement mechanic response of sulfate saline soil subgrade section based on fluid–structure interaction model

    Directory of Open Access Journals (Sweden)

    Xueying Zhao

    2017-11-01

    Full Text Available It is a consensus that salt heaving and frost heaving are urgent and typical distress in the sulfate saline soil area. To further investigate the microscopic performance of pavement structure in this special area, Jinan-Dongying Freeway in Shandong Province is selected as a case study engineering and the mechanic responses under salt heaving, frost heaving and traffic loads were analyzed through the finite element (FE Program (ANSYS. In this paper, the process of salt heaving and frost heaving was divided into 3 stages and FE models were established based on fluid–structure interaction (FSI model. It is shown that under both effects of salt heaving and frost heaving, the tensile stress of asphalt surface course could be up to 96.75% of its tensile strength, which means its tensile strength was seriously inadequate; however, traffic loads could help to dramatically counteract effects of salt heaving and frost heaving, which could decrease 40–80% of the tensile stress in asphalt surface course. It is also shown that in Jinan-Dongying Freeway effects of salt heaving had slightly larger effects on pavement compared with that of frost heaving, probably because salt heaving occurred from the top to the bottom of subgrade. However, as a whole, in sulfate saline soil area, compared with general area, crack resistance of asphalt courses and foundation treatment should always be strengthened. Keywords: Sulfate saline soil subgrade, Asphalt pavement, Pavement mechanic, FEM, FSI, Cracks and bulging

  6. Spiral model pilot project information model

    Science.gov (United States)

    1991-01-01

    The objective was an evaluation of the Spiral Model (SM) development approach to allow NASA Marshall to develop an experience base of that software management methodology. A discussion is presented of the Information Model (IM) that was used as part of the SM methodology. A key concept of the SM is the establishment of an IM to be used by management to track the progress of a project. The IM is the set of metrics that is to be measured and reported throughout the life of the project. These metrics measure both the product and the process to ensure the quality of the final delivery item and to ensure the project met programmatic guidelines. The beauty of the SM, along with the IM, is the ability to measure not only the correctness of the specification and implementation of the requirements but to also obtain a measure of customer satisfaction.

  7. Salinity change in the Baltic Sea during the last 8,500 years: evidence, causes and models

    Energy Technology Data Exchange (ETDEWEB)

    Westman, Per; Wastegaard, Stefan; Schoning, Kristian [Stockholm Univ. (Sweden). Dept. of Quaternary Research; Gustafsson, Bo [Oceanus Havsundersoekningar, Goeteborg (Sweden); Omstedt, Anders [SMHI, Norrkoeping (Sweden)

    1999-12-01

    The salinity influences which ecosystems will dominate in the coastal area and what property radionuclides have. Salinity is also an important boundary condition for the transport models in the geosphere. Knowledge about the past salinity is important background to evaluate the hydrology and geochemistry in the rock and further to assess the radiological consequences of possible releases from a radioactive repository. This report concerns the salinity in the Baltic Sea during the last 8500 calendar years BP. Shore-level data for the inlet areas and proxy (indirect) data for the palaeo-salinity and the climate are reviewed. These data is further used in a steady-state model for the salt exchange between the Baltic Sea and Kattegat. This will then be extended to a model of the future development of the salinity in the Baltic Sea. We conclude that the changes in the inlet cross-section areas together with a 15% to 60% lower net freshwater input compared to the present input can explain the higher salinity in the Baltic Sea during earlier times.

  8. Salinity change in the Baltic Sea during the last 8,500 years: evidence, causes and models

    International Nuclear Information System (INIS)

    Westman, Per; Wastegaard, Stefan; Schoning, Kristian; Omstedt, Anders

    1999-12-01

    The salinity influences which ecosystems will dominate in the coastal area and what property radionuclides have. Salinity is also an important boundary condition for the transport models in the geosphere. Knowledge about the past salinity is important background to evaluate the hydrology and geochemistry in the rock and further to assess the radiological consequences of possible releases from a radioactive repository. This report concerns the salinity in the Baltic Sea during the last 8500 calendar years BP. Shore-level data for the inlet areas and proxy (indirect) data for the palaeo-salinity and the climate are reviewed. These data is further used in a steady-state model for the salt exchange between the Baltic Sea and Kattegat. This will then be extended to a model of the future development of the salinity in the Baltic Sea. We conclude that the changes in the inlet cross-section areas together with a 15% to 60% lower net freshwater input compared to the present input can explain the higher salinity in the Baltic Sea during earlier times

  9. Constrained bayesian inference of project performance models

    OpenAIRE

    Sunmola, Funlade

    2013-01-01

    Project performance models play an important role in the management of project success. When used for monitoring projects, they can offer predictive ability such as indications of possible delivery problems. Approaches for monitoring project performance relies on available project information including restrictions imposed on the project, particularly the constraints of cost, quality, scope and time. We study in this paper a Bayesian inference methodology for project performance modelling in ...

  10. MODELS OF PROJECT REVERSE ENGINEERING

    Directory of Open Access Journals (Sweden)

    Віктор Володимирович ІВАНОВ

    2017-03-01

    Full Text Available Reverse engineering decided important scientific and technical problems of increasing the cost of the existing technical product by transforming it into a product with other features or design. Search ideas of the new application of existing products on the base of heuristic analysis were created. The concept of reverse engineering and its division into three types: conceptual, aggregate and complete was expanded. The use of heuristic methods for reverse engineering concept was showed. The modification model of Reverse engineering based on the model of РМВОК was developed. Our model includes two new phases: identification and transformation. At the identification phase, technical control is made. At the transformation phase, search heuristic idea of the new applied existing technical product was made. The model of execution phase that included heuristic methods, metrological equipment, and CAD/CAM/CAE program complex was created. The model that connected economic indicators of reverse engineering project was developed.

  11. The PASS project architectural model

    International Nuclear Information System (INIS)

    Day, C.T.; Loken, S.; Macfarlane, J.F.

    1994-01-01

    The PASS project has as its goal the implementation of solutions to the foreseen data access problems of the next generation of scientific experiments. The architectural model results from an evaluation of the operational and technical requirements and is described in terms of an abstract reference model, an implementation model and a discussion of some design aspects. The abstract reference model describes a system that matches the requirements in terms of its components and the mechanisms by which they communicate, but does not discuss policy or design issues that would be necessary to match the model to an actual implementation. Some of these issues are discussed, but more detailed design and simulation work will be necessary before choices can be made

  12. Solid Waste Projection Model: Model user's guide

    International Nuclear Information System (INIS)

    Stiles, D.L.; Crow, V.L.

    1990-08-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford company (WHC) specifically to address solid waste management issues at the Hanford Central Waste Complex (HCWC). This document, one of six documents supporting the SWPM system, contains a description of the system and instructions for preparing to use SWPM and operating Version 1 of the model. 4 figs., 1 tab

  13. Modeling the effects of different irrigation water salinity on soil water movement, uptake and multicomponent solute transport

    Science.gov (United States)

    Lekakis, E. H.; Antonopoulos, V. Z.

    2015-11-01

    Simulation models can be important tools for analyzing and managing irrigation, soil salinization or crop production problems. In this study a mathematical model that describes the water movement and mass transport of individual ions (Ca2+, Mg2+ and Na+) and overall soil salinity by means of the soil solution electrical conductivity, is used. The mass transport equations of Ca2+, Mg2+ and Na+ have been incorporated as part of the integrated model WANISIM and the soil salinity was computed as the sum of individual ions. The model was calibrated and validated against field data, collected during a three year experiment in plots of maize, irrigated with three different irrigation water qualities, at Thessaloniki area in Northern Greece. The model was also used to evaluate salinization and sodification hazards by the use of irrigation water with increasing electrical conductivity of 0.8, 3.2 and 6.4 dS m-1, while maintaining a ratio of Ca2+:Mg2+:Na+ equal to 3:3:2. The qualitative and quantitative procedures for results evaluation showed that there was good agreement between the simulated and measured values of the water content, overall salinity and the concentration of individual soluble cations, at two soil layers (0-35 and 35-75 cm). Nutrient uptake was also taken into account. Locally available irrigation water (ECiw = 0.8 dS m-1) did not cause soil salinization or sodification. On the other hand, irrigation water with ECiw equal to 3.2 and 6.4 dS m-1 caused severe soil salinization, but not sodification. The rainfall water during the winter seasons was not sufficient to leach salts below the soil profile of 110 cm. The modified version of model WANISIM is able to predict the effects of irrigation with saline waters on soil and plant growth and it is suitable for irrigation management in areas with scarce and low quality water resources.

  14. SSEM: A model for simulating runoff and erosion of saline-sodic soil slopes under coastal reclamation

    Science.gov (United States)

    Liu, Dongdong; She, Dongli

    2018-06-01

    Current physically based erosion models do not carefully consider the dynamic variations of soil properties during rainfall and are unable to simulate saline-sodic soil slope erosion processes. The aim of this work was to build upon a complete model framework, SSEM, to simulate runoff and erosion processes for saline-sodic soils by coupling dynamic saturated hydraulic conductivity Ks and soil erodibility Kτ. Sixty rainfall simulation rainfall experiments (2 soil textures × 5 sodicity levels × 2 slope gradients × 3 duplicates) provided data for model calibration and validation. SSEM worked very well for simulating the runoff and erosion processes of saline-sodic silty clay. The runoff and erosion processes of saline-sodic silt loam were more complex than those of non-saline soils or soils with higher clay contents; thus, SSEM did not perform very well for some validation events. We further examined the model performances of four concepts: Dynamic Ks and Kτ (Case 1, SSEM), Dynamic Ks and Constant Kτ (Case 2), Constant Ks and Dynamic Kτ (Case 3) and Constant Ks and Constant Kτ (Case 4). The results demonstrated that the model, which considers dynamic variations in soil saturated hydraulic conductivity and soil erodibility, can provide more reasonable runoff and erosion prediction results for saline-sodic soils.

  15. Hydrologic modeling in a marsh-mangrove ecotone: Predicting wetland surface water and salinity response to restoration in the Ten Thousand Islands region of Florida, USA

    Science.gov (United States)

    Michot, B.D.; Meselhe, E.A.; Krauss, Ken W.; Shrestha, Surendra; From, Andrew S.; Patino, Eduardo

    2017-01-01

    At the fringe of Everglades National Park in southwest Florida, United States, the Ten Thousand Islands National Wildlife Refuge (TTINWR) habitat has been heavily affected by the disruption of natural freshwater flow across the Tamiami Trail (U.S. Highway 41). As the Comprehensive Everglades Restoration Plan (CERP) proposes to restore the natural sheet flow from the Picayune Strand Restoration Project area north of the highway, the impact of planned measures on the hydrology in the refuge needs to be taken into account. The objective of this study was to develop a simple, computationally efficient mass balance model to simulate the spatial and temporal patterns of water level and salinity within the area of interest. This model could be used to assess the effects of the proposed management decisions on the surface water hydrological characteristics of the refuge. Surface water variations are critical to the maintenance of wetland processes. The model domain is divided into 10 compartments on the basis of their shared topography, vegetation, and hydrologic characteristics. A diversion of +10% of the discharge recorded during the modeling period was simulated in the primary canal draining the Picayune Strand forest north of the Tamiami Trail (Faka Union Canal) and this discharge was distributed as overland flow through the refuge area. Water depths were affected only modestly. However, in the northern part of the refuge, the hydroperiod, i.e., the duration of seasonal flooding, was increased by 21 days (from 115 to 136 days) for the simulation during the 2008 wet season, with an average water level rise of 0.06 m. The average salinity over a two-year period in the model area just south of Tamiami Trail was reduced by approximately 8 practical salinity units (psu) (from 18 to 10 psu), whereas the peak dry season average was reduced from 35 to 29 psu (by 17%). These salinity reductions were even larger with greater flow diversions (+20%). Naturally, the reduction

  16. Comparison of Hydroxocobalamin Versus Norepinephrine Versus Saline in a Swine Model of Servere Septic Shock

    Science.gov (United States)

    2016-05-20

    Versus Saline in a Swine Model of Severe Septic Shock presented at/published to SURF Conference, San Antonio, TX 20 May 2016 with MDWJ 41-108, and has...of Wilford Hall Ambulatory Surgical Center (WHASC) internship and residency programs. 3. Please know that if you are a Graduate Health Sciences...must complete page two of this form: a. In Section 2, add the funding source for your study (e.g., S9 MOW CRD Graduate Health Sciences Education (GHSE

  17. Numerical modelling of tidal circulation and studies on salinity distribution in Mandovi and Zuari estuaries

    Digital Repository Service at National Institute of Oceanography (India)

    Manoj, N.T.

    the characteris- tics of tidal propagation and salinity distribution in the Mandovi and Zuari estuaries using a hybrid network numerical model. One of the main objective was to study the longi- tudinal variation of tides during dry and wet seasons and freshwater... of the Zuari and Mandovi estuaries in relation to tides. Proceedings of the Indian Academy of Sciences, 72:68–80, 1970. P. V. Dehadrai and R. M. S. Bhargava. Seasonal organic production in relation to en- vironmental features in Mandovi and Zuari estuaries, Goa...

  18. Modeling the effects of saline groundwater and irrigation water on root zone salinity and sodicity dynamics in agro-ecosystems

    NARCIS (Netherlands)

    Shah, S.H.H.

    2013-01-01

    Recent trends and future projections suggest that the need to produce more food and fibre for the world’ s expanding population will lead to an increase in the use of marginal-quality water and land resources (Bouwer, 2000; Gupta and Abrol, 2000; Wild, 2003). This is particularly

  19. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2009-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario......-based graphs which function as risk-related decision support for the appraised transport infrastructure project....

  20. Simulation of Quinoa (Chenopodium Quinoa Willd.) response to soil salinity using the saltmed model

    DEFF Research Database (Denmark)

    Razzaghi, Fatemeh; Plauborg, Finn; Ahmadi, Seyed Hamid

    Quinoa (Chenopodium quinoa Willd.) is a crop with high tolerance to salinity and drought and its response to varying soil moisture and salinity levels was studied in a field lysimeter experiment. Quinoa (cv. Titicaca) was irrigated with different concentrations of saline water (0, 10, 20, 30 and 40...

  1. Salinity/temperature ranges for application of seawater SA-T-P models

    Science.gov (United States)

    Marion, G. M.; Millero, F. J.; Feistel, R.

    2009-01-01

    At the present time, little is known about how broad salinity and temperature ranges are for seawater thermodynamic models that are functions of absolute salinity (SA), temperature (T) and pressure (P). Such models rely on fixed compositional ratios of the major components (e.g. Na/Cl, Mg/Cl, Ca/Cl, SO4/Cl, etc.). As seawater evaporates or freezes, solid phases (e.g. CaCO3(s) or CaSO42H2O(s)) will eventually precipitate. This will change the compositional ratios, and these salinity models will no longer be applicable. A future complicating factor is the lowering of seawater pH as the atmospheric concentrations of CO2 increase. A geochemical model (FREZCHEM) was used to quantify the SA-T boundaries at P=0.1 MPa and the range of these boundaries for future atmospheric CO2 increases. An omega supersaturation model for CaCO3 minerals based on homogeneous nucleation was extended from 25-40°C to 3°C. CaCO3 minerals were the boundary defining minerals (first to precipitate) between 3°C (at SA=104 g kg-1 and 40°C (at SA=66 g kg-1. At 2.82°C, calcite(CaCO3) transitioned to ikaite(CaCO36H2O) as the dominant boundary defining mineral for colder temperatures, which culminated in a low temperature boundary of -4.93°C. Increasing atmospheric CO2 from 385 μatm (in Year 2008) to 550 μatm (in Year 2100) would increase the SA and t boundaries as much as 11 g kg-1 and 0.66°C, respectively. The model-calculated calcite-ikaite transition temperature of 2.82°C is in excellent agreement with ikaite formation in natural environments that occurs at temperatures of 3°C or lower. Furthermore, these results provide a quantitative theoretical explanation (FREZCHEM model calculations) for why ikaite is the solid phase CaCO3 mineral that precipitates during seawater freezing.

  2. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    Science.gov (United States)

    Plaksina, Tatyana; Kanfar, Mohammed

    2017-11-01

    With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3) approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  3. Profitability Evaluation of a Hybrid Geothermal and CO2 Sequestration Project for a Coastal Hot Saline Aquifer.

    Directory of Open Access Journals (Sweden)

    Plaksina Tatyana

    2017-01-01

    Full Text Available With growing interest in commercial projects involving industrial volume CO2 sequestration, a concern about proper containment and control over the gas plume becomes particularly prominent. In this study, we explore the potential of using a typical coastal geopressured hot saline aquifer for two commercial purposes. The first purpose is to harvest geothermal heat of the aquifer for electricity generation and/or direct use and the second one is to utilize the same rock volume for safe and controlled CO2 sequestration without interruption of heat production. To achieve these goals, we devised and economically evaluated a scheme that recovers operational and capital costs within first 4 years and yields positive internal rate of return of about 15% at the end of the operations. Using our strategic design of well placement and operational scheduling, we were able to achieve in our numerical simulation study the following results. First, the hot water production rates allowed to run a 30 MW organic Rankine cycle plant for 20 years. Second, during the last 10 years of operation we managed to inject into the same reservoir (volume of 0.8 x 109 m3 approximately 10 million ton of the supercritical gas. Third, decades of numerical monitoring the plume after the end of the operations showed that this large volume of CO2 is securely sequestrated inside the reservoir without compromising the caprock integrity.

  4. Salinity guidelines for irrigation: Case studies from Water Research ...

    African Journals Online (AJOL)

    Salinity guidelines for irrigation: Case studies from Water Research Commission projects along the Lower Vaal, Riet, Berg and Breede Rivers. ... It is suggested that a more dynamic approach be used for managing salinity under irrigation at farm level, i.e. the use of models. Amongst others, future research should focus on ...

  5. THE OHIO RIVER VALLEY CO2 STORAGE PROJECT - PRELIMINARY ASSESSMENT OF DEEP SALINE RESERVOIRS AND COAL SEAMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael J. Mudd; Howard Johnson; Charles Christopher; T.S. Ramakrishnan, Ph.D.

    2003-08-01

    This report describes the geologic setting for the Deep Saline Reservoirs and Coal Seams in the Ohio River Valley CO{sub 2} Storage Project area. The object of the current project is to site and design a CO{sub 2} injection facility. A location near New Haven, WV, has been selected for the project. To assess geologic storage reservoirs at the site, regional and site-specific geology were reviewed. Geologic reports, deep well logs, hydraulic tests, and geologic maps were reviewed for the area. Only one well within 25 miles of the site penetrates the deeper sedimentary rocks, so there is a large amount of uncertainty regarding the deep geology at the site. New Haven is located along the Ohio River on the border of West Virginia and Ohio. Topography in the area is flat in the river valley but rugged away from the Ohio River floodplain. The Ohio River Valley incises 50-100 ft into bedrock in the area. The area of interest lies within the Appalachian Plateau, on the western edge of the Appalachian Mountain chain. Within the Appalachian Basin, sedimentary rocks are 3,000 to 20,000 ft deep and slope toward the southeast. The rock formations consist of alternating layers of shale, limestone, dolomite, and sandstone overlying dense metamorphic continental shield rocks. The Rome Trough is the major structural feature in the area, and there may be some faults associated with the trough in the Ohio-West Virginia Hinge Zone. The area has a low earthquake hazard with few historical earthquakes. Target injection reservoirs include the basal sandstone/Lower Maryville and the Rose Run Sandstone. The basal sandstone is an informal name for sandstones that overlie metamorphic shield rock. Regional geology indicates that the unit is at a depth of approximately 9,100 ft below the surface at the project site and associated with the Maryville Formation. Overall thickness appears to be 50-100 ft. The Rose Run Sandstone is another potential reservoir. The unit is located approximately 1

  6. INDICATIVE MODEL OF DEVIATIONS IN PROJECT

    Directory of Open Access Journals (Sweden)

    Олена Борисівна ДАНЧЕНКО

    2016-02-01

    Full Text Available The article shows the process of constructing the project deviations indicator model. It based on a conceptual model of project deviations integrated management (PDIM. During the project different causes (such as risks, changes, problems, crises, conflicts, stress lead to deviations of integrated project indicators - time, cost, quality, and content. For a more detailed definition of where in the project deviations occur and how they are dangerous for the whole project, it needs to develop an indicative model of project deviations. It allows identifying the most dangerous deviations that require PDIM. As a basis for evaluation of project's success has been taken famous model IPMA Delta. During the evaluation, IPMA Delta estimated project management competence of organization in three modules: I-Module ("Individuals" - a self-assessment personnel, P-module ("Projects" - self-assessment of projects and/or programs, and O-module ("Organization" - used to conduct interviews with selected people during auditing company. In the process of building an indicative model of deviations in the project, the first step is the assessment of project management in the organization by IPMA Delta. In the future, built cognitive map and matrix of system interconnections of the project, which conducted simulations and built a scale of deviations for the selected project. They determined a size and place of deviations. To identify the detailed causes of deviations in the project management has been proposed to use the extended system of indicators, which is based on indicators of project management model Project Excellence. The proposed indicative model of deviations in projects allows to estimate the size of variation and more accurately identify the place of negative deviations in the project and provides the project manager information for operational decision making for the management of deviations in the implementation of the project

  7. W-320 Project thermal modeling

    Energy Technology Data Exchange (ETDEWEB)

    Sathyanarayana, K., Fluor Daniel Hanford

    1997-03-18

    This report summarizes the results of thermal analysis performed to provide a technical basis in support of Project W-320 to retrieve by sluicing the sludge in Tank 241-C-106 and to transfer into Tank 241-AY-102. Prior theraml evaluations in support of Project W-320 safety analysis assumed the availability of 2000 to 3000 CFM, as provided by Tank Farm Operations, for tank floor cooling channels from the secondary ventilation system. As this flow availability has no technical basis, a detailed Tank 241-AY-102 secondary ventilation and floor coating channel flow model was developed and analysis was performed. The results of the analysis show that only about 150 cfm flow is in floor cooLing channels. Tank 241-AY-102 thermal evaluation was performed to determine the necessary cooling flow for floor cooling channels using W-030 primary ventilation system for different quantities of Tank 241-C-106 sludge transfer into Tank 241-AY-102. These sludge transfers meet different options for the project along with minimum required modification of the ventilation system. Also the results of analysis for the amount of sludge transfer using the current system is presented. The effect of sludge fluffing factor, heat generation rate and its distribution between supernatant and sludge in Tank 241-AY-102 on the amount of sludge transfer from Tank 241-C-106 were evaluated and the results are discussed. Also transient thermal analysis was performed to estimate the time to reach the steady state. For a 2 feet sludge transfer, about 3 months time will be requirad to reach steady state. Therefore, for the purpose of process control, a detailed transient thermal analysis using GOTH Computer Code will be required to determine transient response of the sludge in Tank 241-AY-102. Process control considerations are also discussed to eliminate the potential for a steam bump during retrieval and storage in Tanks 241-C-106 and 241-AY-102 respectively.

  8. Temperature-salinity structure of the AMOC in high-resolution ocean simulations and in CMIP5 models

    Science.gov (United States)

    Wang, F.; Xu, X.; Chassignet, E.

    2017-12-01

    On average, the CMIP5 models represent the AMOC structure, water properties, Heat transport and Freshwater transport reasonably well. For temperature, CMIP5 models exhibit a colder northward upper limb and a warmer southward lower limb. the temperature contrast induces weaker heat transport than observation. For salinity, CMIP5 models exhibit saltier southward lower limb, thus contributes to weaker column freshwater transport. Models have large spread, among them, AMOC strength contributes to Heat transport but not freshwater transport. AMOC structure (the overturning depth) contributes to transport-weighted temperature not transport-weighted salinity in southward lower limb. The salinity contrast in upper and lower limb contributes to freshwater transport, but temperature contrast do not contribute to heat transport.

  9. Modelling of Transport Projects Uncertainties

    DEFF Research Database (Denmark)

    Salling, Kim Bang; Leleur, Steen

    2012-01-01

    This paper proposes a new way of handling the uncertainties present in transport decision making based on infrastructure appraisals. The paper suggests to combine the principle of Optimism Bias, which depicts the historical tendency of overestimating transport related benefits and underestimating...... to supplement Optimism Bias and the associated Reference Class Forecasting (RCF) technique with a new technique that makes use of a scenario-grid. We tentatively introduce and refer to this as Reference Scenario Forecasting (RSF). The final RSF output from the CBA-DK model consists of a set of scenario......-based graphs which functions as risk-related decision support for the appraised transport infrastructure project. The presentation of RSF is demonstrated by using an appraisal case concerning a new airfield in the capital of Greenland, Nuuk....

  10. Modeling and Mapping of Soil Salinity with Reflectance Spectroscopy and Landsat Data Using Two Quantitative Methods (PLSR and MARS

    Directory of Open Access Journals (Sweden)

    Said Nawar

    2014-11-01

    Full Text Available The monitoring of soil salinity levels is necessary for the prevention and mitigation of land degradation in arid environments. To assess the potential of remote sensing in estimating and mapping soil salinity in the El-Tina Plain, Sinai, Egypt, two predictive models were constructed based on the measured soil electrical conductivity (ECe and laboratory soil reflectance spectra resampled to Landsat sensor’s resolution. The models used were partial least squares regression (PLSR and multivariate adaptive regression splines (MARS. The results indicated that a good prediction of the soil salinity can be made based on the MARS model (R2 = 0.73, RMSE = 6.53, and ratio of performance to deviation (RPD = 1.96, which performed better than the PLSR model (R2 = 0.70, RMSE = 6.95, and RPD = 1.82. The models were subsequently applied on a pixel-by-pixel basis to the reflectance values derived from two Landsat images (2006 and 2012 to generate quantitative maps of the soil salinity. The resulting maps were validated successfully for 37 and 26 sampling points for 2006 and 2012, respectively, with R2 = 0.72 and 0.74 for 2006 and 2012, respectively, for the MARS model, and R2 = 0.71 and 0.73 for 2006 and 2012, respectively, for the PLSR model. The results indicated that MARS is a more suitable technique than PLSR for the estimation and mapping of soil salinity, especially in areas with high levels of salinity. The method developed in this paper can be used for other satellite data, like those provided by Landsat 8, and can be applied in other arid and semi-arid environments.

  11. High-resolution model for estimating the economic and policy implications of agricultural soil salinization in California

    Science.gov (United States)

    Welle, Paul D.; Mauter, Meagan S.

    2017-09-01

    This work introduces a generalizable approach for estimating the field-scale agricultural yield losses due to soil salinization. When integrated with regional data on crop yields and prices, this model provides high-resolution estimates for revenue losses over large agricultural regions. These methods account for the uncertainty inherent in model inputs derived from satellites, experimental field data, and interpreted model results. We apply this method to estimate the effect of soil salinity on agricultural outputs in California, performing the analysis with both high-resolution (i.e. field scale) and low-resolution (i.e. county-scale) data sources to highlight the importance of spatial resolution in agricultural analysis. We estimate that soil salinity reduced agricultural revenues by 3.7 billion (1.7-7.0 billion) in 2014, amounting to 8.0 million tons of lost production relative to soil salinities below the crop-specific thresholds. When using low-resolution data sources, we find that the costs of salinization are underestimated by a factor of three. These results highlight the need for high-resolution data in agro-environmental assessment as well as the challenges associated with their integration.

  12. Carbon Sequestration in Saline Aquifers: Modeling Diffusive and Convective Transport Of a Carbon-­Dioxide Cap

    KAUST Repository

    Allen, Rebecca

    2011-05-01

    An increase in the earth’s surface temperature has been directly linked to the rise of carbon dioxide (CO2) levels In the atmosphere and an enhanced greenhouse effect. CO2 sequestration is one of the proposed mitigation Strategies in the effort to reduce atmospheric CO2 concentrations. Globally speaking, saline aquifers provide an adequate storage capacity for the world’s carbon emissions, and CO2 sequestration projects are currently underway in countries such as Norway, Germany, Japan, USA, and others. Numerical simulators serve as predictive tools for CO2 storage, yet must model fluid transport behavior while coupling different transport processes together accurately. With regards to CO2 sequestration, an extensive amount of research has been done on the diffusive-convective transport that occurs under a cap of CO2-saturated fluid, which results after CO2 is injected into an aquifer and spreads laterally under an area of low permeability. The diffusive-convective modeling reveals an enhanced storage capacity in saline aquifers, due to the density increase between pure fluid and CO2‐saturated fluid. This work presents the transport modeling equations that are used for diffusive- convective modeling. A cell-centered finite difference method is used, and simulations are run using MATLAB. Two cases are explored in order to compare the results from this work’s self-generated code with the results published in literature. Simulation results match relatively well, and the discrepancy for a delayed onset time of convective transport observed in this work is attributed to numerical artifacts. In fact, onset time in this work is directly attributed to the instability of the physical system: this instability arises from non-linear coupling of fluid flow, transport, and convection, but is triggered by numerical errors in these simulations. Results from this work enable the computation of a value for the numerical constant that appears in the onset time equation that

  13. Sharks, Minnows, and Wheelbarrows: Calculus Modeling Projects

    Science.gov (United States)

    Smith, Michael D.

    2011-01-01

    The purpose of this article is to present two very active applied modeling projects that were successfully implemented in a first semester calculus course at Hollins University. The first project uses a logistic equation to model the spread of a new disease such as swine flu. The second project is a human take on the popular article "Do Dogs Know…

  14. Saline agriculture: A technology for economic utilization and improvement of saline environments (abstract)

    International Nuclear Information System (INIS)

    Aslam, Z.; Malik, K.A.; Khurshid, S.J.; Awan, A.R.; Akram, M.; Hashmi, Z.; Ali, Y.; Gulnaz, A.; Hussain, M.; Hussain, F.

    2005-01-01

    Aquaculture on their farms. In the cotton growing areas, farmers are also being trained on non-pesticidal control of cotton pests. For effective training of farmers on Saline Agriculture issues, they have been organized into 'Saline Agriculture Farmer Associations (SAFA)'. Regular 'Community Meetings', skill development training courses and Farmer Field Schools are being arranged for these groups. Printed material in Urdu and English on new technologies is also being published regularly for the benefit of project farmers, extension workers and other interested persons, elsewhere. Visible improvements in the project area with time clearly indicate that the Saline Agriculture Farmer Participatory Development Project in Pakistan is an elegant model to demonstrate how science can help in effecting change in life of millions of farmers in a few years, if their full participation is ensured. (author)

  15. A proposed model for construction project management ...

    African Journals Online (AJOL)

    Keywords: Communication skills and leadership model, construction project ..... help a manager handle stress and break tension (Gido & Clements,. 2012: 331; Harrin .... production and management of projects, the higher the demand for.

  16. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Science.gov (United States)

    Ghose-Hajra, M.; McCorquodale, A.; Mattson, G.; Jerolleman, D.; Filostrat, J.

    2015-03-01

    Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana's coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana's disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  17. Effects of salinity and particle concentration on sediment hydrodynamics and critical bed-shear-stress for erosion of fine grained sediments used in wetland restoration projects

    Directory of Open Access Journals (Sweden)

    M. Ghose-Hajra

    2015-03-01

    Full Text Available Sea-level rise, the increasing number and intensity of storms, oil and groundwater extraction, and coastal land subsidence are putting people and property at risk along Louisiana’s coast, with major implications for human safety and economic health of coastal areas. A major goal towards re-establishing a healthy and sustainable coastal ecosystem has been to rebuild Louisiana’s disappearing wetlands with fine grained sediments that are dredged or diverted from nearby rivers, channels and lakes to build land in open water areas. A thorough geo-hydrodynamic characterization of the deposited sediments is important in the correct design and a more realistic outcome assessment of the long-term performance measures for ongoing coastal restoration projects. This paper evaluates the effects of salinity and solid particle concentration on the re-suspension characteristics of fine-grained dredged sediments obtained from multiple geographic locations along the Gulf coast. The critical bed-shear-stress for erosion has been evaluated as a function of sedimentation time. The sediment hydrodynamic properties obtained from the laboratory testing were used in a numerical coastal sediment distribution model to aid in evaluating sediment diversions from the Mississippi River into Breton Sound and Barataria Bay.

  18. Salinity sources of Kefar Uriya wells in the Judea Group aquifer of Israel. Part 1—conceptual hydrogeological model

    Science.gov (United States)

    Avisar, D.; Rosenthal, E.; Flexer, A.; Shulman, H.; Ben-Avraham, Z.; Guttman, J.

    2003-01-01

    In the Yarkon-Taninim groundwater basin, the karstic Judea Group aquifer contains groundwater of high quality. However, in the western wells of the Kefar Uriya area located in the foothills of the Judea Mountains, brackish groundwater was locally encountered. The salinity of this water is caused presumably by two end members designated as the 'Hazerim' and 'Lakhish' water types. The Hazerim type represents surface water percolating through a highly fractured thin chalky limestone formation overlying the Judea Group aquifer. The salinity of the water derives conjointly from several sources such as leachates from rendzina and grumosols, dissolution of caliche crusts which contain evaporites and of rock debris from the surrounding formations. This surface water percolates downwards into the aquifer through a funnel- or chimney-like mechanism. This local salinization mechanism supercedes another regional process caused by the Lakhish waters. These are essentially diluted brines originating from deep formations in the western parts of the Coastal Plain. The study results show that salinization is not caused by the thick chalky beds of the Senonian Mt Scopus Group overlying the Judea Group aquifer, as traditionally considered but prevalently by aqueous leachates from soils and rock debris. The conceptual qualitative hydrogeological model of the salinization as demonstrated in this study, is supported by a quantitative hydrological model presented in another paper in this volume.

  19. A dynamic model of soil salinity and drainage generation in irrigated agriculture: A framework for policy analysis

    Science.gov (United States)

    Dinar, Ariel; Aillery, Marcel P.; Moore, Michael R.

    1993-06-01

    This paper presents a dynamic model of irrigated agriculture that accounts for drainage generation and salinity accumulation. Critical model relationships involving crop production, soil salinity, and irrigation drainage are based on newly estimated functions derived from lysimeter field tests. The model allocates land and water inputs over time based on an intertemporal profit maximization objective function and soil salinity accumulation process. The model is applied to conditions in the San Joaquin Valley of California, where environmental degradation from irrigation drainage has become a policy issue. Findings indicate that in the absence of regulation, drainage volumes increase over time before reaching a steady state as increased quantities of water are allocated to leaching soil salts. The model is used to evaluate alternative drainage abatement scenarios involving drainage quotas and taxes, water supply quotas and taxes, and irrigation technology subsidies. In our example, direct drainage policies are more cost-effective in reducing drainage than policies operating indirectly through surface water use, although differences in cost efficiency are relatively small. In some cases, efforts to control drainage may result in increased soil salinity accumulation, with implications for long-term cropland productivity. While policy adjustments may alter the direction and duration of convergence to a steady state, findings suggest that a dynamic model specification may not be necessary due to rapid convergence to a comon steady state under selected scenarios.

  20. Framework for developing hybrid process-driven, artificial neural network and regression models for salinity prediction in river systems

    Science.gov (United States)

    Hunter, Jason M.; Maier, Holger R.; Gibbs, Matthew S.; Foale, Eloise R.; Grosvenor, Naomi A.; Harders, Nathan P.; Kikuchi-Miller, Tahali C.

    2018-05-01

    Salinity modelling in river systems is complicated by a number of processes, including in-stream salt transport and various mechanisms of saline accession that vary dynamically as a function of water level and flow, often at different temporal scales. Traditionally, salinity models in rivers have either been process- or data-driven. The primary problem with process-based models is that in many instances, not all of the underlying processes are fully understood or able to be represented mathematically. There are also often insufficient historical data to support model development. The major limitation of data-driven models, such as artificial neural networks (ANNs) in comparison, is that they provide limited system understanding and are generally not able to be used to inform management decisions targeting specific processes, as different processes are generally modelled implicitly. In order to overcome these limitations, a generic framework for developing hybrid process and data-driven models of salinity in river systems is introduced and applied in this paper. As part of the approach, the most suitable sub-models are developed for each sub-process affecting salinity at the location of interest based on consideration of model purpose, the degree of process understanding and data availability, which are then combined to form the hybrid model. The approach is applied to a 46 km reach of the Murray River in South Australia, which is affected by high levels of salinity. In this reach, the major processes affecting salinity include in-stream salt transport, accession of saline groundwater along the length of the reach and the flushing of three waterbodies in the floodplain during overbank flows of various magnitudes. Based on trade-offs between the degree of process understanding and data availability, a process-driven model is developed for in-stream salt transport, an ANN model is used to model saline groundwater accession and three linear regression models are used

  1. Mapping Erosion and Salinity Risk Categories Using GIS and the Rangeland Hydrology Erosion Model

    Science.gov (United States)

    Up to fifteen percent of rangelands in the state of Utah in the United States are classified as being in severely eroding condition. Some of these degraded lands are located on saline, erodible soils of the Mancos Shale formation. This results in a disproportionate contribution of sediment, salinity...

  2. Modeling Research Project Risks with Fuzzy Maps

    Science.gov (United States)

    Bodea, Constanta Nicoleta; Dascalu, Mariana Iuliana

    2009-01-01

    The authors propose a risks evaluation model for research projects. The model is based on fuzzy inference. The knowledge base for fuzzy process is built with a causal and cognitive map of risks. The map was especially developed for research projects, taken into account their typical lifecycle. The model was applied to an e-testing research…

  3. Sea surface salinity of the Eocene Arctic Azolla event using innovative isotope modeling

    Science.gov (United States)

    Speelman, E. N.; Sewall, J. O.; Noone, D.; Huber, M.; Sinninghe Damste, J. S.; Reichart, G. J.

    2009-04-01

    With the realization that the Eocene Arctic Ocean was covered with enormous quantities of the free floating freshwater fern Azolla, new questions regarding Eocene conditions facilitating these blooms arose. Our present research focuses on constraining the actual salinity of, and water sources for, the Eocene Arctic basin through the application of stable water isotope tracers. Precipitation pathways potentially strongly affect the final isotopic composition of water entering the Arctic Basin. Therefore we use the Community Atmosphere Model (CAM3), developed by NCAR, combined with a recently developed integrated isotope tracer code to reconstruct the isotopic composition of global Eocene precipitation and run-off patterns. We further addressed the sensitivity of the modeled hydrological cycle to changes in boundary conditions, such as pCO2, sea surface temperatures (SSTs) and sea ice formation. In this way it is possible to assess the effect of uncertainties in proxy estimates of these parameters. Overall, results of all runs with Eocene boundary conditions, including Eocene topography, bathymetry, vegetation patterns, TEX86 derived SSTs and pCO2 estimates, show the presence of an intensified hydrological cycle with precipitation exceeding evaporation in the Arctic region. Enriched, precipitation weighted, isotopic values of around -120‰ are reported for the Arctic region. Combining new results obtained from compound specific isotope analyses (δD) on terrestrially derived n-alkanes extracted from Eocene sediments, and model outcomes make it possible to verify climate reconstructions for the middle Eocene Arctic. Furthermore, recently, characteristic long-chain mid-chain ω20 hydroxy wax constituents of Azolla were found in ACEX sediments. δD values of these C32 - C36 diols provide insight into the isotopic composition of the Eocene Arctic surface water. As the isotopic signature of the runoff entering the Arctic is modelled, and the final isotopic composition of

  4. Predicted Infiltration for Sodic/Saline Soils from Reclaimed Coastal Areas: Sensitivity to Model Parameters

    Directory of Open Access Journals (Sweden)

    Dongdong Liu

    2014-01-01

    Full Text Available This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline and 1960 (Soil B, nonsaline were used, with bulk densities of 1.4 or 1.5 g/cm3. A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ0 was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils.

  5. Predicted infiltration for sodic/saline soils from reclaimed coastal areas: sensitivity to model parameters.

    Science.gov (United States)

    Liu, Dongdong; She, Dongli; Yu, Shuang'en; Shao, Guangcheng; Chen, Dan

    2014-01-01

    This study was conducted to assess the influences of soil surface conditions and initial soil water content on water movement in unsaturated sodic soils of reclaimed coastal areas. Data was collected from column experiments in which two soils from a Chinese coastal area reclaimed in 2007 (Soil A, saline) and 1960 (Soil B, nonsaline) were used, with bulk densities of 1.4 or 1.5 g/cm(3). A 1D-infiltration model was created using a finite difference method and its sensitivity to hydraulic related parameters was tested. The model well simulated the measured data. The results revealed that soil compaction notably affected the water retention of both soils. Model simulations showed that increasing the ponded water depth had little effect on the infiltration process, since the increases in cumulative infiltration and wetting front advancement rate were small. However, the wetting front advancement rate increased and the cumulative infiltration decreased to a greater extent when θ₀ was increased. Soil physical quality was described better by the S parameter than by the saturated hydraulic conductivity since the latter was also affected by the physical chemical effects on clay swelling occurring in the presence of different levels of electrolytes in the soil solutions of the two soils.

  6. Experimental design applications for modeling and assessing carbon dioxide sequestration in saline aquifers

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, John [Fusion Petroleum Technologies Inc., Houston, TX (United States)

    2014-11-29

    This project was a computer modeling effort to couple reservoir simulation and ED/RSM using Sensitivity Analysis, Uncertainty Analysis, and Optimization Methods, to assess geologic, geochemical, geomechanical, and rock-fluid effects and factors on CO2 injectivity, capacity, and plume migration. The project objective was to develop proxy models to simplify the highly complex coupled geochemical and geomechanical models in the utilization and storage of CO2 in the subsurface. The goals were to investigate and prove the feasibility of the ED/RSM processes and engineering development, and bridge the gaps regarding the uncertainty and unknowns of the many geochemical and geomechanical interacting parameters in the development and operation of anthropogenic CO2 sequestration and storage sites. The bottleneck in this workflow is the high computational effort of reactive transport simulation models and large number of input variables to optimize with ED/RSM techniques. The project was not to develop the reactive transport, geomechanical, or ED/RSM software, but was to use what was commercially and/or publically available as a proof of concept to generate proxy or surrogate models. A detailed geologic and petrographic mineral assemblage and geologic structure of the doubly plunging anticline was defined using the USDOE RMOTC formations of interest data (e.g., Lower Sundance, Crow Mountain, Alcova Limestone, and Red Peak). The assemblage of 23 minerals was primarily developed from literature data and petrophysical (well log) analysis. The assemblage and structure was input into a commercial reactive transport simulator to predict the effects of CO2 injection and complex reactions with the reservoir rock. Significant impediments were encountered during the execution phase of the project. The only known commercial reactive transport simulator was incapable of simulating complex geochemistry modeled in this project. Significant effort

  7. Seismic modeling of acid-gas injection in a deep saline reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Ursenbach, C.P.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geoscience, Consortium for Research in Elastic Wave Exploration Seismology

    2008-07-01

    Carbon dioxide (CO{sub 2}) and hydrogen sulfide (H{sub 2}S) are common byproducts of the energy industry. As such, remediation studies are underway to determine the feasibility of sequestering these byproducts in subsurface reservoirs, including deep saline reservoirs. Acid gas injection at smaller gas wells holds promise. However, in order for such injection programs to work, the progress of the injection plume must be tracked. A modeling study of fluid substitution was carried out to gain insight into the ability of seismic monitoring to distinguish pre- and post-injection states of the reservoir medium. The purpose of this study was to carry out fluid substitution calculations for the modeling of an injection process. A methodology that may be applied or adapted to a variety of acid-gas injection scenarios was also developed. The general approach involved determining acoustic properties at reservoir temperature and pressure of relevant fluids; obtaining elastic properties of the reservoir rock for some reference saturated state, and the elastic properties of the mineral comprising it; and, determining the change in reservoir elastic properties due to fluid substitution via Gassmann's equation. Water, brine and non-aqueous acid gas were the 3 fluids of interest in this case. The feasibility of monitoring was judged by the sensitivity of travel times and reflection coefficients to fluid substitution. 4 refs., 2 figs.

  8. Introducing a decomposition rate modifier in the Rothamsted Carbon Model to predict soil organic carbon stocks in saline soils.

    Science.gov (United States)

    Setia, Raj; Smith, Pete; Marschner, Petra; Baldock, Jeff; Chittleborough, David; Smith, Jo

    2011-08-01

    Soil organic carbon (SOC) models such as the Rothamsted Carbon Model (RothC) have been used to estimate SOC dynamics in soils over different time scales but, until recently, their ability to accurately predict SOC stocks/carbon dioxide (CO(2)) emissions from salt-affected soils has not been assessed. Given the large extent of salt-affected soils (19% of the 20.8 billion ha of arable land on Earth), this may lead to miss-estimation of CO(2) release. Using soils from two salt-affected regions (one in Punjab, India and one in South Australia), an incubation study was carried out measuring CO(2) release over 120 days. The soils varied both in salinity (measured as electrical conductivity (EC) and calculated as osmotic potential using EC and water content) and sodicity (measured as sodium adsorption ratio, SAR). For soils from both regions, the osmotic potential had a significant positive relationship with CO(2)-C release, but no significant relationship was found between SAR and CO(2)-C release. The monthly cumulative CO(2)-C was simulated using RothC. RothC was modified to take into account reductions in plant inputs due to salinity. A subset of non-salt-affected soils was used to derive an equation for a "lab-effect" modifier to account for changes in decomposition under lab conditions and this modifier was significantly related with pH. Using a subset of salt-affected soils, a decomposition rate modifier (as a function of osmotic potential) was developed to match measured and modelled CO(2)-C release after correcting for the lab effect. Using this decomposition rate modifier, we found an agreement (R(2) = 0.92) between modelled and independently measured data for a set of soils from the incubation experiment. RothC, modified by including reduced plant inputs due to salinity and the salinity decomposition rate modifier, was used to predict SOC stocks of soils in a field in South Australia. The predictions clearly showed that SOC stocks are reduced in saline soils

  9. Determining the Threshold Value of Basil Yield Reduction and Evaluation of Water Uptake Models under Salinity Stress Condition

    Directory of Open Access Journals (Sweden)

    M. Sarai Tabrizi

    2016-10-01

    Full Text Available Introduction: Several mathematical models are being used for assessing the plant response to the salinity of the root zone. The salinity of the soil and water resources is a major challenge for agricultural sector in Iran. Several mathematical models have been developed for plant responses to the salinity stress. However, these models are often applicable in particular conditions. The objectives of this study were to evaluate the threshold value of Basil yield reduction, modeling Basil response to salinity and to evaluate the effectiveness of available mathematical models for the yield estimation of the Basil . Materials and Methods: The extensive experiments were conducted with 13 natural saline water treatments including 1.2, 1.8, 2, 2.2, 2.5, 2.8, 3, 3.5, 4, 5, 6, 8, and 10 dSm-1. Water salinity treatments were prepared by mixing Shoor River water with fresh water. In order to quantify the salinity effect on Basil yield, seven mathematical models including Maas and Hoffman (1977, van Genuchten and Hoffman (1984, Dirksen and Augustijn (1988, and Homaee et al., (2002 were used. One of the relatively recent methods for soil water content measurements is theta probes instrument. Theta probes instrument consists of four probes with 60 mm long and 3 mm diameter, a water proof container (probe structure, and a cable that links input and output signals to the data logger display. The advantages that have been attributed to this method are high precision and direct and rapid measurements in the field and greenhouse. The range of measurements is not limited like tensiometer and is from saturation to wilting point. In this study, Theta probes instrument was calibrated by weighing method for exact irrigation scheduling. Relative transpiration was calculated using daily soil water content changes. A coarse sand layer with 2 centimeters thick was used to decrease evaporation from the surface soil of the pots. Quantity comparison of the used models was done

  10. Joint project. Retention of radionuclides relevant for final disposal in natural clay rock and saline systems. Subproject 2. Geochemical behavior and transport of radionuclides in saline systems in the presence of repository-relevant organics. Final report

    International Nuclear Information System (INIS)

    Schmeide, Katja; Fritsch, Katharina; Lippold, Holger

    2016-01-01

    The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide - organics - clay - aquifer. For this purpose, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol kg -1 ) and the background electrolyte. The U(VI) complexation by propionate was studied in dependence on ionic strength (up to 4 mol kg -1 NaClO 4 ) by TRLFS, ATR FT-IR spectroscopy, and DFT calculations. An influence of ionic strength on stability constants was detected, depending on the charge of the respective complexes. The conditional stability constants, determined for 1:1, 1:2, and 1:3 complexes at specific ionic strengths, were extrapolated to zero ionic strength. The interaction of the bacteria Sporomusa sp. MT-2.99 and Paenibacillus sp. MT-2.2 cells, isolated from Opalinus Clay, with Pu was studied. The experiments can be divided into such without an electron donor where biosorption is favored and such with addition of Na-pyruvate as an electron donor stimulating also bioreduction processes. Moreover, experiments were performed to study the interactions of the halophilic archaeon Halobacterium noricense DSM-15987 with U(VI), Eu(III), and Cm(III) in 3 M NaCl solutions. Research for improving process understanding with respect to the mobility of multivalent metals in systems containing humic matter was focused on the reversibility of elementary processes and on their interaction. Kinetic stabilization processes in the dynamics of humate complexation equilibria were quantified in isotope exchange studies. The influence of high salinity on the mobilizing potential of humic-like clay organics was systematically investigated and was described by modeling. The sorption of Tc(VII)/Tc(IV) onto the iron(II)-containing minerals magnetite and siderite was studied by means of batch sorption experiments, ATR FT-IR and X-ray absorption spectroscopy. The strong Tc retention at

  11. Joint project. Retention of radionuclides relevant for final disposal in natural clay rock and saline systems. Subproject 2. Geochemical behavior and transport of radionuclides in saline systems in the presence of repository-relevant organics. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schmeide, Katja; Fritsch, Katharina; Lippold, Holger [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Inst. of Ressource Ecology; and others

    2016-08-01

    The objective of this project was to study the influence of increased salinities on interaction processes in the system radionuclide - organics - clay - aquifer. For this purpose, complexation, redox, sorption, and diffusion studies were performed under variation of the ionic strength (up to 4 mol kg{sup -1}) and the background electrolyte. The U(VI) complexation by propionate was studied in dependence on ionic strength (up to 4 mol kg{sup -1} NaClO{sub 4}) by TRLFS, ATR FT-IR spectroscopy, and DFT calculations. An influence of ionic strength on stability constants was detected, depending on the charge of the respective complexes. The conditional stability constants, determined for 1:1, 1:2, and 1:3 complexes at specific ionic strengths, were extrapolated to zero ionic strength. The interaction of the bacteria Sporomusa sp. MT-2.99 and Paenibacillus sp. MT-2.2 cells, isolated from Opalinus Clay, with Pu was studied. The experiments can be divided into such without an electron donor where biosorption is favored and such with addition of Na-pyruvate as an electron donor stimulating also bioreduction processes. Moreover, experiments were performed to study the interactions of the halophilic archaeon Halobacterium noricense DSM-15987 with U(VI), Eu(III), and Cm(III) in 3 M NaCl solutions. Research for improving process understanding with respect to the mobility of multivalent metals in systems containing humic matter was focused on the reversibility of elementary processes and on their interaction. Kinetic stabilization processes in the dynamics of humate complexation equilibria were quantified in isotope exchange studies. The influence of high salinity on the mobilizing potential of humic-like clay organics was systematically investigated and was described by modeling. The sorption of Tc(VII)/Tc(IV) onto the iron(II)-containing minerals magnetite and siderite was studied by means of batch sorption experiments, ATR FT-IR and X-ray absorption spectroscopy. The strong Tc

  12. Competency model for the project managers of technical projects

    Science.gov (United States)

    Duncan, William R.

    1992-05-01

    Traditional job description techniques were developed to support compensation decisions for hourly wage earners in a manufacturing environment. Their resultant focus on activities performed on the job works well in this environment where the ability to perform the activity adequately is objectively verifiable by testing and observation. Although many organizations have adapted these techniques for salaried employees and service environments, the focus on activities performed has never been satisfactory. For example, stating that a project manager `prepares regular project status reports' tells us little about what to look for in a potential project manager or how to determine if a practicing project manager is ready for additional responsibilities. The concept of a `competency model' has been developed within the last decade to address this shortcoming. Competency models focus on what skills are needed to perform the tasks defined by the job description. For example, a project manager must be able to communicate well both orally and in writing in order to `prepare regular project status reports.'

  13. Saline groundwater in crystalline bedrock

    International Nuclear Information System (INIS)

    Lampen, P.

    1992-11-01

    The State-of-art report describes research made on deep saline groundwaters and brines found in crystalline bedrock, mainly in site studies for nuclear waste disposal. The occurrence, definitions and classifications of saline groundwaters are reviewed with a special emphasis on the different theories concerning the origins of saline groundwaters. Studies of the saline groundwaters in Finland and Sweden have been reviewed more thoroughly. Also the mixing of different bodies of groundwaters, observations of the contact of saline groundwaters and permafrost, and the geochemical modelling of saline groundwaters as well as the future trends of research have been discussed. (orig.)

  14. Submarine groundwater discharge to a small estuary estimated from radon and salinity measurements and a box model

    Directory of Open Access Journals (Sweden)

    J. Crusius

    2005-01-01

    Full Text Available Submarine groundwater discharge was quantified by a variety of methods for a 4-day period during the early summer of 2004, in Salt Pond, adjacent to Nauset Marsh, on Cape Cod, USA. Discharge estimates based on radon and salinity took advantage of the presence of the narrow channel connecting Salt Pond to Nauset Marsh, which allowed constructing whole-pond mass balances as water flowed in and out due to tidal fluctuations. The data suggest that less than one quarter of the discharge in the vicinity of Salt Pond happened within the pond itself, while three quarters or more of the discharge occurred immediately seaward of the pond, either in the channel or in adjacent regions of Nauset Marsh. Much of this discharge, which maintains high radon activities and low salinity, is carried into the pond during each incoming tide. A box model was used as an aid to understand both the rates and the locations of discharge in the vicinity of Salt Pond. The model achieves a reasonable fit to both the salinity and radon data assuming submarine groundwater discharge is fresh and that most of it occurs either in the channel or in adjacent regions of Nauset Marsh. Salinity and radon data, together with seepage meter results, do not rule out discharge of saline groundwater, but suggest either that the saline discharge is at most comparable in volume to the fresh discharge or that it is depleted in radon. The estimated rate of fresh groundwater discharge in the vicinity of Salt Pond is 3000-7000 m3 d-1. This groundwater flux estimated from the radon and salinity data is comparable to a value of 3200-4500 m3 d-1 predicted by a recent hydrologic model (Masterson, 2004; Colman and Masterson, 2004, although the model predicts this rate of discharge to the pond whereas our data suggest most of the groundwater bypasses the pond prior to discharge. Additional work is needed to determine if the measured rate of discharge is representative of the long-term average, and to

  15. World energy projection system: Model documentation

    Science.gov (United States)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES), provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report.

  16. World energy projection system: Model documentation

    International Nuclear Information System (INIS)

    1992-06-01

    The World Energy Project System (WEPS) is an accounting framework that incorporates projects from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product) and about the rate of incremental energy requirements met by hydropower, geothermal, coal, and natural gas to produce projections of world energy consumption published annually by the Energy Information Administration (EIA) in the International Energy Outlook (IEO) (Figure 1). Two independently documented models presented in Figure 1, the Oil Market Simulation (OMS) model and the World Integrated Nuclear Evaluation System (WINES) provide projections of oil and nuclear power consumption published in the IEO. Output from a third independently documented model, and the International Coal Trade Model (ICTM), is not published in the IEO but is used in WEPS as a supply check on projections of world coal consumption produced by WEPS and published in the IEO. A WEPS model of natural gas production documented in this report provides the same type of implicit supply check on the WEPS projections of world natural gas consumption published in the IEO. Two additional models are included in Figure 1, the OPEC Capacity model and the Non-OPEC Oil Production model. These WEPS models provide inputs to the OMS model and are documented in this report

  17. Modeling hydraulic conductivity and swelling pressure of several kinds of bentonites affected by concentration of saline water

    International Nuclear Information System (INIS)

    Tanaka, Yukihisa; Hasegawa, Takuma; Nakamura, Kunihiko

    2007-01-01

    In case of construction of repository for radioactive waste near the coastal area, the effect of brine on hydraulic conductivity of bentonite as an engineering barrier should be considered because it is known that the hydraulic conductivity of bentonite increases with increasing in salt concentration of water. Thus, the effect of salinity of water on hydraulic conductivity of bentonite has been conducted experimentally. However, it is necessary to elucidate and to model the mechanism of the phenomenon because various kinds of bentonites may possibly be placed in various salinity of salt water. In this study, a model for evaluating permeability of compacted bentonite is proposed considering a) increase in number of sheets of montomorillonite crystal because of cohesion, b) decrease in viscosity of water in interlayer between sheets of montmorillonite crystal. Quantitative evaluation method for permeability of several kinds of bentonite under brine is proposed based on the model mentioned above. (author)

  18. K3 projective models in scrolls

    CERN Document Server

    Johnsen, Trygve

    2004-01-01

    The exposition studies projective models of K3 surfaces whose hyperplane sections are non-Clifford general curves. These models are contained in rational normal scrolls. The exposition supplements standard descriptions of models of general K3 surfaces in projective spaces of low dimension, and leads to a classification of K3 surfaces in projective spaces of dimension at most 10. The authors bring further the ideas in Saint-Donat's classical article from 1974, lifting results from canonical curves to K3 surfaces and incorporating much of the Brill-Noether theory of curves and theory of syzygies developed in the mean time.

  19. A Model of Project and Organisational Dynamics

    Directory of Open Access Journals (Sweden)

    Jenny Leonard

    2012-04-01

    Full Text Available The strategic, transformational nature of many information systems projects is now widely understood. Large-scale implementations of systems are known to require significant management of organisational change in order to be successful. Moreover, projects are rarely executed in isolation – most organisations have a large programme of projects being implemented at any one time. However, project and value management methodologies provide ad hoc definitions of the relationship between a project and its environment. This limits the ability of an organisation to manage the larger dynamics between projects and organisations, over time, and between projects. The contribution of this paper, therefore, is to use literature on organisational theory to provide a more systematic understanding of this area. The organisational facilitators required to obtain value from a project are categorised, and the processes required to develop those facilitators are defined. This formalisation facilitates generalisation between projects and highlights any time and path dependencies required in developing organisational facilitators. The model therefore has the potential to contribute to the development of IS project management theory within dynamic organisational contexts. Six cases illustrate how this model could be used.

  20. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    International Nuclear Information System (INIS)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking

  1. Kinetic model for predicting the concentrations of active halogens species in chlorinated saline cooling waters. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Haag, W.R.; Lietzke, M.H.

    1981-08-01

    A kinetic model has been developed for describing the speciation of chlorine-produced oxidants in seawater as a function of time. The model is applicable under a broad variety of conditions, including all pH range, salinities, temperatures, ammonia concentrations, organic amine concentrations, and chlorine doses likely to be encountered during power plant cooling water chlorination. However, the effects of sunlight are not considered. The model can also be applied to freshwater and recirculating water systems with cooling towers. The results of the model agree with expectation, however, complete verification is not feasible at the present because analytical methods for some of the predicted species are lacking.

  2. Teaching mathematical modelling through project work

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Kjeldsen, Tinne Hoff

    2006-01-01

    are reported in manners suitable for internet publication for colleagues. The reports and the related discussions reveal interesting dilemmas concerning the teaching of mathematical modelling and how to cope with these through “setting the scene” for the students modelling projects and through dialogues......The paper presents and analyses experiences from developing and running an in-service course in project work and mathematical modelling for mathematics teachers in the Danish gymnasium, e.g. upper secondary level, grade 10-12. The course objective is to support the teachers to develop, try out...... in their own classes, evaluate and report a project based problem oriented course in mathematical modelling. The in-service course runs over one semester and includes three seminars of 3, 1 and 2 days. Experiences show that the course objectives in general are fulfilled and that the course projects...

  3. Musculoskeletal Modelling and the Physiome Project

    NARCIS (Netherlands)

    Fernandez, Justin; Zhang, Ju; Shim, Vickie; Munro, Jacob T.; Sartori, Massimo; Besier, Thor; Lloyd, David G.; Nickerson, David P.; Hunter, Peter; Pivonka, Peter

    2018-01-01

    This chapter presents developments as part of the International Union of Physiological Sciences (IUPS) Physiome Project. Models are multiscale, multispatial and multiphysics, hence, suitable numerical tools and platforms have been developed to address these challenges for the musculoskeletal system.

  4. Quark shell model using projection operators

    International Nuclear Information System (INIS)

    Ullah, N.

    1988-01-01

    Using the projection operators in the quark shell model, the wave functions for proton are calculated and expressions for calculating the wave function of neutron and also magnetic moment of proton and neutron are derived. (M.G.B.)

  5. A proposed model for construction project management ...

    African Journals Online (AJOL)

    Log in or Register to get access to full text downloads. ... (decision-making, problem-solving, listening, verbal competency, motivation, persuasion, ... Keywords: Communication skills and leadership model, construction project management, ...

  6. Developing Project Duration Models in Software Engineering

    Institute of Scientific and Technical Information of China (English)

    Pierre Bourque; Serge Oligny; Alain Abran; Bertrand Fournier

    2007-01-01

    Based on the empirical analysis of data contained in the International Software Benchmarking Standards Group(ISBSG) repository, this paper presents software engineering project duration models based on project effort. Duration models are built for the entire dataset and for subsets of projects developed for personal computer, mid-range and mainframeplatforms. Duration models are also constructed for projects requiring fewer than 400 person-hours of effort and for projectsre quiring more than 400 person-hours of effort. The usefulness of adding the maximum number of assigned resources as asecond independent variable to explain duration is also analyzed. The opportunity to build duration models directly fromproject functional size in function points is investigated as well.

  7. Modelling the Reduction of Project Making Duration

    Directory of Open Access Journals (Sweden)

    Oleinik Pavel

    2017-01-01

    Full Text Available The article points out why earlier patterns of investment process were ineffective in developing the construction projects and shows sources for reducing of its total duration. It describes the procedure of statistical modeling and obtaining medium-term time parameters required for modern pattern of project-making; offers design formulas for assessment of total time required for project-making as well as for its main stages; reveals advantage of modern system of project-making against traditional one by comparing indicators of their duration.

  8. A modeling study of the processes of surface salinity seasonal cycle in the Bay of Bengal.

    Digital Repository Service at National Institute of Oceanography (India)

    Akhil, V.P.; Durand, F.; Lengaigne, M.; Vialard, J.; Keerthi, M.G.; Gopalakrishna, V.V.; Deltel, C.; Papa, F.; Montegut, C.deB.

    of Science, Bangalore, India, 5LOS, IFREMER, Plouzan�e, France Abstract In response to the Indian Monsoon freshwater forcing, the Bay of Bengal exhibits a very strong seasonal cycle in sea surface salinity (SSS), especially near the mouths of the Ganges...

  9. Predictive modeling of CO2 sequestration in deep saline sandstone reservoirs: Impacts of geochemical kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Balashov, Victor N.; Guthrie, George D.; Hakala, J. Alexandra; Lopano, Christina L.; Rimstidt, J. Donald; Brantley, Susan L.

    2013-03-01

    One idea for mitigating the increase in fossil-fuel generated CO{sub 2} in the atmosphere is to inject CO{sub 2} into subsurface saline sandstone reservoirs. To decide whether to try such sequestration at a globally significant scale will require the ability to predict the fate of injected CO{sub 2}. Thus, models are needed to predict the rates and extents of subsurface rock-water-gas interactions. Several reactive transport models for CO{sub 2} sequestration created in the last decade predicted sequestration in sandstone reservoirs of ~17 to ~90 kg CO{sub 2} m{sup -3|. To build confidence in such models, a baseline problem including rock + water chemistry is proposed as the basis for future modeling so that both the models and the parameterizations can be compared systematically. In addition, a reactive diffusion model is used to investigate the fate of injected supercritical CO{sub 2} fluid in the proposed baseline reservoir + brine system. In the baseline problem, injected CO{sub 2} is redistributed from the supercritical (SC) free phase by dissolution into pore brine and by formation of carbonates in the sandstone. The numerical transport model incorporates a full kinetic description of mineral-water reactions under the assumption that transport is by diffusion only. Sensitivity tests were also run to understand which mineral kinetics reactions are important for CO{sub 2} trapping. The diffusion transport model shows that for the first ~20 years after CO{sub 2} diffusion initiates, CO{sub 2} is mostly consumed by dissolution into the brine to form CO{sub 2,aq} (solubility trapping). From 20-200 years, both solubility and mineral trapping are important as calcite precipitation is driven by dissolution of oligoclase. From 200 to 1000 years, mineral trapping is the most important sequestration mechanism, as smectite dissolves and calcite precipitates. Beyond 2000 years, most trapping is due to formation of aqueous HCO{sub 3}{sup -}. Ninety-seven percent of the

  10. POMP - Pervasive Object Model Project

    DEFF Research Database (Denmark)

    Schougaard, Kari Rye; Schultz, Ulrik Pagh

    The focus on mobile devices is continuously increasing, and improved device connectivity enables the construction of pervasive computing systems composed of heterogeneous collections of devices. Users who employ different devices throughout their daily activities naturally expect their applications...... computing environment. This system, named POM (Pervasive Object Model), supports applications split into coarse-grained, strongly mobile units that communicate using method invocations through proxies. We are currently investigating efficient execution of mobile applications, scalability to suit...

  11. Geophysical and Seawater intrusion models to distinguish Modern and Palaeo salinity in the Central Godvari Delta, Andhra Pradesh, India

    Science.gov (United States)

    Lagudu, S.; Nandan, M. J.; Durgaprasad, M.; Gurunadha Rao, V. V. S.

    2015-12-01

    Central Godavari Delta is located in the East coast of Andhra Pradesh along Bay of Bengal. Ample surface water is made available for irrigation and aqua culture through well distributed canals drawn from Godavari River since last 150 years. Groundwater in the area is highly saline though the groundwater levels are very shallow ranging from 1 to 3 m below ground level. Integrated Electrical Resistivity Tomograms (ERT), hydrochemical (pH, TDS, Ca2+, Mg2+, K+, F-, Cl-, SO42-, NO3-, HCO3- and CO3-), isotopic (Br- and δ18O ) and density dependant solute tranport (SEAWAT) modelling studies have been carried out for four years (2006, 2007, 2014 and 2015) to identify the salinity sources and to understand the possible extent of seawater intrusion. The integration of all these data sets revealed that coarse grained sands exhibits resistivity of 4-20 Ωm forming the surface layer, clay layer exhibits Na2++ K+) and (Ca2++Mg2+), (Na+-Cl- ) vs. Ca2++Mg2+-HCO3--SO42-)) and ionic ratios ( Na2+/Cl-, SO42-/Cl-, Mg2+/Ca2+, Mg2+/Cl- and Cl-/Br) and δ18O does not reflect any modern seawater signatures. These models indicated that salinity in the shallow wells is due to dissolution of evaporitic minerals and ion exchange processes. In the pumping wells the salinity is due to upconing of entrapped sea water that belongs to Palaeo origin and wells located near the coast and mudflats is due to physical mixing of marine water. The estimated regional groundwater balance using SEAWAT model indicate significant amount of submarine groundwater discharge as outfall to the Bay of Bengal. Assuming observed hydrological conditions, no considerable advance in seawater intrusion would be expected into the delta region.

  12. Integrating semantic data models with project management

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, R

    1982-01-01

    Summary form only given, as follows. The development of a data model for a project on the test and certification of computer-based information systems required a more expressive data model than that supplied by either the network, hierarchical or relational models. A data model was developed to describe the work environment and the work itself. This model is based on the entity-relationship data model of Chen and on heuristic principles of knowledge organisation used in artificial intelligence. The ER data model is reviewed and the extensions to the model are discussed.

  13. EXPENSES FORECASTING MODEL IN UNIVERSITY PROJECTS PLANNING

    Directory of Open Access Journals (Sweden)

    Sergei A. Arustamov

    2016-11-01

    Full Text Available The paper deals with mathematical model presentation of cash flows in project funding. We describe different types of expenses linked to university project activities. Problems of project budgeting that contribute most uncertainty have been revealed. As an example of the model implementation we consider calculation of vacation allowance expenses for project participants. We define problems of forecast for funds reservation: calculation based on methodology established by the Ministry of Education and Science calculation according to the vacation schedule and prediction of the most probable amount. A stochastic model for vacation allowance expenses has been developed. We have proposed methods and solution of the problems that increase the accuracy of forecasting for funds reservation based on 2015 data.

  14. Embedded regional/Local-scale model of natural transients in saline groundwater flow. Illustrated using the Beberg Site

    International Nuclear Information System (INIS)

    Marsic, Niko; Hartley, Lee; Sanchez-Friera, Paula; Morvik, Arnfinn

    2002-04-01

    The main focus of this report is to develop and test a methodology for performing large simulations of transient variable density flow. Several developments were made to NAMMU to enable such calculations. The following lists the findings of this study: 1) Feasibility: it is numerically feasible to construct large (0.5 million elements) embedded models of transient variable density flow with a relatively fine mesh (about 35m) of the site-scale. 2) Stochastic simulation: performing stochastic realisations of long transients is just possible, although the requirements on CPU and disk to store the results for 100 realisations, say, would be significant. As an indication, about 19 realisations of the current model could be run on a Sun Enterprise 450 (4 x UltraSPARC-II 400MHz) computer in one week if all four processors are fully utilised. 3) Embedded grid: the nesting of a refined site-scale model (35m elements) within a coarser (100m) regional-scale mesh for variable density flow was tested successfully. It was found that grading the refinement around the site-scale to avoid a large step change in element size was beneficial for convergence and stability. This may be less of an issue if a more sophisticated pre conditioner was used. 4) Solver: the most efficient and stable scheme was obtained by decoupling the flow and transport equation at each time-step. GMRES (Generalised Minimum Residual) was the most robust conjugate gradient method for this problem. 5) Boundary conditions: a set of relatively complex non-linear boundary conditions had to be applied for both pressure and salinity on the top and vertical boundaries to give the system sufficient freedom to approximate realistic conditions over a large area and long times. It was important that both flow and a flux of salinity could cross each boundary, and that the direction and magnitude could evolve in time. 6) Calibration on salinity: model predictions of the salinity in the deep boreholes were used to calibrate

  15. Streamline Your Project: A Lifecycle Model.

    Science.gov (United States)

    Viren, John

    2000-01-01

    Discusses one approach to project organization providing a baseline lifecycle model for multimedia/CBT development. This variation of the standard four-phase model of Analysis, Design, Development, and Implementation includes a Pre-Analysis phase, called Definition, and a Post-Implementation phase, known as Maintenance. Each phase is described.…

  16. Model county ordinance for wind projects

    Energy Technology Data Exchange (ETDEWEB)

    Bain, D.A. [Oregon Office of Energy, Portland, OR (United States)

    1997-12-31

    Permitting is a crucial step in the development cycle of a wind project and permits affect the timing, cost, location, feasibility, layout, and impacts of wind projects. Counties often have the lead responsibility for permitting yet few have appropriate siting regulations for wind projects. A model ordinance allows a county to quickly adopt appropriate permitting procedures. The model county wind ordinance developed for use by northwest states is generally applicable across the country and counties seeking to adopt siting or zoning regulations for wind will find it a good starting place. The model includes permitting procedures for wind measurement devices and two types of wind systems. Both discretionary and nondiscretionary standards apply to wind systems and a conditional use permit would be issued. The standards, criteria, conditions for approval, and process procedures are defined for each. Adaptation examples for the four northwest states are provided along with a model Wind Resource Overlay Zone.

  17. A daily salt balance model for stream salinity generation processes following partial clearing from forest to pasture

    Directory of Open Access Journals (Sweden)

    M. A. Bari

    2006-01-01

    Full Text Available We developed a coupled salt and water balance model to represent the stream salinity generation process following land use changes. The conceptual model consists of three main components with five stores: (i Dry, Wet and Subsurface Stores, (ii a saturated Groundwater Store and (iii a transient Stream zone Store. The Dry and Wet Stores represent the salt and water movement in the unsaturated zone and also the near-stream dynamic saturated areas, responsible for the generation of salt flux associated with surface runoff and interflow. The unsaturated Subsurface Store represents the salt bulge and the salt fluxes. The Groundwater Store comes into play when the groundwater level is at or above the stream invert and quantifies the salt fluxes to the Stream zone Store. In the stream zone module, we consider a 'free mixing' between the salt brought about by surface runoff, interflow and groundwater flow. Salt accumulation on the surface due to evaporation and its flushing by initial winter flow is also incorporated in the Stream zone Store. The salt balance model was calibrated sequentially following successful application of the water balance model. Initial salt stores were estimated from measured salt profile data. We incorporated two lumped parameters to represent the complex chemical processes like diffusion-dilution-dispersion and salt fluxes due to preferential flow. The model has performed very well in simulating stream salinity generation processes observed at Ernies and Lemon experimental catchments in south west of Western Australia. The simulated and observed stream salinity and salt loads compare very well throughout the study period with NSE of 0.7 and 0.4 for Ernies and Lemon catchment respectively. The model slightly over predicted annual stream salt load by 6.2% and 6.8%.

  18. Pavement mechanic response of sulfate saline soil subgrade section based on fluid–structure interaction model

    OpenAIRE

    Xueying Zhao; Aiqin Shen; Yinchuang Guo; Peng Li; Zhenhua Lv

    2017-01-01

    It is a consensus that salt heaving and frost heaving are urgent and typical distress in the sulfate saline soil area. To further investigate the microscopic performance of pavement structure in this special area, Jinan-Dongying Freeway in Shandong Province is selected as a case study engineering and the mechanic responses under salt heaving, frost heaving and traffic loads were analyzed through the finite element (FE) Program (ANSYS). In this paper, the process of salt heaving and frost heav...

  19. Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Y., E-mail: yann.lucas@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Schmitt, A.D., E-mail: anne-desiree.schmitt@univ-fcomte.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)] [Universite de Franche-Comte et CNRS-UMR 6249, Chrono-Environnement, 16, Route de Gray, 25030 Besancon Cedex (France); Chabaux, F., E-mail: francois.chabaux@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Clement, A.; Fritz, B. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Elsass, Ph. [BRGM, GEODERIS, 1, rue Claude Chappe, 57070 Metz (France); Durand, S. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)

    2010-11-15

    Research highlights: {yields} Major and trace elements along with strontium and uranium isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect a conservative mixing. {yields} A coupled hydrogeochemical model demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process. {yields} The model requires only a small amount of montmorillonite. {yields} It is necessary to consider the pollution history to explain the important chloride, sodium and calcium concentration modifications. {yields} The model shows that the rapidity of the cationic exchange reactions insures a reversibility of the cation fixation on clays in the aquifer. - Abstract: In the southern Upper Rhine Valley, groundwater has undergone intensive saline pollution caused by the infiltration of mining brines, a consequence of potash extraction carried out during the 20th century. Major and trace elements along with Sr and U isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect conservative mixing between saline waters resulting from the dissolution of waste heaps and one or more unpolluted end-members. The results imply the occurrence of interactions between host rocks and polluted waters, and they suggest that cationic exchange mechanisms are the primary controlling process. A coupled hydrogeochemical model has been developed with the numerical code KIRMAT, which demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process controlling the geochemical evolution of the groundwater. The model requires only a small amount of montmorillonite (between 0.75% and 2.25%), which is in agreement with the observed mineralogical composition of the aquifer. The model also proves

  20. World Energy Projection System model documentation

    International Nuclear Information System (INIS)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA

  1. World Energy Projection System model documentation

    Energy Technology Data Exchange (ETDEWEB)

    Hutzler, M.J.; Anderson, A.T.

    1997-09-01

    The World Energy Projection System (WEPS) was developed by the Office of Integrated Analysis and Forecasting within the Energy Information Administration (EIA), the independent statistical and analytical agency of the US Department of Energy. WEPS is an integrated set of personal computer based spreadsheets containing data compilations, assumption specifications, descriptive analysis procedures, and projection models. The WEPS accounting framework incorporates projections from independently documented models and assumptions about the future energy intensity of economic activity (ratios of total energy consumption divided by gross domestic product GDP), and about the rate of incremental energy requirements met by natural gas, coal, and renewable energy sources (hydroelectricity, geothermal, solar, wind, biomass, and other renewable resources). Projections produced by WEPS are published in the annual report, International Energy Outlook. This report documents the structure and procedures incorporated in the 1998 version of the WEPS model. It has been written to provide an overview of the structure of the system and technical details about the operation of each component of the model for persons who wish to know how WEPS projections are produced by EIA.

  2. Beyond theory : Towards a probabilistic causation model to support project governance in infrastructure projects

    NARCIS (Netherlands)

    Chivatá Cárdenas, Ibsen; Voordijk, Johannes T.; Dewulf, Geert

    2017-01-01

    A new project governance model for infrastructure projects is described in this paper. This model contains causal mechanisms that relate a number of project governance variables to project performance. Our proposed model includes relevant variables for measuring project governance in construction

  3. Temperature, salinity, nutrients, carbon, and other profile data collected worldwide as part of the CARINA project (NODC Accession 0057766)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The CARINA (CARbon dioxide IN the Atlantic Ocean) data synthesis project is an international collaborative effort of the EU IP CARBOOCEAN, and US partners. It has...

  4. Model concepts, processes and calculation cases for the project ZIESEL. Synthesis report part 2/2. Two-phase flow in a saline repository using the example ERAM; Modellkonzepte, Prozesse und Rechenfaelle fuer das Vorhaben ZIESEL. Synthesebericht Teil 2/2. Zweiphasenfluss in einem salinaren Endlager am Beispiel des ERAM

    Energy Technology Data Exchange (ETDEWEB)

    Frieling, Gerd; Kock, Ingo

    2016-10-15

    In this report, basic assumptions and data are described which form the source of extensive modeling using the calculation program TOUGH2-GRS. A total of three model grids are described in detail. All three grids are representations of the underground workings of the ''Radioactive Waste Repository ERAM'' in Germany. The complexity of each model grid increases progressively. The simplest grid is called ''basic model'' and its volume equals the known and forecasted volume of the ERAM. A geometrically more complex grid which is both true to the volume and true to the depth is called ''advanced model''. A very complex model grid which is true to both volume and length in all three spatial directions is called ''complex model''. In the report processes occurring in the repository are described. Moreover, the way how these processes are considered and implemented in the code TOUGH2-GRS is described in detail. Based on these processes and two major scenarios description and parameterization of a reference calculation case of all three model grid is made. Based on the uncertainties that affect both the processes themselves as well as their respective parameterization in reference calculation case, numerous deterministic variation of the reference calculation case are described. These variations are also made for all three model grids.

  5. PROJECT ACTIVITY ANALYSIS WITHOUT THE NETWORK MODEL

    Directory of Open Access Journals (Sweden)

    S. Munapo

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: This paper presents a new procedure for analysing and managing activity sequences in projects. The new procedure determines critical activities, critical path, start times, free floats, crash limits, and other useful information without the use of the network model. Even though network models have been successfully used in project management so far, there are weaknesses associated with the use. A network is not easy to generate, and dummies that are usually associated with it make the network diagram complex – and dummy activities have no meaning in the original project management problem. The network model for projects can be avoided while still obtaining all the useful information that is required for project management. What are required are the activities, their accurate durations, and their predecessors.

    AFRIKAANSE OPSOMMING: Die navorsing beskryf ’n nuwerwetse metode vir die ontleding en bestuur van die sekwensiële aktiwiteite van projekte. Die voorgestelde metode bepaal kritiese aktiwiteite, die kritieke pad, aanvangstye, speling, verhasing, en ander groothede sonder die gebruik van ’n netwerkmodel. Die metode funksioneer bevredigend in die praktyk, en omseil die administratiewe rompslomp van die tradisionele netwerkmodelle.

  6. Making Epidermal Bladder Cells Bigger: Developmental- and Salinity-Induced Endopolyploidy in a Model Halophyte.

    Science.gov (United States)

    Barkla, Bronwyn J; Rhodes, Timothy; Tran, Kieu-Nga T; Wijesinghege, Chathura; Larkin, John C; Dassanayake, Maheshi

    2018-06-01

    Endopolyploidy occurs when DNA replication takes place without subsequent mitotic nuclear division, resulting in cell-specific ploidy levels within tissues. In plants, endopolyploidy plays an important role in sustaining growth and development, but only a few studies have demonstrated a role in abiotic stress response. In this study, we investigated the function of ploidy level and nuclear and cell size in leaf expansion throughout development and tracked cell type-specific ploidy in the halophyte Mesembryanthemum crystallinum In addition to developmental endopolyploidy, we examined the effects of salinity stress on ploidy level. We focused specifically on epidermal bladder cells (EBC), which are modified balloon-like trichomes, due to their large size and role in salt accumulation. Our results demonstrate that ploidy increases as the leaves expand in a similar manner for each leaf type, and ploidy levels up to 512C were recorded for nuclei in EBC of leaves of adult plants. Salt treatment led to a significant increase in ploidy levels in the EBC, and these cells showed spatially related differences in their ploidy and nuclear and cell size depending on the positions on the leaf and stem surface. Transcriptome analysis highlighted salinity-induced changes in genes involved in DNA replication, cell cycle, endoreduplication, and trichome development in EBC. The increase in cell size and ploidy observed in M. crystallinum under salinity stress may contribute to salt tolerance by increasing the storage capacity for sodium sequestration brought about by higher metabolic activity driving rapid cell enlargement in the leaf tissue and EBC. © 2018 American Society of Plant Biologists. All rights reserved.

  7. Environmetrics. Part 1. Modeling of water salinity and air quality data

    International Nuclear Information System (INIS)

    Braibanti, A.; Gollapalli, N. R.; Jonnalagaddaj, S. B.; Duvvuru, S.; Rupenaguntla, S. R.

    2001-01-01

    Environmetrics utilities advanced mathematical, statistical and information tools to extract information. Two typical environmental data sets are analysed using MVATOB (Multi Variate Tool Box). The first data set corresponds to the variable river salinity. Least median squares (LMS) detected the outliers whereas linear least squares (LLS) could not detect and remove the outliers. The second data set consists of daily readings of air quality values. Outliers are detected by LMS and unbiased regression coefficients are estimated by multi-linear regression (MLR). As explanatory variables are not independent, principal component regression (PCR) and partial least squares regression (PLSR) are used. Both examples demonstrate the superiority of LMS over LLS [it

  8. Testing Software Development Project Productivity Model

    Science.gov (United States)

    Lipkin, Ilya

    Software development is an increasingly influential factor in today's business environment, and a major issue affecting software development is how an organization estimates projects. If the organization underestimates cost, schedule, and quality requirements, the end results will not meet customer needs. On the other hand, if the organization overestimates these criteria, resources that could have been used more profitably will be wasted. There is no accurate model or measure available that can guide an organization in a quest for software development, with existing estimation models often underestimating software development efforts as much as 500 to 600 percent. To address this issue, existing models usually are calibrated using local data with a small sample size, with resulting estimates not offering improved cost analysis. This study presents a conceptual model for accurately estimating software development, based on an extensive literature review and theoretical analysis based on Sociotechnical Systems (STS) theory. The conceptual model serves as a solution to bridge organizational and technological factors and is validated using an empirical dataset provided by the DoD. Practical implications of this study allow for practitioners to concentrate on specific constructs of interest that provide the best value for the least amount of time. This study outlines key contributing constructs that are unique for Software Size E-SLOC, Man-hours Spent, and Quality of the Product, those constructs having the largest contribution to project productivity. This study discusses customer characteristics and provides a framework for a simplified project analysis for source selection evaluation and audit task reviews for the customers and suppliers. Theoretical contributions of this study provide an initial theory-based hypothesized project productivity model that can be used as a generic overall model across several application domains such as IT, Command and Control

  9. Mathematical Modeling Projects: Success for All Students

    Science.gov (United States)

    Shelton, Therese

    2018-01-01

    Mathematical modeling allows flexibility for a project-based experience. We share details of our regular capstone course, successful for virtually 100% of our math majors for almost two decades. Our research-like approach in this course accommodates a variety of student backgrounds and interests, and has produced some award-winning student…

  10. Impact of temperature, pH, and salinity changes on the physico-chemical properties of model naphthenic acids.

    Science.gov (United States)

    Celsie, Alena; Parnis, J Mark; Mackay, Donald

    2016-03-01

    The effects of temperature, pH, and salinity change on naphthenic acids (NAs) present in oil-sands process wastewater were modeled for 55 representative NAs. COSMO-RS was used to estimate octanol-water (KOW) and octanol-air (KOA) partition ratios and Henry's law constants (H). Validation with experimental carboxylic acid data yielded log KOW and log H RMS errors of 0.45 and 0.55 respectively. Calculations of log KOW, (or log D, for pH-dependence), log KOA and log H (or log HD, for pH-dependence) were made for model NAs between -20 °C and 40 °C, pH between 0 and 14, and salinity between 0 and 3 g NaCl L(-1). Temperature increase by 60 °C resulted in 3-5 log unit increase in H and a similar magnitude decrease in KOA. pH increase above the NA pKa resulted in a dramatic decrease in both log D and log HD. Salinity increase over the 0-3 g NaCl L(-1) range resulted in a 0.3 log unit increase on average for KOW and H values. Log KOW values of the sodium salt and anion of the conjugate base were also estimated to examine their potential for contribution to the overall partitioning of NAs. Sodium salts and anions of naphthenic acids are predicted to have on average 4 log units and 6 log units lower log KOW values, respectively, with respect to the corresponding neutral NA. Partitioning properties are profoundly influenced by the by the relative prevailing pH and the substance's pKa at the relevant temperature. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. NASA's Aviation Safety and Modeling Project

    Science.gov (United States)

    Chidester, Thomas R.; Statler, Irving C.

    2006-01-01

    The Aviation Safety Monitoring and Modeling (ASMM) Project of NASA's Aviation Safety program is cultivating sources of data and developing automated computer hardware and software to facilitate efficient, comprehensive, and accurate analyses of the data collected from large, heterogeneous databases throughout the national aviation system. The ASMM addresses the need to provide means for increasing safety by enabling the identification and correcting of predisposing conditions that could lead to accidents or to incidents that pose aviation risks. A major component of the ASMM Project is the Aviation Performance Measuring System (APMS), which is developing the next generation of software tools for analyzing and interpreting flight data.

  12. Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta

    Science.gov (United States)

    Martyr-Koller, R.C.; Kernkamp, H.W.J.; Van Dam, Anne A.; Mick van der Wegen,; Lucas, Lisa; Knowles, N.; Jaffe, B.; Fregoso, T.A.

    2017-01-01

    A linked modeling approach has been undertaken to understand the impacts of climate and infrastructure on aquatic ecology and water quality in the San Francisco Bay-Delta region. The Delft3D Flexible Mesh modeling suite is used in this effort for its 3D hydrodynamics, salinity, temperature and sediment dynamics, phytoplankton and water-quality coupling infrastructure, and linkage to a habitat suitability model. The hydrodynamic model component of the suite is D-Flow FM, a new 3D unstructured finite-volume model based on the Delft3D model. In this paper, D-Flow FM is applied to the San Francisco Bay-Delta to investigate tidal, seasonal and annual dynamics of water levels, river flows and salinity under historical environmental and infrastructural conditions. The model is driven by historical winds, tides, ocean salinity, and river flows, and includes federal, state, and local freshwater withdrawals, and regional gate and barrier operations. The model is calibrated over a 9-month period, and subsequently validated for water levels, flows, and 3D salinity dynamics over a 2 year period.Model performance was quantified using several model assessment metrics and visualized through target diagrams. These metrics indicate that the model accurately estimated water levels, flows, and salinity over wide-ranging tidal and fluvial conditions, and the model can be used to investigate detailed circulation and salinity patterns throughout the Bay-Delta. The hydrodynamics produced through this effort will be used to drive affiliated sediment, phytoplankton, and contaminant hindcast efforts and habitat suitability assessments for fish and bivalves. The modeling framework applied here will serve as a baseline to ultimately shed light on potential ecosystem change over the current century.

  13. Application of an unstructured 3D finite volume numerical model to flows and salinity dynamics in the San Francisco Bay-Delta

    Science.gov (United States)

    Martyr-Koller, R. C.; Kernkamp, H. W. J.; van Dam, A.; van der Wegen, M.; Lucas, L. V.; Knowles, N.; Jaffe, B.; Fregoso, T. A.

    2017-06-01

    A linked modeling approach has been undertaken to understand the impacts of climate and infrastructure on aquatic ecology and water quality in the San Francisco Bay-Delta region. The Delft3D Flexible Mesh modeling suite is used in this effort for its 3D hydrodynamics, salinity, temperature and sediment dynamics, phytoplankton and water-quality coupling infrastructure, and linkage to a habitat suitability model. The hydrodynamic model component of the suite is D-Flow FM, a new 3D unstructured finite-volume model based on the Delft3D model. In this paper, D-Flow FM is applied to the San Francisco Bay-Delta to investigate tidal, seasonal and annual dynamics of water levels, river flows and salinity under historical environmental and infrastructural conditions. The model is driven by historical winds, tides, ocean salinity, and river flows, and includes federal, state, and local freshwater withdrawals, and regional gate and barrier operations. The model is calibrated over a 9-month period, and subsequently validated for water levels, flows, and 3D salinity dynamics over a 2 year period. Model performance was quantified using several model assessment metrics and visualized through target diagrams. These metrics indicate that the model accurately estimated water levels, flows, and salinity over wide-ranging tidal and fluvial conditions, and the model can be used to investigate detailed circulation and salinity patterns throughout the Bay-Delta. The hydrodynamics produced through this effort will be used to drive affiliated sediment, phytoplankton, and contaminant hindcast efforts and habitat suitability assessments for fish and bivalves. The modeling framework applied here will serve as a baseline to ultimately shed light on potential ecosystem change over the current century.

  14. Towards a model-based understanding of the Mediterranean circulation during the Messinian Salinity Crisis

    Science.gov (United States)

    Simon, Dirk; Meijer, Paul

    2016-04-01

    Today, the Atlantic-Mediterranean gateway (the Strait of Gibraltar) and the strong evaporative loss in the east let the Mediterranean Sea attain a salinity of 2-3 g/l higher than the Atlantic Ocean. During the winter months, strong cooling of surface waters in the north forms deep water, which mixes the Mediterranean, while during summer the water column is stratified. During the Messinian Salinity Crisis (MSC, 5.97-5.33Ma) the salt concentration was high enough to reach the saturation of gypsum (~130-160 g/l) and halite (~350 g/l). This caused large deposits of these evaporites all over the basin, capturing 6% of the World Ocean salt within the Mediterranean at the time. Although several mechanisms have been proposed as to how the Mediterranean circulation might have functioned, these mechanisms have yet to be rooted in physics and tested quantitatively. Understanding circulation during the MSC becomes particularly important when comparing Mediterranean marginal to deep basins. On the one hand, many of the marginal basins in the Mediterranean are well studied, like the Sorbas basin (Spain) or the Vena del Gesso basin (Italy). On the other hand, the deep Mediterranean is less well studied, as no full record of the whole deep sequence exists. This makes it very complicated to correlate marginal and deep basin records. Here we are presenting the first steps in working towards a physics-based understanding of the mixing and stratification bahaviour of the Mediterranean Sea during the MSC. The final goal is to identify the physical mechanism needed to form such a salt brine and to understand how it differs from today's situation. We are hoping to compare our results to, and learn from, the much smaller but best available analog to the MSC, the Dead Sea, where recent overturning has been documented.

  15. A 2D fluid motion model of the estuarine water circulation: Physical analysis of the salinity stratification in the Sebou estuary

    Science.gov (United States)

    Haddout, Soufiane; Maslouhi, Abdellatif; Magrane, Bouchaib

    2018-02-01

    Estuaries, which are coastal bodies of water connecting the riverine and marine environment, are among the most important ecosystems in the world. Saltwater intrusion is the movement of coastal saline water into an estuary, which makes up-estuary water, that becomes salty due to the mixing of freshwater with saltwater. It has become a serious environmental problem in the Sebou estuary (Morocco) during wet and dry seasons, which have a considerable impact on residential water supply, agricultural water supply as well as urban industrial production. The variations of salt intrusion, and the vertical stratification under different river flow conditions in the Sebou estuary were investigated in this paper using a two-dimensional numerical model. The model was calibrated and verified against water level variation, and salinity variation during 2016, respectively. Additionally, the model validation process showed that the model results fit the observed data fairly well ( R2 > 0.85, NSC > 0.89 and RMSE = 0.26 m). Model results show that freshwater is a dominant influencing factor to the saltwater intrusion and controlled salinity structure, vertical stratification and length of the saltwater intrusion. Additionally, the extent of salinity intrusion depends on the balance between fresh water discharges and saltwater flow from the sea. This phenomenon can be reasonably predicted recurring to mathematical models supported by monitored data. These tools can be used to quantify how much fresh water is required to counterbalance salinity intrusion at the upstream water intakes.

  16. A GIS cost model to assess the availability of freshwater, seawater, and saline groundwater for algal biofuel production in the United States.

    Science.gov (United States)

    Venteris, Erik R; Skaggs, Richard L; Coleman, Andre M; Wigmosta, Mark S

    2013-05-07

    A key advantage of using microalgae for biofuel production is the ability of some algal strains to thrive in waters unsuitable for conventional crop irrigation such as saline groundwater or seawater. Nonetheless, the availability of sustainable water supplies will provide significant challenges for scale-up and development of algal biofuels. We conduct a partial techno-economic assessment based on the availability of freshwater, saline groundwater, and seawater for use in open pond algae cultivation systems. We explore water issues through GIS-based models of algae biofuel production, freshwater supply (constrained to less than 5% of mean annual flow per watershed) and costs, and cost-distance models for supplying seawater and saline groundwater. We estimate that, combined, these resources can support 9.46 × 10(7) m(3) yr(-1) (25 billion gallons yr(-1)) of renewable biodiesel production in the coterminous United States. Achievement of larger targets requires the utilization of less water efficient sites and relatively expensive saline waters. Despite the addition of freshwater supply constraints and saline water resources, the geographic conclusions are similar to our previous results. Freshwater availability and saline water delivery costs are most favorable for the coast of the Gulf of Mexico and Florida peninsula, where evaporation relative to precipitation is moderate. As a whole, the barren and scrub lands of the southwestern U.S. have limited freshwater supplies, and large net evaporation rates greatly increase the cost of saline alternatives due to the added makeup water required to maintain pond salinity. However, this and similar analyses are particularly sensitive to knowledge gaps in algae growth/lipid production performance and the proportion of freshwater resources available, key topics for future investigation.

  17. Implementation of the model project: Ghanaian experience

    International Nuclear Information System (INIS)

    Schandorf, C.; Darko, E.O.; Yeboah, J.; Asiamah, S.D.

    2003-01-01

    Upgrading of the legal infrastructure has been the most time consuming and frustrating part of the implementation of the Model project due to the unstable system of governance and rule of law coupled with the low priority given to legislation on technical areas such as safe applications of Nuclear Science and Technology in medicine, industry, research and teaching. Dwindling Governmental financial support militated against physical and human resource infrastructure development and operational effectiveness. The trend over the last five years has been to strengthen the revenue generation base of the Radiation Protection Institute through good management practices to ensure a cost effective use of the limited available resources for a self-reliant and sustainable radiation and waste safety programme. The Ghanaian experience regarding the positive and negative aspects of the implementation of the Model Project is highlighted. (author)

  18. European project for a multinational macrosectoral model

    Energy Technology Data Exchange (ETDEWEB)

    d' Alcantara, G; Italianer, A

    1984-01-01

    This paper describes the HERMES project, a multinational macrosectoral European econometric modelling effort, sponsored by the Directorates General II (Economic and Financial Affairs), XII (Science, Research and Development), XVII (Energy) and the SOEC. The set-up of the model is sketched against the background of problems of growth, unemployment, inflation, trade balances, government balances and energy policy. Although the definitions of the variables and a complete specification of the model are given in the Appendix, the major features of the model are described extensively in the text. These include private and collective consumption (incl. a consumer demand system), the putty-clay production process, price and wage formation, sectoral bilateral trade flows and integrated energy economy modelling.

  19. North American Carbon Project (NACP) Regional Model-Model and Model-Data Intercomparison Project

    Science.gov (United States)

    Huntzinger, D. N.; Post, W. M.; Jacobson, A. R.; Cook, R. B.

    2009-05-01

    questions: 1. Do model results and observations show consistent spatial patterns in response to the 2002 drought? From measurements and model, can we infer what processes were affected by the 2002 drought? 2. What is the spatial pattern and magnitude of interannual variation in carbon sources and sinks? What are the components of carbon fluxes and pools that contribute to this variation? 3. What are the magnitudes and spatial distribution of carbon sources and sinks, and their uncertainties during the period 2000-2005? Examining and comparing results of inverse and forward model simulations with each other and with suitable benchmark spatial measurements help evaluate model strengths/weaknesses and utility, thereby providing multiple views of spatial and temporal patterns of fluxes, leading to better understandings of processes involved, and providing an improved basis for making projections.

  20. Thresholding projection estimators in functional linear models

    OpenAIRE

    Cardot, Hervé; Johannes, Jan

    2010-01-01

    We consider the problem of estimating the regression function in functional linear regression models by proposing a new type of projection estimators which combine dimension reduction and thresholding. The introduction of a threshold rule allows to get consistency under broad assumptions as well as minimax rates of convergence under additional regularity hypotheses. We also consider the particular case of Sobolev spaces generated by the trigonometric basis which permits to get easily mean squ...

  1. Food for thought: Overconfidence in model projections

    DEFF Research Database (Denmark)

    Brander, Keith; Neuheimer, Anna; Andersen, Ken Haste

    2013-01-01

    There is considerable public and political interest in the state of marine ecosystems and fisheries, but the reliability of some recent projections has been called into question. New information about declining fish stocks, loss of biodiversity, climate impacts, and management failure is frequent...... be reliable and uncertainties arising from models and data shortcomings must be presented fully and transparently. Scientific journals play an important role and should require more detailed analysis and presentation of uncertainties....

  2. Geochemical Modeling of Trivalent Chromium Migration in Saline-Sodic Soil during Lasagna Process: Impact on Soil Physicochemical Properties

    Science.gov (United States)

    Bukhari, Alaadin; Al-Malack, Muhammad H.; Mu'azu, Nuhu D.; Essa, Mohammed H.

    2014-01-01

    Trivalent Cr is one of the heavy metals that are difficult to be removed from soil using electrokinetic study because of its geochemical properties. High buffering capacity soil is expected to reduce the mobility of the trivalent Cr and subsequently reduce the remedial efficiency thereby complicating the remediation process. In this study, geochemical modeling and migration of trivalent Cr in saline-sodic soil (high buffering capacity and alkaline) during integrated electrokinetics-adsorption remediation, called the Lasagna process, were investigated. The remedial efficiency of trivalent Cr in addition to the impacts of the Lasagna process on the physicochemical properties of the soil was studied. Box-Behnken design was used to study the interaction effects of voltage gradient, initial contaminant concentration, and polarity reversal rate on the soil pH, electroosmotic volume, soil electrical conductivity, current, and remedial efficiency of trivalent Cr in saline-sodic soil that was artificially spiked with Cr, Cu, Cd, Pb, Hg, phenol, and kerosene. Overall desirability of 0.715 was attained at the following optimal conditions: voltage gradient 0.36 V/cm; polarity reversal rate 17.63 hr; soil pH 10.0. Under these conditions, the expected trivalent Cr remedial efficiency is 64.75 %. PMID:25152905

  3. The model for solubility of CO2 in saline groundwater with complex ions and the application on Erdos basin

    International Nuclear Information System (INIS)

    Wang Lu; Yu Qingchun

    2014-01-01

    To obtain accurate solubility of CO 2 is one of problems that need solutions urgently in CO 2 sequestration within saline groundwater. However, there are few data published for solubility of CO 2 under geological sequestration conditions. In order to fill the gap of the experimental study, the solubility of CO 2 in five formations of Erdos Basin was explored in this research. Groundwater samples in five reservoirs were carried out through an observation well in the Erdos Basin. The chemical composition was determined and experiments measuring CO 2 solubility were carried out in the synthetic water samples. Krichevsky-Kasarnovsky equation was established to analyze the experimental data. The relationship between concentration of K + , Na + , Ca 2+ , Mg 2+ and the solubility of CO 2 was analyzed and an excellent liner fit was found, which quantifies the impact of ions on the solubility of cO 2 . Solubility data were compared to the model prediction over the temperature and pressure ranges of 318 ∼ 348 K and 8 ∼ 11 MPa. The average absolute deviation is 2.11%. The results can be used as a parameter for the evaluation of the CO 2 storage capacity in deep saline aquifer of Erdos Basin. (authors)

  4. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA

    Science.gov (United States)

    Balistrieri, L.S.; Tempel, R.N.; Stillings, L.L.; Shevenell, L.A.

    2006-01-01

    This paper examines the seasonal cycling of temperature and salinity in Dexter pit lake in arid northern Nevada, and describes an approach for modeling the physical processes that operate in such systems. The pit lake contains about 596,200 m3 of dilute, near neutral (pHs 6.7-9) water. Profiles of temperature, conductivity, and selected element concentrations were measured almost monthly during 1999 and 2000. In winter (January-March), the pit lake was covered with ice and bottom water was warmer (5.3 ??C) with higher total dissolved solids (0.298 g/L) than overlying water (3.96 ??C and 0.241 g/L), suggesting inflow of warm (11.7 ??C) groundwater with a higher conductivity than the lake (657 versus 126-383 ??S/cm). Seasonal surface inflow due to spring snowmelt resulted in lower conductivity in the surface water (232-247 ??S/cm) relative to deeper water (315-318 ??S/cm). The pit lake was thermally stratified from late spring through early fall, and the water column turned over in late November (2000) or early December (1999). The pit lake is a mixture of inflowing surface water and groundwater that has subsequently been evapoconcentrated in the arid environment. Linear relationships between conductivity and major and some minor (B, Li, Sr, and U) ions indicate conservative mixing for these elements. Similar changes in the elevations of the pit lake surface and nearby groundwater wells during the year suggest that the pit lake is a flow-through system. This observation and geochemical information were used to configure an one-dimensional hydrodynamics model (Dynamic Reservoir Simulation Model or DYRESM) that predicts seasonal changes in temperature and salinity based on the interplay of physical processes, including heating and cooling (solar insolation, long and short wave radiation, latent, and sensible heat), hydrologic flow (inflow and outflow by surface and ground water, pumping, evaporation, and precipitation), and transfers of momentum (wind stirring

  5. Modeling spatial and temporal variations in temperature and salinity during stratification and overturn in Dexter Pit Lake, Tuscarora, Nevada, USA

    International Nuclear Information System (INIS)

    Balistrieri, Laurie S.; Tempel, Regina N.; Stillings, Lisa L.; Shevenell, Lisa A.

    2006-01-01

    This paper examines the seasonal cycling of temperature and salinity in Dexter pit lake in arid northern Nevada, and describes an approach for modeling the physical processes that operate in such systems. The pit lake contains about 596,200 m 3 of dilute, near neutral (pHs 6.7-9) water. Profiles of temperature, conductivity, and selected element concentrations were measured almost monthly during 1999 and 2000. In winter (January-March), the pit lake was covered with ice and bottom water was warmer (5.3 deg. C) with higher total dissolved solids (0.298 g/L) than overlying water (3.96 deg. C and 0.241 g/L), suggesting inflow of warm (11.7 deg. C) groundwater with a higher conductivity than the lake (657 versus 126-383 μS/cm). Seasonal surface inflow due to spring snowmelt resulted in lower conductivity in the surface water (232-247 μS/cm) relative to deeper water (315-318 μS/cm). The pit lake was thermally stratified from late spring through early fall, and the water column turned over in late November (2000) or early December (1999). The pit lake is a mixture of inflowing surface water and groundwater that has subsequently been evapoconcentrated in the arid environment. Linear relationships between conductivity and major and some minor (B, Li, Sr, and U) ions indicate conservative mixing for these elements. Similar changes in the elevations of the pit lake surface and nearby groundwater wells during the year suggest that the pit lake is a flow-through system. This observation and geochemical information were used to configure an one-dimensional hydrodynamics model (Dynamic Reservoir Simulation Model or DYRESM) that predicts seasonal changes in temperature and salinity based on the interplay of physical processes, including heating and cooling (solar insolation, long and short wave radiation, latent, and sensible heat), hydrologic flow (inflow and outflow by surface and ground water, pumping, evaporation, and precipitation), and transfers of momentum (wind

  6. Modeling Change in Project Duration and Completion

    DEFF Research Database (Denmark)

    Wiltshire, Travis; Butner, Jonathan E.; Pirtle, Zachary

    2017-01-01

    In complex work domains and organizations, understanding scheduleing dynamics can ensure objectives are reached and delays are mitigated. In the current paper, we examine the scheduling dynamics for NASA’s Exploration Flight Test 1 (EFT-1) activities. For this examination, we specifically modeled...... simultaneous change in percent complete and estimated duration for a given project as they were included in monthly reports over time. In short, we utilized latent change score mixture modeling to extract the attractor dynamics within the scheduling data. We found three primarily patterns: an attractor at low...

  7. The UK Earth System Model project

    Science.gov (United States)

    Tang, Yongming

    2016-04-01

    In this talk we will describe the development and current status of the UK Earth System Model (UKESM). This project is a NERC/Met Office collaboration and has two objectives; to develop and apply a world-leading Earth System Model, and to grow a community of UK Earth System Model scientists. We are building numerical models that include all the key components of the global climate system, and contain the important process interactions between global biogeochemistry, atmospheric chemistry and the physical climate system. UKESM will be used to make key CMIP6 simulations as well as long-time (e.g. millennium) simulations, large ensemble experiments and investigating a range of future carbon emission scenarios.

  8. The Chancellor's Model School Project (CMSP)

    Science.gov (United States)

    Lopez, Gil

    1999-01-01

    What does it take to create and implement a 7th to 8th grade middle school program where the great majority of students achieve at high academic levels regardless of their previous elementary school backgrounds? This was the major question that guided the research and development of a 7-year long project effort entitled the Chancellor's Model School Project (CMSP) from September 1991 to August 1998. The CMSP effort conducted largely in two New York City public schools was aimed at creating and testing a prototype 7th and 8th grade model program that was organized and test-implemented in two distinct project phases: Phase I of the CMSP effort was conducted from 1991 to 1995 as a 7th to 8th grade extension of an existing K-6 elementary school, and Phase II was conducted from 1995 to 1998 as a 7th to 8th grade middle school program that became an integral part of a newly established 7-12th grade high school. In Phase I, the CMSP demonstrated that with a highly structured curriculum coupled with strong academic support and increased learning time, students participating in the CMSP were able to develop a strong foundation for rigorous high school coursework within the space of 2 years (at the 7th and 8th grades). Mathematics and Reading test score data during Phase I of the project, clearly indicated that significant academic gains were obtained by almost all students -- at both the high and low ends of the spectrum -- regardless of their previous academic performance in the K-6 elementary school experience. The CMSP effort expanded in Phase II to include a fully operating 7-12 high school model. Achievement gains at the 7th and 8th grade levels in Phase II were tempered by the fact that incoming 7th grade students' academic background at the CMSP High School was significantly lower than students participating in Phase 1. Student performance in Phase II was also affected by the broadening of the CMSP effort from a 7-8th grade program to a fully functioning 7-12 high

  9. Spatial pattern formation of coastal vegetation in response to external gradients and positive feedbacks affecting soil porewater salinity: A model study

    Science.gov (United States)

    Jiang, J.; DeAngelis, D.L.; Smith, T. J.; Teh, S.Y.; Koh, H. L.

    2012-01-01

    Coastal vegetation of South Florida typically comprises salinity-tolerant mangroves bordering salinity-intolerant hardwood hammocks and fresh water marshes. Two primary ecological factors appear to influence the maintenance of mangrove/hammock ecotones against changes that might occur due to disturbances. One of these is a gradient in one or more environmental factors. The other is the action of positive feedback mechanisms, in which each vegetation community influences its local environment to favor itself, reinforcing the boundary between communities. The relative contributions of these two factors, however, can be hard to discern. A spatially explicit individual-based model of vegetation, coupled with a model of soil hydrology and salinity dynamics is presented here to simulate mangrove/hammock ecotones in the coastal margin habitats of South Florida. The model simulation results indicate that an environmental gradient of salinity, caused by tidal flux, is the key factor separating vegetation communities, while positive feedback involving the different interaction of each vegetation type with the vadose zone salinity increases the sharpness of boundaries, and maintains the ecological resilience of mangrove/hammock ecotones against small disturbances. Investigation of effects of precipitation on positive feedback indicates that the dry season, with its low precipitation, is the period of strongest positive feedback. ?? 2011 Springer Science+Business Media B.V. (outside the USA).

  10. Project-matrix models of marketing organization

    Directory of Open Access Journals (Sweden)

    Gutić Dragutin

    2009-01-01

    Full Text Available Unlike theory and practice of corporation organization, in marketing organization numerous forms and contents at its disposal are not reached until this day. It can be well estimated that marketing organization today in most of our companies and in almost all its parts, noticeably gets behind corporation organization. Marketing managers have always been occupied by basic, narrow marketing activities as: sales growth, market analysis, market growth and market share, marketing research, introduction of new products, modification of products, promotion, distribution etc. They rarely found it necessary to focus a bit more to different aspects of marketing management, for example: marketing planning and marketing control, marketing organization and leading. This paper deals with aspects of project - matrix marketing organization management. Two-dimensional and more-dimensional models are presented. Among two-dimensional, these models are analyzed: Market management/products management model; Products management/management of product lifecycle phases on market model; Customers management/marketing functions management model; Demand management/marketing functions management model; Market positions management/marketing functions management model. .

  11. Source term modelling parameters for Project-90

    International Nuclear Information System (INIS)

    Shaw, W.; Smith, G.; Worgan, K.; Hodgkinson, D.; Andersson, K.

    1992-04-01

    This document summarises the input parameters for the source term modelling within Project-90. In the first place, the parameters relate to the CALIBRE near-field code which was developed for the Swedish Nuclear Power Inspectorate's (SKI) Project-90 reference repository safety assessment exercise. An attempt has been made to give best estimate values and, where appropriate, a range which is related to variations around base cases. It should be noted that the data sets contain amendments to those considered by KBS-3. In particular, a completely new set of inventory data has been incorporated. The information given here does not constitute a complete set of parameter values for all parts of the CALIBRE code. Rather, it gives the key parameter values which are used in the constituent models within CALIBRE and the associated studies. For example, the inventory data acts as an input to the calculation of the oxidant production rates, which influence the generation of a redox front. The same data is also an initial value data set for the radionuclide migration component of CALIBRE. Similarly, the geometrical parameters of the near-field are common to both sub-models. The principal common parameters are gathered here for ease of reference and avoidance of unnecessary duplication and transcription errors. (au)

  12. Validation of AquaCrop Model for Simulation of Winter Wheat Yield and Water Use Efficiency under Simultaneous Salinity and Water Stress

    OpenAIRE

    M. Mohammadi; B. Ghahraman; K. Davary; H. Ansari; A. Shahidi

    2016-01-01

    Introduction: FAO AquaCrop model (Raes et al., 2009a; Steduto et al., 2009) is a user-friendly and practitioner oriented type of model, because it maintains an optimal balance between accuracy, robustness, and simplicity; and it requires a relatively small number of model input parameters. The FAO AquaCrop model predicts crop productivity, water requirement, and water use efficiency under water-limiting and saline water conditions. This model has been tested and validated for different crops ...

  13. Building information models for astronomy projects

    Science.gov (United States)

    Ariño, Javier; Murga, Gaizka; Campo, Ramón; Eletxigerra, Iñigo; Ampuero, Pedro

    2012-09-01

    A Building Information Model is a digital representation of physical and functional characteristics of a building. BIMs represent the geometrical characteristics of the Building, but also properties like bills of quantities, definition of COTS components, status of material in the different stages of the project, project economic data, etc. The BIM methodology, which is well established in the Architecture Engineering and Construction (AEC) domain for conventional buildings, has been brought one step forward in its application for Astronomical/Scientific facilities. In these facilities steel/concrete structures have high dynamic and seismic requirements, M&E installations are complex and there is a large amount of special equipment and mechanisms involved as a fundamental part of the facility. The detail design definition is typically implemented by different design teams in specialized design software packages. In order to allow the coordinated work of different engineering teams, the overall model, and its associated engineering database, is progressively integrated using a coordination and roaming software which can be used before starting construction phase for checking interferences, planning the construction sequence, studying maintenance operation, reporting to the project office, etc. This integrated design & construction approach will allow to efficiently plan construction sequence (4D). This is a powerful tool to study and analyze in detail alternative construction sequences and ideally coordinate the work of different construction teams. In addition engineering, construction and operational database can be linked to the virtual model (6D), what gives to the end users a invaluable tool for the lifecycle management, as all the facility information can be easily accessed, added or replaced. This paper presents the BIM methodology as implemented by IDOM with the E-ELT and ATST Enclosures as application examples.

  14. Integrating an artificial intelligence approach with k-means clustering to model groundwater salinity: the case of Gaza coastal aquifer (Palestine)

    Science.gov (United States)

    Alagha, Jawad S.; Seyam, Mohammed; Md Said, Md Azlin; Mogheir, Yunes

    2017-12-01

    Artificial intelligence (AI) techniques have increasingly become efficient alternative modeling tools in the water resources field, particularly when the modeled process is influenced by complex and interrelated variables. In this study, two AI techniques—artificial neural networks (ANNs) and support vector machine (SVM)—were employed to achieve deeper understanding of the salinization process (represented by chloride concentration) in complex coastal aquifers influenced by various salinity sources. Both models were trained using 11 years of groundwater quality data from 22 municipal wells in Khan Younis Governorate, Gaza, Palestine. Both techniques showed satisfactory prediction performance, where the mean absolute percentage error (MAPE) and correlation coefficient ( R) for the test data set were, respectively, about 4.5 and 99.8% for the ANNs model, and 4.6 and 99.7% for SVM model. The performances of the developed models were further noticeably improved through preprocessing the wells data set using a k-means clustering method, then conducting AI techniques separately for each cluster. The developed models with clustered data were associated with higher performance, easiness and simplicity. They can be employed as an analytical tool to investigate the influence of input variables on coastal aquifer salinity, which is of great importance for understanding salinization processes, leading to more effective water-resources-related planning and decision making.

  15. MODEL RANCANGAN SISTEM INFORMASI PROJECT MONITORING

    Directory of Open Access Journals (Sweden)

    Yanti Yanti

    2009-10-01

    Full Text Available Economic development makes the property industry growing very rapidly. The property development is supported by the development of contractor’s company that conducts property development. Inside the contracting company doing business can not perform their own procurement because of the many items that must be provided. For the purposes of the construction company entered into an agreement with the subcontractor as vendor conduct procurement in accordance with the needs of contracting companies. To simplify the procurement process, generally conducted by a process called a tender / auction. This is done by contracting companies to get quality and price in accordance with the desired budget. The company’s commitment subcontractors as the procurement of goods to be one key to successful contracting company doing business development process. Therefore, the subcontractor companies are required to have a good commitment. Therefore we need a project monitoring system that can monitor business processes running on those sub contractor company. The purpose of this research is to design a project monitoring information system in accordance with company requirements to operational activities more effective and efficient company.Keywords: project monitoring, design model, subcontractor

  16. Salinity controls on plant transpiration and soil water balance

    Science.gov (United States)

    Perri, S.; Molini, A.; Suweis, S. S.; Viola, F.; Entekhabi, D.

    2017-12-01

    Soil salinization and aridification represent a major threat for the food security and sustainable development of drylands. The two problems are deeply connected, and their interplay is expected to be further enhanced by climate change and projected population growth. Salt-affected land is currently estimated to cover around 1.1 Gha, and is particularly widespread in semi-arid to hyper-arid climates. Over 900 Mha of these saline/sodic soils are potentially available for crop or biomass production. Salt-tolerant plants have been recently proposed as valid solution to exploit or even remediate salinized soils. However the effects of salinity on evapotranspiration, soil water balance and the long-term salt mass balance in the soil, are still largely unexplored. In this contribution we analyze the feedback of evapotranspiration on soil salinization, with particular emphasis on the role of vegetation and plant salt-tolerance. The goal is to introduce a simple modeling framework able to shed some light on how (a) soil salinity controls plant transpiration, and (b) salinization itself is favored/impeded by different vegetation feedback. We introduce at this goal a spatially lumped stochastic model of soil moisture and salt mass dynamics averaged over the active soil depth, and accounting for the effect of salinity on evapotranspiration. Here, the limiting effect of salinity on ET is modeled through a simple plant response function depending on both salt concentration in the soil and plant salt-tolerance. The coupled soil moisture and salt mass balance is hence used to obtain the conditional steady-state probability density function (pdf) of soil moisture for given salt tolerance and salinization level, Our results show that salinity imposes a limit in the soil water balance and this limit depends on plant salt-tolerance mainly through the control of the leaching occurrence (tolerant plants exploit water more efficiently than the sensitive ones). We also analyzed the

  17. Particle and solute migration in porous media. Modeling of simultaneous transport of clay particles and radionuclides in a salinity gradient

    International Nuclear Information System (INIS)

    Faure, M.H.

    1994-03-01

    Understanding the mechanisms which control the transient transport of particles and radionuclides in natural and artificial porous media is a key problem for the assessment of safety of radioactive waste disposals. An experimental study has been performed to characterize the clayey particle mobility in porous media: a laboratory- made column, packed with an unconsolidated sand bentonite (5% weight) sample, is flushed with a salt solution. An original method of salinity gradient allowed us to show and to quantify some typical behaviours of this system: threshold effects in the peptization of particles, creation of preferential pathways, formation of immobile water zones induce solute-transfer limitation. The mathematical modelling accounts for a phenomenological law, where the distribution of particles between the stagnant water zone and the porous medium is a function of sodium chloride concentration. This distribution function is associated with a radionuclide adsorption model, and is included in a convective dispersive transport model with stagnant water zones. It allowed us to simulate the particle and solute transport when the salt environment is modified. The complete model has been validated with experiments involving cesium, calcium and neptunium in a sodium chloride gradient. (author). refs., figs., tabs

  18. Simulation approaches for the two-phase flow in saline repositories using the code TOUGH2-GRS. Report in the frame of the project ZIESEL. Two-phase flow in a saline repository using the example ERAM; Ansaetze zur Simulation der Zweiphasenstroemung in salinaren Endlagern mit dem Code TOUGH2-GRS. Bericht im Vorhaben ZIESEL. Zweiphasenfluss in einem salinaren Endlager am Beispiel des ERAM

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Martin; Fischer, Heidemarie; Seher, Holger; Weyand, Torben

    2016-10-15

    The simulation approaches for the two-phase flow in saline repositories using the code TOUGH2-GRS cover the following issues: simulation of gravitational flows in horizontal galleries without vertical discretization, homogenization approach for the simulation of the two-phase flow in converging partly backfilled galleries, qualification of the convergence approach implemented by GRS into the code TOUGH2-GRS, discretization effects during replacement of liquid by gas, consequences for the system analyses in the frame of the project ZIESEL.

  19. Effects of Precipitation on Ocean Mixed-Layer Temperature and Salinity as Simulated in a 2-D Coupled Ocean-Cloud Resolving Atmosphere Model

    Science.gov (United States)

    Li, Xiaofan; Sui, C.-H.; Lau, K-M.; Adamec, D.

    1999-01-01

    A two-dimensional coupled ocean-cloud resolving atmosphere model is used to investigate possible roles of convective scale ocean disturbances induced by atmospheric precipitation on ocean mixed-layer heat and salt budgets. The model couples a cloud resolving model with an embedded mixed layer-ocean circulation model. Five experiment are performed under imposed large-scale atmospheric forcing in terms of vertical velocity derived from the TOGA COARE observations during a selected seven-day period. The dominant variability of mixed-layer temperature and salinity are simulated by the coupled model with imposed large-scale forcing. The mixed-layer temperatures in the coupled experiments with 1-D and 2-D ocean models show similar variations when salinity effects are not included. When salinity effects are included, however, differences in the domain-mean mixed-layer salinity and temperature between coupled experiments with 1-D and 2-D ocean models could be as large as 0.3 PSU and 0.4 C respectively. Without fresh water effects, the nocturnal heat loss over ocean surface causes deep mixed layers and weak cooling rates so that the nocturnal mixed-layer temperatures tend to be horizontally-uniform. The fresh water flux, however, causes shallow mixed layers over convective areas while the nocturnal heat loss causes deep mixed layer over convection-free areas so that the mixed-layer temperatures have large horizontal fluctuations. Furthermore, fresh water flux exhibits larger spatial fluctuations than surface heat flux because heavy rainfall occurs over convective areas embedded in broad non-convective or clear areas, whereas diurnal signals over whole model areas yield high spatial correlation of surface heat flux. As a result, mixed-layer salinities contribute more to the density differences than do mixed-layer temperatures.

  20. The sigma model on complex projective superspaces

    Energy Technology Data Exchange (ETDEWEB)

    Candu, Constantin; Mitev, Vladimir; Schomerus, Volker [DESY, Hamburg (Germany). Theory Group; Quella, Thomas [Amsterdam Univ. (Netherlands). Inst. for Theoretical Physics; Saleur, Hubert [CEA Saclay, 91 - Gif-sur-Yvette (France). Inst. de Physique Theorique; USC, Los Angeles, CA (United States). Physics Dept.

    2009-08-15

    The sigma model on projective superspaces CP{sup S-1} {sup vertical} {sup stroke} {sup S} gives rise to a continuous family of interacting 2D conformal field theories which are parametrized by the curvature radius R and the theta angle {theta}. Our main goal is to determine the spectrum of the model, non-perturbatively as a function of both parameters. We succeed to do so for all open boundary conditions preserving the full global symmetry of the model. In string theory parlor, these correspond to volume filling branes that are equipped with a monopole line bundle and connection. The paper consists of two parts. In the first part, we approach the problem within the continuum formulation. Combining combinatorial arguments with perturbative studies and some simple free field calculations, we determine a closed formula for the partition function of the theory. This is then tested numerically in the second part. There we propose a spin chain regularization of the CP{sup S-1} {sup vertical} {sup stroke} {sup S} model with open boundary conditions and use it to determine the spectrum at the conformal fixed point. The numerical results are in remarkable agreement with the continuum analysis. (orig.)

  1. The sigma model on complex projective superspaces

    International Nuclear Information System (INIS)

    Candu, Constantin; Mitev, Vladimir; Schomerus, Volker; Quella, Thomas; Saleur, Hubert; USC, Los Angeles, CA

    2009-08-01

    The sigma model on projective superspaces CP S-1 vertical stroke S gives rise to a continuous family of interacting 2D conformal field theories which are parametrized by the curvature radius R and the theta angle θ. Our main goal is to determine the spectrum of the model, non-perturbatively as a function of both parameters. We succeed to do so for all open boundary conditions preserving the full global symmetry of the model. In string theory parlor, these correspond to volume filling branes that are equipped with a monopole line bundle and connection. The paper consists of two parts. In the first part, we approach the problem within the continuum formulation. Combining combinatorial arguments with perturbative studies and some simple free field calculations, we determine a closed formula for the partition function of the theory. This is then tested numerically in the second part. There we propose a spin chain regularization of the CP S-1 vertical stroke S model with open boundary conditions and use it to determine the spectrum at the conformal fixed point. The numerical results are in remarkable agreement with the continuum analysis. (orig.)

  2. Sea surface salinity and temperature-based predictive modeling of southwestern US winter precipitation: improvements, errors, and potential mechanisms

    Science.gov (United States)

    Liu, T.; Schmitt, R. W.; Li, L.

    2017-12-01

    Using 69 years of historical data from 1948-2017, we developed a method to globally search for sea surface salinity (SSS) and temperature (SST) predictors of regional terrestrial precipitation. We then applied this method to build an autumn (SON) SSS and SST-based 3-month lead predictive model of winter (DJF) precipitation in southwestern United States. We also find that SSS-only models perform better than SST-only models. We previously used an arbitrary correlation coefficient (r) threshold, |r| > 0.25, to define SSS and SST predictor polygons for best subset regression of southwestern US winter precipitation; from preliminary sensitivity tests, we find that |r| > 0.18 yields the best models. The observed below-average precipitation (0.69 mm/day) in winter 2015-2016 falls within the 95% confidence interval of the prediction model. However, the model underestimates the anomalous high precipitation (1.78 mm/day) in winter 2016-2017 by more than three-fold. Moisture transport mainly attributed to "pineapple express" atmospheric rivers (ARs) in winter 2016-2017 suggests that the model falls short on a sub-seasonal scale, in which case storms from ARs contribute a significant portion of seasonal terrestrial precipitation. Further, we identify a potential mechanism for long-range SSS and precipitation teleconnections: standing Rossby waves. The heat applied to the atmosphere from anomalous tropical rainfall can generate standing Rossby waves that propagate to higher latitudes. SSS anomalies may be indicative of anomalous tropical rainfall, and by extension, standing Rossby waves that provide the long-range teleconnections.

  3. A Model of Project and Organisational Dynamics

    OpenAIRE

    Jenny Leonard

    2012-01-01

    The strategic, transformational nature of many information systems projects is now widely understood. Large-scale implementations of systems are known to require significant management of organisational change in order to be successful. Moreover, projects are rarely executed in isolation – most organisations have a large programme of projects being implemented at any one time. However, project and value management methodologies provide ad hoc definitions of the relationship between a project ...

  4. Temperature and salinity data from moored seacat sensors of the Multi-disciplinary Ocean Sensors for Environmental Analyses and Networks (MOSEAN) project 2004-2007 (NODC Accession 0115703)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity data were collected by seacat sensors from seven deployments within 2004-2007 on the HALE-ALOHA mooring, a location about 100 km north of...

  5. A natural saline soil as a model for understanding to what extent the concentration of salt affects the distribution of microorganisms

    Science.gov (United States)

    Canfora, Loredana; Pinzari, Flavia; Lo Papa, Giuseppe; Vittori Antisari, Livia; Vendramin, Elisa; Salvati, Luca; Dazzi, Carmelo; Benedetti, Anna

    2017-04-01

    Soils preserve and sustain life. Their health and functioning are crucial for crop production and for the maintenance of major ecosystem services. Human induced salinity is one of the main soil threats that reduces soil fertility and affect crop yields. In recent times, great attention has been paid to the general shortage of arable land and to the increasing demand for ecological restoration of areas affected by salinization processes. Despite the diffuse interest on the effects of salinization on plants' growth, and all the derived socioeconomic issues, very few studies analyzed the ecology of the microbial species in naturally saline soils and the resilience of biological fertility in these extreme habitats. Microorganisms inhabiting such environments may share a strategy, may have developed multiple adaptations for maintaining their populations, and cope eventually to extreme conditions by altruistic or cooperative behaviors for maintaining their metabolism active. The understanding and the knowledge of the composition and distribution of microbial communities in natural hypersaline soils can be interesting for ecological reasons but also to develop new restoration strategy where soil fertility was compromised by natural accidents or human mismanagement. The aim of this research was to provide specific information on saline soils in Italy, stressing mainly their distribution, the socioeconomic issues and the understanding of the characterizing ecological processes. Moreover, natural saline soils were used as a model for understanding to what extent the concentration of salt can affect some basic microbial processes. In the present study, physical, chemical and microbiological soil properties were investigated in the shallower horizons of natural salt affected soils in Sicily (Italy), where some ecological contrasting variables acted as strong drivers in fungal and bacterial spatial distribution. Furthermore, the interface between biological and geochemical

  6. Solid Waste Projection Model: Database User's Guide

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1993-10-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC) specifically to address Hanford solid waste management issues. This document is one of a set of documents supporting the SWPM system and providing instructions in the use and maintenance of SWPM components. This manual contains instructions for using Version 1.4 of the SWPM database: system requirements and preparation, entering and maintaining data, and performing routine database functions. This document supports only those operations which are specific to SWPM database menus and functions and does not Provide instruction in the use of Paradox, the database management system in which the SWPM database is established

  7. Projecting surgeon supply using a dynamic model.

    Science.gov (United States)

    Fraher, Erin P; Knapton, Andy; Sheldon, George F; Meyer, Anthony; Ricketts, Thomas C

    2013-05-01

    To develop a projection model to forecast the head count and full-time equivalent supply of surgeons by age, sex, and specialty in the United States from 2009 to 2028. The search for the optimal number and specialty mix of surgeons to care for the United States population has taken on increased urgency under health care reform. Expanded insurance coverage and an aging population will increase demand for surgical and other medical services. Accurate forecasts of surgical service capacity are crucial to inform the federal government, training institutions, professional associations, and others charged with improving access to health care. The study uses a dynamic stock and flow model that simulates future changes in numbers and specialty type by factoring in changes in surgeon demographics and policy factors. : Forecasts show that overall surgeon supply will decrease 18% during the period form 2009 to 2028 with declines in all specialties except colorectal, pediatric, neurological surgery, and vascular surgery. Model simulations suggest that none of the proposed changes to increase graduate medical education currently under consideration will be sufficient to offset declines. The length of time it takes to train surgeons, the anticipated decrease in hours worked by surgeons in younger generations, and the potential decreases in graduate medical education funding suggest that there may be an insufficient surgeon workforce to meet population needs. Existing maldistribution patterns are likely to be exacerbated, leading to delayed or lost access to time-sensitive surgical procedures, particularly in rural areas.

  8. A WFS-SVM Model for Soil Salinity Mapping in Keriya Oasis, Northwestern China Using Polarimetric Decomposition and Fully PolSAR Data

    Directory of Open Access Journals (Sweden)

    Ilyas Nurmemet

    2018-04-01

    Full Text Available Timely monitoring and mapping of salt-affected areas are essential for the prevention of land degradation and sustainable soil management in arid and semi-arid regions. The main objective of this study was to develop Synthetic Aperture Radar (SAR polarimetry techniques for improved soil salinity mapping in the Keriya Oasis in the Xinjiang Uyghur Autonomous Region (Xinjiang, China, where salinized soil appears to be a major threat to local agricultural productivity. Multiple polarimetric target decomposition, optimal feature subset selection (wrapper feature selector, WFS, and support vector machine (SVM algorithms were used for optimal soil salinization classification using quad-polarized PALSAR-2 data. A threefold exercise was conducted. First, 16 polarimetric decomposition methods were implemented and a wide range of polarimetric parameters and SAR discriminators were derived in order to mine hidden information in PolSAR data. Second, the optimal polarimetric feature subset that constitutes 19 polarimetric elements was selected adopting the WFS approach; optimum classification parameters were identified, and the optimal SVM classification model was obtained by employing a cross-validation method. Third, the WFS-SVM classification model was constructed, optimized, and implemented based on the optimal match of polarimetric features and optimum classification parameters. Soils with different salinization degrees (i.e., highly, moderately and slightly salinized soils were extracted. Finally, classification results were compared with the Wishart supervised classification and conventional SVM classification to examine the performance of the proposed method for salinity mapping. Detailed field investigations and ground data were used for the validation of the adopted methods. The overall accuracy and kappa coefficient of the proposed WFS-SVM model were 87.57% and 0.85, respectively that were much higher than those obtained by the Wishart supervised

  9. Integrating the effects of salinity on the physiology of the eastern oyster, Crassostrea virginica, in the northern Gulf of Mexico through a Dynamic Energy Budget model

    Science.gov (United States)

    Lavaud, Romain; LaPeyre, Megan K.; Casas, Sandra M.; Bacher, C.; La Peyre, Jerome F.

    2017-01-01

    We present a Dynamic Energy Budget (DEB) model for the eastern oyster, Crassostrea virginica, which enables the inclusion of salinity as a third environmental variable, on top of the standard foodr and temperature variables. Salinity changes have various effects on the physiology of oysters, potentially altering filtration and respiration rates, and ultimately impacting growth, reproduction and mortality. We tested different hypotheses as to how to include these effects in a DEB model for C. virginica. Specifically, we tested two potential mechanisms to explain changes in oyster shell growth (cm), tissue dry weight (g) and gonad dry weight (g) when salinity moves away from the ideal range: 1) a negative effect on filtration rate and 2) an additional somatic maintenance cost. Comparative simulations of shell growth, dry tissue biomass and dry gonad weight in two monitored sites in coastal Louisiana experiencing salinity from 0 to 28 were statistically analyzed to determine the best hypothesis. Model parameters were estimated through the covariation method, using literature data and a set of specifically designed ecophysiological experiments. The model was validated through independent field studies in estuaries along the northern Gulf of Mexico. Our results suggest that salinity impacts C. virginica’s energy budget predominantly through effects on filtration rate. With an overwhelming number of environmental factors impacting organisms, and increasing exposure to novel and extreme conditions, the mechanistic nature of the DEB model with its ability to incorporate more than the standard food and temperature variables provides a powerful tool to verify hypotheses and predict individual organism performance across a range of conditions.

  10. Modeling electrodialysis and a photochemical process for their integration in saline wastewater treatment

    Directory of Open Access Journals (Sweden)

    F. J. Borges

    2010-09-01

    Full Text Available Oxidation processes can be used to treat industrial wastewater containing non-biodegradable organic compounds. However, the presence of dissolved salts may inhibit or retard the treatment process. In this study, wastewater desalination by electrodialysis (ED associated with an advanced oxidation process (photo-Fenton was applied to an aqueous NaCl solution containing phenol. The influence of process variables on the demineralization factor was investigated for ED in pilot scale and a correlation was obtained between the phenol, salt and water fluxes with the driving force. The oxidation process was investigated in a laboratory batch reactor and a model based on artificial neural networks was developed by fitting the experimental data describing the reaction rate as a function of the input variables. With the experimental parameters of both processes, a dynamic model was developed for ED and a continuous model, using a plug flow reactor approach, for the oxidation process. Finally, the hybrid model simulation could validate different scenarios of the integrated system and can be used for process optimization.

  11. The study of the risk management model of construction project

    International Nuclear Information System (INIS)

    Jiang Bo; Feng Yanping; Liu Changbin

    2010-01-01

    The paper first analyzed the development of the risk management of construction project and the risk management processes, and then briefly introduced the risk management experience of foreign project management. From the project management by objectives point of view, the greatest risk came from the lack of clarity of the objectives in the project management, which led to the project's risk emergence. In the analysis of the principles of the project objectives identification and risk allocation, the paper set up a project management model which insurance companies involved in the whole process of the project management, and simply analyzed the roles of insurance company at last. (authors)

  12. Modeling a Sustainable Salt Tolerant Grass-Livestock Production System under Saline Conditions in the Western San Joaquin Valley of California

    Directory of Open Access Journals (Sweden)

    Stephen R. Kaffka

    2013-09-01

    Full Text Available Salinity and trace mineral accumulation threaten the sustainability of crop production in many semi-arid parts of the world, including California’s western San Joaquin Valley (WSJV. We used data from a multi-year field-scale trial in Kings County and related container trials to simulate a forage-grazing system under saline conditions. The model uses rainfall and irrigation water amounts, irrigation water quality, soil, plant, and atmospheric variables to predict Bermuda grass (Cynodon dactylon (L. Pers. growth, quality, and use by cattle. Simulations based on field measurements and a related container study indicate that although soil chemical composition is affected by irrigation water quality, irrigation timing and frequency can be used to mitigate salt and trace mineral accumulation. Bermuda grass yields of up to 12 Mg dry matter (DM·ha−1 were observed at the field site and predicted by the model. Forage yield and quality supports un-supplemented cattle stocking rates of 1.0 to 1.2 animal units (AU·ha−1. However, a balance must be achieved between stocking rate, desired average daily gain, accumulation of salts in the soil profile, and potential pollution of ground water from drainage and leaching. Using available weather data, crop-specific parameter values and field scale measurements of soil salinity and nitrogen levels, the model can be used by farmers growing forages on saline soils elsewhere, to sustain forage and livestock production under similarly marginal conditions.

  13. Logistics of Mathematical Modeling-Focused Projects

    Science.gov (United States)

    Harwood, R. Corban

    2018-01-01

    This article addresses the logistics of implementing projects in an undergraduate mathematics class and is intended both for new instructors and for instructors who have had negative experiences implementing projects in the past. Project implementation is given for both lower- and upper-division mathematics courses with an emphasis on mathematical…

  14. Modelling in Evaluating a Working Life Project in Higher Education

    Science.gov (United States)

    Sarja, Anneli; Janhonen, Sirpa; Havukainen, Pirjo; Vesterinen, Anne

    2012-01-01

    This article describes an evaluation method based on collaboration between the higher education, a care home and university, in a R&D project. The aim of the project was to elaborate modelling as a tool of developmental evaluation for innovation and competence in project cooperation. The approach was based on activity theory. Modelling enabled a…

  15. Coupling of a distributed stakeholder-built system dynamics socio-economic model with SAHYSMOD for sustainable soil salinity management - Part 1: Model development

    Science.gov (United States)

    Inam, Azhar; Adamowski, Jan; Prasher, Shiv; Halbe, Johannes; Malard, Julien; Albano, Raffaele

    2017-08-01

    Effective policies, leading to sustainable management solutions for land and water resources, require a full understanding of interactions between socio-economic and physical processes. However, the complex nature of these interactions, combined with limited stakeholder engagement, hinders the incorporation of socio-economic components into physical models. The present study addresses this challenge by integrating the physical Spatial Agro Hydro Salinity Model (SAHYSMOD) with a participatory group-built system dynamics model (GBSDM) that includes socio-economic factors. A stepwise process to quantify the GBSDM is presented, along with governing equations and model assumptions. Sub-modules of the GBSDM, describing agricultural, economic, water and farm management factors, are linked together with feedbacks and finally coupled with the physically based SAHYSMOD model through commonly used tools (i.e., MS Excel and a Python script). The overall integrated model (GBSDM-SAHYSMOD) can be used to help facilitate the role of stakeholders with limited expertise and resources in model and policy development and implementation. Following the development of the integrated model, a testing methodology was used to validate the structure and behavior of the integrated model. Model robustness under different operating conditions was also assessed. The model structure was able to produce anticipated real behaviours under the tested scenarios, from which it can be concluded that the formulated structures generate the right behaviour for the right reasons.

  16. Artificial intelligence based model for optimization of COD removal efficiency of an up-flow anaerobic sludge blanket reactor in the saline wastewater treatment.

    Science.gov (United States)

    Picos-Benítez, Alain R; López-Hincapié, Juan D; Chávez-Ramírez, Abraham U; Rodríguez-García, Adrián

    2017-03-01

    The complex non-linear behavior presented in the biological treatment of wastewater requires an accurate model to predict the system performance. This study evaluates the effectiveness of an artificial intelligence (AI) model, based on the combination of artificial neural networks (ANNs) and genetic algorithms (GAs), to find the optimum performance of an up-flow anaerobic sludge blanket reactor (UASB) for saline wastewater treatment. Chemical oxygen demand (COD) removal was predicted using conductivity, organic loading rate (OLR) and temperature as input variables. The ANN model was built from experimental data and performance was assessed through the maximum mean absolute percentage error (= 9.226%) computed from the measured and model predicted values of the COD. Accordingly, the ANN model was used as a fitness function in a GA to find the best operational condition. In the worst case scenario (low energy requirements, high OLR usage and high salinity) this model guaranteed COD removal efficiency values above 70%. This result is consistent and was validated experimentally, confirming that this ANN-GA model can be used as a tool to achieve the best performance of a UASB reactor with the minimum requirement of energy for saline wastewater treatment.

  17. Differential effects of fresh frozen plasma and normal saline on secondary brain damage in a large animal model of polytrauma, hemorrhage and traumatic brain injury

    DEFF Research Database (Denmark)

    Hwabejire, John O; Imam, Ayesha M; Jin, Guang

    2013-01-01

    We have previously shown that the extent of traumatic brain injury (TBI) in large animal models can be reduced with early infusion of fresh frozen plasma (FFP), but the precise mechanisms remain unclear. In this study, we investigated whether resuscitation with FFP or normal saline differed in th...... in their effects on cerebral metabolism and excitotoxic secondary brain injury in a model of polytrauma, TBI, and hemorrhagic shock....

  18. Using euhalophytes to understand salt tolerance and to develop saline agriculture: Suaeda salsa as a promising model.

    Science.gov (United States)

    Song, Jie; Wang, Baoshan

    2015-02-01

    As important components in saline agriculture, halophytes can help to provide food for a growing world population. In addition to being potential crops in their own right, halophytes are also potential sources of salt-resistance genes that might help plant breeders and molecular biologists increase the salt tolerance of conventional crop plants. One especially promising halophyte is Suaeda salsa, a euhalophytic herb that occurs both on inland saline soils and in the intertidal zone. The species produces dimorphic seeds: black seeds are sensitive to salinity and remain dormant in light under high salt concentrations, while brown seeds can germinate under high salinity (e.g. 600 mm NaCl) regardless of light. Consequently, the species is useful for studying the mechanisms by which dimorphic seeds are adapted to saline environments. S. salsa has succulent leaves and is highly salt tolerant (e.g. its optimal NaCl concentration for growth is 200 mm). A series of S. salsa genes related to salt tolerance have been cloned and their functions tested: these include SsNHX1, SsHKT1, SsAPX, SsCAT1, SsP5CS and SsBADH. The species is economically important because its fresh branches have high value as a vegetable, and its seed oil is edible and rich in unsaturated fatty acids. Because it can remove salts and heavy metals from saline soils, S. salsa can also be used in the restoration of salinized or contaminated saline land. Because of its economic and ecological value in saline agriculture, S. salsa is one of the most important halophytes in China. In this review, the value of S. salsa as a source of food, medicine and forage is discussed. Its uses in the restoration of salinized or contaminated land and as a source of salt-resistance genes are also considered. © The Author 2014. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  19. SR 97. Alternative models project. Stochastic continuum modelling of Aberg

    International Nuclear Information System (INIS)

    Widen, H.; Walker, D.

    1999-08-01

    As part of studies into the siting of a deep repository for nuclear waste, Swedish Nuclear Fuel and Waste Management Company (SKB) has commissioned the Alternative Models Project (AMP). The AMP is a comparison of three alternative modelling approaches to bedrock performance assessment for a single hypothetical repository, arbitrarily named Aberg. The Aberg repository will adopt input parameters from the Aespoe Hard Rock Laboratory in southern Sweden. The models are restricted to an explicit domain, boundary conditions and canister location to facilitate the comparison. The boundary conditions are based on the regional groundwater model provided in digital format. This study is the application of HYDRASTAR, a stochastic continuum groundwater flow and transport-modelling program. The study uses 34 realisations of 945 canister locations in the hypothetical repository to evaluate the uncertainty of the advective travel time, canister flux (Darcy velocity at a canister) and F-ratio. Several comparisons of variability are constructed between individual canister locations and individual realisations. For the ensemble of all realisations with all canister locations, the study found a median travel time of 27 years, a median canister flux of 7.1 x 10 -4 m/yr and a median F-ratio of 3.3 x 10 5 yr/m. The overall pattern of regional flow is preserved in the site-scale model, as is reflected in flow paths and exit locations. The site-scale model slightly over-predicts the boundary fluxes from the single realisation of the regional model. The explicitly prescribed domain was seen to be slightly restrictive, with 6% of the stream tubes failing to exit the upper surface of the model. Sensitivity analysis and calibration are suggested as possible extensions of the modelling study

  20. Introduction to Financial Projection Models. Business Management Instructional Software.

    Science.gov (United States)

    Pomeroy, Robert W., III

    This guidebook and teacher's guide accompany a personal computer software program and introduce the key elements of financial projection modeling to project the financial statements of an industrial enterprise. The student will then build a model on an electronic spreadsheet. The guidebook teaches the purpose of a financial model and the steps…

  1. Assessing the Contribution of Sea Surface Temperature and Salinity to Coral δ18O using a Weighted Forward Model

    Science.gov (United States)

    Horlick, K. A.; Thompson, D. M.; Anderson, D. M.

    2015-12-01

    The isotopic ratio of 16O/18O (δ18O) in coral carbonate skeletons is a robust, high-resolution proxy for sea surface temperature (SST) and sea surface salinity (SSS) variability predating the instrumental record. Although SST and δ18O-water (correlated to SSS) variability both contribute to the δ18O signal in the coral carbonate archive, the paucity and limited temporal span of SST and SSS instrumental observations limit the ability to differentiate respective SST and SSS contribution to each δ18O record. From instrumental datasets such as HadISST v.3, ERSST, SODA, and Delcroix (2011), we forward model the δ18O ("pseudoproxy") signal using the linear bivariate forward model from Thompson 2011 ("pseudoproxy"= a1(SST)+a2(SSS)). By iteratively weighting (between 0 and 1 by 0.005) the relative contribution of SST and SSS terms to the δ18O "pseudoproxy" following Gorman et al. 2012 method, we derive the percent contributions of SST and SSS to δ18O at each site based on the weights that produce the optimal correlation to the observed coral δ18O signal. A Monte Carlo analysis of error propagation in the weighted and unweighted pseudoproxy time series was used to determine how well the weighted and unweighted forward models captured observed δ18O variance. Across the south-western Pacific (40 sites) we found that SST contributes from less than 8 to more than 78% of the variance. This work builds upon this simple forward model of coral δ18O and improves our understanding of potential sources of differences in the observed and forward modeled δ18O variability. These results may also improve SST and SSS reconstructions from corals by highlighting the reef areas whose coral δ18O signal is most heavily influenced by SST and SSS respectively. Using an inverse approach, creating a transfer function, local SST and SSS could also be reconstructed based on the site-specific weights and observed coral δ18O time series.

  2. Validation of AquaCrop Model for Simulation of Winter Wheat Yield and Water Use Efficiency under Simultaneous Salinity and Water Stress

    Directory of Open Access Journals (Sweden)

    M. Mohammadi

    2016-02-01

    Full Text Available Introduction: FAO AquaCrop model (Raes et al., 2009a; Steduto et al., 2009 is a user-friendly and practitioner oriented type of model, because it maintains an optimal balance between accuracy, robustness, and simplicity; and it requires a relatively small number of model input parameters. The FAO AquaCrop model predicts crop productivity, water requirement, and water use efficiency under water-limiting and saline water conditions. This model has been tested and validated for different crops such as maize, sunflower and wheat (T. aestivum L. under diverse environments. In most of arid and semi-arid regions water shortage is associated with reduction in water quality (i.e. increasing salinity. Plants in these regions in terms of water quality and quantity may be affected by simultaneous salinity and water stress. Therefore, in this study, the AquaCrop model was evaluated under simultaneous salinity and water stress. In this study, AquaCrop Model (v4.0 was used. This version was developed in 2012 to quantify the effects of salinity. Therefore, the objectives of this study were: i evaluation of AquaCrop model (v4.0 to simulate wheat yield and water use efficiency under simultaneous salinity and water stress conditions in an arid region of Birjand, Iran and ii Using different treatments for nested calibration and validation of AquaCrop model. Materials and Methods: This study was carried out as split plot design (factorial form in Birjand, east of Iran, in order to evaluate the AquaCrop model.Treatments consisted of three levels of irrigation water salinity (S1, S2, S3 corresponding to 1.4, 4.5, 9.6 dS m-1 as main plot, two wheat varieties (Ghods and Roshan, and four levels of irrigation water amount (I1, I2, I3, I4 corresponding to 125, 100, 75, 50% water requirement as sub plot. First, AquaCrop model was run with the corresponding data of S1 treatments (for all I1, I2, I3, and I4 and the results (wheat grain yield, average of soil water content

  3. Dealing with project complexity by matrix-based propagation modelling for project risk analysis

    OpenAIRE

    Fang , Chao; Marle , Franck

    2012-01-01

    International audience; Engineering projects are facing a growing complexity and are thus exposed to numerous and interdependent risks. In this paper, we present a quantitative method for modelling propagation behaviour in the project risk network. The construction of the network requires the involvement of the project manager and related experts using the Design Structure Matrix (DSM) method. A matrix-based risk propagation model is introduced to calculate risk propagation and thus to re-eva...

  4. Simulation of hydrodynamic effects of salt rejection due to permafrost. Hydrogeological numerical model of density-driven mixing, at a regional scale, due to a high salinity pulse

    International Nuclear Information System (INIS)

    Vidstrand, Patrik; Svensson, Urban; Follin, Sven

    2006-10-01

    The main objective of this study is to support the safety assessment of the investigated candidate sites concerning hydrogeological and hydrogeochemical issues related to permafrost. However, a more specific objective of the study is to improve the assessment of processes in relation to permafrost scenarios. The model is based on a mathematical model that includes Darcy velocities, mass conservation, matrix diffusion, and salinity distribution. Gravitational effects are thus fully accounted for. A regional groundwater flow model (POM v1.1, Simpevarp) was used as basis for the simulations. The main results of the model include salinity distributions in time. The general conclusion is that density-driven mixing processes are contained within more permeable deformation zones and that these processes are fast as compared with preliminary permafrost growth rates. The results of the simulation suggest that a repository volume in the rock mass in-between the deterministic deformation zones, approximately 150 m below the permafrost will not experience a high salinity situation due to the salt rejection process

  5. Tripolar-cuff deviation from ideal model: assessment by bioelectric field simulations and saline-bath experiments.

    Science.gov (United States)

    Triantis, Iasonas F; Demosthenous, Andreas

    2008-06-01

    Ideally, interference in neural measurements due to signals from nearby muscles can be completely eliminated with the use of tripolar cuffs, in combination with appropriate amplifier configurations, such as the quasi-tripole (QT) and the true-tripole (TT). The operation of these amplifiers, is based on the theoretical property of the nerve cuff to produce a linear relationship of potential versus distance along its length, internally, when external potentials appear between its ends. Thus, in principle, electroneurogram (ENG) recordings from an ideal tripolar cuff would be free from electromyogram (EMG) interference generated by nearby muscles. However, in practice the cuff exhibits non-ideal behaviour leading to "cuff imbalance". The main focus of this paper is to investigate the causes of cuff imbalance, to demonstrate that it should be incorporated as a main parameter in the theoretical ENG-recording cuff electrode model. In addition to cuff asymmetry and tissue growth, the proximity of the interference source to the cuff is shown to result in cuff imbalance. The influence of proximity imbalance on the performance of the QT and TT amplifiers is also considered. Proximity imbalance is studied using bioelectric field simulations and saline-bath experiments. Variation is observed with both distance (40 mm and 70 mm was examined) and orientation (0-180 degrees), with the latter causing a more severe effect especially when the source dipole and the cuff are vertical to each other. The simulations and measurements are in close agreement. Tissue growth imbalance and asymmetry imbalance are also investigated in vitro. Finally, the signal-to-interference ratio (SIR; ENG/EMG) of the QT and TT amplifiers is examined in the presence of cuff imbalance. It is shown that proximity imbalance results in their SIR to peak only at certain cuff orientation values. This important finding offers an insight as to why in practice ENG recordings using these amplifiers have been widely

  6. Expansions of the neurovascular scleral canal and contained optic nerve occur early in the hypertonic saline rat experimental glaucoma model.

    Science.gov (United States)

    Pazos, Marta; Yang, Hongli; Gardiner, Stuart K; Cepurna, William O; Johnson, Elaine C; Morrison, John C; Burgoyne, Claude F

    2016-04-01

    To characterize early optic nerve head (ONH) structural change in rat experimental glaucoma (EG). Unilateral intraocular pressure (IOP) elevation was induced in Brown Norway rats by hypertonic saline injection into the episcleral veins and animals were sacrificed 4 weeks later by perfusion fixation. Optic nerve cross-sections were graded from 1 (normal) to 5 (extensive injury) by 5 masked observers. ONHs with peripapillary retina and sclera were embedded, serial sectioned, 3-D reconstructed, delineated, and quantified. Overall and animal-specific EG versus Control eye ONH parameter differences were assessed globally and regionally by linear mixed effect models with significance criteria adjusted for multiple comparisons. Expansions of the optic nerve and surrounding anterior scleral canal opening achieved statistical significance overall (p < 0.0022), and in 7 of 8 EG eyes (p < 0.005). In at least 5 EG eyes, significant expansions (p < 0.005) in Bruch's membrane opening (BMO) (range 3-10%), the anterior and posterior scleral canal openings (8-21% and 5-21%, respectively), and the optic nerve at the anterior and posterior scleral canal openings (11-30% and 8-41%, respectively) were detected. Optic nerve expansion was greatest within the superior and inferior quadrants. Optic nerve expansion at the posterior scleral canal opening was significantly correlated to optic nerve damage (R = 0.768, p = 0.042). In the rat ONH, the optic nerve and surrounding BMO and neurovascular scleral canal expand early in their response to chronic experimental IOP elevation. These findings provide phenotypic landmarks and imaging targets for detecting the development of experimental glaucomatous optic neuropathy in the rat eye. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Risk Assessment of Engineering Project Financing Based on PPP Model

    Directory of Open Access Journals (Sweden)

    Ma Qiuli

    2017-01-01

    Full Text Available At present, the project financing channel is single, and the urban facilities are in short supply, and the risk assessment and prevention mechanism of financing should be further improved to reduce the risk of project financing. In view of this, the fuzzy comprehensive evaluation model of project financing risk which combined the method of fuzzy comprehensive evaluation and analytic hierarchy process is established. The scientificalness and effectiveness of the model are verified by the example of the world port project in Luohe city, and it provides basis and reference for engineering project financing based on PPP mode.

  8. NOAA NOS SOS, EXPERIMENTAL, 1902-present, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NOS SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have salinity data. *These services are for testing and evaluation use...

  9. [The protection of hydrogen-rich saline on a rat dry eye model induced by scopolamine hydrobromide].

    Science.gov (United States)

    Chu, Y Y; Hua, N; Ru, Y S; Zhao, S Z

    2017-05-11

    Objective: To evaluate the effect of hydrogen-rich saline (HRS) on dry eye rats induced by subcutaneous injection of scopolamine hydrobromide. Methods: Experiment research. Thirty female Wistar rats at about six weeks old were randomly divided into the normal group, dry eye group, HRS eyedrops group, normal saline eyedrops group (NS), HRS intraperitoneal injection group and NS intraperitoneal injection group, with 5 rats in each group. The dry eye was induced by subcutaneous injection of scopolamine hydrobromide in the latter five groups. The clinical signs of dry eye such as tear volume (SⅠt), tear break-up time (BUT) and corneal epithelial fluorescein staining scores were evaluated on day 7, 14, 21 and 28. On the 28th day, ten eyes in each group were enucleated and processed for paraffin sections for HE, PAS and immunohistochemistry stainings. Analysis of variance was used to test the data, and independent samples t -test was used for comparison between the two groups. Two-way repeated measure ANOVA was used to compare the difference among groups at different time points, one-way ANOVA was used to test the comparisons of the clinical signs at one time, and LSD was used to for comparison between two groups. Results: Before and after the experiment of the day 7, 14, 21, 28, the values of SIt in HRS eyedrops group and HRS intraperitoneal injection group were respectively:(3.625±1.157),(3.313±0.704),(3.250±0.535),(3.313±0.372), (3.375±0.582)mm and (3.500±1.019), (2.893±0.656), (3.321±0.668), (3.179±0.575), (3.214±0.871)mm. The values of BUT were respectively: (2.750±0.707), (2.688±0.594), (2.813±0.753), (3.000±0.756), (2.750±0.707)s and (3.000±0.679), (2.321±0.464), (2.750±0.753), (3.214±0.699), (2.679±0.608)s. The values of fluorescein staining score were respectively: (6.250±0.707), (8.875±0.641), (8.750±0.707), (9.250±0.463), (8.250±1.282) and (6.000±0.679), (9.143±1.027), (8.857±0.770), (9.143±0.949), (8.500±0.760). The difference

  10. Multi-Agent Modeling in Managing Six Sigma Projects

    Directory of Open Access Journals (Sweden)

    K. Y. Chau

    2009-10-01

    Full Text Available In this paper, a multi-agent model is proposed for considering the human resources factor in decision making in relation to the six sigma project. The proposed multi-agent system is expected to increase the acccuracy of project prioritization and to stabilize the human resources service level. A simulation of the proposed multiagent model is conducted. The results show that a multi-agent model which takes into consideration human resources when making decisions about project selection and project team formation is important in enabling efficient and effective project management. The multi-agent modeling approach provides an alternative approach for improving communication and the autonomy of six sigma projects in business organizations.

  11. Financial and organizational models of NPP construction projects

    International Nuclear Information System (INIS)

    Ivanov, Timur

    2010-01-01

    The recent evolution of financial and organizational models of NPP projects can be truly reputed to open a new page of the world market of NPP construction. The definition of the concrete model is based mostly on specific cooperation backgrounds and current terms and conditions under which the particular NPP project is being evolved. In this article the most commonly known strategies and schemes of financing structuring for export NPP construction projects are scrutinized. Special attention is paid to the analysis of BOO/BOT models which are based on the public-private partnership. Most BOO/BOT projects in the power sector has Power Purchase Agreements (PPA) as an integral part of them. The PPA key principles are studied here as well. The flexibility and adaptability of the public-private partnership models for financing and organization of the NPP projects contributes substantially to the competitiveness of the NPP projects especially under current economic conditions. (orig.)

  12. Finite detector based projection model for super resolution CT

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Hengyong; Wang, Ge [Wake Forest Univ. Health Sciences, Winston-Salem, NC (United States). Dept. of Radiology; Virgina Tech, Blacksburg, VA (United States). Biomedical Imaging Div.

    2011-07-01

    For finite detector and focal spot sizes, here we propose a projection model for super resolution CT. First, for a given X-ray source point, a projection datum is modeled as an area integral over a narrow fan-beam connecting the detector elemental borders and the X-ray source point. Then, the final projection value is expressed as the integral obtained in the first step over the whole focal spot support. An ordered-subset simultaneous algebraic reconstruction technique (OS-SART) is developed using the proposed projection model. In the numerical simulation, our method produces super spatial resolution and suppresses high-frequency artifacts. (orig.)

  13. A box model of the Late Miocene Mediterranean Sea: implications from combined 87Sr/86Sr and salinity data

    NARCIS (Netherlands)

    Topper, R.P.M.; Flecker, R.; Meijer, P.Th.; Wortel, M.J.R.

    2011-01-01

    Under certain conditions the strontium isotope ratio in the water of a semi‐enclosed basin is known to be sensitive to the relative size of ocean water inflow and river input. Combining Sr‐isotope ratios measured in Mediterranean Late Miocene successions with data on past salinity, one can derive

  14. Hyaluronic acid versus saline intra-articular injections for amelioration of chronic knee osteoarthritis: A canine model.

    Science.gov (United States)

    Pashuck, Troy D; Kuroki, Keiichi; Cook, Cristi R; Stoker, Aaron M; Cook, James L

    2016-10-01

    The objective of this study was to assess the safety and efficacy of intra-articular injections of hyaluronic acid (HA) versus saline for symptomatic treatment of osteoarthritis (OA). Twenty-five adult purpose-bred dogs underwent meniscal release of one knee. Clinical, arthroscopic, and radiographic signs of OA were confirmed in all dogs prior to treatment. Dogs were randomized into five groups: HA-1 (n = 5), HA-3 (n = 5), HA-5 (n = 5), Saline-1 (n = 5), and Saline-3 (n = 5). Each dog received intra-articular injections of the respective substance into the affected knee at the pre-determined time points. Dogs were assessed for heat, swelling, and erythema after each injection and for lameness, pain, effusion, range of motion, kinetics, radiographic OA scoring, and arthroscopic scoring prior to treatment and for 6 months after injection. Dogs were then humanely euthanatized and the knees assessed grossly and histologically. Only mild heat, swelling, and/or erythema were noted in some dogs following injection and resolved within 1 week. Dogs treated with HA-1, HA-3, and HA-5 were significantly (p injection protocols were safe, superior to saline for short-term amelioration of symptoms associated with chronic OA, and can be translated to human OA treatment. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1772-1779, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Genetic, physiological and modelling approaches towards tolerance to salinity and low nitrogen supply in rice (Oryza sativa L.)

    NARCIS (Netherlands)

    Manneh, B.

    2004-01-01

    Keywords:   Rice, O ryza sativa , yield potential, yield gap, salinity, nitrogen supply, agro-ecosystems, Recombinant Inbred Line, genotype × environment interaction, yield components, adaptability, molecular markers, QTL, biomass, leaf area, leaf N, dry matter

  16. MODEL OF THE PROJECT – ORIENTED SOCIETY

    Directory of Open Access Journals (Sweden)

    Marian CLIPICI

    2013-12-01

    Full Text Available In many national societies, projects and programmes are performed not only in companies but also in other organizations, such as municipal administrations, associations, schools and ever in families. The globalization of the economy, new technologies with ever-shorter product life cycles and the application of a new management paradigm, characterized by virtual organizations, „empowerment” and knowledge management, promote the use of project and programme management. The article describes the implementation of an integrated waste management in the county of Arges, in accordance with the requirements and provisions of European Community Directives, in order to preserve, protect and improve environmental quality in Arges (project "Integrated management of solid waste in Arges".

  17. Radiation exposure modeling and project schedule visualization

    International Nuclear Information System (INIS)

    Jaquish, W.R.; Enderlin, V.R.

    1995-10-01

    This paper discusses two applications using IGRIP (Interactive Graphical Robot Instruction Program) to assist environmental remediation efforts at the Department of Energy (DOE) Hanford Site. In the first application, IGRIP is used to calculate the estimated radiation exposure to workers conducting tasks in radiation environments. In the second, IGRIP is used as a configuration management tool to detect interferences between equipment and personnel work areas for multiple projects occurring simultaneously in one area. Both of these applications have the capability to reduce environmental remediation costs by reducing personnel radiation exposure and by providing a method to effectively manage multiple projects in a single facility

  18. Hydrodynamic Modeling Analysis to Support Nearshore Restoration Projects in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Zhaoqing Yang

    2014-01-01

    Full Text Available To re-establish the intertidal wetlands with full tidal exchange and improve salmonid rearing habitat in the Skagit River estuary, State of Washington, USA, a diked agriculture farm land along the Skagit Bay front is proposed to be restored to a fully functional tidal wetland. The complex and dynamic Skagit River estuarine system calls for the need of a multi-facet and multi-dimensional analysis using observed data, numerical and analytical methods. To assist the feasibility study of the restoration project, a hydrodynamic modeling analysis was conducted using a high-resolution unstructured-grid coastal ocean model to evaluate the hydrodynamic response to restoration alternatives and to provide guidance to the engineering design of a new levee in the restoration site. A set of parameters were defined to quantify the hydrodynamic response of the nearshore restoration project, such as inundation area, duration of inundation, water depth and salinity of the inundated area. To assist the design of the new levee in the restoration site, the maximum water level near the project site was estimated with consideration of extreme high tide, wind-induced storm surge, significant wave height and future sea-level rise based on numerical model results and coastal engineering calculation.

  19. Dosimetric effects of saline- versus water-filled balloon applicators for IORT using the model S700 electronic brachytherapy source.

    Science.gov (United States)

    Redler, Gage; Templeton, Alistair; Zhen, Heming; Turian, Julius; Bernard, Damian; Chu, James C H; Griem, Katherine L; Liao, Yixiang

    The Xoft Axxent Electronic Brachytherapy System (Xoft, Inc., San Jose, CA) is a viable option for intraoperative radiation therapy (IORT) treatment of early-stage breast cancer. The low-energy (50-kVp) X-ray source simplifies shielding and increases relative biological effectiveness but increases dose distribution sensitivity to medium composition. Treatment planning systems typically assume homogenous water for brachytherapy dose calculations, including precalculated atlas plans for Xoft IORT. However, Xoft recommends saline for balloon applicator filling. This study investigates dosimetric differences due to increased effective atomic number (Z eff ) for saline (Z eff  = 7.56) versus water (Z eff  = 7.42). Balloon applicator diameters range from 3 to 6 cm. Monte Carlo N-Particle software is used to calculate dose at the surface (D s ) of and 1 cm away (D 1cm ) from the water-/saline-filled balloon applicator using a single dwell at the applicator center as a simple estimation of the dosimetry and multiple dwells simulating the clinical dose distributions for the atlas plans. Single-dwell plans show a 4.4-6.1% decrease in D s for the 3- to 6-cm diameter applicators due to the saline. Multidwell plans show similar results: 4.9% and 6.4% D s decrease, for 4-cm and 6-cm diameter applicators, respectively. For the single-dwell plans, D 1cm decreases 3.6-5.2% for the 3- to 6-cm diameter applicators. For the multidwell plans, D 1cm decreases 3.3% and 5.3% for the 4-cm and 6-cm applicators, respectively. The dosimetric effect introduced by saline versus water filling for Xoft balloon applicator-based IORT treatments is ∼5%. Users should be aware of this in the context of both treatment planning and patient outcome studies. Copyright © 2017 American Brachytherapy Society. Published by Elsevier Inc. All rights reserved.

  20. A Team Building Model for Software Engineering Courses Term Projects

    Science.gov (United States)

    Sahin, Yasar Guneri

    2011-01-01

    This paper proposes a new model for team building, which enables teachers to build coherent teams rapidly and fairly for the term projects of software engineering courses. Moreover, the model can also be used to build teams for any type of project, if the team member candidates are students, or if they are inexperienced on a certain subject. The…

  1. Evaluation of effects of changes in canal management and precipitation patterns on salinity in Biscayne Bay, Florida, using an integrated surface-water/groundwater model

    Science.gov (United States)

    Lohmann, Melinda A.; Swain, Eric D.; Wang, John D.; Dixon, Joann

    2012-01-01

    Biscayne National Park, located in Biscayne Bay in southeast Florida, is one of the largest marine parks in the country and sustains a large natural marine fishery where numerous threatened and endangered species reproduce. In recent years, the bay has experienced hypersaline conditions (salinity greater than 35 practical salinity units) of increasing magnitude and duration. Hypersalinity events were particularly pronounced during April to August 2004 in nearshore areas along the southern and middle parts of the bay. Prolonged hypersaline conditions can cause degradation of water quality and permanent damage to, or loss of, brackish nursery habitats for multiple species of fish and crustaceans as well as damage to certain types of seagrasses that are not tolerant of extreme changes in salinity. To evaluate the factors that contribute to hypersalinity events and to test the effects of possible changes in precipitation patterns and canal flows into Biscayne Bay on salinity in the bay, the U.S. Geological Survey constructed a coupled surface-water/groundwater numerical flow model. The model is designed to account for freshwater flows into Biscayne Bay through the canal system, leakage of salty bay water into the underlying Biscayne aquifer, discharge of fresh and salty groundwater from the Biscayne aquifer into the bay, direct effects of precipitation on bay salinity, indirect effects of precipitation on recharge to the Biscayne aquifer, direct effects of evapotranspiration (ET) on bay salinity, indirect effects of ET on recharge to the Biscayne aquifer, and maintenance of mass balance of both water and solute. The model was constructed using the Flow and Transport in a Linked Overland/Aquifer Density Dependent System (FTLOADDS) simulator, version 3.3, which couples the two-dimensional, surface-water flow and solute-transport simulator SWIFT2D with the density-dependent, groundwater flow an solute-transport simulator SEAWAT. The model was calibrated by a trial

  2. A Model of and for Virtual Projects

    NARCIS (Netherlands)

    Garud, R.; Kumaraswamy, A.; Tuertscher, P.R.; Cattani, G.; Ferriani, S.; Frederiksen, L.; Täube, F.

    2011-01-01

    We examine how digital technologies enable distributed actors to collaborate asynchronously on virtual projects. We use Wikipedia and associated wiki digital technology as the research site for our exploration. Our probe of the emergence of Wikipedia articles highlights a distinctive property of

  3. The Lunar Phases Project: A Mental Model-Based Observational Project for Undergraduate Nonscience Majors

    Science.gov (United States)

    Meyer, Angela Osterman; Mon, Manuel J.; Hibbard, Susan T.

    2011-01-01

    We present our Lunar Phases Project, an ongoing effort utilizing students' actual observations within a mental model building framework to improve student understanding of the causes and process of the lunar phases. We implement this project with a sample of undergraduate, nonscience major students enrolled in a midsized public university located…

  4. Wake models developed during the Wind Shadow project

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, S.; Ott, S.; Pena, A.; Berg, J.; Nielsen, M.; Rathmann, O.; Joergensen, H.

    2011-11-15

    The Wind Shadow project has developed and validated improved models for determining the wakes losses, and thereby the array efficiency of very large, closely packed wind farms. The rationale behind the project has been that the existing software has been covering these types of wind farms poorly, both with respect to the densely packed turbines and the large fetches needed to describe the collective shadow effects of one farm to the next. Further the project has developed the necessary software for the use of the models. Guidelines with recommendations for the use of the models are included in the model deliverables. The project has been carried out as a collaborative project between Risoe DTU, DONG, Vattenfall, DNV and VESTAS, and it has been financed by energinet.dk grant no. 10086. (Author)

  5. Final Project Report Load Modeling Transmission Research

    Energy Technology Data Exchange (ETDEWEB)

    Lesieutre, Bernard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bravo, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yinger, Robert [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chassin, Dave [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Huang, Henry [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Lu, Ning [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hiskens, Ian [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Venkataramanan, Giri [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-03-31

    The research presented in this report primarily focuses on improving power system load models to better represent their impact on system behavior. The previous standard load model fails to capture the delayed voltage recovery events that are observed in the Southwest and elsewhere. These events are attributed to stalled air conditioner units after a fault. To gain a better understanding of their role in these events and to guide modeling efforts, typical air conditioner units were testing in laboratories. Using data obtained from these extensive tests, new load models were developed to match air conditioner behavior. An air conditioner model is incorporated in the new WECC composite load model. These models are used in dynamic studies of the West and can impact power transfer limits for California. Unit-level and systemlevel solutions are proposed as potential solutions to the delayed voltage recovery problem.

  6. Effect of increasing salinity on biogas production in waste landfills with leachate recirculation: A lab-scale model study

    Directory of Open Access Journals (Sweden)

    Yuka Ogata

    2016-06-01

    Full Text Available The effects of salinity on anaerobic waste degradation and microbial communities were investigated, in order to propose an appropriate leachate recirculation process in a waste landfill in a tropical region. A salt concentration of 21 mS cm−1 of electrical conductivity (EC did not affect waste degradation, but a salt concentration of 35 mS cm−1 of EC inhibited CH4 generation. A higher salt concentration of 80 mS cm−1 of EC inhibited not only CH4 and CO2 generation, but also degradation of organic compounds. The bacterial and archaeal community compositions were affected by high salinity. High salinity can exert selective pressure on bacterial communities, resulting in a change in bacterial community structure. Ammonium caused strong, dominant inhibition of biogas production in the salt concentration range of this study. Quality control, especially of ammonium levels, will be essential for the promotion of waste biodegradation in landfills with leachate recirculation.

  7. Rapid Energy Modeling Workflow Demonstration Project

    Science.gov (United States)

    2014-01-01

    app FormIt for conceptual modeling with further refinement available in Revit or Vasari. Modeling can also be done in Revit (detailed and conceptual...referenced building model while in the field. • Autodesk® Revit is a BIM software application with integrated energy and carbon analyses driven by Green...FormIt, Revit and Vasari, and (3) comparative analysis. The energy results of these building analyses are represented as annual energy use for natural

  8. Occupant Protection Data Mining and Modeling Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Current National Aeronautics and Space Administration (NASA) occupant protection standards and requirements are based on extrapolations of biodynamic models, which...

  9. Leading Undergraduate Research Projects in Mathematical Modeling

    Science.gov (United States)

    Seshaiyer, Padmanabhan

    2017-01-01

    In this article, we provide some useful perspectives and experiences in mentoring students in undergraduate research (UR) in mathematical modeling using differential equations. To engage students in this topic, we present a systematic approach to the creation of rich problems from real-world phenomena; present mathematical models that are derived…

  10. Radiative-convective equilibrium model intercomparison project

    Science.gov (United States)

    Wing, Allison A.; Reed, Kevin A.; Satoh, Masaki; Stevens, Bjorn; Bony, Sandrine; Ohno, Tomoki

    2018-03-01

    RCEMIP, an intercomparison of multiple types of models configured in radiative-convective equilibrium (RCE), is proposed. RCE is an idealization of the climate system in which there is a balance between radiative cooling of the atmosphere and heating by convection. The scientific objectives of RCEMIP are three-fold. First, clouds and climate sensitivity will be investigated in the RCE setting. This includes determining how cloud fraction changes with warming and the role of self-aggregation of convection in climate sensitivity. Second, RCEMIP will quantify the dependence of the degree of convective aggregation and tropical circulation regimes on temperature. Finally, by providing a common baseline, RCEMIP will allow the robustness of the RCE state across the spectrum of models to be assessed, which is essential for interpreting the results found regarding clouds, climate sensitivity, and aggregation, and more generally, determining which features of tropical climate a RCE framework is useful for. A novel aspect and major advantage of RCEMIP is the accessibility of the RCE framework to a variety of models, including cloud-resolving models, general circulation models, global cloud-resolving models, single-column models, and large-eddy simulation models.

  11. Temperature and salinity data from the SEAKEYS project in the Florida Keys from 1991-05-15 to 1995-11-15 (NODC Accession 9600071)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The data in this collection include a subset of data collected for the SEAKEYS project from 1991 through 1995. Additional data related to the SEAKEYS project may be...

  12. Technology Investments in the NASA Entry Systems Modeling Project

    Science.gov (United States)

    Barnhardt, Michael; Wright, Michael; Hughes, Monica

    2017-01-01

    The Entry Systems Modeling (ESM) technology development project, initiated in 2012 under NASAs Game Changing Development (GCD) Program, is engaged in maturation of fundamental research developing aerosciences, materials, and integrated systems products for entry, descent, and landing(EDL)technologies [1]. To date, the ESM project has published over 200 papers in these areas, comprising the bulk of NASAs research program for EDL modeling. This presentation will provide an overview of the projects successes and challenges, and an assessment of future investments in EDL modeling and simulation relevant to NASAs mission

  13. Can model weighting improve probabilistic projections of climate change?

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, Jouni; Ylhaeisi, Jussi S. [Department of Physics, P.O. Box 48, University of Helsinki (Finland)

    2012-10-15

    Recently, Raeisaenen and co-authors proposed a weighting scheme in which the relationship between observable climate and climate change within a multi-model ensemble determines to what extent agreement with observations affects model weights in climate change projection. Within the Third Coupled Model Intercomparison Project (CMIP3) dataset, this scheme slightly improved the cross-validated accuracy of deterministic projections of temperature change. Here the same scheme is applied to probabilistic temperature change projection, under the strong limiting assumption that the CMIP3 ensemble spans the actual modeling uncertainty. Cross-validation suggests that probabilistic temperature change projections may also be improved by this weighting scheme. However, the improvement relative to uniform weighting is smaller in the tail-sensitive logarithmic score than in the continuous ranked probability score. The impact of the weighting on projection of real-world twenty-first century temperature change is modest in most parts of the world. However, in some areas mainly over the high-latitude oceans, the mean of the distribution is substantially changed and/or the distribution is considerably narrowed. The weights of individual models vary strongly with location, so that a model that receives nearly zero weight in some area may still get a large weight elsewhere. Although the details of this variation are method-specific, it suggests that the relative strengths of different models may be difficult to harness by weighting schemes that use spatially uniform model weights. (orig.)

  14. Agricultural Soil Alkalinity and Salinity Modeling in the Cropping Season in a Spectral Endmember Space of TM in Temperate Drylands, Minqin, China

    Directory of Open Access Journals (Sweden)

    Danfeng Sun

    2016-08-01

    Full Text Available This paper presents the potential of the four-image spectral endmember (EM space comprising sand (SL, green vegetation (GV, saline land (SA, and dark materials (DA, unmixed from Landsat TM/ETM+ to map dryland agricultural soil alkalinity and salinity (i.e., soil alkalinity (pH and soil electrical conductivity (EC in the shallow root zone (0–20 cm using partial least squares regression (PLSR and an artificial neural network (ANN. The results reveal that SA, SL, and GV fractions at the subpixel level, and land surface temperature (LST are necessary independent variables for soil EC modeling in Minqin Oasis, a temperate-arid system in China. The R2 (coefficient of determination of the optimized parameters with the ANN model was 0.79, the root mean squared error (RMSE was 0.13, and the ratio of prediction to deviation (RPD was 1.95 when evaluated against all sampled data. In addition to the aforementioned four variables, the DA fraction and the recent historical SA fraction (SAH in the spring dry season in 2008 were also helpful for soil pH modeling. The model performance is R2 = 0.76, RMSE = 0.24, and RPD = 1.96 for all sampled data. In summary, the stable EMs and LST space of TM imagery with an ANN approach can generate near-real-time regional soil alkalinity and salinity estimations in the cropping period. This is the case even in the critical agronomic range (EC of 0–20 dS·m−1 and pH of 7–9 at which researchers and policy-makers require near-real-time crop management information.

  15. National Automated Highway System Consortium: Modeling Stakeholder Preferences Project

    OpenAIRE

    Lathrop, John; Chen, Kan

    1997-01-01

    This document is the final report of the Modeling Stakeholder Preferences Project. The results of the project consist of three results: 1) evaluation framework; 2) focus group non-quantitative findings/ recommendations; and, 3) performance/impact measures, their endpoints, rankings and weights, for each stakeholder group.

  16. Improving Project Management Using Formal Models and Architectures

    Science.gov (United States)

    Kahn, Theodore; Sturken, Ian

    2011-01-01

    This talk discusses the advantages formal modeling and architecture brings to project management. These emerging technologies have both great potential and challenges for improving information available for decision-making. The presentation covers standards, tools and cultural issues needing consideration, and includes lessons learned from projects the presenters have worked on.

  17. A whole stand basal area projection model for Appalachian hardwoods

    Science.gov (United States)

    John R. Brooks; Lichun Jiang; Matthew Perkowski; Benktesh Sharma

    2008-01-01

    Two whole-stand basal area projection models were developed for Appalachian hardwood stands. The proposed equations are an algebraic difference projection form based on existing basal area and the change in age, trees per acre, and/or dominant height. Average equation error was less than 10 square feet per acre and residuals exhibited no irregular trends.

  18. Building Context with Tumor Growth Modeling Projects in Differential Equations

    Science.gov (United States)

    Beier, Julie C.; Gevertz, Jana L.; Howard, Keith E.

    2015-01-01

    The use of modeling projects serves to integrate, reinforce, and extend student knowledge. Here we present two projects related to tumor growth appropriate for a first course in differential equations. They illustrate the use of problem-based learning to reinforce and extend course content via a writing or research experience. Here we discuss…

  19. Network model of project "Lean Production"

    Science.gov (United States)

    Khisamova, E. D.

    2018-05-01

    Economical production implies primarily new approaches to culture of management and organization of production and offers a set of tools and techniques that allows reducing losses significantly and making the process cheaper and faster. Economical production tools are simple solutions that allow one to see opportunities for improvement of all aspects of the business, to reduce losses significantly, to constantly improve the whole spectrum of business processes, to increase significantly the transparency and manageability of the organization, to take advantage of the potential of each employee of the company, to increase competitiveness, and to obtain significant economic benefits without making large financial expenditures. Each of economical production tools solves a specific part of the problems, and only application of their combination will allow one to solve the problem or minimize it to acceptable values. The research of the governance process project "Lean Production" permitted studying the methods and tools of lean production and developing measures for their improvement.

  20. Carbon dioxide (CO2) sequestration in deep saline aquifers and formations: Chapter 3

    Science.gov (United States)

    Rosenbauer, Robert J.; Thomas, Burt

    2010-01-01

    Carbon dioxide (CO2) capture and sequestration in geologic media is one among many emerging strategies to reduce atmospheric emissions of anthropogenic CO2. This chapter looks at the potential of deep saline aquifers – based on their capacity and close proximity to large point sources of CO2 – as repositories for the geologic sequestration of CO2. The petrochemical characteristics which impact on the suitability of saline aquifers for CO2 sequestration and the role of coupled geochemical transport models and numerical tools in evaluating site feasibility are also examined. The full-scale commercial CO2 sequestration project at Sleipner is described together with ongoing pilot and demonstration projects.

  1. Projectables

    DEFF Research Database (Denmark)

    Rasmussen, Troels A.; Merritt, Timothy R.

    2017-01-01

    CNC cutting machines have become essential tools for designers and architects enabling rapid prototyping, model-building and production of high quality components. Designers often cut from new materials, discarding the irregularly shaped remains. We introduce ProjecTables, a visual augmented...... reality system for interactive packing of model parts onto sheet materials. ProjecTables enables designers to (re)use scrap materials for CNC cutting that would have been previously thrown away, at the same time supporting aesthetic choices related to wood grain, avoiding surface blemishes, and other...... relevant material properties. We conducted evaluations of ProjecTables with design students from Aarhus School of Architecture, demonstrating that participants could quickly and easily place and orient model parts reducing material waste. Contextual interviews and ideation sessions led to a deeper...

  2. Radarsat Antarctic Mapping Project Digital Elevation Model, Version 2

    Data.gov (United States)

    National Aeronautics and Space Administration — The high-resolution Radarsat Antarctic Mapping Project (RAMP) Digital Elevation Model (DEM) combines topographic data from a variety of sources to provide consistent...

  3. Procedures and models for estimating preconstruction costs of highway projects.

    Science.gov (United States)

    2012-07-01

    This study presents data driven and component based PE cost prediction models by utilizing critical factors retrieved from ten years of historical project data obtained from ODOT roadway division. The study used factor analysis of covariance and corr...

  4. Managing salinity in Upper Colorado River Basin streams: Selecting catchments for sediment control efforts using watershed characteristics and random forests models

    Science.gov (United States)

    Tillman, Fred; Anning, David W.; Heilman, Julian A.; Buto, Susan G.; Miller, Matthew P.

    2018-01-01

    Elevated concentrations of dissolved-solids (salinity) including calcium, sodium, sulfate, and chloride, among others, in the Colorado River cause substantial problems for its water users. Previous efforts to reduce dissolved solids in upper Colorado River basin (UCRB) streams often focused on reducing suspended-sediment transport to streams, but few studies have investigated the relationship between suspended sediment and salinity, or evaluated which watershed characteristics might be associated with this relationship. Are there catchment properties that may help in identifying areas where control of suspended sediment will also reduce salinity transport to streams? A random forests classification analysis was performed on topographic, climate, land cover, geology, rock chemistry, soil, and hydrologic information in 163 UCRB catchments. Two random forests models were developed in this study: one for exploring stream and catchment characteristics associated with stream sites where dissolved solids increase with increasing suspended-sediment concentration, and the other for predicting where these sites are located in unmonitored reaches. Results of variable importance from the exploratory random forests models indicate that no simple source, geochemical process, or transport mechanism can easily explain the relationship between dissolved solids and suspended sediment concentrations at UCRB monitoring sites. Among the most important watershed characteristics in both models were measures of soil hydraulic conductivity, soil erodibility, minimum catchment elevation, catchment area, and the silt component of soil in the catchment. Predictions at key locations in the basin were combined with observations from selected monitoring sites, and presented in map-form to give a complete understanding of where catchment sediment control practices would also benefit control of dissolved solids in streams.

  5. DEVELOPMENT MODEL OF PATISSERIE PROJECT-BASED LEARNING

    OpenAIRE

    Ana Ana; Lutfhiyah Nurlaela

    2013-01-01

    The study aims to find a model of patisserie project-based learning with production approach that can improve effectiveness of patisserie learning. Delphi Technique, Cohen's Kappa and percentages of agreements were used to assess model of patisserie project based learning. Data collection techniques employed in the study were questionnaire, check list worksheet, observation, and interview sheets. Subjects were 13 lectures of expertise food and nutrition and 91 students of Food and Nutrition ...

  6. Numerical modeling in photonic crystals integrated technology: the COPERNICUS Project

    DEFF Research Database (Denmark)

    Malaguti, Stefania; Armaroli, Andrea; Bellanca, Gaetano

    2011-01-01

    Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project.......Photonic crystals will play a fundamental role in the future of optical communications. The relevance of the numerical modeling for the success of this technology is assessed by using some examples concerning the experience of the COPERNICUS Project....

  7. Downplaying model power in IT project work

    DEFF Research Database (Denmark)

    Richter, Anne; Buhl, Henrik

    2004-01-01

    in the research, presented in this article, conducted in a Danish manufacturing company, is how an IT system could be configured to support shopfloor teamwork and enhance the quality of work. The approach is based on participatory design and the concept of "model power". This concept facilitates an understanding...

  8. A Systematic Approach to Modelling Change Processes in Construction Projects

    Directory of Open Access Journals (Sweden)

    Ibrahim Motawa

    2012-11-01

    Full Text Available Modelling change processes within construction projects isessential to implement changes efficiently. Incomplete informationon the project variables at the early stages of projects leads toinadequate knowledge of future states and imprecision arisingfrom ambiguity in project parameters. This lack of knowledge isconsidered among the main source of changes in construction.Change identification and evaluation, in addition to predictingits impacts on project parameters, can help in minimising thedisruptive effects of changes. This paper presents a systematicapproach to modelling change process within construction projectsthat helps improve change identification and evaluation. Theapproach represents the key decisions required to implementchanges. The requirements of an effective change processare presented first. The variables defined for efficient changeassessment and diagnosis are then presented. Assessmentof construction changes requires an analysis for the projectcharacteristics that lead to change and also analysis of therelationship between the change causes and effects. The paperconcludes that, at the early stages of a project, projects with a highlikelihood of change occurrence should have a control mechanismover the project characteristics that have high influence on theproject. It also concludes, for the relationship between changecauses and effects, the multiple causes of change should bemodelled in a way to enable evaluating the change effects moreaccurately. The proposed approach is the framework for tacklingsuch conclusions and can be used for evaluating change casesdepending on the available information at the early stages ofconstruction projects.

  9. Combining ground-based and airborne EM through Artificial Neural Networks for modelling glacial till under saline groundwater conditions

    DEFF Research Database (Denmark)

    Gunnink, J.L.; Bosch, A.; Siemon, B.

    2012-01-01

    Airborne electromagnetic (AEM) methods supply data over large areas in a cost-effective way. We used ArtificialNeural Networks (ANN) to classify the geophysical signal into a meaningful geological parameter. By using examples of known relations between ground-based geophysical data (in this case...... electrical conductivity, EC, from electrical cone penetration tests) and geological parameters (presence of glacial till), we extracted learning rules that could be applied to map the presence of a glacial till using the EC profiles from the airborne EM data. The saline groundwater in the area was obscuring...

  10. Reconstruction of a saline, lacustrine carbonate system (Priabonian, St-Chaptes Basin, SE France): Depositional models, paleogeographic and paleoclimatic implications

    Science.gov (United States)

    Lettéron, Alexandre; Hamon, Youri; Fournier, François; Séranne, Michel; Pellenard, Pierre; Joseph, Philippe

    2018-05-01

    A 220-m thick carbonate-dominated succession has been deposited in shallow-water, saline lake environments during the early to middle Priabonian (MP17A-MP18 mammal zones) in the Saint-Chaptes Basin (south-east France). The palaeoenvironmental, paleoclimatic and palaeogeographic significance of such saline lake carbonates has been deciphered on the basis of a multi-proxy analyses including: 1) depositional and diagenetic features; 2) biological components (molluscs, benthic foraminifera, characean gyrogonites, spores and pollens); 3) carbon and oxygen stable isotopes; 4) trace elements; and 5) clay mineralogy. Five stages of lacustrine system evolution have been identified: 1) fresh-water closed lake under dry climate (unit U1); 2) fresh to brackish water lacustrine deltaic system with a mixed carbonate-siliciclastic sedimentation under relatively wet climatic conditions (unit U2); 3) salt-water lacustrine carbonate system under humid climatic setting (unit U3); 4) evaporitic lake (unit U4); and 5) closed lake with shallow-water carbonate sedimentation under subtropical to Mediterranean climate with dry seasons (unit U5). Upper Eocene aridification is evidenced to have started as early as the earliest Priabonian (unit U1: MP17A mammal zone). A change from humid to dryer climatic conditions is recorded between units U3 and U4. The early to middle Priabonian saline lake is interpreted as an athalassic (inland) lake that have been transiently connected with neighboring salt lakes influenced by seawater and/or fed with sulfates deriving from recycling of evaporites. Maximum of connection with neighboring saline lakes (Mormoiron Basin, Camargue and Central grabens, Hérault Basin) likely occurred during unit U3 and at the base of unit U5. The most likely sources of salts of these adjacent basins are: 1) Triassic evaporites derived from salt-diapirs (Rhône valley) or from paleo-outcrops located east of the Durance fault or offshore in the Gulf of Lion; or 2) marine

  11. Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations

    KAUST Repository

    Ding, Yanni

    2014-09-01

    We examine the oceanic impact of large tropical volcanic eruptions as they appear in ensembles of historical simulations from eight Coupled Model Intercomparison Project Phase 5 models. These models show a response that includes lowering of global average sea surface temperature by 0.1–0.3 K, comparable to the observations. They show enhancement of Arctic ice cover in the years following major volcanic eruptions, with long-lived temperature anomalies extending to the middepth and deep ocean on decadal to centennial timescales. Regional ocean responses vary, although there is some consistent hemispheric asymmetry associated with the hemisphere in which the eruption occurs. Temperature decreases and salinity increases contribute to an increase in the density of surface water and an enhancement in the overturning circulation of the North Atlantic Ocean following these eruptions. The strength of this overturning increase varies considerably from model to model and is correlated with the background variability of overturning in each model. Any cause/effect relationship between eruptions and the phase of El Niño is weak.

  12. METHODS OF SELECTING THE EFFECTIVE MODELS OF BUILDINGS REPROFILING PROJECTS

    Directory of Open Access Journals (Sweden)

    Александр Иванович МЕНЕЙЛЮК

    2016-02-01

    Full Text Available The article highlights the important task of project management in reprofiling of buildings. It is expedient to pay attention to selecting effective engineering solutions to reduce the duration and cost reduction at the project management in the construction industry. This article presents a methodology for the selection of efficient organizational and technical solutions for the reconstruction of buildings reprofiling. The method is based on a compilation of project variants in the program Microsoft Project and experimental statistical analysis using the program COMPEX. The introduction of this technique in the realigning of buildings allows choosing efficient models of projects, depending on the given constraints. Also, this technique can be used for various construction projects.

  13. Salinity, temperature and density data for the Canadian Beaufort Sea shelf, March 1988

    Energy Technology Data Exchange (ETDEWEB)

    Hopky, G E; Chiperzak, D B; Lawrence, M J

    1988-01-01

    This report contains salinity, temperature and density (CTD) data collected in the waters of the Canadian Beaufort Sea Shelf during March 1988. Salinity and temperature profile data were measured using a Guildline Model 8870 probe deployed from the ice surface. Ice thickness was also measured. Density was calculated using salinity and temperature values. CTD profiles were measured at five stations. The maximum depths of profiles measured from the ice surface ranged from 31.2 to 16.8 dbar. Salinity and temperature measurements ranged from 0.35 to 34.83, and -1.87 to 1.08/sup 0/C, respectively. The data presented in this report will assist in the identification and delineation of potential habitat types, as part of the Critical Arctic Estuarine and Marine Habitat Project of the Northern Oil and Gas Program. 5 refs., 7 figs., 6 tabs.

  14. On Helical Projection and Its Application in Screw Modeling

    Directory of Open Access Journals (Sweden)

    Riliang Liu

    2014-04-01

    Full Text Available As helical surfaces, in their many and varied forms, are finding more and more applications in engineering, new approaches to their efficient design and manufacture are desired. To that end, the helical projection method that uses curvilinear projection lines to map a space object to a plane is examined in this paper, focusing on its mathematical model and characteristics in terms of graphical representation of helical objects. A number of interesting projective properties are identified in regard to straight lines, curves, and planes, and then the method is further investigated with respect to screws. The result shows that the helical projection of a cylindrical screw turns out to be a Jordan curve, which is determined by the screw's axial profile and number of flights. Based on the projection theory, a practical approach to the modeling of screws and helical surfaces is proposed and illustrated with examples, and its possible application in screw manufacturing is discussed.

  15. Process simulation and parametric modeling for strategic project management

    CERN Document Server

    Morales, Peter J

    2013-01-01

    Process Simulation and Parametric Modeling for Strategic Project Management will offer CIOs, CTOs and Software Development Managers, IT Graduate Students an introduction to a set of technologies that will help them understand how to better plan software development projects, manage risk and have better insight into the complexities of the software development process.A novel methodology will be introduced that allows a software development manager to better plan and access risks in the early planning of a project.  By providing a better model for early software development estimation and softw

  16. Cash flow forecasting model for nuclear power projects

    International Nuclear Information System (INIS)

    Liu Wei; Guo Jilin

    2002-01-01

    Cash flow forecasting is very important for owners and contractors of nuclear power projects to arrange the capital and to decrease the capital cost. The factors related to contractor cash flow forecasting are analyzed and a cash flow forecasting model is presented which is suitable for both contractors and owners. The model is efficiently solved using a cost-schedule data integration scheme described. A program is developed based on the model and verified with real project data. The result indicates that the model is efficient and effective

  17. Integrated modeling for the restoration project management

    Directory of Open Access Journals (Sweden)

    Roberto Mingucci

    2012-11-01

    Full Text Available This paper introduces some possibilities offered by the Information Multimedia Archives (A.I.M., methodology aimed at existing architectures and important historic monuments documentation. The A.I.M.’s generation process and its digital archive structure result from studies on digital modeling and computer vision intended to document informative surveys, produced during two distinct acquiring and compiling phases. The data is collected in the A.I.M. through increasing levels of detail and organized through the use of databases developed in order to be queried by mobile devices too.

  18. Projected Dipole Model for Quantum Plasmonics

    DEFF Research Database (Denmark)

    Yan, Wei; Wubs, Martijn; Mortensen, N. Asger

    2015-01-01

    of classical electrodynamics, while quantum properties are described accurately through an infinitely thin layer of dipoles oriented normally to the metal surface. The nonlocal polarizability of the dipole layer-the only introduced parameter-is mapped from the free-electron distribution near the metal surface...... as obtained with 1D quantum calculations, such as time-dependent density-functional theory (TDDFT), and is determined once and for all. The model can be applied in two and three dimensions to any system size that is tractable within classical electrodynamics, while capturing quantum plasmonic aspects......Quantum effects of plasmonic phenomena have been explored through ab initio studies, but only for exceedingly small metallic nanostructures, leaving most experimentally relevant structures too large to handle. We propose instead an effective description with the computationally appealing features...

  19. International collaborative fire modeling project (ICFMP). Summary of benchmark

    International Nuclear Information System (INIS)

    Roewekamp, Marina; Klein-Hessling, Walter; Dreisbach, Jason; McGrattan, Kevin; Miles, Stewart; Plys, Martin; Riese, Olaf

    2008-09-01

    This document was developed in the frame of the 'International Collaborative Project to Evaluate Fire Models for Nuclear Power Plant Applications' (ICFMP). The objective of this collaborative project is to share the knowledge and resources of various organizations to evaluate and improve the state of the art of fire models for use in nuclear power plant fire safety, fire hazard analysis and fire risk assessment. The project is divided into two phases. The objective of the first phase is to evaluate the capabilities of current fire models for fire safety analysis in nuclear power plants. The second phase will extend the validation database of those models and implement beneficial improvements to the models that are identified in the first phase of ICFMP. In the first phase, more than 20 expert institutions from six countries were represented in the collaborative project. This Summary Report gives an overview on the results of the first phase of the international collaborative project. The main objective of the project was to evaluate the capability of fire models to analyze a variety of fire scenarios typical for nuclear power plants (NPP). The evaluation of the capability of fire models to analyze these scenarios was conducted through a series of in total five international Benchmark Exercises. Different types of models were used by the participating expert institutions from five countries. The technical information that will be useful for fire model users, developers and further experts is summarized in this document. More detailed information is provided in the corresponding technical reference documents for the ICFMP Benchmark Exercises No. 1 to 5. The objective of these exercises was not to compare the capabilities and strengths of specific models, address issues specific to a model, nor to recommend specific models over others. This document is not intended to provide guidance to users of fire models. Guidance on the use of fire models is currently being

  20. Theory, modeling, and integrated studies in the Arase (ERG) project

    Science.gov (United States)

    Seki, Kanako; Miyoshi, Yoshizumi; Ebihara, Yusuke; Katoh, Yuto; Amano, Takanobu; Saito, Shinji; Shoji, Masafumi; Nakamizo, Aoi; Keika, Kunihiro; Hori, Tomoaki; Nakano, Shin'ya; Watanabe, Shigeto; Kamiya, Kei; Takahashi, Naoko; Omura, Yoshiharu; Nose, Masahito; Fok, Mei-Ching; Tanaka, Takashi; Ieda, Akimasa; Yoshikawa, Akimasa

    2018-02-01

    Understanding of underlying mechanisms of drastic variations of the near-Earth space (geospace) is one of the current focuses of the magnetospheric physics. The science target of the geospace research project Exploration of energization and Radiation in Geospace (ERG) is to understand the geospace variations with a focus on the relativistic electron acceleration and loss processes. In order to achieve the goal, the ERG project consists of the three parts: the Arase (ERG) satellite, ground-based observations, and theory/modeling/integrated studies. The role of theory/modeling/integrated studies part is to promote relevant theoretical and simulation studies as well as integrated data analysis to combine different kinds of observations and modeling. Here we provide technical reports on simulation and empirical models related to the ERG project together with their roles in the integrated studies of dynamic geospace variations. The simulation and empirical models covered include the radial diffusion model of the radiation belt electrons, GEMSIS-RB and RBW models, CIMI model with global MHD simulation REPPU, GEMSIS-RC model, plasmasphere thermosphere model, self-consistent wave-particle interaction simulations (electron hybrid code and ion hybrid code), the ionospheric electric potential (GEMSIS-POT) model, and SuperDARN electric field models with data assimilation. ERG (Arase) science center tools to support integrated studies with various kinds of data are also briefly introduced.[Figure not available: see fulltext.

  1. Ensemble of regional climate model projections for Ireland

    Science.gov (United States)

    Nolan, Paul; McGrath, Ray

    2016-04-01

    The method of Regional Climate Modelling (RCM) was employed to assess the impacts of a warming climate on the mid-21st-century climate of Ireland. The RCM simulations were run at high spatial resolution, up to 4 km, thus allowing a better evaluation of the local effects of climate change. Simulations were run for a reference period 1981-2000 and future period 2041-2060. Differences between the two periods provide a measure of climate change. To address the issue of uncertainty, a multi-model ensemble approach was employed. Specifically, the future climate of Ireland was simulated using three different RCMs, driven by four Global Climate Models (GCMs). To account for the uncertainty in future emissions, a number of SRES (B1, A1B, A2) and RCP (4.5, 8.5) emission scenarios were used to simulate the future climate. Through the ensemble approach, the uncertainty in the RCM projections can be partially quantified, thus providing a measure of confidence in the predictions. In addition, likelihood values can be assigned to the projections. The RCMs used in this work are the COnsortium for Small-scale MOdeling-Climate Limited-area Modelling (COSMO-CLM, versions 3 and 4) model and the Weather Research and Forecasting (WRF) model. The GCMs used are the Max Planck Institute's ECHAM5, the UK Met Office's HadGEM2-ES, the CGCM3.1 model from the Canadian Centre for Climate Modelling and the EC-Earth consortium GCM. The projections for mid-century indicate an increase of 1-1.6°C in mean annual temperatures, with the largest increases seen in the east of the country. Warming is enhanced for the extremes (i.e. hot or cold days), with the warmest 5% of daily maximum summer temperatures projected to increase by 0.7-2.6°C. The coldest 5% of night-time temperatures in winter are projected to rise by 1.1-3.1°C. Averaged over the whole country, the number of frost days is projected to decrease by over 50%. The projections indicate an average increase in the length of the growing season

  2. Projection model for flame chemiluminescence tomography based on lens imaging

    Science.gov (United States)

    Wan, Minggang; Zhuang, Jihui

    2018-04-01

    For flame chemiluminescence tomography (FCT) based on lens imaging, the projection model is essential because it formulates the mathematical relation between the flame projections captured by cameras and the chemiluminescence field, and, through this relation, the field is reconstructed. This work proposed the blurry-spot (BS) model, which takes more universal assumptions and has higher accuracy than the widely applied line-of-sight model. By combining the geometrical camera model and the thin-lens equation, the BS model takes into account perspective effect of the camera lens; by combining ray-tracing technique and Monte Carlo simulation, it also considers inhomogeneous distribution of captured radiance on the image plane. Performance of these two models in FCT was numerically compared, and results showed that using the BS model could lead to better reconstruction quality in wider application ranges.

  3. The Geoengineering Model Intercomparison Project (GeoMIP)

    KAUST Repository

    Kravitz, Ben

    2011-01-31

    To evaluate the effects of stratospheric geoengineering with sulphate aerosols, we propose standard forcing scenarios to be applied to multiple climate models to compare their results and determine the robustness of their responses. Thus far, different modeling groups have used different forcing scenarios for both global warming and geoengineering, complicating the comparison of results. We recommend four experiments to explore the extent to which geoengineering might offset climate change projected in some of the Climate Model Intercomparison Project 5 experiments. These experiments focus on stratospheric aerosols, but future experiments under this framework may focus on different means of geoengineering. © 2011 Royal Meteorological Society.

  4. Applying a Hybrid MCDM Model for Six Sigma Project Selection

    Directory of Open Access Journals (Sweden)

    Fu-Kwun Wang

    2014-01-01

    Full Text Available Six Sigma is a project-driven methodology; the projects that provide the maximum financial benefits and other impacts to the organization must be prioritized. Project selection (PS is a type of multiple criteria decision making (MCDM problem. In this study, we present a hybrid MCDM model combining the decision-making trial and evaluation laboratory (DEMATEL technique, analytic network process (ANP, and the VIKOR method to evaluate and improve Six Sigma projects for reducing performance gaps in each criterion and dimension. We consider the film printing industry of Taiwan as an empirical case. The results show that our study not only can use the best project selection, but can also be used to analyze the gaps between existing performance values and aspiration levels for improving the gaps in each dimension and criterion based on the influential network relation map.

  5. Managing wildland fires: integrating weather models into fire projections

    Science.gov (United States)

    Anne M. Rosenthal; Francis Fujioka

    2004-01-01

    Flames from the Old Fire sweep through lands north of San Bernardino during late fall of 2003. Like many Southern California fires, the Old Fire consumed susceptible forests at the urban-wildland interface and spread to nearby city neighborhoods. By incorporating weather models into fire perimeter projections, scientist Francis Fujioka is improving fire modeling as a...

  6. Improvement of the projection models for radiogenic cancer risk

    International Nuclear Information System (INIS)

    Tong Jian

    2005-01-01

    Calculations of radiogenic cancer risk are based on the risk projection models for specific cancer sites. Improvement has been made for the parameters used in the previous models including introductions of mortality and morbidity risk coefficients, and age-/ gender-specific risk coefficients. These coefficients have been applied to calculate the radiogenic cancer risks for specific organs and radionuclides under different exposure scenarios. (authors)

  7. Development and application of new quality model for software projects.

    Science.gov (United States)

    Karnavel, K; Dillibabu, R

    2014-01-01

    The IT industry tries to employ a number of models to identify the defects in the construction of software projects. In this paper, we present COQUALMO and its limitations and aim to increase the quality without increasing the cost and time. The computation time, cost, and effort to predict the residual defects are very high; this was overcome by developing an appropriate new quality model named the software testing defect corrective model (STDCM). The STDCM was used to estimate the number of remaining residual defects in the software product; a few assumptions and the detailed steps of the STDCM are highlighted. The application of the STDCM is explored in software projects. The implementation of the model is validated using statistical inference, which shows there is a significant improvement in the quality of the software projects.

  8. Arctic Freshwater Switchyard Project: Spring temperature and Salinity data collected by aircraft in the Arctic Ocean, May 2006 - May 2007 (NODC Accession 0057319)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A program to study freshwater circulation (sea ice + upper ocean) in the "freshwater switchyard" between Alert (Ellesmere Island) and the North Pole. The project...

  9. Partitioning uncertainty in streamflow projections under nonstationary model conditions

    Science.gov (United States)

    Chawla, Ila; Mujumdar, P. P.

    2018-02-01

    Assessing the impacts of Land Use (LU) and climate change on future streamflow projections is necessary for efficient management of water resources. However, model projections are burdened with significant uncertainty arising from various sources. Most of the previous studies have considered climate models and scenarios as major sources of uncertainty, but uncertainties introduced by land use change and hydrologic model assumptions are rarely investigated. In this paper an attempt is made to segregate the contribution from (i) general circulation models (GCMs), (ii) emission scenarios, (iii) land use scenarios, (iv) stationarity assumption of the hydrologic model, and (v) internal variability of the processes, to overall uncertainty in streamflow projections using analysis of variance (ANOVA) approach. Generally, most of the impact assessment studies are carried out with unchanging hydrologic model parameters in future. It is, however, necessary to address the nonstationarity in model parameters with changing land use and climate. In this paper, a regression based methodology is presented to obtain the hydrologic model parameters with changing land use and climate scenarios in future. The Upper Ganga Basin (UGB) in India is used as a case study to demonstrate the methodology. The semi-distributed Variable Infiltration Capacity (VIC) model is set-up over the basin, under nonstationary conditions. Results indicate that model parameters vary with time, thereby invalidating the often-used assumption of model stationarity. The streamflow in UGB under the nonstationary model condition is found to reduce in future. The flows are also found to be sensitive to changes in land use. Segregation results suggest that model stationarity assumption and GCMs along with their interactions with emission scenarios, act as dominant sources of uncertainty. This paper provides a generalized framework for hydrologists to examine stationarity assumption of models before considering them

  10. Solid Waste Projection Model: Database (Version 1.4)

    International Nuclear Information System (INIS)

    Blackburn, C.; Cillan, T.

    1993-09-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.4 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement. Those interested in using the SWPM database should refer to the SWPM Database User's Guide. This document is available from the PNL Task M Project Manager (D. L. Stiles, 509-372-4358), the PNL Task L Project Manager (L. L. Armacost, 509-372-4304), the WHC Restoration Projects Section Manager (509-372-1443), or the WHC Waste Characterization Manager (509-372-1193)

  11. Adoption of Building Information Modelling in project planning risk management

    Science.gov (United States)

    Mering, M. M.; Aminudin, E.; Chai, C. S.; Zakaria, R.; Tan, C. S.; Lee, Y. Y.; Redzuan, A. A.

    2017-11-01

    An efficient and effective risk management required a systematic and proper methodology besides knowledge and experience. However, if the risk management is not discussed from the starting of the project, this duty is notably complicated and no longer efficient. This paper presents the adoption of Building Information Modelling (BIM) in project planning risk management. The objectives is to identify the traditional risk management practices and its function, besides, determine the best function of BIM in risk management and investigating the efficiency of adopting BIM-based risk management during the project planning phase. In order to obtain data, a quantitative approach is adopted in this research. Based on data analysis, the lack of compliance with project requirements and failure to recognise risk and develop responses to opportunity are the risks occurred when traditional risk management is implemented. When using BIM in project planning, it works as the tracking of cost control and cash flow give impact on the project cycle to be completed on time. 5D cost estimation or cash flow modeling benefit risk management in planning, controlling and managing budget and cost reasonably. There were two factors that mostly benefit a BIM-based technology which were formwork plan with integrated fall plan and design for safety model check. By adopting risk management, potential risks linked with a project and acknowledging to those risks can be identified to reduce them to an acceptable extent. This means recognizing potential risks and avoiding threat by reducing their negative effects. The BIM-based risk management can enhance the planning process of construction projects. It benefits the construction players in various aspects. It is important to know the application of BIM-based risk management as it can be a lesson learnt to others to implement BIM and increase the quality of the project.

  12. Cacao Intensification in Sulawesi: A Green Prosperity Model Project

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

    2014-09-01

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates techniques to improve cacao farming in Sulawesi Indonesia with an emphasis on Farmer Field Schools and Cocoa Development Centers to educate farmers and for train the trainer programs. The study estimates the economic viability of cacao farming if smallholder implement techniques to increase yield as well as social and environmental impacts of the project.

  13. Simulation of Zinc Release Affected by Microbial Inoculation and Salinity Levels in a non-sterile Calcareous Soil Using kinetic Models

    Directory of Open Access Journals (Sweden)

    hamidreza boostani

    2017-02-01

    Full Text Available Introduction: Zinc (Zn is an important nutrient element for humans and plants that controls many biochemical and physiological functions of living organisms. Zinc deficiency is common in high pH, low organic matter, carbonatic, saline and sodic soils. Salinity is a major abiotic environmental stresses that limits growth and production in arid and semi-arid regions of the world. Bioavailability of Zn is low in calcareous and saline soils having high levels of pH and calcium. Desorption of Zinc (Zn from soil as influenced by biological activities is one of the important factors that control Zn bioavailability. Few reports on the effects of salinity on the availability and desorption kinetics of Zn are available. Rupa et al. (2000 reported that increasing the salt concentration led to increase Zn desorption from soil due to ion competition on soil exchangeable sites. Different kinetic equations have been used to describe the release kinetics of nutrients. Reyhanitabar and Gilkes (2010 found that the power function model was the best equation to describe the release of Zn from some calcareous soil of Iran, whereas Baranimotlagh and Gholami (2013 stated that the best model for describing Zn desorption from 15 calcareous soils of Iran was the first-order equation.less attention has been paid to kinetics of Zn release by DTPA extractant over time by inoculation of plant growth promoting rhizobacteria and mycorrhizae fungi in comination with soil salinity.The objective of this study was to evaluate the effect of plant growth promoting rhizobacteria (PGPR and mycorrhizae fungi (MF inoculation on release kinetic of Zn in a calcareous soil at different salinity levels after in cornplantation Materials and Methods: A composite sample of bulk soil from the surface horizon (0-30 cm of a calcareous soil from southern part of Iran was collected, air dried, passed through 2 mm sieve, and thoroughly mixed. Routine soil analysis was performed to determine some

  14. Modeling Manpower and Equipment Productivity in Tall Building Construction Projects

    Science.gov (United States)

    Mudumbai Krishnaswamy, Parthasarathy; Rajiah, Murugasan; Vasan, Ramya

    2017-12-01

    Tall building construction projects involve two critical resources of manpower and equipment. Their usage, however, widely varies due to several factors affecting their productivity. Currently, no systematic study for estimating and increasing their productivity is available. What is prevalent is the use of empirical data, experience of similar projects and assumptions. As tall building projects are here to stay and increase, to meet the emerging demands in ever shrinking urban spaces, it is imperative to explore ways and means of scientific productivity models for basic construction activities: concrete, reinforcement, formwork, block work and plastering for the input of specific resources in a mixed environment of manpower and equipment usage. Data pertaining to 72 tall building projects in India were collected and analyzed. Then, suitable productivity estimation models were developed using multiple linear regression analysis and validated using independent field data. It is hoped that the models developed in the study will be useful for quantity surveyors, cost engineers and project managers to estimate productivity of resources in tall building projects.

  15. On reducibility and ergodicity of population projection matrix models

    DEFF Research Database (Denmark)

    Stott, Iain; Townley, Stuart; Carslake, David

    2010-01-01

    from all stages to all other stages) and therefore ergodic (whatever initial stage structure is used in the population projection, it will always exhibit the same stable asymptotic growth rate). 2. Evaluation of 652 PPM models for 171 species from the literature suggests that 24·7% of PPM models...... structure used in the population projection). In our sample of published PPMs, 15·6% are non-ergodic. 3. This presents a problem: reducible–ergodic models often defy biological rationale in their description of the life cycle but may or may not prove problematic for analysis as they often behave similarly...... of reducibility in published PPMs, with significant implications for the predictive power of such models in many cases. We suggest that as a general rule, reducibility of PPM models should be avoided. However, we provide a guide to the pertinent analysis of reducible matrix models, largely based upon whether...

  16. A model of the environmental impacts of hydropower projects

    International Nuclear Information System (INIS)

    Kemppainen, T.; Haemaelaeinen, I.

    1992-01-01

    The aim was to create a model of the effects of hydropower modernization and extension projects in Finland. To illustrate the effects of hydropower projects a checklist in the form of matrice was constructed. In this matrice all issues that could be significant in future hydropower projects were collected. Stable physical environmental changes are the starting-point for this matrice. The temporary change of hydropower constructions have also been under consideration. These are mainly environmental changes during construction. In chapter two the effects of hydropower modernization and extension projects physical environmental changes were examined. In chapter three the matrice was applied to some example cases. The cases were chosen to represent future hydropower projects. In addition these example cases represent urban areas, rural areas and uninhabited areas. The example cases were the extension of Tainionkoski hydropower plant at Vuoksi river, the modernization of Aeetsae power plant at Kokemaeenjoki river, the modernization of Stadsfors power plant at Lapuanjoki river in the centre of Uusikaarlepyy town and the construction of Kaitfors power plant at Perhonjoki river. Conclusions from usability of the model can be drawn on the ground of the example cases. The purpose of the model is to produce a checklist of estimated environmental effects in hydropower project of various kinds. Examination of issues within the model depends on local circumstances. Endangered animal and plant species, for example, can be studied and estimated only if endangered animal and plant species exist in the area of hydropower plant. Furthermore, the direction and extent of environmental effects depend on the local circumstances. The model is mainly a checklist of environmental effects caused by hydropower plant projects

  17. Modelling of Airship Flight Mechanics by the Projection Equivalent Method

    OpenAIRE

    Frantisek Jelenciak; Michael Gerke; Ulrich Borgolte

    2015-01-01

    This article describes the projection equivalent method (PEM) as a specific and relatively simple approach for the modelling of aircraft dynamics. By the PEM it is possible to obtain a mathematic al model of the aerodynamic forces and momentums acting on different kinds of aircraft during flight. For the PEM, it is a characteristic of it that - in principle - it provides an acceptable regression model of aerodynamic forces and momentums which exhibits reasonable and plausible behaviour from a...

  18. Salinity Trends in the Upper Colorado River Basin Upstream From the Grand Valley Salinity Control Unit, Colorado, 1986-2003

    Science.gov (United States)

    Leib, Kenneth J.; Bauch, Nancy J.

    2008-01-01

    In 1974, the Colorado River Basin Salinity Control Act was passed into law. This law was enacted to address concerns regarding the salinity content of the Colorado River. The law authorized various construction projects in selected areas or 'units' of the Colorado River Basin intended to reduce the salinity load in the Colorado River. One such area was the Grand Valley Salinity Control Unit in western Colorado. The U. S. Geological Survey has done extensive studies and research in the Grand Valley Salinity Control Unit that provide information to aid the U.S. Bureau of Reclamation and the Natural Resources Conservation Service in determining where salinity-control work may provide the best results, and to what extent salinity-control work was effective in reducing salinity concentrations and loads in the Colorado River. Previous studies have indicated that salinity concentrations and loads have been decreasing downstream from the Grand Valley Salinity Control Unit, and that the decreases are likely the result of salinity control work in these areas. Several of these reports; however, also document decreasing salinity loads upstream from the Grand Valley Salinity Control Unit. This finding was important because only a small amount of salinity-control work was being done in areas upstream from the Grand Valley Salinity Control Unit at the time the findings were reported (late 1990?s). As a result of those previous findings, the U.S. Bureau of Reclamation entered into a cooperative agreement with the U.S. Geological Survey to investigate salinity trends in selected areas bracketing the Grand Valley Salinity Control Unit and regions upstream from the Grand Valley Salinity Control Unit. The results of the study indicate that salinity loads were decreasing upstream from the Grand Valley Salinity Control Unit from 1986 through 2003, but the rates of decrease have slowed during the last 10 years. The average rate of decrease in salinity load upstream from the Grand Valley

  19. The performance indicators of model projects. A special evaluation

    International Nuclear Information System (INIS)

    1995-11-01

    As a result of the acknowledgment of the key role of the Model Project concept in the Agency's Technical Co-operation Programme, the present review of the objectives of the model projects which are now in operation, was undertaken, as recommended by the Board of Governors, to determine at an early stage: the extent to which the present objectives have been defined in a measurable way; whether objectively verifiable performance indicators and success criteria had been identified for each project; whether mechanisms to obtain feedback on the achievements had been foreseen. The overall budget for the 23 model projects, as approved from 1994 to 1998, amounts to $32,557,560, of which 45% is funded by Technical Co-operation Fund. This represents an average investment of about $8 million per year, that is over 15% of the annual TC budget. The conceptual importance of the Model Project initiative, as well as the significant funds allocated to them, led the Secretariat to plan the methods to be used to determine their socio-economic impact. 1 tab

  20. A CONCEPTUAL MODEL FOR IMPROVED PROJECT SELECTION AND PRIORITISATION

    Directory of Open Access Journals (Sweden)

    P. J. Viljoen

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Project portfolio management processes are often designed and operated as a series of stages (or project phases and gates. However, the flow of such a process is often slow, characterised by queues waiting for a gate decision and by repeated work from previous stages waiting for additional information or for re-processing. In this paper the authors propose a conceptual model that applies supply chain and constraint management principles to the project portfolio management process. An advantage of the proposed model is that it provides the ability to select and prioritise projects without undue changes to project schedules. This should result in faster flow through the system.

    AFRIKAANSE OPSOMMING: Prosesse om portefeuljes van projekte te bestuur word normaalweg ontwerp en bedryf as ’n reeks fases en hekke. Die vloei deur so ’n proses is dikwels stadig en word gekenmerk deur toue wat wag vir besluite by die hekke en ook deur herwerk van vorige fases wat wag vir verdere inligting of vir herprosessering. In hierdie artikel word ‘n konseptuele model voorgestel. Die model berus op die beginsels van voorsieningskettings sowel as van beperkingsbestuur, en bied die voordeel dat projekte geselekteer en geprioritiseer kan word sonder onnodige veranderinge aan projekskedules. Dit behoort te lei tot versnelde vloei deur die stelsel.

  1. Construction project investment control model based on instant information

    Institute of Scientific and Technical Information of China (English)

    WANG Xue-tong

    2006-01-01

    Change of construction conditions always influences project investment by causing the loss of construction work time and extending the duration. To resolve such problem as difficult dynamic control in work construction plan, this article presents a concept of instant optimization by ways of adjustment operation time of each working procedure to minimize investment change. Based on this concept, its mathematical model is established and a strict mathematical justification is performed. An instant optimization model takes advantage of instant information in the construction process to duly complete adjustment of construction; thus we maximize cost efficiency of project investment.

  2. Multi-model-based Access Control in Construction Projects

    Directory of Open Access Journals (Sweden)

    Frank Hilbert

    2012-04-01

    Full Text Available During the execution of large scale construction projects performed by Virtual Organizations (VO, relatively complex technical models have to be exchanged between the VO members. For linking the trade and transfer of these models, a so-called multi-model container format was developed. Considering the different skills and tasks of the involved partners, it is not necessary for them to know all the models in every technical detailing. Furthermore, the model size can lead to a delay in communication. In this paper an approach is presented for defining model cut-outs according to the current project context. Dynamic dependencies to the project context as well as static dependencies on the organizational structure are mapped in a context-sensitive rule. As a result, an approach for dynamic filtering of multi-models is obtained which ensures, together with a filtering service, that the involved VO members get a simplified view of complex multi-models as well as sufficient permissions depending on their tasks.

  3. The Timber Resource Inventory Model (TRIM): a projection model for timber supply and policy analysis.

    Science.gov (United States)

    P.L. Tedder; R.N. La Mont; J.C. Kincaid

    1987-01-01

    TRIM (Timber Resource Inventory Model) is a yield table projection system developed for timber supply projections and policy analysis. TRIM simulates timber growth, inventories, management and area changes, and removals over the projection period. Programs in the TRIM system, card-by-card descriptions of required inputs, table formats, and sample results are presented...

  4. SESAME as a Model Project for Other Regions

    Science.gov (United States)

    Winick, Herman

    2013-03-01

    UNESCO became the umbrella organization for SESAME at its Executive Board 164th session, May 2002. The following comments about SESAME were made by this board: ``a quintessential UNESCO project combining capacity building with vital peace-building through science'' and ``a model project for other regions.'' Now that SESAME is well underway, other regions (e.g.; Africa and Central Asia) should be made aware of this progress, and they should be welcomed to join SESAME as a first step in developing similar projects in their region. Students and scientists from other regions should be encouraged to attend SESAME Users' meeting, schools, workshops, etc. where they can learn about synchrotron radiation sources, beamlines, and science. They should be invited to join SESAME scientists in designing and commissioning accelerators and beamlines, gaining relevant experience for their own projects and helping SESAME in the process. Work supported by DOE Office of Basic Energy Sciences

  5. The Study on Stage Financing Model of IT Project Investment

    Directory of Open Access Journals (Sweden)

    Si-hua Chen

    2014-01-01

    Full Text Available Stage financing is the basic operation of venture capital investment. In investment, usually venture capitalists use different strategies to obtain the maximum returns. Due to its advantages to reduce the information asymmetry and agency cost, stage financing is widely used by venture capitalists. Although considerable attentions are devoted to stage financing, very little is known about the risk aversion strategies of IT projects. This paper mainly addresses the problem of risk aversion of venture capital investment in IT projects. Based on the analysis of characteristics of venture capital investment of IT projects, this paper introduces a real option pricing model to measure the value brought by the stage financing strategy and design a risk aversion model for IT projects. Because real option pricing method regards investment activity as contingent decision, it helps to make judgment on the management flexibility of IT projects and then make a more reasonable evaluation about the IT programs. Lastly by being applied to a real case, it further illustrates the effectiveness and feasibility of the model.

  6. The Study on Stage Financing Model of IT Project Investment

    Science.gov (United States)

    Xu, Sheng-hua; Xiong, Neal N.

    2014-01-01

    Stage financing is the basic operation of venture capital investment. In investment, usually venture capitalists use different strategies to obtain the maximum returns. Due to its advantages to reduce the information asymmetry and agency cost, stage financing is widely used by venture capitalists. Although considerable attentions are devoted to stage financing, very little is known about the risk aversion strategies of IT projects. This paper mainly addresses the problem of risk aversion of venture capital investment in IT projects. Based on the analysis of characteristics of venture capital investment of IT projects, this paper introduces a real option pricing model to measure the value brought by the stage financing strategy and design a risk aversion model for IT projects. Because real option pricing method regards investment activity as contingent decision, it helps to make judgment on the management flexibility of IT projects and then make a more reasonable evaluation about the IT programs. Lastly by being applied to a real case, it further illustrates the effectiveness and feasibility of the model. PMID:25147845

  7. The study on stage financing model of IT project investment.

    Science.gov (United States)

    Chen, Si-hua; Xu, Sheng-hua; Lee, Changhoon; Xiong, Neal N; He, Wei

    2014-01-01

    Stage financing is the basic operation of venture capital investment. In investment, usually venture capitalists use different strategies to obtain the maximum returns. Due to its advantages to reduce the information asymmetry and agency cost, stage financing is widely used by venture capitalists. Although considerable attentions are devoted to stage financing, very little is known about the risk aversion strategies of IT projects. This paper mainly addresses the problem of risk aversion of venture capital investment in IT projects. Based on the analysis of characteristics of venture capital investment of IT projects, this paper introduces a real option pricing model to measure the value brought by the stage financing strategy and design a risk aversion model for IT projects. Because real option pricing method regards investment activity as contingent decision, it helps to make judgment on the management flexibility of IT projects and then make a more reasonable evaluation about the IT programs. Lastly by being applied to a real case, it further illustrates the effectiveness and feasibility of the model.

  8. Incentive Model Based on Cooperative Relationship in Sustainable Construction Projects

    Directory of Open Access Journals (Sweden)

    Guangdong Wu

    2017-07-01

    Full Text Available Considering the cooperative relationship between owners and contractors in sustainable construction projects, as well as the synergistic effects created by cooperative behaviors, a cooperative incentive model was developed using game theory. The model was formulated and analyzed under both non-moral hazard and moral hazard situations. Then, a numerical simulation and example were proposed to verify the conclusions derived from the model. The results showed that the synergistic effect increases the input intensity of one party’s resource transfer into the increase of marginal utility of the other party, thus the owner and contractor are willing to enhance their levels of effort. One party’s optimal benefit allocation coefficient is positively affected by its own output efficiency, and negatively affected by the other party’s output efficiency. The effort level and expected benefits of the owner and contractor can be improved by enhancing the cooperative relationship between the two parties, as well as enhancing the net benefits of a sustainable construction project. The synergistic effect cannot lower the negative effect of moral hazard behaviors during the implementation of sustainable construction projects. Conversely, the higher levels of the cooperative relationship, the wider the gaps amongst the optimal values under both non-moral hazard and moral hazard situations for the levels of effort, expected benefits and net project benefits. Since few studies to date have emphasized the effects of cooperative relationship on sustainable construction projects, this study constructed a game-based incentive model to bridge the gaps. This study contributes significant theoretical and practical insights into the management of cooperation amongst stakeholders, and into the enhancement of the overall benefits of sustainable construction projects.

  9. Project W-320 thermal hydraulic model benchmarking and baselining

    International Nuclear Information System (INIS)

    Sathyanarayana, K.

    1998-01-01

    Project W-320 will be retrieving waste from Tank 241-C-106 and transferring the waste to Tank 241-AY-102. Waste in both tanks must be maintained below applicable thermal limits during and following the waste transfer. Thermal hydraulic process control models will be used for process control of the thermal limits. This report documents the process control models and presents a benchmarking of the models with data from Tanks 241-C-106 and 241-AY-102. Revision 1 of this report will provide a baselining of the models in preparation for the initiation of sluicing

  10. Geospatial application of the Water Erosion Prediction Project (WEPP) Model

    Science.gov (United States)

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2011-01-01

    The Water Erosion Prediction Project (WEPP) model is a process-based technology for prediction of soil erosion by water at hillslope profile, field, and small watershed scales. In particular, WEPP utilizes observed or generated daily climate inputs to drive the surface hydrology processes (infiltration, runoff, ET) component, which subsequently impacts the rest of the...

  11. Modelling Project Feasibility Robustness by Use of Scenarios

    DEFF Research Database (Denmark)

    Moshøj, Claus Rehfeld; Leleur, Steen

    1998-01-01

    , SEAM secures a consistent inclusion of actual scenario elements in the quantitative impact modelling and facilitates a transparent project feasibility robustness analysis. SEAM is implemented as part of a decision support system with a toolbox structure applicable to different types of transport...

  12. Identification of linear error-models with projected dynamical systems

    Czech Academy of Sciences Publication Activity Database

    Krejčí, Pavel; Kuhnen, K.

    2004-01-01

    Roč. 10, č. 1 (2004), s. 59-91 ISSN 1387-3954 Keywords : identification * error models * projected dynamical systems Subject RIV: BA - General Mathematics Impact factor: 0.292, year: 2004 http://www.informaworld.com/smpp/content~db=all~content=a713682517

  13. Geospatial application of the Water Erosion Prediction Project (WEPP) model

    Science.gov (United States)

    D. C. Flanagan; J. R. Frankenberger; T. A. Cochrane; C. S. Renschler; W. J. Elliot

    2013-01-01

    At the hillslope profile and/or field scale, a simple Windows graphical user interface (GUI) is available to easily specify the slope, soil, and management inputs for application of the USDA Water Erosion Prediction Project (WEPP) model. Likewise, basic small watershed configurations of a few hillslopes and channels can be created and simulated with this GUI. However,...

  14. Application of Markovian model to school enrolment projection ...

    African Journals Online (AJOL)

    Application of Markovian model to school enrolment projection process. VU Ekhosuehi, AA Osagiede. Abstract. No Abstract. Global Journal of Mathematical Sciences Vol. 5(1) 2006: 9-16. Full Text: EMAIL FREE FULL TEXT EMAIL FREE FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  15. МULTI-STAKEHOLDER MODEL OF EDUCATION PROJECT QUALITY MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Юлия Юрьевна ГУСЕВА

    2015-05-01

    Full Text Available The analysis of approaches to the definition of higher education projects’ stakeholders is conducted. A model of education project quality management with the influence of stakeholders is formed. A mechanism of recognition of new groups of project’s stakeholders on the basis of set theory is offered.

  16. Projected shell model study of neutron- deficient 122Ce

    Indian Academy of Sciences (India)

    Projected shell model; band diagram; yrast energies; electromagnetic quan- ... signed to 122Ce by detecting γ-rays in coincidence with evaporated charged particles .... 0.75 from the free nucleon values to account for the core-polarization and ...

  17. Energy Exascale Earth System Model (E3SM) Project Strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bader, D. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-18

    The E3SM project will assert and maintain an international scientific leadership position in the development of Earth system and climate models at the leading edge of scientific knowledge and computational capabilities. With its collaborators, it will demonstrate its leadership by using these models to achieve the goal of designing, executing, and analyzing climate and Earth system simulations that address the most critical scientific questions for the nation and DOE.

  18. Modelling of project cash flow on construction projects in Malang city

    Science.gov (United States)

    Djatmiko, Bambang

    2017-09-01

    Contractors usually prepare a project cash flow (PCF) on construction projects. The flow of cash in and cash out within a construction project may vary depending on the owner, contract documents, and construction service providers who have their own authority. Other factors affecting the PCF are down payment, termyn, progress schedule, material schedule, equipment schedule, manpower schedules, and wages of workers and subcontractors. This study aims to describe the cash inflow and cash outflow based on the empirical data obtained from contractors, develop a PCF model based on Halpen & Woodhead's PCF model, and investigate whether or not there is a significant difference between the Halpen & Woodhead's PCF model and the empirical PCF model. Based on the researcher's observation, the PCF management has never been implemented by the contractors in Malang in serving their clients (owners). The research setting is in Malang City because physical development in all field and there are many new construction service providers. The findings in this current study are summarised as follows: 1) Cash in included current assets (20%), owner's down payment (20%), termyin I (5%-25%), termyin II (20%), termyin III (25%), termyin IV (25%) and retention (5%). Cash out included direct cost (65%), indirect cost (20%), and profit + informal cost(15%), 2)the construction work involving the empirical PCF model in this study was started with the funds obtained from DP or current assets and 3) The two models bear several similarities in the upward trends of direct cost, indirect cost, Pro Ic, progress billing, and S-curve. The difference between the two models is the occurrence of overdraft in the Halpen and Woodhead's PCF model only.

  19. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    Science.gov (United States)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios

  20. Modeling of fate and transport of co-injection of H2S with CO2 in deep saline formations

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Xu, T.; Li, Y.

    2010-12-15

    The geological storage of CO{sub 2} in deep saline formations is increasing seen as a viable strategy to reduce the release of greenhouse gases into the atmosphere. However, costs of capture and compression of CO{sub 2} from industrial waste streams containing small quantities of sulfur and nitrogen compounds such as SO{sub 2}, H{sub 2}S and N{sub 2} are very expensive. Therefore, studies on the co-injection of CO{sub 2} containing other acid gases from industrial emissions are very important. In this paper, numerical simulations were performed to study the co-injection of H{sub 2}S with CO{sub 2} in sandstone and carbonate formations. Results indicate that the preferential dissolution of H{sub 2}S gas (compared with CO{sub 2} gas) into formation water results in the delayed breakthrough of H{sub 2}S gas. Co-injection of H{sub 2}S results in the precipitation of pyrite through interactions between the dissolved H{sub 2}S and Fe{sup 2+} from the dissolution of Fe-bearing minerals. Additional injection of H{sub 2}S reduces the capabilities for solubility and mineral trappings of CO{sub 2} compared to the CO{sub 2} only case. In comparison to the sandstone (siliciclastic) formation, the carbonate formation is less favorable to the mineral sequestration of CO{sub 2}. Different from CO{sub 2} mineral trapping, the presence of Fe-bearing siliciclastic and/or carbonate is more favorable to the H{sub 2}S mineral trapping.

  1. Consistency of climate change projections from multiple global and regional model intercomparison projects

    Science.gov (United States)

    Fernández, J.; Frías, M. D.; Cabos, W. D.; Cofiño, A. S.; Domínguez, M.; Fita, L.; Gaertner, M. A.; García-Díez, M.; Gutiérrez, J. M.; Jiménez-Guerrero, P.; Liguori, G.; Montávez, J. P.; Romera, R.; Sánchez, E.

    2018-03-01

    We present an unprecedented ensemble of 196 future climate projections arising from different global and regional model intercomparison projects (MIPs): CMIP3, CMIP5, ENSEMBLES, ESCENA, EURO- and Med-CORDEX. This multi-MIP ensemble includes all regional climate model (RCM) projections publicly available to date, along with their driving global climate models (GCMs). We illustrate consistent and conflicting messages using continental Spain and the Balearic Islands as target region. The study considers near future (2021-2050) changes and their dependence on several uncertainty sources sampled in the multi-MIP ensemble: GCM, future scenario, internal variability, RCM, and spatial resolution. This initial work focuses on mean seasonal precipitation and temperature changes. The results show that the potential GCM-RCM combinations have been explored very unevenly, with favoured GCMs and large ensembles of a few RCMs that do not respond to any ensemble design. Therefore, the grand-ensemble is weighted towards a few models. The selection of a balanced, credible sub-ensemble is challenged in this study by illustrating several conflicting responses between the RCM and its driving GCM and among different RCMs. Sub-ensembles from different initiatives are dominated by different uncertainty sources, being the driving GCM the main contributor to uncertainty in the grand-ensemble. For this analysis of the near future changes, the emission scenario does not lead to a strong uncertainty. Despite the extra computational effort, for mean seasonal changes, the increase in resolution does not lead to important changes.

  2. Project Finance Model for Small Contractors in USA

    Directory of Open Access Journals (Sweden)

    Jawahar Nesan

    2012-11-01

    Full Text Available Construction projects do not require a large capital outlay but a large working capital to start up the project. Unfortunately, for small contractors there are very limited options available from the banks or other lending institutions to cover this large working capital requirement in the absence of sufficient collateral. The “Project Finance” method presented in this paper is recommended as the most effective method for small contractors in the United States. The problems of small and start up contractors in funding their projects have been little addressed in the literature. The current financing practices were observed through both the literature review and interviews with contractors and bankers in the western Michigan area and subsequently a system has been proposed which could help a small start-up company seeking higher growth. The growth rates that can be achieved using the project finance system in contrast to the traditional “line of credit” arrangements as illustrated in this paper show that the project finance model is beneficial.

  3. Monitoring Coastal Marshes for Persistent Flooding and Salinity Stress

    Science.gov (United States)

    Kalcic, Maria

    2010-01-01

    Our objective is to provide NASA remote sensing products that provide inundation and salinity information on an ecosystem level to support habitat switching models. Project born out of need by the Coastal Restoration Monitoring System (CRMS), joint effort by Louisiana Department of Natural Resources and the U.S. Geological Survey, for information on persistence of flooding by storm surge and other flood waters. The results of the this work support the habitat-switching modules in the Coastal Louisiana Ecosystem Assessment and Restoration (CLEAR) model, which provides scientific evaluation for restoration management. CLEAR is a collaborative effort between the Louisiana Board of Regents, the Louisiana Department of Natural Resources (LDNR), the U.S. Geological Survey (USGS), and the U.S. Army Corps of Engineers (USACE). Anticipated results will use: a) Resolution enhanced time series data combining spatial resolution of Landsat with temporal resolution of MODIS for inundation estimates. b) Potential salinity products from radar and multispectral modeling. c) Combined inundation and salinity inputs to habitat switching module to produce habitat switching maps (shown at left)

  4. Twisted sigma-model solitons on the quantum projective line

    Science.gov (United States)

    Landi, Giovanni

    2018-04-01

    On the configuration space of projections in a noncommutative algebra, and for an automorphism of the algebra, we use a twisted Hochschild cocycle for an action functional and a twisted cyclic cocycle for a topological term. The latter is Hochschild-cohomologous to the former and positivity in twisted Hochschild cohomology results into a lower bound for the action functional. While the equations for the critical points are rather involved, the use of the positivity and the bound by the topological term lead to self-duality equations (thus yielding twisted noncommutative sigma-model solitons, or instantons). We present explicit nontrivial solutions on the quantum projective line.

  5. Results of the ITER toroidal field model coil project

    International Nuclear Information System (INIS)

    Salpietro, E.; Maix, R.

    2001-01-01

    In the scope of the ITER EDA one of the seven largest projects was devoted to the development, manufacture and testing of a Toroidal Field Model Coil (TFMC). The industry consortium AGAN manufactured the TFMC based on on a conceptual design developed by the ITER EDA EU Home Team. The TFMC was completed and assembled in the test facility TOSKA of the Forschungszentrum Karlsruhe in the first half of 2001. The first testing phase started in June 2001 and lasted till October 2001. The first results have shown that the main goals of the project have been achieved

  6. Integration of models for the Hanford Environmental Dose Reconstruction Project

    International Nuclear Information System (INIS)

    Napier, B.A.

    1991-01-01

    The objective of the Hanford Environmental Dose Reconstruction Project is to estimate the radiation dose that individuals could have received as a result of emissions from nuclear operations at Hanford since 1944. The objective of phase 1 of the project was to demonstrate through calculations that adequate models and support data exist or could be developed to allow realistic estimations of doses to individuals from releases of radionuclides to the environment that occurred as long as 45 years ago. Much of the data used in phase 1 was preliminary; therefore, the doses calculated must be considered preliminary approximations. This paper describes the integration of various models that was implemented for initial computer calculations. Models were required for estimating the quantity of radioactive material released, for evaluating its transport through the environment, for estimating human exposure, and for evaluating resultant doses

  7. Lectures on nonlinear sigma-models in projective superspace

    International Nuclear Information System (INIS)

    Kuzenko, Sergei M

    2010-01-01

    N= 2 supersymmetry in four spacetime dimensions is intimately related to hyperkaehler and quaternionic Kaehler geometries. On one hand, the target spaces for rigid supersymmetric sigma-models are necessarily hyperkaehler manifolds. On the other hand, when coupled to N= 2 supergravity, the sigma-model target spaces must be quaternionic Kaehler. It is known that such manifolds of restricted holonomy are difficult to generate explicitly. Projective superspace is a field-theoretic approach to construct general N= 2 supersymmetric nonlinear sigma-models, and hence to generate new hyperkaehler and quaternionic Kaehler metrics. Intended for a mixed audience consisting of both physicists and mathematicians, these lectures provide a pedagogical introduction to the projective-superspace approach. (topical review)

  8. Lectures on nonlinear sigma-models in projective superspace

    Energy Technology Data Exchange (ETDEWEB)

    Kuzenko, Sergei M, E-mail: kuzenko@cyllene.uwa.edu.a [School of Physics M013, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia)

    2010-11-05

    N= 2 supersymmetry in four spacetime dimensions is intimately related to hyperkaehler and quaternionic Kaehler geometries. On one hand, the target spaces for rigid supersymmetric sigma-models are necessarily hyperkaehler manifolds. On the other hand, when coupled to N= 2 supergravity, the sigma-model target spaces must be quaternionic Kaehler. It is known that such manifolds of restricted holonomy are difficult to generate explicitly. Projective superspace is a field-theoretic approach to construct general N= 2 supersymmetric nonlinear sigma-models, and hence to generate new hyperkaehler and quaternionic Kaehler metrics. Intended for a mixed audience consisting of both physicists and mathematicians, these lectures provide a pedagogical introduction to the projective-superspace approach. (topical review)

  9. Global asymptotic stability of density dependent integral population projection models.

    Science.gov (United States)

    Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart

    2012-02-01

    Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.

  10. City of Austin: Green habitat learning project. A green builder model home project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The purpose of the Year 14 UCETF project was to design and construct a residential structure that could serve as a demonstration facility, training site, and testing and monitoring laboratory for issues related to the implementation of sustainable building practices and materials. The Model Home Project builds on the previous and existing efforts, partially funded by the UCETF, of the City of Austin Green Builder Program to incorporate sustainable building practices into mainstream building activities. The Green Builder Program uses the term {open_quotes}green{close_quotes} as a synonym for sustainability. In the research and analysis that was completed for our earlier reports in Years 12 and 13, we characterized specific elements that we associate with sustainability and, thus, green building. In general, we refer to a modified life cycle assessment to ascertain if {open_quotes}green{close_quotes} building options reflect similar positive cyclical patterns found in nature (i.e. recyclability, recycled content, renewable resources, etc.). We additionally consider economic, human health and synergistic ecological impacts associated with our building choices and characterize the best choices as {open_quotes}green.{close_quotes} Our ultimate goal is to identify and use those {open_quotes}green{close_quotes} materials and processes that provide well for us now and do not compromise similar benefits for future generations. The original partnership developed for this project shifted during the year from a project stressing advanced (many prototypical) {open_quotes}green{close_quotes} building materials and techniques in a research and demonstration context, to off-the-shelf but underutilized {open_quotes}green{close_quotes} materials in the practical social context of using {open_quotes}green{close_quotes} technologies for low income housing. That project, discussed in this report, is called the Green Habitat Learning Project.

  11. Models of Charity Donations and Project Funding in Social Networks

    Science.gov (United States)

    Wojciechowski, Adam

    One of the key fundaments of building a society is common interest or shared aims of the group members. This research work is a try to analyze web-based services oriented towards money collection for various social and charity projects. The phenomenon of social founding is worth a closer look at because its success strongly depends on the ability to build an ad-hoc or persistent groups of people sharing their believes and willing to support external institutions or individuals. The paper presents a review of money collection sites, various models of donation and money collection process as well as ways how the projects' results are reported to their founders. There is also a proposal of money collection service, where donators are not charged until total declared help overheads required resources to complete the project. The risk of missing real donations for declared payments, after the collection is closed, can be assessed and minimized by building a social network.

  12. The effect of saline coolant on temperature levels during decortication with a Midas Rex: An in vitro model using sheep cervical vertebrae.

    Directory of Open Access Journals (Sweden)

    Asher eLivingston

    2015-07-01

    Full Text Available Decortication of bone with a high speed burr in the absence of coolant may lead to local thermal necrosis and decreased healing ability which may negatively impact clinical outcome. Little data is available on the impact of applying a coolant during the burring process. This study aims to establish an in vitro model to quantitatively assess peak temperatures during endplate preparation with a high speed burr.Six sheep cervical vertebrae were dissected and mounted. Both end plates were used to give a total of 12 sites. Two thermocouples were inserted into each vertebra, 2mm below the end plate surface and a thermal-camera set up to measure surface temperature. A high speed burr (Midas Rex, Medtronic, Fort Worth, TX was used to decorticate the bone in a side to side sweeping pattern, using a matchstick burr (M-8/9MH30 with light pressure. This procedure was repeated while dripping saline onto the burr and bone. Data was compared between groups using a student t-test.Application of coolant at the bone-burr interface during decortication resulted in a significant decrease in final temperature. Without coolant, maximum temperatures 2mm from the surface were not sufficient to cause thermal osteonecrosis, although peak surface temperatures would cause local damage. The use of a high speed burr provides a quick and effective method of vertebral end plate preparation. Thermal damage to the bone can be minimised through the use of light pressure and saline coolant. This has implications for any bone preparation performed with a high speed burr.

  13. The Effect of Saline Coolant on Temperature Levels during Decortication with a Midas Rex: An in Vitro Model Using Sheep Cervical Vertebrae.

    Science.gov (United States)

    Livingston, Asher; Wang, Tian; Christou, Chris; Pelletier, Matthew H; Walsh, William R

    2015-01-01

    Decortication of bone with a high-speed burr in the absence of coolant may lead to local thermal necrosis and decreased healing ability, which may negatively impact clinical outcome. Little data are available on the impact of applying a coolant during the burring process. This study aims to establish an in vitro model to quantitatively assess peak temperatures during endplate preparation with a high-speed burr. Six sheep cervical vertebrae were dissected and mounted. Both end plates were used to give a total of 12 sites. Two thermocouples were inserted into each vertebra, 2 mm below the end plate surface and a thermal camera set up to measure surface temperature. A 3 mm high-pneumatic speed burr (Midas Rex, Medtronic, Fort Worth, TX, USA) was used to decorticate the bone in a side to side sweeping pattern, using a matchstick burr (M-8/9MH30) with light pressure. This procedure was repeated while dripping saline onto the burr and bone. Data were compared between groups using a Student's t-test. Application of coolant at the bone-burr interface during decortication resulted in a significant decrease in final temperature. Without coolant, maximum temperatures 2 mm from the surface were not sufficient to cause thermal osteonecrosis, although peak surface temperatures would cause local damage. The use of a high-speed burr provides a quick and an effective method of vertebral end plate preparation. Thermal damage to the bone can be minimized through the use of light pressure and saline coolant. This has implications for any bone preparation performed with a high-speed burr.

  14. A conceptual model of psychological contracts in construction projects

    Directory of Open Access Journals (Sweden)

    Yongjian Ke

    2016-09-01

    Full Text Available The strategic importance of relationship style contracting is recognised in the construction industry. Both public and private sector clients are stipulating more integrated and collaborative forms of procurement. Despite relationship and integrated contractual arrangement being available for some time, it is clear that construction firms have been slow to adopt them. Hence it is timely to examine how social exchanges, via unwritten agreement and behaviours, are being nurtured in construction projects. This paper adopted the concept of Psychological Contracts (PC to describe unwritten agreement and behaviours. A conceptual model of the PC is developed and validated using the results from a questionnaire survey administered to construction professionals in Australia. The results uncovered the relationships that existed amongst relational conditions and relational benefits, the PC and the partners’ satisfaction. The results show that all the hypotheses in the conceptual model of the PC are supported, suggesting the PC model is important and may have an effect on project performance and relationship quality among contracting parties. A validated model of the PC in construction was then developed based on the correlations among each component. The managerial implications are that past relationships and relationship characteristics should be taken into account in the selection of procurement partners and the promise of future resources, support and tangible relational outcomes are also vital. It is important for contracting parties to pay attention to unwritten agreements (the PC and behaviours when managing construction projects.

  15. Optical Models for Remote Sensing of Colored Dissolved Organic Matter Absorption and Salinity in New England, Middle Atlantic and Gulf Coast Estuaries USA

    Science.gov (United States)

    In estuarine and nearshore ecosystems, salinity levels, along with temperature, control water column stratification, the types and locations of plants and animals, and the flocculation of particles. Salinity is also a key factor when monitoring water quality variables (e.g., diss...

  16. Identification of Proteins Involved in Salinity Tolerance in Salicornia bigelovii

    KAUST Repository

    Salazar Moya, Octavio Ruben

    2017-11-01

    With a global growing demand in food production, agricultural output must increase accordingly. An increased use of saline soils and brackish water would contribute to the required increase in world food production. Abiotic stresses, such as salinity and drought, are also major limiters of crop growth globally - most crops are relatively salt sensitive and are significantly affected when exposed to salt in the range of 50 to 200 mM NaCl. Genomic resources from plants that naturally thrive in highly saline environments have the potential to be valuable in the generation of salt tolerant crops; however, these resources have been largely unexplored. Salicornia bigelovii is a plant native to Mexico and the United States that grows in salt marshes and coastal regions. It can thrive in environments with salt concentrations higher than seawater. In contrast to most crops, S. bigelovii is able to accumulate very high concentrations (in the order of 1.5 M) of Na+ and Cl- in its photosynthetically active succulent shoots. Part of this tolerance is likely to include the storage of Na+ in the vacuoles of the shoots, making S. bigelovii a good model for understanding mechanisms of Na+ compartmentalization in the vacuoles and a good resource for gene discovery. In this research project, phenotypic, genomic, transcriptomic, and proteomic approaches have been used for the identification of candidate genes involved in salinity tolerance in S. bigelovii. The genomes and transcriptomes of three Salicornia species have been sequenced. This information has been used to support the characterization of the salt-induced transcriptome of S. bigelovii shoots and the salt-induced proteome of various organellar membrane enriched fractions from S. bigelovii shoots, which led to the creation of organellar membrane proteomes. Yeast spot assays at different salt concentrations revealed several proteins increasing or decreasing yeast salt tolerance. This work aims to create the basis for

  17. A Model Suggestion to Predict Leverage Ratio for Construction Projects

    Directory of Open Access Journals (Sweden)

    Özlem Tüz

    2013-12-01

    Full Text Available Due to the nature, construction is an industry with high uncertainty and risk. Construction industry carries high leverage ratios. Firms with low equities work in big projects through progress payment system, but in this case, even a small negative in the planned cash flows constitute a major risk for the company.The use of leverage, with a small investment to achieve profit targets large-scale, high-profit, but also brings a high risk with it. Investors may lose all or the portion of the money. In this study, monitoring and measuring of the leverage ratio because of the displacement in cash inflows of construction projects which uses high leverage and low cash to do business in the sector is targeted. Cash need because of drifting the cash inflows may be seen due to the model. Work should be done in the early stages of the project with little capital but in the later stages, rapidly growing capital need arises.The values obtained from the model may be used to supply the capital held in the right time by anticipating the risks because of the delay in cashflow of construction projects which uses high leverage ratio.

  18. Advanced Ground Systems Maintenance Physics Models For Diagnostics Project

    Science.gov (United States)

    Perotti, Jose M.

    2015-01-01

    The project will use high-fidelity physics models and simulations to simulate real-time operations of cryogenic and systems and calculate the status/health of the systems. The project enables the delivery of system health advisories to ground system operators. The capability will also be used to conduct planning and analysis of cryogenic system operations. This project will develop and implement high-fidelity physics-based modeling techniques tosimulate the real-time operation of cryogenics and other fluids systems and, when compared to thereal-time operation of the actual systems, provide assessment of their state. Physics-modelcalculated measurements (called “pseudo-sensors”) will be compared to the system real-timedata. Comparison results will be utilized to provide systems operators with enhanced monitoring ofsystems' health and status, identify off-nominal trends and diagnose system/component failures.This capability can also be used to conduct planning and analysis of cryogenics and other fluidsystems designs. This capability will be interfaced with the ground operations command andcontrol system as a part of the Advanced Ground Systems Maintenance (AGSM) project to helpassure system availability and mission success. The initial capability will be developed for theLiquid Oxygen (LO2) ground loading systems.

  19. Project Management Life Cycle Models to Improve Management in High-rise Construction

    Science.gov (United States)

    Burmistrov, Andrey; Siniavina, Maria; Iliashenko, Oksana

    2018-03-01

    The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models) based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  20. Project Management Life Cycle Models to Improve Management in High-rise Construction

    Directory of Open Access Journals (Sweden)

    Burmistrov Andrey

    2018-01-01

    Full Text Available The paper describes a possibility to improve project management in high-rise buildings construction through the use of various Project Management Life Cycle Models (PMLC models based on traditional and agile project management approaches. Moreover, the paper describes, how the split the whole large-scale project to the "project chain" will create the factor for better manageability of the large-scale buildings project and increase the efficiency of the activities of all participants in such projects.

  1. Project Management in Public Administration. TPM – Total Project Management Maturity Model. The Case of Slovenian Public Administration

    Directory of Open Access Journals (Sweden)

    Gordana ŽURGA

    2018-02-01

    Full Text Available The purpose of the article is to present the importance of project management for the functioning of public administration, and its contribution to the realization of the developmental goals of the government. For this, integration of strategic management and project management is of vital importance. The methodology used is a combination of literature review, a case study of project management in public administration of the Republic of Slovenia, and development of a maturity model of project management in public administration, with its verifi cation on the case of Slovenia. The main contribution of the study is development of TPM – Total Project Management maturity model for public administration. Upon the TPM maturity model, project management in Slovene public administration is assessed and discussed. Out of fi ve maturity levels, the results for project management in Slovene public administration are: management of projects – level 2 (initiated, management of programs of projects – level 2 (initiated, management of portfolios of projects – level 3 (implemented, organizational support for project management – level 3 (implemented, HRM for project management – level 2 (initiated, and integration of project management and strategic management – level 3 (implemented. General fi ndings and recommendations in this respect are drawn, together with indicated areas for possible further research and investigation.

  2. Model projections of atmospheric steering of Sandy-like superstorms.

    Science.gov (United States)

    Barnes, Elizabeth A; Polvani, Lorenzo M; Sobel, Adam H

    2013-09-17

    Superstorm Sandy ravaged the eastern seaboard of the United States, costing a great number of lives and billions of dollars in damage. Whether events like Sandy will become more frequent as anthropogenic greenhouse gases continue to increase remains an open and complex question. Here we consider whether the persistent large-scale atmospheric patterns that steered Sandy onto the coast will become more frequent in the coming decades. Using the Coupled Model Intercomparison Project, phase 5 multimodel ensemble, we demonstrate that climate models consistently project a decrease in the frequency and persistence of the westward flow that led to Sandy's unprecedented track, implying that future atmospheric conditions are less likely than at present to propel storms westward into the coast.

  3. Project ECHO: A Telementoring Network Model for Continuing Professional Development.

    Science.gov (United States)

    Arora, Sanjeev; Kalishman, Summers G; Thornton, Karla A; Komaromy, Miriam S; Katzman, Joanna G; Struminger, Bruce B; Rayburn, William F

    2017-01-01

    A major challenge with current systems of CME is the inability to translate the explosive growth in health care knowledge into daily practice. Project ECHO (Extension for Community Healthcare Outcomes) is a telementoring network designed for continuing professional development (CPD) and improving patient outcomes. The purpose of this article was to describe how the model has complied with recommendations from several authoritative reports about redesigning and enhancing CPD. This model links primary care clinicians through a knowledge network with an interprofessional team of specialists from an academic medical center who provide telementoring and ongoing education enabling community clinicians to treat patients with a variety of complex conditions. Knowledge and skills are shared during weekly condition-specific videoconferences. The model exemplifies learning as described in the seven levels of CPD by Moore (participation, satisfaction, learning, competence, performance, patient, and community health). The model is also aligned with recommendations from four national reports intended to redesign knowledge transfer in improving health care. Efforts in learning sessions focus on information that is relevant to practice, focus on evidence, education methodology, tailoring of recommendations to individual needs and community resources, and interprofessionalism. Project ECHO serves as a telementoring network model of CPD that aligns with current best practice recommendations for CME. This transformative initiative has the potential to serve as a leading model for larger scale CPD, nationally and globally, to enhance access to care, improve quality, and reduce cost.

  4. Radioactive waste management. International projects on biosphere modelling

    International Nuclear Information System (INIS)

    Carboneras, P.; Cancio, D.

    1993-01-01

    The paper presents a general overview and discussion on the state of art concerning the biospheric transfer and accumulation of contaminants. A special emphasis is given to the progress achieved in the field of radioactive contaminants and particularly to those implied in radioactive waste disposal. The objectives and advances of the international projects BIOMOVS and VAMP on validation of model predictions are also described. (Author)

  5. Projected shell model description of N = 114 superdeformed isotone nuclei

    International Nuclear Information System (INIS)

    Guo, R S; Chen, L M; Chou, C H

    2006-01-01

    A systematic description of the yrast superdeformed (SD) bands in N 114, Z = 80-84 isotone nuclei using the projected shell model is presented. The calculated γ-ray energies, moment of inertia and M1 transitions are compared with the data for which spin is assigned. Excellent agreement with the available data for all isotones is obtained. The calculated electromagnetic properties provide a microscopic understanding of those measured nuclei. Some predictions in superdeformed nuclei are also discussed

  6. Atomic Data and Modelling for Fusion: the ADAS Project

    International Nuclear Information System (INIS)

    Summers, H. P.; O'Mullane, M. G.

    2011-01-01

    The paper is an update on the Atomic Data and Analysis Structure, ADAS, since ICAM-DATA06 and a forward look to its evolution in the next five years. ADAS is an international project supporting principally magnetic confinement fusion research. It has participant laboratories throughout the world, including ITER and all its partner countries. In parallel with ADAS, the ADAS-EU Project provides enhanced support for fusion research at Associated Laboratories and Universities in Europe and ITER. OPEN-ADAS, sponsored jointly by the ADAS Project and IAEA, is the mechanism for open access to principal ADAS atomic data classes and facilitating software for their use. EXTENDED-ADAS comprises a variety of special, integrated application software, beyond the purely atomic bounds of ADAS, tuned closely to specific diagnostic analyses and plasma models.The current scientific content and scope of these various ADAS and ADAS related activities are briefly reviewed. These span a number of themes including heavy element spectroscopy and models, charge exchange spectroscopy, beam emission spectroscopy and special features which provide a broad baseline of atomic modelling and support. Emphasis will be placed on 'lifting the fundamental data baseline'--a principal ADAS task for the next few years. This will include discussion of ADAS and ADAS-EU coordinated and shared activities and some of the methods being exploited.

  7. Solid Waste Projection Model: Database (Version 1.3)

    International Nuclear Information System (INIS)

    Blackburn, C.L.

    1991-11-01

    The Solid Waste Projection Model (SWPM) system is an analytical tool developed by Pacific Northwest Laboratory (PNL) for Westinghouse Hanford Company (WHC). The SWPM system provides a modeling and analysis environment that supports decisions in the process of evaluating various solid waste management alternatives. This document, one of a series describing the SWPM system, contains detailed information regarding the software and data structures utilized in developing the SWPM Version 1.3 Database. This document is intended for use by experienced database specialists and supports database maintenance, utility development, and database enhancement

  8. A River Model Intercomparison Project in Preparation for SWOT

    Science.gov (United States)

    David, C. H.; Andreadis, K.; Famiglietti, J. S.; Beighley, E.; Boone, A. A.; Yamazaki, D.; Paiva, R. C. D.; Fleischmann, A. S.; Collischonn, W.; Fisher, C. K.; Kim, H.; Biancamaria, S.

    2017-12-01

    The Surface Water and Ocean Topography (SWOT) mission is currently scheduled to launch at the beginning of next decade. SWOT is expected to retrieve unprecedented measurements of water extent, elevation, and slope in the largest terrestrial water bodies. Such potential transformative information motivates the investigation of our ability to ingest the associated data into continental-scale models of terrestrial hydrology. In preparation for the expected SWOT observations, an inter-comparison of continental-scale river models is being performed. This comparison experiment focuses on four of the world's largest river basins: the Amazon, the Mississippi, the Niger, and the Saint-Lawrence. This ongoing project focuses on two main research questions: 1) How can we best prepare for the expected SWOT continental to global measurements before SWOT even flies?, and 2) What is the added value of including SWOT terrestrial measurements into global hydro models for enhancing our understanding of the terrestrial water cycle and the climate system? We present here the results of the second year of this project which now includes simulations from six numerical models of rivers over the Mississippi and sheds light on the implications of various modeling choices on simulation quality as well as on the potential impact of SWOT observations.

  9. Contractual Efficiency of PPP Infrastructure Projects: An Incomplete Contract Model

    Directory of Open Access Journals (Sweden)

    Lei Shi

    2018-01-01

    Full Text Available This study analyses the contractual efficiency of public-private partnership (PPP infrastructure projects, with a focus on two financial aspects: the nonrecourse principal and incompleteness of debt contracts. The nonrecourse principal releases the sponsoring companies from the debt contract when the special purpose vehicle (SPV established by the sponsoring companies falls into default. Consequently, all obligations under the debt contract are limited to the liability of the SPV following its default. Because the debt contract is incomplete, a renegotiation of an additional loan between the bank and the SPV might occur to enable project continuation or liquidation, which in turn influences the SPV’s ex ante strategies (moral hazard. Considering these two financial features of PPP infrastructure projects, this study develops an incomplete contract model to investigate how the renegotiation triggers ex ante moral hazard and ex post inefficient liquidation. We derive equilibrium strategies under service fees endogenously determined via bidding and examine the effect of equilibrium strategies on contractual efficiency. Finally, we propose an optimal combination of a performance guarantee, the government’s termination right, and a service fee to improve the contractual efficiency of PPP infrastructure projects.

  10. Revenue Risk Modelling and Assessment on BOT Highway Project

    Science.gov (United States)

    Novianti, T.; Setyawan, H. Y.

    2018-01-01

    The infrastructure project which is considered as a public-private partnership approach under BOT (Build-Operate-Transfer) arrangement, such as a highway, is risky. Therefore, assessment on risk factors is essential as the project have a concession period and is influenced by macroeconomic factors and consensus period. In this study, pre-construction risks of a highway were examined by using a Delphi method to create a space for offline expert discussions; a fault tree analysis to map intuition of experts and to create a model from the underlying risk events; a fuzzy logic to interpret the linguistic data of risk models. The loss of revenue for risk tariff, traffic volume, force majeure, and income were then measured. The results showed that the loss of revenue caused by the risk tariff was 10.5% of the normal total revenue. The loss of revenue caused by the risk of traffic volume was 21.0% of total revenue. The loss of revenue caused by the force majeure was 12.2% of the normal income. The loss of income caused by the non-revenue events was 6.9% of the normal revenue. It was also found that the volume of traffic was the major risk of a highway project because it related to customer preferences.

  11. Projective limits of state spaces III. Toy-models

    Science.gov (United States)

    Lanéry, Suzanne; Thiemann, Thomas

    2018-01-01

    In this series of papers, we investigate the projective framework initiated by Kijowski (1977) and Okołów (2009, 2014, 2013) [1,2], which describes the states of a quantum theory as projective families of density matrices. A short reading guide to the series can be found in Lanéry (2016). A strategy to implement the dynamics in this formalism was presented in our first paper Lanéry and Thiemann (2017) (see also Lanéry, 2016, section 4), which we now test in two simple toy-models. The first one is a very basic linear model, meant as an illustration of the general procedure, and we will only discuss it at the classical level. In the second one, we reformulate the Schrödinger equation, treated as a classical field theory, within this projective framework, and proceed to its (non-relativistic) second quantization. We are then able to reproduce the physical content of the usual Fock quantization.

  12. Carbon Sequestration in Saline Aquifers: Modeling Diffusive and Convective Transport Of a Carbon-­Dioxide Cap

    KAUST Repository

    Allen, Rebecca

    2011-01-01

    done on the diffusive-convective transport that occurs under a cap of CO2-saturated fluid, which results after CO2 is injected into an aquifer and spreads laterally under an area of low permeability. The diffusive-convective modeling reveals an enhanced

  13. Innovations in projecting emissions for air quality modeling ...

    Science.gov (United States)

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality management strategy has climate change implications is encouraging longer modeling time horizons. However, for multi-decadal time horizons, many questions about future conditions arise. For example, will current population, economic, and land use trends continue, or will we see shifts that may alter the spatial and temporal pattern of emissions? Similarly, will technologies such as building-integrated solar photovoltaics, battery storage, electric vehicles, and CO2 capture emerge as disruptive technologies - shifting how we produce and use energy - or will these technologies achieve only niche markets and have little impact? These are some of the questions that are being evaluated by researchers within the U.S. EPA’s Office of Research and Development. In this presentation, Dr. Loughlin will describe a range of analytical approaches that are being explored. These include: (i) the development of alternative scenarios of the future that can be used to evaluate candidate management strategies over wide-ranging conditions, (ii) the application of energy system models to project emissions decades into the future and to assess the environmental implications of new technologies, (iii) and methodo

  14. Finescale Structure of the Temperature-Salinity Relationship

    National Research Council Canada - National Science Library

    Polzin, Kurt L; Ferrari, Raffaele

    2005-01-01

    The long term goal of this project is to understand the processes that establish the temperature-salinity relationship in the ocean, with emphasis on the interplay between advection at the large scale...

  15. NOAA NDBC SOS, 2007-present, sea_water_practical_salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA NDBC SOS server is part of the IOOS DIF SOS Project. The stations in this dataset have sea_water_practical_salinity data. Because of the nature of SOS...

  16. FRESHEM - Fresh-saline groundwater distribution in Zeeland (NL) derived from airborne EM

    Science.gov (United States)

    Siemon, Bernhard; van Baaren, Esther; Dabekaussen, Willem; Delsman, Joost; Gunnik, Jan; Karaoulis, Marios; de Louw, Perry; Oude Essink, Gualbert; Pauw, Pieter; Steuer, Annika; Meyer, Uwe

    2017-04-01

    In a setting of predominantly saline surface waters, the availability of fresh water for agricultural purposes is not obvious in Zeeland, The Netherlands. Canals and ditches are mainly brackish to saline due to saline seepage, which originates from old marine deposits and salt-water transgressions during historical times. The only available fresh groundwater is present in the form of freshwater lenses floating on top of the saline groundwater. This fresh groundwater is vital for agricultural, industrial, ecological, water conservation and drinking water functions. An essential first step for managing this fresh groundwater properly is to know the present spatial fresh-brackish-saline groundwater distribution. As traditional salinity monitoring is labour-intensive, airborne electromagnetics (AEM), which is fast and can cover large areas in short time, is an efficient alternative. A consortium of BGR, Deltares and TNO started FRESHEM Zeeland (FREsh Salt groundwater distribution by Helicopter ElectroMagnetic survey in the Province of Zeeland) in October 2014. Within 3x2 weeks of the first project year, the entire area of about 2000 km2 was surveyed using BGR's helicopter-borne geophysical system totalling to about 10,000 line-km. The HEM datasets of 17 subareas were carefully processed using advanced BGR in-house software and inverted to 2.5 Million resistivity-depth models. Ground truthing demonstrated that the large-scale HEM results fit very well with small-scale ground EM data (ECPT). Based on this spatial resistivity distribution, a 3D voxel model for Chloride concentration was derived for the entire province taking into account geological model data (GeoTOP) for the lithology correction and local in-situ groundwater measurements for the translation of water conductivity to Chloride concentration. The 3D voxel model enables stakeholders to implement spatial Chloride concentration in their groundwater models.

  17. Progress report for project modeling Arctic barrier island-lagoon system response to projected Arctic warming

    Science.gov (United States)

    Erikson, Li H.; Gibbs, Ann E.; Richmond, Bruce M.; Storlazzi, Curt; B.M. Jones,

    2012-01-01

    Changes in Arctic coastal ecosystems in response to global warming may be some of the most severe on the planet. A better understanding and analysis of the rates at which these changes are expected to occur over the coming decades is crucial in order to delineate high-priority areas that are likely to be affected by climate changes. In this study we investigate the likelihood of changes to habitat-supporting barrier island – lagoon systems in response to projected changes in atmospheric and oceanographic forcing associated with Arctic warming. To better understand the relative importance of processes responsible for the current and future coastal landscape, key parameters related to increasing arctic temperatures are investigated and used to establish boundary conditions for models that simulate barrier island migration and inundation of deltaic deposits and low-lying tundra. The modeling effort investigates the dominance and relative importance of physical processes shaping the modern Arctic coastline as well as decadal responses due to projected conditions out to the year 2100.

  18. Multimode model for projective photon-counting measurements

    International Nuclear Information System (INIS)

    Tualle-Brouri, Rosa; Ourjoumtsev, Alexei; Dantan, Aurelien; Grangier, Philippe; Wubs, Martijn; Soerensen, Anders S.

    2009-01-01

    We present a general model to account for the multimode nature of the quantum electromagnetic field in projective photon-counting measurements. We focus on photon-subtraction experiments, where non-Gaussian states are produced conditionally. These are useful states for continuous-variable quantum-information processing. We present a general method called mode reduction that reduces the multimode model to an effective two-mode problem. We apply this method to a multimode model describing broadband parametric down-conversion, thereby improving the analysis of existing experimental results. The main improvement is that spatial and frequency filters before the photon detector are taken into account explicitly. We find excellent agreement with previously published experimental results, using fewer free parameters than before, and discuss the implications of our analysis for the optimized production of states with negative Wigner functions.

  19. Ocean acidification over the next three centuries using a simple global climate carbon-cycle model: projections and sensitivities

    Energy Technology Data Exchange (ETDEWEB)

    Hartin, Corinne A.; Bond-Lamberty, Benjamin; Patel, Pralit; Mundra, Anupriya

    2016-08-01

    Continued oceanic uptake of anthropogenic CO2 is projected to significantly alter the chemistry of the upper oceans over the next three centuries, with potentially serious consequences for marine ecosystems. Relatively few models have the capability to make projections of ocean acidification, limiting our ability to assess the impacts and probabilities of ocean changes. In this study we examine the ability of Hector v1.1, a reduced-form global model, to project changes in the upper ocean carbonate system over the next three centuries, and quantify the model's sensitivity to parametric inputs. Hector is run under prescribed emission pathways from the Representative Concentration Pathways (RCPs) and compared to both observations and a suite of Coupled Model Intercomparison (CMIP5) model outputs. Current observations confirm that ocean acidification is already taking place, and CMIP5 models project significant changes occurring to 2300. Hector is consistent with the observational record within both the high- (> 55°) and low-latitude oceans (< 55°). The model projects low-latitude surface ocean pH to decrease from preindustrial levels of 8.17 to 7.77 in 2100, and to 7.50 in 2300; aragonite saturation levels (ΩAr) decrease from 4.1 units to 2.2 in 2100 and 1.4 in 2300 under RCP 8.5. These magnitudes and trends of ocean acidification within Hector are largely consistent with the CMIP5 model outputs, although we identify some small biases within Hector's carbonate system. Of the parameters tested, changes in [H+] are most sensitive to parameters that directly affect atmospheric CO2 concentrations – Q10 (terrestrial respiration temperature response) as well as changes in ocean circulation, while changes in ΩAr saturation levels are sensitive to changes in ocean salinity and Q10. We conclude that Hector is a robust tool well suited for rapid ocean acidification

  20. Solid waste integrated cost analysis model: 1991 project year report

    Energy Technology Data Exchange (ETDEWEB)

    1991-01-01

    The purpose of the City of Houston's 1991 Solid Waste Integrated Cost Analysis Model (SWICAM) project was to continue the development of a computerized cost analysis model. This model is to provide solid waste managers with tool to evaluate the dollar cost of real or hypothetical solid waste management choices. Those choices have become complicated by the implementation of Subtitle D of the Resources Conservation and Recovery Act (RCRA) and the EPA's Integrated Approach to managing municipal solid waste;. that is, minimize generation, maximize recycling, reduce volume (incinerate), and then bury (landfill) only the remainder. Implementation of an integrated solid waste management system involving all or some of the options of recycling, waste to energy, composting, and landfilling is extremely complicated. Factors such as hauling distances, markets, and prices for recyclable, costs and benefits of transfer stations, and material recovery facilities must all be considered. A jurisdiction must determine the cost impacts of implementing a number of various possibilities for managing, handling, processing, and disposing of waste. SWICAM employs a single Lotus 123 spreadsheet to enable a jurisdiction to predict or assess the costs of its waste management system. It allows the user to select his own process flow for waste material and to manipulate the model to include as few or as many options as he or she chooses. The model will calculate the estimated cost for those choices selected. The user can then change the model to include or exclude waste stream components, until the mix of choices suits the user. Graphs can be produced as a visual communication aid in presenting the results of the cost analysis. SWICAM also allows future cost projections to be made.

  1. Supporting Current Energy Conversion Projects through Numerical Modeling

    Science.gov (United States)

    James, S. C.; Roberts, J.

    2016-02-01

    The primary goals of current energy conversion (CEC) technology being developed today are to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the environment surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. These alterations pose potential stressors to numerous environmental receptors. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array so that these potential impacts can be evaluated. Moreover, this software can be used to optimize array layouts that yield the least changes to the environmental (i.e., hydrodynamics, sediment dynamics, and water quality). Through model calibration exercises, simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains. The Delft3D modeling tool facilitates siting of CEC projects through optimization of array layouts and evaluation of potential environmental effect all while provide a common "language" for academics, industry, and regulators to be able to discuss the implications of marine renewable energy projects. Given the enormity of any full-scale marine renewable energy project, it necessarily falls to modeling to evaluate how array operations must be addressed in an environmental impact statement in a way that engenders confidence in the assessment of the CEC array to minimize environmental effects.

  2. Eradicating the tsetse fly on Zanzibar Island: A model project

    International Nuclear Information System (INIS)

    2003-01-01

    Tsetse flies infest vast areas of Africa and transmit a parasitic disease which devastates livestock herds and spreads debilitating 'sleeping sickness' amongst people. Past efforts to control the disease - Trypanosomosis - and the carrier insects have met with only limited success. But now an environmentally friendly technology called the Sterile Insect Technique (SIT) may provide a lasting solution to this scourge. Working with the Tanzanian Government and Zanzibar authorities, the Department of Technical Co-operation has sponsored a 'Model Project', with technical support from the Joint FAO/IAEA Division, to eradicate the tsetse fly completely from Zanzibar Island by applying SIT. (IAEA)

  3. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    International Nuclear Information System (INIS)

    Townley, L.R.; Trefry, M.G.; Barr, A.D.; Braumiller, S.

    1992-01-01

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  4. Alligator Rivers Analogue project. Hydrogeological modelling. Final Report - Volume 6

    Energy Technology Data Exchange (ETDEWEB)

    Townley, L R; Trefry, M G; Barr, A D [CSIRO Div of Water Resources, PO Wembley, WA (Australia); Braumiller, S [Univ of Arizona, Tucson, AZ (United States). Dept of Hydrology and Water Resources; Kawanishi, M [Central Research Institute of Electric Power Industry, Abiko-Shi, Chiba-Ken (Japan); and others

    1993-12-31

    This volume describes hydrogeological modelling carried out as part of the Alligator Rivers Analogue Project. Hydrogeology has played a key integrating role in the Project, largely because water movement is believed to have controlled the evolution of the Koongarra uranium Orebody and therefore affects field observations of all types at all scales. Aquifer testing described uses the concept of transmissivity in its interpretation of aquifer response to pumping. The concept of an aquifer, a layer transmitting significant quantities of water in a mainly horizontal direction, seems hard to accept in an environment as heterogeneous as that at Koongarra. But modelling of aquifers both in one dimension and two dimensionally in plan has contributed significantly to our understanding of the site. A one-dimensional model with three layers (often described as a quasi two dimensional model) was applied to flow between the Fault and Koongarra Creek. Being a transient model, this model was able to show that reverse flows can indeed occur back towards the Fault, but only if there is distributed recharge over the orebody as well as a mechanism for the Fault, or a region near the Fault, to remove water from the simulated cross-section. The model also showed clearly that the response of the three-layered system, consisting of a highly weathered zone, a fractured transmissive zone and a less conductive lower schist zone, is governed mainly by the transmissivity and storage coefficient of the middle layer. The storage coefficient of the higher layer has little effect. A two-dimensional model in plan used a description of anisotropy to show that reverse flows can also occur even without a conducting Fault. Modelling of a three-dimensional region using discrete fractures showed that it is certainly possible to simulate systems like that observed at Koongarra, but that large amounts of data are probably needed to obtain realistic descriptions of the fracture networks. Inverse modelling

  5. PmaCO2 Project: Porosity and CO2 Trapping Mechanisms The Utrillas Formation in SD-1 borehole (Tejada - Burgos): Porosity and Porous Media Modelling

    International Nuclear Information System (INIS)

    Campos, R.; Barrios, I.; Gonzalez, A. M.

    2013-02-01

    The aim of PmaCO 2 project, supported by the Secretary of State and Research MINECO (CGL2011-24768) is to increase the knowledge of the microstructure of porous storage formations and thus contribute to the viability of CO 2 sequestration in geological formations. The microporous structure plays an important role not only in the prevalence of a particular trapping mechanism, but also on the amount of CO 2 immobilized. Utrillas facies are investigated in this project as representatives of a deep saline aquifer storage. This publication is a summary of the work done in the first year of the project. We present a study on microstructure of sandstones Utrillas, sampled in borehole, by applying the mercury intrusion porosimetry technique for the experimental determination of porosity and associated parameters. The porous medium was modeled with the PoreCor simulation code based in intrusion-extrusion curves. (Author) 78 refs.

  6. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Directory of Open Access Journals (Sweden)

    Yaming Zhai

    Full Text Available To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt, quality, irrigation water use efficiency (IWUE and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1, 320 mm (W2 and 360 mm (W3, and the salinity levels were 1.0 dS/m (F, 3.0 dS/m (S1 and 5.0 dS/m (S2. Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym. After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual, and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  7. Soil Salt Distribution and Tomato Response to Saline Water Irrigation under Straw Mulching.

    Science.gov (United States)

    Zhai, Yaming; Yang, Qian; Wu, Yunyu

    2016-01-01

    To investigate better saline water irrigation scheme for tomatoes that scheduling with the compromise among yield (Yt), quality, irrigation water use efficiency (IWUE) and soil salt residual, an experiment with three irrigation quotas and three salinities of irrigation water was conducted under straw mulching in northern China. The irrigation quota levels were 280 mm (W1), 320 mm (W2) and 360 mm (W3), and the salinity levels were 1.0 dS/m (F), 3.0 dS/m (S1) and 5.0 dS/m (S2). Compared to freshwater, saline water irrigations decreased the maximum leaf area index (LAIm) of tomatoes, and the LAIm presented a decline tendency with higher salinity and lower irrigation quota. The best overall quality of tomato was obtained by S2W1, with the comprehensive quality index of 3.61. A higher salinity and lower irrigation quota resulted in a decrease of individual fruit weight and an increase of the blossom-end rot incidence, finally led to a reduction in the tomato Yt and marketable yield (Ym). After one growth season of tomato, the mass fraction of soil salt in plough layer under S2W1 treatment was the highest, and which presented a decline trend with an increasing irrigation quota. Moreover, compared to W1, soil salts had a tendency to move to the deeper soil layer when using W2 and W3 irrigation quota. According to the calculation results of projection pursuit model, S1W3 was the optimal treatment that possessed the best comprehensive benefit (tomato overall quality, Yt, Ym, IWUE and soil salt residual), and was recommended as the saline water irrigation scheme for tomatoes in northern China.

  8. Project-Management Tools for Libraries: A Planning and Implementation Model Using Microsoft Project 2000

    OpenAIRE

    Ying Zhang; Corinne Bishop

    2005-01-01

    This paper discusses how Microsoft Project 2000 was utilized at the University of Central Florida Libraries to manage an e-reference implementation project. As libraries today adopt more information technologies, efficiently managing projects can be challenging. The authors’ experience in the implementation of QuestionPoint e-reference software in October 2003 is described. Their conclusion illustrates that project-management tools, such as Microsoft Project 2000, offer practical workflow-man...

  9. Comparison of additive (absolute) risk projection models and multiplicative (relative) risk projection models in estimating radiation-induced lifetime cancer risk

    International Nuclear Information System (INIS)

    Kai, Michiaki; Kusama, Tomoko

    1990-01-01

    Lifetime cancer risk estimates depend on risk projection models. While the increasing lengths of follow-up observation periods of atomic bomb survivors in Hiroshima and Nagasaki bring about changes in cancer risk estimates, the validity of the two risk projection models, the additive risk projection model (AR) and multiplicative risk projection model (MR), comes into question. This paper compares the lifetime risk or loss of life-expectancy between the two projection models on the basis of BEIR-III report or recently published RERF report. With Japanese cancer statistics the estimates of MR were greater than those of AR, but a reversal of these results was seen when the cancer hazard function for India was used. When we investigated the validity of the two projection models using epidemiological human data and animal data, the results suggested that MR was superior to AR with respect to temporal change, but there was little evidence to support its validity. (author)

  10. Modelling climate impact on floods under future emission scenarios using an ensemble of climate model projections

    Science.gov (United States)

    Wetterhall, F.; Cloke, H. L.; He, Y.; Freer, J.; Pappenberger, F.

    2012-04-01

    Evidence provided by modelled assessments of climate change impact on flooding is fundamental to water resource and flood risk decision making. Impact models usually rely on climate projections from Global and Regional Climate Models, and there is no doubt that these provide a useful assessment of future climate change. However, cascading ensembles of climate projections into impact models is not straightforward because of problems of coarse resolution in Global and Regional Climate Models (GCM/RCM) and the deficiencies in modelling high-intensity precipitation events. Thus decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs, such as selection of downscaling methods and application of Model Output Statistics (MOS). In this paper a grand ensemble of projections from several GCM/RCM are used to drive a hydrological model and analyse the resulting future flood projections for the Upper Severn, UK. The impact and implications of applying MOS techniques to precipitation as well as hydrological model parameter uncertainty is taken into account. The resultant grand ensemble of future river discharge projections from the RCM/GCM-hydrological model chain is evaluated against a response surface technique combined with a perturbed physics experiment creating a probabilisic ensemble climate model outputs. The ensemble distribution of results show that future risk of flooding in the Upper Severn increases compared to present conditions, however, the study highlights that the uncertainties are large and that strong assumptions were made in using Model Output Statistics to produce the estimates of future discharge. The importance of analysing on a seasonal basis rather than just annual is highlighted. The inability of the RCMs (and GCMs) to produce realistic precipitation patterns, even in present conditions, is a major caveat of local climate impact studies on flooding, and this should be a focus for future development.

  11. Tidal circulation and salinity distribution in the Mandovi and Zuari estuaries: Case study

    Digital Repository Service at National Institute of Oceanography (India)

    Manoj, N.T.; Unnikrishnan, A.S.

    was to study the intraseasonal variations of salinity during the breaks in the southwest monsoon. A hybrid network numerical model was used for the present study to simulate the tidal circulation and the salinity distribution in these estuaries. The model...

  12. Parameter Identification for Salinity in a Quasilinear Thermodynamic System of Sea Ice

    OpenAIRE

    Wei Lv; Xiaojiao Li; Enmin Feng

    2014-01-01

    This study is intended to provide a parameter identification method to determine salinity of sea ice by temperature and salinity observations. A quasilinear thermodynamic system of sea ice with unknown salinity is described and its property is proved. Then, a parameter identification model is established and the existence of its optimal solution is discussed. The salinity profile is calculated by the temperature and salinity data, which were measured at Nella Fjord around Zhongshan Station, A...

  13. The Fire Locating and Modeling of Burning Emissions (FLAMBE) Project

    Science.gov (United States)

    Reid, J. S.; Prins, E. M.; Westphal, D.; Richardson, K.; Christopher, S.; Schmidt, C.; Theisen, M.; Eck, T.; Reid, E. A.

    2001-12-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE) project was initiated by NASA, the US Navy and NOAA to monitor biomass burning and burning emissions on a global scale. The idea behind the mission is to integrate remote sensing data with global and regional transport models in real time for the purpose of providing the scientific community with smoke and fire products for planning and research purposes. FLAMBE is currently utilizing real time satellite data from GOES satellites, fire products based on the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) are generated for the Western Hemisphere every 30 minutes with only a 90 minute processing delay. We are currently collaborating with other investigators to gain global coverage. Once generated, the fire products are used to input smoke fluxes into the NRL Aerosol Analysis and Prediction System, where advection forecasts are performed for up to 6 days. Subsequent radiative transfer calculations are used to estimate top of atmosphere and surface radiative forcing as well as surface layer visibility. Near real time validation is performed using field data collected by Aerosol Robotic Network (AERONET) Sun photometers. In this paper we fully describe the FLAMBE project and data availability. Preliminary result from the previous year will also be presented, with an emphasis on the development of algorithms to determine smoke emission fluxes from individual fire products. Comparisons to AERONET Sun photometer data will be made.

  14. Modelling of Airship Flight Mechanics by the Projection Equivalent Method

    Directory of Open Access Journals (Sweden)

    Frantisek Jelenciak

    2015-12-01

    Full Text Available This article describes the projection equivalent method (PEM as a specific and relatively simple approach for the modelling of aircraft dynamics. By the PEM it is possible to obtain a mathematic al model of the aerodynamic forces and momentums acting on different kinds of aircraft during flight. For the PEM, it is a characteristic of it that -in principle - it provides an acceptable regression model of aerodynamic forces and momentums which exhibits reasonable and plausible behaviour from a dynamics viewpoint. The principle of this method is based on applying Newton's mechanics, which are then combined with a specific form of the finite element method to cover additional effects. The main advantage of the PEM is that it is not necessary to carry out measurements in a wind tunnel for the identification of the model's parameters. The plausible dynamical behaviour of the model can be achieved by specific correction parameters, which can be determined on the basis of experimental data obtained during the flight of the aircraft. In this article, we present the PEM as applied to an airship as well as a comparison of the data calculated by the PEM and experimental flight data.

  15. Evaluation model of project complexity for large-scale construction projects in Iran - A Fuzzy ANP approach

    Directory of Open Access Journals (Sweden)

    Aliyeh Kazemi

    2016-09-01

    Full Text Available Construction projects have always been complex. By growing trend of this complexity, implementations of large-scale constructions become harder. Hence, evaluating and understanding these complexities are critical. Correct evaluation of a project complication can provide executives and managers with good source to use. Fuzzy analytic network process (ANP is a logical and systematic approach toward defining, evaluation, and grading. This method allows for analyzing complex systems, and determining complexity of them. In this study, by taking advantage of fuzzy ANP, effective indexes for development of complications in large-scale construction projects in Iran have been determined and prioritized. The results show socio-political, project system interdependencies, and technological complexity indexes ranked top to three. Furthermore, in comparison of three main huge projects: commercial-administrative, hospital, and skyscrapers, the hospital project had been evaluated as the most complicated. This model is beneficial for professionals in managing large-scale projects.

  16. Benefits of Building Information Modelling in the Project Lifecycle: Construction Projects in Asia

    Directory of Open Access Journals (Sweden)

    Jian Li

    2014-08-01

    Full Text Available Building Information Modelling (BIM is a process involving the creation and management of objective data with property, unique identity and relationship. In the Architecture, Engineering and Construction (AEC industry, BIM is adopted a lot in the lifecycle of buildings because of the high integration of information that it enables. Four-dimensional (4D computer-aided design (CAD has been adopted for many years to improve the construction planning process. BIM is adopted throughout buildings' lifecycles, in design, construction and operation. This paper presents five large-scale public and financial projects that adopt BIM in the design, construction and operational phases. Different uses of BIM are compared and contrasted in the context of the separate backgrounds. It is concluded that productivity is improved where BIM is used to enable easy sharing and integration of information and convenient collaboration.

  17. Temperature and salinity data from moored current meter and bottle casts in the Gulf of Mexico as part of the Brine Disposal project, 1977-09-15 to 1977-12-19 (NODC Accession 7800318)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature and salinity data were collected using moored current meter and bottle casts in the Gulf of Mexico from September 15, 1977 to January 19, 1977. Data were...

  18. Global distribution of temperature and salinity profiles from profiling floats as part of the World Ocean Circulation Experiment (WOCE) project, from 1994-11-07 to 2002-01-19 (NCEI Accession 0000936)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature-Salinity profile and pressure data were collected by using profiling floats in a world-wide distribution from 07 November 1994 to 19 January 2002. Data...

  19. Current direction, temperature, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 1983-08-31 to 1984-10-01 (NODC Accession 8500021)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, and salinity data were collected using moored current meter casts in the Gulf of Mexico from August 31, 1983 to October 1, 1984. Data...

  20. Depth, salinity, and other data were collected from the R/V ALPHA HELIX in the Bering Sea as part of the Inner Shelf Transport and Recycling Project (ISHTAR) from 17 September 1986 to 25 September 1986 (NODC Accession 0000275)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Depth, fluorescence, oxygen, salinity, and water temperature data were collected from the R/V ALPHA HELIX from September 17, 1986 to September 25, 1986. Data were...

  1. Temperature, wind direction, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 January 1981 - 01 January 1981 (NODC Accession 8100474)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from January 1, 1981 to January 1, 1981. Data...

  2. Current direction, wind direction, temperature, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 February 1981 - 01 February 1981 (NODC Accession 8100516)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Current direction, temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from February 1, 1981 to...

  3. Temperature, wind direction, and salinity data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 01 December 1980 - 01 December 1980 (NODC Accession 8100457)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, wind direction, and salinity data were collected using moored current meter casts in the Gulf of Mexico from December 1, 1980 to December 1, 1980. Data...

  4. Current direction, temperature, salinity, and taxonomic code data from moored current meter casts in the Gulf of Mexico during the Brine Disposal project, 1979-08-18 to 1981-01-21 (NODC Accession 8100502)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Temperature, salinity, current direction, and taxonomic data were collected using moored current meter casts in the Gulf of Mexico from August 18, 1979 to January...

  5. PROBLEMS OF VALUE-ORIENTED FORMATION OF PROJECT PRODUCT’S MODEL

    Directory of Open Access Journals (Sweden)

    Тигран Георгиевич ГРИГОРЯН

    2015-06-01

    Full Text Available Problems of formation of the project output model related to the complexity of information transmission in the communication between the project participants and stakeholders are considered. The concept of forming a project output model based on allocation of stages of model developing and specification and efficiency of the formation of a model that takes into account the need to plan the project output value creation and transferring to the sponsor and consumers is proposed.

  6. Coagulation processes of kaolinite and montmorillonite in calm, saline water

    Science.gov (United States)

    Zhang, Jin-Feng; Zhang, Qing-He; Maa, Jerome P.-Y.

    2018-03-01

    A three dimensional numerical model for simulating the coagulation processes of colloids has been performed by monitoring the time evolution of particle number concentration, the size distribution of aggregates, the averaged settling velocity, the collision frequency, and the collision efficiency in quiescent water with selected salinities. This model directly simulates all interaction forces between particles based on the lattice Boltzmann method (LBM) and the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and thus, can reveal the collision and coagulation processes of colloidal suspensions. Although using perfect spherical particles in the modeling, the results were compared with those for kaolinite and montmorillonite suspensions to demonstrate the capability of simulating the responses of these particles with highly irregular shape. The averaged settling velocity of kaolinite aggregates in quiescent saline water reached a maximum of 0.16 mm/s when the salinity increasing to about 3, and then, exhibited little dependence on salinity thereafter. Model simulations results (by choosing specific values that represent kaolinite's characteristics) indicate a similar trend: rapid decrease of the particle number concentration (i.e., rapidly flocculated, and thus, settling velocity also increases rapidly) when salinity increases from 0 to 2, and then, only increased slightly when salinity was further increased from 5 to 20. The collision frequency for kaolinite only decreases slightly with increasing salinity because that the fluid density and viscosity increase slightly in sea water. It suggests that the collision efficiency for kaolinite rises rapidly at low salinities and levels off at high salinity. For montmorillonite, the settling velocity of aggregates in quiescent saline water continuedly increases to 0.022 mm/s over the whole salinity range 0-20, and the collision efficiency for montmorillonite rises with increasing salinities.

  7. Hydrogeological model of the territory of Kowsar hydraulic project

    Directory of Open Access Journals (Sweden)

    Orekhov Vyacheslav Valentinovich

    2015-03-01

    Full Text Available Mathematical hydrogeology model of the territory of Kowsar Project was created with account for the results of the engineering surveys and hydro geological monitoring, which was conducted in the process of Kowsar Project construction. In order to create the model in the present work a universal computer system Ansys was used, which implements the finite element method and solid modeling technology, allowing to solve the filtration problem with the use of thermal analogy. The three-dimensional geometric model was built with use of the principle “hard body” modeling, which displays the main line of the territory relief, including the created water reservoir, geological structure (anticline Duk and the main lithological complexes developed within the territory. In the limestone mass As here is a zone characterized by water permeability on territory of Kowsar Project, and a layer characterized by seepage feeding, which occurs outside the considered territory. The water reservoir is a source of the change of hydro geological situation. The results of field observations witness, that the levels of underground waters within the area of the main structures reacts almost instantly on the water level change in the water reservoir; the delay period of levels change is not more than 1,5…2,0 weeks at maximum distance from the water reservoir. These particularities of the hydro geological regime allow using the steady-state scheme of the decision of forecast problems. The mass of limestone As, containing the structures of the Kowsar Project, is not homogeneous and anisotropy in its seepage characteristics. The heterogeneity is conditioned by exogenous influence on the mass up to the depth of 100…150 m. The seepage anisotropy of the mass is expressed by the difference of water permeability of the mass along and across the layers for almost one order. The structures of Kowsar Project is presented by a dam, grouting curtain on axis of the dam and

  8. Implementing parallel spreadsheet models for health policy decisions: The impact of unintentional errors on model projections.

    Science.gov (United States)

    Bailey, Stephanie L; Bono, Rose S; Nash, Denis; Kimmel, April D

    2018-01-01

    Spreadsheet software is increasingly used to implement systems science models informing health policy decisions, both in academia and in practice where technical capacity may be limited. However, spreadsheet models are prone to unintentional errors that may not always be identified using standard error-checking techniques. Our objective was to illustrate, through a methodologic case study analysis, the impact of unintentional errors on model projections by implementing parallel model versions. We leveraged a real-world need to revise an existing spreadsheet model designed to inform HIV policy. We developed three parallel versions of a previously validated spreadsheet-based model; versions differed by the spreadsheet cell-referencing approach (named single cells; column/row references; named matrices). For each version, we implemented three model revisions (re-entry into care; guideline-concordant treatment initiation; immediate treatment initiation). After standard error-checking, we identified unintentional errors by comparing model output across the three versions. Concordant model output across all versions was considered error-free. We calculated the impact of unintentional errors as the percentage difference in model projections between model versions with and without unintentional errors, using +/-5% difference to define a material error. We identified 58 original and 4,331 propagated unintentional errors across all model versions and revisions. Over 40% (24/58) of original unintentional errors occurred in the column/row reference model version; most (23/24) were due to incorrect cell references. Overall, >20% of model spreadsheet cells had material unintentional errors. When examining error impact along the HIV care continuum, the percentage difference between versions with and without unintentional errors ranged from +3% to +16% (named single cells), +26% to +76% (column/row reference), and 0% (named matrices). Standard error-checking techniques may not

  9. Dryout modeling in support of the organic tank safety project

    International Nuclear Information System (INIS)

    Simmons, C.S.

    1998-08-01

    This work was performed for the Organic Tank Safety Project to evaluate the moisture condition of the waste surface organic-nitrate bearing tanks that are classified as being conditionally safe because sufficient water is present. This report describes the predictive modeling procedure used to predict the moisture content of waste in the future, after it has been subjected to dryout caused by water vapor loss through passive ventilation. This report describes a simplified procedure for modeling the drying out of tank waste. Dryout occurs as moisture evaporates from the waste into the headspace and then exits the tank through ventilation. The water vapor concentration within the waste of the headspace is determined by the vapor-liquid equilibrium, which depends on the waste's moisture content and temperature. This equilibrium has been measured experimentally for a variety of waste samples and is described by a curve called the water vapor partial pressure isotherm. This curve describes the lowering of the partial pressure of water vapor in equilibrium with the waste relative to pure water due to the waste's chemical composition and hygroscopic nature. Saltcake and sludge are described by two distinct calculations that emphasize the particular physical behavior or each. A simple, steady-state model is devised for each type to obtain the approximate drying behavior. The report shows the application of the model to Tanks AX-102, C-104, and U-105

  10. The project of model practices in family medicine in Slovenia

    Directory of Open Access Journals (Sweden)

    Tonka Poplas Susič

    2013-11-01

    Full Text Available Background: Primary health care has undergone great changes as a consequence of demographic changes, growing patients’ awareness and organizational changes in the healthcare system. Declining interest in family medicine specialization further worsens the situation. In the period of lack of GPs and their overloading, it is necessary to include a diploma graduate nurse in the team of GPs and to define competencies and activities in such a way that encourage more active approach to the patients, meeting the indicators of quality.The purpose of the article is to describe the project of model practice in Slovenia and to present some results.Methods: A model practice introduces a new concept in the areas of human resource standards (to existing team, a diploma graduate nurse is included on a part-time basis; work competences (use of protocols for the treatment of chronic patients, extended and well-defined preventive screenings, establishing registers of chronic patients and assessing quality by means of quality indicators and work management (redistribution of workload .Results: Due to great interest of general practitioners, a total of 271 model practices were introduced in 2011 and 2012. MPs have been distributed evenly through different regions inSlovenia. Registers of patients with chronic diseases (COPD, asthma and diabetes have been established and during the preventive screening, on average 2 patients with a chronic disease and 15 patients with risk factors have been detected. Patients are treated actively according to their needs rather than their preferences.Conclusions: The project of MPs enables a high quality and cost effectiveness of patients’ treatment in family medicine. With a gradual introducing of new MPs, a well planed and monitored patients’ care will be implemented in the practice. In a long run, disburdening of a secondary care level and more rational consumption of drugs are expected

  11. Flyover Modeling of Planetary Pits - Undergraduate Student Instrument Project

    Science.gov (United States)

    Bhasin, N.; Whittaker, W.

    2015-12-01

    On the surface of the moon and Mars there are hundreds of skylights, which are collapsed holes that are believed to lead to underground caves. This research uses Vision, Inertial, and LIDAR sensors to build a high resolution model of a skylight as a landing vehicle flies overhead. We design and fabricate a pit modeling instrument to accomplish this task, implement software, and demonstrate sensing and modeling capability on a suborbital reusable launch vehicle flying over a simulated pit. Future missions on other planets and moons will explore pits and caves, led by the technology developed by this research. Sensor software utilizes modern graph-based optimization techniques to build 3D models using camera, LIDAR, and inertial data. The modeling performance was validated with a test flyover of a planetary skylight analog structure on the Masten Xombie sRLV. The trajectory profile closely follows that of autonomous planetary powered descent, including translational and rotational dynamics as well as shock and vibration. A hexagonal structure made of shipping containers provides a terrain feature that serves as an appropriate analog for the rim and upper walls of a cylindrical planetary skylight. The skylight analog floor, walls, and rim are modeled in elevation with a 96% coverage rate at 0.25m2 resolution. The inner skylight walls have 5.9cm2 color image resolution and the rims are 6.7cm2 with measurement precision superior to 1m. The multidisciplinary student team included students of all experience levels, with backgrounds in robotics, physics, computer science, systems, mechanical and electrical engineering. The team was commited to authentic scientific experimentation, and defined specific instrument requirements and measurable experiment objectives to verify successful completion.This work was made possible by the NASA Undergraduate Student Instrument Project Educational Flight Opportunity 2013 program. Additional support was provided by the sponsorship of an

  12. Project Investment and Project Financing: A study on Business Case and Financing Models

    OpenAIRE

    Wang, Simiao

    2012-01-01

    Uncertainty is a very significant factor that must be taken into consideration in project front-end phase management. By taking into uncertainty, the planners can to a great extent make sure that the business case could be accurate between specific intervals, hence business case can be based on to make decision. In a highly uncertain environment; the project sponsors should prefer other means to finance the project rather than using debt. Risk management is extremely important in project fina...

  13. Soil salinity decreases global soil organic carbon stocks.

    Science.gov (United States)

    Setia, Raj; Gottschalk, Pia; Smith, Pete; Marschner, Petra; Baldock, Jeff; Setia, Deepika; Smith, Jo

    2013-11-01

    Saline soils cover 3.1% (397 million hectare) of the total land area of the world. The stock of soil organic carbon (SOC) reflects the balance between carbon (C) inputs from plants, and losses through decomposition, leaching and erosion. Soil salinity decreases plant productivity and hence C inputs to the soil, but also microbial activity and therefore SOC decomposition rates. Using a modified Rothamsted Carbon model (RothC) with a newly introduced salinity decomposition rate modifier and a plant input modifier we estimate that, historically, world soils that are currently saline have lost an average of 3.47 tSOC ha(-1) since they became saline. With the extent of saline soils predicted to increase in the future, our modelling suggests that world soils may lose 6.8 Pg SOC due to salinity by the year 2100. Our findings suggest that current models overestimate future global SOC stocks and underestimate net CO2 emissions from the soil-plant system by not taking salinity effects into account. From the perspective of enhancing soil C stocks, however, given the lower SOC decomposition rate in saline soils, salt tolerant plants could be used to sequester C in salt-affected areas. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Validation of fracture flow models in the Stripa project

    International Nuclear Information System (INIS)

    Herbert, A.; Dershowitz, W.; Long, J.; Hodgkinson, D.

    1991-01-01

    One of the objectives of Phase III of the Stripa Project is to develop and evaluate approaches for the prediction of groundwater flow and nuclide transport in a specific unexplored volume of the Stripa granite and make a comparison with data from field measurements. During the first stage of the project, a prediction of inflow to the D-holes, an array of six parallel closely spaced 100m boreholes, was made based on data from six other boreholes. This data included fracture geometry, stress, single borehole geophysical logging, crosshole and reflection radar and seismic tomogram, head monitoring and single hole packer test measurements. Maps of fracture traces on the drift walls have also been made. The D-holes are located along a future Validation Drift which will be excavated. The water inflow to the D-holes has been measured in an experiment called the Simulated Drift Experiment. The paper reviews the Simulated Drift Experiment validation exercise. Following a discussion of the approach to validation, the characterization data and its preliminary interpretation are summarised and commented upon. That work has proved feasible to carry through all the complex and interconnected tasks associated with the gathering and interpretation of characterization data, the development and application of complex models, and the comparison with measured inflows. This exercise has provided detailed feed-back to the experimental and theoretical work required for measurements and predictions of flow into the Validation Drift. Computer codes used: CHANGE, FRACMAN, MAFIC, NAPSAC and TRINET. 2 figs., 2 tabs., 19 refs

  15. Modeling of problems of projection: A non-countercyclic approach

    Directory of Open Access Journals (Sweden)

    Jason Ginsburg

    2016-06-01

    Full Text Available This paper describes a computational implementation of the recent Problems of Projection (POP approach to the study of language (Chomsky 2013; 2015. While adopting the basic proposals of POP, notably with respect to how labeling occurs, we a attempt to formalize the basic proposals of POP, and b develop new proposals that overcome some problems with POP that arise with respect to cyclicity, labeling, and wh-movement operations. We show how this approach accounts for simple declarative sentences, ECM constructions, and constructions that involve long-distance movement of a wh-phrase (including the that-trace effect. We implemented these proposals with a computer model that automatically constructs step-by-step derivations of target sentences, thus making it possible to verify that these proposals work.

  16. Salinity and resource management in the Hunter Valley

    Energy Technology Data Exchange (ETDEWEB)

    Creelman, R.A.; Cooke, R.; Simons, M. [RA Creelman & Associates (Australia)

    1995-08-01

    If excess water salinity is to be managed in the Hunter Valley, its causes and behaviour must be understood. Although Hunter Valley hydrology, hydrogeology and hydrogeochemistry require further study, there is now enough information available to begin the development of both temporal and spatial models as valley management tools. Currently the Department of Water Resources is developing a model known as Integrated Water Quality and Quantity Model (IQQM). IQQM which includes a salinity module is essentially a surface water simulation model. It wll enable testing of alternate management and operation policies such as the salinity property rights trading scheme recently introduced by the EPA to manage salt release from coal mines and power stations. An overview is presented of the progress made to date on the salinity module for IQQM, and an outline is given of the geological and hydrogeochemical concepts that have been assembled to support the salinity module of IQQM. 17 refs., 3 figs., 1 tab.

  17. Improvement of Salinity Stress Tolerance in Rice: Challenges and Opportunities

    Directory of Open Access Journals (Sweden)

    Thi My Linh Hoang

    2016-10-01

    Full Text Available Rice (Oryza sativa L. is an important staple crop that feeds more than one half of the world’s population and is the model system for monocotyledonous plants. However, rice is very sensitive to salinity and is the most salt sensitive cereal crop with a threshold of 3 dSm−1 for most cultivated varieties. Despite many attempts using different strategies to improve salinity tolerance in rice, the achievements so far are quite modest. This review aims to discuss challenges that hinder the improvement of salinity stress tolerance in rice as well as potential opportunities for enhancing salinity stress tolerance in this important crop.

  18. Integrated Medical Model Project - Overview and Summary of Historical Application

    Science.gov (United States)

    Myers, J.; Boley, L.; Butler, D.; Foy, M.; Goodenow, D.; Griffin, D.; Keenan, A.; Kerstman, E.; Melton, S.; McGuire, K.; hide

    2015-01-01

    Introduction: The Integrated Medical Model (IMM) Project represents one aspect of NASA's Human Research Program (HRP) to quantitatively assess medical risks to astronauts for existing operational missions as well as missions associated with future exploration and commercial space flight ventures. The IMM takes a probabilistic approach to assessing the likelihood and specific outcomes of one hundred medical conditions within the envelope of accepted space flight standards of care over a selectable range of mission capabilities. A specially developed Integrated Medical Evidence Database (iMED) maintains evidence-based, organizational knowledge across a variety of data sources. Since becoming operational in 2011, version 3.0 of the IMM, the supporting iMED, and the expertise of the IMM project team have contributed to a wide range of decision and informational processes for the space medical and human research community. This presentation provides an overview of the IMM conceptual architecture and range of application through examples of actual space flight community questions posed to the IMM project. Methods: Figure 1 [see document] illustrates the IMM modeling system and scenario process. As illustrated, the IMM computational architecture is based on Probabilistic Risk Assessment techniques. Nineteen assumptions and limitations define the IMM application domain. Scenario definitions include crew medical attributes and mission specific details. The IMM forecasts probabilities of loss of crew life (LOCL), evacuation (EVAC), quality time lost during the mission, number of medical resources utilized and the number and type of medical events by combining scenario information with in-flight, analog, and terrestrial medical information stored in the iMED. In addition, the metrics provide the integrated information necessary to estimate optimized in-flight medical kit contents under constraints of mass and volume or acceptable level of mission risk. Results and Conclusions

  19. A framework for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps

    Science.gov (United States)

    Xu, Jin; Li, Zheng; Li, Shuliang; Zhang, Yanyan

    2015-07-01

    There is still a lack of effective paradigms and tools for analysing and discovering the contents and relationships of project knowledge contexts in the field of project management. In this paper, a new framework for extracting and representing project knowledge contexts using topic models and dynamic knowledge maps under big data environments is proposed and developed. The conceptual paradigm, theoretical underpinning, extended topic model, and illustration examples of the ontology model for project knowledge maps are presented, with further research work envisaged.

  20. Software development infrastructure for the HYBRID modeling and simulation project

    International Nuclear Information System (INIS)

    Epiney, Aaron S.; Kinoshita, Robert A.; Kim, Jong Suk; Rabiti, Cristian; Greenwood, M. Scott

    2016-01-01

    One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers

  1. Software development infrastructure for the HYBRID modeling and simulation project

    Energy Technology Data Exchange (ETDEWEB)

    Epiney, Aaron S. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kim, Jong Suk [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Greenwood, M. Scott [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-09-01

    One of the goals of the HYBRID modeling and simulation project is to assess the economic viability of hybrid systems in a market that contains renewable energy sources like wind. The idea is that it is possible for the nuclear plant to sell non-electric energy cushions, which absorb (at least partially) the volatility introduced by the renewable energy sources. This system is currently modeled in the Modelica programming language. To assess the economics of the system, an optimization procedure is trying to find the minimal cost of electricity production. The RAVEN code is used as a driver for the whole problem. It is assumed that at this stage, the HYBRID modeling and simulation framework can be classified as non-safety “research and development” software. The associated quality level is Quality Level 3 software. This imposes low requirements on quality control, testing and documentation. The quality level could change as the application development continues.Despite the low quality requirement level, a workflow for the HYBRID developers has been defined that include a coding standard and some documentation and testing requirements. The repository performs automated unit testing of contributed models. The automated testing is achieved via an open-source python script called BuildingsP from Lawrence Berkeley National Lab. BuildingsPy runs Modelica simulation tests using Dymola in an automated manner and generates and runs unit tests from Modelica scripts written by developers. In order to assure effective communication between the different national laboratories a biweekly videoconference has been set-up, where developers can report their progress and issues. In addition, periodic face-face meetings are organized intended to discuss high-level strategy decisions with management. A second means of communication is the developer email list. This is a list to which everybody can send emails that will be received by the collective of the developers and managers

  2. THE DEVELOPMENT OF A MODEL INITIATION OF PROJECT IN A FORM OF MARKOV CHAIN

    Directory of Open Access Journals (Sweden)

    Катерина Вікторівна КОЛЕСНІКОВА

    2017-03-01

    Full Text Available The model of the initiation of projects which reproduces a fragment of the general scheme of interaction between the main entities in the project initiation phase is created. Determined that the project initiation through communication links between the four main entities: projects team, environment, the project itself and the customer. The result of the initiation of projects in the emerging communications referred to objects in the design phase through consistency requirements of stakeholders and the adoption of the basic concepts of projects, goal-projects, project planning, evaluation requirements of specialization and competence required for the formation of the project team. This Markov chain is part of the control circuit that includes elements such as the temporary organizational structure of the project design, project team, customer, and environment project. It is shown that the Markov model of interaction between project participants in their initiation phase, taking into account the role of a key player in the project ‑ the customer can determine changes of state and generate recommendations for initiating projects. Results of the study can serve as a basis for creating models of control objects that contain its organizational structure and reflect the parametric properties of the system to obtain information needed for decision making to initiate projects

  3. Impact of climate change on the Hii River basin and salinity in Lake Shinji: a case study using the SWAT model and a regression curve

    Science.gov (United States)

    The impacts of climate change on water resources were analysed for the Hii River basin and downstream Lake Shinji. The variation between saline and fresh water within these systems means that they encompass diverse ecosystems. Changes in evapotranspiration (ET), snow water equivalent, discharge into...

  4. Sustainability, creativity and innovation in project management – Model development for assessing organizational performance through projects

    OpenAIRE

    Szabó, Lajos

    2016-01-01

    Today a number of studies are published on how organizational strategy is developed and how organizations contribute to local and regional development through the realization of these strategies. There are also many articles dealing with the success of a project by identifying the criteria and the factors that influence them. This article introduces the project-oriented strategic planning process that reveals how projects contribute to local and regional development and demonstrates the relat...

  5. The CTQ flowdown as a conceptual model of project objectives

    NARCIS (Netherlands)

    de Koning, H.; de Mast, J.

    2007-01-01

    The purpose of this article is to describe and clarify a tool that is at the core of the definition phase of most quality improvement projects. This tool is called the critical to quality (CTQ) flowdown. It relates high-level strategic focal points to project objectives. In their turn project

  6. Building an Experiential Learning Model for a Project Management Course

    Science.gov (United States)

    Chen, Kuan C.; Chuang, Keh-Wen

    2009-01-01

    Teaching students to become project management professionals requires a real world experience. Incorporating live clients into student projects, instead of using case studies or mock companies, adds a dimension that exposes students to the realities of project management. This paper will describe a structured methodology used in a project…

  7. GIS embedded hydrological modeling: the SID&GRID project

    Science.gov (United States)

    Borsi, I.; Rossetto, R.; Schifani, C.

    2012-04-01

    The SID&GRID research project, started April 2010 and funded by Regione Toscana (Italy) under the POR FSE 2007-2013, aims to develop a Decision Support System (DSS) for water resource management and planning based on open source and public domain solutions. In order to quantitatively assess water availability in space and time and to support the planning decision processes, the SID&GRID solution consists of hydrological models (coupling 3D existing and newly developed surface- and ground-water and unsaturated zone modeling codes) embedded in a GIS interface, applications and library, where all the input and output data are managed by means of DataBase Management System (DBMS). A graphical user interface (GUI) to manage, analyze and run the SID&GRID hydrological models based on open source gvSIG GIS framework (Asociación gvSIG, 2011) and a Spatial Data Infrastructure to share and interoperate with distributed geographical data is being developed. Such a GUI is thought as a "master control panel" able to guide the user from pre-processing spatial and temporal data, running the hydrological models, and analyzing the outputs. To achieve the above-mentioned goals, the following codes have been selected and are being integrated: 1. Postgresql/PostGIS (PostGIS, 2011) for the Geo Data base Management System; 2. gvSIG with Sextante (Olaya, 2011) geo-algorithm library capabilities and Grass tools (GRASS Development Team, 2011) for the desktop GIS; 3. Geoserver and Geonetwork to share and discover spatial data on the web according to Open Geospatial Consortium; 4. new tools based on the Sextante GeoAlgorithm framework; 5. MODFLOW-2005 (Harbaugh, 2005) groundwater modeling code; 6. MODFLOW-LGR (Mehl and Hill 2005) for local grid refinement; 7. VSF (Thoms et al., 2006) for the variable saturated flow component; 8. new developed routines for overland flow; 9. new algorithms in Jython integrated in gvSIG to compute the net rainfall rate reaching the soil surface, as input for

  8. Galerkin v. discrete-optimal projection in nonlinear model reduction

    Energy Technology Data Exchange (ETDEWEB)

    Carlberg, Kevin Thomas [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Barone, Matthew Franklin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Antil, Harbir [George Mason Univ., Fairfax, VA (United States)

    2015-04-01

    Discrete-optimal model-reduction techniques such as the Gauss{Newton with Approximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions for large-scale turbulent, compressible ow problems where standard Galerkin techniques have failed. However, there has been limited comparative analysis of the two approaches. This is due in part to difficulties arising from the fact that Galerkin techniques perform projection at the time-continuous level, while discrete-optimal techniques do so at the time-discrete level. This work provides a detailed theoretical and experimental comparison of the two techniques for two common classes of time integrators: linear multistep schemes and Runge{Kutta schemes. We present a number of new ndings, including conditions under which the discrete-optimal ROM has a time-continuous representation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the two approaches. Perhaps most surprisingly, we demonstrate both theoretically and experimentally that decreasing the time step does not necessarily decrease the error for the discrete-optimal ROM; instead, the time step should be `matched' to the spectral content of the reduced basis. In numerical experiments carried out on a turbulent compressible- ow problem with over one million unknowns, we show that increasing the time step to an intermediate value decreases both the error and the simulation time of the discrete-optimal reduced-order model by an order of magnitude.

  9. Initialization of the Euler model MODIS with field data from the 'EPRI plume model validation project'

    International Nuclear Information System (INIS)

    Petersen, G.; Eppel, D.; Lautenschlager, M.; Mueller, A.

    1985-01-01

    The program deck MODIS (''MOment DIStribution'') is designed to be used as operational tool for modelling the dispersion of a point source under general atmospheric conditions. The concentration distribution is determined by calculating its cross-wind moments on a vertical grid oriented in the main wind direction. The model contains a parametrization for horizontal and vertical coefficients based on a second order closure model. The Eulerian time scales, preliminary determined by fitting measured plume cross sections, are confirmed by comparison with data from the EPRI plume model validation project. (orig.) [de

  10. SELECTION OF EFFECTIVE MODELS OF PROJECT IMPLEMENTATION IN A CHANGING FINANCIAL SITUATION

    Directory of Open Access Journals (Sweden)

    Александр Иванович МЕНЕЙЛЮК

    2015-06-01

    Full Text Available The article describes the methods of selecting effective models of construction projects of residential buildings and recommendations for its use. The technique is based on the construction of the models in the program Microsoft Project and analysis using the program COMPEX. Methods can be used not only for building projects. It is especially effective in a variable financial situation.

  11. Study on the maturity model of nuclear power project management in China

    International Nuclear Information System (INIS)

    Chen Changbing; Li Huiqiang; Zheng Yanguo

    2009-01-01

    Based on the general project management maturity model, this paper discussed the establishment of nuclear power engineering project management maturity model in China, and proposed a basic framework in order to provide a way for improving and evaluating the ability of nuclear power project management in China. (authors)

  12. An alternative projection model of future nuclear capacity

    International Nuclear Information System (INIS)

    Takei, Mitsuo

    1985-01-01

    There is generally a high degree of uncertainty involved in the projection of growth of any energy source, especially when the projection extends 50 years ahead. The 1982 OECD/NEA Report, 'Nuclear Energy and its Fuel Cycle Prospect to 2025' notes the downturn in past projections of nuclear capacity over the past decade. It is obvious that rapidly changing conditions have affected overall worldwide energy and economic growth and the field of nuclear power has been subject to changes specific to itself. These have caused past projections to become obsolete and therefore it would seem necessary to implement a new projection method to improve the accuracy of present forecasting. (author)

  13. A process model for design team communication within fast-track building projects using project websites

    NARCIS (Netherlands)

    Otter, den A.F.H.J.; Reymen, I.M.M.J.

    2008-01-01

    The factor time within building projects is on high pressure because of the increasing need for faster delivery of buildings. Within fast track, complex building projects the design process is an important key. Through case analyses offart-hack design processes it became obvious that process and

  14. The Copenhagen Traffic Model and its Application in the Metro City Ring Project

    DEFF Research Database (Denmark)

    Vuk, Goran; Overgård, Christian Hansen; Fox, J.

    2009-01-01

    In June 2007, the Danish Parliament passed an act to finance the construction of the Metro City Ring in Copenhagen. The assessment project is based on the passenger patronage forecasts for 2015 from the Copenhagen traffic model. In this paper we show how the model forecasts for this particular...... infrastructure project can be explained through detailed knowledge of model structure and model validation....

  15. Utilization of saline water and land: Reclaiming lost resources

    International Nuclear Information System (INIS)

    Naqvi, Mujtaba

    2001-01-01

    There is an abundance of saline water on the globe. Large tracts of land are arid and/or salt-affected, and a large number of plant species are known to be salt-tolerant. It would seem obvious that salt tolerant plants (halophytes) have a role in utilizing the two wasted resources, saline water and wastelands. We will briefly describe how these resources can be fruitfully utilized and how the IAEA has helped several countries to demonstrate the possibility of cultivating salt tolerant plant species on arid saline wastelands for economic and environmental benefit. After some brief introductory remarks we will discuss the results of the project

  16. THE PARAMETER OPTIMIZATION MODEL OF INVESTMENT AND CONSTRUCTION PROJECTS AND MANAGERIAL FEASIBILITY OF THEIR BEHAVIOR

    Directory of Open Access Journals (Sweden)

    P. Ye. Uvarov

    2009-09-01

    Full Text Available In the article the basic problem of substantiation of parameters of optimization model of organizationaltechnological solutions for investment-building projects in the system of project management is considered.

  17. A Model-Driven Visualization Tool for Use with Model-Based Systems Engineering Projects

    Science.gov (United States)

    Trase, Kathryn; Fink, Eric

    2014-01-01

    Model-Based Systems Engineering (MBSE) promotes increased consistency between a system's design and its design documentation through the use of an object-oriented system model. The creation of this system model facilitates data presentation by providing a mechanism from which information can be extracted by automated manipulation of model content. Existing MBSE tools enable model creation, but are often too complex for the unfamiliar model viewer to easily use. These tools do not yet provide many opportunities for easing into the development and use of a system model when system design documentation already exists. This study creates a Systems Modeling Language (SysML) Document Traceability Framework (SDTF) for integrating design documentation with a system model, and develops an Interactive Visualization Engine for SysML Tools (InVEST), that exports consistent, clear, and concise views of SysML model data. These exported views are each meaningful to a variety of project stakeholders with differing subjects of concern and depth of technical involvement. InVEST allows a model user to generate multiple views and reports from a MBSE model, including wiki pages and interactive visualizations of data. System data can also be filtered to present only the information relevant to the particular stakeholder, resulting in a view that is both consistent with the larger system model and other model views. Viewing the relationships between system artifacts and documentation, and filtering through data to see specialized views improves the value of the system as a whole, as data becomes information

  18. A New Bi-Directional Projection Model Based on Pythagorean Uncertain Linguistic Variable

    OpenAIRE

    Huidong Wang; Shifan He; Xiaohong Pan

    2018-01-01

    To solve the multi-attribute decision making (MADM) problems with Pythagorean uncertain linguistic variable, an extended bi-directional projection method is proposed. First, we utilize the linguistic scale function to convert uncertain linguistic variable and provide a new projection model, subsequently. Then, to depict the bi-directional projection method, the formative vectors of alternatives and ideal alternatives are defined. Furthermore, a comparative analysis with projection model is co...

  19. Analysis of Salinity Intrusion in the San Francisco Bay-Delta Using a GA-Optimized Neural Net, and Application of the Model to Prediction in the Elkhorn Slough Habitat

    Science.gov (United States)

    Thompson, D. E.; Rajkumar, T.

    2002-12-01

    The San Francisco Bay Delta is a large hydrodynamic complex that incorporates the Sacramento and San Joaquin Estuaries, the Suisan Marsh, and the San Francisco Bay proper. Competition exists for the use of this extensive water system both from the fisheries industry, the agricultural industry, and from the marine and estuarine animal species within the Delta. As tidal fluctuations occur, more saline water pushes upstream allowing fish to migrate beyond the Suisan Marsh for breeding and habitat occupation. However, the agriculture industry does not want extensive salinity intrusion to impact water quality for human and plant consumption. The balance is regulated by pumping stations located along the estuaries and reservoirs whereby flushing of fresh water keeps the saline intrusion at bay. The pumping schedule is driven by data collected at various locations within the Bay Delta and by numerical models that predict the salinity intrusion as part of a larger model of the system. The Interagency Ecological Program (IEP) for the San Francisco Bay / Sacramento-San Joaquin Estuary collects, monitors, and archives the data, and the Department of Water Resources provides a numerical model simulation (DSM2) from which predictions are made that drive the pumping schedule. A problem with DSM2 is that the numerical simulation takes roughly 16 hours to complete a prediction. We have created a neural net, optimized with a genetic algorithm, that takes as input the archived data from multiple gauging stations and predicts stage, salinity, and flow at the Carquinez Straits (at the downstream end of the Suisan Marsh). This model seems to be robust in its predictions and operates much faster than the current numerical DSM2 model. Because the Bay-Delta is strongly tidally driven, we used both Principal Component Analysis and Fast Fourier Transforms to discover dominant features within the IEP data. We then filtered out the dominant tidal forcing to discover non-primary tidal effects

  20. Cloud radiative effects and changes simulated by the Coupled Model Intercomparison Project Phase 5 models

    Science.gov (United States)

    Shin, Sun-Hee; Kim, Ok-Yeon; Kim, Dongmin; Lee, Myong-In

    2017-07-01

    Using 32 CMIP5 (Coupled Model Intercomparison Project Phase 5) models, this study examines the veracity in the simulation of cloud amount and their radiative effects (CREs) in the historical run driven by observed external radiative forcing for 1850-2005, and their future changes in the RCP (Representative Concentration Pathway) 4.5 scenario runs for 2006-2100. Validation metrics for the historical run are designed to examine the accuracy in the representation of spatial patterns for climatological mean, and annual and interannual variations of clouds and CREs. The models show large spread in the simulation of cloud amounts, specifically in the low cloud amount. The observed relationship between cloud amount and the controlling large-scale environment are also reproduced diversely by various models. Based on the validation metrics, four models—ACCESS1.0, ACCESS1.3, HadGEM2-CC, and HadGEM2-ES—are selected as best models, and the average of the four models performs more skillfully than the multimodel ensemble average. All models project global-mean SST warming at the increase of the greenhouse gases, but the magnitude varies across the simulations between 1 and 2 K, which is largely attributable to the difference in the change of cloud amount and distribution. The models that simulate more SST warming show a greater increase in the net CRE due to reduced low cloud and increased incoming shortwave radiation, particularly over the regions of marine boundary layer in the subtropics. Selected best-performing models project a significant reduction in global-mean cloud amount of about -0.99% K-1 and net radiative warming of 0.46 W m-2 K-1, suggesting a role of positive feedback to global warming.

  1. Long-term durum wheat monoculture: modelling and future projection

    Directory of Open Access Journals (Sweden)

    Ettore Bernardoni

    2012-03-01

    Full Text Available The potential effects of future climate change on grain production of a winter durum wheat cropping system were investigated. Based on future climate change projections, derived from a statistical downscaling process applied to the HadCM3 general circulation model and referred to two IPCC scenarios (A2 and B1, the response on yield and aboveground biomass (AGB and the variation in total organic carbon (TOC were explored. The software used in this work is an hybrid dynamic simulation model able to simulate, under different pedoclimatic conditions, the processes involved in cropping system such as crop growth and development, water and nitrogen balance. It implements different approaches in order to ensure accurate simulation of the mainprocess related to soil-crop-atmosphere continuum.The model was calibrated using soil data, crop yield, AGB and phenology coming from a long-term experiment, located in Apulia region. The calibration was performed using data collected in the period 1978–1990; validation was carried out on the 1991–2009 data. Phenology simulation was sufficiently accurate, showing some limitation only in predicting the physiological maturity. Yields and AGBs were predicted with an acceptable accuracy during both calibration and validation. CRM resulted always close to optimum value, EF in every case scored positive value, the value of index r2 was good, although in some cases values lower than 0.6 were calculated. Slope of the linear regression equation between measured and simulated values was always close to 1, indicating an overall good performance of the model. Both future climate scenarios led to a general increase in yields but a slightly decrease in AGB values. Data showed variations in the total production and yield among the different periods due to the climate variation. TOC evolution suggests that the combination of temperature and precipitation is the main factor affecting TOC variation under future scenarios

  2. Form factors in the projected linear chiral sigma model

    International Nuclear Information System (INIS)

    Alberto, P.; Coimbra Univ.; Bochum Univ.; Ruiz Arriola, E.; Fiolhais, M.; Urbano, J.N.; Coimbra Univ.; Goeke, K.; Gruemmer, F.; Bochum Univ.

    1990-01-01

    Several nucleon form factors are computed within the framework of the linear chiral soliton model. To this end variational means and projection techniques applied to generalized hedgehog quark-boson Fock states are used. In this procedure the Goldberger-Treiman relation and a virial theorem for the pion-nucleon form factor are well fulfilled demonstrating the consistency of the treatment. Both proton and neutron charge form factors are correctly reproduced, as well as the proton magnetic one. The shapes of the neutron magnetic and of the axial form factors are good but their absolute values at the origin are too large. The slopes of all the form factors at zero momentum transfer are in good agreement with the experimental data. The pion-nucleon form factor exhibits to great extent a monopole shape with a cut-off mass of Λ=690 MeV. Electromagnetic form factors for the vertex γNΔ and the nucleon spin distribution are also evaluated and discussed. (orig.)

  3. Research on evaluation of enterprise project culture based on Denison model

    Directory of Open Access Journals (Sweden)

    Yucheng Zeng

    2015-05-01

    Full Text Available Purpose: The purpose of this paper is to build enterprise project culture evaluation model and search for the best evaluation method for Chinese enterprise project culture on the basis of studying and drawing lessons from enterprise culture evaluation theory and method at home and abroad. Design/methodology/approach: Referring to the Denison enterprise culture evaluation model, this paper optimizes it according to the difference of enterprise project culture, designs the enterprise project culture evaluation model and proves the practicability of the model through empirical. Finding: This paper finds that it`s more applicable to use the Denison model for enterprise project culture evaluation through the comparative analysis of domestic and foreign enterprise culture evaluation theory and method, the systematic project culture management framework of Chinese enterprises has not yet formed through empirical research, and four factors in enterprise project culture have important influence on project operation performance improvement. Research limitations/implications: The research on evaluation of enterprise project culture based on Denison model is a preliminary attempt, the design of evaluation index system, evaluation model and scale structure also need to be improved, but the thinking of this paper in this field provides a valuable reference for future research. Practical Implications: This paper provides the support of theory and practice for evaluating the present situation of enterprise project culture construction and analyzing the advantages and disadvantages of project culture, which contributes to the "dialectical therapy" of enterprise project management, enterprise management and enterprise project culture construction. Originality/value: The main contribution of this paper is the introduction of Denison enterprise culture model. Combining with the actual situation of enterprises, this paper also builds the evaluation model for

  4. BOT schemes as financial model of hydro power projects

    International Nuclear Information System (INIS)

    Grausam, A.

    1997-01-01

    Build-operate-transfer (BOT) schemes are the latest methods adopted in the developing infrastructure projects. This paper outlines the project financing through BOT schemes and briefly focuses on the factors particularly relevant to hydro power projects. Hydro power development provides not only the best way to produce electricity, it can also solve problems in different fields, such as navigation problems in case of run-of-the river plants, ground water management systems and flood control etc. This makes HPP projects not cheaper, but hydro energy is a clean and renewable energy and the hydro potential worldwide will play a major role to meet the increased demand in future. 5 figs

  5. Divergent projections of future land use in the United States arising from different models and scenarios

    Science.gov (United States)

    Sohl, Terry L.; Wimberly, Michael; Radeloff, Volker C.; Theobald, David M.; Sleeter, Benjamin M.

    2016-01-01

    A variety of land-use and land-cover (LULC) models operating at scales from local to global have been developed in recent years, including a number of models that provide spatially explicit, multi-class LULC projections for the conterminous United States. This diversity of modeling approaches raises the question: how consistent are their projections of future land use? We compared projections from six LULC modeling applications for the United States and assessed quantitative, spatial, and conceptual inconsistencies. Each set of projections provided multiple scenarios covering a period from roughly 2000 to 2050. Given the unique spatial, thematic, and temporal characteristics of each set of projections, individual projections were aggregated to a common set of basic, generalized LULC classes (i.e., cropland, pasture, forest, range, and urban) and summarized at the county level across the conterminous United States. We found very little agreement in projected future LULC trends and patterns among the different models. Variability among scenarios for a given model was generally lower than variability among different models, in terms of both trends in the amounts of basic LULC classes and their projected spatial patterns. Even when different models assessed the same purported scenario, model projections varied substantially. Projections of agricultural trends were often far above the maximum historical amounts, raising concerns about the realism of the projections. Comparisons among models were hindered by major discrepancies in categorical definitions, and suggest a need for standardization of historical LULC data sources. To capture a broader range of uncertainties, ensemble modeling approaches are also recommended. However, the vast inconsistencies among LULC models raise questions about the theoretical and conceptual underpinnings of current modeling approaches. Given the substantial effects that land-use change can have on ecological and societal processes, there

  6. Does air-sea coupling influence model projections of the effects of the Paris Agreement?

    Science.gov (United States)

    Klingaman, Nicholas; Suckling, Emma; Sutton, Rowan; Dong, Buwen

    2017-04-01

    state can be controlled by prescribed, seasonally varying corrections to temperature and salinity, which substantially reduce SST biases without damping variability. This allows the present-day MetUM-GOML experiment to have a ocean mean state very close to the observed climatology (global RMSE ≈ 0.25°C). We perform three 150-year experiments with MetUM-GOML for (a) present-day (1976-2005 climatology) and for future scenarios with global-mean temperatures (b) 1.5°C and (c) 2.0°C above pre-industrial levels. For (b) and (c), we achieve these warming levels by increasing the CO2 concentrations in MetUM-GOML, as well as by adjusting the prescribed sea ice using change factors derived from a transient simulation with the fully coupled Met Office model. We analyse projected global and regional changes in temperature, precipitation and atmospheric circulation in our MetUM-GOML simulations, focusing on seasonal means, multi-annual persistence of seasonal extremes (e.g., the probability of consecutive wet summers) and intra-seasonal extremes (e.g., heatwaves, droughts, floods). To identify the influence of air-sea coupling on these projections, we compare the MetUM-GOML simulations to 150-year atmosphere-only simulations with prescribed daily SSTs from the corresponding MetUM-GOML runs. This comparison demonstrates whether atmosphere-ocean feedbacks influence the projections of changes hydro-meteorological extremes in a warmer world, as well as whether these feedbacks affect the assessment of the impacts avoided by limiting global-mean temperature change to 1.5°C. Our results will inform the choice of model framework for, and hence the experiment design of, further efforts to characterise the response to a fixed global-mean temperature increase, as well as future climate-change attribution experiments.

  7. Solar Car, Solar Boat: Model Classroom Projects. Seattle Tech Prep.

    Science.gov (United States)

    Seattle Community Coll. District, Washington.

    This booklet shows how teachers at Ingraham High School and Madison Middle School in Seattle (Washington) challenged their students to tackle demanding technical projects. It also shows how well the students responded to that challenge. The booklet begins with the background of the project, the framework for which would be a university-sponsored…

  8. Model Diagnostics for the Department of Energy's Accelerated Climate Modeling for Energy (ACME) Project

    Science.gov (United States)

    Smith, B.

    2015-12-01

    In 2014, eight Department of Energy (DOE) national laboratories, four academic institutions, one company, and the National Centre for Atmospheric Research combined forces in a project called Accelerated Climate Modeling for Energy (ACME) with the goal to speed Earth system model development for climate and energy. Over the planned 10-year span, the project will conduct simulations and modeling on DOE's most powerful high-performance computing systems at Oak Ridge, Argonne, and Lawrence Berkeley Leadership Compute Facilities. A key component of the ACME project is the development of an interactive test bed for the advanced Earth system model. Its execution infrastructure will accelerate model development and testing cycles. The ACME Workflow Group is leading the efforts to automate labor-intensive tasks, provide intelligent support for complex tasks and reduce duplication of effort through collaboration support. As part of this new workflow environment, we have created a diagnostic, metric, and intercomparison Python framework, called UVCMetrics, to aid in the testing-to-production execution of the ACME model. The framework exploits similarities among different diagnostics to compactly support diagnosis of new models. It presently focuses on atmosphere and land but is designed to support ocean and sea ice model components as well. This framework is built on top of the existing open-source software framework known as the Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT). Because of its flexible framework design, scientists and modelers now can generate thousands of possible diagnostic outputs. These diagnostics can compare model runs, compare model vs. observation, or simply verify a model is physically realistic. Additional diagnostics are easily integrated into the framework, and our users have already added several. Diagnostics can be generated, viewed, and manipulated from the UV-CDAT graphical user interface, Python command line scripts and programs

  9. Housing Value Projection Model Related to Educational Planning: The Feasibility of a New Methodology. Final Report.

    Science.gov (United States)

    Helbock, Richard W.; Marker, Gordon

    This study concerns the feasibility of a Markov chain model for projecting housing values and racial mixes. Such projections could be used in planning the layout of school districts to achieve desired levels of socioeconomic heterogeneity. Based upon the concepts and assumptions underlying a Markov chain model, it is concluded that such a model is…

  10. Metal Mixture Modeling Evaluation project: 2. Comparison of four modeling approaches

    Science.gov (United States)

    Farley, Kevin J.; Meyer, Joe; Balistrieri, Laurie S.; DeSchamphelaere, Karl; Iwasaki, Yuichi; Janssen, Colin; Kamo, Masashi; Lofts, Steve; Mebane, Christopher A.; Naito, Wataru; Ryan, Adam C.; Santore, Robert C.; Tipping, Edward

    2015-01-01

    As part of the Metal Mixture Modeling Evaluation (MMME) project, models were developed by the National Institute of Advanced Industrial Science and Technology (Japan), the U.S. Geological Survey (USA), HDR⎪HydroQual, Inc. (USA), and the Centre for Ecology and Hydrology (UK) to address the effects of metal mixtures on biological responses of aquatic organisms. A comparison of the 4 models, as they were presented at the MMME Workshop in Brussels, Belgium (May 2012), is provided herein. Overall, the models were found to be similar in structure (free ion activities computed by WHAM; specific or non-specific binding of metals/cations in or on the organism; specification of metal potency factors and/or toxicity response functions to relate metal accumulation to biological response). Major differences in modeling approaches are attributed to various modeling assumptions (e.g., single versus multiple types of binding site on the organism) and specific calibration strategies that affected the selection of model parameters. The models provided a reasonable description of additive (or nearly additive) toxicity for a number of individual toxicity test results. Less-than-additive toxicity was more difficult to describe with the available models. Because of limitations in the available datasets and the strong inter-relationships among the model parameters (log KM values, potency factors, toxicity response parameters), further evaluation of specific model assumptions and calibration strategies is needed.

  11. Chemistry and Climate in Asia - An Earth System Modeling Project

    Science.gov (United States)

    Barth, M. C.; Emmons, L. K.; Massie, S. T.; Pfister, G.; Romero Lankao, P.; Lamarque, J.; Carmichael, G. R.

    2011-12-01

    Asia is one of the most highly populated and economically dynamic regions in the world, with much of the population located in growing mega-cities. It is a region with significant emissions of greenhouse gases, aerosols and other pollutants, which pose high health risks to urban populations. Emissions of these aerosols and gases increased drastically over the last decade due to economic growth and urbanization and are expected to rise further in the near future. As such, the continent plays a role in influencing climate change via its effluent of aerosols and gaseous pollutants. Asia is also susceptible to adverse climate change through interactions between aerosols and clouds, which potentially can have serious implications for freshwater resources. We are developing an integrated inter-disciplinary program to focus on Asia, its climate, air quality, and impact on humans that will include connections with hydrology, ecosystems, extreme weather events, and human health. The primary goal of this project is to create a team to identify key scientific questions and establish networks of specialists to create a plan for future studies to address these questions. A second goal is to establish research facilities and a framework for investigating chemistry and climate over Asia. These facilities include producing high resolution Earth System Model simulations that have been evaluated with meteorological and chemical measurements, producing high-resolution emission inventories, analyzing satellite data, and analyzing the vulnerability of humans to air quality and extreme natural events. In this presentation we will describe in more detail these activities and discuss a future workshop on the impact of chemistry in climate on air quality and human health.

  12. Semi-structured data extraction and modelling: the WIA Project

    Directory of Open Access Journals (Sweden)

    Alessandro Mosca

    2013-09-01

    Full Text Available Over the last decades, the amount of data of all kinds available electronically has increased dramatically. Data are accessible through a range of interfaces including Web browsers, database query languages, application-specific interfaces, built on top of a number of different data exchange formats. All these data span from un-structured to highly structured data. Very often, some of them have structure even if the structure is implicit, and not as rigid or regular as that found in standard database systems. Spreadsheet documents are prototypical in this respect. Spreadsheets are the lightweight technology able to supply companies with easy to build business management and business intelligence applications, and business people largely adopt spreadsheets as smart vehicles for data files generation and sharing. Actually, the more spreadsheets grow in complexity (e.g., their use in product development plans and quoting, the more their arrangement, maintenance, and analysis appear as a knowledge-driven activity. The algorithmic approach to the problem of automatic data structure extraction from spreadsheet documents (i.e., grid-structured and free topological-related data emerges from the WIA project: Worksheets Intelligent Analyser. The WIA-algorithm shows how to provide a description of spreadsheet contents in terms of higher level of abstractions or conceptualisations. In particular, the WIA-algorithm target is about the extraction of i the calculus work-flow implemented in the spreadsheets formulas and ii the logical role played by the data which take part into the calculus. The aim of the resulting conceptualisations is to provide spreadsheets with abstract representations useful for further model refinements and optimizations through evolutionary algorithms computations.

  13. Saline agriculture in Mediterranean environments

    Directory of Open Access Journals (Sweden)

    Albino Maggio

    2011-03-01

    Full Text Available Salinization is increasingly affecting world's agricultural land causing serious yield loss and soil degradation. Understanding how we could improve crop productivity in salinized environments is therefore critical to meet the challenging goal of feeding 9.3 billion people by 2050. Our comprehension of fundamental physiological mechanisms in plant salt stress adaptation has greatly advanced over the last decades. However, many of these mechanisms have been linked to salt tolerance in simplified experimental systems whereas they have been rarely functionally proven in real agricultural contexts. In-depth analyses of specific crop-salinity interactions could reveal important aspects of plant salt stress adaptation as well as novel physiological/agronomic targets to improve salinity tolerance. These include the developmental role of root vs. shoot systems respect to water-ion homeostasis, morphological vs. metabolic contributions to stress adaptation, developmental processes vs. seasonal soil salinity evolution, residual effects of saline irrigation in non-irrigated crops, critical parameters of salt tolerance in soil-less systems and controlled environments, response to multiple stresses. Finally, beneficial effects of salinization on qualitative parameters such as stress-induced accumulation of high nutritional value secondary metabolites should be considered, also. In this short review we attempted to highlight the multifaceted nature of salinity in Mediterranean agricultural systems by summarizing most experimental activity carried out at the Department of Agricultural Engineering and Agronomy of University of Naples Federico II in the last few years.

  14. Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project

    Science.gov (United States)

    Jaeger, W. K.; Plantinga, A.

    2013-12-01

    This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of

  15. A functional-dynamic reflection on participatory processes in modeling projects.

    Science.gov (United States)

    Seidl, Roman

    2015-12-01

    The participation of nonscientists in modeling projects/studies is increasingly employed to fulfill different functions. However, it is not well investigated if and how explicitly these functions and the dynamics of a participatory process are reflected by modeling projects in particular. In this review study, I explore participatory modeling projects from a functional-dynamic process perspective. The main differences among projects relate to the functions of participation-most often, more than one per project can be identified, along with the degree of explicit reflection (i.e., awareness and anticipation) on the dynamic process perspective. Moreover, two main approaches are revealed: participatory modeling covering diverse approaches and companion modeling. It becomes apparent that the degree of reflection on the participatory process itself is not always explicit and perfectly visible in the descriptions of the modeling projects. Thus, the use of common protocols or templates is discussed to facilitate project planning, as well as the publication of project results. A generic template may help, not in providing details of a project or model development, but in explicitly reflecting on the participatory process. It can serve to systematize the particular project's approach to stakeholder collaboration, and thus quality management.

  16. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2011-01-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  17. Absolute Salinity, "Density Salinity" and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Science.gov (United States)

    Wright, D. G.; Pawlowicz, R.; McDougall, T. J.; Feistel, R.; Marion, G. M.

    2010-08-01

    Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models. First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. The Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies. Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol SAdens; it stands out as the most appropriate representation of salinity for use in dynamical physical

  18. Absolute Salinity, ''Density Salinity'' and the Reference-Composition Salinity Scale: present and future use in the seawater standard TEOS-10

    Directory of Open Access Journals (Sweden)

    D. G. Wright

    2011-01-01

    Full Text Available Salinity plays a key role in the determination of the thermodynamic properties of seawater and the new TEOS-101 standard provides a consistent and effective approach to dealing with relationships between salinity and these thermodynamic properties. However, there are a number of practical issues that arise in the application of TEOS-10, both in terms of accuracy and scope, including its use in the reduction of field data and in numerical models.

    First, in the TEOS-10 formulation for IAPSO Standard Seawater, the Gibbs function takes the Reference Salinity as its salinity argument, denoted SR, which provides a measure of the mass fraction of dissolved material in solution based on the Reference Composition approximation for Standard Seawater. We discuss uncertainties in both the Reference Composition and the Reference-Composition Salinity Scale on which Reference Salinity is reported. The Reference Composition provides a much-needed fixed benchmark but modified reference states will inevitably be required to improve the representation of Standard Seawater for some studies. However, the Reference-Composition Salinity Scale should remain unaltered to provide a stable representation of salinity for use with the TEOS-10 Gibbs function and in climate change detection studies.

    Second, when composition anomalies are present in seawater, no single salinity variable can fully represent the influence of dissolved material on the thermodynamic properties of seawater. We consider three distinct representations of salinity that have been used in previous studies and discuss the connections and distinctions between them. One of these variables provides the most accurate representation of density possible as well as improvements over Reference Salinity for the determination of other thermodynamic properties. It is referred to as "Density Salinity" and is represented by the symbol

  19. Experience of Hungarian model project: 'Strengthening training for operational safety at Paks NPP'

    International Nuclear Information System (INIS)

    Kiss, I.

    1998-01-01

    Training of Operational Safety at Paks NPP is described including all the features of the project including namely: description of Paks NPP, its properties and performances; reasons for establishing Hungarian Model Project, its main goals, mentioning Hungarian and IAEA experts involved in the Project, its organization, operation, budget, current status together with its short term and long term impact

  20. HB-Line Special Nuclear Material Campaigns: Model-Based Project Management

    International Nuclear Information System (INIS)

    CHANG, ROBERT

    2004-01-01

    This study is to show how a model was used to enable management to better estimate production capabilities to ensure contract milestones/commitments are met, to cope with fast changing project baselines and project missions, to ensure the project will meet the negotiated throughput, and to eliminate unnecessary but costly design changes

  1. MODEL OF INTEGRATED VALUE OF PROJECTS IN THE FIELD OF ALTERNATIVE ENERGY

    Directory of Open Access Journals (Sweden)

    Наталія Ігорівна БОРИСОВА

    2015-05-01

    Full Text Available Development of alternative energy sources requires the implementation of complex problems, the solution of which is necessary to apply the project approach. The uniqueness of alternative energy projects (AEP necessitates individual approach to evaluating the effectiveness of each. The paper contains the results of the project management features's analysis in the field of alternative energy, determining the values and developing of the value management integrated conceptual model of AEP. In assessing the effectiveness of AEP considered the socio-economic and commercial aspects. Value management integrated conceptual model of AEP was obtained by combining the classical model of the project management goals with the project values model "Five "E" and two "A". The classical model of the project management goals have been complemented with risk parameters.

  2. Cost estimate modeling of transportation management plans for highway projects.

    Science.gov (United States)

    2012-05-01

    Highway rehabilitation and reconstruction projects frequently cause road congestion and increase safety concerns while limiting access for road users. State Transportation Agencies (STAs) are challenged to find safer and more efficient ways to renew ...

  3. Defining and implementing a model for pharmacy resident research projects

    Directory of Open Access Journals (Sweden)

    Dick TB

    2015-09-01

    Full Text Available Objective: To describe a standard approach to provide a support structure for pharmacy resident research that emphasizes self-identification of a residency research project. Methods: A subcommittee of the residency advisory committee was formed at our institution. The committee was initially comprised of 2 clinical pharmacy specialists, 1 drug information pharmacist, and 2 pharmacy administrators. The committee developed research guidelines that are distributed to residents prior to the residency start that detail the research process, important deadlines, and available resources. Instructions for institutional review board (IRB training and deadlines for various assignments and presentations throughout the residency year are clearly defined. Residents conceive their own research project and emphasis is placed on completing assignments early in the residency year. Results: In the 4 years this research process has been in place, 15 of 16 (94% residents successfully identified their own research question. All 15 residents submitted a complete research protocol to the IRB by the August deadline. Four residents have presented the results of their research at multi-disciplinary national professional meetings and 1 has published a manuscript. Feedback from outgoing residents has been positive overall and their perceptions of their research projects and the process are positive. Conclusion: Pharmacy residents selecting their own research projects for their residency year is a feasible alternative to assigning or providing lists of research projects from which to select a project.

  4. Hypertonic Saline in Treatment of Pulmonary Disease in Cystic Fibrosis

    Directory of Open Access Journals (Sweden)

    Emer P. Reeves

    2012-01-01

    Full Text Available The pathogenesis of lung disease in cystic fibrosis is characterised by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. Mucus within the cystic fibrosis airways is enriched in negatively charged matrices composed of DNA released from colonizing bacteria or inflammatory cells, as well as F-actin and elevated concentrations of anionic glycosaminoglycans. Therapies acting against airway mucus in cystic fibrosis include aerosolized hypertonic saline. It has been shown that hypertonic saline possesses mucolytic properties and aids mucociliary clearance by restoring the liquid layer lining the airways. However, recent clinical and bench-top studies are beginning to broaden our view on the beneficial effects of hypertonic saline, which now extend to include anti-infective as well as anti-inflammatory properties. This review aims to discuss the described therapeutic benefits of hypertonic saline and specifically to identify novel models of hypertonic saline action independent of airway hydration.

  5. Use of microwave remote sensing in salinity estimation

    International Nuclear Information System (INIS)

    Singh, R.P.; Kumar, V.; Srivastav, S.K.

    1990-01-01

    Soil-moisture interaction and the consequent liberation of ions causes the salinity of waters. The salinity of river, lake, ocean and ground water changes due to seepage and surface runoff. We have studied the feasibility of using microwave remote sensing for the estimation of salinity by carrying out numerical calculations to study the microwave remote sensing responses of various models representative of river, lake and ocean water. The results show the dependence of microwave remote sensing responses on the salinity and surface temperature of water. The results presented in this paper will be useful in the selection of microwave sensor parameters and in the accurate estimation of salinity from microwave remote sensing data

  6. Hypertonic saline in treatment of pulmonary disease in cystic fibrosis.

    LENUS (Irish Health Repository)

    Reeves, Emer P

    2012-01-01

    The pathogenesis of lung disease in cystic fibrosis is characterised by decreased airway surface liquid volume and subsequent failure of normal mucociliary clearance. Mucus within the cystic fibrosis airways is enriched in negatively charged matrices composed of DNA released from colonizing bacteria or inflammatory cells, as well as F-actin and elevated concentrations of anionic glycosaminoglycans. Therapies acting against airway mucus in cystic fibrosis include aerosolized hypertonic saline. It has been shown that hypertonic saline possesses mucolytic properties and aids mucociliary clearance by restoring the liquid layer lining the airways. However, recent clinical and bench-top studies are beginning to broaden our view on the beneficial effects of hypertonic saline, which now extend to include anti-infective as well as anti-inflammatory properties. This review aims to discuss the described therapeutic benefits of hypertonic saline and specifically to identify novel models of hypertonic saline action independent of airway hydration.

  7. A New Bi-Directional Projection Model Based on Pythagorean Uncertain Linguistic Variable

    Directory of Open Access Journals (Sweden)

    Huidong Wang

    2018-04-01

    Full Text Available To solve the multi-attribute decision making (MADM problems with Pythagorean uncertain linguistic variable, an extended bi-directional projection method is proposed. First, we utilize the linguistic scale function to convert uncertain linguistic variable and provide a new projection model, subsequently. Then, to depict the bi-directional projection method, the formative vectors of alternatives and ideal alternatives are defined. Furthermore, a comparative analysis with projection model is conducted to show the superiority of bi-directional projection method. Finally, an example of graduate’s job option is given to demonstrate the effectiveness and feasibility of the proposed method.

  8. Effects of temperature and salinity on light scattering by water

    Science.gov (United States)

    Zhang, Xiaodong; Hu, Lianbo

    2010-04-01

    A theoretical model on light scattering by water was developed from the thermodynamic principles and was used to evaluate the effects of temperature and salinity. The results agreed with the measurements by Morel within 1%. The scattering increases with salinity in a non-linear manner and the empirical linear model underestimate the scattering by seawater for S < 40 psu. Seawater also exhibits an 'anomalous' scattering behavior with a minimum occurring at 24.64 °C for pure water and this minimum increases with the salinity, reaching 27.49 °C at 40 psu.

  9. COGNITIVE MODELING AS A METHOD OF QUALITATIVE ANALYSIS OF IT PROJECTS

    Directory of Open Access Journals (Sweden)

    Інна Ігорівна ОНИЩЕНКО

    2016-03-01

    Full Text Available The example project implementing automated CRM-system demonstrated the possibility and features of cognitive modeling in the qualitative analysis of project risks to determine their additional features. Proposed construction of cognitive models of project risks in information technology within the qualitative risk analysis, additional assessments as a method of ranking risk to characterize the relationship between them. The proposed cognitive model reflecting the relationship between the risk of IT project to assess the negative and the positive impact of certain risks for the remaining risks of project implementation of the automated CRM-system. The ability to influence the risk of a fact of other project risks can increase the priority of risk with low impact on results due to its relationship with other project risks.

  10. Salinity and temperature variations around Peninsula Malaysia coastal waters

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Jeremy Andy Anak Dominic; Nazrul Hizam Yusof; Mohd Rafaei Murtadza

    2004-01-01

    Vertical profiles of salinity and temperature were measured at several offshore stations along east and west coast of Peninsula Malaysia coastal waters. The measurements which covered South China Sea and Straits of Malacca were made during sampling cruises for Marine Database Project for Peninsula Malaysia, and during an IAEA regional training course for Marine Pollution Project. The results show that the water temperature is highest at the surface and minimum at bottom, while the salinity is lowest at the surface and highest at the bottom. In Malacca Straits, the highest surface water temperature was 30.6 degree C and the lowest bottom water temperature was 20.4 degree C, recorded at a station located in Andaman Sea. The same station also recorded the highest surface and bottom salinity i.e. 31.3 ppt and 34.4 ppt, respectively. For South China Sea, the maximum surface water temperature was 30.4 degree C and the minimum bottom temperature was 25.9 degree C, while the highest surface salinity was 33.2 ppt and the highest bottom salinity was 34.1 ppt. The water in South China Sea also showed some degrees of stratifications with thermocline zones located between 10-40 m water depths. In Malacca Straits, stronger thermocline develops at higher latitude, while at lower latitude the water is more readily mixed. Beside the spatial variations, the seawater temperature and salinity around Peninsula Malaysia also subjected to temporal variation as seawater. (Author)

  11. A mathematical model for crashing projects by considering time, cost, quality and risk

    Directory of Open Access Journals (Sweden)

    Amin Mahmoudi

    2017-01-01

    Full Text Available Employers are looking for reducing execution time and maintaining the quality of the projects that are the main objective of the projects. In this article, we focus on crashing projects by con-sidering different factors such as cost, time, quality and risk. For the proposed integer linear model, cost of conformance and cost of non-conformance are considered as parts of the costs of quality of deliverables in projects. The cost of conformance consists of the costs of training the project team, inspection and test of deliverables. The cost of non-conformance also includes costs of rework and scrap. Project risk management is one of the important aspects of the pro-jects. The present study also considers the impact of risks, which is highly applicable in projects with a high level of uncertainty. Results are presented using integer programming approach with the aim of minimizing the costs of the project.

  12. Technological Innovation Projects: Proposal For an Integrative Model Between Project Management and Knowledge Management in a Customer-Supplier Perspective

    Directory of Open Access Journals (Sweden)

    Edval da Silva Tavares

    2014-10-01

    Full Text Available In face of strong competition, companies in Brazil have increased their financial investments in automation, offering new products and services and reducing operating costs. These companies are focusing their efforts on core competencies and, therefore, they often lack the internal expertise to implement new projects, especially those that bring technological innovation. For this reason, we use the processes of outsourcing or subcontracting to help implement such projects. The unit of analysis in this study is the project and the object of the study to analyze the process of knowledge transfer from a provider to a customer during the duration of the project, which involves new technologies. The main motivation of this work is to address the acquisition and retention of new knowledge related to projects designed for business customers. We have developed a study of three cases of multiple financial firms that buy new technologies and two suppliers of information technology. As a practical result, a management model of knowledge transfer and retention of knowledge in client companies is proposed and incorporated into project management.

  13. Project desk evaluation of a model project CPR/5/009 industrial scale irradiation of rice and other foodstuffs

    International Nuclear Information System (INIS)

    1996-11-01

    The project CPR/5/009 was approved in 1993 as a model project. The project objective was to build an industrial food irradiation facility for high quality rice and other foodstuffs, with a processing capacity of 5000-9000 tonnes per year. This capacity is large compared to many other facilities of the same type elsewhere. The success of the project waste to be measured against the full utilization of the facility with an acceptable availability factor. Disbursements on Agency inputs up to the end of June 1996 were $294,716 and consisted of one 100 kCi Co-60 source, quality control equipment, bag heat sealers, one expert mission and 13.5 months of training abroad. The current budget is $323,870, following two programme changes. The total cost of the project was estimated at $1,331,300 with the Chinese Government providing the balance. The major conclusions of this evaluation are as follows: Initially, the Agency overestimated the project and business management experience of the counterpart, and consequently underestimated the extent of support required. Providing support to counterparts in facing the key challenges of project management and business operation must be considered by the Agency in future projects of this type. The counterpart institution is also encouraged to emphasize these management issues in order to maximize sustainable and cost-effective utilization of such facilities. A new operational plan has been prepared by the counterpart for 1996 through 1998 which identifies seven customers requiring treatment of a total of 1000 tonnes per year of cereal grains and 1500 tonnes per year of other foodstuffs. This plan reflects a change in overall emphasis from supporting food supply security to ensuring the safety of foodstuffs. It is not clear whether this plan will support operation of the facility at full capacity. The team in place to operate the facility also needs further strengthening. (author). Figs, tabs

  14. Funding Medical Research Projects: Taking into Account Referees' Severity and Consistency through Many-Faceted Rasch Modeling of Projects' Scores.

    Science.gov (United States)

    Tesio, Luigi; Simone, Anna; Grzeda, Mariuzs T; Ponzio, Michela; Dati, Gabriele; Zaratin, Paola; Perucca, Laura; Battaglia, Mario A

    2015-01-01

    The funding policy of research projects often relies on scores assigned by a panel of experts (referees). The non-linear nature of raw scores and the severity and inconsistency of individual raters may generate unfair numeric project rankings. Rasch measurement (many-facets version, MFRM) provides a valid alternative to scoring. MFRM was applied to the scores achieved by 75 research projects on multiple sclerosis sent in response to a previous annual call by FISM-Italian Foundation for Multiple Sclerosis. This allowed to simulate, a posteriori, the impact of MFRM on the funding scenario. The applications were each scored by 2 to 4 independent referees (total = 131) on a 10-item, 0-3 rating scale called FISM-ProQual-P. The rotation plan assured "connection" of all pairs of projects through at least 1 shared referee.The questionnaire fulfilled satisfactorily the stringent criteria of Rasch measurement for psychometric quality (unidimensionality, reliability and data-model fit). Arbitrarily, 2 acceptability thresholds were set at a raw score of 21/30 and at the equivalent Rasch measure of 61.5/100, respectively. When the cut-off was switched from score to measure 8 out of 18 acceptable projects had to be rejected, while 15 rejected projects became eligible for funding. Some referees, of various severity, were grossly inconsistent (z-std fit indexes less than -1.9 or greater than 1.9). The FISM-ProQual-P questionnaire seems a valid and reliable scale. MFRM may help the decision-making process for allocating funds to MS research projects but also in other fields. In repeated assessment exercises it can help the selection of reliable referees. Their severity can be steadily calibrated, thus obviating the need to connect them with other referees assessing the same projects.

  15. Power generation from water salinity gradient via osmosis and reverse osmosis

    International Nuclear Information System (INIS)

    Ivanov, Milancho

    2015-01-01

    To reduce dependence on fossil fuels, while at the same time to meet the growing energy demands of the world, it is necessary to explore and promote new alternative energy sources. One such type of renewable energy sources, which recently gained greater credibility is the energy extracted from the water salinity gradient, which is also called blue energy. In this research project will be described a new model of osmotic power plant (MIOS plant), which uses a combination of reverse osmosis and osmosis to convert the energy from the water salinity gradient into electricity. MIOS plant can be built as a vessel anywhere on the surface of the oceans or in the form of dam on the land, which will have a huge advantage over existing plants that can be built only on mouths of rivers. (author)

  16. Gulf of Mexico dissolved oxygen model (GoMDOM) research and quality assurance project plan

    Science.gov (United States)

    An integrated high resolution mathematical modeling framework is being developed that will link hydrodynamic, atmospheric, and water quality models for the northern Gulf of Mexico. This Research and Quality Assurance Project Plan primarily focuses on the deterministic Gulf of Me...

  17. Demonstrating sustainable energy: A review-based model of sustainable energy demonstration projects

    NARCIS (Netherlands)

    Bossink, Bart

    2017-01-01

    This article develops a model of sustainable energy demonstration projects, based on a review of 229 scientific publications on demonstrations in renewable and sustainable energy. The model addresses the basic organizational characteristics (aim, cooperative form, and physical location) and learning

  18. Compilation Of An Econometric Human Resource Efficiency Model For Project Management Best Practices

    OpenAIRE

    G. van Zyl; P. Venier

    2006-01-01

    The aim of the paper is to introduce a human resource efficiency model in order to rank the most important human resource driving forces for project management best practices. The results of the model will demonstrate how the human resource component of project management acts as the primary function to enhance organizational performance, codified through improved logical end-state programmes, work ethics and process contributions. Given the hypothesis that project management best practices i...

  19. Understanding and managing three-dimensional/four-dimensional model implementations at the project team level

    NARCIS (Netherlands)

    Hartmann, Timo; Levitt, R.

    2010-01-01

    This paper introduces an extant, theoretical, social-psychological model that explains the sense-making processes of project managers confronted with a new technology to improve our understanding of project-based innovation processes. The model represents the interlinked processes through which

  20. Single cell-type analysis of cellular lipid remodelling in response to salinity in the epidermal bladder cells of the model halophyte Mesembryanthemum crystallinum.

    Science.gov (United States)

    Barkla, Bronwyn J; Garibay-Hernández, Adriana; Melzer, Michael; Rupasinghe, Thusitha W T; Roessner, Ute

    2018-05-29

    Salt stress causes dramatic changes in the organization and dynamic properties of membranes, however, little is known about the underlying mechanisms involved. Modified trichomes, known as epidermal bladder cells (EBC), on the leaves and stems of the halophyte Mesembryanthemum crystallinum can be successfully exploited as a single-cell-type system to investigate salt-induced changes to cellular lipid composition. In this study alterations in key molecular species from different lipid classes highlighted an increase in phospholipid species, particularly those from phosphatidylcholine (PC) and phosphatidic acid (PA), where the latter is central to the synthesis of membrane lipids. Triacylglycerol (TG) species decreased during salinity, while there was little change in plastidic galactolipids. EBC transcriptomic and proteomic data mining revealed changes in genes and proteins involved in lipid metabolism and the upregulation of transcripts for PIPKIB, PI5PII, PIPKIII, and PLDδ, suggested the induction of signalling processes mediated by phosphoinositides and PA. TEM and flow cytometry showed the dynamic nature of lipid droplets in these cells under salt stress. Altogether, this work indicates the metabolism of TG might play an important role in EBC response to salinity as either an energy reserve for sodium accumulation and/or driving membrane biosynthesis for EBC expansion. This article is protected by copyright. All rights reserved.

  1. Experimental alteration of R7T7 nuclear model glass in solutions with different salinities (90/sup 0/C, 1 bar): implications for the selection of geological repositories

    Energy Technology Data Exchange (ETDEWEB)

    Godon, N.; Thomassin, J.H.; Touray, J.C.; Vernaz, E.

    1988-01-01

    In order to simulate the leaching of nuclear wastes in repositories percolated by solutions of variable salinity, leaching tests of R7T7 glass in solutions with different NaCl contents have been performed at 90/sup 0/C and 1 bar using a static procedure. A comparison of the efficiency of the different leachants indicated that the alteration was maximum in pure water and in 23.7 g (NaCl) kg/sup -1/ solution. In deionized water, uranium- and rare-earth elements simulating the actinides were found quite immobile: they have not been detected in solution but are present in the alteration layer. On the other hand, in the 23.7 g (NaCl) kg/sup -1/ solution, high amounts of uranium, cerium and neodymium have been detected in solution and did not accumulate in the solid phases. In the highest salinity brines, the bulk reactivity of the glass decreased. In all leachants, the alteration layer was structured in two parts: hydrated glass and flakes. The flakes were mainly nickel-and zinc-bearing aluminosilicate phases. When crystallized, the flakes were identified as berthierine.

  2. Development of a thermodynamic model for zinc, lead and cadmium in saline solutions; Entwicklung eines thermodynamischen Modells fuer Zink, Blei und Cadmium in salinaren Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven

    2012-07-15

    Waters on aboveground and underground landfills often contain high concentrations of pollutants like zinc, lead and cadmium. Interactions between wastes and aqueous solutions could lead to a mobilisation of these elements. If their maximum solubilities are to be predicted by geochemical modelling a thermodynamic data base is needed. Due to the lack of experimental data such a data base could not be developed yet. In order to fill the gaps isopiestic as well as solubility measurements were made at 25 C. Furthermore the complex formation of zinc and cadmium was investigated and quantified by means of Raman spectrometry and evolving factor analysis. It could be proven that only complexes with two and four chlorine atoms achieve significant concentrations. On basis of these results and a critical evaluation of literature data a consistent thermodynamic data base for was developed for the calculation of activity coefficients and solubilities in the system Na, K, Mg, Ca, Zn, Cd, Cl, SO{sub 4}-H{sub 2}O at 298,15 K.

  3. A Comparative Study of Projection Models on China's Food Economy

    NARCIS (Netherlands)

    Zhang XiaoYong, Xiaoyong

    2004-01-01

    During the last two decades, China's food supply and demand has been a hot topic for both politicians and academics given China's rapid economic development and its sheer market size. Accordingly, researchers are trying to project the future development of China's food economy. This article reviews

  4. A comparative study of projection models on China's food economy

    NARCIS (Netherlands)

    Zhang XiaoYong, Xiaoyong

    2003-01-01

    During the last two decades, China's food supply and demand has been a hot topic for both politicians and academics given China's rapid economic development and its sheer market size. Accordingly, researchers are trying to project the future development of China's food economy. This article reviews

  5. Model for setting priority construction project objectives aligned with ...

    African Journals Online (AJOL)

    participants, including contractors, quantity surveyors, project managers, architects, and ..... (2004: 1) report that the global construction industry is plagued with ..... 1.2. Construction consultant/Developer. 2. 1.2. Engineering. 2. 1.2. Logistics. 2. 1.2 ...... supplychain/PPPFA%20-%20media.pdf> [Accessed: 2 June 2011].

  6. How Do Artifact Models Help Direct SPI Projects?

    DEFF Research Database (Denmark)

    Kuhrmann, Marco; Richardson, Ita

    2015-01-01

    To overcome shortcomings associated with software process improvement (SPI), we previously recommended that process engineers focus on the artifacts to be developed in SPI projects. These artifacts should define desired outcomes, rather than specific methods. During this prior research, we develo...

  7. Bidding model for sustainable projects using the traditional ...

    African Journals Online (AJOL)

    The traditional procurement method (TPM) is still widely used in construction because of some advantages it offers over other methods. Contractor selection in the traditional procurement method can no longer be overlooked- being a vital process that influences project success in terms of cost, quality, function, and ...

  8. Projection of Anthropometric Correlation for Virtual Population Modelling

    DEFF Research Database (Denmark)

    Rasmussen, John; Waagepetersen, Rasmus Plenge; Rasmussen, Kasper Pihl

    2018-01-01

    , and therefore the correlations between parameters, are not accessible. This problem is solved by projecting correlation from a data set for which raw data are provided. The method is tested and validated by generation of pseudo females from males in the ANSUR anthropometric dataset. Results show...

  9. Visualizing project management: models and frameworks for mastering complex systems

    National Research Council Canada - National Science Library

    Forsberg, Kevin; Mooz, Hal; Cotterman, Howard

    2005-01-01

    ...- and beyond that on parameters such as return on investment, market acceptance, or sustainability. Anyone who has lived with the space program, or any other hightech industrial product development, can immediately appreciate this acclaimed book. It addresses and "visualizes" the multidimensional interactions of project management and systems engineering i...

  10. Power Grid Construction Project Portfolio Optimization Based on Bi-level programming model

    Science.gov (United States)

    Zhao, Erdong; Li, Shangqi

    2017-08-01

    As the main body of power grid operation, county-level power supply enterprises undertake an important emission to guarantee the security of power grid operation and safeguard social power using order. The optimization of grid construction projects has been a key issue of power supply capacity and service level of grid enterprises. According to the actual situation of power grid construction project optimization of county-level power enterprises, on the basis of qualitative analysis of the projects, this paper builds a Bi-level programming model based on quantitative analysis. The upper layer of the model is the target restriction of the optimal portfolio; the lower layer of the model is enterprises’ financial restrictions on the size of the enterprise project portfolio. Finally, using a real example to illustrate operation proceeding and the optimization result of the model. Through qualitative analysis and quantitative analysis, the bi-level programming model improves the accuracy and normative standardization of power grid enterprises projects.

  11. NOAA Average Annual Salinity (3-Zone)

    Data.gov (United States)

    California Natural Resource Agency — The 3-Zone Average Annual Salinity Digital Geography is a digital spatial framework developed using geographic information system (GIS) technology. These salinity...

  12. THE MODELLING OF ORGANIZATIONAL STRUCTURES OF MANAGEMENT BY REALIZING INVESTMENT CONSTRUCTION PROJECTS

    Directory of Open Access Journals (Sweden)

    Олег Александрович КУЧМА

    2016-03-01

    Full Text Available The authors consider the modeling of organizational structures by virtue of interaction between the basic participants by realizing of investment construction projects. This process is directed at the complex analysis of a problem of quality management by creating of building goods taking into account modern project management tendencies. The topicality of problem is obvious as by realizing of investment construction projects there is a liberal share of uncompleted projects, and in the completed projects actual values considerably exceed budgeted capital expenditures. The introduced model allows managing the project per quality system in all phases of the investment construction project‘s life cycle. It promotes refinement of building goods, improves the rate of successfully completed projects with actual values near budgeted.

  13. A Fuzzy Comprehensive Evaluation Model for Sustainability Risk Evaluation of PPP Projects

    Directory of Open Access Journals (Sweden)

    Libiao Bai

    2017-10-01

    Full Text Available Evaluating the sustainability risk level of public–private partnership (PPP projects can reduce project risk incidents and achieve the sustainable development of the organization. However, the existing studies about PPP projects risk management mainly focus on exploring the impact of financial and revenue risks but ignore the sustainability risks, causing the concept of “sustainability” to be missing while evaluating the risk level of PPP projects. To evaluate the sustainability risk level and achieve the most important objective of providing a reference for the public and private sectors when making decisions on PPP project management, this paper constructs a factor system of sustainability risk of PPP projects based on an extensive literature review and develops a mathematical model based on the methods of fuzzy comprehensive evaluation model (FCEM and failure mode, effects and criticality analysis (FMECA for evaluating the sustainability risk level of PPP projects. In addition, this paper conducts computational experiment based on a questionnaire survey to verify the effectiveness and feasibility of this proposed model. The results suggest that this model is reasonable for evaluating the sustainability risk level of PPP projects. To our knowledge, this paper is the first study to evaluate the sustainability risk of PPP projects, which would not only enrich the theories of project risk management, but also serve as a reference for the public and private sectors for the sustainable planning and development. Keywords: sustainability risk eva

  14. Benchmarking of wind farm scale wake models in the EERA - DTOC project

    DEFF Research Database (Denmark)

    Réthoré, Pierre-Elouan; Hansen, Kurt Schaldemose; Barthelmie, R.J.

    2013-01-01

    -flow to combine wind farm (micro) and cluster (meso) scale wake models. For this purpose, a benchmark campaign is organized on the existing wind farm wake models available within the project, in order to identify which model would be the most appropriate for this coupling. A number of standardized wake cases......Designing offshore wind farms next to existing or planned wind farm clusters has recently become a common practice in the North Sea. These types of projects face unprecedented challenges in term of wind energy siting. The currently ongoing European project FP7 EERA - DTOC (Design Tool for Offshore...... wind farm Clusters) is aiming at providing a new type of model work-flow to address this issue. The wake modeling part of the EERA - DTOC project is to improve the fundamental understanding of wind turbine wakes and modeling. One of these challenges is to create a new kind of wake modeling work...

  15. Interannual Tropical Rainfall Variability in General Circulation Model Simulations Associated with the Atmospheric Model Intercomparison Project.

    Science.gov (United States)

    Sperber, K. R.; Palmer, T. N.

    1996-11-01

    The interannual variability of rainfall over the Indian subcontinent, the African Sahel, and the Nordeste region of Brazil have been evaluated in 32 models for the period 1979-88 as part of the Atmospheric Model Intercomparison Project (AMIP). The interannual variations of Nordeste rainfall are the most readily captured, owing to the intimate link with Pacific and Atlantic sea surface temperatures. The precipitation variations over India and the Sahel are less well simulated. Additionally, an Indian monsoon wind shear index was calculated for each model. Evaluation of the interannual variability of a wind shear index over the summer monsoon region indicates that the models exhibit greater fidelity in capturing the large-scale dynamic fluctuations than the regional-scale rainfall variations. A rainfall/SST teleconnection quality control was used to objectively stratify model performance. Skill scores improved for those models that qualitatively simulated the observed rainfall/El Niño- Southern Oscillation SST correlation pattern. This subset of models also had a rainfall climatology that was in better agreement with observations, indicating a link between systematic model error and the ability to simulate interannual variations.A suite of six European Centre for Medium-Range Weather Forecasts (ECMWF) AMIP runs (differing only in their initial conditions) have also been examined. As observed, all-India rainfall was enhanced in 1988 relative to 1987 in each of these realizations. All-India rainfall variability during other years showed little or no predictability, possibly due to internal chaotic dynamics associated with intraseasonal monsoon fluctuations and/or unpredictable land surface process interactions. The interannual variations of Nordeste rainfall were best represented. The State University of New York at Albany/National Center for Atmospheric Research Genesis model was run in five initial condition realizations. In this model, the Nordeste rainfall

  16. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    International Nuclear Information System (INIS)

    Gustafsson, Bo G.

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m 3 /s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say ±1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m 3 /s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the shoreline

  17. Millennial changes of the Baltic Sea salinity. Studies of the sensitivity of the salinity to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Gustafsson, Bo G. [Oceanus Havsundersoekningar, Goeteborg (Sweden)

    2004-05-01

    An important question for safety assessments of nuclear waste repositories is the salinity of the Baltic Sea under different conditions. The salinity affects the potential recipient ecosystems, the water turnover along the coast and the hydrology as well as the groundwater chemistry. In this report a model that enables computation of the Baltic Sea salinity for different sea level positions and freshwater supplies is presented. The model is used to compute the salinities in Baltic proper, Bothnian Sea and Bothnian Bay for all combinations of global sea level changes from -10 m to 10 m and freshwater supplies from 0 to 60,000 m{sup 3}/s. The results are presented in a series of graphs that enables the reader to make an assessment of the impact of a given climatic change. The model is also used to compute the decrease of the salinity in Bothnian Sea and Bothnian Bay during the next few millennia due to the postglacial uplift. The results show that modest changes in global sea level, say {+-}1 m, give a salinity change of the order of 1 psu in southern Baltic proper. Changing the freshwater supply with about 2,000 m{sup 3}/s (approximately 10%) gives a similar salinity change. Further, a sea level drop of about 5 m or an increase of the freshwater supply by a factor of 3 is needed to reduce the salinity in southern Baltic proper below 1 psu. In this limit large parts of the Baltic would be limnic. A 50% decrease of the freshwater supply increase the salinity in the southern Baltic proper by a factor of 2 to some 15 psu, but the effect is even more drastic in Bothnian Sea and Bothnian Bay where the salinity increase to 13 and 10 psu, respectively. A less windy climate might have a significant effect in lowering the Baltic salinity due to a combined effect of lowered mixing in Kattegat and lowered exchange between Kattegat and the Baltic. A windier climate will not have such strong effect since increased mixing does not affect the Baltic as much. Most probably the

  18. Modelling income distribution impacts of water sector projects in Bangladesh.

    Science.gov (United States)

    Ahmed, C S; Jones, S

    1991-09-01

    Dynamic analysis was conducted to assess the long-term impacts of water sector projects on agricultural income distribution, and sensitivity analysis was conducted to check the robustness of the 5 assumptions in this study of income distribution and water sector projects in Bangladesh. 7 transitions are analyzed for mutually exclusive irrigation and flooding projects: Nonirrigation to 1) LLP irrigation, 2) STW irrigation, 3) DTW irrigation, 4) major gravity irrigation, and manually operated shallow tubewell irrigation (MOSTI) and Flood Control Projects (FCD) of 6) medium flooded to shallow flooded, and 7) deeply flooded to shallow flooded. 5 analytical stages are involved: 1) farm budgets are derived with and without project cropping patterns for each transition. 2) Estimates are generated for value added/hectare from each transition. 3) Assumptions are made about the number of social classes, distribution of land ownership between classes, extent of tenancy for each social class, term of tenancy contracts, and extent of hiring of labor for each social class. 4) Annual value added/hectare is distributed among social classes. 5) Using Gini coefficients and simple ratios, the distribution of income between classes is estimated for with and without transition. Assumption I is that there are 4 social classes defined by land acreage: large farmers (5 acres), medium farmers (1.5-5.0), small farmers, (.01-1.49), and landless. Assumption II is that land distribution follows the 1978 Land Occupancy Survey (LOS). Biases, if any, are indicated. Assumption III is that large farmers sharecrop out 15% of land to small farmers. Assumption IV is that landlords provide nonirrigated crop land and take 50% of the crop, and, under irrigation, provide 50% of the fertilizer, pesticide, and irrigation costs and take 50% of the crop. Assumption V is that hired and family labor is assumed to be 40% for small farmers, 60% for medium farmers, and 80% for large farmers. It is understood that

  19. World Ocean Atlas 2005, Salinity

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — World Ocean Atlas 2005 (WOA05) is a set of objectively analyzed (1° grid) climatological fields of in situ temperature, salinity, dissolved oxygen, Apparent Oxygen...

  20. Data-driven modelling of structured populations a practical guide to the integral projection model

    CERN Document Server

    Ellner, Stephen P; Rees, Mark

    2016-01-01

    This book is a “How To” guide for modeling population dynamics using Integral Projection Models (IPM) starting from observational data. It is written by a leading research team in this area and includes code in the R language (in the text and online) to carry out all computations. The intended audience are ecologists, evolutionary biologists, and mathematical biologists interested in developing data-driven models for animal and plant populations. IPMs may seem hard as they involve integrals. The aim of this book is to demystify IPMs, so they become the model of choice for populations structured by size or other continuously varying traits. The book uses real examples of increasing complexity to show how the life-cycle of the study organism naturally leads to the appropriate statistical analysis, which leads directly to the IPM itself. A wide range of model types and analyses are presented, including model construction, computational methods, and the underlying theory, with the more technical material in B...

  1. Protective effects of methane-rich saline on diabetic retinopathy via anti-inflammation in a streptozotocin-induced diabetic rat model

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiangchun; Wang, Ruobing [Department of Ophthalmology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai (China); Ye, Zhouheng; Sun, Xuejun [Department of Navy Aeromedicine, Second Military Medical University, Shanghai (China); Chen, Zeli; Xia, Fangzhou; Sun, Qinglei [Department of Ophthalmology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai (China); Liu, Lin, E-mail: linliu@sh163.net [Department of Ophthalmology, Renji Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai (China)

    2015-10-16

    As the commonest complication of diabetes mellitus (DM), diabetic retinopathy (DR) is a neuro-vascular disease with chronic inflammatory. Methane could exert potential therapeutic interest in inflammatory pathologies in previous studies. Our study aims to evaluate the protective effects of methane-rich saline on DR and investigate the potential role of related MicroRNA (miRNA) in diabetic rats. Streptozotocin-induced diabetic Sprague–Dawley rats were injected intraperitoneally with methane-rich or normal saline (5 ml/kg) daily for eight weeks. Morphology changes and blood-retinal barrier (BRB) permeability were assessed by hematoxylin eosin staining and Evans blue leakage. Retinal inflammatory cytokines levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL1-β) were evaluated by immunohistochemistry. Retinal protein expressions of glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) were determined by western blotting. Retinal miRNA expressions were examined by miRNA-specific microarray, verified by quantitative RT-PCR and predicted by GO enrichment and KEGG pathway analysis. There was no significant changes in blood glucose level and body weight of diabetic rats with methane-rich or normal saline treatment, but the decreased retinal thickness, retinal ganglial cell loss and BRB breakdown were all significantly suppressed by methane treatment. DM-induced retinal overexpressions of TNF-α, IL-1β, GFAP and VEGF were also significantly ameliorated. Moreover, the methane treatment significantly up-regulated retinal levels of miR-192-5p (related to apoptosis and tyrosine kinase signaling pathway) and miR-335 (related to proliferation, oxidative stress and leukocyte). Methane exerts protective effect on DR via anti-inflammation, which may be related to the regulatory mechanism of miRNAs. - Highlights: • Methane exerts protective effect on diabetic retinopathy via anti-inflammation. • Therapeutic effect of methane is

  2. Protective effects of methane-rich saline on diabetic retinopathy via anti-inflammation in a streptozotocin-induced diabetic rat model

    International Nuclear Information System (INIS)

    Wu, Jiangchun; Wang, Ruobing; Ye, Zhouheng; Sun, Xuejun; Chen, Zeli; Xia, Fangzhou; Sun, Qinglei; Liu, Lin

    2015-01-01

    As the commonest complication of diabetes mellitus (DM), diabetic retinopathy (DR) is a neuro-vascular disease with chronic inflammatory. Methane could exert potential therapeutic interest in inflammatory pathologies in previous studies. Our study aims to evaluate the protective effects of methane-rich saline on DR and investigate the potential role of related MicroRNA (miRNA) in diabetic rats. Streptozotocin-induced diabetic Sprague–Dawley rats were injected intraperitoneally with methane-rich or normal saline (5 ml/kg) daily for eight weeks. Morphology changes and blood-retinal barrier (BRB) permeability were assessed by hematoxylin eosin staining and Evans blue leakage. Retinal inflammatory cytokines levels of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL1-β) were evaluated by immunohistochemistry. Retinal protein expressions of glial fibrillary acidic protein (GFAP) and vascular endothelial growth factor (VEGF) were determined by western blotting. Retinal miRNA expressions were examined by miRNA-specific microarray, verified by quantitative RT-PCR and predicted by GO enrichment and KEGG pathway analysis. There was no significant changes in blood glucose level and body weight of diabetic rats with methane-rich or normal saline treatment, but the decreased retinal thickness, retinal ganglial cell loss and BRB breakdown were all significantly suppressed by methane treatment. DM-induced retinal overexpressions of TNF-α, IL-1β, GFAP and VEGF were also significantly ameliorated. Moreover, the methane treatment significantly up-regulated retinal levels of miR-192-5p (related to apoptosis and tyrosine kinase signaling pathway) and miR-335 (related to proliferation, oxidative stress and leukocyte). Methane exerts protective effect on DR via anti-inflammation, which may be related to the regulatory mechanism of miRNAs. - Highlights: • Methane exerts protective effect on diabetic retinopathy via anti-inflammation. • Therapeutic effect of methane is

  3. Prototyping and Testing a New Volumetric Curvature Tool for Modeling Reservoir Compartments and Leakage Pathways in the Arbuckle Saline Aquifer: Reducing Uncertainty in CO2 Storage and Permanence

    Energy Technology Data Exchange (ETDEWEB)

    Rush, Jason [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States); Holubnyak, Yevhen [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States); Watney, Willard [Univ. of Kansas and Kansas Geological Survey, Lawrence, KS (United States)

    2016-12-09

    This DOE-funded project evaluates the utility of seismic volumetric curvature (VC) for predicting stratal and structural architecture diagnostic of paleokarst reservoirs. Of special interest are applications geared toward carbon capture, utilization, and storage (CCUS). VC has been championed for identifying faults (offset <¼ λ) that cannot be imaged by conventional 3-D seismic attributes such as coherence. The objective of this research was to evaluate VC-techniques for reducing uncertainties in reservoir compartmentalization studies and seal risk assessments especially for saline aquifers. A 2000-ft horizontal lateral was purposefully drilled across VC-imaged lineaments—interpreted to record a fractured and a fault-bounded doline—to physically confirm their presence. The 15-mi² study area is located in southeastern Bemis-Shutts Field, which is situated along the crest of the Central Kansas Uplift (CKU) in Ellis County, Kansas. The uppermost Arbuckle (200+ ft) has extensive paleokarst including collapsed paleocaverns and dolines related to exceedingly prolonged pre-Simpson (Sauk–Tippecanoe) and/or pre-Pennsylvanian subaerial exposure. A lateral borehole was successfully drilled across the full extent (~1100 ft) of a VC-inferred paleokarst doline. Triple combo (GR-neutron/density-resistivity), full-wave sonic, and borehole micro-imager logs were successfully run to TD on drill-pipe. Results from the formation evaluation reveal breccias (e.g., crackle, mosaic, chaotic), fractures, faults, vugs (1-6"), and unaffected host strata consistent with the pre-spud interpretation. Well-rounded pebbles were also observed on the image log. VC-inferred lineaments coincide with 20–80-ft wide intervals of high GR values (100+ API), matrix-rich breccias, and faults. To further demonstrate their utility, VC attributes are integrated into a geocellular modeling workflow: 1) to constrain the structural model; 2) to generate facies probability grids, and; 3) to collocate

  4. EVEGAS Project (European validation exercise of GAS migration model)

    Energy Technology Data Exchange (ETDEWEB)

    Manai, T. [Geostock S.A., Rueil-Malmaison (France)

    1995-03-01

    The EVEGAS project aims at the verification and validation of numerical codes suitable for simulating gas flow phenomenon in low permeability porous media. Physical phenomena involved in gas generation and gas flow are numerous, often complex, and may not be very well described. The existing numerical codes cannot represent all the occurring possible phenomena, but allow a good trade-off betwen simplicity and representativity of such phenomena. Two phase flow (Gas and Water) appear to be the most consequential phenomena in gas migration and pressure sizing. The project is organised in three major steps: (1) a simple problem with analytical solutions. (2) A few problems based on laboratory or in-situ experiments. (3) A 3-D repository scenarios involving the following aspects: a repository design; a source of gas; rock characteristics; and fluid characteristics.

  5. Chemval project report on stage 1: verification of speciation models

    International Nuclear Information System (INIS)

    Read, D.; Broyd, T.W.

    1989-01-01

    CHEMVAL is an international geochemical exercise, which aims at applicating and validating predictive computer programmes describing the chemistry of radionuclides in the geosphere. As a component of the CEC project MIRAGE- second phase (on migration of radionuclides in the geosphere), CHEMVAL is carried out in the framework of the third community R and D programme of radioactive waste management and storage. The present report is the first of a series devoted to the verification and validation of aqueous speciation and coupled chemical transport codes. Five cases systems are studied, namely, cement, clay, sandstore, granite and limestone. Overall, good agreement was obtained. Reasons for divergence in results have been explored and recommendations are made at the appropriate stages for enhancement of the thermodynamic data base. A listing of the preliminary CHEMVAL Project Data Base is provided

  6. Remote Sensing of Salinity: The Dielectric Constant of Sea Water

    Science.gov (United States)

    LeVine, David M.; Lang, R.; Utku, C.; Tarkocin, Y.

    2011-01-01

    Global monitoring of sea surface salinity from space requires an accurate model for the dielectric constant of sea water as a function of salinity and temperature to characterize the emissivity of the surface. Measurements are being made at 1.413 GHz, the center frequency of the Aquarius radiometers, using a resonant cavity and the perturbation method. The cavity is operated in a transmission mode and immersed in a liquid bath to control temperature. Multiple measurements are made at each temperature and salinity. Error budgets indicate a relative accuracy for both real and imaginary parts of the dielectric constant of about 1%.

  7. Development of a funding, cost, and spending model for satellite projects

    Science.gov (United States)

    Johnson, Jesse P.

    1989-01-01

    The need for a predictive budget/funging model is obvious. The current models used by the Resource Analysis Office (RAO) are used to predict the total costs of satellite projects. An effort to extend the modeling capabilities from total budget analysis to total budget and budget outlays over time analysis was conducted. A statistical based and data driven methodology was used to derive and develop the model. Th budget data for the last 18 GSFC-sponsored satellite projects were analyzed and used to build a funding model which would describe the historical spending patterns. This raw data consisted of dollars spent in that specific year and their 1989 dollar equivalent. This data was converted to the standard format used by the RAO group and placed in a database. A simple statistical analysis was performed to calculate the gross statistics associated with project length and project cost ant the conditional statistics on project length and project cost. The modeling approach used is derived form the theory of embedded statistics which states that properly analyzed data will produce the underlying generating function. The process of funding large scale projects over extended periods of time is described by Life Cycle Cost Models (LCCM). The data was analyzed to find a model in the generic form of a LCCM. The model developed is based on a Weibull function whose parameters are found by both nonlinear optimization and nonlinear regression. In order to use this model it is necessary to transform the problem from a dollar/time space to a percentage of total budget/time space. This transformation is equivalent to moving to a probability space. By using the basic rules of probability, the validity of both the optimization and the regression steps are insured. This statistically significant model is then integrated and inverted. The resulting output represents a project schedule which relates the amount of money spent to the percentage of project completion.

  8. Geopolitical model of investment power station construction project implementation

    Science.gov (United States)

    Malafeyev, Oleg; Farvazov, Konstantin; Zenovich, Olga; Zaitseva, Irina; Kostyukov, Konstantin; Svechinskaya, Tatiana

    2018-04-01

    Two geopolitical actors implement a geopolitical project that involves transportaion and storage of some commodities. They interact with each other through a transport network. The network consists of several interconnected vertices. Some of the vetrices are trading hubs, storage spaces, production hubs and goods buyers. Actors wish to satify the demand of buyers and recieve the highest possible profit subject to compromise solution principle. A numerical example is given.

  9. Concept and Model - Kiwi project deliverable D2.8

    DEFF Research Database (Denmark)

    Durao, Frederico; Dolog, Peter

    2009-01-01

    The Concept and Model for personalisation serves several goals: •    Introducing relevant concepts of personalisation, user and group modelling, statistical model, reasoning and reason maintenance for personalisation. •    Reviewing the related work in personalisation and understanding how......, widget arrangement based on user activity and reasoning maintenance for generation of recommendations....

  10. Testing the HTA core model: experiences from two pilot projects

    DEFF Research Database (Denmark)

    Pasternack, Iris; Anttila, Heidi; Mäkelä, Marjukka

    2009-01-01

    OBJECTIVES: The aim of this study was to analyze and describe process and outcomes of two pilot assessments based on the HTA Core Model, discuss the applicability of the model, and explore areas of development. METHODS: Data were gathered from HTA Core Model and pilot Core HTA documents, their va...

  11. Microcomputer model for an analysis of the financial feasibility of a mining project

    International Nuclear Information System (INIS)

    Ciruelos, J.; Duchene, M.

    1983-01-01

    The model presented permits a simulation of the predicted profitability of a mining project at the stage of feasibility studies by making use of a simple individual computer, the Apple II. The model presented can be used to treat the following three areas: definition of the mode of financing the project and calculation of the financial flows which make it possible to evaluate the profitability of this project; analysis of sensitivity, which makes it possible to determine the most critical variables for the future of the project; analysis of the risk [fr

  12. Project Photofly: New 3d Modeling Online Web Service (case Studies and Assessments)

    Science.gov (United States)

    Abate, D.; Furini, G.; Migliori, S.; Pierattini, S.

    2011-09-01

    During summer 2010, Autodesk has released a still ongoing project called Project Photofly, freely downloadable from AutodeskLab web site until August 1 2011. Project Photofly based on computer-vision and photogrammetric principles, exploiting the power of cloud computing, is a web service able to convert collections of photographs into 3D models. Aim of our research was to evaluate the Project Photofly, through different case studies, for 3D modeling of cultural heritage monuments and objects, mostly to identify for which goals and objects it is suitable. The automatic approach will be mainly analyzed.

  13. Development of techniques and models for the determination of redox potentials of saline solutions; Entwicklung von Methoden und Modellen zur Bestimmung des Redoxpotentials salinarer Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven; Bischofer, Barbara; Scharge, Tina; Schoenwiese, Dagmar

    2014-03-15

    The mobility of radionuclides and heavy metals in aqueous systems depends significantly on their oxidation state. Under saline conditions the measurement of pH values and redox potential are distorted/falsified by solution-specific and hardly assessable ion diffusion effects at the reference electrode. The secure prognosis of redox properties is an essential prerequisite for the calculation of the expected heavy metal and radionuclide concentrations in case of a hypothetical solution ingress in an underground disposal facility. The evaluation of the existing data base shows that there are large uncertainties even for the solubility of widespread oxides and oxy-hydroxides like goethite or hematite. The redox properties of natural systems are determined by the solubility of metastable ferrous intermediate products like ferrihydrite, ''green rust'' or jarosite. The work is aimed to establish a consistent data base with information on these phases and ferrous solute species.

  14. Development of techniques and models for the determination of redox potentials of saline solutions; Entwicklung von Methoden und Modellen zur Bestimmung des Redoxpotentials salinarer Loesungen

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, Sven; Bischofer, Barbara; Scharge, Tina; Schoenwiese, Dagmar

    2014-03-15

    The mobility of radionuclides and heavy metals in aqueous systems depends significantly on their oxidation state. Under saline conditions the measurement of pH values and redox potential are distorted/falsified by solution-specific and hardly assessable ion diffusion effects at the reference electrode. The secure prognosis of redox properties is an essential prerequisite for the calculation of the expected heavy metal and radionuclide concentrations in case of a hypothetical solution ingress in an underground disposal facility. The evaluation of the existing data base shows that there are large uncertainties even for the solubility of widespread oxides and oxy-hydroxides like goethite or hematite. The redox properties of natural systems are determined by the solubility of metastable ferrous intermediate products like ferrihydrite, ''green rust'' or jarosite. The work is aimed to establish a consistent data base with information on these phases and ferrous solute species.

  15. Influence of net freshwater supply on salinity in Florida Bay

    Science.gov (United States)

    Nuttle, William K.; Fourqurean, James W.; Cosby, Bernard J.; Zieman, Joseph C.; Robblee, Michael B.

    2000-01-01

    An annual water budget for Florida Bay, the large, seasonally hypersaline estuary in the Everglades National Park, was constructed using physically based models and long‐term (31 years) data on salinity, hydrology, and climate. Effects of seasonal and interannual variations of the net freshwater supply (runoff plus rainfall minus evaporation) on salinity variation within the bay were also examined. Particular attention was paid to the effects of runoff, which are the focus of ambitious plans to restore and conserve the Florida Bay ecosystem. From 1965 to 1995 the annual runoff from the Everglades into the bay was less than one tenth of the annual direct rainfall onto the bay, while estimated annual evaporation slightly exceeded annual rainfall. The average net freshwater supply to the bay over a year was thus approximately zero, and interannual variations in salinity appeared to be affected primarily by interannual fluctuations in rainfall. At the annual scale, runoff apparently had little effect on the bay as a whole during this period. On a seasonal basis, variations in rainfall, evaporation, and runoff were not in phase, and the net freshwater supply to the bay varied between positive and negative values, contributing to a strong seasonal pattern in salinity, especially in regions of the bay relatively isolated from exchanges with the Gulf of Mexico and Atlantic Ocean. Changes in runoff could have a greater effect on salinity in the bay if the seasonal patterns of rainfall and evaporation and the timing of the runoff are considered. One model was also used to simulate spatial and temporal patterns of salinity responses expected to result from changes in net freshwater supply. Simulations in which runoff was increased by a factor of 2 (but with no change in spatial pattern) indicated that increased runoff will lower salinity values in eastern Florida Bay, increase the variability of salinity in the South Region, but have little effect on salinity in the Central

  16. Innovation Leadership in Innovation Projects: The Application of the Reflective Practitioner Model

    NARCIS (Netherlands)

    Oeij, P.R.A.

    2016-01-01

    In 1982 Donald Schön wrote the Reflective Practitioner which implicitly but never explicitly contains a model of steps what it is to act as a reflective practitioner in real life. In this paper we apply that model and try to make this latent (tacit) model into a manifest (explicit) model. Project

  17. Results of the Marine Ice Sheet Model Intercomparison Project, MISMIP

    Directory of Open Access Journals (Sweden)

    F. Pattyn

    2012-05-01

    Full Text Available Predictions of marine ice-sheet behaviour require models that are able to robustly simulate grounding line migration. We present results of an intercomparison exercise for marine ice-sheet models. Verification is effected by comparison with approximate analytical solutions for flux across the grounding line using simplified geometrical configurations (no lateral variations, no effects of lateral buttressing. Unique steady state grounding line positions exist for ice sheets on a downward sloping bed, while hysteresis occurs across an overdeepened bed, and stable steady state grounding line positions only occur on the downward-sloping sections. Models based on the shallow ice approximation, which does not resolve extensional stresses, do not reproduce the approximate analytical results unless appropriate parameterizations for ice flux are imposed at the grounding line. For extensional-stress resolving "shelfy stream" models, differences between model results were mainly due to the choice of spatial discretization. Moving grid methods were found to be the most accurate at capturing grounding line evolution, since they track the grounding line explicitly. Adaptive mesh refinement can further improve accuracy, including fixed grid models that generally perform poorly at coarse resolution. Fixed grid models, with nested grid representations of the grounding line, are able to generate accurate steady state positions, but can be inaccurate over transients. Only one full-Stokes model was included in the intercomparison, and consequently the accuracy of shelfy stream models as approximations of full-Stokes models remains to be determined in detail, especially during transients.

  18. A model for personal life project design on the basis of vocational guidance

    Directory of Open Access Journals (Sweden)

    Isaac Geovanni Mendoza Cedeño

    2015-09-01

    Full Text Available This article is intended to propose a model for developing vocational education personal life projects and its corresponding theoretical foundations. Therefore, the argument is undertaken on the model developed from philosophical views, epistemological, pedagogical, sociological, and psychological axiological, and a model is provided as a basis for the development of vocational education strategy for personal life project development contributing effectively to the development of responsible autonomy and high school students.

  19. Decision Model on Financing a Project Using Knowledge about Risk Areas

    OpenAIRE

    Ioana POPOVICI; Emil SCARLAT; Francesco RIZZO

    2011-01-01

    The research presents an alternative to the classical method of measuring financial risk in funding a project. The goal of the model described in the paper implies identifying "risky areas" within the financial balance of the project. The model analysis the financial risk behavior studied along four scenarios by varying only the cost of financing source used according to the specific type of funding. The model introduces the time factor into the analysis of financial risk due to the specific ...

  20. MODELLING OF FINANCIAL EFFECTIVENESS AND COMPARATIVE ANALYSIS OF PUBLIC-PRIVATE PARTNERSHIP PROJECTS AND PUBLIC PROCUREMENT

    Directory of Open Access Journals (Sweden)

    Kuznetsov Aleksey Alekseevich

    2017-10-01

    Full Text Available The article substantiates the necessity of extension and development of tools for methodological evaluation of effectiveness of public-private partnership (PPP projects both individually and in comparison of effectiveness of various mechanisms of projects realization on the example of traditional public procurement. The author proposed an original technique of modelling cash flows of private and public partners when realizing the projects based on PPP and on public procurement. The model enables us promptly and with sufficient accuracy to reveal comparative advantages of project forms of PPP and public procurement, and also assess financial effectiveness of the PPP projects for each partner. The modelling is relatively straightforward and reliable. The model also enables us to evaluate public partner's expenses for availability, find the terms and thresholds for interest rates of financing attracted by the partners and for risk probabilities to ensure comparative advantage of PPP project. Proposed criteria of effectiveness are compared with methodological recommendations provided by the Ministry of Economic Development of the Russian Federation. Subject: public and private organizations, financial institutions, development institutions and their theoretical and practical techniques for effectiveness evaluation of public-private partnership (PPP projects. Complexity of effectiveness evaluation and the lack of unified and accepted methodology are among the factors that limit the development of PPP in the Russian Federation nowadays. Research objectives: development of methodological methods for assessing financial efficiency of PPP projects by creating and justifying application of new principles and methods of modelling, and also criteria for effectiveness of PPP projects both individually and in comparison with the public procurement. Materials and methods: open database of ongoing PPP projects in the Russian Federation and abroad was used. The

  1. Seasonal pattern of anthropogenic salinization in temperate forested headwater streams.

    Science.gov (United States)

    Timpano, Anthony J; Zipper, Carl E; Soucek, David J; Schoenholtz, Stephen H

    2018-04-15

    Salinization of freshwaters by human activities is of growing concern globally. Consequences of salt pollution include adverse effects to aquatic biodiversity, ecosystem function, human health, and ecosystem services. In headwater streams of the temperate forests of eastern USA, elevated specific conductance (SC), a surrogate measurement for the major dissolved ions composing salinity, has been linked to decreased diversity of aquatic insects. However, such linkages have typically been based on limited numbers of SC measurements that do not quantify intra-annual variation. Effective management of salinization requires tools to accurately monitor and predict salinity while accounting for temporal variability. Toward that end, high-frequency SC data were collected within the central Appalachian coalfield over 4 years at 25 forested headwater streams spanning a gradient of salinity. A sinusoidal periodic function was used to model the annual cycle of SC, averaged across years and streams. The resultant model revealed that, on average, salinity deviated approximately ±20% from annual mean levels across all years and streams, with minimum SC occurring in late winter and peak SC occurring in late summer. The pattern was evident in headwater streams influenced by surface coal mining, unmined headwater reference streams with low salinity, and larger-order salinized rivers draining the study area. The pattern was strongly responsive to varying seasonal dilution as driven by catchment evapotranspiration, an effect that was amplified slightly in unmined catchments with greater relative forest cover. Evaluation of alternative sampling intervals indicated that discrete sampling can approximate the model performance afforded by high-frequency data but model error increases rapidly as discrete sampling intervals exceed 30 days. This study demonstrates that intra-annual variation of salinity in temperate forested headwater streams of Appalachia USA follows a natural seasonal

  2. Salinization mechanisms in semi-arid regions

    International Nuclear Information System (INIS)

    Santiago, M.M.F.

    1984-01-01

    During a period of three years the basins of the Pereira de Miranda and Caxitore dams, located in the crystalline rock area of Ceara, Brazil, were studied in order to determine the mechanisms of salinization of their waters. Isotope methods ( 18 O/ 16 O) and hidrochemistry (determination of the of the maior ions) were applied to surface, underground and rain water in this study. An isotope model was designed and applied to the determination of evaporation and percolation of dams in semi-arid zones during the dry season. The results are compared to those from a conventional chemical model. As causes of salinization of the water in the dams, the contributions of the rain itself and the lixiviation of the soil are quantified. An interaction between the dams and the underground water is imperceptible. The salinization of the underground water is attributed to recharge of the aquifer with rain water from the surface runoff followed by evaporation of the water rising, due to capilarity, in a one-directional flow to the surface. (Author) [pt

  3. Analysis of CPN-1 sigma models via projective structures

    International Nuclear Information System (INIS)

    Post, S; Grundland, A M

    2012-01-01

    This paper represents a study of projector solutions to the Euclidean CP N-1 sigma model in two dimensions and their associated surfaces immersed in the su(N) Lie algebra. Any solution for the CP N-1 sigma model defined on the extended complex plane with finite action can be written as a raising operator acting on a holomorphic one. Here the proof is formulated in terms rank-1 projectors so it is explicitly gauge invariant. We apply these results to the analysis of surfaces associated with the CP N-1 models defined using the generalized Weierstrass formula for immersion. We show that the surfaces are conformally parametrized by the Lagrangian density, with finite area equal to the action of the model, and express several other geometrical characteristics of the surface in terms of the physical quantities of the model. Finally, we provide necessary and sufficient conditions that a surface be related to a CP N-1 sigma model

  4. A Model Suggestion to Predict Leverage Ratio for Construction Projects

    OpenAIRE

    Özlem Tüz; Şafak Ebesek

    2013-01-01

    Due to the nature, construction is an industry with high uncertainty and risk. Construction industry carries high leverage ratios. Firms with low equities work in big projects through progress payment system, but in this case, even a small negative in the planned cash flows constitute a major risk for the company.The use of leverage, with a small investment to achieve profit targets large-scale, high-profit, but also brings a high risk with it. Investors may lose all or the portion of th...

  5. THE MODEL OF EXPERT SYSTEM FOR SCIENTIFIC PROJECTS EVALUATION IN HIGHER EDUCATIONAL INSTITUTIONS

    Directory of Open Access Journals (Sweden)

    Олександр Михайлович ВОЗНИЙ

    2015-05-01

    Full Text Available There have been proposed the model of the expert system for the assessment of research projects in higher educational institutions, based on estimates of probability. It allows to rank alternative projects and scenarios. The model is implemented through the software "Small expert system." The principle of calculating the probability of approval of research projects, which form the basis of the expert system, is based on Bayes' theorem. Expert system calculates the probability of approval of research projects by Ministry of Science and Education on the basis of the responses to questions about the content of the request for the execution of research projects. Questions are formed on the basis of the criteria by which experts of state authorities evaluate scientific research projects.

  6. The accuracy of matrix population model projections for coniferous trees in the Sierra Nevada, California

    Science.gov (United States)

    van Mantgem, P.J.; Stephenson, N.L.

    2005-01-01

    1 We assess the use of simple, size-based matrix population models for projecting population trends for six coniferous tree species in the Sierra Nevada, California. We used demographic data from 16 673 trees in 15 permanent plots to create 17 separate time-invariant, density-independent population projection models, and determined differences between trends projected from initial surveys with a 5-year interval and observed data during two subsequent 5-year time steps. 2 We detected departures from the assumptions of the matrix modelling approach in terms of strong growth autocorrelations. We also found evidence of observation errors for measurements of tree growth and, to a more limited degree, recruitment. Loglinear analysis provided evidence of significant temporal variation in demographic rates for only two of the 17 populations. 3 Total population sizes were strongly predicted by model projections, although population dynamics were dominated by carryover from the previous 5-year time step (i.e. there were few cases of recruitment or death). Fractional changes to overall population sizes were less well predicted. Compared with a null model and a simple demographic model lacking size structure, matrix model projections were better able to predict total population sizes, although the differences were not statistically significant. Matrix model projections were also able to predict short-term rates of survival, growth and recruitment. Mortality frequencies were not well predicted. 4 Our results suggest that simple size-structured models can accurately project future short-term changes for some tree populations. However, not all populations were well predicted and these simple models would probably become more inaccurate over longer projection intervals. The predictive ability of these models would also be limited by disturbance or other events that destabilize demographic rates. ?? 2005 British Ecological Society.

  7. Salinity tolerances and use of saline environments by freshwater turtles: implications of sea level rise.

    Science.gov (United States)

    Agha, Mickey; Ennen, Joshua R; Bower, Deborah S; Nowakowski, A Justin; Sweat, Sarah C; Todd, Brian D

    2018-03-25

    The projected rise in global mean sea levels places many freshwater turtle species at risk of saltwater intrusion into freshwater habitats. Freshwater turtles are disproportionately more threatened than other taxa; thus, understanding the role of salinity in determining their contemporary distribution and evolution should be a research priority. Freshwater turtles are a slowly evolving lineage; however, they can adapt physiologically or behaviourally to various levels of salinity and, therefore, temporarily occur in marine or brackish environments. Here, we provide the first comprehensive global review on freshwater turtle use and tolerance of brackish water ecosystems. We link together current knowledge of geographic occurrence, salinity tolerance, phylogenetic relationships, and physiological and behavioural mechanisms to generate a baseline understanding of the response of freshwater turtles to changing saline environments. We also review the potential origins of salinity tolerance in freshwater turtles. Finally, we integrate 2100 sea level rise (SLR) projections, species distribution maps, literature gathered on brackish water use, and a phylogeny to predict the exposure of freshwater turtles to projected SLR globally. From our synthesis of published literature and available data, we build a framework for spatial and phylogenetic conservation prioritization of coastal freshwater turtles. Based on our literature review, 70 species (∼30% of coastal freshwater turtle species) from 10 of the 11 freshwater turtle families have been reported in brackish water ecosystems. Most anecdotal records, observations, and descriptions do not imply long-term salinity tolerance among freshwater turtles. Rather, experiments show that some species exhibit potential for adaptation and plasticity in physiological, behavioural, and life-history traits that enable them to endure varying periods (e.g. days or months) and levels of saltwater exposure. Species that specialize on

  8. Variable Saline Concentrations for Initial Resuscitation Following Polytrauma

    Science.gov (United States)

    2017-02-22

    AFRL-SA-WP-TR-2017-0008 Variable Saline Concentrations for Initial Resuscitation Following Polytrauma Dr. Michael Goodman...Following Polytrauma 5a. CONTRACT NUMBER FA8650-10-2-6140 5b. GRANT NUMBER FA8650-14-2-6B29 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Michael...established. We investigated the utility of standard variable saline concentrations (0.9%, 3%, 23.4%) in a murine polytrauma model of traumatic brain injury

  9. Linking water and carbon cycles through salinity observed from space

    Science.gov (United States)

    Xie, X.; Liu, W. T.

    2017-12-01

    The association of ocean surface salinity in global hydrological cycle and climate change has been traditionally studied through the examination of its tendency and advection as manifestation of ocean's heat and water fluxes with the atmosphere. The variability of surface heat and water fluxes are linked to top of atmosphere radiation, whose imbalance is the main cause of global warming. Besides the link of salinity to greenhouse warming through water balance, this study will focus on the effect of changing salinity on carbon dioxide flux between the ocean and the atmosphere. We have built statistical models to estimate the partial pressure of carbon dioxide (pCO2) and ocean acidification (in terms of total alkalinity and pH) using spacebased data. PCO2 is a critical parameter governing ocean as source and sink of the accumulated greenhouse gas in the atmosphere. The exchange also causes ocean acidification, which is detrimental to marine lives and ecology. Before we had sufficient spacebased salinity measurements coincident with in situ pCO2 measurement, we trained our statistical models to use satellite sea surface temperature and chlorophyll, with one model using salinity climatology and the other without. We found significant differences between the two models in regions of strong water input through river discharge and surface water flux. The pCO2 output follows the seasonal salinity advection of the Amazon outflow. The seasonal salinity advection between Bay of Bengal and Arabian Sea are followed by change of pCO2 and total alkalinity. At shorter time scales, the signatures of rain associated with intraseasonal organized convection of summer monsoon can be detected. We have observed distribution agreement of among pCO2, surface salinity, and surface water flux for variation from a few days to a few years under the Pacific ITCZ; the agreement varies slightly with season and longitudes and the reason is under study.

  10. Model projections for household energy use in India

    NARCIS (Netherlands)

    van Ruijven, B.J.; van Vuuren, D.P.; de Vries, B.J.M.; Isaac, M.; van der Sluijs, J.P.; Lucas, P.L.; Balachandra, P.

    2011-01-01

    Energy use in developing countries is heterogeneous across households. Present day global energy models are mostly too aggregate to account for this heterogeneity. Here, a bottom-up model for residential energy use that starts from key dynamic concepts on energy use in developing countries is

  11. Use of mathematical modeling in nuclear measurements projects

    International Nuclear Information System (INIS)

    Toubon, H.; Menaa, N.; Mirolo, L.; Ducoux, X.; Khalil, R. A.; Chany, P.; Devita, A.

    2011-01-01

    Mathematical modeling of nuclear measurement systems is not a new concept. The response of the measurement system is described using a pre-defined mathematical model that depends on a set of parameters. These parameters are determined using a limited set of experimental measurement points e.g. efficiency curve, dose rates... etc. The model that agrees with the few experimental points is called an experimentally validated model. Once these models have been validated, we use mathematical interpolation to find the parameters of interest. Sometimes, when measurements are not practical or are impossible extrapolation is implemented but with care. CANBERRA has been extensively using mathematical modeling for the design and calibration of large and sophisticated systems to create and optimize designs that would be prohibitively expensive with only experimental tools. The case studies that will be presented here are primarily performed with MCNP, CANBERRA's MERCURAD/PASCALYS and ISOCS (In Situ Object Counting Software). For benchmarking purposes, both Monte Carlo and ray-tracing based codes are inter-compared to show models consistency and add a degree of reliability to modeling results. (authors)

  12. GASB's New Financial Reporting Model: Implementation Project for School Districts.

    Science.gov (United States)

    Bean, David; Glick, Paul

    1999-01-01

    In June 1999, the Governmental Accounting Standards Board (GASB) issued its statement on the structure of the basic financial reporting model for state and local governments. Explains the new financial reporting model and reviews the implementation issues that school districts will need to address. (MLF)

  13. Projective Item Response Model for Test-Independent Measurement

    Science.gov (United States)

    Ip, Edward Hak-Sing; Chen, Shyh-Huei

    2012-01-01

    The problem of fitting unidimensional item-response models to potentially multidimensional data has been extensively studied. The focus of this article is on response data that contains a major dimension of interest but that may also contain minor nuisance dimensions. Because fitting a unidimensional model to multidimensional data results in…

  14. Eysenck Psychobiological Personality Model: a projected into the future history

    Directory of Open Access Journals (Sweden)

    Vanina Schmidt

    2010-07-01

    Full Text Available In this article, particular circumstances, author and ideas that influenced on the elaboration of one of the most solid personality models that Psychology has till nowadays: Eysenck Personality Model, are revised. Its main characteristics are presented, which defined it as a dispositional, dimensional, hierarchic and psychobiological model. The intention of improving dimensions description, explanation, and measurement, took this author to propose changes to his original theory and instrument. Hence, different periods of this model are analyzed. In spite of proliferation of personality theories, Eysenck model has an empirical validity that only a few have. Thus, we argue that in Personality Psychology there is a background available which represents the Paradigm into which we will probably be moving in the next years

  15. Soil salinity and alkalinity in the Great Konya Basin, Turkey

    NARCIS (Netherlands)

    Driessen, P.M.

    1970-01-01

    In the summers of 1964 to 1968 a study was made of soil salinity and alkalinity in the Great Konya Basin, under the auspices of the Konya Project, a research and training programme of the Department of Tropical Soil Science of the Agricultural University, Wageningen.

    The Great

  16. Competence development organizations in project management on the basis of genomic model methodologies

    OpenAIRE

    Бушуев, Сергей Дмитриевич; Рогозина, Виктория Борисовна; Ярошенко, Юрий Федерович

    2013-01-01

    The matrix technology for identification of organisational competencies in project management is presented in the article. Matrix elements are the components of organizational competence in the field of project management and project management methodology represented in the structure of the genome. The matrix model of competence in the framework of the adopted methodologies and scanning method for identifying organizational competences formalised. Proposed methods for building effective proj...

  17. Success probability orientated optimization model for resource allocation of the technological innovation multi-project system

    Institute of Scientific and Technical Information of China (English)

    Weixu Dai; Weiwei Wu; Bo Yu; Yunhao Zhu

    2016-01-01

    A success probability orientated optimization model for resource al ocation of the technological innovation multi-project system is studied. Based on the definition of the technological in-novation multi-project system, the leveling optimization of cost and success probability is set as the objective of resource al ocation. The cost function and the probability function of the optimization model are constructed. Then the objective function of the model is constructed and the solving process is explained. The model is applied to the resource al ocation of an enterprise’s technological innovation multi-project system. The results show that the pro-posed model is more effective in rational resource al ocation, and is more applicable in maximizing the utility of the technological innovation multi-project system.

  18. Reducing failures rate within the project documentation using Building Information Modelling, especially Level of Development

    Directory of Open Access Journals (Sweden)

    Prušková Kristýna

    2018-01-01

    Full Text Available Paper´s focus is on differences between traditional modelling in 2D software and modelling within the BIM technology. Research uncovers failures connected to the traditional way of designing and construction of project documentation. There are revealed and shown mismatches within the project documentation. Solution within the Building information modelling Technology is outlined. As a reference, there is used experience with design of specific building in both ways of construction of project documentation: in the way of traditional modelling and in the way when using BIM technology, especially using Level of Development. Output of this paper is pointing to benefits of using advanced technology in building design, thus Building Information Modelling, especially Level of Development, which leads to reducing failures rate within the project documentation.

  19. Management of information in development projects – a proposed integrated model

    Directory of Open Access Journals (Sweden)

    C. Bester

    2008-11-01

    Full Text Available The first section of the article focuses on the need for development in Africa and the specific challenges of development operations. It describes the need for a holistic and integrated information management model as part of the project management body of knowledge aimed at managing the information flow between communities and development project teams. It is argued that information, and access to information, is crucial in development projects and can therefore be seen as a critical success factor in any development project. In the second section of the article, the three information areas of the holistic and integrated information management model are described. In the section thereafter we suggest roles and actions for information managers to facilitate information processes integral to the model. These processes seek to create a developing information community that aligns itself with the development project, and supports and sustains it.

  20. Predicting Defects Using Information Intelligence Process Models in the Software Technology Project.

    Science.gov (United States)

    Selvaraj, Manjula Gandhi; Jayabal, Devi Shree; Srinivasan, Thenmozhi; Balasubramanie, Palanisamy

    2015-01-01

    A key differentiator in a competitive market place is customer satisfaction. As per Gartner 2012 report, only 75%-80% of IT projects are successful. Customer satisfaction should be considered as a part of business strategy. The associated project parameters should be proactively managed and the project outcome needs to be predicted by a technical manager. There is lot of focus on the end state and on minimizing defect leakage as much as possible. Focus should be on proactively managing and shifting left in the software life cycle engineering model. Identify the problem upfront in the project cycle and do not wait for lessons to be learnt and take reactive steps. This paper gives the practical applicability of using predictive models and illustrates use of these models in a project to predict system testing defects thus helping to reduce residual defects.