WorldWideScience

Sample records for project teaching science

  1. Approaches to Teaching Plant Nutrition. Children's Learning in Science Project.

    Science.gov (United States)

    Leeds Univ. (England). Centre for Studies in Science and Mathematics Education.

    During the period 1984-1986, over 30 teachers from the Yorkshire (England) region have worked in collaboration with the Children's Learning in Science Project (CLIS) developing and testing teaching schemes in the areas of energy, particle theory, and plant nutrition. The project is based upon the constructivist approach to teaching. This document…

  2. Effects of 3D Printing Project-based Learning on Preservice Elementary Teachers' Science Attitudes, Science Content Knowledge, and Anxiety About Teaching Science

    Science.gov (United States)

    Novak, Elena; Wisdom, Sonya

    2018-05-01

    3D printing technology is a powerful educational tool that can promote integrative STEM education by connecting engineering, technology, and applications of science concepts. Yet, research on the integration of 3D printing technology in formal educational contexts is extremely limited. This study engaged preservice elementary teachers (N = 42) in a 3D Printing Science Project that modeled a science experiment in the elementary classroom on why things float or sink using 3D printed boats. The goal was to explore how collaborative 3D printing inquiry-based learning experiences affected preservice teachers' science teaching self-efficacy beliefs, anxiety toward teaching science, interest in science, perceived competence in K-3 technology and engineering science standards, and science content knowledge. The 3D printing project intervention significantly decreased participants' science teaching anxiety and improved their science teaching efficacy, science interest, and perceived competence in K-3 technological and engineering design science standards. Moreover, an analysis of students' project reflections and boat designs provided an insight into their collaborative 3D modeling design experiences. The study makes a contribution to the scarce body of knowledge on how teacher preparation programs can utilize 3D printing technology as a means of preparing prospective teachers to implement the recently adopted engineering and technology standards in K-12 science education.

  3. Project TIMS (Teaching Integrated Math/Science)

    Science.gov (United States)

    Edwards, Leo, Jr.

    1993-01-01

    The goal of this project is to increase the scientific knowledge and appreciation bases and skills of pre-service and in-service middle school teachers, so as to impact positively on teaching, learning, and student retention. This report lists the objectives and summarizes the progress thus far. Included is the working draft of the TIMS (Teaching Integrated Math/Science) curriculum outline. Seven of the eight instructional subject-oriented modules are also included. The modules include informative materials and corresponding questions and educational activities in a textbook format. The subjects included here are the universe and stars; the sun and its place in the universe; our solar system; astronomical instruments and scientific measurements; the moon and eclipses; the earth's atmosphere: its nature and composition; and the earth: directions, time, and seasons. The module not included regards winds and circulation.

  4. The perceptions of pre-service and in-service teachers regarding a project-based STEM approach to teaching science.

    Science.gov (United States)

    Siew, Nyet Moi; Amir, Nazir; Chong, Chin Lu

    2015-01-01

    Whilst much attention has focused on project-based approaches to teaching Science, Technology, Engineering and Mathematics (STEM) subjects, little has been reported on the views of South-East Asian science teachers on project-based STEM approaches. Such knowledge could provide relevant information for education training institutions on how to influence innovative teaching of STEM subjects in schools. This article reports on a study that investigated the perceptions of 25 pre-service and 21 in-service Malaysian science teachers in adopting an interdisciplinary project-based STEM approach to teaching science. The teachers undertook an eight hour workshop which exposed them to different science-based STEM projects suitable for presenting science content in the Malaysian high school science syllabus. Data on teachers' perceptions were captured through surveys, interviews, open-ended questions and classroom discussion before and at the end of the workshop. Study findings showed that STEM professional development workshops can provide insights into the support required for teachers to adopt innovative, effective, project-based STEM approaches to teaching science in their schools.

  5. Science in Schools Project

    Science.gov (United States)

    Waugh, Mike

    As part of a program to increase learning and engagement in science classes 124 Victorian schools are trialing a best practice teaching model. The Science in Schools Research Project is a DEET funded project under the Science in Schools Strategy, developed in response to recent research and policy decisions at national and state levels through which literacy, numeracy and science have been identified as key priorities for learning. This major science research project aims to identify, develop and trial best practice in Science teaching and learning. The Department will then be able to provide clear advice to Victoria's schools that can be adopted and sustained to: * enhance teaching and learning of Science * enhance student learning outcomes in Science at all year levels * increase student access to, and participation in Science learning from Prep through to Year 10, and hence in the VCE as well. The nature of the SiS program will be detailed with specific reference to the innovative programs in solar model cars, robotics and environmental science developed at Forest Hill College in response to this project.

  6. Earth System Science Project

    Science.gov (United States)

    Rutherford, Sandra; Coffman, Margaret

    2004-01-01

    For several decades, science teachers have used bottles for classroom projects designed to teach students about biology. Bottle projects do not have to just focus on biology, however. These projects can also be used to engage students in Earth science topics. This article describes the Earth System Science Project, which was adapted and developed…

  7. Primary teachers conducting inquiry projects : effects on attitudes towards teaching science and conducting inquiry

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte; van Hest, Erna G.W.C.M.; Poortman, Cindy Louise

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers’ attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of

  8. Primary Teachers Conducting Inquiry Projects: Effects on Attitudes towards Teaching Science and Conducting Inquiry

    Science.gov (United States)

    van Aalderen-Smeets, Sandra I.; Walma van der Molen, Juliette H.; van Hest, Erna G. W. C. M.; Poortman, Cindy

    2017-01-01

    This study used an experimental, pretest-posttest control group design to investigate whether participation in a large-scale inquiry project would improve primary teachers' attitudes towards teaching science and towards conducting inquiry. The inquiry project positively affected several elements of teachers' attitudes. Teachers felt less anxious…

  9. Project-Based Science

    Science.gov (United States)

    Krajcik, Joe

    2015-01-01

    Project-based science is an exciting way to teach science that aligns with the "Next Generation Science Standards" ("NGSS"). By focusing on core ideas along with practices and crosscutting concepts, classrooms become learning environments where teachers and students engage in science by designing and carrying out…

  10. Facilitating Elementary Science Teachers' Implementation of Inquiry-Based Science Teaching

    Science.gov (United States)

    Qablan, Ahmad M.; DeBaz, Theodora

    2015-01-01

    Preservice science teachers generally feel that the implementation of inquiry-based science teaching is very difficult to manage. This research project aimed at facilitating the implementation of inquiry-based science teaching through the use of several classroom strategies. The evaluation of 15 classroom strategies from 80 preservice elementary…

  11. Effective teaching in the contexts of Internet science projects: American and Russian teachers' perspectives of best practices

    Science.gov (United States)

    Mumma, Brian

    Statement of the problem. Science education literature had agreed that an important goal in students' learning is the development of scientific and technological literacy. One effort that teachers have integrated into their practices for addressing this goal has been teaching within the contexts of Internet Science Projects. Greater awareness of teachers' perspectives of their best practices and their beliefs and reasons for these practices in the contexts of Internet Science Projects can improve the quality of science education programs. Methods. A series of pilot interviews was conducted during the 2000--2001 school year to develop the guiding questions for inquiring into teachers' perspectives of their best practices within the contexts of Internet Science Projects. This series of interviews resulted in the understanding of the need to select teachers with experiences with Internet Science Projects and to conduct in-depth phenomenological interviews for learning from their voices. Two teachers were purposefully selected as the participant-informants for this study, one an American elementary teacher from Walker County, Georgia, and one a Russian teacher from St. Petersburg, Russia. The study was conducted from October through December 2001. The data collected for this qualitative study consisted of a series of in-depth phenomenological interviews, classroom observations, and the collection and analysis of various artifacts including teacher journals, student products, and e-mail/bulletin board transcripts. The interview structure was based upon a modification of expanding Seidman's (1998) three interview series into multiple interviews concluded upon the determination of saturation of the topic. The series of interviews were composed of (1) life history focus; (2) the details of the experience of teaching within the contexts of Internet Science Projects; and (3) reflection on the meanings. The data analysis consisted of applying Strauss & Corbin's (1990) open

  12. The impact of natural science contextual teaching through project method to students’ achievement in MTsN Miri Sragen

    Directory of Open Access Journals (Sweden)

    Anik Sunarsih

    2017-12-01

    Full Text Available This study aims to describe the science learning skills among students’ who follow contextual learning through project method with experiment method. The population of this research is the students’ of class VII MTS Negeri Miri Kab. Sragen on the teaching period of 2016/2017. Cluster random sampling technique is used as sample. This research was designed using contextual teaching through project method as an independent variable. The results of this Improvement show that there is a difference in the achievement of students' learning skill that follows contextual learning through the project method with the experimental method with Fobs = 8,83 and significant number 4,04 (p <0,05. Based on these findings contextual learning through the project is one of the learning methods that provide a positive influence on improving the achievement of science learning skills. This ain increase, because CTL is can help students’ understand the material by relating the problems that exist. Project methods are used by students’ in solving problems.

  13. Connecting university science experiences to middle school science teaching

    Science.gov (United States)

    Johnson, Gordon; Laughran, Laura; Tamppari, Ray; Thomas, Perry

    1991-06-01

    Science teachers naturally rely on their university science experiences as a foundation for teaching middle school science. This foundation consists of knowledge far too complex for the middle level students to comprehend. In order for middle school science teachers to utilize their university science training they must search for ways to adapt their college experiences into appropriate middle school learning experience. The criteria set forth above provide broad-based guidelines for translating university science laboratory experiences into middle school activities. These guidelines are used by preservice teachers in our project as they identify, test, and organize a resource file of hands-on inquiry activities for use in their first year classrooms. It is anticipated that this file will provide a basis for future curriculum development as the teacher becomes more comfortable and more experienced in teaching hands-on science. The presentation of these guidelines is not meant to preclude any other criteria or considerations which a teacher or science department deems important. This is merely one example of how teachers may proceed to utilize their advanced science training as a basis for teaching middle school science.

  14. Effective Teaching Methods--Project-based Learning in Physics

    Science.gov (United States)

    Holubova, Renata

    2008-01-01

    The paper presents results of the research of new effective teaching methods in physics and science. It is found out that it is necessary to educate pre-service teachers in approaches stressing the importance of the own activity of students, in competences how to create an interdisciplinary project. Project-based physics teaching and learning…

  15. Training Teens to Teach Agricultural Biotechnology: A National 4-H Science Demonstration Project

    Directory of Open Access Journals (Sweden)

    Chad Ripberger

    2013-12-01

    Full Text Available This article discusses a National 4-H Science agricultural biotechnology demonstration project and the impact of the pilot programs on the teenage leaders and teachers. A total of 82 teenagers were extensively trained, who in turn, engaged 620 youth participants with agricultural biotechnology education in afterschool and summer programs in five states. This article details the national and state level trainings for these teen teachers as well as the content rich partners from agribusinesses, agricultural commodity groups, and universities who supported their involvement. The impact on the content knowledge, science process and life skills, and program development and implementation skills of the teen leaders and teachers was evaluated using multiple instruments over multiple administrations (pre-training, post-training, and post-teaching. Results indicate significant gains in most areas assessed. Project recommendations and future plans are also discussed.

  16. In Brief: Science teaching certificate

    Science.gov (United States)

    Showstack, Randy

    2008-11-01

    More than 200 educators will receive fellowships over the next 5 years to participate in NASA's Endeavor Science Teaching Certificate Project, the agency announced on 14 November. Through workshops, online and on-site graduate courses, and NASA educational materials, the project will expose educators to NASA science and engineering and support them in translating the information for use in classrooms. ``Through the program, educators will learn to deliver cutting-edge science into the classroom, promoting science, technology, engineering, and mathematics education,'' according to Joyce Winterton, assistant administrator for education at NASA Headquarters, in Washington, D. C. Project fellows will earn a certificate from Teachers College Innovations at Teachers College, Columbia University, New York, and graduate credit from other institutional partners. For more information, visit http://education.nasa.gov/home/index.html.

  17. STENCIL: Science Teaching European Network for Creativity and Innovation in Learning

    Science.gov (United States)

    Cattadori, M.; Magrefi, F.

    2013-12-01

    STENCIL is an european educational project funded with support of the European Commission within the framework of LLP7 (Lifelong Learning Programme) for a period of 3 years (2011 - 2013). STENCIL includes 21 members from 9 European countries (Bulgaria, Germany, Greece, France, Italy, Malta, Portugal, Slovenia, Turkey.) working together to contribute to the general objective of improving science teaching, by promoting innovative methodologies and creative solutions. Among the innovative methods adept a particolar interest is a joint partnership between a wide spectrum of type of institutions such as schools, school authorities, research centres, universities, science museums, and other organizations, representing differing perspectives on science education. STENCIL offers to practitioners in science education from all over Europe, a platform; the web portal - www.stencil-science.eu - that provides high visibility to schools and institutions involved in Comenius and other similar European funded projects in science education. STENCIL takes advantage of the positive results achieved by the former European projects STELLA - Science Teaching in a Lifelong Learning Approach (2007 - 2009) and GRID - Growing interest in the development of teaching science (2004-2006). The specific objectives of the project are : 1) to identify and promote innovative practices in science teaching through the publication of Annual Reports on Science Education; 2) to bring together science education practitioners to share different experiences and learn from each other through the organisation of periodical study visits and workshops; 3) to disseminate materials and outcomes coming from previous EU funded projects and from isolated science education initiatives through the STENCIL web portal, as well as through international conferences and national events. This contribution aims at explaining the main features of the project together with the achieved results during the project's 3 year

  18. Against all odds: Tales of survival and growth of the Foundational Approaches in Science Teaching (FAST) project

    Science.gov (United States)

    Yamamoto, Karen Kina

    This study examines the dynamics of survival and growth of curricular and instructional innovations. It focuses on the Foundational Approaches in Science Teaching (FAST) project, a long-term survivor of reform in science education. Key questions guiding this study include: (1) How did the FAST project survive over the past 30 years? (2) What elements are essential for long-term survival and growth of an innovative science program? (3) Why did the project continue to survive amidst several waves of educational reform? The core of my conceptual framework is that the odds of survival and growth of curricular and instructional innovations are increased by the extent to which resources, theory-based curriculum development processes, and professional development strategies are not only incorporated into but also interdependent within a project. With this framework as a guide, the main methods of data collection were document analysis, interviews, and observations. FAST, developed by the University of Hawaii's Curriculum Research and Development Group (CRDG), consists of a sequential and interdisciplinary middle and high school science program for students in grades 6-10. According to the results of this study, the project was able to survive by receiving constant organizational support from CRDG and a steady source of State funding through the university since 1966; it also retained a relatively small but stable staff of highly qualified project personnel. Formulated on a discipline-based theory that values development of students' intellectual capacities as the platform for curriculum research, design, and development, the FAST project translated this vision of science education into key elements of an innovative program that survived and thrived: (1) an interdisciplinary program consisting of physical, biological, and earth sciences; inquiry as content and process; history and philosophy of science; and links between and among sciences, technology, and society; and (2

  19. Americans aim to overhaul science teaching by 2061

    CERN Document Server

    1990-01-01

    Project 2061 is a long-term initiative by the AAAS to reform classroom science. Deputy director Walter Gillespie claims that the aim is for schools to teach less content but teach it better (1/2 page).

  20. Project LAUNCH: Bringing Space into Math and Science Classrooms

    Science.gov (United States)

    Fauerbach, M.; Henry, D. P.; Schmidt, D. L.

    2005-01-01

    Project LAUNCH is a K-12 teacher professional development program, which has been created in collaboration between the Whitaker Center for Science, Mathematics and Technology Education at Florida Gulf Coast University (FGCU), and the Florida Space Research Institute (FSRI). Utilizing Space as the overarching theme it is designed to improve mathematics and science teaching, using inquiry based, hands-on teaching practices, which are aligned with Florida s Sunshine State Standards. Many students are excited about space exploration and it provides a great venue to get them involved in science and mathematics. The scope of Project LAUNCH however goes beyond just providing competency in the subject area, as pedagogy is also an intricate part of the project. Participants were introduced to the Conceptual Change Model (CCM) [1] as a framework to model good teaching practices. As the CCM closely follows what scientists call the scientific process, this teaching method is also useful to actively engage institute participants ,as well as their students, in real science. Project LAUNCH specifically targets teachers in low performing, high socioeconomic schools, where the need for skilled teachers is most critical.

  1. Science teaching in science education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-06-01

    Reading the interesting article Discerning selective traditions in science education by Per Sund , which is published in this issue of CSSE, allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must constantly develop new methods to teach and differentiate between science education and teaching science in response to the changing needs of our students, and we must analyze what role teachers and teacher educators play in both. We must continually examine the methods and concepts involved in developing pedagogical content knowledge in science teachers. Otherwise, the possibility that these routines, based on subjective traditions, prevent emerging processes of educational innovation. Modern science is an enormous field of knowledge in its own right, which is made more expansive when examined within the context of its place in society. We propose the need to design educative interactions around situations that involve science and society. Science education must provide students with all four dimensions of the cognitive process: factual knowledge, conceptual knowledge, procedural knowledge, and metacognitive knowledge. We can observe in classrooms at all levels of education that students understand the concepts better when they have the opportunity to apply the scientific knowledge in a personally relevant way. When students find value in practical exercises and they are provided opportunities to reinterpret their experiences, greater learning gains are achieved. In this sense, a key aspect of educational innovation is the change in teaching methodology. We need new tools to respond to new problems. A shift in teacher education is needed to realize the rewards of situating science questions in a societal context and opening classroom doors to active methodologies in science education to promote meaningful learning through meaningful teaching.

  2. The Effects of Project Based Learning on Undergraduate Students' Achievement and Self-Efficacy Beliefs towards Science Teaching

    Science.gov (United States)

    Bilgin, Ibrahim; Karakuyu, Yunus; Ay, Yusuf

    2015-01-01

    The purpose of this study is to investigate the effects of the Project-Based Learning (PBL) method on undergraduate students' achievement and its association with these students' self-efficacy beliefs about science teaching and pinions about PBL. The sample of the study consisted of two randomly chosen classes from a set of seven classes enrolled…

  3. Science Teaching in Science Education

    Science.gov (United States)

    Callahan, Brendan E.; Dopico, Eduardo

    2016-01-01

    Reading the interesting article "Discerning selective traditions in science education" by Per Sund, which is published in this issue of "CSSE," allows us to open the discussion on procedures for teaching science today. Clearly there is overlap between the teaching of science and other areas of knowledge. However, we must…

  4. Teaching the TEMI way how using mysteries supports science learning

    CERN Document Server

    Olivotto, Cristina

    2015-01-01

    In this booklet, you will be introduced to an exciting new way to teach science in your classroom. The TEMI project (Teaching Enquiry with Mysteries Incorporated) is an EU-funded project that brings together experts in teacher training from across Europe to help you introduce enquiry-based learning successfully in the classroom and improve student engagement and skills.

  5. Making the Invisible Visible: The Oklahoma Science Project.

    Science.gov (United States)

    McCarty, Robbie; Pedersen, Jon E.

    2002-01-01

    Reports that teachers in preservice education programs still view the teaching of science much in the same traditional ways as our predecessors. "The Oklahoma Science Project (OSP) Model for Professional Development: Practicing Science Across Contexts" will build discourses and relationships that can be extended across contexts to establish…

  6. Science &Language Teaching in Hands-on Education

    Science.gov (United States)

    Gehlert, Sylvia

    2002-01-01

    As announced in the paper presented in Toulouse, a trinational teacher training program addressing school teachers from France, Germany and Italy on teaching foreign languages together with science and history through Space related projects has been implemented and launched successfully. Supported by the French Ministry of Education (Académie de Nice), the bigovernmental French-German Youth Office (Office franco- allemand pour la Jeunesse) and the European Space Agency the first session was held in Cannes in October 2001 and brought together 36 language, science and history teachers, 12 from each country. Through different workshops, presentations and visits this five-day training encounter initiated the participants with Space activities and exploration as well as offering them back-up information on astronomy. It gave them furthermore the opportunity of improving their linguistic skills and of exchanging their teaching experience. The program was highly welcomed by all the participants who will meet this year in Germany for the second session devoted to establishing together bi- or trinational projects for future class encounters based on the same subjects. My paper will deal with the results of the program which have been beyond expectation and will encourage us to continue this pluridisciplinary approach of language &science teaching and extend it to other language combinations.

  7. Teaching computer science at school: some ideas

    OpenAIRE

    Bodei, Chiara; Grossi, Roberto; Lagan?, Maria Rita; Righi, Marco

    2010-01-01

    As a young discipline, Computer Science does not rely on longly tested didactic procedures. This allows the experimentation of innovative teaching methods at schools, especially in early childhood education. Our approach is based on the idea that abstracts notions should be gained as the final result of a learning path made of concrete and touchable steps. To illustrate our methodology, we present some of the teaching projects we proposed.

  8. Seeing a World in a Grain of Sand: Science Teaching in Multicultural Context.

    Science.gov (United States)

    Chambers, David Wade

    1999-01-01

    Describes the Imagining Nature Project at Deakin University in Australia, and the Native Eyes Project at the Institute of American Indian Art in New Mexico. Both projects entail the teaching of science and technology to non-science majors of highly diverse cultural origin. They also incorporate innovative strategies to make science and technology…

  9. Project first and eye on the sky: strategies for teaching space science in the early grades

    Science.gov (United States)

    Paglierani, R.; Hawkins, I.

    Elementary educators typically have only limited opportunity to teach substantive science units. This is due, in great part, to the current primary focus on literacy and mathematics instruction in the early grades. It is not surprising then, that the time and resources allocated to science teaching are significantly less than those allocated to language arts and mathematics. The integration of elementary science curricula with language arts provides one means of addressing the challenge of maintaining a robust science presence in the elementary classroom. Project FIRST's Eye on the Sky suggests a model for the successful integration of science instruction with language arts through inquiry-based learning. The model has been adopted by other Education/Public Outreach efforts, most recently, the Cassini- Huygens Mission and the Space Telescope Institute. We will present Eye on the Sky: Our Star the Sun, a suite of integrated, inquiry-based lessons designed specifically for K-4 students and discuss data showing the program's impact on the user audience. These materials offer an exciting opportunity to explore the dynamic Sun and share research discoveries of NASA's Sun-Earth Connection with the elementary education community. The lessons were developed and tested by UC Berkeley educators and NASA scientists in partnership with classroom teachers. We will review the program components and examine the benefits and challenges inherent in implementing such a program in the elementary school setting.

  10. Theme-Based Project Learning: Design and Application of Convergent Science Experiments

    Science.gov (United States)

    Chun, Man-Seog; Kang, Kwang Il; Kim, Young H.; Kim, Young Mee

    2015-01-01

    This case study aims to verify the benefits of theme-based project learning for convergent science experiments. The study explores the possibilities of enhancing creative, integrated and collaborative teaching and learning abilities in science-gifted education. A convergent project-based science experiment program of physics, chemistry and biology…

  11. Nuclear science teaching

    International Nuclear Information System (INIS)

    1968-01-01

    A Panel of Experts on Nuclear Science Teaching met in Bangkok from 15 to 23 July 1968 to review the present status of an need for teaching of topics related to nuclear science at the secondary and early university level including teacher training, and to suggest appropriate ways of introducing these topics into the science curricula. This report contains the contributions of the members of the Panel, together with the general conclusions and recommendations for the development of school and early university curricula and training programs, for the improvement of teaching materials and for the safest possible handing of radioactive materials in school and university laboratories. It is hoped that the report will be of use to all nuclear scientists and science educators concerned with modernizing their science courses by introducing suitable topics and experiments in nuclear science

  12. Teaching science students to identify entrepreneurial opportunities

    NARCIS (Netherlands)

    Nab, J.

    2015-01-01

    This dissertation describes a research project on teaching science students to identify entrepreneurial opportunities, which is a core competence for entrepreneurs that should be emphasized in education. This research consists of four studies. The first case study aims at finding design strategies

  13. Project-Based Learning versus Textbook/Lecture Learning in Middle School Science

    Science.gov (United States)

    Main, Sindy

    2015-01-01

    As schools continue to become more diverse, it is important to look at science teaching methods that will meet the needs of all students. In this study, 172 students in a middle school in Northwestern Illinois were taught using two methods of teaching science. Half of the students were taught using project-based science (PBS) and the other half of…

  14. An Evaluation of the Science Education Component of the Cross River State Science and Technical Education Project

    Science.gov (United States)

    Ekuri, Emmanuel Etta

    2012-01-01

    The Cross River State Science and Technical Education Project was introduced in 1992 by edict number 9 of 20 December 1991, "Cross River State Science and Technical Education Board Edit, 20 December, 1991", with the aim of improving the quality of science teaching and learning in the state. As the success of the project depends…

  15. Teaching Political Science through Memory Work

    Science.gov (United States)

    Jansson, Maria; Wendt, Maria; Ase, Cecilia

    2009-01-01

    In this article, we present the results of a research project where we have tried to elaborate more socially inclusive ways of teaching and learning political science by making use of a specific feminist method of analyzing social relations--memory work. As a method, memory work involves writing and interpreting stories of personal experience,…

  16. Minority Preservice Teachers' Conceptions of Teaching Science: Sources of Science Teaching Strategies

    Science.gov (United States)

    Subramaniam, Karthigeyan

    2013-01-01

    This study explores five minority preservice teachers' conceptions of teaching science and identifies the sources of their strategies for helping students learn science. Perspectives from the literature on conceptions of teaching science and on the role constructs used to describe and distinguish minority preservice teachers from their mainstream…

  17. Caring Enough to Teach Science. Helping Pre-service Teachers View Science Instruction as an Ethical Responsibility

    Science.gov (United States)

    Grinell, Smith; Rabin, Colette

    2017-11-01

    The goal of this project was to motivate pre-service elementary teachers to commit to spending significant instructional time on science in their future classrooms despite their self-assessed lack of confidence about teaching science and other impediments (e.g., high-stakes testing practices that value other subjects over science). Pre-service teachers in science methods courses explored connections between science and ethics, specifically around issues of ecological sustainability, and grappled with their ethical responsibilities as teachers to provide science instruction. Survey responses, student "quick-writes," interview transcripts, and field notes were analyzed. Findings suggest that helping pre-service teachers see these connections may shape their beliefs and dispositions in ways that may motivate them to embark on the long road toward improving their science pedagogical content knowledge and ultimately to teach science to their students more often and better than they otherwise might. The approach may also offer a way for teachers to attend to the moral work of teaching.

  18. Confronting Barriers to Teaching Elementary Science: After-School Science Teaching Experiences for Preservice Teachers

    Science.gov (United States)

    Cartwright, Tina; Smith, Suzanne; Hallar, Brittan

    2014-01-01

    This qualitative study examines the transition of eight elementary preservice teachers into student teaching after participating in a science methods course that included a significant amount of teaching after-school science to elementary grade students. These eight participants had a chance to practice teaching inquiry-based science and to reform…

  19. Teaching science for conceptual change: Toward a proposed taxonomy of diagnostic teaching strategies to gauge students' personal science conceptions

    Science.gov (United States)

    Shope, Richard Edwin, III

    Science instruction aims to ensure that students properly construct scientific knowledge so that each individual may play a role as a science literate citizen or as part of the science workforce (National Research Council, 1996, 2000). Students enter the classroom with a wide range of personal conceptions regarding science phenomena, often at variance with prevailing scientific views (Duschl, Hamilton, & Grandy, 1992; Hewson, 1992). The extensive misconceptions research literature emphasizes the importance of diagnosing students' initial understandings in order to gauge the accuracy and depth of what each student knows prior to instruction and then to use that information to adapt the teaching to address student needs. (Ausubel, 1968; Carey, 2000; Driver et al., 1985; Karplus & Thier, 1967; Mintzes, Wandersee, & Novak, 1998; Osborne & Freyberg, 1985; Project 2061, 1993; Strike & Posner, 1982, 1992; Vygotsky, 1934/1987). To gain such insight, teachers diagnose not only the content of the students' personal conceptions but also the thinking processes that produced them (Strike and Posner, 1992). Indeed, when teachers design opportunities for students to express their understanding, there is strong evidence that such diagnostic assessment also enhances science teaching and learning (Black & William, 1998). The functional knowledge of effective science teaching practice resides in the professional practitioners at the front lines---the science teachers in the classroom. Nevertheless, how teachers actually engage in the practice of diagnosis is not well documented. To help fill this gap, the researcher conducted a study of 16 sixth grade science classrooms in four Los Angeles area middle schools. Diagnostic teaching strategies were observed in action and then followed up by interviews with each teacher. Results showed that teachers use strategies that vary by the complexity of active student involvement, including pretests, strategic questions, interactive discussion

  20. Teaching earth science

    Science.gov (United States)

    Alpha, Tau Rho; Diggles, Michael F.

    1998-01-01

    This CD-ROM contains 17 teaching tools: 16 interactive HyperCard 'stacks' and a printable model. They are separated into the following categories: Geologic Processes, Earthquakes and Faulting, and Map Projections and Globes. A 'navigation' stack, Earth Science, is provided as a 'launching' place from which to access all of the other stacks. You can also open the HyperCard Stacks folder and launch any of the 16 stacks yourself. In addition, a 17th tool, Earth and Tectonic Globes, is provided as a printable document. Each of the tools can be copied onto a 1.4-MB floppy disk and distributed freely.

  1. Participation in a Multi-Institutional Curriculum Development Project Changed Science Faculty Knowledge and Beliefs about Teaching Science

    Science.gov (United States)

    Donovan, Deborah A.; Borda, Emily J.; Hanley, Daniel M.; Landel, Carolyn C.

    2015-01-01

    Despite significant pressure to reform science teaching and learning in K12 schools, and a concurrent call to reform undergraduate courses, higher education science content courses have remained relatively static. Higher education science faculty have few opportunities to explore research on how people learn, examine state or national science…

  2. A study to define and verify a model of interactive-constructive elementary school science teaching

    Science.gov (United States)

    Henriques, Laura

    This study took place within a four year systemic reform effort collaboratively undertaken by the Science Education Center at the University of Iowa and a local school district. Key features of the inservice project included the use of children's literature as a springboard into inquiry based science investigations, activities to increase parents' involvement in children's science learning and extensive inservice opportunities for elementary teachers to increase content knowledge and content-pedagogical knowledge. The overarching goal of this elementary science teacher enhancement project was to move teachers towards an interactive-constructivist model of teaching and learning. This study had three components. The first was the definition of the prototype teacher indicated by the project's goals and supported by science education research. The second involved the generation of a model to show relationships between teacher-generated products, demographics and their subsequent teaching behaviors. The third involved the verification of the hypothesized model using data collected on 15 original participants. Demographic information, survey responses, interview and written responses to scenarios were among the data collected as source variables. These were scored using a rubric designed to measure constructivist practices in science teaching. Videotapes of science teaching and revised science curricula were collected as downstream variables and scored using an the ESTEEM observational rubric and a rubric developed for the project. Results indicate that newer teachers were more likely to implement features of the project. Those teachers who were philosophically aligned with project goals before project involvement were also more likely to implement features of the project. Other associations between reported beliefs, planning and classroom implementations were not confirmed by these data. Data show that teachers reported higher levels of implementation than their

  3. Caring Enough to Teach Science: Helping Pre-Service Teachers View Science Instruction as an Ethical Responsibility

    Science.gov (United States)

    Grinell, Smith; Rabin, Colette

    2017-01-01

    The goal of this project was to motivate pre-service elementary teachers to commit to spending significant instructional time on science in their future classrooms despite their self-assessed lack of confidence about teaching science and other impediments (e.g., high-stakes testing practices that value other subjects over science). Pre-service…

  4. Teachers' perceptions on primary science teaching

    Science.gov (United States)

    Kijkuakul, Sirinapa

    2018-01-01

    This qualitative research aimed to review what primary teachers think about how to teach science in rural school contexts. Three primary schools in Thailand were purposively chosen for this study. Eleven primary science teachers of these schools were the research participants. Questionnaires, interviews, and observations were implemented to reveal the primary school teachers' educational backgrounds, science teaching context, and need for self-driven professional development. Content and discourse analysis indicated that the non-science educational background and the science teaching context implied a need for self-driven professional development. The non-science educational background teachers were generally unfamiliar with the current national science curriculum, and that they would not be comfortable when the researcher observed their science teaching practice. They also believed that experimentation was the only one strategy for teaching science, and that the priority for their teaching support was teaching media rather than their understanding of scientific concepts or teaching strategies. As implication of this research, subsequent developments on science teacher profession in rural context, therefore, need to promote teachers' understandings of nature of science and technological and pedagogical content knowledge. In addition, they should be challenged to practice on critically participatory action research for academic growth and professional learning community.

  5. The effect of electronic networking on preservice elementary teachers' science teaching self-efficacy and attitude towards science teaching

    Science.gov (United States)

    Mathew, Nishi Mary

    Preservice elementary teachers' science teaching efficacy and attitude towards science teaching are important determinants of whether and how they will teach science in their classrooms. Preservice teachers' understanding of science and science teaching experiences have an impact on their beliefs about their ability to teach science. This study had a quasi-experimental pretest-posttest control group design (N = 60). Preservice elementary teachers in this study were networked through the Internet (using e-mail, newsgroups, listserv, world wide web access and electronic mentoring) during their science methods class and student practicum. Electronic networking provides a social context in which to learn collaboratively, share and reflect upon science teaching experiences and practices, conduct tele-research effectively, and to meet the demands of student teaching through peer support. It was hoped that the activities over the electronic networks would provide them with positive and helpful science learning and teaching experiences. Self-efficacy was measured using a 23-item Likert scale instrument, the Science Teaching Efficacy Belief Instrument, Form-B (STEBI-B). Attitude towards science teaching was measured using the Revised Science Attitude Scale (RSAS). Analysis of covariance was used to analyze the data, with pretest scores as the covariate. Findings of this study revealed that prospective elementary teachers in the electronically networked group had better science teaching efficacy and personal science teaching efficacy as compared to the non-networked group of preservice elementary teachers. The science teaching outcome expectancy of prospective elementary teachers in the networked group was not greater than that of the prospective teachers in the non-networked group (at p < 0.05). Attitude towards science teaching was not significantly affected by networking. However, this is surmised to be related to the duration of the study. Information about the

  6. Improving Early Career Science Teachers' Ability to Teach Space Science

    Science.gov (United States)

    Schultz, G. R.; Slater, T. F.; Wierman, T.; Erickson, J. G.; Mendez, B. J.

    2012-12-01

    assigned interning student teachers in using the GEMS Space Science Sequence. As such, the project targeted the high leverage point of early career teachers who may well go on to use the GEMS materials for the next 30 years of their teaching careers, impacting potentially many hundreds of students. External evaluation showed that the novice teachers mentored by the master teachers felt knowledgeable about the topics covered in the four units after teaching the Space Science units. However, they seemed relatively less confident about the solar system, and objects beyond the solar system, which are covered in Units 3 and 4, respectively. This may be due to the fact that not all of them taught these units. Overall, mentees felt strongly on the post-survey taken at the end of the year that they have acquired good strategies for teaching the various topics, suggesting that the support they received while teaching and working with a mentor was of real benefit to them. The main challenges reported by the novice teachers were not having time to meet or talk with their mentors, and having different approaches to teaching from their mentors. In general, however, the novice teachers had very positive experiences with their mentor teachers and the curriculum materials provided.

  7. Influences on teachers' curricular choices in project-based science classrooms

    Science.gov (United States)

    Laba, Karen Anne

    This descriptive research will present two case studies of experienced science teachers using project-based curricula in all or part of their secondary life science/biology courses. The purpose of this study is to reveal the underlying relationships between teachers' conceptions of the nature of science, their understanding of their role as science teachers and their expectations for appropriate and worthwhile student learning, and to describe the influence of these factors on their curricular choices within the project-based framework. Using a modification of Hewson, Kerby and Cook's (1995) Conceptions of Teaching Science protocol as a model, teachers' beliefs and intentions are classified and examined to identify organizing themes. Comparisons between teachers' beliefs and the actions they take in their project-based classroom are used to reveal relationships among the choices that result in students' learning experiences. Finally, the curricula presented by these two exemplary teachers are compared with the teaching standards and content goals defined in the National Science Education Standards (NRC, 1996). Recommendations for the application of the case study perspective of the evolution of learning experiences to reform efforts are offered to practitioners, policy makers, curriculum developers and teacher educators.

  8. Teaching with Moodle in Soil Science

    Science.gov (United States)

    Roca, Núria

    2014-05-01

    Soil is a 3-dimensional body with properties that reflect the impact of climate, vegetation, fauna, man and topography on the soil's parent material over a variable time span. Therefore, soil is integral to many ecological and social systems and it holds potential solutions for many of the world's economic and scientific problems as climate change or scarcity of food and water. The teaching of Soil Science, as a natural science in its own right, requires principles that reflect the unique features and behaviour of soil and the practices of soil scientists. It could be argued that a unique set of teaching practices applies to Soil Science; however specific teaching practices are scarce in literature. The present work was triggered by the need to develop new techniques of teaching to speed up the learning process and to experiment with new methods of teaching. For such, it is necessary to adopt virtual learning environment to new learning requirements regarding Soil Science. This paper proposes a set of e-teaching techniques (as questionnaires, chats as well as forums) introduced in Moodle virtual learning Environment in order to increase student motivation and interest in Soil Science. Such technologies can be used to: a)Increase the amount of time a teacher allots for student reflection after asking a question and before a student responds (wait-time). This practice increases the quantity and quality of students' answers. The students give longer responses, students give more evidence for their ideas and conclusions, students speculate and hypothesize more and more students participated in responding. Furthermore, students ask more questions and talk more to other students. b)Improve active learning, an essential paradigm in education. In contrast to learning-before-doing, we propose to focus on learning-in-doing, a model where learners are increasingly involved in the authentic practices of communities through learning conversations and activities involving expert

  9. Science and mathematics teaching through local games in preschools of Botswana

    Directory of Open Access Journals (Sweden)

    Kabita Bose

    2016-11-01

    Full Text Available This article presents a study regarding preschool teachers’ skills and competencies in teaching science and mathematics. The aim of the project was twofold; one to find out the preschool teachers’ knowledge about mathematics and science concepts and then to develop support material to empower them with skills and competencies to teach these concepts in preschools. A qualitative approach was adopted, and a case study method was used. Data were collected through two workshops and focus group discussions with preschool teachers. The study revealed that the preschool teachers had content knowledge, but lacked pedagogical knowledge that is crucial in teaching of preschool children, and they provided science and mathematics experiences in preschools scarcely. A resource book of 33 local games and rhymes thus was developed as a support material to empower the teachers with skills and competencies to use play to teach science and mathematics in preschools. The resource book developed consists of 33 local games/rhymes and is packaged with the games’ illustrations, steps and rules followed in the games, science and mathematics concepts and competencies that could be taught to children, along with probing questions that would help in teaching of science and mathematics concepts to children.

  10. Elementary Teachers' Perceptions of Teaching Science to Improve Student Content Knowledge

    Science.gov (United States)

    Stephenson, Robert L.

    The majority of Grade 5 students demonstrate limited science knowledge on state assessments. This trend has been documented since 2010 with no evidence of improvement. Because state accountability formulas include proficiency scores and carry sanctions against districts that fail to meet proficiency thresholds, improved student performance in science is an important issue to school districts. The purpose of this study was to explore elementary teachers' perceptions about their students' science knowledge, the strategies used to teach science, the barriers affecting science teaching, and the self-efficacy beliefs teachers maintain for teaching science. This study, guided by Vygotsky's social constructivist theory and Bandura's concept of self-efficacy, was a bounded instrumental case study in which 15 participants, required to be teaching K-5 elementary science in the county, were interviewed. An analytic technique was used to review the qualitative interview data through open coding, clustering, and analytical coding resulting in identified categorical themes that addressed the research questions. Key findings reflect students' limited content knowledge in earth and physical science. Teachers identified barriers including limited science instructional time, poor curricular resources, few professional learning opportunities, concern about new state standards, and a lack of teaching confidence. To improve student content knowledge, teachers identified the need for professional development. The project is a professional development series provided by a regional education service agency for K-5 teachers to experience science and engineering 3-dimensional learning. Area students will demonstrate deeper science content knowledge and benefit from improved science instructional practice and learning opportunities to become science problem solvers and innovative contributors to society.

  11. Innovating Science Teaching by Participatory Action Research--Reflections from an Interdisciplinary Project of Curriculum Innovation on Teaching about Climate Change

    Science.gov (United States)

    Feierabend, Timo; Eilks, Ingo

    2011-01-01

    This paper describes a three-year curriculum innovation project on teaching about climate change. The innovation for this study focused on a socio-critical approach towards teaching climate change in four different teaching domains (biology, chemistry, physics and politics). The teaching itself explicitly aimed at general educational objectives,…

  12. Science teachers teaching socioscientific issues (SSI): Four case studies

    Science.gov (United States)

    Lee, Hyunju

    Socioscientific issues (SSI) are a class of issues that represent the social, ethical, and moral aspects of science in society. The need for the inclusion of SSI into science curricula has been generally accepted, but relatively few science teachers have incorporated SSI into their courses. Most science teachers feel that their most important task by far is to teach the principles of science, and any substantive pedagogical changes represent a burden. However, there are some teachers who address SSI out of personal initiatives. This dissertation study investigates four high school science teachers who address SSI out of their own initiative and explores their deeper inspirations, values, philosophies, and personal ideals that lead them to teach SSI. The overall approach is based on essentialist methodology (Witz, Goodwin, Hart, & Thomas, 2001; Witz, 2006a) with its focus on "the participant as ally" and "essentialist portraiture." The primary data source is four to six in-depth interviews with individual teachers (about 40-90 minutes for each interview). The interviews are complemented by extensive classroom observations of individual teachers' teaching SSI and by document analysis (including teaching materials, rubrics, student group projects and journals, etc.). There are two major findings. First, the teachers' deeper values and ideals are a source of larger inspiration that plays a significant role in changing their teaching practice. This inspiration may involve higher aspects (e.g., deep concern for students' development, unselfishness, caring, etc.) and commitment. Their teaching represents an integration of their personal experiences, values, concerns, and worldviews, which forms a larger inspiration for teaching. Teaching SSI is a part of this larger process. Second, the current curriculum reforms (STS, SSI, and NOS) only suggest theoretical ideals and do not effectively touch teachers' deeper values and ideals. Basically, the teachers are doing what they

  13. Teaching students ideas-about-science: Five dimensions of effective practice

    Science.gov (United States)

    Bartholomew, Hannah; Osborne, Jonathan; Ratcliffe, Mary

    2004-09-01

    In this paper, we report work undertaken with a group of 11 UK teachers over a period of a year to teach aspects of the nature of science, its process, and its practices. The teachers, who taught science in a mix of elementary, junior high, and high schools, were asked to teach a set of ideas-about-scienc for which consensual support had been established using a Delphi study in the first phase of the project. Data were collected through field notes, videos of the teachers' lessons, teachers' reflective diaries, and instruments that measured their understanding of the nature of science and their views on the role and value of discussion in the classroom. In this paper, drawing on a sample of the data we explore the factors that afforded or inhibited the teachers' pedagogic performance in this domain. Using these data, we argue that there are five critical dimensions that distinguish and determine a teacher's ability to teach effectively about science. Whilst these dimensions are neither mutually independent nor equally important, they serve as a valuable analytical tool for evaluating and explaining the success, or otherwise, that individual teachers of science have when confronted with teaching aspects about science. In addition, we argue that they are an important means of identifying salient aspects of pedagogy for initial and in-service training of science teachers for curricula that incorporate elements of ideas-about-science

  14. Perspectives on learning, learning to teach and teaching elementary science

    Science.gov (United States)

    Avraamidou, Lucy

    The framework that characterizes this work is that of elementary teachers' learning and development. Specifically, the ways in which prospective and beginning teachers' develop pedagogical content knowledge for teaching science in light of current recommendations for reform emphasizing teaching and learning science as inquiry are explored. Within this theme, the focus is on three core areas: (a) the use of technology tools (i.e., web-based portfolios) in support of learning to teach science at the elementary level; (b) beginning teachers' specialized knowledge for giving priority to evidence in science teaching; and (c) the applications of perspectives associated with elementary teachers' learning to teach science in Cyprus, where I was born and raised. The first manuscript describes a study aimed at exploring the influence of web-based portfolios and a specific task in support of learning to teach science within the context of a Professional Development School program. The task required prospective teachers to articulate their personal philosophies about teaching and learning science in the form of claims, evidence and justifications in a web-based forum. The findings of this qualitative case study revealed the participants' developing understandings about learning and teaching science, which included emphasizing a student-centered approach, connecting physical engagement of children with conceptual aspects of learning, becoming attentive to what teachers can do to support children's learning, and focusing on teaching science as inquiry. The way the task was organized and the fact that the web-based forum provided the ability to keep multiple versions of their philosophies gave prospective teachers the advantage of examining how their philosophies were changing over time, which supported a continuous engagement in metacognition, self-reflection and self-evaluation. The purpose of the study reported in the second manuscript was to examine the nature of a first

  15. DLESE Teaching Boxes: Earth System Science Resources And Strategies For Using Data In The Classroom

    Science.gov (United States)

    Olds, S. E.; Weingroff, M.

    2005-12-01

    The DLESE Teaching Box project is both a professional development opportunity and an educational resource development project providing a pedagogic context that support teachers' use of data in the classroom. As a professional development opportunity, it is designed to augment teachers' science content knowledge, enhance their use of inquiry teaching strategies, and increase their confidence and facility with using digital libraries and online learning resources. Teams of educators, scientists, and instructional designers work together during a three part Teaching Box Development Workshop series to create Teaching Boxes on Earth system science topics. The resulting Teaching Boxes use Earth system science conceptual frameworks as their core and contain inquiry-based lessons which model scientific inquiry and process by focusing on the gathering and analysis of evidence. These lines of evidence employ an Earth systems approach to show how processes across multiple spheres, for example, how the biosphere, atmosphere, and geosphere interact in a complex Earth process. Each Teaching Box has interconnected lessons that provide 3-6 weeks of instruction, incorporate National and California science standards, and offer guidance on teaching pathways through the materials. They contain up-to-date digital materials including archived and real-time data sets, simulations, images, lesson plans, and other resources available through DLESE, NSDL, and the participating scientific institutions. Background information provided within the Box supports teacher learning and guides them to facilitate student access to the tools and techniques of authentic, modern science. In developing Teaching Boxes, DLESE adds value to existing educational resources by helping teachers more effectively interpret their use in a variety of standards-based classroom settings. In the past twelve months we have had over 100 requests for Teaching Box products from teachers and curriculum developers from

  16. The Teaching Processes of Prospective Science Teachers with Different Levels of Science-Teaching Self-Efficacy Belief

    Science.gov (United States)

    Saka, Mehpare; Bayram, Hale; Kabapinar, Filiz

    2016-01-01

    The concept of self-efficacy, which is an important variable in the teaching process, and how it reflects on teaching have recently been the focus of attention. Therefore, this study deals with the relationship between the science-teaching self-efficacy beliefs of prospective science teachers and their teaching practices. It was conducted with…

  17. Teaching Science as Science Is Practiced: Opportunities and Limits for Enhancing Preservice Elementary Teachers' Self-Efficacy for Science and Science Teaching

    Science.gov (United States)

    Avery, Leanne M.; Meyer, Daniel Z.

    2012-01-01

    Science teaching in elementary schools, or the lack thereof, continues to be an area of concern and criticism. Preservice elementary teachers' lack of confidence in teaching science is a major part of this problem. In this mixed-methods study, we report the impacts of an inquiry-based science course on preservice elementary teachers' self-efficacy…

  18. Teaching Earth Sciences as an interdisciplinary subject: Novel module design involving research literature

    Science.gov (United States)

    Tong, Vincent C. H.

    2010-05-01

    The study of Earth Sciences requires an interdisciplinary approach as it involves understanding scientific knowledge originating from a wide spectrum of research areas. Not only does it include subjects ranging from, for instance, hydrogeology to deep crustal seismology and from climate science to oceanography, but it also has many direct applications in closely related disciplines such as environmental engineering and natural resources management. While research crossing traditional disciplinary boundaries in geosciences is becoming increasingly common, there is only limited integration of interdisciplinary research in the teaching of the subject. Given that the transition from undergraduate education based on subject modules to postgraduate interdisciplinary research is never easy, such integration is a highly desirable pedagogical approach at both undergraduate and postgraduate levels. My presentation is based on a recent teaching project involving novel design of an undergraduate course. The course is implemented in order to address the synergy between research and teaching (Tong, 2009). This project has been shown to be effective and successful in teaching geosciences undergraduates at the University of London. The module consists of studying core geophysical principles and linking them directly to a selection of recently published research papers in a wide range of interdisciplinary applications. Research reviewing and reporting techniques are systematically developed, practised and fully integrated into teaching of the core scientific theories. A fully-aligned assignment with a feedback website invites the students to reflect on the scientific knowledge and the study skills related to research literature they have acquired in the course. This teaching project has been recognized by a teaching award (http://www.clpd.bbk.ac.uk/staff/BETA). In this presentation, I will discuss how undergraduate teaching with a focus on research literature in Earth Sciences can

  19. How do science centers perceive their role in science teaching?

    DEFF Research Database (Denmark)

    Nielsen, Jan Alexis; Stougaard, Birgitte; Andersen, Beth Wehner

    This poster presents the data of a survey of 11 science centres in the Region of Southern Denmark. The survey is the initial step in a project which aims, on the one hand, to identify the factors which conditions successful learning outcomes of visits to science centres, and, on the other hand...... and teachers. In the present survey we have approached the topic from the perspective of science centres. Needless to say, the science centres’ own perception of their role in science teaching plays a vital role with respect to the successfulness of such visits. The data of our survey suggest that, also from......, to apply this identification so as to guide the interaction of science teachers and science centres. Recent literature on this topic (Rennie et. al. 2003; Falk & Dierking 2000) suggest that stable learning outcomes of such visits require that such visits are (1) prepared in the sense that the teacher has...

  20. Looking at Life. Teacher's Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  1. Sims for Science: Powerful Tools to Support Inquiry-Based Teaching

    Science.gov (United States)

    Perkins, Katherine K.; Loeblein, Patricia J.; Dessau, Kathryn L.

    2010-01-01

    Since 2002, the PhET Interactive Simulations project at the University of Colorado has been working to provide learning tools for students and teachers. The project has developed over 85 interactive simulations--or sims--for teaching and learning science. Although these sims can be used in a variety of ways, they are specifically designed to make…

  2. Investigating Omani Science Teachers' Attitudes towards Teaching Science: The Role of Gender and Teaching Experiences

    Science.gov (United States)

    Ambusaidi, Abdullah; Al-Farei, Khalid

    2017-01-01

    A 30-item questionnaire was designed to determine Omani science teachers' attitudes toward teaching science and whether or not these attitudes differ according to gender and teaching experiences of teachers. The questionnaire items were divided into 3 domains: classroom preparation, managing hands-on science, and development appropriateness. The…

  3. Innovating Science Teaching by Participatory Action Research – Reflections from an Interdisciplinary Project of Curriculum Innovation on Teaching about Climate Change

    Directory of Open Access Journals (Sweden)

    Timo Feierabend

    2011-01-01

    Full Text Available This paper describes a three-year curriculum innovation project on teaching about climate change. The innovation for this study focused on a socio-critical approach towards teaching climate change in four different teaching domains (biology, chemistry, physics and politics. The teaching itself explicitly aimed at general educational objectives, i.e., fostering students’ communication and evaluation abilities as essential components for preparing young people for active participation in society. Participatory Action Research has been used as a collaborative strategy of cyclical curriculum innovation and research. Using past experiences and selected results from accompanying research, this project and its methodology will be reflected upon from the viewpoint of the chemistry group taking part in the project. Core issues reflected upon include how the project contributed to the creation of feasible curriculum materials, how it led to innovative structures in practice, and whether it supported experienced teachers’ ongoing professional development. General considerations for the process of curriculum innovation will also be derived.

  4. Using Primary Literature to Teach Science Literacy to Introductory Biology Students

    OpenAIRE

    Johanna Krontiris-Litowitz

    2013-01-01

    Undergraduate students struggle to read the scientific literature and educators have suggested that this may reflect deficiencies in their science literacy skills. In this two-year study we develop and test a strategy for using the scientific literature to teach science literacy skills to novice life science majors. The first year of the project served as a preliminary investigation in which we evaluated student science literacy skills, created a set of science literacy learning objectives al...

  5. Pedagogy of Science Teaching Tests: Formative assessments of science teaching orientations

    Science.gov (United States)

    Cobern, William W.; Schuster, David; Adams, Betty; Skjold, Brandy Ann; Zeynep Muğaloğlu, Ebru; Bentz, Amy; Sparks, Kelly

    2014-09-01

    A critical aspect of teacher education is gaining pedagogical content knowledge of how to teach science for conceptual understanding. Given the time limitations of college methods courses, it is difficult to touch on more than a fraction of the science topics potentially taught across grades K-8, particularly in the context of relevant pedagogies. This research and development work centers on constructing a formative assessment resource to help expose pre-service teachers to a greater number of science topics within teaching episodes using various modes of instruction. To this end, 100 problem-based, science pedagogy assessment items were developed via expert group discussions and pilot testing. Each item contains a classroom vignette followed by response choices carefully crafted to include four basic pedagogies (didactic direct, active direct, guided inquiry, and open inquiry). The brief but numerous items allow a substantial increase in the number of science topics that pre-service students may consider. The intention is that students and teachers will be able to share and discuss particular responses to individual items, or else record their responses to collections of items and thereby create a snapshot profile of their teaching orientations. Subsets of items were piloted with students in pre-service science methods courses, and the quantitative results of student responses were spread sufficiently to suggest that the items can be effective for their intended purpose.

  6. Observing Some Life Cycles. Teacher's Guide. Unit E3. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Chitepo, Thoko; And Others

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide contains instructional…

  7. Changes in Preservice Elementary Teachers' Personal Science Teaching Efficacy and Science Teaching Outcome Expectancies: The Influence of Context

    Science.gov (United States)

    Hechter, Richard P.

    2011-01-01

    This study investigated contextual changes in perceptions of science teaching self-efficacy through pre-, post- and retrospective administrations of the Science Teaching Expectancy Belief Instrument (STEBI-B) among preservice elementary teachers when exposed to a science teaching methods course. Findings revealed that the number of postsecondary…

  8. Forces. 'O' Level Teacher's Guide. Unit 1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    Science.gov (United States)

    Udwin, Martin

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be read in…

  9. Teaching science, technology, and society to engineering students: a sixteen year journey.

    Science.gov (United States)

    Ozaktas, Haldun M

    2013-12-01

    The course Science, Technology, and Society is taken by about 500 engineering students each year at Bilkent University, Ankara. Aiming to complement the highly technical engineering programs, it deals with the ethical, social, cultural, political, economic, legal, environment and sustainability, health and safety, reliability dimensions of science, technology, and engineering in a multidisciplinary fashion. The teaching philosophy and experiences of the instructor are reviewed. Community research projects have been an important feature of the course. Analysis of teaching style based on a multi-dimensional model is given. Results of outcome measurements performed for ABET assessment are provided. Challenges and solutions related to teaching a large class are discussed.

  10. Teaching materials science and engineering

    Indian Academy of Sciences (India)

    Abstract. This paper is written with the intention of simulating discussion on teaching materials science and engineering in the universities. The article illustrates the tasks, priorities, goals and means lying ahead in the teaching of materials science and engineering for a sustainable future.

  11. Quality Teaching in Science: an Emergent Conceptual Framework

    Science.gov (United States)

    Jordens, J. Zoe; Zepke, Nick

    2017-09-01

    Achieving quality in higher education is a complex task involving the interrelationship of many factors. The influence of the teacher is well established and has led to some general principles of good teaching. However, less is known about the extent that specific disciplines influence quality teaching. The purposes of the paper are to investigate how quality teaching is perceived in the sciences and from these perceptions to develop for discussion a framework for teaching practice in the sciences. A New Zealand study explored the views of national teaching excellence award winners in science on quality teaching in undergraduate science. To capture all possible views from this expert panel, a dissensus-recognising Delphi method was used together with sensitising concepts based on complexity and wickedity. The emergent conceptual framework for quality teaching in undergraduate science highlighted areas of consensus and areas where there were a variety of views. About the purposes of science and its knowledge base, there was relative consensus, but there was more variable support for values underpinning science teaching. This highlighted the complex nature of quality teaching in science. The findings suggest that, in addition to general and discipline-specific influences, individual teacher values contribute to an understanding of quality in undergraduate science teaching.

  12. Teaching Grade Eight Science with Reference to the Science Curriculum

    Directory of Open Access Journals (Sweden)

    Rasel Babu

    2016-08-01

    Full Text Available A mixed methodological approach was used to explore to what extent the science curriculum was being reflected in science teaching-learning of grade VIII students in Bangladesh. 160 students were randomly selected and 10 science teachers were purposively selected as study respondents. Fifteen science lessons were observed. Data were collected via student questionnaires, teacher interviews, and classroom observation checklists. Grade VIII science teaching-learning activities were not conducted according to the instructions of the science curriculum. Most teachers did not adhere to the curriculum and teacher's guide. Teachers mainly depended on lecture methods for delivering lessons. Learning by doing, demonstrating experiments, scientific inquiry, rational thinking, and analysing cause-effect relationships were noticeably absent. Teachers reported huge workloads and a lack of ingredients as reasons for not practising these activities. Teachers did not use teaching aids properly. Science teaching-learning was fully classroom centred, and students were never involved in any creative activities. 

  13. Museums for Science Education: can we make the difference? The case of the EST project

    Directory of Open Access Journals (Sweden)

    Maria Xanthoudaki

    2007-06-01

    Full Text Available This paper addresses the role of museums in education in science and technology through the discussion of a specific project entitled EST “Educate in Science and Technology”. The Project puts together methodologies and activities through which museums can be used as resources for long-term project work. In-service training for teachers, work in class with learning kits or with materials brought in by a Science Van, and visits to the museum are planned and developed jointly by museum experts and teachers. The Project proposes a teaching and learning model which sees the museum experience as central and integral part of a teaching and learning process with more effective outcomes. The analysis of the Project activities and methodologies is based on the work carried out at the National Museum of Science and Technology Leonardo da Vinci, which perceives the learner (the visitor at the heart of its educational methodologies and provision.

  14. The Use of Didactic Resources as a Strategy in Sciences and Biology Teaching

    Directory of Open Access Journals (Sweden)

    Mario Marcos Lopes

    2013-06-01

    Full Text Available The teaching of Science and Biology at school is recent, and has been practiced according to the different educational proposals, that have been developed along the last decades. The LDB (Lei nº 9.394, December, 20, 1996 proposes a pedagogical project that goes beyond the blackboard, chalk and teacher's talk in order to better prepare the students for the challenges of the labor market. Thus, this paper aims at contributing to the discussion on the teaching practice and teaching resources that can help the teaching and learning process, especially in the disciplines of Science and Biology. Based on a qualitative approach, this research aims at contributing to the construction of new knowledge that can be generated from a careful and critical look at the documentary sources. Finally, the great challenge of the educator is to make the teaching of Science and Biology pleasurable and exciting, being able to develop in students the scientific knowledge and the taste for these school subjects.

  15. The 5E Instructional Model: A Learning Cycle Approach for Inquiry-Based Science Teaching

    Science.gov (United States)

    Duran, Lena Ballone; Duran, Emilio

    2004-01-01

    The implementation of inquiry-based teaching is a major theme in national science education reform documents such as "Project 2061: Science for All Americans" (Rutherford & Alhgren, 1990) and the "National Science Education Standards" (NRC, 1996). These reports argue that inquiry needs to be a central strategy of all…

  16. Social representations of science and gender in Science teaching

    Directory of Open Access Journals (Sweden)

    Bettina Heerdt

    2017-09-01

    Full Text Available This paper analyzes the Social Representations (SR of teachers regarding the Nature of Science (NoS, gender issues in society, Science and in the teaching context. The theoretical approach is Moscovici’s SR associated to NoS discussions, Science feminist theories and Teaching of Science. A number of twenty-two teachers were part of this research. Data were collected through the filmic record. The lexical analysis was performed using the Alceste software. Four classes were formed: NoS, Gender and women in Science, Gender and teaching context, and Gender and society. In the areas of the teachers’ education, it was not possible to find significant differences in SR. Through empirical data, the distinct argumentation of men and women is noticed. The SR of men, naturalized, discriminatory and of gender issue denial in society and Science, is more forceful than of women. It is necessary, in the initial and continued education, the problematization of gender issues in Science.

  17. From learning science to teaching science: What transfers?

    Science.gov (United States)

    Harlow, Danielle Boyd

    As educational researchers and teacher educators, we have the responsibility to help teachers gain the skills and knowledge necessary to provide meaningful learning activities for their students. For elementary school science, this means helping teachers create situations in which children can participate in the practices associated with scientific inquiry. Through the framework of transfer I investigated how a professional development course based on an inquiry-based physics curriculum influenced five elementary teachers teaching practices and identified the factors that led to or hindered this transfer. In this study, evidence of transfer consisted of episodes where the teachers used the ideas learned in the physics course to solve new problems such as transforming activities to be appropriate for their students and responding to unexpected students' ideas. The findings of this study highlight the many different ways that teachers use what they learn in content courses to teach science to elementary children. While some teachers transferred pedagogical practices along with the content, others transformed the content to be useful in already existing pedagogical frameworks, and still others show little or no evidence of transfer. What the teachers transferred depended upon their existing teaching context as well as their prior ideas about teaching science and physics content. Specifically, the findings of this study suggest that the teachers transferred only what they sought from the course. One implication of this study is that the sort of science training we provide teachers can affect far more than just the teachers' conceptual understanding of science and performance on written conceptual exams. Science courses have the potential to impact the sort of science education that K-5 children receive in elementary classrooms in terms of the topics taught but the way that science is represented. An additional implication is that teaching science to teachers in ways

  18. Investigating the Self-Perceived Science Teaching Needs of Local Elementary Educators

    Science.gov (United States)

    Carver, Cynthia G.

    Elementary teachers in one school system have expressed low self-efficacy teaching science and desire more support teaching science. However, little research has been conducted on how best to meet these teachers' needs. The theories of perceived self-efficacy, social cognition, and behaviorism make up the conceptual framework of this study. The focus of this qualitative project study was on the needs of local elementary educators. These teachers were asked what they felt they needed most to be more effective science educators. The methodology of phenomenology was used in this study in which local elementary teachers were questioned in focus groups regarding their own science teaching efficacy and perceived needs. Using inductive analysis, data were coded for links to discussion questions as well as any additional patterns that emerged. Findings indicated that local elementary teachers desire improved communication among administrators and teachers as well as better science content support and training. Focus group participants agreed that teacher self-efficacy affects the time spent, effort toward, and quality of elementary science education. Using the results of the study, a science mentor program was developed to support the needs of elementary teachers and increase teacher self-efficacy, thus improving local elementary science education. Implications for positive social change include the development and support of elementary science programs in other school systems with the goal of improving science education for elementary students.

  19. Getting started in the scholarship of teaching and learning: a "how to" guide for science academics.

    Science.gov (United States)

    Rowland, Susan L; Myatt, Paula M

    2014-01-01

    SoTL stands for the Scholarship of Teaching and Learning. The acronym, said "sottle" or "sote-all," describes research that involves rigorous examination of teaching and learning by faculty who are actively involved in the educational process. The number of natural-science faculty engaged in SoTL is increasing, and their important work has broad implications for the measurement and improvement of college teaching and learning outcomes. The data show, however, that many faculty who conduct SoTL projects in science departments begin their education research careers with no training in SoTL research methodologies, and find they are working alone, with few colleagues who can nurture (or even understand) their efforts. In this article we provide a guide intended to help natural-science faculty initiate SoTL projects while they negotiate the mechanics and politics of developing and maintaining a SoTL research program in a science department. © 2013 by the American Association for the Study of Liver Diseases.

  20. Discussion of Science and Math Teaching Methods: criticism and possibilities in teaching practices

    Directory of Open Access Journals (Sweden)

    Elizabeth Gerhardt Manfredo

    2005-06-01

    Full Text Available This paper presents a discussion of practices among Science and Math teachers in Brazilian Basic Education. Analysis focuses on criticism over teaching practices throughout Basic Education which includes Children, Primary and Medium levels. Discussion highlights the interdisciplinary and educational projects as the most chosen tool for reflective practices. Most educational problems must be solved by the use of shared theoretical choices and investigative methodological approach. Such choices ought to be made during teachers' continuing trainning based on a researcher-teacher action as it provides ways for methodological changes in Sciences and Math Education in the Country

  1. Munazza's story: Understanding science teaching and conceptions of the nature of science in Pakistan through a life history study

    Science.gov (United States)

    Halai, Nelofer

    In this study I have described and tried to comprehend how a female science teacher understands her practice. Additionally, I have developed some understanding of her understanding of the nature of science. While teaching science, a teacher projects messages about the nature of science that can be captured by observations and interviews. Furthermore, the manner is which a teacher conceptualizes science for teaching, at least in part, depends on personal life experiences. Hence, I have used the life history method to understand Munazza's practice. Munazza is a young female science teacher working in a private, co-educational school for children from middle income families in Karachi, Pakistan. Her stories are central to the study, and I have represented them using a number of narrative devices. I have woven in my own stories too, to illustrate my perspective as a researcher. The data includes 13 life history interviews and many informal conversations with Munazza, observations of science teaching in classes seven and eight, and interviews with other science teachers and administrative staff of the school. Munazza's personal biography and experiences of school and undergraduate courses has influenced the way she teaches. It has also influenced the way she does not teach. She was not inspired by her science teachers, so she has tried not to teach the way she was taught science. Contextual factors, her conception of preparation for teaching as preparation for subject content and the tension that she faces in balancing care and control in her classroom are some factors that influence her teaching. Munazza believes that science is a stable, superior and value-free way of knowing. In trying to understand the natural world, observations come first, which give reliable information about the world leading inductively to a "theory". Hence, she relies a great deal on demonstrations in the class where students "see" for themselves and abstract the scientific concept from the

  2. How Select Groups of Preservice Science Teachers with Inquiry Orientations View Teaching and Learning Science through Inquiry

    Science.gov (United States)

    Ward, Peggy

    Although hailed as a powerful form of instruction, in most teaching and learning contexts, inquiry-based instruction is fraught with ambiguous and conflicting definitions and descriptions. Yet little has been written about the experiences preservice science teacher have regarding their learning to teach science through inquiry. This project sought to understand how select preservice secondary science teachers enrolled in three UTeach programs in Arkansas conceptualize inquiry instruction and how they rationalize its value in a teaching and learning context. The three teacher education programs investigated in this study are adoption sites aligned with the UTeach Program in Austin, TX that distinguishes itself in part by its inquiry emphasis. Using a mixed method investigation design, this study utilized two sources of data to explore the preservice science teachers' thinking. In the first phase, a modified version of the Pedagogy of Science teaching Tests (POSTT) was used to identify select program participants who indicated preferences for inquiry instruction over other instructional strategies. Secondly, the study used an open-ended questionnaire to explore the selected subjects' beliefs and conceptions of teaching and learning science in an inquiry context. The study also focused on identifying particular junctures in the prospective science teachers' education preparation that might impact their understanding about inquiry. Using a constant comparative approach, this study explored 19 preservice science teachers' conceptions about inquiry. The results indicate that across all levels of instruction, the prospective teachers tended to have strong student-centered teaching orientations. Except subjects in for the earliest courses, subjects' definitions and descriptions of inquiry tended toward a few of the science practices. More advanced subjects, however, expressed more in-depth descriptions. Excluding the subjects who have completed the program, multiple

  3. Peer Assessment of Elementary Science Teaching Skills

    Science.gov (United States)

    Kilic, Gulsen Bagci; Cakan, Mehtap

    2007-01-01

    In this study, peer assessment was applied in assessing elementary science teaching skills. Preservice teachers taught a science topic as a team to their peers in an elementary science methods course. The peers participating in the science lesson assessed teacher-groups' elementary science teaching skills on an assessment form provided by the…

  4. Preservice Science Teachers' Science Teaching Orientations and Beliefs about Science

    Science.gov (United States)

    Kind, Vanessa

    2016-01-01

    This paper offers clarification of science teacher orientations as a potential component of pedagogical content knowledge. Science teaching orientations and beliefs about science held by 237 preservice science teachers were gathered via content-specific vignettes and questionnaire, respectively, prior to participation in a UK-based teacher…

  5. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    Directory of Open Access Journals (Sweden)

    Nadi SUPRAPTO

    2017-10-01

    Full Text Available This study focuses on attitudes toward (teaching science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs from the Open University in Surabaya regional office. Attitudes toward (teaching science’ (ATS instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descriptive analysis and confirmatory factor analysis. The model fit of the attitudes toward (teaching science can be described from seven dimensions: self-efficacy for teaching science, the relevance of teaching science, gender-stereotypical beliefs, anxiety in teaching science, the difficulty of teaching science, perceived dependency on contextual factors, and enjoyment in teaching science. The results of the research also described science learning at the Open University of Indonesia looks like. Implications for primary teacher education are discussed.

  6. Atoms and Molecules. 'O' Level. Teacher's Guide. Unit 2. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    Science.gov (United States)

    Mandizha, George

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This teaching guide, designed to be used in…

  7. Teaching Science through Inquiry

    Science.gov (United States)

    Wilcox, Jesse; Kruse, Jerrid W.; Clough, Michael P.

    2015-01-01

    Science education efforts have long emphasized inquiry, and inquiry and scientific practices are prominent in contemporary science education reform documents (NRC 1996; NGSS Lead States 2013). However, inquiry has not become commonplace in science teaching, in part because of misunderstandings regarding what it means and entails (Demir and Abell…

  8. My Science Is Better than Your Science: Conceptual Change as a Goal in Teaching Science Majors Interested in Teaching Careers about Education

    Science.gov (United States)

    Utter, Brian C.; Paulson, Scott A.; Almarode, John T.; Daniel, David B.

    2018-01-01

    We argue, based on a multi-year collaboration to develop a pedagogy course for physics majors by experts in physics, education, and the science of learning, that the process of teaching science majors about education and the science of learning, and evidence-based teaching methods in particular, requires conceptual change analogous to that…

  9. Teaching Science Fiction by Women.

    Science.gov (United States)

    Donawerth, Jane

    1990-01-01

    Reviews the 200-year-old tradition of women science fiction authors. Discusses the benefits of teaching science fiction written by women. Describes 5 science fiction short stories and 5 science fiction novels suitable for high school students. (RS)

  10. CRITICAL TEACHING WORK AS DIMENSION OF UNIVERSITY PROJECT

    Directory of Open Access Journals (Sweden)

    Roberto Leher

    2014-06-01

    Full Text Available The article analyzes the heteronomy of academic work in Brazil, particularly public higher education. It discusses the meaning of rupture of the national-developmentalist project by the irruption of the corporate-military coup and the combined process of coercion (AI-5/1968 and Decree 477/1969 and of the subordination of research and postgraduate studies to monopolistic capitalism in counterreformation of 1968, through programs to encourage science and technology geared to the concerns of bourgeois fractions that sustained the regime. Facing the processes of dispossession and alienation of academic work in the dictatorship, the study examines the organization of teaching movement, its first strikes and the centrality given to career university project of ANDES. Finally, it presents as deepening the dependent capitalism over the last three decades reoriented public university and private higher education, indicating effects on teaching work and the struggles for affirmation of the public sphere as antimercantile.

  11. Reform-based science teaching: A mixed-methods approach to explaining variation in secondary science teacher practice

    Science.gov (United States)

    Jetty, Lauren E.

    The purpose of this two-phase, sequential explanatory mixed-methods study was to understand and explain the variation seen in secondary science teachers' enactment of reform-based instructional practices. Utilizing teacher socialization theory, this mixed-methods analysis was conducted to determine the relative influence of secondary science teachers' characteristics, backgrounds and experiences across their teacher development to explain the range of teaching practices exhibited by graduates from three reform-oriented teacher preparation programs. Data for this study were obtained from the Investigating the Meaningfulness of Preservice Programs Across the Continuum of Teaching (IMPPACT) Project, a multi-university, longitudinal study funded by NSF. In the first quantitative phase of the study, data for the sample (N=120) were collected from three surveys from the IMPPACT Project database. Hierarchical multiple regression analysis was used to examine the separate as well as the combined influence of factors such as teachers' personal and professional background characteristics, beliefs about reform-based science teaching, feelings of preparedness to teach science, school context, school culture and climate of professional learning, and influences of the policy environment on the teachers' use of reform-based instructional practices. Findings indicate three blocks of variables, professional background, beliefs/efficacy, and local school context added significant contribution to explaining nearly 38% of the variation in secondary science teachers' use of reform-based instructional practices. The five variables that significantly contributed to explaining variation in teachers' use of reform-based instructional practices in the full model were, university of teacher preparation, sense of preparation for teaching science, the quality of professional development, science content focused professional, and the perceived level of professional autonomy. Using the results

  12. Professional development in college science teaching

    Science.gov (United States)

    Thomas, Aimee Kathryn

    Graduate students earning a doctorate in the sciences historically focus their work on research and not professional development in college science teaching. However, for those who go on to a career in academia, a majority of their time will be dedicated to teaching. During the past few years, graduate teaching assistants (GTAs) have been prepared to teach by attending a daylong workshop that included logistical information, but left pedagogy largely unexplored. Since that time, a seminar has been added to provide an introduction to pedagogical theory and practices and to provide practice teaching in the biological sciences laboratory course. Yet, more pedagogical preparation is needed. This study was conducted to determine if there was a need for a teaching certificate program for doctoral students in the College of Science and Technology (CoST) at The University of Southern Mississippi. The GTA respondents studied set teaching goals that were consistent with faculty members across the country; however, this research went further by finding out how competent the GTAs perceived they were and how much support they perceived they needed with respect to teaching and professional development. The GTAs did not differ in their perceived level of competence based on experience level; however, the less experienced GTAs did perceive they needed more support than the experienced GTAs. To help GTAs develop a skill set that many CoST graduates currently lack, it is recommended that the University provide ample training and supervision. Establishing a certificate program can potentially impact the community in the following ways: (1) the training of GTAs contributes to the academic preparation of future academic professionals who will be teaching in various institutions; (2) GTA training provides professional development and awareness that teaching requires life long professional development; (3) ensuring competent academicians, not only in content but also in pedagogy; (4

  13. Competence raising through teaching of ESD environmental key topics implementing “project technology”

    Directory of Open Access Journals (Sweden)

    Gayane Poghosyan

    2015-06-01

    The UNESCO Chair on “Education for Sustainable Development” at the Center for Ecological-Noosphere Studies of the National Academy of Sciences of the Republic of Armenia in cooperation with the National Institute of Education of the Armenian Ministry of Education and Science are carrying out a series of trainings and seminars for educators and students from pedagogical institutes to increase their competence on key environmental topics in the context of sustainable development implementing project method of teaching. Pedagogical-oriented universities and vocational training institutions have been chosen, where trainings and seminars have been carried out with the best students and the teaching staff using project method. In the result of the trainings and seminars 44 teachers and learners from 5 universities, 3 vocational colleges, 5 high schools, 3 NGOs were trained in 3 regions of the Republic of Armenia (with different environmental problems. Evaluations were carried out and the best tested projects were presented at round table discussions.

  14. Understanding primary school science teachers' pedagogical content knowledge: The case of teaching global warming

    Science.gov (United States)

    Chordnork, Boonliang; Yuenyong, Chokchai

    2018-01-01

    This aim of this research was to investigate primary school science teachers understanding and teaching practice as well as the influence on teaching and learning a topic like global warming. The participants were four primary science teachers, who were not graduated in science education. Methodology was the case study method, which was under the qualitative research regarded from interpretive paradigm. Data were collected by openended questionnaire, semi-structure interview, and document colleting. The questionnaire examined teachers' background, teachers' understanding of problems and threats of science teaching, desiring of development their PCK, sharing the teaching approaches, and their ideas of strength and weakness. a semi-structured interview was conducted based on the approach for capturing PCK of Loughran [23] content representation (CoRe). And, the document was collected to clarify what evidence which was invented to effect on students' learning. These document included lesson plan, students' task, and painting about global warming, science projects, the picture of activities of science learning, the exercise and test. Data analysis employed multiple approach of evidence looking an issue from each primary science teachers and used triangulation method to analyze the data with aiming to make meaning of teachers' representation of teaching practice. These included descriptive statistics, CoRe interpretation, and document analysis. The results show that teachers had misunderstanding of science teaching practice and they has articulated the pedagogical content knowledge in terms of assessment, goal of teaching and linking to the context of socio cultural. In contrast, knowledge and belief of curriculum, students' understanding of content global warming, and strategies of teaching were articulated indistinct by non-graduate science teacher. Constructing opportunities for personal development, the curiosity of the student learning center, and linking context

  15. How Teaching Science Using Project-Based Learning Strategies Affects the Classroom Learning Environment

    Science.gov (United States)

    Hugerat, Muhamad

    2016-01-01

    This study involved 458 ninth-grade students from two different Arab middle schools in Israel. Half of the students learned science using project-based learning strategies and the other half learned using traditional methods (non-project-based). The classes were heterogeneous regarding their achievements in the sciences. The adapted questionnaire…

  16. Emotions in teaching environmental science

    Science.gov (United States)

    Quigley, Cassie

    2016-09-01

    This op-ed article examines the emotional impact of teaching environmental science and considers how certain emotions can broaden viewpoints and other emotions narrow them. Specifically, it investigates how the topic of climate change became an emotional debate in a science classroom because of religious beliefs. Through reflective practice and examination of positionality, the author explored how certain teaching practices of pre-service science teachers created a productive space and other practices closed down the conversations. This article is framed with theories that explore both divergent and shared viewpoints.

  17. Teaching Science and Engineering-Related Topics Using Experiential Methods: An Action-Research Study

    Science.gov (United States)

    Aleong, Chandra; Aleong, John

    2007-01-01

    This article describes a portion of a long-term action-research project investigating the teaching of the science of transportation to high school students using the case study or experiential method. Other aspects integrated with the project-oriented study are the use of Constructivist theory, the Socratic Method, and the incorporation of…

  18. Values of Catholic science educators: Their impact on attitudes of science teaching and learning

    Science.gov (United States)

    DeMizio, Joanne Greenwald

    This quantitative study examined the associations between the values held by middle school science teachers in Catholic schools and their attitudes towards science teaching. A total of six value types were studied---theoretical, economic, aesthetic, social, political, and religious. Teachers can have negative, positive, or neutral attitudes towards their teaching that are linked to their teaching practices and student learning. These teachers' attitudes may affect their competence and have a subsequent impact on their students' attitudes and dispositions towards science. Of particular interest was the relationship between science teaching attitudes and religious values. A non-experimental research design was used to obtain responses from 54 teachers with two survey instruments, the Science Teaching Attitude Scale II and the Allport-Vernon-Lindzey Study of Values. Stepwise multiple regression analysis showed that political values were negatively associated with attitudes towards science teaching. Data collected were inconsistent with the existence of any measurable association between religious values and attitudes towards science teaching. This study implies that science teacher preparation programs should adopt a more contextual perspective on science that seeks to develop the valuation of science within a cultural context, as well as programs that enable teachers to identify the influence of their beliefs on instructional actions to optimize the impact of learning new teaching practices that may enhance student learning.

  19. Electronic Learning in the German Science Project "NAWI-Interaktiv"

    Science.gov (United States)

    Wegner, Claas; Homann, Wiebke; Strehlke, Friederike

    2014-01-01

    The German science project "NAWI-Interaktiv" is an example of innovative use of E-Learning and new media education. Since 2009, the learning platform provides learners and teachers with high-quality learning tools, teaching material, useful information and E-learning programs for free. This is to raise the pupils' motivation to learn…

  20. Developing Interpretive Power in Science Teaching

    Science.gov (United States)

    Rosebery, Ann S.; Warren, Beth; Tucker-Raymond, Eli

    2016-01-01

    Early career teachers rarely receive sustained support for addressing issues of diversity and equity in their science teaching. This paper reports on design research to create a 30 hour professional development seminar focused on cultivating the interpretive power of early career teachers who teach science to students from historically…

  1. Teaching social responsibility: the Manhattan project. Commentary on "The Six Domains of Research".

    Science.gov (United States)

    Gilmer, Penny J; DuBois, Michael

    2002-04-01

    This paper discusses the critical necessity of teaching students about the social and ethical responsibilities of scientists. Both a university scientist and a middle school science teacher reflect on the value of teaching the ethical issues that confront scientists. In the development of the atomic bomb in the US-led Manhattan Project, scientists faced the growing threat of atomic bombs by the Germans and Japanese and the ethical issues involved in successfully completing such a destructive weapon. The Manhattan Project is a prime example of the types of ethical dilemmas and social responsibilities that scientists may confront.

  2. Science That Matters: Exploring Science Learning and Teaching in Primary Schools

    Science.gov (United States)

    Fitzgerald, Angela; Smith, Kathy

    2016-01-01

    To help support primary school students to better understand why science matters, teachers must first be supported to teach science in ways that matter. In moving to this point, this paper identifies the dilemmas and tensions primary school teachers face in the teaching of science. The balance is then readdressed through a research-based…

  3. Teachers' and Students' Conceptions of Good Science Teaching

    Science.gov (United States)

    Yung, Benny Hin Wai; Zhu, Yan; Wong, Siu Ling; Cheng, Man Wai; Lo, Fei Yin

    2013-01-01

    Capitalizing on the comments made by teachers on videos of exemplary science teaching, a video-based survey instrument on the topic of "Density" was developed and used to investigate the conceptions of good science teaching held by 110 teachers and 4,024 year 7 students in Hong Kong. Six dimensions of good science teaching are identified…

  4. Teaching Planetary Sciences in Bilingual Classrooms

    Science.gov (United States)

    Lebofsky, L. A.; Lebofsky, N. R.

    1993-05-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. It also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80% feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K--3 and 38 minutes per day in 4--6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. Therefore in order to teach earth/space science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. Tucson has another, but not unique, problem. The largest public school district, the Tucson Unified School District (TUSD), provides a neighborhood school system enhanced with magnet, bilingual and special needs schools for a school population of 57,000 students that is 4.1% Native American, 6.0% Black, and 36.0% Hispanic (1991). This makes TUSD and the other school districts in and around Tucson ideal for a program that reaches students of diverse ethnic backgrounds. However, few space sciences materials exist in Spanish; most materials could not be used effectively in the classroom. To address this issue, we have translated NASA materials into Spanish and are conducting a series of workshops for bilingual classroom teachers. We will discuss in detail our bilingual classroom workshops

  5. Pair Programming as a Modern Method of Teaching Computer Science

    Directory of Open Access Journals (Sweden)

    Irena Nančovska Šerbec

    2008-10-01

    Full Text Available At the Faculty of Education, University of Ljubljana we educate future computer science teachers. Beside didactical, pedagogical, mathematical and other interdisciplinary knowledge, students gain knowledge and skills of programming that are crucial for computer science teachers. For all courses, the main emphasis is the absorption of professional competences, related to the teaching profession and the programming profile. The latter are selected according to the well-known document, the ACM Computing Curricula. The professional knowledge is therefore associated and combined with the teaching knowledge and skills. In the paper we present how to achieve competences related to programming by using different didactical models (semiotic ladder, cognitive objectives taxonomy, problem solving and modern teaching method “pair programming”. Pair programming differs from standard methods (individual work, seminars, projects etc.. It belongs to the extreme programming as a discipline of software development and is known to have positive effects on teaching first programming language. We have experimentally observed pair programming in the introductory programming course. The paper presents and analyzes the results of using this method: the aspects of satisfaction during programming and the level of gained knowledge. The results are in general positive and demonstrate the promising usage of this teaching method.

  6. Newly qualified teachers' visions of science learning and teaching

    Science.gov (United States)

    Roberts, Deborah L.

    2011-12-01

    This study investigated newly qualified teachers' visions of science learning and teaching. The study also documented their preparation in an elementary science methods course. The research questions were: What educational and professional experiences influenced the instructor's visions of science learning and teaching? What visions of science learning and teaching were promoted in the participants' science methods course? What visions of science learning and teaching did these newly qualified teachers bring with them as they graduated from their teacher preparation program? How did these visions compare with those advocated by reform documents? Data sources included participants' assignments, weekly reflections, and multi-media portfolio finals. Semi-structured interviews provided the emic voice of participants, after graduation but before they had begun to teach. These data were interpreted via a combination of qualitative methodologies. Vignettes described class activities. Assertions supported by excerpts from participants' writings emerged from repeated review of their assignments. A case study of a typical participant characterized weekly reflections and final multi-media portfolio. Four strands of science proficiency articulated in a national reform document provided a framework for interpreting activities, assignments, and interview responses. Prior experiences that influenced design of the methods course included an inquiry-based undergraduate physics course, participation in a reform-based teacher preparation program, undergraduate and graduate inquiry-based science teaching methods courses, participation in a teacher research group, continued connection to the university as a beginning teacher, teaching in diverse Title 1 schools, service as the county and state elementary science specialist, participation in the Carnegie Academy for the Scholarship of Teaching and Learning, service on a National Research Council committee, and experience teaching a

  7. Science Literacy Project, August 2006 - August 2008

    Energy Technology Data Exchange (ETDEWEB)

    Nasseh, Bizhan [Ball State Univ., Muncie, IN (United States)

    2008-08-01

    Ball State University (BSU) was the recipient of a U.S. Department of Energy award to develop educational games teaching science and math. The Science Media Program will merge Ball State University’s nationally recognized capabilities in education, technology, and communication to develop new, interactive, game-based media for the teaching and learning of science and scientific principles for K-12 students. BSU established a team of educators, researchers, scientists, animators, designers, technology specialists, and hired a professional media developer company (Outside Source Design) from Indianapolis. After six months discussions and assessments the project team selected the following 8 games in Math, Physics, Chemistry, and Biology, 2 from each discipline. The assembled teams were innovative and unique. This new model of development and production included a process that integrated all needed knowledge and expertise for the development of high quality science and math games for K-12 students. This new model has potential to be used by others for the development of the educational games. The uniqueness of the model is to integrate domain experts’ knowledge with researchers/quality control group, and combine a professional development team from the game development company with the academic game development team from Computer Science and Art departments at Ball State University. The developed games went through feasibility tests with selected students for improvement before use in the research activities.

  8. Teachers' tendencies to promote student-led science projects: Associations with their views about science

    Science.gov (United States)

    Bencze, J. Lawrence; Bowen, G. Michael; Alsop, Steve

    2006-05-01

    School science students can benefit greatly from participation in student-directed, open-ended scientific inquiry projects. For various possible reasons, however, students tend not to be engaged in such inquiries. Among factors that may limit their opportunities to engage in open-ended inquiries of their design are teachers' conceptions about science. To explore possible relationships between teachers' conceptions about science and the types of inquiry activities in which they engage students, instrumental case studies of five secondary science teachers were developed, using field notes, repertory grids, samples of lesson plans and student activities, and semistructured interviews. Based on constructivist grounded theory analysis, participating teachers' tendencies to promote student-directed, open-ended scientific inquiry projects seemed to correspond with positions about the nature of science to which they indicated adherence. A tendency to encourage and enable students to carry out student-directed, open-ended scientific inquiry projects appeared to be associated with adherence to social constructivist views about science. Teachers who opposed social constructivist views tended to prefer tight control of student knowledge building procedures and conclusions. We suggest that these results can be explained with reference to human psychological factors, including those associated with teachers' self-esteem and their relationships with knowledge-building processes in the discipline of their teaching.

  9. Assessing Motivations and Use of Online Citizen Science Astronomy Projects

    Science.gov (United States)

    Nona Bakerman, Maya; Buxner, Sanlyn; Bracey, Georgia; Gugliucci, Nicole

    2018-01-01

    The exponential proliferation of astronomy data has resulted in the need to develop new ways to analyze data. Recent efforts to engage the public in the discussion of the importance of science has led to projects that are aimed at letting them have hands-on experiences. Citizen science in astronomy, which has followed the model of citizen science in other scientific fields, has increased in the number and type of projects in the last few years and poses captivating ways to engage the public in science.The primary feature of this study was citizen science users’ motivations and activities related to engaging in astronomy citizen science projects. We report on participants’ interview responses related to their motivations, length and frequency of engagement, and reasons for leaving the project. From May to October 2014, 32 adults were interviewed to assess their motivations and experiences with citizen science. In particular, we looked at if and how motivations have changed for those who have engaged in the projects in order to develop support for and understandparticipants of citizen science. The predominant reasons participants took part in citizen science were: interest, helping, learning or teaching, and being part of science. Everyone interviewed demonstrated an intrinsic motivation to do citizen science projects.Participants’ reasons for ending their engagement on any given day were: having to do other things, physical effects of the computer, scheduled event that ended, attention span or tired, computer or program issues. A small fraction of the participants also indicated experiencing negative feedback. Out of the participants who no longer took part in citizen science projects, some indicated that receiving negative feedback was their primary reason and others reported the program to be frustrating.Our work is helping us to understand participants who engage in online citizen science projects so that researchers can better design projects to meet their

  10. Far Out: Some Approaches to Teaching the Speculative Literature of Science Fiction and the Supernatural.

    Science.gov (United States)

    Los Angeles City Schools, CA. Div. of Instructional Planning and Services.

    This curriculum guide contains course descriptions (for minicourses and semester-long courses), outlines, and class projects for teaching science fiction and the supernatural in junior and senior high schools. The eight course descriptions include objectives, methods, activities, and resources and materials. Lists of science fiction books and…

  11. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    Directory of Open Access Journals (Sweden)

    Mohd Ali Samsudin

    2015-02-01

    Full Text Available This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5 primary schools in Penang, Malaysia. The findings showed a relationship between kinesthetic, logical-mathematical, visual-spatial and naturalistic intelligences with the preferred science teaching. In addition there was a correlation between kinesthetic and visual-spatial intelligences with science process skills, implying that multiple intelligences are related to science learning.

  12. Teaching science in museums

    Science.gov (United States)

    Tran, Lynn Uyen

    Museums are free-choice, non-threatening, non-evaluative learning and teaching environments. They enable learners to revisit contents, authentic objects, and experiences at their own leisure as they continually build an understanding and appreciation of the concepts. Schools in America have used museums as resources to supplement their curriculum since the 19 th century. Field trip research is predominantly from the teachers' and students' perspectives, and draws attention to the importance for classroom teachers and students to prepare prior to field trips, have tasks, goals, and objectives during their time at the museum, and follow up afterwards. Meanwhile, museum educators' contributions to field trip experiences have been scantily addressed. These educators develop and implement programs intended to help students' explore science concepts and make sense of their experiences, and despite their limited time with students, studies show they can be memorable. First, field trips are a break in the usual routine, and thus have curiosity and attention attracting power. Second, classroom science teaching literature suggests teachers' teaching knowledge and goals can affect their behaviors, and in turn influence student learning. Third, classroom teachers are novices at planning and implementing field trip planners, and museum educators can share this responsibility. But little is reported on how the educators teach, what guides their instruction, how classroom teachers use these lessons, and what is gained from these lessons. This study investigates two of these inquiries. The following research questions guided this investigation. (1) How do educators teaching one-hour, one-time lessons in museums adapt their instruction to the students that they teach? (2) How do time limitations affect instruction? (3) How does perceived variability in entering student knowledge affect instruction? Four educators from two museums took part in this participant observation study to

  13. TEACHING AND LEARNING METHODOLOGIES SUPPORTED BY ICT APPLIED IN COMPUTER SCIENCE

    Directory of Open Access Journals (Sweden)

    Jose CAPACHO

    2016-04-01

    Full Text Available The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory. Genetic-Cognitive Psychology Theory and Dialectics Psychology. Based on the theoretical framework the following methodologies were developed: Game Theory, Constructivist Approach, Personalized Teaching, Problem Solving, Cooperative Collaborative learning, Learning projects using ICT. These methodologies were applied to the teaching learning process during the Algorithms and Complexity – A&C course, which belongs to the area of ​​Computer Science. The course develops the concepts of Computers, Complexity and Intractability, Recurrence Equations, Divide and Conquer, Greedy Algorithms, Dynamic Programming, Shortest Path Problem and Graph Theory. The main value of the research is the theoretical support of the methodologies and their application supported by ICT using learning objects. The course aforementioned was built on the Blackboard platform evaluating the operation of methodologies. The results of the evaluation are presented for each of them, showing the learning outcomes achieved by students, which verifies that methodologies are functional.

  14. Third Workshop on Teaching Computational Science (WTCS 2009)

    NARCIS (Netherlands)

    Tirado-Ramos, A.; Shiflet, A.

    2009-01-01

    The Third Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work

  15. Second Workshop on Teaching Computational Science WTCS 2008

    NARCIS (Netherlands)

    Tirado-Ramos, A.

    2008-01-01

    The Second Workshop on Teaching Computational Science, within the International Conference on Computational Science, provides a platform for discussing innovations in teaching computational sciences at all levels and contexts of higher education. This editorial provides an introduction to the work

  16. Project as an education method in teaching of physics

    OpenAIRE

    ŽAHOUREK, Martin

    2011-01-01

    The diploma thesis ?Project as an educational method for teaching physics ?deals with the possibilities of using project-based method for teaching physics at primary schools. Not only does it contain the theoretical background of project-based teaching, but also deals with practical issues in the form of an implementation of a chosen project ?Physics and physical education?. The aim of said project was to evaluate the efficiency of project-based teaching as far as the knowledge of pupils and ...

  17. A Geograns update. New experiences to teach earth sciences to students older than 55

    Science.gov (United States)

    Cerdà, A.; Pinazo, S.

    2009-04-01

    How to teach earth science to students that have access to the university after the age of 55 is a challenge due to the different background of the students. They ranged from those with only basic education (sometimes they finished school at the age of 9) to well educate students such as university professors, physicians or engineers. Students older than 55 are enrolled in what is called the university programme NauGran project at the University of Valencia. They follow diverse topics, from health science to Arts. Since 2006 the Department of Geography and the NauGran project developed the Club for Geographers and Walkers called Geograns. The objective is to teach Earth Science in the field as a strategy to improve the knowledge of the students with a direct contact with the territory. This initiative reached a successful contribution by the students, with 70 students registered. The successful strategy we have developed since then is to base our teaching on field work. Every lecture is related to some visits to the field. A pre-excursion lecture introduces the key questions of the study site (hydrology, geology, botany, geomorphology…). During the field work we review all the topics and the students are encouraged to ask and discuss any of the topics studied. Finally, a post-excursion lecture is given to review the acquired knowledge. During the last academic year 2007-2008 the excursion focussed on: (i) energy sources: problems and solutions, with visit to nuclear, wind and hydraulic power stations; (i) human disturbances and humankind as landscaper, with visits to wetlands, river gorges and Iberian settlements; and (iii) human activities and economical resources, with visits to vineyards and wineries and orange fields devoted to organic farming. This is being a positive strategy to teach Earth Science to a wide and heterogeneous group of students, as they improve their knowledge with a direct contact with the landscape, other colleagues and teachers in the

  18. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  19. Promoting Shifts in Preservice Science Teachers' Thinking through Teaching and Action Research in Informal Science Settings

    Science.gov (United States)

    Wallace, Carolyn S.

    2013-08-01

    The purpose of this study was to investigate the influence of an integrated experiential learning and action research project on preservice science teachers' developing ideas about science teaching, learning, and action research itself. The qualitative, interpretive study examined the action research of 10 master's degree students who were involved in service learning with children in informal education settings. Results indicated that all of the participants enhanced their knowledge of children as diverse learners and the importance of prior knowledge in science learning. In-depth case studies for three of the participants indicated that two developed deeper understandings of science learners and learning. However, one participant was resistant to learning and gained more limited understandings.

  20. Teaching professionalism in science courses: Anatomy to zoology

    Directory of Open Access Journals (Sweden)

    Cheryl C. Macpherson

    2012-02-01

    Full Text Available Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies’ trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences.

  1. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-11-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an entire school year including three major units of instruction. Detailed comparisons of teaching are given and pre and post measures of interest in learning science, science identity affiliation, and efficacy beliefs are investigated. Tests of conceptual understanding before, after, and one month after instruction reveal teaching for transformative, aesthetic experience fosters more, and more enduring, learning of science concepts. Investigations of transfer also suggest students learning for transformative, aesthetic experiences learn to see the world differently and find more interest and excitement in the world outside of school.

  2. Collaborative activities for improving the quality of science teaching and learning and learning to teach science

    Science.gov (United States)

    Tobin, Kenneth

    2012-03-01

    I have been involved in research on collaborative activities for improving the quality of teaching and learning high school science. Initially the collaborative activities we researched involved the uses of coteaching and cogenerative dialogue in urban middle and high schools in Philadelphia and New York (currently I have active research sites in New York and Brisbane, Australia). The research not only transformed practices but also produced theories that informed the development of additional collaborative activities and served as interventions for research and creation of heuristics for professional development programs and teacher certification courses. The presentation describes a collage of collaborative approaches to teaching and learning science, including coteaching, cogenerative dialogue, radical listening, critical reflection, and mindful action. For each activity in the collage I provide theoretical frameworks and empirical support, ongoing research, and priorities for the road ahead. I also address methodologies used in the research, illustrating how teachers and students collaborated as researchers in multilevel investigations of teaching and learning and learning to teach that included ethnography, video analysis, and sophisticated analyses of the voice, facial expression of emotion, eye gaze, and movement of the body during classroom interactions. I trace the evolution of studies of face-to-face interactions in science classes to the current focus on emotions and physiological aspects of teaching and learning (e.g., pulse rate, pulse strength, breathing patterns) that relate to science participation and achievement.

  3. History, philosophy and science teaching new perspectives

    CERN Document Server

    2018-01-01

    This anthology opens new perspectives in the domain of history, philosophy, and science teaching research. Its four sections are: first, science, culture and education; second, the teaching and learning of science; third, curriculum development and justification; and fourth, indoctrination. The first group of essays deal with the neglected topic of science education and the Enlightenment tradition. These essays show that many core commitments of modern science education have their roots in this tradition, and consequently all can benefit from a more informed awareness of its strengths and weaknesses. Other essays address research on leaning and teaching from the perspectives of social epistemology and educational psychology. Included here is the first ever English translation of Ernst Mach’s most influential 1890 paper on ‘The Psychological and Logical Moment in Natural Science Teaching’. This paper launched the influential Machian tradition in education. Other essays address concrete cases of the ...

  4. Adoption of ICT in Science Education: A Case Study of Communication Channels in a Teachers' Professional Development Project

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Aksela, Maija; Meisalo, Veijo

    2009-01-01

    This paper analyses the use of various communication channels in science teachers' professional development project aiming to develop versatile uses for ICT (Information and Communication Technologies) in science teaching. A teacher network was created specifically for this project, and the researchers facilitated three forms of communication…

  5. Looking at Life. Study Guide. Unit A2. ZIM-SCI, Zimbabwe Secondary School Science Project.

    Science.gov (United States)

    Hosking, Bunty

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the first 2 years of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide presents activities…

  6. Teaching science as argument: Prospective elementary teachers' knowledge

    Science.gov (United States)

    Barreto-Espino, Reizelie

    For the past two decades there has been increasing emphasis on argumentation in school science. In 2007, the National Research Council published a synthesis report that emphasizes the centrality of constructing, evaluating, and using scientific explanations. Participating in argumentation is seen as fundamental to children's science learning experiences. These new expectations increase challenges for elementary teachers since their understanding of and experiences with science are overwhelmingly inconsistent with teaching science as argument. These challenges are further amplified when dealing with prospective elementary teachers. The current study was guided by the following research questions: (1) What are the ways in which preservice elementary teachers appropriate components of "teaching science as argument" during their student teaching experience? (2) To what extent do components from prospective elementary teachers' reflections influence planning for science teaching? (3) What elements from the context influence preservice elementary teachers' attention to teaching science as argument? This study followed a multi-participant case study approach and analyses were informed by grounded theory. Three participants were selected from a larger cohort of prospective elementary teachers enrolled in an innovative Elementary Professional Development School (PDS) partnership at a large Northeast University. Cross-case analysis allowed for the development of five key assertions: (1) The presence of opportunities for interacting with phenomena and collecting first hand data helped participants increase their emphasis on evidence-based explanations. (2) Participants viewed science talks as an essential mechanism for engaging students in the construction of evidence-based explanations and as being fundamental to meaning-making. (3) Participants demonstrated attention to scientific subject matter during instruction rather than merely focusing on activities and/or inquiry

  7. Turkish preservice science teachers' socioscientific issues-based teaching practices in middle school science classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Sami Topçu, Mustafa

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle school science classrooms, and the research question that guided the present study is: How can we characterize Turkish PSTs' SSI-based teaching practices in middle school science classrooms (ages 11-14)? Sample: In order to address the research question of this study, we explored 10 Turkish PSTs' SSI-based teaching practices in middle school science classrooms. A purposeful sampling strategy was used, thus, PSTs were specifically chosen because they were ideal candidates to teach SSI and to integrate SSI into the science curricula since they were seniors in the science education program who had to take the field experience courses. Design and method: The participants' SSI teaching practices were characterized in light of qualitative research approach. SSI-based teaching practices were analyzed, and the transcripts of all videotape recordings were coded by two researchers. Results: The current data analysis describes Turkish PSTs' SSI-based teaching practices under five main categories: media, argumentation, SSI selection and presentation, risk analysis, and moral perspective. Most of PSTs did not use media resources in their lesson and none of them considered moral perspective in their teaching. While the risk analyses were very simple and superficial, the arguments developed in the classrooms generally remained at a simple level. PSTs did not think SSI as a central topic and discussed these issues in a very limited time and at the end of the class period. Conclusions: The findings of this study manifest the need of the reforms in science education programs. The present study provides evidence that moral, media

  8. Results of Needs Assessments Related to Citizen Science Projects

    Science.gov (United States)

    Buxner, Sanlyn; Bracey, Georgia; Glushko, Anna; Bakerman, Maya; Gay, Pamela L.; CosmoQuest Team

    2017-01-01

    The CosmoQuest Virtual Research Facility invites the public and classrooms to participate in NASA Science Mission Directorate related research that leads to publishable results and data catalogues. One of the main goals of the project is to support professional scientists in doing science and the general public--including parents, children, teachers, and students--in learning and doing science. Through the effort, the CosmoQuest team is developing a variety of supports and opportunities to support the doing and teaching of science. To inform our efforts, we have implemented a set of needs surveys to assess the needs of our different audiences. These surveys are being used to understand the interests, motivations, resources, challenges and demographics of our growing CosmoQuest community and others interested in engaging in citizen science projects. The surveys include those for teachers, parents, adult learners, planetarium professionals, subject matter experts (SMEs), and the general public. We will share the results of these surveys and discuss the implications of the results for broader education and outreach programs.

  9. Student teaching and research laboratory focusing on brain-computer interface paradigms--A creative environment for computer science students.

    Science.gov (United States)

    Rutkowski, Tomasz M

    2015-08-01

    This paper presents an applied concept of a brain-computer interface (BCI) student research laboratory (BCI-LAB) at the Life Science Center of TARA, University of Tsukuba, Japan. Several successful case studies of the student projects are reviewed together with the BCI Research Award 2014 winner case. The BCI-LAB design and project-based teaching philosophy is also explained. Future teaching and research directions summarize the review.

  10. Learning to Teach Elementary Science through Iterative Cycles of Enactment in Culturally and Linguistically Diverse Contexts

    Science.gov (United States)

    Bottoms, SueAnn I.; Ciechanowski, Kathryn M.; Hartman, Brian

    2015-01-01

    Iterative cycles of enactment embedded in culturally and linguistically diverse contexts provide rich opportunities for preservice teachers (PSTs) to enact core practices of science. This study is situated in the larger Families Involved in Sociocultural Teaching and Science, Technology, Engineering and Mathematics (FIESTAS) project, which weaves…

  11. Teaching Science through Story

    Science.gov (United States)

    Horton, Jessica

    2013-01-01

    Children find comfort in stories. They are familiar, accessible and entertaining. By teaching science through narratives, we can provide that same comfort and access to scientific content to children of all ages. In this article, I will discuss how, through the use of narratives in science instruction, we can provide students with a deeper…

  12. Crossing borders: High school science teachers learning to teach the specialized language of science

    Science.gov (United States)

    Patrick, Jennifer Drake

    The highly specialized language of science is both challenging and alienating to adolescent readers. This study investigated how secondary science teachers learn to teach the specialized language of science in their classrooms. Three research questions guided this study: (a) what do science teachers know about teaching reading in science? (b) what understanding about the unique language demands of science reading do they construct through professional development? and (c) how do they integrate what they have learned about these specialized features of science language into their teaching practices? This study investigated the experience of seven secondary science teachers as they participated in a professional development program designed to teach them about the specialized language of science. Data sources included participant interviews, audio-taped professional development sessions, field notes from classroom observations, and a prior knowledge survey. Results from this study suggest that science teachers (a) were excited to learn about disciplinary reading practices, (b) developed an emergent awareness of the specialized features of science language and the various genres of science writing, and (c) recognized that the challenges of science reading goes beyond vocabulary. These teachers' efforts to understand and address the language of science in their teaching practices were undermined by their lack of basic knowledge of grammar, availability of time and resources, their prior knowledge and experiences, existing curriculum, and school structure. This study contributes to our understanding of how secondary science teachers learn about disciplinary literacy and apply that knowledge in their classroom instruction. It has important implications for literacy educators and science educators who are interested in using language and literacy practices in the service of science teaching and learning. (Full text of this dissertation may be available via the University

  13. Teaching professionalism in science courses: anatomy to zoology.

    Science.gov (United States)

    Macpherson, Cheryl C

    2012-02-01

    Medical professionalism is reflected in attitudes, behaviors, character, and standards of practice. It is embodied by physicians who fulfill their duties to patients and uphold societies' trust in medicine. Professionalism requires familiarity with the ethical codes and standards established by international, governmental, institutional, or professional organizations. It also requires becoming aware of and responsive to societal controversies. Scientific uncertainty may be used to teach aspects of professionalism in science courses. Uncertainty about the science behind, and the health impacts of, climate change is one example explored herein that may be used to teach both professionalism and science. Many medical curricula provide students with information about professionalism and create opportunities for students to reflect upon and strengthen their individually evolving levels of professionalism. Faculties in basic sciences are rarely called upon to teach professionalism or deepen medical students understanding of professional standards, competencies, and ethical codes. However they have the knowledge and experience to develop goals, learning objectives, and topics relevant to professionalism within their own disciplines and medical curricula. Their dedication to, and passion for, science will support basic science faculties in designing innovative and effective approaches to teaching professionalism. This paper explores topics and formats that scientists may find useful in teaching professional attitudes, skills, and competencies in their medical curriculum. It highlights goals and learning objectives associated with teaching medical professionalism in the basic sciences. Copyright © 2011. Published by Elsevier B.V.

  14. Hot Topics in Science Teaching

    Science.gov (United States)

    Ediger, Marlow

    2018-01-01

    There are vital topics in science teaching and learning which are mentioned frequently in the literature. Specialists advocate their importance in the curriculum as well as science teachers stress their saliency. Inservice education might well assist new and veteran teachers in knowledge and skills. The very best science lessons and units of…

  15. Project ALERT: Forging New Partnerships to Improve Earth System Science Education for Pre-Service and In-Service Teachers

    Science.gov (United States)

    Metzger, E. P.; Ambos, E. L.; Ng, E. W.; Skiles, J.; Simila, G.; Garfield, N.

    2002-05-01

    Project ALERT (Augmented Learning Environment and Renewable Teaching) was founded in 1998, with funding from NASA and the California State University (CSU), to improve earth system science education for pre-service teachers. Project ALERT has formed linkages between ten campuses of the CSU, which prepares about 60 percent of California's teachers, and two NASA centers, Ames Research Center and the Jet Propulsion Laboratory. ALERT has also fostered alliances between earth science and science education faculty. The combined expertise of Project ALERT's diverse partners has led to a wide array of activities and products, including: 1) incorporation in university classrooms of NASA-developed imagery, data, and educational resources; 2) creation and/or enhancement of several courses that bring earth systems science to pre-service teachers; 3) fellowships for CSU faculty to participate in collaborative research and education projects at the NASA Centers; 4) development of teaching modules on such varied topics as volcanoes, landslides, and paleoclimate; and 5) a central web site that highlights resources for teaching introductory Earth system science. An outgrowth of Project ALERT is the increased interest on the part of CSU earth scientists in education issues. This has catalyzed their participation in other projects, including NASA's Project NOVA, Earth System Science Education Alliance, and Sun-Earth Connection Education Forum, the Digital Library for Earth System Science Education, and the California Science Project. Project ALERT has also expanded to provide professional development opportunities for in-service teachers, as exemplified by its support of the Bay Area Earth Science Institute (BAESI) at San Jose State University. Each year, BAESI offers 10-15 full-day workshops that supply teachers and teachers-to-be with a blend of science concepts and classroom activities, free instructional materials, and the opportunity to earn inexpensive university credit. These

  16. Scientific literacy of adult participants in an online citizen science project

    Science.gov (United States)

    Price, Charles Aaron

    Citizen Science projects offer opportunities for non-scientists to take part in scientific research. Scientific results from these projects have been well documented. However, there is limited research about how these projects affect their volunteer participants. In this study, I investigate how participation in an online, collaborative astronomical citizen science project can be associated with the scientific literacy of its participants. Scientific literacy is measured through three elements: attitude towards science, belief in the nature of science and competencies associated with learning science. The first two elements are measured through a pre-test given to 1,385 participants when they join the project and a post-test given six months later to 125 participants. Attitude towards science was measured using nine Likert-items custom designed for this project and beliefs in the nature of science were measured using a modified version of the Nature of Science Knowledge scale. Responses were analyzed using the Rasch Rating Scale Model. Competencies are measured through analysis of discourse occurring in online asynchronous discussion forums using the Community of Inquiry framework, which describes three types of presence in the online forums: cognitive, social and teaching. Results show that overall attitudes did not change, p = .225. However, there was significant change towards attitudes about science in the news (positive) and scientific self efficacy (negative), p impact on some aspects of scientific literacy. Using the Rasch Model allowed us to uncover effects that may have otherwise been hidden. Future projects may want to include social interactivity between participants and also make participants specifically aware of how they are contributing to the entire scientific process.

  17. Teaching science content in nursing programs in Australia: a cross-sectional survey of academics.

    Science.gov (United States)

    Birks, Melanie; Ralph, Nicholas; Cant, Robyn; Hillman, Elspeth; Chun Tie, Ylona

    2015-01-01

    Professional nursing practice is informed by biological, social and behavioural sciences. In undergraduate pre-registration nursing programs, biological sciences typically include anatomy, physiology, microbiology, chemistry, physics and pharmacology. The current gap in the literature results in a lack of information about the content and depth of biological sciences being taught in nursing curricula. The aim of this study was to establish what priority is given to the teaching of science topics in these programs in order to inform an understanding of the relative importance placed on this subject area in contemporary nursing education. This study employed a cross-sectional survey method. This paper reports on the first phase of a larger project examining science content in nursing programs. An existing questionnaire was modified and delivered online for completion by academics who teach science to nurses in these programs. This paper reports on the relative priority given by respondents to the teaching of 177 topics contained in the questionnaire. Of the relatively small population of academics who teach science to nursing students, thirty (n = 30) completed the survey. Findings indicate strong support for the teaching of science in these programs, with particular priority given to the basic concepts of bioscience and gross system anatomy. Of concern, most science subject areas outside of these domains were ranked as being of moderate or low priority. While the small sample size limited the conclusions able to be drawn from this study, the findings supported previous studies that indicated inadequacies in the teaching of science content in nursing curricula. Nevertheless, these findings have raised questions about the current philosophy that underpins nursing education in Australia and whether existing practices are clearly focused on preparing students for the demands of contemporary nursing practice. Academics responsible for the design and implementation of

  18. Pre-service elementary science teaching self-efficacy and teaching practices: A mixed-methods, dual-phase, embedded case study

    Science.gov (United States)

    Sangueza, Cheryl Ramirez

    This mixed-method, dual-phase, embedded-case study employed the Social Cognitive Theory and the construct of self-efficacy to examine the contributors to science teaching self-efficacy and science teaching practices across different levels of efficacy in six pre-service elementary teachers during their science methods course and student teaching experiences. Data sources included the Science Teaching Efficacy Belief Instrument (STEBI-B) for pre-service teachers, questionnaires, journals, reflections, student teaching lesson observations, and lesson debriefing notes. Results from the STEBI-B show that all participants measured an increase in efficacy throughout the study. The ANOVA analysis of the STEBI-B revealed a statistically significant increase in level of efficacy during methods course, student teaching, and from the beginning of the study to the end. Of interest in this study was the examination of the participants' science teaching practices across different levels of efficacy. Results of this analysis revealed how the pre-service elementary teachers in this study contextualized their experiences in learning to teach science and its influences on their science teaching practices. Key implications involves the value in exploring how pre-service teachers interpret their learning to teach experiences and how their interpretations influence the development of their science teaching practices.

  19. Sources of Science Teaching Self-Efficacy for Preservice Elementary Teachers in Science Content Courses

    Science.gov (United States)

    Menon, Deepika; Sadler, Troy D.

    2018-01-01

    Self-efficacy beliefs play a major role in determining teachers' science teaching practices and have been a topic of great interest in the area of preservice science teacher education. This qualitative study investigated factors that influenced preservice elementary teachers' science teaching self-efficacy beliefs in a physical science content…

  20. Science in Hawaii/Haawina Hoopapau: A Culturally Responsive Curriculum Project

    Science.gov (United States)

    Galloway, L. M.; Roberts, K.; Leake, D. W.; Stodden, R. S.; Crabbe, V.

    2005-12-01

    The marvels of modern science often fail to engage indigenous students, as the content and instructional style are usually rooted in the Western experience. This 3 year project, funded by the US Dept. of Education for the Education of Native Hawaiians, offers a curriculum that teaches science through (rather than just about) Native Hawaiian culture. The curriculum focuses on the interdependence of natural resources in our ahupuaa, or watersheds, and helps students strengthen their sense of place and self to malama i ka aina, to care for the land. Further, the curriculum is designed to: engage students in scientific study with relevant, interesting content and activities; improve student achievement of state department of education standards; increase student knowledge and skills in science, math and language arts; respond to the learning needs of Native Hawaiian and/or at-risk students. The project will be presented by a curriculum writer who created and adapted more than a year's worth of materials by teaming with kupuna (respected elders), local cultural experts and role models, educators (new, veteran, Hawaiian, non-Hawaiian, mainland, general and special education teachers), and professionals at the Center on Disability Studies at the University of Hawaii and ALU LIKE, Inc, a non-profit organization to assist Native Hawaiians. The materials created thus far are available for viewing at: www.scihi.hawaii.edu The curriculum, designed for grades 8-11 science classes, can be used to teach a year-long course, a unit, or single lesson related to astronomy, biology, botany, chemistry, geology, oceanography, physical and environmental sciences. This project is in its final year of field testing, polishing and dissemination, and therefore this session will encourage idea sharing, as does our copyright free Web site.

  1. In-Service Turkish Elementary and Science Teachers' Attitudes toward Science and Science Teaching: A Sample from Usak Province

    Science.gov (United States)

    Turkmen, Lutfullah

    2013-01-01

    The purpose of this study is to reveal Turkish elementary teachers' and science teachers' attitudes toward science and science teaching. The sample of the study, 138 in-service elementary level science teachers from a province of Turkey, was selected by a clustered sampling method. The Science Teaching Attitude Scale-II was employed to measure the…

  2. Teacher beliefs about teaching science through Science-Technology-Society (STS)

    Science.gov (United States)

    Massenzio, Lynn

    2001-07-01

    Statement of the problem. As future citizens, students will have the enormous responsibility of making decisions that will require an understanding of the interaction of science and technology and its interface with society. Since many societal issues today are grounded in science and technology, learning science in its social context is vital to science education reform. Science-Technology-Society (STS) has been strongly identified with meeting this goal, but despite its benefits, putting theory into practice has been difficult. Research design and methodology. The purpose of this study was to explore teacher beliefs about teaching science through STS. The following broad research questions guided the study: (1) What are the participants' initial beliefs about teaching science through STS? (2) What beliefs emerge as participants reflect upon and share their STS instructional experiences with their peers? A social constructivist theoretical framework was developed to plan interactions and collect data. Within this framework, a qualitative methodology was used to interpret the data and answer the research questions. Three provisionally certified science teachers engaged in a series of qualitative tasks including a written essay, verbal STS unit explanation, reflective journal writings, and focus group interviews. After implementing their STS unit, the participants engaged in meaningful dialogue with their peers as they reflected upon, shared, and constructed their beliefs. Conclusions. The participants strongly believed in STS as a means for achieving scientific and technological literacy, developing cognition, enhancing scientific habits of mind and affective qualities, and fostering citizen responsibility. Four major assertions were drawn: (a) Participants' initial belief in teaching for citizen responsibility did not fully align with practice, (b) Educators at the administrative level should be made aware of the benefits of teaching science through STS, (c

  3. The Relationship between Multiple Intelligences with Preferred Science Teaching and Science Process Skills

    OpenAIRE

    Mohd Ali Samsudin; Noor Hasyimah Haniza; Corrienna Abdul-Talib; Hayani Marlia Mhd Ibrahim

    2015-01-01

    This study was undertaken to identify the relationship between multiple intelligences with preferred science teaching and science process skills. The design of the study is a survey using three questionnaires reported in the literature: Multiple Intelligences Questionnaire, Preferred Science Teaching Questionnaire and Science Process Skills Questionnaire. The study selected 300 primary school students from five (5) primary schools in Penang, Malaysia. The findings showed a relationship betwee...

  4. Teacher collaboration and elementary science teaching: Using action research as a tool for instructional leadership

    Science.gov (United States)

    Roberts, Sara Hayes

    The primary purpose of this action research study was to explore an elementary science program and find ways to support science education as an administrator of an elementary school. The study took place in a large suburban school system in the southeastern United States. Seven teachers at a small rural school volunteered to participate in the study. Each participant became an active member of the research by determining what changes needed to take place and implementing the lessons in science. The study was also focused on teacher collaboration and how it influenced the science instruction. The data collected included two interviews, ten observations of science lessons, the implementation of four science units, and informal notes from planning sessions over a five month period. The questions that guided this study focused on how teachers prepare to teach science through active learning and how instruction shifts due to teacher collaboration. Teachers were interviewed at the beginning of the study to gain the perceptions of the participants in the areas of (a) planning, (b) active learning, (c) collaboration, and (d) teaching science lessons. The teachers and principal then formed a research team that determined the barriers to teaching science according to the Standards, designed units of study using active learning strategies, and worked collaboratively to implement the units of study. The action research project reviewed the National Science Education Standards, the theory of constructivism, active learning and teacher collaboration as they relate to the actions taken by a group of teachers in an elementary school. The evidence from this study showed that by working together collaboratively and overcoming the barriers to teaching science actively, teachers feel more confident and knowledgeable about teaching the concepts.

  5. Teaching secondary science constructing meaning and developing understanding

    CERN Document Server

    Ross, Keith; McKechnie, Janet

    2010-01-01

    Now fully updated in its third edition Teaching Secondary Science is a comprehensive guide to all aspects of science teaching, providing a wealth of information and ideas about different approaches. With guidance on how children understand scientific ideas and the implications this has on teaching, teachers are encouraged to construct their own meanings and become reflective in their practice. Relating science to government agendas, such as the National Strategies, Assessment for Learning and Every Child Matters, this new edition reflects and maps to changes in national standards. Ke

  6. Project-Based Learning as a Vehicle for Teaching Science at the University Level

    Science.gov (United States)

    Courtney, A. R.; Wade, P.

    2012-12-01

    In a typical science course learning is teacher directed. Students are presented with knowledge and concepts via textbooks and lecture and then given the opportunity to apply them. Project-based learning (PBL) creates a context and reason to learn information and concepts. In PBL, learning is student directed and teacher facilitated. Students take ownership of their learning by finding, evaluating and synthesizing information from a variety of resources and via interaction between each other. In PBL, the project is central rather than peripheral to the curriculum. It is not just an activity that provides examples, additional practice or applications of the course content, but rather, the vehicle through which major concepts are discovered. The PBL process requires students to do revision and reflection encouraging them to think about what and how they are learning. PBL projects also allow students to develop important life-work skills such as collaboration, communication and critical thinking within the discipline. We have employed PBL in both Liberal Arts courses for non-science majors and upper division courses for science students. Three examples will be discussed. The first will be the production of video documentaries in a non-science major course; the second, a student generated electronic textbook in a 300-level energy course for science students; and lastly, a student designed analysis project in a chemistry major capstone laboratory course. The product in each of these examples was used to deliver knowledge to others in the class as well as members of the public providing motivation for students to do high-quality work. In our examples, student documentaries are publicly screened as part of a university-wide Academic Excellence Showcase; the student generated electronic textbook is available for public use on the internet; and the results of the student designed analysis were communicated to the real-world clients via letters and reports. We will discuss

  7. Impact of SCALE-UP on science teaching self-efficacy of students in general education science courses

    Science.gov (United States)

    Cassani, Mary Kay Kuhr

    The objective of this study was to evaluate the effect of two pedagogical models used in general education science on non-majors' science teaching self-efficacy. Science teaching self-efficacy can be influenced by inquiry and cooperative learning, through cognitive mechanisms described by Bandura (1997). The Student Centered Activities for Large Enrollment Undergraduate Programs (SCALE-UP) model of inquiry and cooperative learning incorporates cooperative learning and inquiry-guided learning in large enrollment combined lecture-laboratory classes (Oliver-Hoyo & Beichner, 2004). SCALE-UP was adopted by a small but rapidly growing public university in the southeastern United States in three undergraduate, general education science courses for non-science majors in the Fall 2006 and Spring 2007 semesters. Students in these courses were compared with students in three other general education science courses for non-science majors taught with the standard teaching model at the host university. The standard model combines lecture and laboratory in the same course, with smaller enrollments and utilizes cooperative learning. Science teaching self-efficacy was measured using the Science Teaching Efficacy Belief Instrument - B (STEBI-B; Bleicher, 2004). A science teaching self-efficacy score was computed from the Personal Science Teaching Efficacy (PTSE) factor of the instrument. Using non-parametric statistics, no significant difference was found between teaching models, between genders, within models, among instructors, or among courses. The number of previous science courses was significantly correlated with PTSE score. Student responses to open-ended questions indicated that students felt the larger enrollment in the SCALE-UP room reduced individual teacher attention but that the large round SCALE-UP tables promoted group interaction. Students responded positively to cooperative and hands-on activities, and would encourage inclusion of more such activities in all of the

  8. Recruiting Science Majors into Secondary Science Teaching: Paid Internships in Informal Science Settings

    Science.gov (United States)

    Worsham, Heather M.; Friedrichsen, Patricia; Soucie, Marilyn; Barnett, Ellen; Akiba, Motoko

    2014-01-01

    Despite the importance of recruiting highly qualified individuals into the science teaching profession, little is known about the effectiveness of particular recruitment strategies. Over 3 years, 34 college science majors and undecided students were recruited into paid internships in informal science settings to consider secondary science teaching…

  9. Setting the Stage for Science in Schools - EIROforum presents the very best of European science teaching

    Science.gov (United States)

    2005-11-01

    Science on Stage web site at 12:00 CET on Friday 25 November. In addition, highlights of the Festival will feature in a new "Science in School" journal, to be launched by EIROforum in 2006. The new journal is dedicated to best teaching materials and practices in Europe. The festival is the final event of a two-year-long programme of events that has taken place in virtually every European country and from which delegates have been selected for their outstanding projects promoting science. The event continues the vastly successful "Physics on Stage" festivals organised by EIROforum organisations in 2000, 2002 and 2003. Journalists are cordially invited to take part in this unique European event. The detailed programme and practical details are available on the Science on Stage web site at http://www.cern.ch/sos

  10. Foundation observation of teaching project--a developmental model of peer observation of teaching.

    Science.gov (United States)

    Pattison, Andrew Timothy; Sherwood, Morgan; Lumsden, Colin James; Gale, Alison; Markides, Maria

    2012-01-01

    Peer observation of teaching is important in the development of educators. The foundation curriculum specifies teaching competencies that must be attained. We created a developmental model of peer observation of teaching to help our foundation doctors achieve these competencies and develop as educators. A process for peer observation was created based on key features of faculty development. The project consisted of a pre-observation meeting, the observation, a post-observation debrief, writing of reflective reports and group feedback sessions. The project was evaluated by completion of questionnaires and focus groups held with both foundation doctors and the students they taught to achieve triangulation. Twenty-one foundation doctors took part. All completed reflective reports on their teaching. Participants described the process as useful in their development as educators, citing specific examples of changes to their teaching practice. Medical students rated the sessions as better or much better quality as their usual teaching. The study highlights the benefits of the project to individual foundation doctors, undergraduate medical students and faculty. It acknowledges potential anxieties involved in having teaching observed. A structured programme of observation of teaching can deliver specific teaching competencies required by foundation doctors and provides additional benefits.

  11. Forces. 'O' Level Study Guide. Unit 1. ZIM-SCI, Zimbabwe Secondary School Science Project. Year 3.

    Science.gov (United States)

    Udwin, Martin

    The Zimbabwe Secondary School Science Project (ZIM-SCI) developed student study guides, corresponding teaching guides, and science kits for a low-cost science course which could be taught during the third year of secondary school without the aid of qualified teachers and conventional laboratories. This ZIM-SCI study guide is a five-part unit…

  12. Teaching the process of science: faculty perceptions and an effective methodology.

    Science.gov (United States)

    Coil, David; Wenderoth, Mary Pat; Cunningham, Matthew; Dirks, Clarissa

    2010-01-01

    Most scientific endeavors require science process skills such as data interpretation, problem solving, experimental design, scientific writing, oral communication, collaborative work, and critical analysis of primary literature. These are the fundamental skills upon which the conceptual framework of scientific expertise is built. Unfortunately, most college science departments lack a formalized curriculum for teaching undergraduates science process skills. However, evidence strongly suggests that explicitly teaching undergraduates skills early in their education may enhance their understanding of science content. Our research reveals that faculty overwhelming support teaching undergraduates science process skills but typically do not spend enough time teaching skills due to the perceived need to cover content. To encourage faculty to address this issue, we provide our pedagogical philosophies, methods, and materials for teaching science process skills to freshman pursuing life science majors. We build upon previous work, showing student learning gains in both reading primary literature and scientific writing, and share student perspectives about a course where teaching the process of science, not content, was the focus. We recommend a wider implementation of courses that teach undergraduates science process skills early in their studies with the goals of improving student success and retention in the sciences and enhancing general science literacy.

  13. Toward making the invisible visible: Studying science teaching self-efficacy beliefs

    Science.gov (United States)

    Perkins, Catherine J.

    This dissertation consists of two articles to be submitted for publication. The first, a literature review, makes visible common influences on science teaching self-efficacy beliefs and also points to potentially invisible validation concerns regarding the instrument used. The second investigates the participants' invisible science teaching self-efficacy beliefs and, through the use of a more focused interview, makes those beliefs visible. Science teaching self-efficacy beliefs are science teachers' perceptions of their abilities to teach science effectively. The construct "teaching self-efficacy" originated in social cognitive theory (Bandura, 1977). The first article reviews the mixed results from teaching self-efficacy research in science contexts. The review focuses upon factors that facilitate or inhibit the development of self-efficacy beliefs among science teachers across stages of their careers. Although many studies of science teaching self-efficacy beliefs have utilized the Science Teaching Efficacy Belief Instrument - STEBI (Enochs & Riggs, 1990; Riggs & Enochs, 1990), this review also includes non-STEBI studies in order to represent diverse lines of research methodology. The review's findings indicate that antecedent factors such as science activities in and out of school, teacher preparation, science teaching experiences and supportive job contexts are significant influences on the development of science teaching self-efficacy beliefs. The review also indicates that the majority of these studies are short term and rely on a single STEBI administration with the collection of antecedent/demographic and/or interview data. The second article documents a study that responded to the above literature review findings. This study utilized multiple STEBI administrations during the preservice and beginning year of teaching for two science teachers. Rather than general questions, these participants were asked item specific, yet open-ended, questions to determine

  14. Caught in the Balance: An Organizational Analysis of Science Teaching in Schools with Elementary Science Specialists

    Science.gov (United States)

    Marco-Bujosa, Lisa M.; Levy, Abigail Jurist

    2016-01-01

    Elementary schools are under increasing pressure to teach science and teach it well; yet, research documents that classroom teachers must overcome numerous personal and school-based challenges to teach science effectively at this level, such as access to materials and inadequate instructional time. The elementary science specialist model…

  15. The ontology of science teaching in the neoliberal era

    Science.gov (United States)

    Sharma, Ajay

    2017-12-01

    Because of ever stricter standards of accountability, science teachers are under an increasing and unrelenting pressure to demonstrate the effects of their teaching on student learning. Econometric perspectives of teacher quality have become normative in assessment of teachers' work for accountability purposes. These perspectives seek to normalize some key ontological assumptions about teachers and teaching, and thus play an important role in shaping our understanding of the work science teachers do as teachers in their classrooms. In this conceptual paper I examine the ontology of science teaching as embedded in econometric perspectives of teacher quality. Based on Foucault's articulation of neoliberalism as a discourse of governmentality in his `The Birth of Biopolitics' lectures, I suggest that this ontology corresponds well with the strong and substantivist ontology of work under neoliberalism, and thus could potentially be seen as reflection of the influence of neoliberal ideas in education. Implications of the mainstreaming of an ontology of teaching that is compatible with neoliberalism can be seen in increasing marketization of teaching, `teaching evangelism', and impoverished notions of learning and teaching. A shift of focus from teacher quality to quality of teaching and building conceptual models of teaching based on relational ontologies deserve to be explored as important steps in preserving critical and socially just conceptions of science teaching in neoliberal times.

  16. Teaching Botanical Identification to Adults: Experiences of the UK Participatory Science Project "Open Air Laboratories"

    Science.gov (United States)

    Stagg, Bethan C.; Donkin, Maria

    2013-01-01

    Taxonomic education and botany are increasingly neglected in schools and universities, leading to a "missed generation" of adults that cannot identify organisms, especially plants. This study pilots three methods for teaching identification of native plant species to forty-three adults engaged in the participatory science project…

  17. Teaching Citizenship in Science Classes at the University of Arizona

    Science.gov (United States)

    Thompson, R. M.; Mangin, K.

    2008-12-01

    credits while teaching young people about marine science and conservation. Classes of elementary and middle school students attend a class field trip to a UA teaching laboratory where they explore a variety of hands-on marine biology centers. Undergraduates facilitate the learning centers and develop new centers for future years of the program. In addition, undergraduates in Marine Discovery do a marine ecology field project during a field trip to the Gulf of California, and present their results as a research poster to their peers. The course is entirely project- based, and helps students to develop informal as well as formal science communication skills. Many outreach programs suffer from loss of funding and lack of sustainability. Marine Discovery's popularity with both UA undergraduates and K-12 teachers has helped sustain it into its sixteenth year.

  18. Jordanian Preservice Primary Teachers' Perceptions of Mentoring in Science Teaching

    Science.gov (United States)

    Abed, Osama H.; Abd-El-Khalick, Fouad

    2015-03-01

    Quality mentoring is fundamental to preservice teacher education because of its potential to help student and novice teachers develop the academic and pedagogical knowledge and skills germane to successful induction into the profession. This study focused on Jordanian preservice primary teachers' perceptions of their mentoring experiences as these pertain to science teaching. The Mentoring for Effective Primary Science Teaching instrument was administered to 147 senior preservice primary teachers in a university in Jordan. The results indicated that the greater majority of participants did not experience effective mentoring toward creating a supportive and reflexive environment that would bolster their confidence in teaching science; further their understanding of primary science curriculum, and associated aims and school policies; help with developing their pedagogical knowledge; and/or furnish them with specific and targeted feedback and guidance to help improve their science teaching. Substantially more participants indicated that their mentors modeled what they perceived to be effective science teaching. The study argues for the need for science-specific mentoring for preservice primary teachers, and suggests a possible pathway for achieving such a model starting with those in-service primary teachers-much like those identified by participants in the present study-who are already effective in their science teaching.

  19. Teaching science as inquiry in US and in Japan: A cross-cultural comparison of science teachers' understanding of, and attitudes toward inquiry-based teaching

    Science.gov (United States)

    Tosa, Sachiko

    Since the publication of the National Science Education Standards in 1996, learning science through inquiry has been regarded as the heart of science education. However, the TIMSS 1999 Video Study showed that inquiry-based teaching has been taking place less in the United States than in Japan. This study examined similarities and differences in how Japanese and American middle-school science teachers think and feel about inquiry-based teaching. Teachers' attitudes toward the use of inquiry in science teaching were measured through a survey instrument (N=191). Teachers' understanding of inquiry-based teaching was examined through interviews and classroom observations in the United States (N=9) and Japan (N=15). The results show that in spite of the variations in teachers' definitions of inquiry-based teaching, teachers in both countries strongly agree with the idea of inquiry-based teaching. However, little inquiry-based teaching was observed in either of the countries for different reasons. The data indicate that Japanese teachers did not generally help students construct their own understanding of scientific concepts in spite of well-planned lesson structures and activity set-ups. On the other hand, the observational data indicate that American teachers often lacked meaningful science content in spite of their high level of pedagogical knowledge. The need for addressing the importance of scientific concepts in teacher preparation programs in higher education institutions in the US is advocated. To the Japanese science education community, the need for teachers' acquisition of instructional strategies for inquiry-based teaching is strongly addressed.

  20. Teaching Triple Science: GCSE Chemistry

    Science.gov (United States)

    Learning and Skills Network (NJ3), 2007

    2007-01-01

    The Department for Children, Schools and Families (DCSF) has contracted with the Learning and Skills Network to support awareness and take-up of Triple Science GCSEs through the Triple Science Support Programme. This publication provides an introduction to teaching and learning approaches for the extension topics within GCSE Chemistry. It…

  1. An Investigation of Science Teachers’ Teaching Methods and Techniques: Amasya Case

    Directory of Open Access Journals (Sweden)

    Orhan KARAMUSTAFAOĞLU

    2014-10-01

    Full Text Available The purpose of this study is to determine the methods and techniques science teachers mostly employ in their classrooms. To collect data, the researchers employed a survey with 60 science teachers and randomly selected 6 of them to observe these selected teachers in real classroom situation. Furthermore, the researchers invited 154 students taught by the selected 6 teachers in this study, for focus group interviewing. After analyzing the collected data, the researchers found that teachers in this study 1 were more likely to use narrative method, 2 supported their teaching with question and answer, demonstration, case study, and problem solving methods and techniques, and 3 rarely employed student centered discussion, laboratory practice, role playing and project-based learning methods in their classroom. Consequently, there exist some differences between theory and practice regarding teaching methods and techniques of teachers in this study.

  2. Review. Teaching Legal and Administrative Science Nadia-Cerasela Anitei and Roxana Alina Petraru

    OpenAIRE

    Doina Mihaela POPA

    2011-01-01

    The work Didactica predarii stiintelor juridice si administrative (Teaching Legal and Administrative Science) authors Nadia- Cerasela Anitei and Roxana Alina Petraru is structured around the following 10 lessons: 1. General notions about teaching legal science, 2. Teaching legal science, 3. Learning with application in legal science, 4. Legal science teaching aims, 5. Education curriculum for teaching legal science, 6. Learning Methods 7. Educational assessment with applications for legal sci...

  3. Preparing perservice teachers to teach elementary school science

    Science.gov (United States)

    Lewis, Amy D.

    The development of scientifically literate citizens begins in the elementary school. Yet elementary school teachers are ill prepared to teach science (Trygstad, Smith, Banilower, Nelson, & Horizon Research, Inc., 2013). The research base on teacher preparation finds that programs designed to prepare elementary teachers are inadequate in providing both the content knowledge and pedagogical content knowledge necessary to teach science effectively (Baumgartner, 2010; Bodzin & Beerer, 2003; Bulunuz & Jarrett 2009). This mixed methods study examined what happened when a science methods course was interactively co-taught by an expert in elementary teaching methods and a physics expert. This study also aimed to discover what aspects of the curriculum pre-service teachers (PSTs) said helped them in developing their understanding of science content and scientific reasoning, and how to implement inquiry practices to teach science. A nested case study of three PSTs provided descriptive portraits of student experiences in the class. A whole class case analysis was used to examine what PSTs learned in terms of science, scientific reasoning skills, and pedagogical content knowledge (PCK) from their experiences in the course. It was found that students often conflated science content with the experiences they had in learning the content. Although PSTs felt the interactive co-teaching model effectively created a balance between theory and practice, it was their experiences doing science--conducting physical experiments, developing and discussing scientific models, and the use of inquiry-based instruction--that they credited for their learning. Even with careful curriculum planning, and a course purposely designed to bridge the theory to practice gap, this study found one semester-long methods course to be insufficient in providing the vast content knowledge and PCK elementary school science teachers need.

  4. Setting up crowd science projects.

    Science.gov (United States)

    Scheliga, Kaja; Friesike, Sascha; Puschmann, Cornelius; Fecher, Benedikt

    2016-11-29

    Crowd science is scientific research that is conducted with the participation of volunteers who are not professional scientists. Thanks to the Internet and online platforms, project initiators can draw on a potentially large number of volunteers. This crowd can be involved to support data-rich or labour-intensive projects that would otherwise be unfeasible. So far, research on crowd science has mainly focused on analysing individual crowd science projects. In our research, we focus on the perspective of project initiators and explore how crowd science projects are set up. Based on multiple case study research, we discuss the objectives of crowd science projects and the strategies of their initiators for accessing volunteers. We also categorise the tasks allocated to volunteers and reflect on the issue of quality assurance as well as feedback mechanisms. With this article, we contribute to a better understanding of how crowd science projects are set up and how volunteers can contribute to science. We suggest that our findings are of practical relevance for initiators of crowd science projects, for science communication as well as for informed science policy making. © The Author(s) 2016.

  5. Innovative Technologies in Science Teaching

    Science.gov (United States)

    Guerra, Cecilia; Pombo, Lucia; Moreira, Antonio

    2011-01-01

    Technology plays a crucial role in pupils' and primary teachers' lives nowadays and its use can facilitate change towards an innovative school environment. The internet, for example, can act as a platform to foster science teaching and offers a variety of opportunities for effective science learning and engaging and motivating children. But…

  6. Turkish Preservice Science Teachers' Socioscientific Issues-Based Teaching Practices in Middle School Science Classrooms

    Science.gov (United States)

    Genel, Abdulkadir; Topçu, Mustafa Sami

    2016-01-01

    Background: Despite a growing body of research and curriculum reforms including socioscientific issues (SSI) across the world, how preservice science teachers (PST) or in-service science teachers can teach SSI in science classrooms needs further inquiry. Purpose: The purpose of this study is to describe the abilities of PSTs to teach SSI in middle…

  7. New Pedagogies on Teaching Science with Computer Simulations

    Science.gov (United States)

    Khan, Samia

    2011-01-01

    Teaching science with computer simulations is a complex undertaking. This case study examines how an experienced science teacher taught chemistry using computer simulations and the impact of his teaching on his students. Classroom observations over 3 semesters, teacher interviews, and student surveys were collected. The data was analyzed for (1)…

  8. THE DEVELOPMENT OF AIR-THEME INTEGRATED SCIENCE TEACHING MATERIAL USING FOUR STEPS TEACHING MATERIAL DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    A. Arifin

    2016-01-01

    Full Text Available The purposes of this study are to develop, to test the feasibility, to describe the characteristic, and to test the students understanding about integrated science teaching material about air using Four Steps Teaching Material Development (4S TMD. The Research and Development method was use to develop integrated science teaching materials which is involving  all science perspectives that are not presented in junior high school science book. The air theme was chosen in this study since it can be explained using biology, chemistry, physics, and earth and space science  perspectives. Development the teaching materials was consists of selection, structuring, characterization, and reduction didactic steps. Based on the of feasibility test results, the teaching material is qualified in content, presentation, language, and graphic feasibility aspects. The characteristic of this teaching material expose the closeness theme with student daily lifes and its compatibility with National Books Standard. Based on the understanding test results, the teaching material is qualified in understanding aspect with high category. It can be concluded that the teaching material qualified to be used as supplement teaching material of science learning.Penelitian ini bertujuan untuk mengembangkan, menguji kelayakan, memaparkan karakteristik, dan menguji keterpahaman bahan ajar IPA terpadu pada tema udara untuk siswa SMP kelas VII melalui Four Steps Teaching Material Development (4S TMD. Penelitian dengan metode Research and Development (R&D ini dilatar belakangi oleh tidak tersedianya bahan ajar IPA SMP yang disajikan secara terpadu melalui tema udara. Pengembangan bahan ajar IPA terpadu tema udara terdiri dari tahap seleksi, strukturisasi, karakterisasi dan reduksi didaktik. Berdasarkan uji kelayakan, bahan ajar telah memenuhi aspek kelayakan isi, kelayakan penyajian, kelayakan bahasa dan kelayakan kegrafikan. Karakteristik bahan ajar meliputi kedekatan tema bahan ajar

  9. The integration of creative drama into science teaching

    Science.gov (United States)

    Arieli, Bracha (Bari)

    This study explored the inclusion of creative drama into science teaching as an instructional strategy for enhancing elementary school students' understanding of scientific concepts. A treatment group of sixth grade students was taught a Full Option Science System (FOSS) science unit on Mixtures and Solutions with the addition of creative drama while a control group was taught using only the FOSS teaching protocol. Quantitative and qualitative data analyses demonstrated that students who studied science through creative drama exhibited a greater understanding of scientific content of the lessons and preferred learning science through creative drama. Treatment group students stated that they enjoyed participating in the activities with their friends and that the creative drama helped them to better understand abstract scientific concepts. Teachers involved with the creative drama activities were positively impressed and believed creative drama is a good tool for teaching science. Observations revealed that creative drama created a positive classroom environment, improved social interactions and self-esteem, that all students enjoyed creative drama, and that teachers' teaching style affected students' use of creative drama. The researcher concluded that the inclusion of creative drama with the FOSS unit enhanced students' scientific knowledge and understanding beyond that of the FOSS unit alone, that both teachers and students reacted positively to creative drama in science and that creative drama requires more time.

  10. How Constructivist-Based Teaching Influences Students Learning Science

    Science.gov (United States)

    Seimears, C. Matt; Graves, Emily; Schroyer, M. Gail; Staver, John

    2012-01-01

    The purpose of this article is to provide details about the beneficial processes the constructivist pedagogy has in the area of teaching science. No Child Left Behind could possibly cause detrimental effects to the science classroom and the constructivist teacher, so this essay tells how constructivist-based teaching influences students and their…

  11. Iconic Gestures as Undervalued Representations during Science Teaching

    Science.gov (United States)

    Chue, Shien; Lee, Yew-Jin; Tan, Kim Chwee Daniel

    2015-01-01

    Iconic gestures that are ubiquitous in speech are integral to human meaning-making. However, few studies have attempted to map out the role of these gestures in science teaching. This paper provides a review of existing literature in everyday communication and education to articulate potential contributions of iconic gestures for science teaching.…

  12. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments

    Science.gov (United States)

    Drinkwater, Michael J.; Matthews, Kelly E.; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. PMID:28232589

  13. Science Understanding through Playground Physics: Organized Recess Teaching (SUPPORT)

    Science.gov (United States)

    Kincaid, Russell

    2010-03-01

    From 1995-2007, U.S. science students in grade four scored higher than the scaled TIMSS average, but their scores did not improve over this time. Moreover, in the area of physical science, the U.S. scored significantly lower than several Asian countries, as well as Russia, England, and Latvia (TIMSS). Methods to enhance student achievement in science are still being sought. An approach to utilizing playground equipment as a teaching tool for a variety of physics concepts was developed as a physical science teaching method. This program established an appropriate set of experiments, coordinated the effort with local school districts, and implemented a brief pilot study to test the teaching methodology. The program assigned undergraduate middle school science education majors to teach small groups of fourth grade students. The experimental group used the newly developed ``Playground Physics'' methodology while the control group used traditional approaches. Follow up activities will include an expansion of the duration and the scope of the program.

  14. Understanding Teaching or Teaching for Understanding: Alternative Frameworks for Science Classrooms.

    Science.gov (United States)

    Wildy, Helen; Wallace, John

    1995-01-01

    Describes the findings of a study that involved exploring the classroom practices of an experienced physics teacher to enable researchers to reexamine assumptions about good teaching. Asserts that a broader view of good science teaching is needed than that proposed by the constructivist literature. (ZWH)

  15. Barriers in local practice-oriented teaching networks to organize climate and science teaching

    DEFF Research Database (Denmark)

    Grunwald, Annette

    The poster takes its point of departure from a need to meet primary and lower secondary pupils interest in climate, science and technology by giving them possibilities to learn “in the real world” in a more problem based way. This possibility is given through out-of-school learning organized in co......-operation between educational actors, here primary/lower secondary schools, Aalborg University, and other actors, here Aalborg municipality and companies. The poster will present the first results of an ongoing developing and research project “Learning in reality: Practice-oriented teaching networks strengthen...... primary and lower secondary school pupils’ interest in climate and science”, funded by the Danish Energy Foundation (August 2014 – December 2016). The aim of the project is e.g. to: - Develop, establish and explore new forms of local cooperation between schools, companies, Aalborg University...

  16. The PISCES Project: How Teacher-Scientist Partners can Enhance Elementary Science Instruction

    Science.gov (United States)

    Reif, C.; Oechel, W.

    2003-12-01

    The PISCES Project (Partnerships Involving the Scientific Community in Elementary Schools www.sdsa.org/pisces) is an innovative program that brings high quality standards-based elementary science curriculum and hands-on laboratory materials into San Diego County's classrooms. The project is funded by the NSF Graduate Teaching Fellows in K-12 Education (GK-12) program. The project was designed and is administered through cooperation among faculty at San Diego State University and the Science Department of the San Diego County Office of Education. Undergraduate and graduate students enrolled in science programs in San Diego area universities including San Diego State University, California State University San Marcos, and University of California San Diego partner with elementary school teachers. Through this partnership, the scientist brings scientific expertise to the classroom while the teacher delivers the lesson using current pedagogic methods. This is accomplished during a 3 month partnership in which the scientist joins the teacher in the classroom a few days each week to complete professional kit-based curriculum such as that available from FOSS (Full Option Science System) and STC (Science and Technology for Children). The teachers remain in the program for two years during which they have continuous access to the kit-based curriculum as well as two to three partnership cycles. Teachers receive assistance outside of the classroom as well attending professional development institutes three times a year to establish and maintain effective science teaching methods. The San Diego Science Alliance and other community and industry supporters provide the additionalfunding necessary to provide this teacher professional development Currenty, PISCES is present in over 40 schools and is able to provide partnerships to over 100 classrooms each year. In addition to the work done in San Diego, the project has expanded to Barrow, Alaska with plans to expand to La Paz

  17. Learning to teach effectively: Science, technology, engineering, and mathematics graduate teaching assistants' teaching self-efficacy

    Science.gov (United States)

    Dechenne, Sue Ellen

    Graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) are important in the teaching of undergraduate students (Golde & Dore, 2001). However, they are often poorly prepared for teaching (Luft, Kurdziel, Roehrig, & Turner, 2004). This dissertation addresses teaching effectiveness in three related manuscripts: (1) A position paper that summarizes the current research on and develops a model of GTA teaching effectiveness. (2) An adaptation and validation of two instruments; GTA perception of teaching training and STEM GTA teaching self-efficacy. (3) A model test of factors that predict STEM GTA teaching self-efficacy. Together these three papers address key questions in the understanding of teaching effectiveness in STEM GTAs including: (a) What is our current knowledge of factors that affect the teaching effectiveness of GTAs? (b) Given that teaching self-efficacy is strongly linked to teaching performance, how can we measure STEM GTAs teaching self-efficacy? (c) Is there a better way to measure GTA teaching training than currently exists? (d) What factors predict STEM GTA teaching self-efficacy? An original model for GTA teaching effectiveness was developed from a thorough search of the GTA teaching literature. The two instruments---perception of training and teaching self-efficacy---were tested through self-report surveys using STEM GTAs from six different universities including Oregon State University (OSU). The data was analyzed using exploratory and confirmatory factor analysis. Using GTAs from the OSU colleges of science and engineering, the model of sources of STEM GTA teaching self-efficacy was tested by administering self-report surveys and analyzed by using OLS regression analysis. Language and cultural proficiency, departmental teaching climate, teaching self-efficacy, GTA training, and teaching experience affect GTA teaching effectiveness. GTA teaching self-efficacy is a second-order factor combined from self

  18. Inductive teaching by interacting with CDIO-projects

    DEFF Research Database (Denmark)

    Goltermann, Per

    as a inductive starting point for the traditional teaching and by creating a basis for a CDIO-project, which runs parallel to the last part of the course. The use of such results as a starting point for the teaching allows the teacher to start with simple observations from tests and to build the general...... the added benefit that it proves to the students that their project results are valuable and useful, which again increases motivation in the course and in the projects....

  19. Virtual school teacher's science efficacy beliefs: The effects of community of practice on science-teaching efficacy beliefs

    Science.gov (United States)

    Uzoff, Phuong Pham

    The purpose of this study was to examine how much K-12 science teachers working in a virtual school experience a community of practice and how that experience affects personal science-teaching efficacy and science-teaching outcome expectancy. The study was rooted in theoretical frameworks from Lave and Wenger's (1991) community of practice and Bandura's (1977) self-efficacy beliefs. The researcher used three surveys to examine schoolteachers' experiences of a community of practice and science-teaching efficacy beliefs. The instrument combined Mangieri's (2008) virtual teacher demographic survey, Riggs and Enochs (1990) Science-teaching efficacy Beliefs Instrument-A (STEBI-A), and Cadiz, Sawyer, and Griffith's (2009) Experienced Community of Practice (eCoP) instrument. The results showed a significant linear statistical relationship between the science teachers' experiences of community of practice and personal science-teaching efficacy. In addition, the study found that there was also a significant linear statistical relationship between teachers' community of practice experiences and science-teaching outcome expectancy. The results from this study were in line with numerous studies that have found teachers who are involved in a community of practice report higher science-teaching efficacy beliefs (Akerson, Cullen, & Hanson, 2009; Fazio, 2009; Lakshmanan, Heath, Perlmutter, & Elder, 2011; Liu, Lee, & Lin, 2010; Sinclair, Naizer, & Ledbetter, 2010). The researcher concluded that school leaders, policymakers, and researchers should increase professional learning opportunities that are grounded in social constructivist theoretical frameworks in order to increase teachers' science efficacy.

  20. 2012 International Conference on Teaching and Computational Science (ICTCS 2012)

    CERN Document Server

    Advanced Technology in Teaching

    2013-01-01

    2012 International Conference on Teaching and Computational Science (ICTCS 2012) is held on April 1-2, 2012, Macao.   This volume contains 120 selected papers presented at 2012 International Conference on Teaching and Computational Science (ICTCS 2012), which is to bring together researchers working in many different areas of teaching and computational Science to foster international collaborations and exchange of new ideas.   This volume book can be divided into two sections on the basis of the classification of manuscripts considered. The first section deals with teaching. The second section of this volume consists of computational Science.   We hope that all the papers here published can benefit you in the related researching fields.

  1. Science teachers' meaning-making when involved in a school-based professional development project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    2012-01-01

    A group of teachers’ meaning-making when they are collaboratively analyzing artifacts from practice in local science classrooms in a school-based professional development (PD) project is examined through repeated interviews and represented as meaning-making maps. The interpretation of the teachers......’ meaningmaking includes both their reference to outcomes from the project and their expressed ideas about teaching and learning of science. All four teachers refer to experiences from experimenting in their classrooms and interpret the collected artifacts in relation to students’ learning. Furthermore, they all...... felt encouraged to continue collaboration around science. During the interviews, the teachers emphasize various elements apparently connected to concrete challenges they each experience in their professional work. Implications in relation to the design of PD are discussed....

  2. Science teachers' meaning-making when involved in a school-based professional development project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    2012-01-01

    A group of teachers' meaning-making when they are collaboratively analyzing artifacts from practice in local science classrooms in a school-based professional development (PD) project is examined through repeated interviews and represented as meaning-makig maps. The interpretation of the teachers......' meaning-making includes both their reference to outcomes from the project and their expressed ideas about teaching and learning of science. All four teachers refer to experiences from experimenting in their classrooms and interpret the collected artifacts in relation to students' learning. Furthermore......, they all felt encouraged to continue collaboration around science. During the interviews, the teachers emphasize various elements apparently connected to concrete challenges they each experience in their professional work. Implications in relation to the design of PD are discussed....

  3. Science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry

    Science.gov (United States)

    Assiri, Yahya Ibrahim

    This study investigated elementary science teachers' knowledge, beliefs, values, and concerns of teaching through inquiry. A mixed-methods research design was utilized to address the research questions. Since this study was designed as a mixed-methods research approach, the researcher gathered two type of data: quantitative and qualitative. The study was conducted in Mohayel School District, Saudi Arabia. The information was collected from 51 participants using a questionnaire with multiple choice questions; also, 11 participants were interviewed. After collecting the data, descriptive and comparative approaches were used. In addition, themes and codes were used to obtain the results. The results indicated that the mean of elementary science teachers' knowledge was 51.23%, which was less than 60% which was the acceptable score. Also, the qualitative results showed that science teachers had a limited background of teaching through inquiry. In addition, the elementary science teachers had a high level of belief to teach science through inquiry since the mean was 3.99 out of 5.00. These quantitative results were confirmed by the qualitative data. Moreover, the overall mean of elementary science teachers was 4.01, which indicated that they believed in the importance of teaching science through inquiry which was also confirmed by the responses of teachers in the interviews. Also, the findings indicated that elementary school science teachers had concerns about teaching science through inquiry since the overall mean was 3.53. In addition, the interviewees mentioned that they faced some obstacles when they teach by inquiry, such as time, resources, class size, and the teachers' background. Generally, the results did not show any significant differences among elementary science teachers' knowledge, beliefs, values, and concerns depending on gender, level of education, and teaching experience. However, the findings indicated there was one significant difference which was

  4. WFIRST Project Science Activities

    Science.gov (United States)

    Gehrels, Neil

    2012-01-01

    The WFIRST Project is a joint effort between GSFC and JPL. The project scientists and engineers are working with the community Science Definition Team to define the requirements and initial design of the mission. The objective is to design an observatory that meets the WFIRST science goals of the Astr02010 Decadal Survey for minimum cost. This talk will be a report of recent project activities including requirements flowdown, detector array development, science simulations, mission costing and science outreach. Details of the interim mission design relevant to scientific capabilities will be presented.

  5. Science Teaching Methods: A Rationale for Practices

    Science.gov (United States)

    Osborne, Jonathan

    2011-01-01

    This article is a version of the talk given by Jonathan Osborne as the Association for Science Education (ASE) invited lecturer at the National Science Teachers' Association Annual Convention in San Francisco, USA, in April 2011. The article provides an explanatory justification for teaching about the practices of science in school science that…

  6. Derivation and Implementation of a Model Teaching the Nature of Science Using Informal Science Education Venues

    Science.gov (United States)

    Spector, Barbara S.; Burkett, Ruth; Leard, Cyndy

    2012-01-01

    This paper introduces a model for using informal science education venues as contexts within which to teach the nature of science. The model was initially developed to enable university education students to teach science in elementary schools so as to be consistent with "National Science Education Standards" (NSES) (1996) and "A Framework for…

  7. Background experiences, time allocation, time on teaching and perceived support of early-career college science faculty

    Science.gov (United States)

    Sagendorf, Kenneth S.

    The purposes of this research were to create an inventory of the research, teaching and service background experiences of and to document the time allocation and time spent on teaching by early-career college science faculty members. This project is presented as three distinct papers. Thirty early-career faculty in the science disciplines from sixteen different institutions in their first year of employment participated in this study. For the first two papers, a new survey was developed asking participants to choose which experiences they had acquired prior to taking their current faculty position and asking them to document their time allocation and time spent on teaching activities in an average work week. In addition, a third component documents the support early-career college faculty in the sciences are receiving from the perspective of faculty members and their respective department chairpersons and identifies areas of disagreement between these two different groups. Twenty early-career college science faculty and their respective department chairpersons completed a newly-designed survey regarding the support offered to new faculty. The survey addressed the areas of feedback on performance, clarity of tenure requirements, mentoring, support for teaching and scholarship and balancing faculty life. This dissertation presents the results from these surveys, accounting for different demographic variables such as science discipline, gender and institutional category.

  8. Saudi Science Teachers' Views and Teaching Strategies of Socioscientific Issues

    Science.gov (United States)

    Alamri, Aziz S.

    Scientific developments such as cloning and nuclear energy have generated many controversial issues pertain to many political, social, environmental, ethical and cultural values in different societies around the globe. These controversies delimited and encircled the potential of including and teaching some important aspects of science in schools and therefore caused less consideration to the influence of these issues on enhancing the scientific literacy of people in general. The purpose of this study was to investigate how Saudi science teachers in the city of Tabuk in Saudi Arabia view and teach SSI in Saudi Arabia. This study employed semi-structured interviews with Saudi science teachers. Methodologically, this study used a constructivist grounded theory as a method for analysis to generate in-depth descriptive data about Saudi science teachers' views and teaching strategies of socio-scientific issues. Some direct and indirect benefits pertain to teaching science, understanding the relationship between science, religion, and society and some other topics are discussed in this study.

  9. Urban High School Teachers' Beliefs Concerning Essential Science Teaching Dispositions

    Science.gov (United States)

    Miranda, Rommel

    2012-01-01

    This qualitative study addresses the link between urban high school science teachers' beliefs about essential teaching dispositions and student learning outcomes. The findings suggest that in order to help students to do well in science in urban school settings, science teachers should possess essential teaching dispositions which include…

  10. Research Applications for Teaching (RAFT) Project. Final Report.

    Science.gov (United States)

    Thomson, James R., Jr.; Handley, Herbert M.

    A report is given of the development and progress of the Research Applications for Teaching (RAFT) project, developed at Mississippi State University. Based upon research findings relative to effective teaching and effective schooling, five curriculum modules were prepared and implemented in instruction. In the second year of the project the…

  11. Preservice Science Teacher Beliefs about Teaching and the Science Methods Courses: Exploring Perceptions of Microteaching Outcomes

    Science.gov (United States)

    McLaury, Ralph L.

    2011-01-01

    This study investigates beliefs about teaching held by preservice science teachers and their influences on self-perceived microteaching outcomes within interactive secondary science teaching methods courses. Hermeneutic methodology was used in cooperation with seven preservice science teachers (N = 7) to infer participant beliefs about teaching…

  12. Pre-Service Teachers Methods of Teaching Science

    Directory of Open Access Journals (Sweden)

    Dr. Raquel C. Pambid

    2015-02-01

    Full Text Available The study described the teaching methods used by pre-service teachers in Science. It focused on the strategies, techniques, materials, innovative methods and pattern of teaching science used by the pre-service teachers as described in their lesson plans. The qualitative and quantitative design was used in the study. The books, teacher hand-outs from classroom lectures were the sources of methods, strategies and techniques. The chalkboard and self-made drawings and charts were the materials often used. Conventional methods like lecture, open class discussion and demonstration were commonly employed. The strategies included group discussion, use of motivating questions and stories to arouse the interest of students. The direct eye contact, body expressions, jokes and news/trivia were frequent techniques. Integration of values in the lesson became less as the year level increases. The pattern of teaching drawn followed the formal style: I Objectives, II Subject matter, III Learning Tasks, IV Synthesis of the lesson, V Assessment and VI Enrichment. The conventional method and pattern of teaching by the pre-service teachers of PSU suggest that students in the College of Teacher Education should be trained to be more innovative and open in trying out more advanced teaching methods. Furthermore, PSU science pre-service teachers should use methods which can develop higher order thinking skills among high school students.

  13. On teaching the nature of science: perspectives and resources

    Science.gov (United States)

    Radloff, Jeffrey

    2016-06-01

    In this paper, I present a critical review of the recent book, On Teaching the Nature of Science: Perspectives and Resources, written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing historical case studies as vehicles for knowledge. Although several themes in the book merit further attention, a central issue present across all chapters is the largely masculine, monocultural nature of science presented, which is common to a multitude of scientific publications. In this review, I illustrate how culture and gender in science is not addressed throughout the book. I also discuss where we can build on the work of the author to integrate more aspects of gender and culture in teaching the nature of science.

  14. Investigating Your School's Science Teaching and Learning Culture

    Science.gov (United States)

    Sato, Mistilina; Bartiromo, Margo; Elko, Susan

    2016-01-01

    The authors report on their work with the Academy for Leadership in Science Instruction, a program targeted to help science teachers promote a science teaching and learning culture in their own schools.

  15. Teaching for Conceptual Change in Elementary and Secondary Science Methods Courses.

    Science.gov (United States)

    Marion, Robin; Hewson, Peter W.; Tabachnick, B. Robert; Blomker, Kathryn B.

    1999-01-01

    Describes and analyzes two science methods courses at the elementary and secondary levels for how they addressed four ideas: (1) how students learn science; (2) how teachers teach science to students; (3) how prospective science teachers learn about the first two ideas; and (4) how methods instructors teach prospective science teachers about the…

  16. Teaching Primary Science: How Research Helps

    Science.gov (United States)

    Harlen, Wynne

    2010-01-01

    The very first edition of "Primary Science Review" included an article entitled "Teaching primary science--how research can help" (Harlen, 1986), which announced that a section of the journal would be for reports of research and particularly for teachers reporting their classroom research. The intervening 24 years have seen…

  17. Science Teachers' Utilisation of Innovative Strategies for Teaching Senior School Science in Ilorin, Nigeria

    Science.gov (United States)

    Oyelekan, Oloyede Solomon; Igbokwe, Emoyoke Faith; Olorundare, Adekunle Solomon

    2017-01-01

    Efforts have been made to improve science teaching in secondary schools in Nigeria, yet, students continue to perform poorly in science subjects. Many innovative teaching strategies have been developed by educators and found to impact significantly on students' academic performance when utilised. Hence, this study was aimed at examining science…

  18. The use of simulation in teaching the basic sciences.

    Science.gov (United States)

    Eason, Martin P

    2013-12-01

    To assess the current use of simulation in medical education, specifically, the teaching of the basic sciences to accomplish the goal of improved integration. Simulation is increasingly being used by the institutions to teach the basic sciences. Preliminary data suggest that it is an effective tool with increased retention and learner satisfaction. Medical education is undergoing tremendous change. One of the directions of that change is increasing integration of the basic and clinical sciences to improve the efficiency and quality of medical education, and ultimately to improve the patient care. Integration is thought to improve the understanding of basic science conceptual knowledge and to better prepare the learners for clinical practice. Simulation because of its unique effects on learning is currently being successfully used by many institutions as a means to produce that integration through its use in the teaching of the basic sciences. Preliminary data indicate that simulation is an effective tool for basic science education and garners high learner satisfaction.

  19. Using an interdisciplinary MOOC to teach climate science and science communication to a global classroom

    Science.gov (United States)

    Cook, J.

    2016-12-01

    MOOCs (Massive Open Online Courses) are a powerful tool, making educational content available to a large and diverse audience. The MOOC "Making Sense of Climate Science Denial" applied science communication principles derived from cognitive psychology and misconception-based learning in the design of video lectures covering many aspects of climate change. As well as teaching fundamental climate science, the course also presented psychological research into climate science denial, teaching students the most effective techniques for responding to misinformation. A number of enrolled students were secondary and tertiary educators, who adopted the course content in their own classes as well as adapted their teaching techniques based on the science communication principles presented in the lectures. I will outline how we integrated cognitive psychology, educational research and climate science in an interdisciplinary online course that has had over 25,000 enrolments from over 160 countries.

  20. ASAS Centennial Paper: animal science teaching: a century of excellence.

    Science.gov (United States)

    Buchanan, D S

    2008-12-01

    Teaching has a long and varied history in the life of departments of animal science and the American Society of Animal Science. Some of the earliest reports from meetings of the society have strong indication that planning the curriculum was a prominent feature of the meetings. Teaching symposia were also included almost from the beginning. The society went through a lengthy period from the 1940s through most of the 1960s when teaching was not a prominent focus, but a symposium in 1968 appeared to be a catalyst for change, and, since that date, teaching has again been an important part of the meetings. In recent years, outstanding symposia and contributed papers have made the teaching section a vibrant entry. Departments of animal science have changed considerably since the early days in which "men taught boys" and the primary goal was to produce farmers. More female students, more urban students, interest in a wide variety of animals, and greatly diversified career goals have been emerging during the last few decades. Departments of animal science and the American Society of Animal Science are positioning to be able to respond to change and face the challenge of providing excellence in teaching during the next century.

  1. How Is Science Being Taught? Measuring Evidence-Based Teaching Practices across Undergraduate Science Departments.

    Science.gov (United States)

    Drinkwater, Michael J; Matthews, Kelly E; Seiler, Jacob

    2017-01-01

    While there is a wealth of research evidencing the benefits of active-learning approaches, the extent to which these teaching practices are adopted in the sciences is not well known. The aim of this study is to establish an evidential baseline of teaching practices across a bachelor of science degree program at a large research-intensive Australian university. Our purpose is to contribute to knowledge on the adoption levels of evidence-based teaching practices by faculty within a science degree program and inform our science curriculum review in practical terms. We used the Teaching Practices Inventory (TPI) to measure the use of evidence-based teaching approaches in 129 courses (units of study) across 13 departments. We compared the results with those from a Canadian institution to identify areas in need of improvement at our institution. We applied a regression analysis to the data and found that the adoption of evidence-based teaching practices differs by discipline and is higher in first-year classes at our institution. The study demonstrates that the TPI can be used in different institutional contexts and provides data that can inform practice and policy. © 2017 M. J. Drinkwater et al. CBE—Life Sciences Education © 2017 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  2. Graduate performance of science education department in implementing conservation-based science teaching

    Science.gov (United States)

    Parmin; Savitri, E. N.; Amalia, A. V.; Pratama, M. R.

    2018-04-01

    This study aims to measure the performance of graduates in implementing conservation-based science teaching. The study employed a qualitative method by collecting the self-assessment data from alumni and the performance assessment from the headmasters of schools where the graduates are currently teaching. There are nine indicators of conservation insight examined in this study. The study concluded that the 78 alumni, who have become teachers when the study was conducted, perform well in implementing conservative science lessons.

  3. An exploration of equitable science teaching practices for students with learning disabilities

    Science.gov (United States)

    Morales, Marlene

    In this study, a mixed methods approach was used to gather descriptive exploratory information regarding the teaching of science to middle grades students with learning disabilities within a general education classroom. The purpose of this study was to examine teachers' beliefs and their practices concerning providing equitable opportunities for students with learning disabilities in a general education science classroom. Equitable science teaching practices take into account each student's differences and uses those differences to inform instructional decisions and tailor teaching practices based on the student's individualized learning needs. Students with learning disabilities are similar to their non-disabled peers; however, they need some differentiation in instruction to perform to their highest potential achievement levels (Finson, Ormsbee, & Jensen, 2011). In the quantitative phase, the purpose of the study was to identify patterns in the beliefs of middle grades science teachers about the inclusion of students with learning disabilities in the general education classroom. In the qualitative phase, the purpose of the study was to present examples of instruction in the classrooms of science education reform-oriented middle grades science teachers. The quantitative phase of the study collected data from 274 sixth through eighth grade teachers in the State of Florida during the 2007--2008 school year using The Teaching Science to Students with Learning Disabilities Inventory. Overall, the quantitative findings revealed that middle grades science teachers held positive beliefs about the inclusion of students with learning disabilities in the general education science classroom. The qualitative phase collected data from multiple sources (interviews, classroom observations, and artifacts) to develop two case studies of reform-oriented middle grades science teachers who were expected to provide equitable science teaching practices. Based on their responses to The

  4. Teaching and Learning Science for Transformative, Aesthetic Experience

    Science.gov (United States)

    Girod, Mark; Twyman, Todd; Wojcikiewicz, Steve

    2010-01-01

    Drawing from the Deweyan theory of experience (1934, 1938), the goal of teaching and learning for transformative, aesthetic experience is contrasted against teaching and learning from a cognitive, rational framework. A quasi-experimental design was used to investigate teaching and learning of fifth grade science from each perspective across an…

  5. On Teaching the Nature of Science: Perspectives and Resources

    Science.gov (United States)

    Radloff, Jeffrey

    2016-01-01

    In this paper, I present a critical review of the recent book, "On Teaching the Nature of Science: Perspectives and Resources," written by Douglas Allchin (2013). This publication presents an in-depth examination of the nature of science construct, as well as instruction for educators about how to teach it effectively utilizing…

  6. Preparing Elementary Mathematics-Science Teaching Specialists.

    Science.gov (United States)

    Miller, L. Diane

    1992-01-01

    Describes a professional development program to train math/science specialists for the upper elementary school grades. Using results from an interest survey, 30 teachers were chosen to participate in a 3-year program to become math/science specialists. Presents the teaching model used and the advantages for teachers and students in having subject…

  7. Emotions and elementary school science teaching: Postmodernism in practice

    Science.gov (United States)

    Zembylas, Michalinos

    This is an ethnographic study about an elementary school teacher's emotions in her science teaching and pedagogy. This study is an interdisciplinary account of emotions in teaching and draws both methodologically and theoretically from a variety of disciplines: philosophy, sociology, psychology, anthropology, cultural studies and feminist studies. The account developed here is based on my understanding of the role of one teacher's (Catherine) emotions in her classroom life for three years. I describe my approach in terms of what I call emotional genealogies of teaching; referring to an account of the events, objects, persons and their relationships that are present or absent in the realization of emotions, and the ways that these emotions are experienced in relation to the self (individual reality), the others (social interactions) and the world in general (sociopolitical context). Applied to my study, an emotional genealogy of Catherine's science teaching seeks not to trace the gradual evolution of her emotions but to record the singularity of various events that make some emotions present and others absent. My study shows how certain emotions are constructed in the science classroom and how they are transformed over the years (as mediated by values, philosophies, beliefs and so on). Catherine's emotions in science teaching is a "history of the present," a history of her emotions' "presences and absences" in her daffy interactions with her students, parents and administrators in the context of the science classroom. This work raises important questions that go beyond the meaning and interpretation of teachers' emotions: How can teachers' emotions become a legitimate topic in (science) education as well as in efforts for science curricular reform? Further, how can educational institutions (universities and schools) and elementary school science teachers themselves support their personal and professional emotional growth?

  8. Conceptions of Teaching Science Held by Novice Teachers in an Alternative Certification Program

    Science.gov (United States)

    Koballa, Thomas R.; Glynn, Shawn M.; Upson, Leslie

    2005-01-01

    Case studies to investigate the conceptions of teaching science held by three novice teachers participating in an alternative secondary science teacher certification program were conducted, along with the relationships between their conceptions of science teaching and their science teaching practice. Data used to build the cases included the…

  9. Learning to teach science in urban schools

    Science.gov (United States)

    Tobin, Kenneth; Roth, Wolff-Michael; Zimmermann, Andrea

    2001-10-01

    Teaching in urban schools, with their problems of violence, lack of resources, and inadequate funding, is difficult. It is even more difficult to learn to teach in urban schools. Yet learning in those locations where one will subsequently be working has been shown to be the best preparation for teaching. In this article we propose coteaching as a viable model for teacher preparation and the professional development of urban science teachers. Coteaching - working at the elbow of someone else - allows new teachers to experience appropriate and timely action by providing them with shared experiences that become the topic of their professional conversations with other coteachers (including peers, the cooperating teacher, university supervisors, and high school students). This article also includes an ethnography describing the experiences of a new teacher who had been assigned to an urban high school as field experience, during which she enacted a curriculum that was culturally relevant to her African American students, acknowledged their minority status with respect to science, and enabled them to pursue the school district standards. Even though coteaching enables learning to teach and curricula reform, we raise doubts about whether our approaches to teacher education and enacting science curricula are hegemonic and oppressive to the students we seek to emancipate through education.

  10. Science student teacher's perceptions of good teaching | Setlalentoa ...

    African Journals Online (AJOL)

    Science student teacher's perceptions of good teaching. ... of 50 senior students enrolled in the Bachelor of Education (Further Education and Training ... and teaching strategies employed are perceived to influence what students perceived as ...

  11. Measuring primary teachers' attitudes toward teaching science: development of the dimensions of attitude toward science (DAS) instrument

    NARCIS (Netherlands)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Julie Henriëtte

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is

  12. Could hands-on activities and smartphone in science CLIL teaching foster motivation and positive attitudes in students?

    Science.gov (United States)

    Ercolino, Immacolata; Maraffi, Sabina; Sacerdoti, Francesco M.

    2016-04-01

    smartphone in science teaching in classroom and their use in an innovative AstroQuest project, which consists of a class interactive role-playing game to teach Astronomy, Physics and Chemistry. The AstroQuest Project enhances interdisciplinary between sciences and humanities and is multi-language in order to be used as CLIL compliance. References Immacolata Ercolino et al "Smart Astronomers: From the Classroom to the Sky" page 8-13. iStage2 Smartphones in Science teaching Science on Stage The European Platform for Science teachers -Germany 2014. http://www.science-onstage.de/download_unterrichtsmaterial/iStage_2_Smartphones_in_Science_Teaching.pdf Immacolata Ercolino et al "Fast and Curious" page 42-44. iStage2 Smartphones in Science teaching Science on Stage The European Platform for Science teachers -Germany 2014 http://www.science-onstage.de/download_unterrichtsmaterial/iStage_2_Smartphones_in_Science_Teaching.pdf ESA Educational: https://www.youtube.com/watch?v=z1tVrS0He0U http://m.esa.int/spaceinvideos/Videos/2014/07/Marble-ous_ellipses_ _classroom_demonstration_video_VP02 Maraffi S. et al. "GeoQuest, an Interactive Role Playing game", EGU General Assembly 2015, Poster Session EOS3 Sacerdoti F.M. et al. "Autonomous system to use web educational contents in a classroom", Patent Pending NA2013A000048 Maraffi S., Sacerdoti F.M. (2015) "EVO-RPGE an Interactive Role Playing engine", Granada (Spain), ICEILT International Congress on Education, Innovation and Learning Technologies 2015

  13. Variables that impact the implementation of project-based learning in high school science

    Science.gov (United States)

    Cunningham, Kellie

    Wagner and colleagues (2006) state the mediocrity of teaching and instructional leadership is the central problem that must be addressed if we are to improve student achievement. Educational reform efforts have been initiated to improve student performance and to hold teachers and school leaders accountable for student achievement (Wagner et al., 2006). Specifically, in the area of science, goals for improving student learning have led reformers to establish standards for what students should know and be able to do, as well as what instructional methods should be used. Key concepts and principles have been identified for student learning. Additionally, reformers recommend student-centered, inquiry-based practices that promote a deep understanding of how science is embedded in the everyday world. These new approaches to science education emphasize inquiry as an essential element for student learning (Schneider, Krajcik, Marx, & Soloway, 2002). Project-based learning (PBL) is an inquiry-based instructional approach that addresses these recommendations for science education reform. The objective of this research was to study the implementation of project-based learning (PBL) in an urban school undergoing reform efforts and identify the variables that positively or negatively impacted the PBL implementation process and its outcomes. This study responded to the need to change how science is taught by focusing on the implementation of project-based learning as an instructional approach to improve student achievement in science and identify the role of both school leaders and teachers in the creation of a school environment that supports project-based learning. A case study design using a mixed-method approach was used in this study. Data were collected through individual interviews with the school principal, science instructional coach, and PBL facilitator. A survey, classroom observations and interviews involving three high school science teachers teaching grades 9

  14. Teaching planetary sciences to elementary school teachers: Programs that work

    Science.gov (United States)

    Lebofsky, Larry A.; Lebofsky, Nancy R.

    1993-01-01

    Planetary sciences can be used to introduce students to the natural world which is a part of their lives. Even children in an urban environment are aware of such phenomena as day and night, shadows, and the seasons. It is a science that transcends cultures, has been prominent in the news in recent years, and can generate excitement in young minds as no other science can. Planetary sciences also provides a useful tool for understanding other sciences and mathematics, and for developing problem solving skills which are important in our technological world. However, only 15 percent of elementary school teachers feel very well qualified to teach earth/space science, while better than 80 percent feel well qualified to teach reading; many teachers avoid teaching science; very little time is actually spent teaching science in the elementary school: 19 minutes per day in K-3 and 38 minutes per day in 4-6. While very little science is taught in elementary and middle school, earth/space science is taught at the elementary level in less than half of the states. It was pointed out that science is not generally given high priority by either teachers or school districts, and is certainly not considered on a par with language arts and mathematics. Therefore, in order to teach science to our youth, we must empower our teachers, making them familiar and comfortable with existing materials. In our earlier workshops, several of our teachers taught in classrooms where the majority of the students were Hispanic (over 90 percent). However, few space sciences materials existed in Spanish. Therefore, most of our materials could not be used effectively in the classroom. To address this issue, NASA materials were translated into Spanish and a series of workshops for bilingual classroom teachers from Tucson and surrounding cities was conducted. Our space sciences workshops and our bilingual classroom workshops and how they address the needs of elementary school teachers in Arizona are

  15. Science Projects | Akron-Summit County Public Library

    Science.gov (United States)

    Hours & Locations Main Library Science & Technology Division Science Projects Science Projects Have fun with science experiments. Whether you need to do a project for a school science fair or you want to be a mad scientist, our Science Project Index and other resources can get you started. Find how

  16. An examination of the relationship among science teaching actions, beliefs, and knowledge of the nature of science

    Science.gov (United States)

    Chun, Sajin

    Scholars in science education advocate curriculum and instruction practices that reflect an understanding of the nature of science. This aspect of school science is an important component of scientific literacy, a primary goal of science education. Considering teaching as a thoughtful profession, there has been a growing research interest on the issue of the consistency between teacher beliefs and actions. Yet, the self-evident assumption that teachers' beliefs about the nature of science will impact on their classroom teaching actions has not been justified. The purpose of this study was to examine the relationship between science teaching actions and beliefs about the nature of science. Defining teacher beliefs as a broad construct, the researcher tried to examine not only teacher's cognitive understanding about the nature of science but also teachers' affect as well as actions with regard to the nature of science. Guiding research questions were as follows: (a) what are the teachers' beliefs about the nature of science; (b) how do the teachers, pedagogical actions reflect their beliefs about the nature of science; and (c) what are the other referent beliefs that mediate the teachers, pedagogical actions within a local school culture. The methodology of this study was an interpretive, qualitative approach that included multiple sources of data, interviews, classroom observations, and instructional materials. Six science teachers from a secondary school located in a rural area of the southeastern US were chosen by convenience. The cross-case study and the grounded theory study designs were adopted as the data analysis process. The constant comparative analysis method was used to generate the emerging themes for this study. This study revealed a gap between these teachers' personal beliefs of the nature of science and the concepts of the nature of science suggested by many researchers. These teachers' personal beliefs about the nature of science have been

  17. Undergraduates' Perceived Gains and Ideas about Teaching and Learning Science from Participating in Science Education Outreach Programs

    Science.gov (United States)

    Carpenter, Stacey L.

    2015-01-01

    This study examined what undergraduate students gain and the ideas about science teaching and learning they develop from participating in K-12 science education outreach programs. Eleven undergraduates from seven outreach programs were interviewed individually about their experiences with outreach and what they learned about science teaching and…

  18. Pre-Service Elementary Teachers’ Scientific Literacy and Self-Efficacy in Teaching Science

    Directory of Open Access Journals (Sweden)

    Adam Al Sultan

    2018-02-01

    Full Text Available Many educators and educational institutions worldwide have agreed that the main goal of science education is to produce a scientifically literate community. Science teachers are key to the achievement of scientific literacy at all levels of education because of the essential role they play in preparing scientifically literate individuals. Studies show that pre-service elementary teachers need to build more confidence in teaching science and scientific literacy during their teacher education programs in order for them to successfully teach science knowledge to their students. Therefore, the purpose of this study is threefold. First, pre-service elementary teachers' scientific literacy levels were examined. Second, pre-service teachers' self-efficacy beliefs were measured by distinguishing between their personal and subject-specific self-efficacy beliefs. Third, the extent to which pre-service elementary teachers' scientific literacy levels and self-efficacy levels are related was investigated. Participants were 49 pre-service elementary teachers registered in two science methods courses (introductory and advanced at a mid-sized university in the United States. Quantitative data were collected using the Test of Basic Scientific Literacy, the Science Teaching Efficacy Belief Instrument-Preservice, and Beliefs about Teaching. Results showed that participants had a satisfactory level of scientific literacy. However, pre-service teachers had borderline scores on the Nature of Science scale. Regarding self-efficacy, findings showed that both groups had the highest self-efficacy in teaching biology and the lowest in teaching physics. Participants in the advanced science methods course exhibited a moderate preexisting positive relationship between scientific literacy and subject-specific self-efficacy in teaching science.

  19. Exploring Science Teaching Efficacy of CASE Curriculum Teachers: A Post-Then-Pre Assessment

    Science.gov (United States)

    Ulmer, Jonathan D.; Velez, Jonathan J.; Lambert, Misty D.; Thompson, Greg W.; Burris, Scott; Witt, Phillip A.

    2013-01-01

    This descriptive-correlational study sought to investigate teachers' levels of Personal Science Teaching Efficacy (PSTE) and Science Teaching Outcome Expectancy (STOE) using the Science Teaching Efficacy Beliefs Instrument (STEBI). The population included all teachers completing a CASE Institute training session during summer 2010. Assessments…

  20. Teaching children the structure of science

    Science.gov (United States)

    Börner, Katy; Palmer, Fileve; Davis, Julie M.; Hardy, Elisha; Uzzo, Stephen M.; Hook, Bryan J.

    2009-01-01

    Maps of the world are common in classroom settings. They are used to teach the juxtaposition of natural and political functions, mineral resources, political, cultural and geographical boundaries; occurrences of processes such as tectonic drift; spreading of epidemics; and weather forecasts, among others. Recent work in scientometrics aims to create a map of science encompassing our collective scholarly knowledge. Maps of science can be used to see disciplinary boundaries; the origin of ideas, expertise, techniques, or tools; the birth, evolution, merging, splitting, and death of scientific disciplines; the spreading of ideas and technology; emerging research frontiers and bursts of activity; etc. Just like the first maps of our planet, the first maps of science are neither perfect nor correct. Today's science maps are predominantly generated based on English scholarly data: Techniques and procedures to achieve local and global accuracy of these maps are still being refined, and a visual language to communicate something as abstract and complex as science is still being developed. Yet, the maps are successfully used by institutions or individuals who can afford them to guide science policy decision making, economic decision making, or as visual interfaces to digital libraries. This paper presents the process and results of creating hands-on science maps for kids that teaches children ages 4-14 about the structure of scientific disciplines. The maps were tested in both formal and informal science education environments. The results show that children can easily transfer their (world) map and concept map reading skills to utilize maps of science in interesting ways.

  1. Toward using games to teach fundamental computer science concepts

    Science.gov (United States)

    Edgington, Jeffrey Michael

    Video and computer games have become an important area of study in the field of education. Games have been designed to teach mathematics, physics, raise social awareness, teach history and geography, and train soldiers in the military. Recent work has created computer games for teaching computer programming and understanding basic algorithms. We present an investigation where computer games are used to teach two fundamental computer science concepts: boolean expressions and recursion. The games are intended to teach the concepts and not how to implement them in a programming language. For this investigation, two computer games were created. One is designed to teach basic boolean expressions and operators and the other to teach fundamental concepts of recursion. We describe the design and implementation of both games. We evaluate the effectiveness of these games using before and after surveys. The surveys were designed to ascertain basic understanding, attitudes and beliefs regarding the concepts. The boolean game was evaluated with local high school students and students in a college level introductory computer science course. The recursion game was evaluated with students in a college level introductory computer science course. We present the analysis of the collected survey information for both games. This analysis shows a significant positive change in student attitude towards recursion and modest gains in student learning outcomes for both topics.

  2. Integrated ICT System for Teaching Physical Sciences in a Robotic Laboratory

    Directory of Open Access Journals (Sweden)

    Spyros Kopsidas

    2009-11-01

    Full Text Available The Information and Communication Technologies provide economically feasible and effective means to assist individuals with kinetic disabilities in numerous activities concerning educational purposes. As the technology is increasingly used in everyday environments, an early response of the existing methods to teach the Physical Sciences to individuals with kinetic disabilities is our innovative system. The work presented in this article is part of the “Smart and Adaptable Information System for Supporting Physics Experiments in a Robotic Laboratory” (SAIS-PEaRL research project.

  3. Saudi Elementary School Science Teachers' Beliefs: Teaching Science in the New Millennium

    Science.gov (United States)

    Alghamdi, Amani K. Hamdan; Al-Salouli, Misfer Saud

    2013-01-01

    This study explored Saudi elementary school science teachers' beliefs about the process of teaching and learning science. This involved the exploration of their views about the new Saudi science curriculum, which emphasizes critical thinking and problem solving. Comprehensive interviews were held in 8 schools with 4 male and 6 female--2 of whom…

  4. Measuring Primary Teachers' Attitudes toward Teaching Science: Development of the Dimensions of Attitude toward Science (DAS) Instrument

    Science.gov (United States)

    van Aalderen-Smeets, Sandra; Walma van der Molen, Juliette

    2013-01-01

    In this article, we present a valid and reliable instrument which measures the attitude of in-service and pre-service primary teachers toward teaching science, called the Dimensions of Attitude Toward Science (DAS) Instrument. Attention to the attitudes of primary teachers toward teaching science is of fundamental importance to the…

  5. Science communication in European projects

    International Nuclear Information System (INIS)

    Vachev, Boyko; Stamenov, Jordan

    2009-01-01

    Science communication in several resent successful projects of Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences (INRNE, BAS) from the 5th and 6th Framework Programmes of EC is presented: the joint INRNE, BAS project with JRC of EC (FP5 NUSES) and two subsequent Centre of Excellence projects (FP5 HIMONTONET and FP6 BEOBAL) are considered. Innovations and traditional forms development and application are discussed. An overview of presentation and communication of INRNE, BAS contribution to Bulgarian European Project is made. Good practices have been derived. Keywords: Science communication, European projects, Innovations

  6. (The Ethics of) Teaching Science and Ethics: A Collaborative Proposal.

    Science.gov (United States)

    Kabasenche, William P

    2014-12-01

    I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains-the relevant science(s) and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.

  7. (The Ethics of Teaching Science and Ethics: A Collaborative Proposal

    Directory of Open Access Journals (Sweden)

    William P. Kabasenche

    2014-10-01

    Full Text Available I offer a normative argument for a collaborative approach to teaching ethical issues in the sciences. Teaching science ethics requires expertise in at least two knowledge domains—the relevant science(s and philosophical ethics. Accomplishing the aims of ethics education, while ensuring that science ethics discussions remain grounded in the best empirical science, can generally best be done through collaboration between a scientist and an ethicist. Ethics as a discipline is in danger of being misrepresented or distorted if presented by someone who lacks appropriate disciplinary training and experience. While there are exceptions, I take philosophy to be the most appropriate disciplinary domain in which to gain training in ethics teaching. Science students, who must be prepared to engage with many science ethics issues, are poorly served if their education includes a misrepresentation of ethics or specific issues. Students are less well prepared to engage specific issues in science ethics if they lack an appreciation of the resources the discipline of ethics provides. My collaborative proposal looks at a variety of ways scientists and ethicists might collaborate in the classroom to foster good science ethics education.

  8. The Science of Human Interaction and Teaching

    Science.gov (United States)

    Yano, Kazuo

    2013-01-01

    There is a missing link between our understanding of teaching as high-level social phenomenon and teaching as a physiological phenomenon of brain activity. We suggest that the science of human interaction is the missing link. Using over one-million days of human-behavior data, we have discovered that "collective activenes" (CA), which indicates…

  9. Multi-Year Professional Development Grounded in Educative Curriculum Focused on Integrating Technology with Reformed Science Teaching Principles

    Science.gov (United States)

    Longhurst, Max L.; Coster, Daniel C.; Wolf, Paul G.; Duffy, Aaron M.; Lee, Hyunju; Campbell, Todd

    2016-01-01

    Visions of science teaching and learning in the newest U.S. standards documents are dramatically different than those found in most classrooms. This research addresses these differences through closely examining one professional development (PD) project that connects teacher learning and teacher practice with student learning/achievement. This…

  10. Teaching Science through the Science Technology and Society ...

    African Journals Online (AJOL)

    ... the teaching methods course of all teacher training Programmes and that the science syllabus be reviewed regularly so that it responds to current needs. Relevant authorities need inject more resources towards in-service programmes and come up with legislation on in-service programmes e.g. promotion or salary hikes ...

  11. Action-research and the elaboration of teaching knowledge in sciences

    Directory of Open Access Journals (Sweden)

    Maria Nizete de Azevedo

    Full Text Available In this paper we analyze the way in which a training process, in which the methodological option approaches an action-research in teacher education, contributes with the elaboration of teaching knowledge in sciences by a group of teachers of the initial school years. In colaborative situations of teaching knowledge, those teachers elect education problems, for which they seek for solutions through planned, developed and reflected actions. We explored data obtained from a wide research, realized in a public school which took as basis this formative process. The results analysed under a qualitative approach show that the action-research contributes with the elaboration of the teaching knowledge, creating situations of learning necessary to the organization and development of education. We identified important knowledge related to indicating elements of learning about teaching, such as self-organization and formation, the disposition to study and to research, a way to teach sciences through investigative activities, the construction of cooperative practice at school, the articulation of science teaching with the alphabetization process in the native language, the consideration of the school's social and cultural context in its teaching plans, among others. Those results take us to reinforce the potential of action-research on teacher’s formation and on the improvement of the practiced teaching.

  12. Linking Teaching in Mathematics and the Subjects of Natural Science

    DEFF Research Database (Denmark)

    Michelsen, Claus

    2017-01-01

    teaching programs. This is partly due to the lack of a framework for integrating productive ideas across the disciplines. This paper focus on how to grasp the challenges of an interdisciplinary approach to teaching in mathematics and the subjects of natural science. Based on contemporary mathematics...... and science education we design a didactical framework for interdisciplinary teaching centered on modeling activities across mathematics and the disciplines of natural science. To exemplify the potential of the framework we present a case study of an intensive in-service teacher-training program...... for mathematics and biology teachers. The teachers were presented to the didactical framework and in pairs of two, one mathematics teacher and one biology teacher; they designed and implemented interdisciplinary mathematicsbiology teaching sequences. The teachers’ reports on their development and implementation...

  13. SCIENCE TEACHERS’ INDIVIDUAL AND SOCIAL LEARNING RELATED TO IBSE IN A LARGE-SCALE, LONG- TERM, COLLABORATIVE TPD PROJECT

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund; Sillasen, Martin Krabbe

    2014-01-01

    It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project is designed using widely agreed criteria for effective TPD: content focus, active learning, coherence, duration, collaborative activities and collec......It is acknowledged internationally that teachers’ Professional Development (TPD) is crucial for reforming science teaching. The Danish QUEST project is designed using widely agreed criteria for effective TPD: content focus, active learning, coherence, duration, collaborative activities...... and collective participation, and is organised on principles of situated learning in Professional Learning Communities (PLCs). QUEST-activities follow a rhythm of full day seminars followed by a period of collaborative inquiries locally. A major theme in the first year has been Inquiry Based Science Education......-on experiences and fewer including students’ minds-on. Teachers’ reflections indicate that many are positive towards QUEST seminars based on trying out activities directly applicable in the classroom. Case studies indicate a potentially more sustainable development, where the teachers collaboratively re...

  14. Aeronautics and Aviation Science: Careers and Opportunities Project

    Science.gov (United States)

    Texter, P. Cardie

    1998-01-01

    standards for quality of teaching, and an educational agenda that promotes high standards for all students, Aeronautics and Aviation Science: Careers and Opportunities had as its aim to deliver products to schools, both in and outside the project sites, which attempt to incorporate multi-disciplined approaches in the presentation of a curriculum which would be appropriate in any classroom, while also aiming to appeal to young women and minorities. The curriculum was developed to provide students with fundamentals of aeronautics and aviation science. The curriculum also encouraged involving students and teachers in research projects, and further information gathering via electronic bulletin boards and internet capabilities. Though not entirely prescriptive, the curriculum was designed to guide teachers through recommended activities to supplement MCET's live telecast video presentations. Classroom teachers were encouraged to invite local pilots, meteorologists, and others from the field of aviation and aeronautics, particularly women and minorities to visit schools and to field questions from the students.

  15. A case of learning to teach elementary science: Investigating beliefs, experiences, and tensions

    Science.gov (United States)

    Bryan, Lynn Ann

    This study examines how preservice elementary teacher beliefs and experiences within the context of reflective science teacher education influence the development of professional knowledge. From a cognitive constructivist theoretical perspective, I conducted a case analysis to investigate the beliefs about science teaching and learning held by a preservice teacher (Barbara), identify the tensions she encountered in learning to teach elementary science, understand the frames from which she identified problems of practice, and discern how her experiences influenced the process of reflecting on her own science teaching. From an analysis of interviews, observation, and written documents, I constructed a profile of Barbara's beliefs that consisted of three foundational and three dualistic beliefs about science teaching and learning. Her foundational beliefs concerned: (a) the value of science and science teaching, (b) the nature of scientific concepts and goals of science instruction, and (c) control in the science classroom. Barbara held dualistic beliefs about: (a) how children learn science, (b) the science students' role, and (c) the science teacher's role. The dualistic beliefs formed two contradictory nests of beliefs. One nest, grounded in life-long science learner experiences, reflected a didactic teaching orientation and predominantly guided her practice. The second nest, not well-grounded in experience, embraced a hands-on approach and predominantly guided her vision of practice. Barbara encountered tensions in thinking about science teaching and learning as a result of inconsistencies between her vision of science teaching and her actual practice. Confronting these tensions prompted Barbara to rethink the connections between her classroom actions and students' learning, create new perspectives for viewing her practice, and consider alternative practices more resonant with her visionary beliefs. However, the self-reinforcing belief system created by her

  16. Case study of science teaching in an elementary school: Characteristics of an exemplary science teacher

    Science.gov (United States)

    Kao, Huey-Lien

    Improving the quality of science teaching is one of the greatest concerns in recent science education reform efforts. Many science educators suggest that case studies of exemplary science teachers may provide guidance for these reform efforts. For this reason, the characteristics of exemplary science teaching practices have been identified in recent years. However, the literature lacks research exploring exemplary teacher beliefs about the nature of science and science pedagogy, the relationships between their beliefs and practices, or how outstanding teachers overcome difficulties in order to facilitate their students' science learning. In this study, Sam-Yu, an identified exemplary science teacher who teaches in an elementary school in Pintung, Taiwan, was the subject. An interpretative research design (Erickson, 1986) based on principles of naturalistic inquiry (Lincoln & Guba, 1985) was used. Both qualitative and quantitative methods were employed in this case study. The qualitative method involved conducting interviews with the teacher and students, observing classroom activities and analyzing the structure of the learning materials. The quantitative methods involved using the Learning Climate Inventory (LCI) (Lin, 1997) instrument to assess the learning environment of the exemplary science classroom. This study found that Sam-Yu had a blend of views on the nature of science and a varied knowledge about science pedagogy. Personal preferences, past experiences, and the national science curriculum all played important roles in the development and refinement of Sam-Yu's beliefs about science and pedagogy. Regarding his teaching practices, Sam-Yu provided the best learning experiences, as evidenced in both classroom observations and the survey results, for his students by using a variety of strategies. In addition, his classroom behaviors were highly associated with his beliefs about science and pedagogy. However, due to school-based and socio-cultural constraints

  17. Teaching Theory of Science and Research Methodology to Nursing Students: A Practice-Developing Approach

    DEFF Research Database (Denmark)

    Sievert, Anne; Chaiklin, Seth

    , in a principled way, to select subject-matter content for a course for nursing students on theory of science and research methodology. At the same time, the practical organisation of the project was motivated by a practice-developing research perspective. The purpose of the presentation is to illustrate how...... the idea of practice-developing research was realised in this concrete project. A short introduction is first given to explain the practical situation that motivated the need and interest to select subject matter for teaching. Then, the main part of the presentation explains the considerations involved...... developed. On the basis of this presentation, it should be possible to get a concrete image of one form for practice-developing research. The presentation concludes with a discussion that problematises the sense in which general knowledge about development of nursing school teaching practice has been...

  18. The National Geographic Society's Teaching Geography Project.

    Science.gov (United States)

    Bockenhauer, Mark H.

    1993-01-01

    Contends that the National Geographic Society's Teaching Geography Project is an inservice teacher education success story. Describes the origins, objectives, and development of the project. Summarizes the impact of the project and contends that its success is the result of the workshop format and guided practice in instructional strategies. (CFR)

  19. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    Science.gov (United States)

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  20. Resilience of Science Teaching Philosophies and Practice in Early Career Primary Teaching Graduates

    Science.gov (United States)

    Bartholomew, Rex; Anderson, Dayle; Moeed, Azra

    2012-01-01

    There has been recent concern over the variable quality of science teaching in New Zealand primary schools. One reason suggested has been the relatively low levels of science education components in initial teacher education (ITE) programmes. This paper follows a cohort of recent teacher graduates from a science education course in their ITE…

  1. `You Have to Give Them Some Science Facts': Primary Student Teachers' Early Negotiations of Teacher Identities in the Intersections of Discourses About Science Teaching and About Primary Teaching

    Science.gov (United States)

    Danielsson, Anna T.; Warwick, Paul

    2014-04-01

    In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on a whole range of interrelated sociocultural factors. This paper aims to explore how intersections between different Discourses about primary teaching and about science teaching are evidenced in primary school student teachers' talk about becoming teachers. The study is founded in a conceptualisation of learning as a process of social participation. The conceptual framework is crafted around two key concepts: Discourse (Gee 2005) and identity (Paechter, Women's Studies International Forum, 26(1):69-77, 2007). Empirically, the paper utilises semi-structured interviews with 11 primary student teachers enrolled in a 1-year Postgraduate Certificate of Education course. The analysis draws on five previously identified teacher Discourses: `Teaching science through inquiry', `Traditional science teacher', `Traditional primary teacher', `Teacher as classroom authority', and `Primary teacher as a role model' (Danielsson and Warwick, International Journal of Science Education, 2013). It explores how the student teachers, at an early stage in their course, are starting to intersect these Discourses to negotiate their emerging identities as primary science teachers.

  2. The investigation of science teachers’ experience in integrating digital technology into science teaching

    Science.gov (United States)

    Agustin, R. R.; Liliasari; Sinaga, P.; Rochintaniawati, D.

    2018-05-01

    The use of technology into science learning encounters problems. One of the problem is teachers’ less technological pedagogical and content knowledge (TPACK) on the implementation of technology itself. The purpose of this study was to investigate science teachers’ experience in using digital technology into science classroom. Through this study science teachers’ technological knowledge (TK) and technological content knowledge (TCK) can be unpacked. Descriptive method was used to depict science teachers’ TK and TCK through questionnaire that consisted of 20 questions. Subjects of this study were 25 science teachers in Bandung, Indonesia. The study was conducted in the context of teacher professional training. Result shows that science teachers still have less TK, yet they have high TCK. The teachers consider characteristics of concepts as main aspect for implementing technology into science teaching. This finding describes teachers’ high technological content knowledge. Meanwhile, science teachers’ technological knowledge was found to be still low since only few of them who can exemplify digital technology that can be implemented into several science concept. Therefore, training about technology implementation into science teaching and learning is necessary as a means to improve teachers’ technological knowledge.

  3. "Look at what I am saying": Multimodal science teaching

    Science.gov (United States)

    Pozzer-Ardenghi, Lilian

    Language constitutes the dominant representational mode in science teaching, and lectures are still the most prevalent of the teaching methods in school science. In this dissertation, I investigate lectures from a multimodal and communicative perspective to better understand how teaching as a cultural-historical and social activity unfolds; that is, I am concerned with teaching as a communicative event, where a variety of signs (or semiotic resources), expressed in diverse modalities (or modes of communication) are produced and reproduced while the teacher articulates very specific conceptual meanings for the students. Within a trans-disciplinary approach that merges theoretical and methodical frameworks of social and cultural studies of human activity and interaction, communicative and gestures studies, linguistics, semiotics, pragmatics, and studies on teaching and learning science, I investigate teaching as a communicative, dynamic, multimodal, and social activity. My research questions include: What are the resources produced and reproduced in the classroom when the teacher is lecturing? How do these resources interact with each other? What meanings do they carry and how are these associated to achieve the coherence necessary to accomplish the communication of complex and abstract scientific concepts, not only within one lecture, but also within an entire unit of the curricula encompassing various lectures? My results show that, when lecturing, the communication of scientific concepts occur along trajectories driven by the dialectical relation among the various semiotic resources a lecturer makes available that together constitute a unit---the idea. Speech, gestures, and other nonverbal resources are but one-sided expressions of a higher order communicative meaning unit. The iterable nature of the signs produced and reproduced during science lectures permits, supports, and encourages the repetition, variation, and translation of ideas, themes, and languages and

  4. Kuhn in the Classroom, Lakatos in the Lab: Science Educators Confront the Nature-of-Science Debate.

    Science.gov (United States)

    Turner, Steven; Sullenger, Karen

    1999-01-01

    Examines how science educators and educational researchers have drawn on the fragmented teachings of science studies about the nature of science, and how they have used those teachings as a resource in their own projects. Analyzes some of the deep assumptions about the relationship between science, school science, and children's learning.…

  5. Pre- and In-Service Preschool Teachers' Science Teaching Efficacy Beliefs

    Science.gov (United States)

    Aslan, Durmus; Tas, Isil; Ogul, Irem Gürgah

    2016-01-01

    In this study, pre- and in-service preschool teachers' science teaching efficacy beliefs were investigated. The sample included 100 pre-service (50 first grades and 50 last grades) and 73 in-service preschool teachers. As a data collection tool "Science Teaching Efficacy Belief Instrument" was used. Findings indicated that in-service…

  6. Creative Science Teaching Labs: New Dimensions in CPD

    Science.gov (United States)

    Chappell, Kerry; Craft, Anna

    2009-01-01

    This paper offers analysis and evaluation of "Creative Science Teaching (CST) Labs III", a unique and immersive approach to science teachers' continuing professional development (CPD) designed and run by a London-based organisation, Performing Arts Labs (PAL), involving specialists from the arts, science and technology as integral. Articulating…

  7. Dispositions Supporting Elementary Interns in the Teaching of Reform-Based Science Materials

    Science.gov (United States)

    Eick, Charles J.; Stewart, Bethany

    2010-01-01

    Dispositions supporting the teaching of science as structured inquiry by four elementary candidates are presented. Candidates were studied during student teaching based on their positive attitudes toward teaching science with reform-based materials in their methods course. Personal learning histories informed their attitudes, values, and beliefs…

  8. Teaching for competence in science education in Denmark

    DEFF Research Database (Denmark)

    Chaiklin, Seth

    2016-01-01

    teaching situations. Nonetheless, the idea of competence is viewed as an important and valuable way for engaging with the more general goals for science education in Denmark (and elsewhere). In service of that interest, we introduce the ideas of germcell and theoretical thinking from the developmental...... teaching tradition as a way to operationalise a meaning of competence that can be realised in concrete teaching situations....

  9. Teaching Science from Cultural Points of Intersection

    Science.gov (United States)

    Grimberg, Bruna Irene; Gummer, Edith

    2013-01-01

    This study focuses on a professional development program for science teachers near or on American Indian reservations in Montana. This program was framed by culturally relevant pedagogy premises and was characterized by instructional strategies and content foci resulting from the intersection between three cultures: tribal, science teaching, and…

  10. Field Studies in Science Teacher Preparation Programs: Examples of Research-Oriented Earth and Environmental Science Field Projects for Pre-service and In-service Teachers

    Science.gov (United States)

    O'Neal, M. L.

    2005-12-01

    Science teaching reforms of the past 10 to 20 years have focused on a pedagogical shift from verification-style laboratory exercises, toward hands-on and inquiry-based constructivist teaching methods. Such methods, however, require teachers to be proficient in more than just basic content and teaching strategies. To be effective teachers, these professionals must also be skilled in the design and implementation of research-style investigations. At Loyola College in Maryland, topics in the earth and environmental sciences are used as the basis for field research projects that teach our students science content, along with how to design age-appropriate investigative activities and how to implement them in a stimulating, inquiry-based learning environment. Presented here are examples of three projects, demonstrating how these themes are woven throughout our pre- and in-service teacher preparation programs, at both undergraduate and graduate levels. 1. Watershed Studies - In our undergraduate, pre-service, elementary education teacher preparation program, students design and implement a water quality study in a local watershed. In the classroom, students use topographic maps and aerial photographs to delineate the watersheds' boundaries, to identify current land use patterns, and to select appropriate locations on the trunk stream for testing. Water testing at these sites is conducted during field trips, with data analysis and interpretation performed on-site. On-site work allows students to make connections between stream water quality and adjacent land use practices. Students then relate the content and research results to science teaching standards, in order to develop a unit-plan for use in their future classrooms. 2. Land Use Assessment - In our graduate, in-service, elementary and middle school science program, a local stream valley is used as the basis for an analysis of potential land use changes. Students first construct a topographic base map of the area, and

  11. Towards a Competency Model for Teaching Computer Science

    Science.gov (United States)

    Bender, Elena; Hubwieser, Peter; Schaper, Niclas; Margaritis, Melanie; Berges, Marc; Ohrndorf, Laura; Magenheim, Johannes; Schubert, Sigrid

    2015-01-01

    To address the special challenges of teaching computer science, adequate development of teachers' competencies during their education is extremely important. In particular, pedagogical content knowledge and teachers' beliefs and motivational orientations play an important role in effective teaching. This research field has been sparsely…

  12. Emphasizing Morals, Values, Ethics, and Character Education in Science Education and Science Teaching

    Science.gov (United States)

    Chowdhury, Mohammad

    2016-01-01

    This article presents the rationale and arguments for the presence of morals, values, ethics and character education in science curriculum and science teaching. The author examines how rapid science and technological advancements and globalization are contributing to the complexities of social life and underpinning the importance of morals, values…

  13. The relationship between school environment, preservice science teachers' science teaching self-efficacy, and their use of instructional strategies at teachers' colleges in Saudi Arabia

    Science.gov (United States)

    Alshalaan, Nasser A.

    Studies indicate that many teachers have negative beliefs about science, which translates into low teacher efficacy, resulting in avoidance of science teaching or in ineffective science teaching behaviors. Highly efficacious teachers have been found to be more likely to use inquiry and student-centered teaching strategies, while teachers with a low sense of science-teaching efficacy are more likely to use teacher-directed strategies, such as didactic lectures and reading from the textbook (Czemiak, 1990). The purpose of this study was to investigate preservice science teachers' science-teaching self-efficacy changes and their correlation to teaching environment factors during the student teaching semester. Moreover, it explains how teaching environment factors and preservice teachers' science-teaching self-efficacy beliefs may relate to their use of teaching strategies in the science classroom during their student teacher training at teachers' colleges in Saudi Arabia. The population of this study is consisted of 184 middle and elementary preservice science teachers who were doing their student teaching at nine teachers' colleges (i.e., teachers' colleges of Riyadh, Dammam, Alrras, Almadinah, Alihsa, Jeddah, Makah, Altaief, and Abha) in Saudi Arabia during the spring semester of 2005. Three instruments were used to collect data for this study: (1) to measure science teaching self-efficacy, the researcher adapted the Science Teaching Efficacy Belief Instrument form B designed specifically for preservice teachers (STEBI-B); (2) to measure the school environment, the researcher adapted the Organizational Health Inventory (OHI), developed by Hoy, Tarter & Kottkamp (1991); and (3) to measure the type and frequency of instructional strategies that preservice science teachers use in the classroom, the researcher adapted the teaching practice subscale from The Local Systemic Change through Teacher Enhancement Science K-8 Teacher Questionnaire (Horizon Research, Inc., 2000

  14. "I Didn't Always Perceive Myself as a "Science Person"": Examining Efficacy for Primary Science Teaching

    Science.gov (United States)

    Mansfield, Caroline F.; Woods-McConney, Amanda

    2012-01-01

    Teacher efficacy has become an important field of research especially in subjects teachers may find challenging, such as science. This study investigates the sources of teachers' efficacy for teaching science in primary schools in the context of authentic teaching situations with a view to better understanding sources of teachers' efficacy…

  15. A Graduate Teaching Assistant Workshop in a Faculty of Science

    Science.gov (United States)

    Harris, Dik; McEwen, Laura April

    2009-01-01

    This article describes the design and implementation of a workshop on teaching and learning for graduate teaching assistants (GTAs) in a Faculty of Science at a major Canadian research-intensive university. The approach borrows heavily from an existing successful workshop for faculty but is tailored specifically to the needs of GTAs in science in…

  16. Learning to teach science for social justice in urban schools

    Science.gov (United States)

    Vora, Purvi

    This study looks at how beginner teachers learn to teach science for social justice in urban schools. The research questions are: (1) what views do beginner teachers hold about teaching science for social justice in urban schools? (2) How do beginner teachers' views about teaching science for social justice develop as part of their learning? In looking at teacher learning, I take a situative perspective that defines learning as increased participation in a community of practice. I use the case study methodology with five teacher participants as the individual units of analysis. In measuring participation, I draw from mathematics education literature that offers three domains of professional practice: Content, pedagogy and professional identity. In addition, I focus on agency as an important component of increased participation from a social justice perspective. My findings reveal two main tensions that arose as teachers considered what it meant to teach science from a social justice perspective: (1) Culturally responsive teaching vs. "real" science and (2) Teaching science as a political act. In negotiating these tensions, teachers drew on a variety of pedagogical and conceptual tools offered in USE that focused on issues of equity, access, place-based pedagogy, student agency, ownership and culture as a toolkit. Further, in looking at how the five participants negotiated these tensions in practice, I describe four variables that either afforded or constrained teacher agency and consequently the development of their own identity and role as socially just educators. These four variables are: (1) Accessing and activating social, human and cultural capital, (2) reconceptualizing culturally responsive pedagogical tools, (3) views of urban youth and (4) context of participation. This study has implications for understanding the dialectical relationship between agency and social justice identity for beginner teachers who are learning how to teach for social justice. Also

  17. "You Have to Give Them Some Science Facts": Primary Student Teachers' Early Negotiations of Teacher Identities in the Intersections of Discourses about Science Teaching and about Primary Teaching

    Science.gov (United States)

    Danielsson, Anna T.; Warwick, Paul

    2014-01-01

    In the broadest sense, the goal for primary science teacher education could be described as preparing these teachers to teach for scientific literacy. Our starting point is that making such science teaching accessible and desirable for future primary science teachers is dependent not only on their science knowledge and self-confidence, but also on…

  18. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants.

    Science.gov (United States)

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor's belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K-12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. © 2015 S. E. DeChenne et al. CBE—Life Sciences Education © 2015 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  19. Elucidating elementary science teachers' conceptions of the nature of science: A view to beliefs about both science and teaching

    Science.gov (United States)

    Keske, Kristina Palmer

    The purpose of this interpretive case study was to elucidate the conceptions of the nature of science held by seven elementary science teachers. The constructivist paradigm provided the philosophical and methodological foundation for the study. Interviews were employed to collect data from the participants about their formal and informal experiences with science. In addition, the participants contributed their perspectives on four aspects of the nature of science: what is science; who is a scientist; what are the methods of science; and how is scientific knowledge constructed. Data analysis not only revealed these teachers' views of science, but also provided insights into how they viewed science teaching. Four themes emerged from the data. The first theme developed around the participants' portrayals of the content of science, with participant views falling on a continuum of limited to universal application of science as procedure. The second theme dealt with the participants' views of the absolute nature of scientific knowledge. Participants' perceptions of the tentative nature of science teaching provided the basis for the third theme concerning the need for absolutes in practice. The fourth theme drew parallels between participants' views of science and science teaching, with two participants demonstrating a consistency in beliefs about knowledge construction across contexts. This study revealed both personal and contextual factors which impacted how the participants saw science and science teaching. Many of the participants' memories of formal science revolved around the memorization of content and were viewed negatively. All the participants had limited formal training in science. Of the seven participants, only two had chosen to be science teachers at the beginning of their careers. The participants' limited formal experiences with science provided little time for exploration into historical, philosophical, and sociological studies of science, a necessary

  20. What Science Teaching Looks Like: An International Perspective

    Science.gov (United States)

    Roth, Kathleen; Garnier, Helen

    2007-01-01

    Using the Trends in International Mathematics and Science (TIMSS) video study, the authors compare science teaching practices in the United States and in four other countries that outperformed the United States: Australia, the Czech Republic, Japan, and the Netherlands. Their observations of videotapes from 100 8th-grade science lessons in each…

  1. Perceptions and Practices of Culturally Relevant Science Teaching in American Indian Classrooms

    Science.gov (United States)

    Nam, Younkyeong; Roehrig, Gillian; Kern, Anne; Reynolds, Bree

    2013-01-01

    This study explores the perceptions of culturally relevant science teaching of 35 teachers of American Indian students. These teachers participated in professional development designed to help them better understand climate change science content and teaching climate change using both Western science and traditional and cultural knowledge. Teacher…

  2. Analyzing the Watershed Dynamics project as an example of successful science and education partnerships

    Science.gov (United States)

    Buzby, C. K.; Jona, K.

    2009-12-01

    The Watershed Dynamics project is a partnership between Northwestern University, the Consortium of Universities for the Advancement of Hydrologic Science (CUAHSI), and the GLOBE Program (Global Learning and Observations to Benefit the Environment). The goal of the project is to develop inquiry-based educational materials that use authentic scientific data and analysis techniques to teach students about the watershed. The relationship between Northwestern, CUAHSI, and GLOBE allows each partner to contribute to the development of the project in the area of their expertise. Science researchers from CUAHSI share science content knowledge and data access through the development of their Hydrologic Information System (HIS). Curriculum developers at Northwestern write inquiry-based curriculum using GIS technology to access and analyze live data. The GLOBE Program is a worldwide hands-on, primary and secondary school-based science education program that provides teacher training opportunities to a network of teachers around the world. This partnership allows each partner to bring their area of expertise to the project and make the best use of one another's resources. The Watershed Dynamics project can serve as a model for future partnerships between the science and education communities. The Office of Science, Technology, Engineering, and Math Education Partnerships (OSEP) at Northwestern is a service organization that supports Northwestern researchers in developing proposals and implementing research projects that incorporate K-12 educational components, particularly in the fields of science, technology, engineering and mathematics (STEM). OSEP assists faculty with the development of sound plans for education and outreach that reflect current research on learning and educational reform and provides expertise in STEM education materials development, learning technologies, and professional development for K-12 teachers and facilitators in informal education institutions

  3. Recent Research in Science Teaching and Learning

    Science.gov (United States)

    Allen, Deborah

    2012-01-01

    This article features recent research in science teaching and learning. It presents three current articles of interest in life sciences education, as well as more general and noteworthy publications in education research. URLs are provided for the abstracts or full text of articles. For articles listed as "Abstract available," full text may be…

  4. Project-oriented teaching model about specialized courses in the information age

    Science.gov (United States)

    Chen, Xiaodong; Wang, Jinjiang; Tian, Qingguo; Wang, Yi; Cai, Huaiyu

    2017-08-01

    Specialized courses play a significant role in the usage of basic knowledge in the practical application for engineering college students. The engineering data available has sharply increased since the beginning of the information age in the 20th century, providing much more approaches to study and practice. Therefore, how to guide students to make full use of resources for active engineering practice learning has become one of the key problems for specialized courses. This paper took the digital image processing course for opto-electronic information science and technology major as an example, discussed the teaching model of specialized course in the information age, put forward the "engineering resource oriented model", and fostered the ability of engineering students to use the basic knowledge to innovate and deal with specific project objectives. The fusion of engineering examples into practical training and teaching encourages students to practice independent engineering thinking.

  5. "Teaching Physics as one of the humanities": The history of (harvard) project Physics, 1961-1970

    Science.gov (United States)

    Meshoulam, David

    In the United States after World War II, science had come to occupy a central place in the minds of policy makers, scientists, and the public. Negotiating different views between these groups proved a difficult task and spilled into debates over the role and scope of science education. To examine this process, this dissertation traces the history of Harvard Project Physics (HPP), a high-school physics curriculum from the 1960s that incorporated a humanistic and historical approach to teaching science. The narrative begins with the rise of General Education in the 1940s. Under the leadership of Harvard president James Conant, faculty at Harvard developed several Natural Science courses that connected science to history as a way to teach students about science and its relationship to culture. By the late 1950s this historical approach faced resistance from scientists who viewed it as misrepresenting their disciplines and called for students to learn specialized subject matter. With the support of the National Science Foundation (NSF), in the early 1960s scientists' vision of science education emerged in high-school classrooms across the country. By the mid 1960s, with the passage of the Civil Rights Act, the Elementary and Secondary Education Act, and the Daddario Amendment to the NSF, the political and education landscape began to change. These laws transformed the goals of two of the NSF and the Office of Education (USOE). These organizations faced demands to work together to develop projects that would speak to domestic concerns over equity and diversity. Their first joint educational venture was HPP. In order to succeed, HPP had to speak to the needs of disciplinary-minded scientists at the NSF, equity-minded educators at the USOE, and results-focused politicians in Congress. This work argues that HPP succeeded because it met the needs of these various stakeholders regarding the roles of science and education in American society.

  6. Elementary Teachers' Beliefs about Teaching Science and Classroom Practice: An Examination of Pre/Post NCLB Testing in Science

    Science.gov (United States)

    Milner, Andrea R.; Sondergeld, Toni A.; Demir, Abdulkadir; Johnson, Carla C.; Czerniak, Charlene M.

    2012-01-01

    The impact of No Child Left Behind (NCLB) mandated state science assessment on elementary teachers' beliefs about teaching science and their classroom practice is relatively unknown. For many years, the teaching of science has been minimized in elementary schools in favor of more emphasis on reading and mathematics. This study examines the…

  7. Five male preservice elementary teachers: Their understandings, beliefs and practice regarding science teaching

    Science.gov (United States)

    Hoover, Barbara Grambo

    Many factors influence teacher choices concerning the frequency, instructional methods, and content of science teaching. Although the role of gender in science learning has been studied extensively, the gender of elementary teachers as it intersects their teaching of science has not been investigated. In this ethnographic study, I focused on five male preservice elementary teachers as they experienced their student teaching internship, aiming to understand their underlying beliefs about science and science teaching and how those beliefs influenced their practice. In an attempt to illuminate the complex interplay of personality, experience, interests, and gender in the professional lives of these men, this study emphasized the importance of context in the formation and expression of their science beliefs and pedagogy. For this reason, I collected data from a number of sources. From September, 2001 to May, 2002, I observed my participants in their science methods courses and on multiple occasions as they taught science in elementary classrooms in a suburban school district. I reviewed journal entries required for the science methods class and examined documents such as handouts, readings and teacher guides from their elementary teaching experience. I conducted semi-structured and informal interviews. I analyzed data from these sources using grounded theory methodology. Although these five men had many similarities, they differed in their love of science, their exposure to science, their avocational interests, and their views of science pedagogy. This study, however, revealed a unifying theme: each participant had his own set of personal and academic resources that he carried into the classroom and used to construct a distinctive science learning environment. Some of these resources intersect with gender. For example, several men had science-related avocational interests. There was a common emphasis on creating a relaxed, enjoyable, hands-on teaching environment as

  8. Teaching and Learning Science in the 21st Century: Challenging Critical Assumptions in Post-Secondary Science

    Directory of Open Access Journals (Sweden)

    Amanda L. Glaze

    2018-01-01

    Full Text Available It is widely agreed upon that the goal of science education is building a scientifically literate society. Although there are a range of definitions for science literacy, most involve an ability to problem solve, make evidence-based decisions, and evaluate information in a manner that is logical. Unfortunately, science literacy appears to be an area where we struggle across levels of study, including with students who are majoring in the sciences in university settings. One reason for this problem is that we have opted to continue to approach teaching science in a way that fails to consider the critical assumptions that faculties in the sciences bring into the classroom. These assumptions include expectations of what students should know before entering given courses, whose responsibility it is to ensure that students entering courses understand basic scientific concepts, the roles of researchers and teachers, and approaches to teaching at the university level. Acknowledging these assumptions and the potential for action to shift our teaching and thinking about post-secondary education represents a transformative area in science literacy and preparation for the future of science as a field.

  9. Reflection after teaching a lesson: Experiences of secondary school science teachers

    Science.gov (United States)

    Halstead, Melissa A.

    Secondary science teachers spend most of their time planning, collaborating, and teaching, but spend little time reflecting after teaching a single lesson. The theoretical framework of the adult learning theory and the transformative learning theory was the basis of this study. This qualitative research study was conducted to understand the reflective experiences of secondary science educators after teaching a single or several lessons. The collection of data consisted of interviews from a group of purposefully selected secondary science teachers who met the criteria set forth by the researcher. Through a qualitative analysis of interviews and field notes, the researcher determined that the secondary science teachers in this study shared similar as well as different experiences regarding collaborative and individual reflection after teaching a single or several lessons. The findings from this study also suggested that secondary science educators prefer to collaboratively reflect and then reflect alone to allow for further thought. Additionally, a supportive school culture increases the secondary science teacher’s desire to engage in collaborative as well as individual reflection. The information from this study could be used to close the gaps that exist in the teacher professional development programs.

  10. Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area

    Science.gov (United States)

    Chamnanwong, Pornpaka; Thathong, Kongsak

    2018-01-01

    In preparing a science lesson plan, teachers may deal with numerous difficulties. Having a deep understanding of their problems and their demands is extremely essential for the teachers in preparing themselves for the job. Moreover, it is also crucial for the stakeholders in planning suitable and in-need teachers' professional development programs, in school management, and in teaching aid. This study aimed to investigate the primary school science teachers' opinion toward practice of teaching and learning activities in science learning area. Target group was 292 primary science teachers who teach Grade 4 - 6 students in Khon Kaen Province, Thailand in the academic year of 2014. Data were collected using Questionnaire about Investigation the opinions of the primary science teachers toward practice of teaching and learning activities in science learning area. The questionnaires were consisted of closed questions scored on Likert scale and open-ended questions that invite a sentence response to cover from LS Process Ideas. Research findings were as follow. The primary science teachers' level of opinion toward teaching and learning science subject ranged from 3.19 - 3.93 (mean = 3.43) as "Moderate" level of practice. The primary school science teachers' needs to participate in a training workshop based on LS ranged from 3.66 - 4.22 (mean = 3.90) as "High" level. The result indicated that they were interested in attending a training course under the guidance of the Lesson Study by training on planning of management of science learning to solve teaching problems in science contents with the highest mean score 4.22. Open-ended questions questionnaire showed the needs of the implementation of the lesson plans to be actual classrooms, and supporting for learning Medias, innovations, and equipment for science experimentation.

  11. Developing Adaptive Teaching Competency through Coaching

    Science.gov (United States)

    Vogt, Franziska; Rogalla, Marion

    2009-01-01

    The research project Adaptive Teaching Competency seeks to conceptualise the processes of tuning teaching to individual students' learning needs and to empirically test, within the field of science teaching, to what extent Adaptive Teaching Competency can be fostered through teacher education. 32 primary and secondary teachers took part in an…

  12. Teaching Building Science with Simulations

    Science.gov (United States)

    Hatherly, Amanda

    2017-01-01

    Teaching building science to community college students can be challenging given both the macro (houses change subject to varying seasons) and the micro (heat transfer, moisture movement) level of the topics taught. Simulations and games can provide a way of learning material that can otherwise be difficult for students to understand. In this…

  13. A Coastal Citizen Science Project - How to run an international Citizen Science Project?

    Science.gov (United States)

    Kruse, K.; Knickmeier, K.; Thiel, M.; Gatta, M.

    2016-02-01

    "Searching for plastic garbage" is an international Citizen Science project that aims to participate school students in the public discussion on the topic "plastic pollution in the ocean". For this, young people apply various research methods, evaluate their data, communicate and publish their results and investigate solutions solving this problem. The project will be carried out in Chile and Germany at the same time, which allows the participating students to share and compare their results and discuss their ideas with an international partner. This takes place on the website www.save-ocean.org. The project promotes intercultural and scientific skills of the students. They get insights into scientific research, get into another culture and experiences plastic pollution as an important global problem. Since May 2015, 450 pupils aged 10 to 15 years and 20 teachers in Germany and Chile have explored the plastic garbage on beaches. Where are the largest plastic garbage deposits? Which items of plastic are mostly found in Germany and Chile? Or where does this garbage comes from? These and other research questions are being answered by an international network between students, teachers and scientists. After completing the first Citizen Science pilot study successfully in summer 2015, the entire German and Chilean coast will be explored in spring 2016 by around 2500 participating school students. The project "Searching for plastic garbage" is the first international Citizen Science project that is a cooperation between the ocean:lab of Kiel Science Factory and the "Cientificos de la Basura", a project of the department of marine biology at University Catolica del Norte in Coquimbo, Chile. The project is supported by the Cluster of Excellence "The Future Ocean", the Leibniz Institute for Science Education and Mathematics (IPN), the Ministry of School and Professional Education of Land Schleswig-Holstein and the University Catolica del Norte in Coquimbo, Chile

  14. Popular Science Articles for Chemistry Teaching

    Directory of Open Access Journals (Sweden)

    Ketevan Kupatadze

    2017-07-01

    Full Text Available The presented paper reviews popular science articles (these articles are published in online magazine “The Teacher” as one of the methods of chemistry teaching. It describes which didactic principles they are in line with and how this type of articles can be used in order to kindle the interest of pupils, students and generally, the readers of other specialties, in chemistry.  The articles review the main topics of inorganic/organic chemistry, biochemistry and ecological chemistry in a simple and entertaining manner. A part of the articles is about "household" chemistry. Chemical topics are related to poetry, literature, history of chemistry or simply, to fun news. The paper delineates the structure of popular science articles and the features of engaging students. It also reviews the teachers' and students' interview results about the usage of popular science articles in chemistry teaching process. The aforementioned pedagogical study revealed that the popular science articles contain useful information not only for the students of other specialties, but also for future biologists and ecologists (having chemistry as a mandatory subject at their universities. The articles are effectively used by teachers on chemistry lessons to kindle students' interest in this subject. DOI: http://dx.doi.org/10.17807/orbital.v9i3.960 

  15. Portsmouth Atmospheric Science School (PASS) Project

    Science.gov (United States)

    Coleman, Clarence D.; Hathaway, Roger (Technical Monitor)

    2002-01-01

    The Portsmouth Atmospheric Science School Project (PASS) Project was granted a one-year no cost extension for 2001-2002. In year three of the project, objectives and strategies were modified based on the previous year-end evaluation. The recommendations were incorporated and the program was replicated within most of the remaining elementary schools in Portsmouth, Virginia and continued in the four middle schools. The Portsmouth Atmospheric Science School Project is a partnership, which includes Norfolk State University, Cooperating Hampton Roads Organizations for Minorities in Engineering (CHROME), NASA Langley Research Center, and the City of Portsmouth, Virginia Public Schools. The project seeks to strengthen the knowledge of Portsmouth Public Schools students in the field of atmospheric sciences and enhance teacher awareness of hands on activities in the atmospheric sciences. The project specifically seeks to: 1) increase the interest and participation of elementary and middle school students in science and mathematics; 2) strengthen existing science programs; and 3) facilitate greater achievement in core subjects, which are necessary for math, science, and technical careers. Emphasis was placed on providing training activities, materials and resources for elementary students (grades 3 - 5) and middle school students (grades 6 - 8), and teachers through a CHROME club structure. The first year of the project focused on introducing elementary students to concepts and activities in atmospheric science. Year two of the project built on the first year's activities and utilizes advanced topics and activities appropriate for middle school students. During the third year of the project, in addition to the approaches used in years one and two, emphasis was placed on activities that enhanced the Virginia Standards of Learning (SOL).

  16. Artful Teaching and Science Investigations: A Perfect Match

    Science.gov (United States)

    McGee, Christy

    2018-01-01

    Tomlinson's explanation of Artful Teaching and her 2017 expansion of this concept The Five Key Elements of Differentiation provide the theoretical framework of this examination of the need for science investigations in elementary schools. The Artful Teaching framework uses an equilateral triangle with vertices labeled The Teacher, The Student, and…

  17. Influencing Science Teaching Self-Efficacy Beliefs of Primary School Teachers: A Longitudinal Case Study

    Science.gov (United States)

    McKinnon, Merryn; Lamberts, Rod

    2014-01-01

    The science teaching self-efficacy beliefs of primary school teachers influence teaching practice. The purpose of this research was to determine if informal education institutions, such as science centres, could provide professional development that influences the science teaching self-efficacy beliefs of pre-service and in-service primary school…

  18. Reflexivity in performative science shop projects

    OpenAIRE

    Beunen, R.; Duineveld, M.; During, R.; Straver, G.H.M.B.; Aalvanger, A.

    2012-01-01

    Science shop research projects offer possibilities for universities to engage with communities. Many science shop projects directly or indirectly intend to empower certain marginalised groups or interests within a decision-making process. In this article we argue that it is important to reflect on the role and position the researchers have in these projects. We present three science shop projects to illustrate some of the dilemmas that may arise in relation to citizen empowerment, democracy, ...

  19. Taking a Scientific Approach to Science Teaching

    Science.gov (United States)

    Pollock, S.

    2011-09-01

    It is now well-documented that traditionally taught, large-scale introductory science courses often fail to teach our students the basics. In fact, these same courses have been found to teach students things we don't intend. Building on a tradition of research, the physics and astronomy education research communities have been investigating the effects of educational reforms at the undergraduate level for decades. Both within these scientific communities and in the fields of education, cognitive science, psychology, and other social sciences, we have learned a great deal about student learning and environments that support learning for an increasingly diverse population of students. This presentation will discuss a variety of effective classroom practices, (with an emphasis on peer instruction, "clickers," and small group activities), the surrounding educational structures, and examine assessments which indicate when and why these do (and sometimes do not) work. After a broad survey of education research, we will look at some of the exciting theoretical and experimental developments within this field that are being conducted at the University of Colorado. Throughout, we will consider research and practices that can be of value in both physics and astronomy classes, as well as applications to teaching in a variety of environments.

  20. An Examination of Teacher Understanding of Project Based Science as a Result of Participating in an Extended Professional Development Program: Implications for Implementation

    Science.gov (United States)

    Mentzer, Gale A.; Czerniak, Charlene M.; Brooks, Lisa

    2017-01-01

    Project-based science (PBS) aligns with national standards that assert children should learn science by actively engaging in the practices of science. Understanding and implementing PBS requires a shift in teaching practices away from one that covers primarily content to one that prompts children to conduct investigations. A common challenge to…

  1. The impact of a curriculum course on pre-service primary teachers' science content knowledge and attitudes towards teaching science

    OpenAIRE

    Murphy, Clíona; Smith, Greg

    2012-01-01

    Many primary school teachers have insufficient content and pedagogical knowledge of science. This lack of knowledge can often lead to a lack of confidence and competence in teaching science. This article explores the impact of a year-long science methodology (curriculum science) course on second year Bachelor of Education (BEd) students' conceptual and pedagogical knowledge of science and on their attitudes towards teaching science in the primary classroom. A questionnaire, containing closed ...

  2. Teaching Science to Dyslexic Children

    Science.gov (United States)

    Ward, Linda

    2010-01-01

    Working in a school with a high proportion of dyslexic children has helped this author to discover and improve her teaching of science. Officially, dyslexia is seen as "a specific learning difficulty that hinders the learning of literacy skills. This problem of managing verbal codes in memory is neurologically based." Many children come to the…

  3. On teaching computer ethics within a computer science department.

    Science.gov (United States)

    Quinn, Michael J

    2006-04-01

    The author has surveyed a quarter of the accredited undergraduate computer science programs in the United States. More than half of these programs offer a 'social and ethical implications of computing' course taught by a computer science faculty member, and there appears to be a trend toward teaching ethics classes within computer science departments. Although the decision to create an 'in house' computer ethics course may sometimes be a pragmatic response to pressure from the accreditation agency, this paper argues that teaching ethics within a computer science department can provide students and faculty members with numerous benefits. The paper lists topics that can be covered in a computer ethics course and offers some practical suggestions for making the course successful.

  4. The Role of Research on Science Teaching and Learning

    Science.gov (United States)

    National Science Teachers Association (NJ1), 2010

    2010-01-01

    Research on science teaching and learning plays an important role in improving science literacy, a goal called for in the National Science Education Standards (NRC 1996) and supported by the National Science Teachers Association (NSTA 2003). NSTA promotes a research agenda that is focused on the goal of enhancing student learning through effective…

  5. Developing and testing multimedia educational tools to teach Polar Sciences in the Italian school

    Science.gov (United States)

    Macario, Maddalena; Cattadori, Matteo; Bianchi, Cristiana; Zattin, Massimiliano; Talarico, Franco Maria

    2013-04-01

    In the last few years science education moved forward rapidly by connecting the expertise and enthusiasm of polar educators worldwide. The interest in Polar Sciences determined the creation of a global professional network for those that educate in, for, and about the Polar Regions. In Italy, this cooperation is well represented by APECS-Italy, the Italian section of the Association of Polar Early Career Scientists (APECS) that is composed by young researchers and teachers of the Italian School. The Polar Regions represent one of the best natural environments where students can investigate directly on global changes. In this sense, the working group UNICAMearth of the Geology Division of School of Science and Technology, University of Camerino (Italy), promotes the arrangement of instructional resources based on real data coming from the research world. Our project aims to develop innovative teaching resources and practices designed to bring the importance of the Polar Regions closer to home. Consequently, Polar Sciences could become a focus point in the new national school curricula, where Earth Sciences have to be thought and learnt in an integrated way together with other sciences. In particular, M. Macario is producing a teaching tool package, starting from a case study, which includes a dozen of full lesson plans based on multimedia tools (images, smart board lessons and videos of lab experiments) as well as on hands-on activities about polar issues and phenomena. Among the resources the teaching tool package is referring to, there is also an App for tablet named CLAST (CLimate in Antartica from Sediments and Tectonics). This App has been designed by a team made up of polar scientists belonging to the University of Siena and University of Padova, two science teachers of the Museo delle Scienze (MUSE) of Trento other than M. Macario. CLAST has been funded by two Research Projects, CLITEITAM ("CLImate-TEctonics Interactions along the TransAntarctic Mountains

  6. Physics Teachers' Challenges in Using History and Philosophy of Science in Teaching

    Science.gov (United States)

    Henke, Andreas; Höttecke, Dietmar

    2015-01-01

    The inclusion of the history and philosophy of science (HPS) in science teaching is widely accepted, but the actual state of implementation in schools is still poor. This article investigates possible reasons for this discrepancy. The demands science teachers associate with HPS-based teaching play an important role, since these determine teachers'…

  7. Teacher Training and Pre-Service Primary Teachers' Self-Efficacy for Science Teaching

    Science.gov (United States)

    Velthuis, Chantal; Fisser, Petra; Pieters, Jules

    2014-01-01

    This study focuses on the improvement of pre-service teachers' self-efficacy for teaching science by including science courses within the teacher training program. Knowing how efficacy beliefs change over time and what factors influence the development by pre-service primary teachers of positive science teaching efficacy beliefs may be useful for…

  8. Science Educators Teaching Engineering Design: An Examination across Science Professional Development Sites

    Science.gov (United States)

    Grubbs, Michael E.; Love, Tyler S.; Long, David E.; Kittrell, Danielle

    2016-01-01

    Although the currently employed STEM (science, technology, engineering, and mathematics) acronym is of recent origin, dating to the early 2000s (Chute, 2009), the United States has long emphasized the importance of teaching STEM in its public schools. Early efforts, such as "Science, the Endless Frontier" (Bush, 1945) and the…

  9. Changing Science Teaching Practice in Early Career Secondary Teaching Graduates

    Science.gov (United States)

    Bartholomew, Rex; Moeed, Azra; Anderson, Dayle

    2011-01-01

    Initial teacher education (ITE) is being challenged internationally to prepare teachers with the understandings needed to teach an increasingly diverse student population. Science teachers need to prepare students with both conceptual and procedural understanding. The challenge is to prioritise a balance in ITE courses between theoretical…

  10. From Students to Teachers: Investigating the Science Teaching Efficacy Beliefs and Experiences of Graduate Primary Teachers

    Science.gov (United States)

    Deehan, James; Danaia, Lena; McKinnon, David H.

    2018-03-01

    The science achievement of primary students, both in Australia and abroad, has been the subject of intensive research in recent decades. Consequently, much research has been conducted to investigate primary science education. Within this literature, there is a striking juxtaposition between tertiary science teaching preparation programs and the experiences and outcomes of both teachers and students alike. Whilst many tertiary science teaching programs covary with positive outcomes for preservice teachers, reports of science at the primary school level continue to be problematic. This paper begins to explore this apparent contradiction by investigating the science teaching efficacy beliefs and experiences of a cohort of graduate primary teachers who had recently transitioned from preservice to inservice status. An opportunity sample of 82 primary teachers responded to the science teaching efficacy belief instrument A (STEBI-A), and 10 graduate teachers provided semi-structured interview data. The results showed that participants' prior science teaching efficacy belief growth, which occurred during their tertiary science education, had remained durable after they had completed their teaching degrees and began their careers. Qualitative data showed that their undergraduate science education had had a positive influence on their science teaching experiences. The participants' school science culture, however, had mixed influences on their science teaching. The findings presented within this paper have implications for the direction of research in primary science education, the design and assessment of preservice primary science curriculum subjects and the role of school contexts in the development of primary science teachers.

  11. Combining Project-based Instruction, Earth Science Content, and GIS Technology in Teacher Professional Development: Is this Holistic Approach Sustainable?

    Science.gov (United States)

    Rubino-Hare, L.; Bloom, N.; Claesgens, J.; Fredrickson, K.; Henderson-Dahms, C.; Sample, J. C.

    2012-12-01

    From 2009-2011, with support from the National Science Foundation (ITEST, DRL-0929846) and Science Foundation Arizona (MSAG-0412-09), educators, geologists and geographers at Northern Arizona University (NAU) partnered to offer professional development for interdisciplinary teams of secondary and middle school teachers with a focus on project-based instruction (PBI) using geospatial technologies (GST). While participating in professional development teachers received support and were held accountable to NAU staff. They implemented activities and pedagogical strategies presented, increased knowledge, skills, and confidence teaching with project-based instruction integrating GST, and their students demonstrated learning gains. Changes in student understanding are only observed when teachers continue to implement change, so the question remained: did these changes in practice sustain after official project support ended? In order to determine what, if anything, teachers sustained from the professional development and the factors that promoted or hindered sustained use of teaching with GST and PBI, data were collected one to two years following the professional development. Research questions included a) what pedagogical practices did teachers sustain following the professional learning experiences? and b) what contexts were present in schools that supported or limited the use of geospatial technologies as a teaching and learning tool? Findings from this study indicate that teachers fall into three categories of sustaining implementation - reformed implementers, mechanical implementers and non-implementers. School context was less of a factor in level of implementation than teachers' beliefs and philosophy of teaching and teachers' understanding of technology integration (teaching with technology vs. teaching technology). Case studies of teacher experiences will be presented along with implications for future professional development.

  12. ASSESSMENT OF THE INQUIRY-BASED PROJECT IMPLEMENTATION PROCESS IN SCIENCE EDUCATION UPON STUDENTS’ POINTS OF VIEWS

    Directory of Open Access Journals (Sweden)

    Orhan AKINOGLU

    2008-01-01

    Full Text Available Aim of the study is to assess how students in 6th, 7th and 8th grades of primary education see the project works made in science education and their implementation processes. The study was fulfilled upon the descriptive survey model to collect data. Participants of the research were 100 students who had project implementation experiences in science education, and they were from 24 primary schools in 7 districts randomly chosen in the city of Istanbul in Turkey. Data of the study were collected by using a semi-constructed interview form offered to students during the 2005-2006 teaching year. In the research, following items were examined: The extent to which students are inspired from the previously made projects during their own project selection process, the level of scientific document survey and the effects of contemporary events, science and technology class topics and students’ interest areas. It was seen that internet is the mostly used source to obtain information. For students, one of the most problematic issues faced during the project implementation is the time limits set out by teacher. It was found that the most obvious benefit obtained by students from the project works is their increasing interest towards science and technology class. The most significant change seen by students regarding project preparation is their increasing grades in exams during and following the project works.

  13. Utilizing the Project Method for Teaching Culture and Intercultural Competence

    Science.gov (United States)

    Euler, Sasha S.

    2017-01-01

    This article presents a detailed methodological outline for teaching culture through project work. It is argued that because project work makes it possible to gain transferrable and applicable knowledge and insight, it is the ideal tool for teaching culture with the aim of achieving real intercultural communicative competence (ICC). Preceding the…

  14. Fostering nature of science teaching in elementary pre-service teachers through developing reflection on teaching and learning

    Science.gov (United States)

    Pongsanon, Khemmawadee

    Although teacher educators have successfully helped K-12 teachers' develop adequate views of NOS, their views have not been transferred to their students. It is evident that K-12 students' understanding of NOS still does not align with the recommendation of the reforms document, indicating that holding an adequate view of NOS is insufficient for teaching NOS effectively. Instead, to teach NOS, teachers must develop the knowledge for translating their understanding of NOS into the forms accessible to students. The current study investigated the influence of four contexts of reflective practice on prospective elementary teachers' learning of how and intention to teach NOS. The participants were 18 pre-service teachers enrolled in a science methods course that was tied to a field experience course. To understand the development of the participants' intentions, knowledge of instructional strategies, and knowledge of assessment for teaching NOS, multiple data were collected throughout the science methods course and the field experience. Data sources included different versions of participants' lesson plans, video recordings of their teaching and teaching debriefings, online weekly teaching reflections, final semester reflection and other artifacts from the methods course. Content analysis was conducted with all data. The data revealed that the participants' knowledge of how and intentions to teach NOS were developed throughout the science methods course. Toward the conclusion of the semester, the participants showed intention to include NOS in their science instruction. With regard to strategies, participants planned to apply explicit reflective NOS instruction in the context of inquiry-based activities and stories from children's literature. They also planned to use age-appropriate language to refer to the targeted NOS aspects. In terms of assessment, by the conclusion of the semester the participants tended to use more formal assessment strategies. They reported

  15. Teaching Tomorrow: A Handbook of Science Fiction for Teachers.

    Science.gov (United States)

    Calkins, Elizabeth; McGhan, Barry

    Science Fiction appeals to young people and is suited for use in a wide range of classrooms. This handbook of Science Fiction for Teachers suggests ways of using Science Fiction to teach literature and English skills. Study guides based on two Science Fiction stories are presented, with activities such as individual papers and small group…

  16. Is Teaching Neoclassical Economics as "the" Science of Economics Moral?

    Science.gov (United States)

    Parvin, Manoucher

    1992-01-01

    Discusses the morality of teaching neoclassical theory as the only science of economics. Argues that the teaching of neoclassical theory violates moral principles unless each and every attribute of neoclassical theory is proven superior to corresponding attributes of competing theories. Criticizes neoclassical economics for teaching what rather…

  17. Teaching Creativity through Inquiry Science

    Science.gov (United States)

    Thompson, Taylor

    2017-01-01

    The experience that students gain through creative thinking contributes to their readiness for the 21st century. For this and other reasons, educators have always considered creative thinking as a desirable part of any curriculum. The focus of this article is on teaching creative thinking in K-12 science as a way to serve all students and,…

  18. The meaning-making of science teachers participating in a school-based PD project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    The meaning-making of four science teachers involved in collaboratively analyzing video and other artifacts from practice in local science classrooms in a school-based professional development project is examined through repeated interviews and represented as meaning-making maps. The research aim...... is to examine how these collaborative inquiries make sense to the teachers: what they identify as outcomes, how they make use of inputs and support in their classrooms and in collegial interactions and how their ideas about teaching and learning of science might play a role. An adapted version...... learning of science in concrete situations. They refer to outcomes from sharing experiments with new tools and materials and refer to being encouraged to continue collaboration around science at the school. Beside this the teachers emphasize various outcomes apparently for each of them in areas where...

  19. The meaning-making of science teachers participating in as school based PD project

    DEFF Research Database (Denmark)

    Nielsen, Birgitte Lund

    The meaning-making of four science teachers involved in collaboratively analyzing video and other artifacts from practice in local science classrooms in a school-based professional development project is examined through repeated interviews and represented as meaning-making maps. The research aim...... is to examine how these collaborative inquiries make sense to the teachers: what they identify as outcomes, how they make use of inputs and support in their classrooms and in collegial interactions and how their ideas about teaching and learning of science might play a role. An adapted version...... learning of science in concrete situations. They refer to outcomes from sharing experiments with new tools and materials and refer to being encouraged to continue collaboration around science at the school. Beside this the teachers emphasize various outcomes apparently for each of them in areas where...

  20. Incorporating Indonesian Students' "Funds of Knowledge" into Teaching Science to Sustain Their Interest in Science

    Directory of Open Access Journals (Sweden)

    A.N. Md Zain

    2011-12-01

    Full Text Available The purpose of this study was to examine the effect of incorporating students’ funds of knowledge in the teaching of science in sustaining Indonesian students’ interest in science. The researchers employed mixed method approach in this study. This study took place within two suburban secondary schools in Indonesia. Two teachers and a total of 173 students (94 males and 79 females participated in this study. The findings revealed that initially, most students expected that the teaching process would mainly include science experiments or other hands-on activities. Their preferences revealed a critical problem related to science learning: a lack of meaningful science-related activities in the classroom. The findings showed that incorporating students’ funds of knowledge into science learning processes -and thus establishing students’ culture as an important and valued aspect of science learning was effective in not only sustaining but also improving students’ attitudes and increasing their interest in science.

  1. Determination of Factors Affecting Preschool Teacher Candidates' Attitudes towards Science Teaching

    Science.gov (United States)

    Timur, Betul

    2012-01-01

    The purpose of this study was to determine preschool teacher candidates' attitudes towards science teaching and to examine the reasons behind their attitudes in depth. In this study, mixed methods were used including quantitative and qualitative data. Quantitative data gained by attitudes towards science teaching scale, qualitative data gained by…

  2. Macro photography with a tablet: applications on Science Teaching

    OpenAIRE

    Vieira, Leonardo Pereira; Lara, Vitor de Oliveira Moraes

    2013-01-01

    In this work we present a simple way to get Macro photography (enlarged photographs) using a tablet or phone. We initially discuss the technique, which is essentially the accommodation of a drop of water on the camera lens. Next, we explore some applications to science teaching in primary and secondary levels. As discussed in the text, the simplicity and power of the technique may make it a good teaching tool for use in various disciplines such as Science, Biology and Physics.

  3. The use of information and communications technology to support the teaching of science in primary schools

    Science.gov (United States)

    Skinner, Nigel C.; Preece, Peter F. W.

    2003-02-01

    The AstraZeneca-Exeter Science through Telematics (AZEST) project provided evidence that the Internet has much potential as a communication channel for the provision and discussion of INSET materials for primary science in the UK. Participating teachers were able to access and use the project website effectively, were more likely to provide feedback when they had personal access to the Internet either at home or at school, and provided valuable feedback concerning the AZEST tasks, but they tended not to respond directly to messages from other participants. Discussion, via e-mail or a web-based discussion forum, was enhanced if participants knew each other personally. There was evidence that the AZEST science INSET materials enhanced teachers' understanding of science concepts and raised their confidence, increased teachers' effectiveness in the role of Science Subject Leader, and improved teachers' pedagogic practice through encouraging innovative investigative approaches to the teaching and learning of science. Participating teachers indicated that a website dedicated to primary science at the local level was valued. Concept mapping was found to be a valuable tool for stimulating discussion and for assessing pupils' and teachers' understanding and was mostly enjoyed by pupils and staff.

  4. A Thai pre-service teacher's understanding of nature of science in biology teaching

    Science.gov (United States)

    Srisawat, Akkarawat; Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This study was conducted on the effect of understanding and instruction of the nature of science of Ms. Wanida, a pre-service student under science education program in biology, Faculty of Education, Khon Kaen University. Wanida was a teaching practicum student majoring in biology at Khon Kaen University Demonstration School (Modindaeng). She was teaching biology for 38 Grade 10 students. Methodology regarded interpretive paradigm. The study aimed to examine 1) Wanida's understanding of the nature of science, 2) Wanida's instruction of the nature of science, 3 students' understanding of the nature of science from Wanida's instruction, and 4) the effects of Wanida's understanding and instruction of the nature of science on students' understanding of the nature of science from Wanida's instruction. Tools of interpretation included teaching observation, a semi-structured interview, open-ended questionnaire, and an observation record form for the instruction of the nature of science. The data obtained was interpreted, encoded, and classified, using the descriptive statistics. The findings indicated that Wanida held good understanding of the nature of science. She could apply the deficient nature of science approach mostly, followed by the implicit nature of science approach. Unfortunately, she could not show her teaching as explicit nature of science. However, her students' the understanding of the nature of science was good.

  5. Exploration of Factors Related to the Development of Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants' Teaching Orientations

    Science.gov (United States)

    Gilmore, Joanna; Maher, Michelle A.; Feldon, David F.; Timmerman, Briana

    2014-01-01

    Research indicates that modifying teachers' beliefs about learning and teaching (i.e. teaching orientation) may be a prerequisite to changing their teaching practices. This mixed methods study quantitized data from interviews with 65 graduate teaching assistants (GTAs) from science, technology, engineering, and mathematics (STEM) fields to assess…

  6. Pre-Service Teachers’ Attitudes Toward Teaching Science and Their Science Learning at Indonesia Open University

    OpenAIRE

    Nadi SUPRAPTO; Ali MURSID

    2017-01-01

    This study focuses on attitudes toward (teaching) science and the learning of science for primary school among pre-service teachers at the Open University of Indonesia. A three-year longitudinal survey was conducted, involving 379 students as pre-service teachers (PSTs) from the Open University in Surabaya regional office. Attitudes toward (teaching) science’ (ATS) instrument was used to portray PSTs’ preparation for becoming primary school teachers. Data analyses were used, including descrip...

  7. Graduate teaching assistants' perceptions of teaching competencies required for work in undergraduate science labs

    Science.gov (United States)

    Deacon, Christopher; Hajek, Allyson; Schulz, Henry

    2017-11-01

    Many post-secondary institutions provide training and resources to help GTAs fulfil their teaching roles. However, few programmes focus specifically on the teaching competencies required by GTAs who work with undergraduate students in laboratory settings where learning tends to be more active and inquiry based than in classroom settings. From a review of 8 GTA manuals, we identified 20 competencies and then surveyed faculty and lab coordinators (FIS) and GTAs from a Faculty of Science at a comprehensive Canadian university to identify which of those competencies are required of GTAs who work in undergraduate science labs. GTAs and FIS did not significantly differ in the competencies they view as required for GTAs to work effectively in undergraduate labs. But, when comparing the responses of GTAs and FIS to TA manuals, 'Clearly and effectively communicates ideas and information with students' was the only competency for which there was agreement on the level of requirement. We also examined GTAs' self-efficacy for each of the identified competencies and found no overall relationship between self-efficacy and demographic characteristics, including experience and training. Our results can be used to inform the design of training programmes specifically for GTAs who work in undergraduate science labs, for example, programmes should provide strategies for GTAs to obtain feedback which they can use to enhance their teaching skills. The goal of this study is to improve undergraduate lab instruction in faculties of science and to enhance the teaching experience of GTAs by better preparing them for their role.

  8. Weekend Science Project

    Science.gov (United States)

    Santos, Karey

    2012-01-01

    Weekend plans...every family has them. Whether it's fishing, swimming, or simply picnicking by the river, water plays a significant role in many recreational endeavors. Encouraging students and their families to use their "scientific eyes" to explore these wonderful wet places is what Weekend Science Project is all about. Weekend Science Project…

  9. The Art of Teaching Science in Secondary Schools: A Meta Analysis

    Science.gov (United States)

    Hassan, Sharifah Sariah Syed; Ibrahim, Ahmad Abdullahi

    2018-01-01

    This study attempted to highlight the trend of research in science related subjects specifically in schools. Articles and journals were retrieved from Google scholar under peer reviewed with the aim to highlight the trend of research methods, findings and teaching strategies. The themes were based on pedagogical approaches of teaching science,…

  10. Investigating the Self-Perceived Science Teaching Needs of Local Elementary Educators

    Science.gov (United States)

    Carver, Cynthia G.

    2012-01-01

    Elementary teachers in one school system have expressed low self-efficacy teaching science and desire more support teaching science. However, little research has been conducted on how best to meet these teachers' needs. The theories of perceived self-efficacy, social cognition, and behaviorism make up the conceptual framework of this study. The…

  11. Models in Science Education: Applications of Models in Learning and Teaching Science

    Science.gov (United States)

    Ornek, Funda

    2008-01-01

    In this paper, I discuss different types of models in science education and applications of them in learning and teaching science, in particular physics. Based on the literature, I categorize models as conceptual and mental models according to their characteristics. In addition to these models, there is another model called "physics model" by the…

  12. A Professional Development Project for Improving the Use of Information and Communication Technologies in Science Teaching

    Science.gov (United States)

    Lavonen, Jari; Juuti, Kalle; Aksela, Maija; Meisalo, Veijo

    2006-01-01

    This article describes a professional development project aiming to develop practical approaches for the integration of information and communication technologies (ICT) into science education. Altogether, 13 two-day face-to-face seminars and numerous computer network conferences were held during a three-year period. The goals for the project were…

  13. Teaching Writing in the Social Sciences: A Comparison and Critique of Three Models

    Science.gov (United States)

    Hansen, Kristine; Adams, Joyce

    2010-01-01

    This article describes and evaluates three approaches to teaching writing in the social sciences, particularly psychology: an English department-based course for all social science majors; a team-teaching model that embeds writing in core courses in psychology; and a stand-alone course dedicated to teaching writing in psychology, often taken…

  14. "Adotta scienza e arte nella tua classe": The results of a successfully teaching project which combines science with art⋆

    Science.gov (United States)

    Giansanti, S.

    2015-03-01

    The project called Adotta scienza e arte nella tua classe ("Adopt Science and Art in your class"), on the interconnection between science and art, has been addressed to the Italian secondary middle and high school involving more than 200 teachers and about 2200 students. The main purpose of this project is to make the young students aware of the strong link between science and art is a unique cultural and interdisciplinary occasion. To reach this goal, the Adotta project asked students to produce an artwork inspired by the interpretation of a quotation among a hundred commented quotes by physicists, mathematicians, scientist, writers, artists, accompanied by an original short sentence written by students themselves. More than 1000 artworks have been produced and collected in two galleries on Facebook. From their analysis emerges the students' feeling about science, which is usually associated to human brain, based on mathematical laws and related to technological progress, but it is also a powerful tool that should be responsibly used. This project also valorizes teachers' role in scientific education through activities that encourage students to recognize science in every aspect of their lives.

  15. Creative Building Design for Innovative Earth Science Teaching and Outreach (Invited)

    Science.gov (United States)

    Chan, M. A.

    2009-12-01

    Earth Science departments can blend the physical “bricks and mortar” facility with programs and educational displays to create a facility that is a permanent outreach tool and a welcoming home for teaching and research. The new Frederick Albert Sutton building at the University of Utah is one of the first LEED (Leadership in Energy and Environmental Design) certified Earth Science buildings in the country. Throughout the structure, creative architectural designs are combined with sustainability, artful geologic displays, and community partnerships. Distinctive features of the building include: 1) Unique, inviting geologic designs such as cross bedding pattern in the concrete foundation; “a river runs through it” (a pebble tile “stream” inside the entrance); “confluence” lobby with spectacular Eocene Green River fossil fish and plant walls; polished rock slabs; and many natural stone elements. All displays are also designed as teaching tools. 2) Student-generated, energy efficient, sustainable projects such as: solar tube lights, xeriscape & rock monoliths, rainwater collection, roof garden, pervious cement, and energy monitoring. 3) Reinforced concrete foundation for vibration-free analytical measurements, and exposed lab ceilings for duct work and infrastructure adaptability. The spectacular displays for this special project were made possible by new partnerships within the community. Companies participated with generous, in-kind donations (e.g., services, stone flooring and slabs, and landscape rocks). They received recognition in the building and in literature acknowledging donors. A beautiful built environment creates space that students, faculty, and staff are proud of. People feel good about coming to work, and they are happy about their surroundings. This makes a strong recruiting tool, with more productive and satisfied employees. Buildings with architectural interest and displays can showcase geology as art and science, while highlighting

  16. The role of assessment infrastructures in crafting project-based science classrooms

    Science.gov (United States)

    D'Amico, Laura Marie

    In project-based science teaching, teachers engage students in the practice of conducting meaningful investigations and explanations of natural phenomena, often in collaboration with fellow students or adults. Reformers suggest that this approach can provide students with more profitable learning experiences; but for many teachers, a shift to such instruction can be difficult to manage. As some reform-minded teachers have discovered, classroom assessment can serve as a vital tool for meeting the challenges associated with project science activity. In this research, classroom assessment was viewed as an infrastructure that both students and teachers rely upon as a mediational tool for classroom activity and communications. The study explored the classroom assessment infrastructures created by three teachers involved in the Learning through Collaborative Visualization (CoVis) Project from 1993--94 to 1995--96. Each of the three teachers under study either created a new course or radically reformulated an old one in an effort to incorporate project-based science pedagogy and supporting technologies. Data in the form of interviews, classroom observations, surveys, student work, and teacher records was collected. From these data, an interpretive case study was developed for each course and its accompanying assessment infrastructure. A set of cross-case analyses was also constructed, based upon common themes that emerged from all three cases. These themes included: the assessment challenges based on the nature of project activity, the role of technology in the teachers' assessment infrastructure designs, and the influence of the wider assessment infrastructure on their course and assessment designs. In combination, the case studies and cross-case analyses describe the synergistic relationship between the design of pedagogical reforms and classroom assessment infrastructures, as well as the effectiveness of all three assessment designs. This work contributes to research

  17. The Teaching Practices Inventory: A New Tool for Characterizing College and University Teaching in Mathematics and Science

    Science.gov (United States)

    Gilbert, Sarah

    2014-01-01

    We have created an inventory to characterize the teaching practices used in science and mathematics courses. This inventory can aid instructors and departments in reflecting on their teaching. It has been tested with several hundred university instructors and courses from mathematics and four science disciplines. Most instructors complete the inventory in 10 min or less, and the results allow meaningful comparisons of the teaching used for the different courses and instructors within a department and across different departments. We also show how the inventory results can be used to gauge the extent of use of research-based teaching practices, and we illustrate this with the inventory results for five departments. These results show the high degree of discrimination provided by the inventory, as well as its effectiveness in tracking the increase in the use of research-based teaching practices. PMID:25185237

  18. The DIMBI project – innovative approaches for teaching business informatics

    Directory of Open Access Journals (Sweden)

    Ivan Kuyumdzhiev

    2016-11-01

    Full Text Available The purpose of this article is to collect and analyze data on existing methods of teaching business informatics in leading Bulgarian universities and suggest areas for improvements. Based on a collected data guidelines for innovative teaching methods in the field of BI and DW are developed. Proposed methods are divided in several sections – lectures, exercises (groups’ size, tools used, software, hardware, teaching methods, and real life customers, students’ projects, control methods. The findings of conducted feasibility study show that the business, students and universities need an innovative methodology of teaching business informatics and properly implemented this methodology has a high probability of success. This paper is written within the Erasmus plus KA2 project “Developing the innovative methodology of teaching business informatics” (DIMBI, 2015-1-PL01-KA203-0016636.

  19. The droso4schools project: Long-term scientist-teacher collaborations to promote science communication and education in schools.

    Science.gov (United States)

    Patel, Sanjai; DeMaine, Sophie; Heafield, Joshua; Bianchi, Lynne; Prokop, Andreas

    2017-10-01

    Science communication is becoming an increasingly important part of a scientist's remit, and engaging with primary and secondary schools is one frequently chosen strategy. Here we argue that science communication in schools will be more effective if based on good understanding of the realities of school life, which can be achieved through structured participation and/or collaboration with teachers. For example, the Manchester Fly Facility advocates the use of the fruit fly Drosophila as an important research strategy for the discovery processes in the biomedical sciences. To communicate this concept also in schools, we developed the 'droso4schools' project as a refined form of scientist-teacher collaboration that embraces the expertise and interests of teachers. Within this project, we place university students as teaching assistants in university partner schools to collaborate with teachers and develop biology lessons with adjunct support materials. These lessons teach curriculum-relevant biology topics by making use of the profound conceptual understanding existing in Drosophila combined with parallel examples taken from human biology. By performing easy to implement experiments with flies, we bring living organisms into these lessons, thus endeavouring to further enhance the pupil's learning experience. In this way, we do not talk about flies but rather work with flies as powerful teaching tools to convey mainstream curriculum biology content, whilst also bringing across the relevance of Drosophila research. Through making these lessons freely available online, they have the potential to reach out to teachers and scientists worldwide. In this paper, we share our experiences and strategies to provide ideas for scientists engaging with schools, including the application of the droso4schools project as a paradigm for long-term school engagement which can be adapted also to other areas of science. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All

  20. The LOFAR Transients Key Science Project

    NARCIS (Netherlands)

    Stappers, B.; Fender, R.; Wijers, R.

    2009-01-01

    The Transients Key Science Project (TKP) is one of six Key Science Projects of the next generation radio telescope LOFAR. Its aim is the study of transient and variable low-frequency radio sources with an extremely broad science case ranging from relativistic jet sources to pulsars, exoplanets,

  1. New Pathways for Teaching Chemistry: Reflective Judgment in Science.

    Science.gov (United States)

    Finster, David C.

    1992-01-01

    The reflective judgment model offers a rich context for analysis of science and science teaching. It provides deeper understanding of the scientific process and its critical thinking and reveals fundamental connections between science and the other liberal arts. Classroom techniques from a college chemistry course illustrate the utility of the…

  2. Controversy as a Blind Spot in Teaching Nature of Science. Why the Range of Different Positions Concerning Nature of Science Should Be an Issue in the Science Classroom

    Science.gov (United States)

    Kötter, Mario; Hammann, Marcus

    2017-07-01

    In this article, the argument is put forth that controversies about the scope and limits of science should be considered in Nature of Science (NOS) teaching. Reference disciplines for teaching NOS are disciplines, which reflect upon science, like philosophy of science, history of science, and sociology of science. The culture of these disciplines is characterized by controversy rather than unified textbook knowledge. There is common agreement among educators of the arts and humanities that controversies in the reference disciplines should be represented in education. To teach NOS means to adopt a reflexive perspective on science. Therefore, we suggest that controversies within and between the reference disciplines are relevant for NOS teaching and not only the NOS but about NOS should be taught, too. We address the objections that teaching about NOS is irrelevant for real life and too demanding for students. First, we argue that science-reflexive meta-discourses are relevant for students as future citizens because the discourses occur publicly in the context of sociopolitical disputes. Second, we argue that it is in fact necessary to reduce the complexity of the above-mentioned discourses and that this is indeed possible, as it has been done with other reflexive elements in science education. In analogy to the German construct Bewertungskompetenz (which means the competency to make informed ethical decisions in scientific contexts), we suggest epistemic competency as a goal for NOS teaching. In order to do so, science-reflexive controversies must be simplified and attitudes toward science must be considered. Discourse on the scientific status of potential pseudoscience may serve as an authentic and relevant context for teaching the controversial nature of reflexion on science.

  3. IPMA STANDARD ELEMENTS AND FEEDBACK IN PROJECT MANAGEMENT TEACHING

    Directory of Open Access Journals (Sweden)

    BARTOŠKA, Jan

    2011-09-01

    Full Text Available The paper proposes the concept of project management teaching including the International Project Management Association (IPMA standard. The concept of teaching is theoretical and derives from the notion of competence, which the IPMA standard is based on. The paper presents a brief description of the IPMA standard and endeavours to define the notion of competence. The competence is worked with in respect to hierarchical recognition. The proposed teaching concept works with the concepts of information, knowledge and skills. The teaching proposal stems from the structure and contents of the IPMA standard elements. Furthermore, the paper elaborates the issue of embedding the elements of the IPMA standard competences into training courses. In the article, the eye of the IPMA competences is further enhanced with possible training courses and specialist areas in which the standard elements can thematically be included. The paper states that the competence elements and training courses cross one another and overlap in a manifold way. The authors also propose a way which could verify into what extent the students have actually acquired taught IPMA competence elements. The paper contains the proposal of feedback quantification for the IPMA standard and project management teaching. The results of the paper can be used as a starting premise for future research. Both the verification proposal and the embedding of the elements into teaching are derived from on-going academic experience of the authors of the article.

  4. Restructuring Post-School Science Teaching Programmes

    Indian Academy of Sciences (India)

    OFFICE USER

    system available to those passing out of the +2 level in Science stream. II) The first .... University Grants Commission, whole-heartedly supported the ... interdisciplinary curricula and stimulating teaching methods that evoke ... water or electricity supply. .... share with you for inclusiveness, there are several decisions taken by.

  5. Assessing Gains in Science Teaching Self-Efficacy after Completing an Inquiry-Based Earth Science Course

    Science.gov (United States)

    Gray, Kyle

    2017-01-01

    Preservice elementary teachers are often required to take an Earth Science content course as part of their teacher education program but typically enter the course with little knowledge of key Earth Science concepts and are uncertain in their ability to teach science. This study investigated whether completing an inquiry-based Earth Science course…

  6. Characteristics of High School Students' and Science Teachers' Cognitive Frame about Effective Teaching Method for High School Science Subject

    Science.gov (United States)

    Chung, Duk Ho; Park, Kyeong-Jin; Cho, Kyu Seong

    2016-04-01

    We investigated the cognitive frame of high school students and inservice high school science teachers about effective teaching method, and we also explored how they understood about the teaching methods suggested by the 2009 revised Science Curriculum. Data were collected from 275 high school science teachers and 275 high school students. We analyzed data in terms of the words and the cognitive frame using the Semantic Network Analysis. The results were as follows. First, the teachers perceived that an activity oriented class was the effective science class that helped improve students'' problem-solving abilities and their inquiry skills. The students had the cognitive frame that their teacher had to present relevant and enough teaching materials to students, and that they should also receive assistance from teachers in science class to better prepare for college entrance exam. Second, both students and teachers retained the cognitive frame about the efficient science class that was not reflected 2009 revised Science Curriculum exactly. Especially, neither groups connected the elements of ''convergence'' as well as ''integration'' embedded across science subject areas to their cognitive frame nor cognized the fact that many science learning contents were closed related to one another. Therefore, various professional development opportunities should be offered so that teachers succinctly comprehend the essential features and the intents of the 2009 revised Science Curriculum and thereby implement it in their science lessons effectively. Keywords : semantic network analysis, cognitive frame, teaching method, science lesson

  7. Using Evolution as a Context for Teaching the Nature of Science to Diverse Student Populations: A High School Unit of Curriculum

    Science.gov (United States)

    Metcalfe, Angela C.

    Teaching evolution provides teachers with the opportunity to educate students on how science aims to understand the natural world. Rooted in research, the purpose of this project was to create NGSS-aligned curriculum focused on teaching the nature of science (NOS) within the context of biological evolution. Field testing and review of the unit resulted in revisions aimed at creating more comprehensive teacher resource materials and explicit inclusion of NOS. Emphasizing NOS in curriculum development and teaching scientific qualities through an evolutionary context has taken the focus off belief or disbelief, keeping the attention on the scientific concept at hand. Designing curriculum around compelling subject matter and embracing student-led learning increased and maintained student interest in the classroom. Implementation of this curriculum not only requires the teacher to be knowledgeable in conventional educational pedagogy, but also the subjects of NGSS and NOS. Additional training and support centered around NGSS is recommended for science educators interested in integrating NOS into their curriculum and instruction.

  8. Fieldwork, Co-Teaching and Co-Generative Dialogue in Lower Secondary School Environmental Science

    Science.gov (United States)

    Rahmawati, Yuli; Koul, Rekha

    2016-01-01

    This article reports one of the case studies in a 3-year longitudinal study in environmental science education. This case explores the process of teaching about ecosystems through co-teaching and co-generative dialogue in a Year-9 science classroom in Western Australia. Combining with co-teaching and co-generative dialogue aimed at transforming…

  9. Controversy as a Blind Spot in Teaching Nature of Science: Why the Range of Different Positions Concerning Nature of Science Should Be an Issue in the Science Classroom

    Science.gov (United States)

    Kötter, Mario; Hammann, Marcus

    2017-01-01

    In this article, the argument is put forth that controversies about the scope and limits of science should be considered in Nature of Science (NOS) teaching. Reference disciplines for teaching NOS are disciplines, which reflect upon science, like philosophy of science, history of science, and sociology of science. The culture of these disciplines…

  10. Learner-centered teaching in the college science classroom: a practical guide for teaching assistants, instructors, and professors

    Science.gov (United States)

    Dominguez, Margaret Z.; Vorndran, Shelby

    2014-09-01

    The Office of Instruction and Assessment at the University of Arizona currently offers a Certificate in College Teaching Program. The objective of this program is to develop the competencies necessary to teach effectively in higher education today, with an emphasis on learner-centered teaching. This type of teaching methodology has repeatedly shown to have superior effects compared to traditional teacher-centered approaches. The success of this approach has been proven in both short term and long term teaching scenarios. Students must actively participate in class, which allows for the development of depth of understanding, acquisition of critical thinking, and problem-solving skills. As optical science graduate students completing the teaching program certificate, we taught a recitation class for OPTI 370: Photonics and Lasers for two consecutive years. The recitation was an optional 1-hour long session to supplement the course lectures. This recitation received positive feedback and learner-centered teaching was shown to be a successful method for engaging students in science, specifically in optical sciences following an inquiry driven format. This paper is intended as a guide for interactive, multifaceted teaching, due to the fact that there are a variety of learning styles found in every classroom. The techniques outlined can be implemented in many formats: a full course, recitation session, office hours and tutoring. This guide is practical and includes only the most effective and efficient strategies learned while also addressing the challenges faced, such as formulating engaging questions, using wait time and encouraging shy students.

  11. Using Environmental Science as a Motivational Tool to Teach Physics to Non-Science Majors

    Science.gov (United States)

    Busch, Hauke C.

    2010-01-01

    A traditional physical science course was transformed into an environmental physical science course to teach physics to non-science majors. The objective of the new course was to improve the learning of basic physics principles by applying them to current issues of interest. A new curriculum was developed with new labs, homework assignments,…

  12. Girls on Ice: Using Immersion to Teach Fluency in Science

    Science.gov (United States)

    Pettit, E. C.; Mortenson, C.; Stiles, K.; Coryell-Martin, M.; Long, L.

    2010-12-01

    Young women choose not to pursue science careers for several reasons; two important ones are that they more often lack the confidence in their own ability to succeed or they perceive many science jobs as isolated (working alone in a lab) or lacking in altruistic values of helping other people or communities. We developed an immersion-science program, Girls on Ice, to provide young women with strong, female role models; with an opportunity to see what a career in the Earth sciences is like; with one-on-one interactions with scientists; with facilitated discussions on the value of Earth science in societal issues such as climate change; and with challenges that will build their self-confidence in multiple ways. Girls on Ice is field-based program for teenage young women with the theme of Glaciers, Climate, and the Alpine Landscape. The concepts we cover range from glacier dynamics to alpine plant ecology to mountain weather. The educational goals are 1. to increase young women's self-efficacy and interest in pursuing science as a career, 2. to create life-long advocates for the scientific process and its role in public policy 3. to teach critical thinking skills which will be important for all of their future pursuits 4. to enhance their leadership self-confidence so that they have a higher likelihood of becoming community leaders in the future. The educational philosophy of Girls on Ice consists of three core values: that teaching the whole process of science gives students ownership of the science; that teaching to the whole student puts the science in context; and that diversity inspires new ideas, new approaches, and better science in the end. We use a field-based immersion format -- the science equivalent of language-immersion course - in order to achieve the goals listed above in a setting that emphasizes this educational philosophy. The immersion-style course creates a deep connection between science and daily life for these young women. Combined with climate

  13. Teaching Graduate Students How To Do Informal Science Education

    Science.gov (United States)

    Ackerman, S. A.; Crone, W.; Dunwoody, S. L.; Zenner, G.

    2011-12-01

    One of the most important skills a student needs to develop during their graduate days is the skill of communicating their scientific work with a wide array of audiences. That facility will serve them across audiences, from scientific peers to students to neighbors and the general public. Increasingly, graduate students express a need for training in skills needed to manage diverse communicative environments. In response to that need we have created a course for graduate students in STEM-related fields which provides a structured framework and experiential learning about informal science education. This course seeks to familiarize students with concepts and processes important to communicating science successfully to a variety of audiences. A semester-long course, "Informal Science Education for Scientists: A Practicum," has been co-taught by a scientist/engineer and a social scientist/humanist over several years through the Delta Program in Research, Teaching, & Learning at the University of Wisconsin-Madison. The course is project based and understanding audience is stressed throughout the class. Through development and exhibition of the group project, students experience front end, formative and summative evaluation methods. The disciplines of the participating students is broad, but includes students in the geosciences each year. After a brief description of the course and its evolution, we will present assessment and evaluation results from seven different iterations of the course showing significant gains in how informed students felt about evaluation as a tool to determine the effectiveness of their science outreach activities. Significant gains were found in the graduate students' perceptions that they were better qualified to explain a research topic to a lay audience, and in the students' confidence in using and understanding evaluation techniques to determine the effectiveness of communication strategies. There were also increases in the students

  14. Status of teaching elementary science for English learners in science, mathematics and technology centered magnet schools

    Science.gov (United States)

    Han, Alyson Kim

    According to the California Commission on Teacher Credentialing (2001), one in three students speaks a language other than English. Additionally, the Commission stated that a student is considered to be an English learner if the second language acquisition is English. In California more than 1.4 million English learners enter school speaking a variety of languages, and this number continues to rise. There is an imminent need to promote instructional strategies that support this group of diverse learners. Although this was not a California study, the results derived from the nationwide participants' responses provided a congruent assessment of the basic need to provide effective science teaching strategies to all English learners. The purpose of this study was to examine the status of elementary science teaching practices used with English learners in kindergarten through fifth grade in public mathematics, science, and technology-centered elementary magnet schools throughout the country. This descriptive research was designed to provide current information and to identify trends in the areas of curriculum and instruction for English learners in science themed magnet schools. This report described the status of elementary (grades K-5) school science instruction for English learners based on the responses of 116 elementary school teachers: 59 grade K-2, and 57 grade 3-5 teachers. Current research-based approaches support incorporating self-directed learning strategy, expository teaching strategy, active listening strategies, questioning strategies, wait time strategy, small group strategy, peer tutoring strategy, large group learning strategy, demonstrations strategy, formal debates strategy, review sessions strategy, mediated conversation strategy, cooperative learning strategy, and theme-based instruction into the curriculum to assist English learners in science education. Science Technology Society (STS) strategy, problem-based learning strategy, discovery learning

  15. The Ripple Effect: Exploring How a Joint Science Specialist/TOSA Can Change Classroom Teachers' Instructional Practices through Project-Based Learning

    Science.gov (United States)

    Gradias, Jean

    In 2013, California became one of the first states to adopt the rigorous Next Generation Science Standards (NGSS). However, the current state of science instruction does not support the conceptual shifts of the NGSS, which call for consistent science instruction K-12, increased inquiry, subject integration, as well as science instruction that connects students to their communities and their world. Therefore, teachers are in need of instructional support for science teaching that can enable them to achieve these higher expectations. This dissertation explored whether implementing a Project-Based Learning (PBL)-centered science specialist changed classroom teachers' frequency of science instruction and use of instructional strategies that support NGSS science delivery. In addition, this study examined how providing a PBL science specialist supported teachers in their comfort with using these more rigorous instructional strategies. Five elementary teachers participated in an action research project conducted over the course of a school year. The frequency with which teachers used the following instructional strategies was analyzed: connecting science to real world phenomena, accessing community resources, integrating science into other subject areas, and using inquiry in science instruction. Quantitative and qualitative data revealed that a PBL science specialist does support classroom teachers in implementing teaching practices aligned to the conceptual shifts implicated by the NGSS; however, individual growth rates varied by instructional strategy. The results of this study provide a foundation for the legitimacy of utilizing a PBL-focused science specialist to support teachers in shifting their instructional practices in order to achieve the Next Generation Science Standards.

  16. Pathways in Learning to Teach Elementary Science: Navigating Contexts, Roles, Affordances and Constraints

    Science.gov (United States)

    Smith, Deborah C.; Jang, Shinho

    2011-01-01

    This case study of a fifth-year elementary intern's pathway in learning to teach science focused on her science methods course, placement science teaching, and reflections as a first-year teacher. We studied the sociocultural contexts within which the intern learned, their affordances and constraints, and participants' perspectives on their roles…

  17. Connecting Mathematics in Primary Science Inquiry Projects

    Science.gov (United States)

    So, Winnie Wing-mui

    2013-01-01

    Science as inquiry and mathematics as problem solving are conjoined fraternal twins attached by their similarities but with distinct differences. Inquiry and problem solving are promoted in contemporary science and mathematics education reforms as a critical attribute of the nature of disciplines, teaching methods, and learning outcomes involving…

  18. 20% Research & Design Science Project

    Science.gov (United States)

    Spear, Beth A.

    2015-04-01

    A project allowing employees to use 15 % of their time on independent projects was established at 3M in the 1950's. The result of this project included products like post it notes and masking tape. Google allows its employees to use 20% of their time on independently pursued projects. The company values creativity and innovation. Employees are allowed to explore projects of interest to them one day out of the week, 20 % of their work week. Products like AdSense, Gmail, Google Transit, Google News, and Google Talk are the result of this 20 % program. My school is implementing the Next Generation Science Standards (NGSS) as part of our regularly scheduled curriculum review. These new standards focus on the process of learning by doing and designing. The NGSS are very hands on and active. The new standards emphasize learning how to define, understand and solve problems in science and technology. In today's society everyone needs to be familiar with science and technology. This project allows students to develop and practice skills to help them be more comfortable and confident with science and technology while exploring something of interest to them. This project includes three major parts: research, design, and presentation. Students will spend approximately 2-4 weeks defining a project proposal and educating themselves by researching a science and technology topic that is of interest to them. In the next phase, 2-4 weeks, students design a product or plan to collect data for something related to their topic. The time spent on research and design will be dependant on the topic students select. Projects should be ambitious enough to encompass about six weeks. Lastly a presentation or demonstration incorporating the research and design of the project is created, peer reviewed and presented to the class. There are some problems anticipated or already experienced with this project. It is difficult for all students to choose a unique topic when you have large class sizes

  19. Core Skills for Effective Science Communication: A Teaching Resource for Undergraduate Science Education

    Science.gov (United States)

    Mercer-Mapstone, Lucy; Kuchel, Louise

    2017-01-01

    Science communication is a diverse and transdisciplinary field and is taught most effectively when the skills involved are tailored to specific educational contexts. Few academic resources exist to guide the teaching of communication with non-scientific audiences for an undergraduate science context. This mixed methods study aimed to explore what…

  20. Teaching and Learning Science through Song: Exploring the Experiences of Students and Teachers

    Science.gov (United States)

    Governor, Donna; Hall, Jori; Jackson, David

    2013-01-01

    This qualitative, multi-case study explored the use of science-content music for teaching and learning in six middle school science classrooms. The researcher sought to understand how teachers made use of content-rich songs for teaching science, how they impacted student engagement and learning, and what the experiences of these teachers and…

  1. Tensions Teaching Science for Equity: Lessons Learned from the Case of Ms. Dawson

    Science.gov (United States)

    Braaten, Melissa; Sheth, Manali

    2017-01-01

    When teachers engage in forms of science teaching that disrupt the status quo of typical school science practices, they often experience dilemmas as problems of practice that are difficult--or even impossible--to solve. This instrumental case study examines one teacher's efforts to teach science for equity across two contexts: a public middle…

  2. Preparing teachers for ambitious and culturally responsive science teaching

    Science.gov (United States)

    Seiler, Gale

    2013-03-01

    Communities, schools and classrooms across North America are becoming more ethnically, racially, and linguistically diverse, particularly in urban areas. Against this backdrop, underrepresentation of certain groups in science continues. Much attention has been devoted to multicultural education and the preparation of teachers for student diversity. In science education, much research has focused on classrooms as cultural spaces and the need for teachers to value and build upon students' everyday science knowledge and ways of sense-making. However it remains unclear how best to prepare science teachers for this kind of culturally responsive teaching. In attempting to envision how to prepare science teachers with cross-cultural competency, we can draw from a parallel line of research on preparing teachers for ambitious science instruction. In ambitious science instruction, students solve authentic problems and generate evidence and models to develop explanations of scientific phenomenon, an approach that necessitates great attention to students' thinking and sense-making, thus making it applicable to cultural relevance aims. In addition, this line of research on teacher preparation has developed specific tools and engages teachers in cycles of reflection and rehearsal as they develop instructional skills. While not addressing cross-cultural teaching specifically, this research provides insights into specific ways through which to prepare teachers for culturally responsive practices. In my presentation, I will report on efforts to join these two areas of research, that is, to combine ideas about multicultural science teacher preparation with what has been learned about how to develop ambitious science instruction. This research suggests a new model for urban science teacher preparation--one that focuses on developing specific teaching practices that elicit and build on student thinking, and doing so through cycles of individual and collective planning, rehearsal

  3. The Sources of Science Teaching Self-efficacy among Elementary School Teachers: A mediational model approach

    Science.gov (United States)

    Wang, Ya-Ling; Tsai, Chin-Chung; Wei, Shih-Hsuan

    2015-09-01

    This study aimed to investigate the factors accounting for science teaching self-efficacy and to examine the relationships among Taiwanese teachers' science teaching self-efficacy, teaching and learning conceptions, technological-pedagogical content knowledge for the Internet (TPACK-I), and attitudes toward Internet-based instruction (Attitudes) using a mediational model approach. A total of 233 science teachers from 41 elementary schools in Taiwan were invited to take part in the study. After ensuring the validity and reliability of each questionnaire, the results indicated that each measure had satisfactory validity and reliability. Furthermore, through mediational models, the results revealed that TPACK-I and Attitudes mediated the relationship between teaching and learning conceptions and science teaching self-efficacy, suggesting that (1) knowledge of and attitudes toward Internet-based instruction (KATII) mediated the positive relationship between constructivist conceptions of teaching and learning and outcome expectancy, and that (2) KATII mediated the negative correlations between traditional conceptions of teaching and learning and teaching efficacy.

  4. Examination of the Teaching Skills for Reading Scientific Materials Needed by Science Teachers by Comparing In-Service and Prospective Science Teachers

    OpenAIRE

    山根, 嵩史; 中條, 和光

    2016-01-01

    We examined the teaching skills for reading scientific materials needed by science teachers. We compared the views of teaching skills for reading scientific materials of science teachers both in service and in training. The result of text mining for free description of the teaching skills of both groups showed that, whereas trainee teachers emphasized language ability as a teaching skill (for example, the ability to image the contents of a text), current teachers emphasized teaching the curri...

  5. An analysis of the concept of teaching in elementary school science education

    Science.gov (United States)

    Seatter, Carol Eunice Scarff

    The problem for this thesis arises directly from several years of observation of science classrooms in British Columbia. The troubling phenomenon seen within numerous classrooms, taught by teachers claiming to be constructivist teachers, involved teachers fostering the idea that children can think about science in terms of their own ideas, that is, that children can think about science in common-sense terms. In the many cases I have observed, teachers justify this practice on the grounds of constructivist theory. However, this kind of "constructivist teaching" does not, in my opinion, lead to scientific reasoning. My argument begins with the premise that the development of scientific reasoning in children is necessary for science education. I will argue that the currently popular "constructivist" movement has significant potential to fail in producing scientific reasoning in children, as did its predecessor, the "discovery learning" movement of the 1960s. The incommensurable differences between scientific and common-sense reasoning are presented and discussed. This thesis examines constructivist theory in terms of its potential to hinder the development of scientific reasoning in children. Two features of the constructivist writings are examined: those which pertain to the nature of science, and those relating to the concept of teaching. A chapter on the logic of scientific inquiry is central to the thesis, as it describes and explains the concepts, forms of explanation and truth criteria unique to the discipline of science. The epistemological foundations of science education are discussed in terms of the realist/instrumentalist debate. The thesis argues in favor of a sophisticated realist view of knowledge, such as those offered by Hacking and Matthews who take into account Hanson's "theory-laden" observation without falling prey to a naive realist view. Reasoning in science is compared with children's common-sense reasoning in an attempt to further understand

  6. Teaching of anatomical sciences: A blended learning approach.

    Science.gov (United States)

    Khalil, Mohammed K; Abdel Meguid, Eiman M; Elkhider, Ihsan A

    2018-04-01

    Blended learning is the integration of different learning approaches, new technologies, and activities that combine traditional face-to-face teaching methods with authentic online methodologies. Although advances in educational technology have helped to expand the selection of different pedagogies, the teaching of anatomical sciences has been challenged by implementation difficulties and other limitations. These challenges are reported to include lack of time, costs, and lack of qualified teachers. Easy access to online information and advances in technology make it possible to resolve these limitations by adopting blended learning approaches. Blended learning strategies have been shown to improve students' academic performance, motivation, attitude, and satisfaction, and to provide convenient and flexible learning. Implementation of blended learning strategies has also proved cost effective. This article provides a theoretical foundation for blended learning and proposes a validated framework for the design of blended learning activities in the teaching and learning of anatomical sciences. Clin. Anat. 31:323-329, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  7. Thai in-service teacher understanding of nature of science in biology teaching: Case of Mali

    Science.gov (United States)

    Aiemsum-ang, Napapan; Yuenyong, Chokchai

    2018-01-01

    This paper aimed to investigate the existing ideas of nature of science (NOS) teaching in Thailand biology classroom. The study reported the existing ideas of nature of science (NOS) teaching of one biology teacher Mrs. Mali who had been teaching for 6 years at in a school in Khon Kaen city. Methodology regarded interpretive paradigm. Tools of interpretation included 2 months of classroom observation, interviewing, and questionnaire of NOS. The findings revealed Mali held good understanding of the nature of science in the aspect of the use of evidence, the aspect of knowledge inquiry through different observation and deduction, the aspect of creativity and imagination influencing science knowledge inquiry, and the aspect of changeable scientific knowledge. Her biology teaching indicated that she used both the deficient nature of science approach and the implicit nature of science approach. The implicit nature of science approach was applied mostly in 7 periods and only 2 periods were arranged using the deficient nature of science approach. The paper has implication for professional development and pre-service program on NOS teaching in Thailand.

  8. Teaching Critical Thinking? New Directions in Science Education

    Science.gov (United States)

    Osborne, Jonathan

    2014-01-01

    Critique and questioning are central to the practice of science; without argument and evaluation, the construction of reliable knowledge would be impossible. The challenge is to incorporate an understanding of the role of critique and, more importantly, the ability to engage in critique, within the teaching of science. The emphasis in both the US…

  9. An Analysis of Pre-Service Elementary Teachers' Understanding of Inquiry-Based Science Teaching

    Science.gov (United States)

    Lee, Carole K.; Shea, Marilyn

    2016-01-01

    This study examines how pre-service elementary teachers (PSETs) view inquiry-based science learning and teaching, and how the science methods course builds their confidence to teach inquiry science. Most PSETs think that inquiry is asking students questions rather than a formal set of pedagogical tools. In the present study, three groups of PSETs…

  10. Teaching Science in the Primary School: Surveying Teacher Wellbeing and Planning for Survival

    Science.gov (United States)

    Morgan, Anne-Marie

    2012-01-01

    A teacher-researcher in a primary school setting surveyed the middle years' teachers of her school and those in the local science hub group, to determine their confidence and satisfaction levels in relation to teaching science. Her results confirm feelings of inadequacy and reluctance to teach Science, but also indicate ways that schools can…

  11. The Rationale for a Teaching Innovation about the Interrelationship between Science and Technology

    Science.gov (United States)

    Hadjilouca, R.; Constantinou, C. P.; Papadouris, N.

    2011-01-01

    This paper refers to the development of a teaching innovation for the nature of science (NOS), for students aged 11-15, which specifically focuses on the interrelationship between science and technology. The development of the teaching and learning materials relied on inputs from three sources: the history and philosophy of science and technology,…

  12. A Longitudinal Investigation of the Preservice Science Teachers' Beliefs about Science Teaching during a Science Teacher Training Programme

    Science.gov (United States)

    Buldur, Serkan

    2017-01-01

    The aim of this longitudinal study was to investigate the changes in preservice science teachers' beliefs about science teaching during a science teacher training programme. The study was designed as a panel study, and the data were collected from the same participants at the end of each academic year during a four-year period. The participants…

  13. Teaching science with a multicultural agenda: The challenges and conflicts for preservice teachers

    Science.gov (United States)

    Yang, Kimberley

    This dissertation examines the challenges and conflicts that preservice teachers have when teaching science with a multicultural agenda. This study is based on the experience of three preservice teachers who have participated in a one or two semester(s) volunteered commitment teaching science to pre-kindergarten students at a homeless shelter in the South Bronx of New York City. Findings derived from in-depth interviews, observations, lesson planning and debriefing sessions, journals, questionnaires and extracurricular interaction of the researcher and participants, indicate that preservice teachers were initially uncertain about the philosophy and actual practice of teaching science with a multicultural agenda. Their experience at the homeless shelter brings up issues of social class and family background as determinants of access and success in science education, multicultural science as exclusive from the accepted science canon, and the value of practicing science education with a multicultural agenda. The philosophical framework for teaching science from a multicultural framework is based on ideas that stem from feminist theories of valuing the lived social and educational experiences of children, and critical theory that examines the role of school and science as culture. The intention of multicultural science education is to create a science education that is inclusive for students regardless of cultural background. This includes students who have been traditionally marginalized from school science. In many instances, children from severe inner-city economically impoverished environments have been overlooked as science-able within school culture.

  14. The Effect of a Collaborative Mentoring Program on Beginning Science Teachers' Inquiry-based Teaching Practice

    Science.gov (United States)

    Nam, Jeonghee; Seung, Eulsun; Go, MunSuk

    2013-03-01

    This study investigated how a collaborative mentoring program influenced beginning science teachers' inquiry-based teaching and their reflection on practice. The one-year program consisted of five one-on-one mentoring meetings, weekly science education seminars, weekly mentoring group discussions, and self-evaluation activities. The participants were three beginning science teachers and three mentors at the middle school level (7-9th grades) in an urban area of South Korea. For each beginning teacher, five lessons were evaluated in terms of lesson design/implementation, procedural knowledge, and classroom culture by using the Reformed Teaching Observation Protocol. Five aspects of the beginning teachers' reflections were identified. This study showed that a collaborative mentoring program focusing on inquiry-based science teaching encouraged the beginning teachers to reflect on their own perceptions and teaching practice in terms of inquiry-based science teaching, which led to changes in their teaching practice. This study also highlighted the importance of collaborative interactions between the mentors and the beginning teachers during the mentoring process.

  15. Effective Use of the Internet in Science Teaching.

    Science.gov (United States)

    Pickersgill, Dave

    2003-01-01

    Explores effective ways of utilizing the Internet to teach science. Discusses classroom layout, searching techniques, downloading, copyright issues, accessibility, web-page design, and site creation. (Author/NB)

  16. The teaching practices inventory: a new tool for characterizing college and university teaching in mathematics and science.

    Science.gov (United States)

    Wieman, Carl; Gilbert, Sarah

    2014-01-01

    We have created an inventory to characterize the teaching practices used in science and mathematics courses. This inventory can aid instructors and departments in reflecting on their teaching. It has been tested with several hundred university instructors and courses from mathematics and four science disciplines. Most instructors complete the inventory in 10 min or less, and the results allow meaningful comparisons of the teaching used for the different courses and instructors within a department and across different departments. We also show how the inventory results can be used to gauge the extent of use of research-based teaching practices, and we illustrate this with the inventory results for five departments. These results show the high degree of discrimination provided by the inventory, as well as its effectiveness in tracking the increase in the use of research-based teaching practices. © 2014 C. Wieman and S. Gilbert. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Pedagogical perspectives and implicit theories of teaching: First year science teachers emerging from a constructivist science education program

    Science.gov (United States)

    Dias, Michael James

    Traditional, teacher-centered pedagogies dominate current teaching practice in science education despite numerous research-based assertions that promote more progressive, student-centered teaching methods. Best-practice research emerging from science education reform efforts promotes experiential, collaborative learning environments in line with the constructivist referent. Thus there is a need to identify specific teacher education program designs that will promote the utilization of constructivist theory among new teachers. This study explored the learning-to-teach process of four first-year high school teachers, all graduates of a constructivist-based science education program known as Teacher Education Environments in Mathematics and Science (TEEMS). Pedagogical perspectives and implicit theories were explored to identify common themes and their relation to the pre-service program and the teaching context. Qualitative methods were employed to gather and analyze the data. In depth, semi-structured interviews (Seidman, 1998) formed the primary data for probing the context and details of the teachers' experience as well as the personal meaning derived from first year practice. Teacher journals and teaching artifacts were utilized to validate and challenge the primary data. Through an open-coding technique (Strauss & Corbin, 1990) codes, and themes were generated from which assertions were made. The pedagogical perspectives apparent among the participants in this study emerged as six patterns in teaching method: (1) utilization of grouping strategies, (2) utilization of techniques that allow the students to help teach, (3) similar format of daily instructional strategy, (4) utilization of techniques intended to promote engagement, (5) utilization of review strategies, (6) assessment by daily monitoring and traditional tests, (7) restructuring content knowledge. Assertions from implicit theory data include: (1) Time constraints and lack of teaching experience made

  18. Science Song Project: Integration of Science, Technology and Music to Learn Science and Process Skills

    Directory of Open Access Journals (Sweden)

    Jiyoon Yoon

    2017-07-01

    Full Text Available It has been critical to find a way for teachers to motivate their young children to learn science and improve science achievement. Since music has been used as a tool for educating young students, this study introduces the science song project to teacher candidates that contains science facts, concepts, laws and theories, and combines them with music for motivating their young children to learn science and improve science achievement. The purpose of the study is to determine the effect of the science song project on teacher candidates’ understanding of science processing skills and their attitudes toward science. The participants were 45 science teacher candidates who were enrolled in an EC-6 (Early Childhood through Grade 6 program in the teacher certification program at a racially diverse Texas public research university. To collect data, this study used two instruments: pre-and post-self efficacy tests before and after the science teacher candidates experienced the science song project and final reflective essay at the end of the semester. The results show that while developing their songs, the participating teacher candidates experienced a process for science practice, understood science concepts and facts, and positively improved attitudes toward science. This study suggests that the science song project is a science instruction offering rich experiences of process-based learning and positive attitudes toward science.

  19. Gaps in Science Content Knowledge Encountered during Teaching Practice: A Study of Early-Career Middle-School Science Teachers

    Science.gov (United States)

    Kinghorn, Brian Edward

    2013-01-01

    Subject-specific content knowledge is crucial for effective science teaching, yet many teachers are entering the field not fully equipped with all the science content knowledge they need to effectively teach the subject. Learning from practice is one approach to bridging the gap between what practicing teachers know and what they need to know.…

  20. Reflecting on Teaching of the "Appliance of Science"

    Science.gov (United States)

    Linfield, Rachel

    2016-01-01

    As a primary school teacher, Rachel Linfield has always been insistent that her students were taught and understood the use behind a particular science fact or process. These days, however, she finds very few students who can recall a single useful science fact that they learned in primary school. Linfield wonders if teaching of the National…

  1. Raspberry Pi: An Effective Vehicle in Teaching the Internet of Things in Computer Science and Engineering

    Directory of Open Access Journals (Sweden)

    Xiaoyang Zhong

    2016-09-01

    Full Text Available The Raspberry Pi is being increasingly adopted as a suitable platform in both research and applications of the Internet of Things (IoT. This study presents a novel project-based teaching and learning approach devised in an Internet of Things course for undergraduate students in the computer science major, where the Raspberry Pi platform is used as an effective vehicle to greatly enhance students’ learning performance and experience. The devised course begins with learning simple hardware and moves to building a whole prototype system. This paper illustrates the outcome of the proposed approach by demonstrating the prototype IoT systems designed and developed by students at the end of one such IoT course. Furthermore, this study provides insights and lessons regarding how to facilitate the use of the Raspberry Pi platform to successfully achieve the goals of project-based teaching and learning in IoT.

  2. Experiencing teaching and learning quantitative reasoning in a project-based context

    Science.gov (United States)

    Muir, Tracey; Beswick, Kim; Callingham, Rosemary; Jade, Katara

    2016-12-01

    This paper presents the findings of a small-scale study that investigated the issues and challenges of teaching and learning about quantitative reasoning (QR) within a project-based learning (PjBL) context. Students and teachers were surveyed and interviewed about their experiences of learning and teaching QR in that context in contrast to teaching and learning mathematics in more traditional settings. The grade 9-12 student participants were characterised by a history of disengagement with mathematics and school in general, and the teacher participants were non-mathematics specialist teachers. Both students and teachers were new to the PjBL situation, which resulted in the teaching/learning relationship being a reciprocal one. The findings indicated that students and teachers viewed QR positively, particularly when compared with traditional mathematics teaching, yet tensions were identified for aspects such as implementation of curriculum and integration of relevant mathematics into projects. Both sets of participants identified situations where learning QR was particularly successful, along with concerns or difficulties about integrating QR into project work. The findings have implications for educators, who may need to examine their own approaches to mathematics teaching, particularly in terms of facilitating student engagement with the subject.

  3. Modeling Sources of Teaching Self-Efficacy for Science, Technology, Engineering, and Mathematics Graduate Teaching Assistants

    Science.gov (United States)

    DeChenne, Sue Ellen; Koziol, Natalie; Needham, Mark; Enochs, Larry

    2015-01-01

    Graduate teaching assistants (GTAs) in science, technology, engineering, and mathematics (STEM) have a large impact on undergraduate instruction but are often poorly prepared to teach. Teaching self-efficacy, an instructor’s belief in his or her ability to teach specific student populations a specific subject, is an important predictor of teaching skill and student achievement. A model of sources of teaching self-efficacy is developed from the GTA literature. This model indicates that teaching experience, departmental teaching climate (including peer and supervisor relationships), and GTA professional development (PD) can act as sources of teaching self-efficacy. The model is pilot tested with 128 GTAs from nine different STEM departments at a midsized research university. Structural equation modeling reveals that K–12 teaching experience, hours and perceived quality of GTA PD, and perception of the departmental facilitating environment are significant factors that explain 32% of the variance in the teaching self-efficacy of STEM GTAs. This model highlights the important contributions of the departmental environment and GTA PD in the development of teaching self-efficacy for STEM GTAs. PMID:26250562

  4. Teaching Reform of Civil Engineering Materials Course Based on Project-Driven Pedagogy

    Science.gov (United States)

    Yidong, Xu; Wei, Chen; WeiguoJian, You; Jiansheng, Shen

    2018-05-01

    In view of the scattered experimental projects in practical courses of civil engineering materials, the poor practical ability of students and the disconnection between practical teaching and theoretical teaching, this paper proposes a practical teaching procedure. Firstly, the single experiment should be offered which emphasizes on improving the students’ basic experimental operating ability. Secondly, the compressive experiment is offered and the overall quality of students can be examined in the form of project team. In order to investigate the effect of teaching reform, the comparative analysis of the students of three grades (2014, 2015 and 2016) majored in civil engineering was conducted. The result shows that the students’ ability of experimental operation is obviously improved by using the project driven method-based teaching reform. Besides, the students’ ability to analyse and solve problems has also been improved.

  5. Pre-service Science Teachers’ Self-efficacy Beliefs to Teach Socio-scientific Issues

    OpenAIRE

    Muğaloğlu, Ebru Z.; Küçük, Zerrin Doğança; Güven, Devrim

    2016-01-01

    This study aims to examine self-efficacy of pre-service science teachers to teach socio-scientific issues (SSI). Twenty-three senior pre-service science teachers participated in the study. Science Teaching Efficacy Belief Instrument (STEBI) was modified with an emphasis on SSI rather than scientific issues. The modified STEBI was applied to the participants before and after the intervention. As for the six-week intervention, three modules, which focused on understanding nature of SSI, teachin...

  6. Science school and culture school: improving the efficiency of high school science teaching in a system of mass science education.

    Science.gov (United States)

    Charlton, Bruce G

    2006-01-01

    Educational expansion in western countries has been achieved mainly by adding years to full-time education; however, this process has probably reduced efficiency. Sooner or later, efficiency must improve, with a greater educational attainment per year. Future societies will probably wish more people to study science throughout high school (aged c. 11-19 years) and the first college degree. 'Science' may be defined as any abstract, systematic and research-based discipline: including mathematics, statistics and the natural sciences, economics, music theory, linguistics, and the conceptual or quantitative social sciences. Since formal teaching is usually necessary to learn science, science education should be regarded as the core function of high schools. One standard way to improve efficiency is the 'division of labour', with increased specialization of function. Modern schools are already specialized: teachers are specialized according to age-group taught, subject matter expertise, and administrative responsibilities. School students are stratified by age and academic aptitude. I propose a further institutional division of school function between science education, and cultural education (including education in arts, sports, ethics, social interaction and good citizenship). Existing schools might split into 'science school' and 'culture school', reflected in distinct buildings and zones, separate administrative structures, and the recruitment of differently-specialized teaching personnel. Science school would be distinguished by its focus on education in disciplines which promote abstract systematic cognition. All students would spend some part of each day (how much would depend on their aptitude and motivation) in the 'science school'; experiencing a traditional-style, didactic, disciplined and rigorous academic education. The remainder of the students' time at school would be spent in the cultural division, which would focus on broader aspects, and aim to generate

  7. Approaches To Teaching Science in the Jordanian Primary School.

    Science.gov (United States)

    Qualter, Anne; Abu-Hola, I. R. A.

    2000-01-01

    Reports on a study of the influence of different approaches to teaching units from the Jordanian science curriculum on over 600 students from grades 6, 9, and 10. Trains a small sample of male and female teachers in the use of cooperative learning and lecture-demonstration approaches to teaching. (Contains 17 references.) (Author/YDS)

  8. Barriers to teaching ocean science in Greek schools

    Science.gov (United States)

    Papathanassiou, Martha; McHugh, Patricia; Domegan, Christine; Gotensparre, Susan; Fauville, Geraldine; Parr, Jon

    2017-04-01

    Most European citizens are not aware of the full extent of the medical, economic, social, political and environmental importance of the sea to Europe and beyond. Most citizens are not aware of how our day-to-day actions can have a cumulative effect on the health of the ocean - a necessary resource that must be protected for all life on the planet Earth to exist. In other words, European citizens lack a sense of "Ocean Literacy" - an understanding of the ocean's influence on us and our influence on the ocean. Sea Change, a 3.5 million EU-funded project started in March 2015, is designed to bring about a fundamental 'Sea Change' in the way European citizens view their relationship with the sea, by empowering them as 'Ocean Literate' citizens - to take direct and sustainable action towards healthy seas and ocean, healthy communities and ultimately, a healthy planet. The project involves 17 partners from nine countries across Europe and will bring about real actions using behavior change and social engagement methodologies. Building upon the latest research on citizen and stakeholder attitudes, perceptions and values, the Sea Change partnership will design and implement mobilisation activities focused on education, community, government agencies, policy makers and citizens. Eight consultations were held around Europe with regards to barriers to teaching ocean science at schools. All project partners used a Collective Intelligence (CI) methodology to involve target group(s) in active, direct participation for Sea Change. CI is a "barriers and value" structuring methodology, a process of critical learning and reflection followed by action, and then by more critical learning to enable mobilisation, design and development 'with' people rather than on their behalf. In Greece, the consultation was carried out by HCMR, the lead partner for Greece. Participants were recruited through personal contact and existing education networks that the HCMR has previously worked with. In

  9. Engaging Pre-Service Teachers to Teach Science Contextually with Scientific Approach Instructional Video

    Science.gov (United States)

    Susantini, E.; Kurniasari, I.; Fauziah, A. N. M.; Prastowo, T.; Kholiq, A.; Rosdiana, L.

    2018-01-01

    Contextual teaching and learning/CTL presents new concepts in real-life experiences and situations where students can find out the meaningful relationship between abstract ideas and practical applications. Implementing contextual teaching by using scientific approach will foster teachers to find the constructive ways of delivering and organizing science content. This research developed an instructional video that represented a modeling of using a scientific approach in CTL. The aim of this research are to engage pre-service teachers in learning how to teach CTL and to show how pre-service teachers’ responses about learning how to teach CTL using an instructional video. The subjects of this research were ten pre-service teachers in Department of Natural Sciences, Universitas Negeri Surabaya, Indonesia. All subjects observed the instructional video which demonstrated contextual teaching and learning combined with the scientific approach as they completed a worksheet to analyze the video content. The results showed that pre-service teachers could learn to teach contextually as well as applying the scientific approach in science classroom through a modeling in the instructional video. They also responded that the instructional video could help them to learn to teach each component contextual teaching as well as scientific approach.

  10. Development of Socioscientific Issues-Based Teaching for Preservice Science Teachers

    OpenAIRE

    Prasart Nuangchalerm

    2009-01-01

    Problem statement: In the context of science education reform in Thailand, we need to prepare science teachers who can face science and social issues controversial; teachers can response the question socioscientific issues and let their students to meet the goal of science education. This study investigated the conception leading preservice science teachers approaching socioscientific issues-based teaching. The activities in classroom emphasized on peer discussion about science and social ref...

  11. Science Teaching Methods Preferred by Grade 9 Students in Finland

    Science.gov (United States)

    Juuti, Kalle; Lavonen, Jari; Uitto, Anna; Byman, Reijo; Meisalo, Veijo

    2010-01-01

    Students find science relevant to society, but they do not find school science interesting. This survey study analyzes Finnish grade 9 students' actual experiences with science teaching methods and their preferences for how they would like to study science. The survey data were collected from 3,626 grade 9 students (1,772 girls and 1,832 boys)…

  12. Overview of Neutron Science Project

    Energy Technology Data Exchange (ETDEWEB)

    Mukaiyama, Takehiko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1997-11-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, (1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, (2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and (3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  13. Overview of Neutron Science Project

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko

    1997-01-01

    JAERI has launched the Neutron Science Project which aims at bringing scientific and technological innovation for the 21st century in the fields of basic science and nuclear technology using a high power spallation neutron source. The Project is preparing the design for a high intensity pulsed and cw spallation neutron sources for such basic science as neutron structural biology, material science, and for accelerator-driven transmutation of long-lived radio-nuclides which are associated with nuclear power generation. The major facilities to be constructed under the Project are, 1) a super-conducting proton linac with the proton energy of 1.5 GeV and the maximum beam power of 8 MW, 2) a spallation target station with input beam power of 5 MW allowing high intensity pulsed neutron beams for neutron scattering, and 3) research facility complex for accelerator-driven transmutation experiments, neutron physics, material irradiation, isotopes production, spallation produced RI beam experiments for exotic nuclei investigation. (author)

  14. Epistemological Beliefs and Practices of Science Faculty with Education Specialties: Combining Teaching Scholarship and Interdisciplinarity

    Science.gov (United States)

    Addy, Tracie Marcella

    2011-12-01

    Across the United States institutions of higher education address educational reform by valuing scholarship that focuses on teaching and learning, especially in STEM fields. University science departments can encourage teaching scholarship by hiring science faculty with education specialties (SFES), individuals who have expertise in both science and science education. The goal of this study was to understand how the epistemological beliefs and teaching practices of SFES relate to national reform efforts in science teaching promoting student-centered instruction. The research questions guiding this investigation were: (1) What epistemological belief systems do science faculty with education specialties espouse concerning the teaching and learning of science?; and (2) What are the classroom practices of science faculty with education specialties? How are these practices congruent with the reform efforts described by the National Research Council (1996, 2001, 2003)? The theoretical framework guiding the study was interdisciplinarity, the integration of knowledge between two or more disciplines (science and science pedagogy). The research design employed mixed (qualitative and quantitative) approaches and focused on 25 volunteer SFES participants. The TBI, ATI, and RTOP were used to triangulate self-report and videotaped teaching vignettes, and develop profiles of SFES. Of the 25 SFES participants, 82 percent of their beliefs were transitional or student-centered beliefs. Seventy-two percent of the 25 SFES espoused more student-focused than teacher focused approaches. The classroom practices of 10 SFES were on average transitional in nature (at the boundary of student-focused and teacher-focused). The beliefs of SFES appeared to be influenced by the sizes of their courses, and were positive correlated with reform-based teaching practices. There was a relationship between the degree to which they implemented reform-based practice and their perceived level of

  15. Teaching Environmental Health Science for Informed Citizenship in the Science Classroom and Afterschool Clubs

    Science.gov (United States)

    Keselman, Alla; Levin, Daniel M.; Hundal, Savreen; Kramer, Judy F.; Matzkin, Karen; Dutcher, Gale

    2013-01-01

    In the era of growing concerns about human-induced climate change and sustainable development, it is important for the schools to prepare students for meaningful engagement with environmental policies that will determine the future of our society. To do this, educators need to face a number of challenges. These include deciding on the science knowledge and skills needed for informed citizenship, identifying teaching practices for fostering such knowledge and skills, and finding ways to implement new practices into the tightly packed existing curriculum. This paper describes two collaborative efforts between the U.S. National Library of Medicine (NLM) and University of Maryland College of Education that attempt to meet these challenges. The focus of both projects is on helping students develop information seeking and evaluation and argumentation skills, and applying them to complex socio-scientific issues that have bearing on students’ daily lives. The first effort involves co-designing an afterschool environmental health club curriculum with an interdisciplinary team of middle school teachers. The second effort is the development and implementation of a week-long school drinking water quality debate activity in a high school environmental science classroom. Both projects center on Tox Town, an NLM web resource that introduces students to environmental health issues in everyday environments. The paper describes successes and challenges of environmental health curriculum development, including teachers’ and researchers’ perception of contextual constraints in the club and classroom setting, tensions inherent in co-design, and students’ experience with socio-scientific argumentation. PMID:24382985

  16. Increasing Bellevue School District's elementary teachers' capacity for teaching inquiry-based science: Using ideas from contemporary learning theory to inform professional development

    Science.gov (United States)

    Maury, Tracy Anne

    This Capstone project examined how leaders in the Bellevue School District can increase elementary teachers' capacity for teaching inquiry-based science through the use of professional learning activities that are grounded in ideas from human learning theory. A framework for professional development was constructed and from that framework, a set of professional learning activities were developed as a means to support teacher learning while project participants piloted new curriculum called the Isopod Habitat Challenge. Teachers in the project increased their understanding of the learning theory principles of preconceptions and metacognition. Teachers did not increase their understanding of the principle of learning with understanding, although they did articulate the significance of engaging children in student-led inquiry cycles. Data from the curriculum revision and professional development project coupled with ideas from learning theory, cognition and policy implementation, and learning community literatures suggest Bellevue's leaders can encourage peer-to-peer interaction, link professional development to teachers' daily practice, and capitalize on technology as ways to increase elementary teachers' capacity for teaching inquiry-based science. These lessons also have significance for supporting teacher learning and efficacy in other subject areas and at other levels in the system.

  17. Results from a Faculty Development Program in Teaching Economics

    Science.gov (United States)

    Walstad, William B.; Salemi, Michael K.

    2011-01-01

    The Teaching Innovations Program (TIP) was a six-year project funded by the National Science Foundation that gave economics instructors the opportunity to learn interactive teaching strategies for use in undergraduate economics courses. TIP participants first attended a teaching workshop that presented various teaching strategies. They then could…

  18. Balancing Academic Teaching, Research, and Service: a Paradigm Emerging from NSF-TUES Sponsored Project Experiences

    Science.gov (United States)

    De Paor, D. G.

    2012-12-01

    As every academic administrator stresses in interviews with new faculty, the role of a professor today involves balancing three areas - teaching, research, and service. Few institutions can afford the old policy of promoting and tenuring faculty based solely on research output and grantsmanship, whilst ignoring poor teaching outcomes. Outreach activities involving parents and the extramural community are increasingly important as expensive universities and four-year colleges seek to demonstrate their relevance in the age of much less expensive community colleges and distance education. Nevertheless, many faculty complain that teaching and outreach duties compete for their valuable research time. Some fields of research have such broad impacts that they merit the dedicated time of our best scientists. However, other research projects constitute little more than publicly funded professorial hobbies. The challenge is to reliably identify and prioritize the research questions that merit investigation. IN ODU's geospatial visualization group, we instituted a policy requiring Ph.D. theses to include a component (at least one chapter) dedicated to the development and testing of learning resources. TAs test visualizations in their lab sections in tandem with their research studies. They must incorporate original geophysical mapping, modeling, and/or analysis in order to justify a degree in the Physics Department (the traditional home of Geophysics at our institution) rather than, say, the College of Education. Geospatial graduate students also train to offer planetarium presentations to the public using digital full-dome projection technology that can be used with a wide range of geoscience and planetary science topics. Thus they tackle the three aspects of academic work from the outset. In contrast, students in other programs frequently serve as TAs in their first and then switch to grant-supported RA work, resulting in a steady stream of new TAs with little or no

  19. Citizen science projects for non-science astronomy students

    OpenAIRE

    Barmby, Pauline; Gallagher, S. C.; Cami, J.

    2014-01-01

    A poster from the 2011 Western Conference on Science Education, describing the use of citizen science project Galaxy Zoo in a non-majors astronomy course. Lots more on this topic at https://www.zooniverse.org/education  

  20. Looking in a science classroom: exploring possibilities of creative cultural divergence in science teaching and learning

    Science.gov (United States)

    Baron, Alex; Chen, Hsiao-Lan Sharon

    2012-03-01

    Worldwide proliferation of pedagogical innovations creates expanding potential in the field of science education. While some teachers effectively improve students' scientific learning, others struggle to achieve desirable student outcomes. This study explores a Taiwanese science teacher's ability to effectively enhance her students' science learning. The authors visited a Taipei city primary school class taught by an experienced science teacher during a 4-week unit on astronomy, with a total of eight, 90-minute periods. Research methods employed in this study included video capture of each class as well as reflective interviews with the instructor, eliciting the teacher's reflection upon both her pedagogical choices and the perceived results of these choices. We report that the teacher successfully teaches science by creatively diverging from culturally generated educational expectations. Although the pedagogical techniques and ideas enumerated in the study are relevant specifically to Taiwan, creative cultural divergence might be replicated to improve science teaching worldwide.

  1. Interaction between Science Teaching Orientation and Pedagogical Content Knowledge Components

    Science.gov (United States)

    Demirdögen, Betül

    2016-01-01

    The purpose of this case study is to delve into the complexities of how preservice science teachers' science teaching orientations, viewed as an interrelated set of beliefs, interact with the other components of pedagogical content knowledge (PCK). Eight preservice science teachers participated in the study. Qualitative data were collected in the…

  2. A Comparative Study of the Quality of Teaching Learning Process at Post Graduate Level in the Faculty of Science and Social Science

    Science.gov (United States)

    Shahzadi, Uzma; Shaheen, Gulnaz; Shah, Ashfaque Ahmed

    2012-01-01

    The study was intended to compare the quality of teaching learning process in the faculty of social science and science at University of Sargodha. This study was descriptive and quantitative in nature. The objectives of the study were to compare the quality of teaching learning process in the faculty of social science and science at University of…

  3. A Longitudinal Study of Implementing Reality Pedagogy in an Urban Science Classroom: Effects, Challenges, and Recommendations for Science Teaching and Learning

    Science.gov (United States)

    Borges, Sheila Ivelisse

    Statistics indicate that students who reside in forgotten places do not engage in science-related careers. This is problematic because we are not tapping into diverse talent that could very well make scientific strides and because there is a moral obligation for equity as discussed in Science for all (AAAS, 1989). Research suggests that one of the reasons for this disparity is that students feel alienated from science early on in their K--12 education due to their inability to connect culturally with their teachers (Tobin, 2001). Urban students share an urban culture, a way of knowing and being that is separate from that of the majority of the teacher workforce whom have not experienced the nuances of urban culture. These teachers have challenges when teaching in urban classrooms and have a myriad of difficulties such as classroom management, limited access to experienced science colleagues and limited resources to teach effectively. This leads them to leaving the teaching profession affecting already high teacher attrition rates in urban areas (Ingersol, 2001). In order to address these issues a culturally relevant pedagogy, called reality pedagogy (Emdin, 2011), was implemented in an urban science classroom using a bricolage (Denzin & Lincoln, 2005) of different theories such as social capital (Bourdieu, 1986) and critical race theory (Ladson-Billings & Tate, 1995), along with reality pedagogy to construct a qualitative sociocultural lens. Reality pedagogy has five tools, which are cogenerative dialogues, coteaching, cosmopolitanism, context, and content. In this longitudinal critical ethnography a science teacher in an alternative teaching certification program was supported for two years as she implemented the tools of reality pedagogy with her urban students. Findings revealed that the science teacher enacted four racial microaggressions against her students, which negatively affected the teacher-student relationship and science teaching and learning. As the

  4. The book of science mysteries classroom science activities to support student enquiry-based learning

    CERN Document Server

    McOwan, Peter; Olivotto, Cristina

    2015-01-01

    In this booklet, you will be introduced to an exciting new way to teach science in your classroom. The TEMI project (Teaching Enquiry with Mysteries Incorporated) is an EU-funded project that brings together experts in teacher training from across Europe to help you introduce enquiry-based learning successfully in the classroom and improve student engagement and skills.

  5. Elementary teachers' knowledge and practices in teaching science to English language learners

    Science.gov (United States)

    Santau, Alexandra O.

    Efforts to improve education---more concretely science education---by creating fundamental shifts in standards for students and teachers have been launched by educators and policy makers in recent years. The new standards for science instruction address improvements in student learning, program development, assessment, and professional development for teachers, with the goal to prepare US students for the academic demands of the 21st century. The study examined teachers' knowledge and practices in science instruction with English language learning (ELL) students. It also examined relationships among key domains of science instruction with ELL students, as well as profiles of teaching practices. The four domains included: (1) teachers' knowledge of science content, (2) teaching practices to promote scientific understanding, (3) teaching practices to promote scientific inquiry, and (4) teaching practices to support English language development during science instruction. The study was part of a larger 5-year research and development intervention aimed at promoting science and literacy achievement of ELL students in urban elementary schools. The study involved 32 third grade, 21 fourth grade, and 17 fifth grade teachers participating in the first-year implementation of the intervention. Based on teachers' questionnaire responses, classroom observation ratings, and post-observation interviews, results indicated that (1) teachers' knowledge and practices were within the bounds of the intervention, but short of reform-oriented practices and (2) relationships among the four domains existed, especially at grade 5. These findings can provide insights for professional development and future research, along with accountability policies.

  6. Exploring the Relations of Inquiry-Based Teaching to Science Achievement and Dispositions in 54 Countries

    Science.gov (United States)

    Cairns, Dean; Areepattamannil, Shaljan

    2017-06-01

    This study, drawing on data from the third cycle of the Program for International Student Assessment (PISA) and employing three-level hierarchical linear modeling (HLM) as an analytic strategy, examined the relations of inquiry-based science teaching to science achievement and dispositions toward science among 170,474 15-year-old students from 4780 schools in 54 countries across the globe. The results of the HLM analyses, after accounting for student-, school-, and country-level demographic characteristics and students' dispositions toward science, revealed that inquiry-based science teaching was significantly negatively related to science achievement. In contrast, inquiry-based science teaching was significantly positively associated with dispositions toward science, such as interest in and enjoyment of science learning, instrumental and future-oriented science motivation, and science self-concept and self-efficacy. Implications of the findings for policy and practice are discussed.

  7. Citizens Science for Sustainability (SuScit) Project Briefing

    DEFF Research Database (Denmark)

    Eames, Malcolm; Mortensen, Jonas Egmose; Adebowale, Maria

    This project briefing gives a short overview of the Citizens Science for Sustainability (SuScit) Project.......This project briefing gives a short overview of the Citizens Science for Sustainability (SuScit) Project....

  8. Developing Turkish Preservice Preschool Teachers' Attitudes and Understanding about Teaching Science through Play

    Science.gov (United States)

    Bulunuz, Mizrap

    2012-01-01

    This research studied the development of preservice teachers' understandings and attitudes about teaching science through playful experiences. Subjects were 94 senior preservice teachers in two sections of a science methods class on teaching preschool children. Data sources were semi-structured interviews and open-ended questionnaire at the…

  9. Science of Materials: A Case Study of Intentional Teaching in the Early Years

    Science.gov (United States)

    Hackling, Mark; Barratt-Pugh, Caroline

    2012-01-01

    Australia's Early Years Learning Framework and leading international researchers argue for more intentional and purposeful teaching of science in the early years. This case study of exemplary practice illustrates intentional teaching of science materials which opened-up learning opportunities in literacy and number. Student-led hands-on…

  10. Teaching Writing and Critical Thinking in Large Political Science Classes

    Science.gov (United States)

    Franklin, Daniel; Weinberg, Joseph; Reifler, Jason

    2014-01-01

    In the interest of developing a combination of teaching techniques designed to maximize efficiency "and" quality of instruction, we have experimentally tested three separate and relatively common teaching techniques in three large introductory political science classes at a large urban public university. Our results indicate that the…

  11. Teaching Primary Science in Rural and Regional Australia: Some Challenges Facing Practicing and Pre-Service Teachers

    Science.gov (United States)

    Laidlaw, Kristy-Rebecca; Taylor, Neil; Fletcher, Peter

    2009-01-01

    The teaching of science has long been viewed as problematic within primary classrooms across Australia. This study explores the teaching of primary science in an area of rural and regional Australia (the New England Region of New South Wales) where small populations, remote settings and isolation can make the teaching of science and other Key…

  12. The Role of Technology in Science Teaching Activities: Web Based Teaching Applications

    Directory of Open Access Journals (Sweden)

    Fatma ALKAN

    2016-12-01

    Full Text Available 2015 Abstract In this research the attitudes of pre-service teachers studying at Hacettepe University, Division of Science Education towards the importance of technological equipment in chemistry education activities and how effective they find technology in teaching different skills and applications have been examined. Pre-test/post-test control group design has been used in the research. In the experimental group Titrimetric Analysis has been conducted with simulations supported web based instruction and in the control group with teacher-centered instruction. In general, it has been found out that the attitudes of pre-service teachers in experiment group towards the importance of technological equipment as a teaching tool in chemistry are more positive than those in control group. In other words, statistically significant differences have occurred in attitudes of pre-service teachers in both experiment and control group towards the role of technology in chemistry teaching activities after web based teaching.

  13. Science Teaching Experiences in Informal Settings: One Way to Enrich the Preparation Program for Preservice Science Teachers

    Science.gov (United States)

    Hsu, Pei-Ling

    2016-01-01

    The high attrition rate of new science teachers demonstrates the urgent need to incorporate effective practices in teacher preparation programs to better equip preservice science teachers. The purpose of the study is to demonstrate a way to enrich preservice science teachers' preparation by incorporating informal science teaching practice into…

  14. Teaching Project Management On-Line: Lessons Learned from MOOCs

    Science.gov (United States)

    Falcao, Rita; Fernandes, Luis

    2016-01-01

    Creating a course for teaching project management online in a full online distance-learning environment was a challenge. Working with adult learners from different continents that want to complete a Master degree was an additional challenge. This paper describes how different MOOCs were used to learn about teaching -(meta) e-learning. MOOCs…

  15. Changes in Science Teaching Self-Efficacy among Primary Teacher Education Students

    Science.gov (United States)

    Palmer, David; Dixon, Jeanette; Archer, Jennifer

    2015-01-01

    Many preservice primary teachers have low self-efficacy for science teaching. Although science methods courses have often been shown to enhance self-efficacy, science content courses have been relatively ineffective in this respect. This study investigated whether a tailored science content course would enhance self-efficacy. The participants were…

  16. The College Science Learning Cycle: An Instructional Model for Reformed Teaching.

    Science.gov (United States)

    Withers, Michelle

    2016-01-01

    Finding the time for developing or locating new class materials is one of the biggest barriers for instructors reforming their teaching approaches. Even instructors who have taken part in training workshops may feel overwhelmed by the task of transforming passive lecture content to engaging learning activities. Learning cycles have been instrumental in helping K-12 science teachers design effective instruction for decades. This paper introduces the College Science Learning Cycle adapted from the popular Biological Sciences Curriculum Study 5E to help science, technology, engineering, and mathematics faculty develop course materials to support active, student-centered teaching approaches in their classrooms. The learning cycle is embedded in backward design, a learning outcomes-oriented instructional design approach, and is accompanied by resources and examples to help faculty transform their teaching in a time-efficient manner. © 2016 M. Withers. CBE—Life Sciences Education © 2016 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  17. Primary School Teachers' Understanding of Science Process Skills in Relation to Their Teaching Qualifications and Teaching Experience

    Science.gov (United States)

    Shahali, Edy H. M.; Halim, Lilia; Treagust, David F.; Won, Mihye; Chandrasegaran, A. L.

    2017-04-01

    This study investigated the understanding of science process skills (SPS) of 329 science teachers from 52 primary schools selected by random sampling. The understanding of SPS was measured in terms of conceptual and operational aspects of SPS using an instrument called the Science Process Skills Questionnaire (SPSQ) with a Cronbach's alpha reliability of 0.88. The findings showed that the teachers' conceptual understanding of SPS was much weaker than their practical application of SPS. The teachers' understanding of SPS differed by their teaching qualifications but not so much by their teaching experience. Emphasis needs to be given to both conceptual and operational understanding of SPS during pre-service and in-service teacher education to enable science teachers to use the skills and implement inquiry-based lessons in schools.

  18. Preparing prospective physics teachers to teach integrated science in junior high school

    Science.gov (United States)

    Wiyanto; Hartono; Nugroho, S. E.

    2018-03-01

    The physics education study program especially prepares its students to teach physics in senior high school, however in reality many its graduates have become science teachers in junior high school. Therefore introducing integrated science to prospective physics teachers is important, because based on the curriculum, science in the junior high school should be taught integratedly. This study analyzed integrated science teaching materials that developed by prospective physics teachers. Results from this study showed that majority of the integration materials that developed by the prospective physics teachers focused on topic with an overlapping concept or theme as connecting between two or three subjects.

  19. Science Teaching Efficacy of Preservice Elementary Teachers: Examination of the Multiple Factors Reported as Influential

    Science.gov (United States)

    Tastan Kirik, Özgecan

    2013-01-01

    This study explores the science teaching efficacy beliefs of preservice elementary teachers and the relationship between efficacy beliefs and multiple factors such as antecedent factors (participation in extracurricular activities and number of science and science teaching methods courses taken), conceptual understanding, classroom management…

  20. Tips and Tools for Teaching Planetary Science

    Science.gov (United States)

    Schneider, N. M.

    2011-10-01

    The poster will describe handson exercises with demonstrations, clicker questions and discussion to demonstrate how to help students understand planets on a deeper conceptual level. We'll also discuss ways to take the latest discoveries beyond "wow" and turn them into teachable moments. The goal is to give modern strategies for teaching planetary science, emphasizing physical concepts and comparative principles. All will be given digital copies of video clips, demonstration descriptions, clicker questions, web links and powerpoint slidesets on recent planetary science discoveries.

  1. The GeoBus project: a mobile Earth science outreach project for secondary schools in the UK

    Science.gov (United States)

    Robinson, R. A.; Roper, K. A.; Macfarlane, D.; Pike, C.

    2013-12-01

    GeoBus is an educational outreach project that was developed in 2012 by the Department of Earth and Environmental Sciences at the University of St Andrews. It is sponsored jointly by industry and the UK Research Councils (NERC and EPSRC). The aims of GeoBus are to support the teaching of Earth Science in secondary (high) schools by providing teaching resources that are not readily available to educators, to inspire young learners by incorporating new science research outcomes in teaching activities, and to provide a bridge between industry, higher education institutions, research councils and schools. These linkages are important for introducing career opportunities in Earth sciences. Since its launch, GeoBus has visited over 140 different schools across the length and breadth of Scotland. Over 20,000 pupils will have been involved in practical hands-on Earth science learning activities by December 2013, including many in remote and disadvantaged regions. The resources that GeoBus brings to schools include all the materials and equipment needed to run workshops, field excursions and Enterprise Challenges. GeoBus provides 16 workshops which can be adapted for different learning levels. Workshops are 50 to 80 minute sessions for up to 30 pupils and topics include minerals, rocks, fossils, geological time, natural resources, climate change, volcanoes, earthquakes, and geological mapping. As with all GeoBus activities, the inclusion of equipment and technology otherwise unavailable to schools substantially increases the engagement of pupils in workshops. Field excursions are popular, as many teachers have little or no field trainng and feel unable to lead this type of activity. The excursions comprise half or full day sessions for up to 30 pupils and are tailored to cover the local geology or geomorphology. The Enterprise Challenges are half or full day sessions for up to 100 pupils. Current topics are Drilling for Oil, Renewable Energy, a Journey to Mars and Scotland

  2. Taking the Plunge: Next Steps in Engaged Learning: Project Kaleidoscope-Connecticut Conference of Independent Colleges Conference for Science Educators.

    Science.gov (United States)

    Frederick, Jennifer

    2010-09-01

    College and university science educators from across Connecticut gathered at Yale's West Campus in April 2010 for a Project Kaleidoscope (PKAL) program entitled "Taking the Plunge: Next Steps in Engaged Learning." Funded by the National Science Foundation (NSF) and co-sponsored by the Connecticut Conference of Independent Colleges (CCIC) and Yale's McDougal Graduate Teaching Center, the event was the latest in a PKAL series of one-day conferences aimed at equipping science, technology, engineering, and math (STEM) instructors with effective approaches to engaging students and training future scientists.

  3. Teaching 5th grade science for aesthetic understanding

    Science.gov (United States)

    Girod, Mark A.

    Many scientists speak with great zeal about the role of aesthetics and beauty in their science and inquiry. Few systematic efforts have been made to teach science in ways that appeal directly to aesthetics and this research is designed to do just that. Drawing from the aesthetic theory of Dewey, I describe an analytic lens called learning for aesthetic understanding that finds power in the degree to which our perceptions of the world are transformed, our interests and enthusiasm piqued, and our actions changed as we seek further experiences in the world. This learning theory is contrasted against two other current and popular theories of science learning, that of learning for conceptual understanding via conceptual change theory and learning for a language-oriented or discourse-based understanding. After a lengthy articulation of the pedagogical strategies used to teach for aesthetic understanding the research is described in which comparisons are drawn between students in two 5th grade classrooms---one taught for the goal of conceptual understanding and the other taught for the goal of aesthetic understanding. Results of this comparison show that more students in the treatment classroom had aesthetic experiences with science ideas and came to an aesthetic understanding when studying weather, erosion, and structure of matter than students in the control group. Also statistically significant effects are shown on measures of interest, affect, and efficacy for students in the treatment class. On measures of conceptual understanding it appears that treatment class students learned more and forgot less over time than control class students. The effect of the treatment does not generally depend on gender, ethnicity, or prior achievement except in students' identity beliefs about themselves as science learners. In this case, a significant interaction for treatment class females on science identity beliefs did occur. A discussion of these results as well as elaboration and

  4. Investigating Coherence among Turkish Elementary Science Teachers' Teaching Belief Systems, Pedagogical Content Knowledge and Practice

    Science.gov (United States)

    Bahcivan, Eralp; Cobern, William W.

    2016-01-01

    This study investigated comprehensive science teaching belief systems and their relation to science teachers' pedagogical content knowledge and teaching practices. Rokeach's (1968) belief system was used as a framework for representing the hierarchy among in-service teachers' teaching beliefs. This study employed a multiple case study design with…

  5. Conservation Science Fair Projects.

    Science.gov (United States)

    Soil Conservation Society of America, Ankeny, IA.

    Included are ideas, suggestions, and examples for selecting and designing conservation science projects. Over 70 possible conservation subject areas are presented with suggested projects. References are cited with each of these subject areas, and a separate list of annotated references is included. The references pertain to general subject…

  6. Teaching science and ethics to undergraduates: a multidisciplinary approach.

    Science.gov (United States)

    McGowan, Alan H

    2013-06-01

    The teaching of the ethical implications of scientific advances in science courses for undergraduates has significant advantages for both science and non-science majors. The article describes three courses taught by the author as examples of the concept, and examines the disadvantages as well as the advantages. A significant advantage of this approach is that many students take the courses primarily because of the ethical component who would not otherwise take science. A disadvantage is less time in the course for the science; arguably, this is outweighed by the greater retention of the science when it is put into context.

  7. A Comparison of Student Teachers' Beliefs from Four Different Science Teaching Domains Using a Mixed Methods Design

    Science.gov (United States)

    Markic, Silvija; Eilks, Ingo

    2012-03-01

    The study presented in this paper integrates data from four combined research studies, which are both qualitative and quantitative in nature. The studies describe freshman science student teachers' beliefs about teaching and learning. These freshmen intend to become teachers in Germany in one of four science teaching domains (secondary biology, chemistry, and physics, respectively, as well as primary school science). The qualitative data from the first study are based on student teachers' drawings of themselves in teaching situations. It was formulated using Grounded Theory to test three scales: Beliefs about Classroom Organisation, Beliefs about Teaching Objectives, and Epistemological Beliefs. Three further quantitative studies give insight into student teachers' curricular beliefs, their beliefs about the nature of science itself, and about the student- and/or teacher-centredness of science teaching. This paper describes a design to integrate all these data within a mixed methods framework. The aim of the current study is to describe a broad, triangulated picture of freshman science student teachers' beliefs about teaching and learning within their respective science teaching domain. The study reveals clear tendencies between the sub-groups. The results suggest that freshman chemistry and-even more pronouncedly-freshman physics student teachers profess quite traditional beliefs about science teaching and learning. Biology and primary school student teachers express beliefs about their subjects which are more in line with modern educational theory. The mixed methods approach towards the student teachers' beliefs is reflected upon and implications for science education and science teacher education are discussed.

  8. Microteaching Lesson Study: An Approach to Prepare Teacher Candidates to Teach Science through Inquiry

    Science.gov (United States)

    Zhou, George; Xu, Judy

    2017-01-01

    Inquiry-based teaching has become the most recommended approach in science education for a few decades; however, it is not a common practice yet in k-12 school classrooms. In order to prepare future teachers to teach science through inquiry, a Microteaching Lesson Study (MLS) approach was employed in our science methods courses. Instead of asking…

  9. Stateless Programming as a Motif for Teaching Computer Science

    Science.gov (United States)

    Cohen, Avi

    2004-01-01

    With the development of XML Web Services, the Internet could become an integral part of and the basis for teaching computer science and software engineering. The approach has been applied to a university course for students studying introduction to computer science from the point of view of software development in a stateless, Internet…

  10. Integrating Art into Science Education: A Survey of Science Teachers' Practices

    Science.gov (United States)

    Turkka, Jaakko; Haatainen, Outi; Aksela, Maija

    2017-01-01

    Numerous case studies suggest that integrating art and science education could engage students with creative projects and encourage students to express science in multitude of ways. However, little is known about art integration practices in everyday science teaching. With a qualitative e-survey, this study explores the art integration of science…

  11. Neutron Science Project at JAERI

    International Nuclear Information System (INIS)

    Oyama, Yukio

    1998-01-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  12. Neutron Science Project at JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Yukio [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-03-01

    Japan Atomic Energy Research Institute, JAERI, is proposing the Neutron Science Project which aims at bringing about scientific and technological innovation in the fields of basic science and nuclear technology for the 21st century, using high intense spallation neutron source. The research areas to be promoted by the project are neutron structural biology, material science, nuclear physics and various technology developments for accelerator-driven transmutation of long-lived radionuclides which are associated with nuclear power generation. JAERI has been carrying out a R and D program for the partitioning and transmutation with the intention to solve the problem of nuclear fuel cycle backend. The accelerator-driven transmutation study is also covered with this program. In the present stage of the project, a conceptual design is being prepared for a research complex utilizing spallation neutrons, including a high intensity pulsed and steady spallation neutron source with 1.5 GeV and 8 MW superconducting proton linac. The idea and facility plan of the project is described, including the status of technological development of the accelerator, target and facilities. (author)

  13. Preparing graduate student teaching assistants in the sciences: An intensive workshop focused on active learning.

    Science.gov (United States)

    Roden, Julie A; Jakob, Susanne; Roehrig, Casey; Brenner, Tamara J

    2018-03-12

    In the past ten years, increasing evidence has demonstrated that scientific teaching and active learning improve student retention and learning gains in the sciences. Graduate teaching assistants (GTAs), who play an important role in undergraduate education at many universities, require training in these methods to encourage implementation, long-term adoption, and advocacy. Here, we describe the design and evaluation of a two-day training workshop for first-year GTAs in the life sciences. This workshop combines instruction in current research and theory supporting teaching science through active learning as well as opportunities for participants to practice teaching and receive feedback from peers and mentors. Postworkshop assessments indicated that GTA participants' knowledge of key topics increased during the workshop. In follow-up evaluations, participants reported that the workshop helped them prepare for teaching. This workshop design can easily be adapted to a wide range of science disciplines. Overall, the workshop prepares graduate students to engage, include, and support undergraduates from a variety of backgrounds when teaching in the sciences. © 2018 by The International Union of Biochemistry and Molecular Biology, 2018. © 2018 The International Union of Biochemistry and Molecular Biology.

  14. Animal Science Project

    International Nuclear Information System (INIS)

    Anon.

    Researches carried out in the 'Animal Science Project' of the Agricultural Nuclear Energy Center, Piracicaba, Sao Paulo state, Brazil, are described. Such researches comprise : immunology and animal nutrition. Tracer techniques are employed in this study. (M.A.) [pt

  15. Plant Biology Science Projects.

    Science.gov (United States)

    Hershey, David R.

    This book contains science projects about seed plants that deal with plant physiology, plant ecology, and plant agriculture. Each of the projects includes a step-by-step experiment followed by suggestions for further investigations. Chapters include: (1) "Bean Seed Imbibition"; (2) "Germination Percentages of Different Types of Seeds"; (3)…

  16. The Influence of Informal Science Education Experiences on the Development of Two Beginning Teachers' Science Classroom Teaching Identity

    Science.gov (United States)

    Katz, Phyllis; Randy McGinnis, J.; Riedinger, Kelly; Marbach-Ad, Gili; Dai, Amy

    2013-12-01

    In case studies of two first-year elementary classroom teachers, we explored the influence of informal science education (ISE) they experienced in their teacher education program. Our theoretical lens was identity development, delimited to classroom science teaching. We used complementary data collection methods and analysis, including interviews, electronic communications, and drawing prompts. We found that our two participants referenced as important the ISE experiences in their development of classroom science identities that included resilience, excitement and engagement in science teaching and learning-qualities that are emphasized in ISE contexts. The data support our conclusion that the ISE experiences proved especially memorable to teacher education interns during the implementation of the No Child Left Behind policy which concentrated on school-tested subjects other than science.

  17. Projects for the implementation of science technology society approach in basic concept of natural science course as application of optical and electrical instruments’ material

    Science.gov (United States)

    Satria, E.

    2018-03-01

    Preservice teachers in primary education should be well equipped to meet the challenges of teaching primary science effectively in 21century. The purpose of this research was to describe the projects for the implementation of Science-Technology-Society (STS) approach in Basic Concept of Natural Science course as application of optical and electrical instruments’ material by the preservice teachers in Elementary Schools Teacher Education Program. One of the reasons is the lack of preservice teachers’ ability in making projects for application of STS approach and optical and electrical instruments’ material in Basic Concept of Natural Science course. This research applied descriptive method. The instrument of the research was the researcher himself. The data were gathered through observation and documentation. Based on the results of the research, it was figured out that preservice teachers, in groups, were creatively and successful to make the projects of optical and electrical instruments assigned such as projector and doorbell. It was suggested that the construction of the instruments should be better (fixed and strong structure) and more attractive for both instruments, and used strong light source, high quality images, and it could use speaker box for projector, power battery, and heat sink for electrical instruments.

  18. Effects of a Science Content Course on Elementary Preservice Teachers' Self-Efficacy of Teaching Science

    Science.gov (United States)

    Bergman, Daniel J.; Morphew, Jason

    2015-01-01

    The preparation of elementary teachers to successfully teach science in their classrooms is a central issue in science education. The teacher preparation program at a large Midwestern university was modified to include a new science content course aimed at this need. A pre-/postassessment research model involved participants (N = 154) completing a…

  19. Learning and Teaching about the Nature of Science through Process Skills

    Science.gov (United States)

    Mulvey, Bridget K.

    2012-01-01

    This dissertation, a three-paper set, explored whether the process skills-based approach to nature of science instruction improves teachers' understandings, intentions to teach, and instructional practice related to the nature of science. The first paper examined the nature of science views of 53 preservice science teachers before and after a…

  20. Teaching for Creativity by Science Teachers in Grades 5-10

    Science.gov (United States)

    Al-Abdali, Nasser S.; Al-Balushi, Sulaiman M.

    2016-01-01

    This classroom observation study explored how science teachers (N = 22) teach for creativity in grades 5-10 in Oman. We designed an observation form with 4 main categories that targeted the instructional practices related to teaching for creativity: questioning strategy, teacher's responses to students' ideas, classroom activities to support…

  1. Books and Stories in Children's Science

    Science.gov (United States)

    McCullagh, John; Walsh, Glenda; Greenwood, Julian

    2010-01-01

    A group of third-year undergraduate student teachers used books and stories during science enquiry lessons as part of the BASICS (Books And Stories In Children's Science) project funded by the AstraZeneca Science Teaching Trust. This three-year project involved a cluster of five primary schools in the greater Belfast area. The aim of the project…

  2. Using a Moodle-Based Professional Development Program to Train Science Teachers to Teach for Creativity and its Effectiveness on their Teaching Practices

    Science.gov (United States)

    Al-Balushi, Sulaiman M.; Al-Abdali, Nasser S.

    2015-08-01

    This study describes a distance learning professional development program that we designed for the purpose of training science teachers to teach for creativity. The Moodle platform was used to host the training. To ensure that trainees would benefit from this distance learning program, we designed the instructional activities according to the Community of Inquiry framework, which consists of three main elements: cognitive presence, teaching presence and social presence. Nineteen science teachers in Oman engaged in the training, which lasted for 36 working days. To measure the effectiveness of the training program on science teachers' instructional practices related to teaching for creativity, we used a pre-post one-group quasi-experimental design. An observation form was used to assess and document participants' practices. Paired t test results showed that there was a statistically significant improvement in science teachers' practices related to teaching for creativity. During the implementation of the training program, we observed that cognitive presence and teaching presence were the two most successful elements of the program. The training program involved participants in different instructional activities which were designed to help them understand the role of creativity in science; a wide range of instructional techniques designed to nurture students' creativity was discussed. The program also provided participants with opportunities to relate their practices to teaching for creativity and to design and implement lesson plans geared toward teaching for creativity. However, the social presence element was not satisfying. Participants' virtual interactions with each other and their engagement in online discussion forums were limited. This paper provides some recommendations to overcome such pitfalls.

  3. Pacific CRYSTAL Project: Explicit Literacy Instruction Embedded in Middle School Science Classrooms

    Science.gov (United States)

    Anthony, Robert J.; Tippett, Christine D.; Yore, Larry D.

    2010-01-01

    Science literacy leading to fuller and informed participation in the public debate about science, technology, society, and environmental (STSE) issues that produce justified decisions and sustainable actions is the shared and central goal of the Pacific CRYSTAL Project. There is broad agreement by science education researchers that learners need to be able to construct and interpret specific scientific discourses and texts to be literate in science. We view these capabilities as components in the fundamental sense of science literacy and as interactive and synergetic to the derived sense of science literacy, which refers to having general knowledge about concepts, principles, and methods of science. This article reports on preliminary findings from Years 1, 2, and 3 of the 5-year Pacific CRYSTAL project that aims to identify, develop, and embed explicit literacy instruction in science programs to achieve both senses of science literacy. A community-based, opportunistic, engineering research and development approach has been utilized to identify problems and concerns and to design instructional solutions for teaching middle school (Grades 6, 7, and 8) science. Initial data indicate (a) opportunities in programs for embedding literacy instruction and tasks; (b) difficulties generalist teachers have with new science curricula; (c) difficulties specialist science teachers have with literacy activities, strategies, genre, and writing-to-learn science tasks; and (d) potential literacy activities (vocabulary, reading comprehension, visual literacy, genre, and writing tasks) for middle school science. Preinstruction student assessments indicate a range of challenges in achieving effective learning in science and the need for extensive teacher support to achieve the project’s goals. Postinstructional assessments indicate positive changes in students’ ability to perform target reading and writing tasks. Qualitative data indicate teachers’ desire for external direction

  4. Interactive Methods for Teaching Action Potentials, an Example of Teaching Innovation from Neuroscience Postdoctoral Fellows in the Fellowships in Research and Science Teaching (FIRST) Program

    Science.gov (United States)

    Keen-Rhinehart, E.; Eisen, A.; Eaton, D.; McCormack, K.

    2009-01-01

    Acquiring a faculty position in academia is extremely competitive and now typically requires more than just solid research skills and knowledge of one’s field. Recruiting institutions currently desire new faculty that can teach effectively, but few postdoctoral positions provide any training in teaching methods. Fellowships in Research and Science Teaching (FIRST) is a successful postdoctoral training program funded by the National Institutes of Health (NIH) providing training in both research and teaching methodology. The FIRST program provides fellows with outstanding interdisciplinary biomedical research training in fields such as neuroscience. The postdoctoral research experience is integrated with a teaching program which includes a How to Teach course, instruction in classroom technology and course development and mentored teaching. During their mentored teaching experiences, fellows are encouraged to explore innovative teaching methodologies and to perform science teaching research to improve classroom learning. FIRST fellows teaching neuroscience to undergraduates have observed that many of these students have difficulty with the topic of neuroscience. Therefore, we investigated the effects of interactive teaching methods for this topic. We tested two interactive teaching methodologies to determine if they would improve learning and retention of this information when compared with standard lectures. The interactive methods for teaching action potentials increased understanding and retention. Therefore, FIRST provides excellent teaching training, partly by enhancing the ability of fellows to integrate innovative teaching methods into their instruction. This training in turn provides fellows that matriculate from this program more of the characteristics that hiring institutions desire in their new faculty. PMID:23493377

  5. Teacher students' dilemmas when teaching science through inquiry

    Science.gov (United States)

    Krämer, Philipp; Nessler, Stefan H.; Schlüter, Kirsten

    2015-09-01

    Background: Inquiry-based science education (IBSE) is suitable to teach scientific contents as well as to foster scientific skills. Similar conclusions are drawn by studies with respect to scientific literacy, motivational aspects, vocabulary knowledge, conceptual understandings, critical thinking, and attitudes toward science. Nevertheless, IBSE is rarely adopted in schools. Often barriers for teachers account for this lack, with the result that even good teachers struggle to teach science as inquiry. More importantly, studies indicate that several barriers and constraints could be ascribed to problems teacher students have at the university stage. Purpose: The purpose of this explorative investigation is to examine the problems teacher students have when teaching science through inquiry. In order to draw a holistic picture of these problems, we identified problems from three different points of view leading to the research question: What problems regarding IBSE do teacher students have from an objective, a subjective, and a self-reflective perspective? Design & method: Using video analysis and observation tools as well as qualitative content analysis and open questionnaires we identified problems from each perspective. Results: The objectively stated problems comprise the lack of essential features of IBSE especially concerning 'Supporting pupils' own investigations' and 'Guiding analysis and conclusions.' The subjectively perceived problems comprise concerns about 'Teachers' abilities' and 'Pupils' abilities,' 'Differentiated instruction' and institutional frame 'Conditions' while the self-reflectively noticed problems mainly comprise concerns about 'Allowing inquiry,' 'Instructional Aspects,' and 'Pupils' behavior.' Conclusions: Each of the three different perspectives provides plenty of problems, partially overlapping, partially complementing one another, and partially revealing completely new problems. Consequently, teacher educators have to consider these

  6. Project Lifescape | Initiatives | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    Project Lifescape. This project is part of the Academy initiative to enhance the quality of science education. It is pursued in collaboration with the Centre for Ecological Sciences at the Indian Institute of Science to spread biodiversity literacy, expecially within the high school and college student community, and to involve them ...

  7. A Project-based Learning approach for teaching Robotics to ...

    African Journals Online (AJOL)

    In this research we used a project-based learning approach to teach robotics basics to undergraduate business computing students. The course coverage includes basic electronics, robot construction and programming using arduino. Students developed and tested a robot prototype. The project was evaluated using a ...

  8. The effects of topic choice in project-based instruction on undergraduate physical science students' interest, ownership, and motivation

    Science.gov (United States)

    Milner-Bolotin, Marina

    2001-07-01

    significant impact on their motivational orientation, while their initial interest in the project topic did. The latter was found to be related to students' ownership of the project, which was found to lead to improved mastery goal orientation. These findings indicate that incorporating project-based learning in science teaching may lead to increased student mastery goal orientation, and may result in improved science learning.

  9. The distinctiveness and effectiveness of science teaching in the Malaysian `Smart school'

    Science.gov (United States)

    Tek Ong, Eng; Ruthven, Kenneth

    2010-04-01

    A recent reform initiative in the Malaysian educational system has sought to develop 'Smart schools', intended to better prepare students for adult life in a developing economy and to increase the flow of young people prepared for scientific and technological careers. The study reported in this paper examined lower-secondary science teaching, comparing two Smart schools officially judged to be successfully implementing the reform, with two neighbouring mainstream schools. Through analysis of classroom observation, supported by teacher interview and student report, the distinctive features of science teaching in the Smart schools were found to be use of ICT-based resources and of student-centred approaches, often intertwined to provide extended support for learning; accompanied by a near absence of the note giving and copying prevalent in the mainstream schools. Through analysis of measures of student attitude to science, science process skills and general science attainment, science teaching in Smart schools was found to be relatively effective overall. However, while the positive attitude effect was general, both academic effects were much weaker amongst students who had been of lower attainment on entry to secondary school.

  10. Leon Cooper's Perspective on Teaching Science: An Interview Study

    Science.gov (United States)

    Niaz, Mansoor; Klassen, Stephen; McMillan, Barbara; Metz, Don

    2010-01-01

    The authors of this paper portray the perspective of Professor Leon Cooper, a theoretical physicist, Nobel laureate, active researcher, and physics textbook author, on teaching science and on the nature of science (NOS). The views presented emerged from an interview prepared by the authors and responded to in writing by Professor Cooper. Based on…

  11. Animated movies and cartoons in teaching science topics

    OpenAIRE

    Jeraj, Tina; Susman, Katarina

    2016-01-01

    Children meet cartoons in their early childhood in their home environment and afterwards also in their school environment. Cartoons and animated movies in teaching process strongly motivates and evoke good learning processes through watching, discussing and active participation in accompanying classroom activities. In this contribution, the survey about the presence of science topics and science sli-ups (errors, in contrary with reality) in selected cartoons is presented. In the research, ten...

  12. Elementary school science teachers' reflection for nature of science: Workshop of NOS explicit and reflective on force and motion learning activity

    Science.gov (United States)

    Patho, Khanittha; Yuenyong, Chokchai; Chamrat, Suthida

    2018-01-01

    The nature of science has been part of Thailand's science education curriculum since 2008. However, teachers lack of understanding about the nature of science (NOS) and its teaching, particularly element school science teachers. In 2012, the Science Institute of Thailand MOE, started a project of Elementary Science Teacher Professional Development to enhance their thinking about the Nature of Science. The project aimed to enhance teachers' understanding of NOS, science teaching for explicit and reflective NOS, with the aim of extending their understanding of NOS to other teachers. This project selected 366 educational persons. The group was made up of a teacher and a teacher supervisor from 183 educational areas in 74 provinces all Thailand. The project provided a one week workshop and a year's follow up. The week-long workshop consisted of 11 activities of science teaching for explicit reflection on 8 aspects of NOS. Workshop of NOS explicit and reflective on force and motion learning activity is one of eight activities. This activity provided participants to learn force and motion and NOS from the traditional toy "Bang-Poh". The activity tried to enhance participants to explicit NOS for 5 aspects including empirical basis, subjectivity, creativity, observation and inference, and sociocultural embeddedness. The explicit NOS worksheet provided questions to ask participants to reflect their existing ideas about NOS. The paper examines elementary school science teachers' understanding of NOS from the force and motion learning activity which provided explicit reflection on 5 NOS aspects. An interpretive paradigm was used to analyse the teachers' reflections in a NOS worksheet. The findings indicated that majority of them could reflect about the empirical basis of science and creativity but few reflected on observation and inference, or sociocultural embeddedness. The paper will explain the teachers' NOS thinking and discuss the further enhancing of their understanding

  13. The transformation of science and mathematics content knowledge into teaching content by university faculty

    Science.gov (United States)

    Flynn, Natalie P.

    This study developed a survey from the existing literature in an attempt to illuminate the processes, tools, insights, and events that allow university science and mathematics content experts (Ph.D.'s) unpack their expertise in order to teach develop and teach undergraduate students. A pilot study was conducted at an urban university in order to refine the survey. The study consisted of 72 science or mathematics Ph.D. faculty members that teach at a research-based urban university. Follow-up interviews were conducted with 21 volunteer faculty to further explore their methods and tools for developing and implementing teaching within their discipline. Statistical analysis of the data revealed: faculty that taught while obtaining their Ph.D. were less confident in their ability to teach successful and faculty that received training in teaching believed that students have difficult to change misconceptions and do not commit enough time to their course. Student centered textbooks ranked the highest among tools used to gain teaching strategies followed by grading of exams and assignments for gaining insights into student knowledge and difficulties. Science and mathematics education literature and university provided education session ranked the lowest in rating scale for providing strategies for teaching. The open-ended survey questions were sub-divided and analyzed by the number of years of experience to identify the development of teaching knowledge over time and revealed that teaching became more interactive, less lecture based, and more engaging. As faculty matured and gained experience they became more aware of student misconceptions and difficulties often changing their teaching to eliminate such issues. As confidence levels increase their teaching included more technology-based tools, became more interactive, incorporated problem based activities, and became more flexible. This change occurred when and if faculty members altered their thinking about their

  14. 'Adotta scienza e arte nella tua classe': The results of a successfully teaching project which combines science with art

    International Nuclear Information System (INIS)

    Giansanti, S.

    2015-01-01

    The project called 'Adotta scienza e arte nella tua classe' ('Adopt Science and Art in your class'), on the interconnection between science and art, has been addressed to the Italian secondary middle and high school involving more than 200 teachers and about 2200 students. The main purpose of this project is to make the young students aware of the strong link between science and art is a unique cultural and interdisciplinary occasion. To reach this goal, the Adotta project asked students to produce an artwork inspired by the interpretation of a quotation among a hundred commented quotes by physicists, mathematicians, scientist, writers, artists, accompanied by an original short sentence written by students themselves. More than 1000 artworks have been produced and collected in two galleries on Facebook. From their analysis emerges the students’ feeling about science, which is usually associated to human brain, based on mathematical laws and related to technological progress, but it is also a powerful tool that should be responsibly used. This project also valorizes teachers’ role in scientific education through activities that encourage students to recognize science in every aspect of their lives.

  15. Teaching/Research Project "Wheelmap"

    Science.gov (United States)

    Gollenstede, Andreas

    2018-05-01

    In recent years new didactic concepts and approaches have been developed and evaluated at the universities. The concept for cartography lectures presented in this article is based on the close link of research and teaching/learning. The students are involved in all essential steps of a scientific project taking place during a series of lectures - beginning with the development of the scientific issues, followed by the choice and execution of the research methods and finally the presentation of the achieved outcomes. The specific project introduced here is based on self-experiments in which students took the perspective of wheelchair users entrusted with the task to map places, which are accessible for people with impairments. Among others, the goal set for the students was to develop an appropriate concept for the mobile acquisition of data and to visualise the final results by different methods of cartography.

  16. CHALLENGING PROJECTS OF TEACHING ACTIVITIES IN SPEAKING CLASS

    Directory of Open Access Journals (Sweden)

    Teguh Sarosa

    2017-04-01

    Full Text Available This paper proposes an alternative way of teaching speaking through challenging classroom activities. The abundant number of teaching techniques in speaking skill designed by linguists and English practitioners make English second-language teachers exultant in searching and designing classroom activities. Since teaching speaking could do with accuracy and fluency, teachers should provide a conducive atmosphere for students’ free will in expressing their thoughts without being afraid of making mistakes as well as a favorable condition for fostering students’ correctness in producing utterances. Designing challenging projects which encompass interactive activities can be used as an alternative model for developing learners’ fluency and repetitive doings can be used for fostering learners’ accuracy. Interactive activities involving information gap demand the second-language learners’ critical thinking in organizing the logical relationships among ideas, the soundness of evidence, and the differences between fact and opinion in order to keep the communication flows. Whereas the repetitive doings help second-language learners in producing appropriate utterances. Besides, the project upshots contribute contentments to students in appreciating theirs collaborative efforts.

  17. Teaching and learning theories, and teaching methods used in postgraduate education in the health sciences: a systematic review protocol.

    Science.gov (United States)

    McInerney, Patricia A; Green-Thompson, Lionel P

    2017-04-01

    The objective of this scoping review is to determine the theories of teaching and learning, and/or models and/or methods used in teaching in postgraduate education in the health sciences. The longer term objective is to use the information gathered to design a workshop for teachers of postgraduate students.The question that this review seeks to answer is: what theories of teaching and learning, and/or models and/or methods of teaching are used in postgraduate teaching?

  18. ScienceDesk Project Overview

    Science.gov (United States)

    Keller, Richard M.; Norvig, Peter (Technical Monitor)

    2000-01-01

    NASA's ScienceDesk Project at the Ames Research Center is responsible for scientific knowledge management which includes ensuring the capture, preservation, and traceability of scientific knowledge. Other responsibilities include: 1) Maintaining uniform information access which is achieved through intelligent indexing and visualization, 2) Collaborating both asynchronous and synchronous science teamwork, 3) Monitoring and controlling semi-autonomous remote experimentation.

  19. Daily practical activities and science teaching at EJA: Teacher and students' perception

    Directory of Open Access Journals (Sweden)

    Denise Westphal Merazzi

    2007-06-01

    Full Text Available The main theme of this paper is the science teaching in Adults and Youth Education. It was investigated the students' perceptions of adult and youth education (elementary school and their teachers, from science content's development through the works involving practical activities of everyday life. In this context, the methodology used in the research process was based on a survey of qualitative and quantitative approach, with hermeneutic content analysis' methodology and technique. In quantitative terms, we used the average ranking and statistical tests of Wilcoxon. Analyzing the data obtained, it was observed that the use of practical activities in science teaching in adult education is a satisfactory strategy for teaching and learning process and that there is a need to instill these practices in young and adults' education

  20. Doing gender/teaching science: A feminist poststructural analysis of middle school science teachers' identity negotiations

    Science.gov (United States)

    Sowell, Scott P.

    This research joins the gender equity conversation within science education by providing a feminist poststructural analysis of teachers' doing gender and teaching science. Feminist poststructuralism is used in recognition of the oppressive nature of dualistic modes of thought, which often reduce reality into a limiting either/or fallacy and can be theoretically constraining as research within any particular field becomes more sophisticated. By uprooting the concept of gendered identity from the unproductive grip of essentialism, and conceptualizing it instead as a shifting 'work in progress,' feminist poststructuralism provides an invigorating theoretical framework from which to conduct inquiries. From a this perspective, the identity of a teacher, as any identity, is not a fixed entity, but rather an unfinished project, swarmed upon by a variety of competing discourses. Situated in a rural middle school in the Florida panhandle, this research explores how numerous discourses compete to define what it means to be a female science teacher. More specifically, the aims of this research are to explore: (a) how the participants negotiated successful gendered identities within science and (b) how this taking up of subject positions crystallized into classroom practices which worked to reproduce and/or challenge commonsense notions of the heteropatriarchal gender dualism as well as the enmeshment of masculinity and science. Findings illustrate a wide array of classroom pedagogical practices, ranging from antioppressive emancipatory constructions of both gender and science to more traditional objectivist constructions that validated the patriarchal status quo. Explicating teacher identity as effects of these pedagogical approaches proved insightful in unveiling notions of resistance, frustration, enthusiasm, and agency as the teachers reflected on their practice.

  1. Development of an Analysis Model from the Perspectives of Science, Individual and Society in the Teaching of Science

    Directory of Open Access Journals (Sweden)

    José Manuel do Carmo

    2016-12-01

    Full Text Available The basic vision of learning science has changed as scientific culture concepts evolution and the nature of the teaching of science go along. From a model essentially based on information acquisition, science instruction has included the practice of the science method when the importance of emphasizing the development of personal skills, thinking processes, and action was considered. The concern about citizens’ education in matters referring to the relationship between science and society and enlightened social participation demanded a special attention in investigation and in students’ participation in issues related to urban, natural, and technological environment. This research seeks to develop an integrative model of curriculum organizations based on these three axes or perspectives: science, individual, and society. A matrix enabling the analysis of curricular proposals and organization plans of didactic units is built, as well as the observation of teachers’ representations in the teaching of science.

  2. Development and Experiment in College Teaching.

    Science.gov (United States)

    Committee on Institutional Cooperation.

    These reports comprise sample collections of experimental instructional projects seeking new and better arrangements for teaching. The entries in section one, describe department-based projects in accounting, art history, biology, botany, business administration, communication, counseling, dairy science, design, education, engineering, language,…

  3. Teaching mathematical modelling through project work

    DEFF Research Database (Denmark)

    Blomhøj, Morten; Kjeldsen, Tinne Hoff

    2006-01-01

    are reported in manners suitable for internet publication for colleagues. The reports and the related discussions reveal interesting dilemmas concerning the teaching of mathematical modelling and how to cope with these through “setting the scene” for the students modelling projects and through dialogues......The paper presents and analyses experiences from developing and running an in-service course in project work and mathematical modelling for mathematics teachers in the Danish gymnasium, e.g. upper secondary level, grade 10-12. The course objective is to support the teachers to develop, try out...... in their own classes, evaluate and report a project based problem oriented course in mathematical modelling. The in-service course runs over one semester and includes three seminars of 3, 1 and 2 days. Experiences show that the course objectives in general are fulfilled and that the course projects...

  4. Teaching the content in context: Preparing "highly qualified" and "high quality" teachers for instruction in underserved secondary science classrooms

    Science.gov (United States)

    Tolbert, Sara E.

    2011-12-01

    This dissertation research project presents the results of a longitudinal study that investigates the knowledge, beliefs, and practices of 13 preservice secondary science teachers participating in a science teacher credentialing/Masters program designed to integrate issues of equity and diversity throughout coursework and seminars. Results are presented in the form of three papers: The first paper describes changes in preservice teacher knowledge about contextualization in science instruction, where contextualization is defined as facilitating authentic connections between science learning and relevant personal, social, cultural, ecological, and political contexts of students in diverse secondary classrooms; the second paper relates changes in the self-efficacy and content-specific beliefs about science, science teaching, diversity, and diversity in science instruction; and the final paper communicates the experiences and abilities of four "social justice advocates" learning to contextualize science instruction in underserved secondary placement classrooms. Results indicate that secondary student teachers developed more sophisticated understandings of how to contextualize science instruction with a focus on promoting community engagement and social/environmental activism in underserved classrooms and how to integrate science content and diversity instruction through student-centered inquiry activities. Although most of the science teacher candidates developed more positive beliefs about teaching science in underrepresented classrooms, many teacher candidates still attributed their minority students' underperformance and a (perceived) lack of interest in school to family and cultural values. The "social justice advocates" in this study were able to successfully contextualize science instruction to varying degrees in underserved placement classrooms, though the most significant limitations on their practice were the contextual factors of their student teaching

  5. Ways to prepare future teachers to teach science in multicultural classrooms

    Science.gov (United States)

    Billingsley, Berry

    2016-06-01

    Roussel De Carvalho uses the notion of superdiversity to draw attention to some of the pedagogical implications of teaching science in multicultural schools in cosmopolitan cities such as London. De Carvalho makes the case that if superdiverse classrooms exist then Science Initial Teacher Education has a role to play in helping future science teachers to become more knowledgeable and reflective about how to teach school students with a range of worldviews and religious beliefs. The aim of this paper is to take that proposition a step further by considering what the aims and content of a session in teacher education might be. The focus is on helping future teachers develop strategies to teach school students to think critically about the nature of science and what it means to have a scientific worldview. The paper draws on data gathered during an interview study with 28 students at five secondary schools in England. The data was analysed to discover students' perceptions of science and their perceptions of the way that science responds to big questions about being human. The findings are used to inform a set of three strategies that teachers could use to help young people progress in their understanding of the nature of science. These strategies together with the conceptual framework that underpins them are used to develop a perspective on what kinds of pedagogical content knowledge teacher education might usefully provide.

  6. Utilization of Smartphones in Science Teaching and Learning in Selected Universities in Ghana

    Science.gov (United States)

    Twum, Rosemary

    2017-01-01

    This study was designed to examine the use of mobile phone, a widespread technology, and determined how this technology influences science students' learning. The study intended to examine the use of smartphones in science teaching and learning and propose of model in the use of smartphones for teaching and learning. The research design employed…

  7. An Instructional Feedback Technique for Teaching Project Management Tools Aligned with PMBOK

    Science.gov (United States)

    Gonçalves, Rafael Queiroz; von Wangenheim, Christiane Gresse; Hauck, Jean Carlo Rossa; Petri, Giani

    2017-01-01

    The management of contemporary software projects is unfeasible without the support of a Project Management (PM) tool. In order to enable the adoption of PM tools in practice, teaching its usage is important as part of computer education. Aiming at teaching PM tools, several approaches have been proposed, such as the development of educational PM…

  8. The Effectiveness of Traditional and 21st Century Teaching Tools on Students' Science Learning

    Science.gov (United States)

    Bellflower, Julie V.

    Any student seeking a high school diploma from the public school system in one U.S. state must pass the state's high school graduation test. In 2009, only 88% of students at one high school in the state met the basic proficiency requirements on the science portion of the test. Because improved science education has been identified as an explicit national goal, the purpose of this mixed methods study was to determine whether traditional teaching tools (notes, lecture, and textbook) or 21st century teaching tools (online tutorials, video games, YouTube, and virtual labs) lead to greater gains in students' science learning. Bruner's constructivist and Bandura's social cognitive theories served as the foundations for the study. Quantitative research questions were used to investigate the relationship between the type of teaching tools used and student learning gains. Quantitative data from students' pre and posttests were collected and analyzed using a dependent samples t-test. Qualitative data were collected through a focus group interview and participant journals. Analysis of the qualitative data included coding the data and writing a descriptive narrative to convey the findings. Results showed no statistically significant differences in students' science achievement: both types of teaching tools led to student learning gains. As a result, an action plan was developed to assist science educators in the implementation of traditional and 21st century teaching tools that can be used to improve students' science learning. Implications for positive social change included providing science educators with a specific plan of action that will enhance students' science learning, thereby increasing science scores on the state and other high stakes tests.

  9. A Science Education that Promotes the Characteristics of Science and Scientists: Features of teaching

    Directory of Open Access Journals (Sweden)

    Michael P. Clough

    2015-07-01

    Full Text Available Effectively teaching about science, technology, engineering and mathematics (STEM is far more complex than policymakers, the public, and even many teachers realize. Leinhardt and Greeno (1986, p. 75 write that “teaching occurs in a relatively ill-structured, dynamic environment”, and this is even more so the case when attempting to teach STEM through inquiry (activities that require significant student decision-making and sense-making, and the necessary pedagogical practices that support student learning in those experiences and as inquiry (helping students understand how knowledge in STEM disciplines is developed and comes to be accepted.

  10. The questions of scientific literacy and the challenges for contemporary science teaching: An ecological perspective

    Science.gov (United States)

    Kim, Mijung

    This study began with questions about how science education can bring forth humanity and ethics to reflect increasing concerns about controversial issues of science and technology in contemporary society. Discussing and highlighting binary epistemological assumptions in science education, the study suggests embodied science learning with human subjectivity and integrity between knowledge and practice. The study questions (a) students' understandings of the relationships between STSE and their everyday lifeworld and (b) the challenges of cultivating scientific literacy through STSE teaching. In seeking to understand something about the pedagogical enactment of embodied scientific literacy that emphasizes the harmony of children's knowledges and their lifeworlds, this study employs a mindful pedagogy of hermeneutics. The intro- and intra-dialogical modes of hermeneutic understanding investigate the pedagogical relationship of parts (research texts of students, curriculum, and social milieu) and the whole (STSE teaching in contemporary time and place). The research was conducted with 86 Korean 6 graders at a public school in Seoul, Korea in 2003. Mixed methods were utilized for data collection including a survey questionnaire, a drawing activity, interviews, children's reflective writing, and classroom teaching and observation. The research findings suggest the challenges and possibilities of STSE teaching as follows: (a) children's separated knowledge from everyday practice and living, (b) children's conflicting ideas between ecological/ethical aspects and modernist values, (c) possibilities of embodied knowing in children's practice, and (d) teachers' pedagogical dilemmas in STSE teaching based on the researcher's experiences and reflection throughout teaching practice. As further discussion, this study suggests an ecological paradigm for science curriculum and teaching as a potential framework to cultivate participatory scientific literacy for citizenship in

  11. Large-scale visualization projects for teaching software engineering.

    Science.gov (United States)

    Müller, Christoph; Reina, Guido; Burch, Michael; Weiskopf, Daniel

    2012-01-01

    The University of Stuttgart's software engineering major complements the traditional computer science major with more practice-oriented education. Two-semester software projects in various application areas offered by the university's different computer science institutes are a successful building block in the curriculum. With this realistic, complex project setting, students experience the practice of software engineering, including software development processes, technologies, and soft skills. In particular, visualization-based projects are popular with students. Such projects offer them the opportunity to gain profound knowledge that would hardly be possible with only regular lectures and homework assignments.

  12. Highly qualified does not equal high quality: A study of urban stakeholders' perceptions of quality in science teaching

    Science.gov (United States)

    Miranda, Rommel Joseph

    By employing qualitative methods, this study sought to determine the perceptions that urban stakeholders hold about what characteristics should distinguish a high school science teacher whom they would consider to demonstrate high quality in science teaching. A maximum variation sample of six science teachers, three school administrators, six parents and six students from a large urban public school district were interviewed using semi-structured, in-depth interview techniques. From these data, a list of observable characteristics which urban stakeholders hold as evidence of high quality in science teaching was generated. Observational techniques were utilized to determine the extent to which six urban high school science teachers, who meet the NCLB Act criteria for being "highly qualified", actually possessed the characteristics which these stakeholders hold as evidence of high quality in science teaching. Constant comparative analysis was used to analyze the data set. The findings suggest that urban stakeholders perceive that a high school science teacher who demonstrates high quality in science teaching should be knowledgeable about their subject matter, their student population, and should be resourceful; should possess an academic background in science and professional experience in science teaching; should exhibit professionalism, a passion for science and teaching, and a dedication to teaching and student learning; should be skillful in planning and preparing science lessons and in organizing the classroom, in presenting the subject matter to students, in conducting a variety of hands-on activities, and in managing a classroom; and should assess whether students complete class goals and objectives, and provide feedback about grades for students promptly. The findings further reveal that some of the urban high school science teachers who were deemed to be "highly qualified", as defined by the NCLB Act, engaged in practices that threatened quality in science

  13. Using Group Projects to Teach Process Improvement in a Quality Class

    Science.gov (United States)

    Neidigh, Robert O.

    2016-01-01

    This paper provides a description of a teaching approach that uses experiential learning to teach process improvement. The teaching approach uses student groups to perform and gather process data in a senior-level quality management class that focuses on Lean Six Sigma. A strategy to link the experiential learning in the group projects to the…

  14. University-School Partnerships: Pre-Service and In-Service Teachers Working Together to Teach Primary Science

    Science.gov (United States)

    Kenny, John Daniel

    2012-01-01

    This paper reports on a partnership approach preparing pre-service primary teachers to teach science. Partnerships involving pre-service teachers and volunteer in-service colleagues were formed to teach science in the classroom of the colleague, with support from the science education lecturer. Each pre-service teacher collaboratively planned and…

  15. The Effect of Simulation-Assisted Laboratory Applications on Pre-Service Teachers' Attitudes towards Science Teaching

    Science.gov (United States)

    Ulukök, Seyma; Sari, Ugur

    2016-01-01

    In this study, the effects of computer-assisted laboratory applications on pre-service science teachers' attitudes towards science teaching were investigated and the opinions of the pre-service teachers about the application were also determined. The study sample consisted of 46 students studying science teaching Faculty of Education. The study…

  16. Art: ally or tool in science teaching?

    Directory of Open Access Journals (Sweden)

    Fernando Cesar Ferreira

    2012-10-01

    Full Text Available We know that art and science have influenced one another over the centuries. As an example, in the nineteenth century, the poets of the Romantic movement portrayed in some of their most beautiful poems the anguish they felt facing the development of thermodynamics and the possibility of heat death of the universe. In recent years different methodological possibilities have been put in evidence in science education: experimenting with low cost materials, history of science, virtual environments, among others. We believe that the art in this process has played an important role, but still marginal, because, as well as science, it also produces knowledge about reality. However, their potential is perceived more as a tool for teaching rather than as an active participant in building relationships and about the nature of humankind.

  17. Teaching accuracy and reliability for student projects

    Science.gov (United States)

    Fisher, Nick

    2002-09-01

    Physics students at Rugby School follow the Salters Horners A-level course, which involves working on a two-week practical project of their own choosing. Pupils often misunderstand the concepts of accuracy and reliability, believing, for example, that repeating readings makes them more accurate and more reliable, whereas all it does is help to check repeatability. The course emphasizes the ideas of checking anomalous points, improving accuracy and making readings more sensitive. This article describes how we teach pupils in preparation for their projects. Based on many years of running such projects, much of this material is from a short booklet that we give out to pupils, when we train them in practical project skills.

  18. Enhancing Teacher and Student Engagement and Understanding of Marine Science Through Classroom Citizen Science Projects

    Science.gov (United States)

    Goodale, T. A.

    2016-02-01

    Overview This paper presentation shares findings from a granted funded project that sought to expand teacher content knowledge and pedagogy within the fields of marine science and coastal resource management through the implementation of classroom citizen science projects. A secondary goal was to increase middle and high school student interest and participation in marine science and natural resources research. Background A local science & engineering fair has seen a rapid decline in secondary student participants in the past four years. Research has demonstrated that when students are a part of a system of knowledge production (citizen science) they become much more aware, involved and conscious of scientific concepts compared to traditional school laboratory and nature of science activities. This project's primary objectives were to: (a) enhance teacher content expertise in marine science, (b) enrich teacher professional learning, (c) support citizen science classroom projects and inspire student activism and marine science engagement. Methods Project goals were addressed through classroom and meaningful outdoor educational experiences that put content knowledge into field based practices. Teachers learned to apply thier expanded content knowlege through classroom citizen science projects that focus on marine resource conservation issues such as fisheries management, water quality, turtle nesting and biodiversity of coastal ecosystems. These projects would eventually become potential topics of citizen science research topics for their students to pursue. Upon completion of their professional development, participants were urged to establish student Marine Science clubs with the goal of mentoring student submissions into the local science fair. Supplemental awards were possible for the students of project participants. Findings Based on project measures participants significantly increased their knowledge and awareness of presented material marine science and

  19. Making Curveball: Working with students to produce a game that can ‘liven up’ research methods and ethics teaching in the social sciences

    OpenAIRE

    Gerodetti, N; Nixon, D

    2016-01-01

    In this paper we explore our experiences of a staff-student collaborative project that sought to design games and learning resources that could be used to “liven-up” research methods and ethics teaching in the social sciences. The paper highlights the benefits of staff-student collaboration in the design and production of game resources, and in particular, the potential for harnessing students’ experiences of teaching and learning through feeding it into curriculum development. The paper also...

  20. Teaching Science with Technology

    Science.gov (United States)

    Gornostaeva, Svetlana

    2015-04-01

    This is a short introduction about me, description of different teaching methods, which is used in my teaching practice of Geography, biology and GIS systems education. The main part is tell about practical lesson with lab Vernier. My name is Svetlana Gornostaeva. I am a geography, biology and GIS systems teacher in Tallinn Mustjõe Gymnasium (www.mjg.ee) and private school Garant (http://www.erakoolgarant.ee/). In my teaching practice I do all to show that science courses are very important, interesting, and do not difficult. I use differentiated instruction methods also consider individual needs. At lessons is used different active teaching methods such as individual work of various levels of difficulty, team works, creative tasks, interactive exercises, excursions, role-playing games, meeting with experts. On my lessons I use visual aids (maps, a collection of rocks and minerals, herbarium, posters, Vernier data logger). My favorite teaching methods are excursions, meeting with experts and practical lesson with lab Vernier. A small part of my job demonstrate my poster. In the next abstract I want to bring a one practical work with Vernier which I do with my students, when we teach a theme "Atmosphere and climate". OUTDOOR LEARNING. SUBJECT "ATMOSPHERE AND CLIMATE". WEATHER OBSERVATIONS WITH VERNIER DATA LOGGER. The aim: students teach to use Vernier data logger and measure climatic parameters such as: temperature, humidity, atmospheric pressure, solar radiation, ultraviolet light radiation, wind speed. In working process pupils also teach work together, observe natural processes, analyze. Children are working by small groups, 4-5 in each group. Every one should personally measure all parameters and put numbers into the table. After it group observe cloudiness, analyze table and give conclusion "Is at this moment dominates cyclone or anticyclone ?". Children really like this kind of job. Vernier data logger it is really fantastic tool. It is mobile lab. This

  1. Teaching Science for Social Justice: An Examination of Elementary Preservice Teachers' Beliefs

    Science.gov (United States)

    Eslinger, James C.

    This qualitative study examines the beliefs and belief changes of eleven elementary preservice teachers about teaching science for social justice. Using constructivist grounded theory, it forwards a new theory of belief change about teaching science for social justice. The theory posits that three teaching and learning conditions may facilitate belief change: preservice teachers need to recognize (1) the relationship between science and society; (2) the relationship between individuals and society; and (3) the importance of taking action on socioscientific issues. This research responds to calls by critical scholars of teacher education who contend that beliefs in relation to equity, diversity, and multiculturalism need to be explored. They have found that many preservice teachers hold beliefs that are antithetical to social justice tenets. Since beliefs are generally considered to be precursors to actions, identifying and promoting change in beliefs are important to teaching science for social justice. Such a move may lead to the advancement of curricular and pedagogical efforts to promote the academic participation and success in elementary science of Aboriginal and racialized minority students. The study was undertaken in a year-long science methods course taught by the researcher. It was centered on the preservice teachers -- their beliefs, their belief changes, and the course pedagogies that they identified as crucial to their changes. However, the course was based on the researcher-instructor's review of the scholarly literature on science education, teacher education, and social justice. It utilized a critical -- cultural theoretical framework, and was aligned to the three dimensions of critical nature of science, critical knowledge and pedagogy, and sociopolitical action. Findings indicate that, at the beginning of the year, preservice teachers held two types of beliefs (liberal and critical) and, by the end of the course, they experienced three kinds of

  2. How to Teach High-School Students "How Science Really Works?"

    Science.gov (United States)

    Losiak, Anna; Students, High-School; Winiarska, Anna; Parys-Wasylkiewicz, Magdalena

    2016-04-01

    One of the largest problems in Poland (as well as in the large part of the developed world) is that people do not understand how science works. Based on what they learned at school, they think that science is an aggregation of facts that you need to learn by heart. Based on media coverage of the science topics, they think it is a collection of curiosities about the two-headed-snakes. Based on the way in which science is shown in movies and TV series, they envision science as a magic performed in a white coat with usage of colorful fluids and magic spells such as "transformative hermeneutics of quantum gravity". As a result, our societies include a large number of people who "do not believe" in evolution, think that vaccinations are causing autism and that anthropogenic global warming is a myth. This is not very surprising, given that most people never had a chance to perform a real scientific experiment. Most of people, if they are lucky, are able to see some science demonstrations in the classrooms. They are of course very useful, but it is quite clear for everyone that (if everything goes well) the demonstration can end up in one, pre-defined way. The "real" scientific experiment, as a part of the scientific process, is when the outcome is unknown until the end of the entire process. In order to teach high-school students "How Science Really Works" we have developed a project lasting one year (grant from Foundation for Polish Science 26/UD/SKILLS/2015): 1) At first students learned about scientific method, science history and performed a simple scientific experiment. 2) Later, students developed an experiment that was answering a real, unanswered scientific problem (the problem was given by the Leading Scientist). The aim of the project was to determine influence of albedo and emissivity of rock particles laying on a surface of a glacier on the rate of cryoconite holes formation. The results of this experiment can be used to better determine the rate of melting

  3. Examining student conceptions of the nature of science from two project-based classrooms

    Science.gov (United States)

    Moss, David M.

    -based instruction was sometimes a factor. Conceptual change theory provides a framework by which these changes can be understood. These findings demonstrate that merely involving students in science-related projects will not always foster an improved understanding of the nature of science. Implications for science teaching include making the nature of science explicit throughout instruction.

  4. Self-Efficacy for Science Teaching Scale Development: Construct Validation with Elementary School Teachers

    Science.gov (United States)

    Yangin, Selami; Sidekli, Sabri

    2016-01-01

    The measurement of teacher self-efficacy has a history of more than 30 years. The purpose of this research is to evaluate the development and validation of a new scale to measure the science teaching self-efficacy of elementary school teachers. Therefore, a scale has been created to measure elementary teachers' science teaching self-efficacy and…

  5. Many Paths toward Discovery: A Module for Teaching How Science Works

    Science.gov (United States)

    Price, Rebecca M.; Perez, Kathryn E.

    2018-01-01

    Improving students' understanding of how science works requires explicit instruction. Here, we test the efficacy of a module based on two previously published activities (the "Cube Puzzle" and the case study "Asteroids and Dinosaurs") that teach how science works to college science majors. Students also use the How Science…

  6. Learning from Rookie Mistakes: Critical Incidents in Developing Pedagogical Content Knowledge for Teaching Science to Teachers

    Science.gov (United States)

    Cite, Suleyman; Lee, Eun; Menon, Deepika; Hanuscin, Deborah L.

    2017-01-01

    While there is a growing literature focused on doctoral preparation for teaching about science teaching, rarely have recommendations extended to preparation for teaching science content to teachers. We three doctoral students employ self-study as a research methodology to investigate our developing pedagogical content knowledge for teaching…

  7. Development and implementation of a science training course for breast cancer activists: Project LEAD (leadership, education and advocacy development).

    Science.gov (United States)

    Dickersin, K; Braun, L; Mead, M; Millikan, R; Wu, A M; Pietenpol, J; Troyan, S; Anderson, B; Visco, F

    2001-12-01

    To develop and implement Project LEAD (leadership, education, and advocacy development), a science course for breast cancer activists. Students were breast cancer activists and other consumers, mainly affiliated with advocacy organizations in the United States of America. Project LEAD is offered by the National Breast Cancer Coalition; the course takes place over 5 days and is offered 4 times a year, in various cities in the United States of America. The Project LEAD curriculum has developed over 5 years to include lectures, problem-based study groups, case studies, interactive critical appraisal sessions, a seminar by an 'expert' scientist, role play, and homework components. A core faculty has been valuable for evaluating and revising the course and has proved necessary to provide consistent high quality teaching. Course evaluations indicated that students gained critical appraisal skills, enhanced their knowledge and developed confidence in selected areas of basic science and epidemiology. Project LEAD comprises a unique curriculum for training breast cancer activists in science and critical appraisal. Course evaluations indicate that students gain confidence and skills from the course.

  8. Turkish Preservice Primary School Teachers' Science Teaching Efficacy Beliefs and Attitudes toward Science: The Effect of a Primary Teacher Education Program

    Science.gov (United States)

    Bayraktar, Sule

    2011-01-01

    The main purpose of this study was to investigate the effectiveness of a primary teacher education program in improving science teaching efficacy beliefs (personal science teaching efficacy beliefs and outcome expectancy beliefs) of preservice primary school teachers. The study also investigated whether the program has an effect on student…

  9. Knowledge, beliefs and pedagogy: how the nature of science should inform the aims of science education (and not just when teaching evolution)

    Science.gov (United States)

    Taber, Keith S.

    2017-03-01

    Lisa Borgerding's work highlights how students can understand evolution without necessarily committing to it, and how learners may come to see it as one available way of thinking amongst others. This is presented as something that should be considered a successful outcome when teaching about material that many students may find incompatible with their personal worldviews. These findings derive from work exploring a cause célèbre of the science education community—the teaching of natural selection in cultural contexts where learners feel they have strong reasons for rejecting evolutionary ideas. Accepting that students may understand but not commit to scientific ideas that are (from some cultural perspectives) controversial may easily be considered as a form of compromise position when teaching canonical science prescribed in curriculum but resisted by learners. Yet if we take scholarship on the nature of science seriously, and wish to reflect the nature of scientific knowledge in science teaching, then the aim of science education should always be to facilitate understanding of, yet to avoid belief in, the ideas taught in science lessons. The philosophy of science suggests that scientific knowledge needs to be understood as theoretical in nature, as conjectural and provisional; and the history of science warns of the risks of strongly committing to any particular conceptualisation as a final account of some feature of nature. Research into student thinking and learning in science suggests that learning science is often a matter of coming to understand a new viable way of thinking about a topic to complement established ways of thinking. Science teaching should then seek to have students appreciate scientific ideas as viable ways of making sense of the currently available empirical evidence, but should not be about persuading students of the truth of any particular scientific account.

  10. Science Teachers Taking their First Steps toward Teaching Socioscientific Issues through Collaborative Action Research

    Science.gov (United States)

    Lee, Hyunju; Yang, Jung-eun

    2017-06-01

    This study presents two science teachers, Catherine and Jennifer, who took their first steps toward teaching socioscientific issues through collaborative action research. The teachers participated in the collaborative action research project because they wanted to address socioscientific issues but had limited experience in teaching them. The research questions included what kinds of challenges the teachers encountered when implementing socioscientific issues and to what extent they resolved the challenging issues as participating in collaborative action research. The primary data source consisted of audiotapes of regular group meetings containing information on the process of constructing and implementing lesson plans and reflecting on their teaching of socioscientific issues. We also collected classroom videotapes of the teachers' instruction and audiotapes of students' small group discussions and their worksheets. The findings indicated that when addressing socioscientific issues in the classes, the teachers encountered several challenging issues. We categorized them into four: (1) restructuring classroom dynamics and culture, (2) scaffolding students' engagement in socioscientific issues, (3) dealing with values, and (4) finding their niche in schools. However, this study showed that collaborative action research could be a framework for helping the teachers to overcome such challenges and have successful experiences of teaching socioscientific issues. These experiences became good motivation, to gradually develop their understanding of teaching socioscientific issues and instructional strategies for integrating the knowledge and skills that they had accumulated over the years.

  11. Early Childhood Pre-Service Teachers' Self-Images of Science Teaching in Constructivism Science Education Courses

    Science.gov (United States)

    Go, Youngmi; Kang, Jinju

    2015-01-01

    The purpose of this study is two-fold. First, it investigates the self-images of science teaching held by early childhood pre-service teachers who took constructivism early childhood science education courses. Second, it analyzes what aspects of those courses influenced these images. The participants were eight pre-service teachers who took these…

  12. Effect of four teaching strategies on senior secondary students ...

    African Journals Online (AJOL)

    This study investigated the effect of four teaching strategies; peer-tutoring, demonstration, project-based and lecture teaching strategies on students' achievement in pasture and forage crops which is an aspect of agricultural science. Lecture strategy served both as a teaching strategy as well as control since it is assumed to ...

  13. Differential and Integral Calculus in careers of technical sciences. Specificities of their teaching

    Directory of Open Access Journals (Sweden)

    Iván Javier Villamar-Alvarado

    2017-12-01

    Full Text Available The Differential and Integral Calculus has great relevance for the professionals of the technical sciences since it provides them with a solid theoretical-conceptual body to process information, to use models that simulate real processes, to solve technical problems, to work in multidisciplinary projects and to communicate with precision. In spite of this relevance, there are numerous international dissatisfactions related to their learning by training engineers. The objective was to unveil the specificities of the teaching-learning process of this discipline that favor a successful appropriation of its content by the future engineers. The result was to unveil the didactic need to resolve the dialectical contradiction that manifests itself between the systematization of the engineering functionality of the aforementioned content and its contextualized interdisciplinary generalization. As a consequence, the need arises to create new didactic proposals that overcome this contradiction, as a way to perfect the teaching-learning process of this discipline in the engineering careers.

  14. Can the Faculty Development Door Swing Both Ways? Science and Clinical Teaching in the 1990s.

    Science.gov (United States)

    Tedesco, Lisa A.

    1988-01-01

    The relationship between clinical teaching and research in the basic sciences is discussed. The same energy expended to enhance clinical research will also efficiently build new curricula; ease the strains associated with assigning a priority to teaching or research; and serve to further science, teaching, and technology transfer. (MLW)

  15. The Texas Earth and Space Science (TXESS) Revolution: A Model for the Delivery of Earth Science Professional Development to Minority-Serving Teachers

    Science.gov (United States)

    Ellins, K. K.; Snow, E.; Olson, H. C.; Stocks, E.; Willis, M.; Olson, J.; Odell, M. R.

    2013-01-01

    The Texas Earth and Space Science (TXESS) Revolution was a 5-y teacher professional development project that aimed to increase teachers' content knowledge in Earth science and preparing them to teach a 12th-grade capstone Earth and Space Science course, which is new to the Texas curriculum. The National Science Foundation-supported project was…

  16. Teaching bioinformatics in concert.

    Directory of Open Access Journals (Sweden)

    Anya L Goodman

    2014-11-01

    Full Text Available Can biology students without programming skills solve problems that require computational solutions? They can if they learn to cooperate effectively with computer science students. The goal of the in-concert teaching approach is to introduce biology students to computational thinking by engaging them in collaborative projects structured around the software development process. Our approach emphasizes development of interdisciplinary communication and collaboration skills for both life science and computer science students.

  17. Teacher candidates in an online post-baccalaureate science methods course: Implications for teaching science inquiry with technology

    Science.gov (United States)

    Colon, Erica L.

    Online learning is becoming more prevalent in today's education and is changing the way students learn and instructors teach. This study proposed using an informative case study design within a multilevel conceptual framework as teacher candidates were learning to teach and use science inquiry while in an online post-baccalaureate science methods course. The purposes were to (a) explore whether the teacher candidates had a thorough understanding of scientific inquiry and how to implement higher-order thinking skills, (b) examine whether or not the teacher candidates used a variety of computer-based instructional technologies when choosing instructional objectives, and (c) identify barriers that impede teacher candidates from using science inquiry or technology singly, or the ability to incorporate technology into learning science inquiry. The findings indicate that an online approach in preparing science teachers holds great potential for using innovative technology to teach science inquiry. First, the teacher candidates did incorporate essential features of classroom inquiry, however it was limited and varied in the type of inquiry used. Second, of the 86 lesson plans submitted by the teacher candidates, less than twelve percent of the learning objectives involved higher-order skills that promoted science inquiry. Third, results supported that when using technology in their lesson planning, participants had widely varying backgrounds in reference to their familiarity with technology. However, even though each participant used some form or another, the technology used was fairly low level. Finally, when discussing implementing inquiry-based science in the lesson plans, this study identified time as a reason that participants may not be pushing for more inquiry-based lessons. The researcher also identifies that school placements were a huge factor in the amount of inquiry-based skills coded in the lesson plans. The study concludes that online teacher preparation

  18. FEATURES OF TEACHING COMPUTER SCIENCE FOR FOREIGN STUDENTS OF HUMANITARIAN SPHERE OF TRAINING

    Directory of Open Access Journals (Sweden)

    Н А Савченко

    2015-12-01

    Full Text Available In the current socio-economic conditions of modern society it is impossible without the introducing information technologies into all spheres of life. The importance of teaching natural Sciences for Humanities is of no doubt. This article addresses the main problems of teaching computer science for foreign students studying in the field of training 41.03.01 “Foreign area studies”.

  19. Xplora: making science fun!

    CERN Multimedia

    2006-01-01

    Remember those humdrum lectures in science class? Static textbook lessons have not done much to ignite excitement and interest in young children. Now the tables are turned and it is the teachers who are learning, but this time it is all about how to make science classes fun and spark the imaginations of the next generation. Xplora conference participants observing a working cloud experiment. The Xplora Conference, held at CERN from 15 to 18 June, was attended by more than 80 teachers and educators from across Europe ready to share and acquire some creative ways of teaching science. Xplora is an online reference project providing inventive techniques for teaching science in the classroom and beyond. Xplora is part of the Permanent European Resource Centre for Informal Learning (PENCIL) sponsored by the European Commission. PENCIL is comprised of 13 science centres, museums and aquariums, is partners with the University of Naples, Italy and King's College London, UK and is involved with 14 pilot projects thro...

  20. Teaching at the interface of dance science and somatics.

    Science.gov (United States)

    Geber, Pamela; Wilson, Margaret

    2010-01-01

    This article introduces a combined scientific and somatic approach to teaching and learning about the body, and explains how it can be of benefit to dancers and dance educators. The study of the science of movement (kinesiology) and a somatic approach to teaching are initially defined and described as distinct entities; following this, a model for integration of the two is presented. The authors advocate for such a combination in order to enhance dancing.

  1. Competences for science teaching at the 21st century

    OpenAIRE

    Sá, Patrícia; Paixão, Fátima

    2016-01-01

    This study presents a contribution to the conceptual and terminological clarification of the concept of teaching competence, as well as for the identification of a competencial framework of competences for science teaching at a primary education level, having in mind educating citizens for the 21st century as scientific literates. The proposed framework was developed based on an intensive literature review and on the contributions emerging from a shared reflection between researchers in scien...

  2. Teaching Traditions in Science Education in Switzerland, Sweden and France: A Comparative Analysis of Three Curricula

    Science.gov (United States)

    Marty, Laurence; Venturini, Patrice; Almqvist, Jonas

    2018-01-01

    Classroom actions rely, among other things, on teaching habits and traditions. Previous research has clarified three different teaching traditions in science education: the academic tradition builds on the idea that simply the products and methods of science are worth teaching; the applied tradition focuses on students' ability to use scientific…

  3. How to Support Primary Teachers' Implementation of Inquiry: Teachers' Reflections on Teaching Cooperative Inquiry-Based Science

    Science.gov (United States)

    Gillies, Robyn M.; Nichols, Kim

    2015-01-01

    Many primary teachers face challenges in teaching inquiry science, often because they believe that they do not have the content knowledge or pedagogical skills to do so. This is a concern given the emphasis attached to teaching science through inquiry where students do not simply learn about science but also do science. This study reports on the…

  4. A Comparison of Didactic and Inquiry Teaching Methods in a Rural Community College Earth Science Course

    Science.gov (United States)

    Beam, Margery Elizabeth

    The combination of increasing enrollment and the importance of providing transfer students a solid foundation in science calls for science faculty to evaluate teaching methods in rural community colleges. The purpose of this study was to examine and compare the effectiveness of two teaching methods, inquiry teaching methods and didactic teaching methods, applied in a rural community college earth science course. Two groups of students were taught the same content via inquiry and didactic teaching methods. Analysis of quantitative data included a non-parametric ranking statistical testing method in which the difference between the rankings and the median of the post-test scores was analyzed for significance. Results indicated there was not a significant statistical difference between the teaching methods for the group of students participating in the research. The practical and educational significance of this study provides valuable perspectives on teaching methods and student learning styles in rural community colleges.

  5. Open-science projects get kickstarted at CERN

    CERN Multimedia

    Achintya Rao

    2015-01-01

    CERN is one of the host sites for the Mozilla Science Lab Global Sprint to be held on 4 and 5 June, which will see participants around the world work on projects to further open science and educational tools.   IdeaSquare will be hosting the event at CERN. The Mozilla Science Lab Global Sprint was first held in 2014 to bring together open-science practitioners and enthusiasts to collaborate on projects designed to advance science on the open web. The sprint is a loosely federated event, and CERN is participating in the 2015 edition, hosting sprinters in the hacker-friendly IdeaSquare. Five projects have been formally proposed and CERN users and staff are invited to participate in a variety of ways. A special training session will also be held to introduce the CERN community to existing open-science and collaborative tools, including ones that have been deployed at CERN. 1. GitHub Science Badges: Sprinters will work on developing a badge-style visual representation of how open a software pro...

  6. Using Replication Projects in Teaching Research Methods

    Science.gov (United States)

    Standing, Lionel G.; Grenier, Manuel; Lane, Erica A.; Roberts, Meigan S.; Sykes, Sarah J.

    2014-01-01

    It is suggested that replication projects may be valuable in teaching research methods, and also address the current need in psychology for more independent verification of published studies. Their use in an undergraduate methods course is described, involving student teams who performed direct replications of four well-known experiments, yielding…

  7. Developing Teachers' Pedagogical Practice in Teaching Science Lessons with Mobile Phones

    Science.gov (United States)

    Ekanayake, T. M. S. S. K. Y.; Wishart, J. M.

    2014-01-01

    This paper presents the findings of an investigation carried out in Sri Lanka to explore how mobile phones can support science teachers' pedagogical practices throughout the teaching cycle of planning, teaching and evaluation. Data were collected using observation supported by audio and video recordings from both continuing professional…

  8. Primary Science Teaching--Is It Integral and Deep Experience for Students?

    Science.gov (United States)

    Timoštšuk, Inge

    2016-01-01

    Integral and deep pedagogical content knowledge can support future primary teachers' ability to follow ideas of education for sustainability in science class. Initial teacher education provides opportunity to learn what and how to teach but still the practical experiences of teaching can reveal uneven development of student teachers'…

  9. The Impact of Science Teachers' Beliefs on Teaching Science: The Case of Saudi Science Teachers

    Science.gov (United States)

    Alabdulkareem, Saleh Abdullah

    2016-01-01

    The researcher aims to investigate Saudi science teachers' beliefs about learning and teaching issues. The sample consisted of 247 middle school teachers in Riyadh, Saudi Arabia. The study conducted in the academic school year 2014/2015, and utilized a questionnaire and an interview that included 10% of the sample. The questionnaire targeted the…

  10. Teaching the science of learning.

    Science.gov (United States)

    Weinstein, Yana; Madan, Christopher R; Sumeracki, Megan A

    2018-01-01

    The science of learning has made a considerable contribution to our understanding of effective teaching and learning strategies. However, few instructors outside of the field are privy to this research. In this tutorial review, we focus on six specific cognitive strategies that have received robust support from decades of research: spaced practice, interleaving, retrieval practice, elaboration, concrete examples, and dual coding. We describe the basic research behind each strategy and relevant applied research, present examples of existing and suggested implementation, and make recommendations for further research that would broaden the reach of these strategies.

  11. A Phenomenological Research Study of the Experience of Teachers in the Virgin Islands Teacher Enhancement in Mathematics and Science Project

    Science.gov (United States)

    Thurland, Karen C.

    The purpose of conducting this study was to describe the experience of elementary teachers in a mathematics and science staff development project in the U.S. Virgin Islands. The focus of this study was to describe the meaning teachers attribute to their experience in this three year project, in which many of the national mathematics and science reform efforts were implemented. A phenomenological approach was used in order to develop a complete picture of the teachers' experiences. Data collection consisted of interviews with seven elementary teachers. The data were subjective descriptions of the teachers pertaining to the initial summer institute, the follow-up sessions, and the new innovative methods. The transcendental phenomenological model was used. The textural and structural themes included enhanced learning and changes in teaching practice, and interactions with colleagues. From these themes, individual and composite textual descriptions of the experience of the teacher participants were developed. The synthesis of those descriptions illuminated the meanings and essence of their lived experience. The findings indicate that the essence of the experience was the development of a positive attitude towards the teaching of math and science. The teachers gained confidence in their ability to motivate students with the inquiry method and taught more math and science. The implications for the Virgin Islands Department of Education include establishing a partnership with the local university to offer staff development training in mathematics and science and to conduct evaluations of its training efforts.

  12. Ivestigating Earth Science in Urban Schoolyards

    Science.gov (United States)

    Endreny, Anna; Siegel, Donald I.

    2009-01-01

    The Urban Schoolyards project is a two year partnership with a university Earth Science Department and the surrounding urban elementary schools. The goal of the project was to develop the capacity of elementary teachers to teach earth science lessons using their schoolyards and local parks as field sites. The university personnel developed lessons…

  13. An Analysis of Internally Funded Learning and Teaching Project Evaluation in Higher Education

    Science.gov (United States)

    Huber, Elaine; Harvey, Marina

    2016-01-01

    Purpose: In the higher education sector, the evaluation of learning and teaching projects is assuming a role as a quality and accountability indicator. The purpose of this paper is to investigate how learning and teaching project evaluation is approached and critiques alignment between evaluation theory and practice. Design/Methodology/Approach:…

  14. Teaching Galileo? Get to Know Riccioli! What a Forgotten Italian Astronomer Can Teach Students about How Science Works

    Science.gov (United States)

    Graney, Christopher M.

    2012-01-01

    What can physics students learn about science from those scientists who got the answers wrong? Your students probably have encountered little science history. What they have encountered probably has portrayed scientists as "The People with the Right Answers." But those who got the wrong answers can teach students that in science, answers are often…

  15. Teaching and Learning Methodologies Supported by ICT Applied in Computer Science

    Science.gov (United States)

    Capacho, Jose

    2016-01-01

    The main objective of this paper is to show a set of new methodologies applied in the teaching of Computer Science using ICT. The methodologies are framed in the conceptual basis of the following sciences: Psychology, Education and Computer Science. The theoretical framework of the research is supported by Behavioral Theory, Gestalt Theory.…

  16. The CLEAN Workshop Series: Promoting Effective Pedagogy for Teaching Undergraduate Climate Science

    Science.gov (United States)

    Kirk, K. B.; Bruckner, M. Z.; Manduca, C. A.; Buhr, S. M.

    2012-12-01

    To prepare students to understand a changing climate, it is imperative that we equip educators with the best possible tools and methods for reaching their audience. As part of the Climate Literacy and Energy Awareness Network (CLEAN) professional development efforts, two workshops for undergraduate faculty were held in 2012. These workshops used a variety of activities to help faculty learn about recent climate research, take part in demonstrations of successful activities for teaching climate topics, and collaborate to create new teaching materials. The workshops also facilitated professional networking among participants. Both workshops were held online, eliminating the need for travel, encouraging participants without travel funds to attend, and allowing international collaborations and presentations. To create an authentic experience, the workshop used several technologies such as the Blackboard Collaborate web conferencing platform, SERC's web-based collaboration tools and online discussion threads, and conference calls. The workshop Communicating Climate Science in the Classroom, held in April 2012, explored practices for communicating climate science and policy in the classroom and provided strategies to improve student understanding of this complex and sensitive topic. Workshop presentations featured public opinion research on Americans' perceptions of climate change, tactics for identifying and resolving student misconceptions, and methods to address various "backfire effects" that can result from attempts to correct misinformation. Demonstrations of teaching approaches included a role-playing simulation of emissions negotiations, Princeton's climate stabilization wedges game, and an activity that allows students to use scientific principles to tackle misinformation. The workshop Teaching Climate Complexity was held in May 2012. Teaching the complexities of climate science requires an understanding of many facets of the Earth system and a robust pedagogic

  17. Exploration on the reform of the science and engineering experiment teaching based on the combination with teaching and scientific research

    Science.gov (United States)

    Song, Peng

    2017-08-01

    The existing problems of the experiment education in colleges and universities are analyzed. Take the science and engineering specialty as example, the idea of the combination with teaching and scientific research is discussed. The key problems are how the scientific research and scientific research achievements are used effectively in the experiment education, how to effectively use scientific research laboratories and scientific researchers. Then, a specialty experiment education system is established which is good for the teaching in accordance of all students' aptitude. The research in this paper can give the construction of the experiment teaching methods and the experiment system reform for the science and engineering specialties in colleges and universities.

  18. Teaching design engineering in an interdisciplinary programme

    NARCIS (Netherlands)

    Wits, Wessel Willems; Homminga, Jasper Johan; Endedijk, Maaike Dorine; Visscher, Klaasjan; Krab-Hüsken, Leonie; van den Berg, Frank; Wilhelm, P.

    2014-01-01

    ATLAS, the Academy of Technology and Liberal Arts & Sciences, is an interdisciplinary three-year Bachelor of Science honours programme for talented students that opened its doors in September 2013. This international programme uses the concept of project-led education to teach students to integrate

  19. Teaching and learning science in linguistically diverse classrooms

    Science.gov (United States)

    Moore, Emilee; Evnitskaya, Natalia; Ramos-de Robles, S. Lizette

    2017-01-01

    In this paper we reflect on the article, Science education in a bilingual class: problematising a translational practice, by Zeynep Ünsal, Britt Jakobson, Bengt-Olav Molander and Per-Olaf Wickman (Cult Stud Sci Educ, 10.1007/s11422-016-9747-3). In their article, the authors present the results of a classroom research project by responding to one main question: How is continuity between everyday language and the language of science construed in a bilingual science classroom where the teacher and the students do not speak the same minority language? Specifically, Ünsal et al. examine how bilingual students construe relations between everyday language and the language of science in a class taught in Swedish, in which all students also spoke Turkish, whereas the teacher also spoke Bosnian, both being minority languages in the context of Swedish schools. In this forum, we briefly discuss why close attention to bilingual dynamics emerging in classrooms such as those highlighted by Ünsal et al. matters for science education. We continue by discussing changing ontologies in relation to linguistic diversity and education more generally. Recent research in bilingual immersion classroom settings in so-called "content" subjects such as Content and Language Integrated Learning, is then introduced, as we believe this research offers some significant insights in terms of how bilingualism contributes to knowledge building in subjects such as science. Finally, we offer some reflections in relation to the classroom interactional competence needed by teachers in linguistically diverse classrooms. In this way, we aim to further the discussion initiated by Ünsal et al. and to offer possible frameworks for future research on bilingualism in science education. In their article, Ünsal et al. conclude the analysis of the classroom data by arguing in favor of a translanguaging pedagogy, an approach to teaching and learning in which students' whole language repertoires are used as

  20. Physical Science Teachers' Attitudes to and Factors Affecting Their Integration of Technology Education in Science Teaching in Benin

    Science.gov (United States)

    Kelani, Raphael R.; Gado, Issaou

    2018-01-01

    Following the calls of international conferences related to the teaching of science and technology, technology education (TE) was integrated as a component of physical sciences programmes in Benin, West Africa. This study investigates physical science teachers' attitudes towards the integration of TE topics in secondary school science curricula in…