WorldWideScience

Sample records for project plan establishes

  1. Spent Nuclear Fuel project, project management plan

    International Nuclear Information System (INIS)

    Fuquay, B.J.

    1995-01-01

    The Hanford Spent Nuclear Fuel Project has been established to safely store spent nuclear fuel at the Hanford Site. This Project Management Plan sets forth the management basis for the Spent Nuclear Fuel Project. The plan applies to all fabrication and construction projects, operation of the Spent Nuclear Fuel Project facilities, and necessary engineering and management functions within the scope of the project

  2. Spent Nuclear Fuel Project Safety Management Plan

    International Nuclear Information System (INIS)

    Garvin, L.J.

    1996-02-01

    The Spent Nuclear Fuel Project Safety Management Plan describes the new nuclear facility regulatory requirements basis for the Spemt Nuclear Fuel (SNF) Project and establishes the plan to achieve compliance with this basis at the new SNF Project facilities

  3. Project W-320 ALARA Plan

    International Nuclear Information System (INIS)

    Harty, W.M.

    1995-01-01

    This supporting document establishes the As Low As Reasonable Achievable (ALARA) Plan to be followed during Sluicing Project W-320 design and construction activities to minimize personnel exposure to radiation and hazardous materials

  4. Project W-320 ALARA Plan

    Energy Technology Data Exchange (ETDEWEB)

    Harty, W.M.

    1995-06-06

    This supporting document establishes the As Low As Reasonable Achievable (ALARA) Plan to be followed during Sluicing Project W-320 design and construction activities to minimize personnel exposure to radiation and hazardous materials.

  5. Process of establishing JHP project

    International Nuclear Information System (INIS)

    Ishihara, Masayasu

    2013-01-01

    Institute for Nuclear Study, University of Tokyo was a Japanese central research institute as regards to nuclear physics, high energy physics, and cosmic ray physics. After the foundations of National Laboratory for High Energy Physics, KEK, and Institute for Cosmic Ray Research, University of Tokyo, in early 1970s, the nuclear physics community worked out so-called NUMATRON project, which involved building a large heavy-ion synchrotron. It was, however, not successful in competition with TRISTAN project which was proposed by KEK to build a 30 GeV electron-positron collider. Alternative project of the nuclear physics community was so-called JHP (Japanese Hadron Project), to build 1 GeV proton linac in KEK site in collaboration with KEK, which included that the Institute for Nuclear Study should be consolidated to KEK leaving from The University of Tokyo. The reorganized KEK proposed in collaboration with JAEA, Japan Atomic Energy Agency, to build a big proton accelerator facility in JAEA site. This plan was realized as J-PARC, Japanese Proton Accelerator Research Complex, operating 50 GeV proton synchrotron. (author)

  6. Recertification Project Plan

    International Nuclear Information System (INIS)

    2001-01-01

    The Waste Isolation Pilot Plant's (WIPP) Recertification Project was established to meet the requirement placed in the WIPP Land Withdrawal Act (LWA) to demonstrate WIPP's continued compliance with the Environmental Protection Agency's (EPA) disposal regulations at five-year intervals. This plan delineates the end goal of the effort, sets out interim goals, and offers up guiding assumptions. In general, it sets the overall direction for a highly complex and interdependent set of tasks leading to recertification of the repository in the spring of 2004. In addition, this plan establishes the institutional roles and responsibilities of WIPP project participants in the recertification effort and lays out a high-level schedule for producing the Compliance Recertification Application (CRA). Detailed plans from each organization supporting this project have been included with this document as attachments. Each participant plan provides significantly more detail with descriptions of activities that are designed to ensure a successful outcome. Woven throughout this plan are the elements of guidance and direction gained from technical exchanges with EPA managers and staff. An important principle on which this plan is built is that the process of recertification will not involve modification to the certification baseline, nor will it involve rule making of any kind. Only changes previously approved by the EPA will be detailed in the CRA. EPA-approved changes to the WIPP certification will be accepted through modification or will be approved through the annual change reporting process. For any compliance areas that have not changed since the submission of the Compliance Certification Application(CCA), these will merely be incorporated in the CRA by reference. The CRA will cover all information since the October 1996 submittal of the CCA. A second major principle on which this plan is built stems from the EPA WIPP Recertification Guidance. That guidance makes it clear that, if

  7. Planning Complex Projects Automatically

    Science.gov (United States)

    Henke, Andrea L.; Stottler, Richard H.; Maher, Timothy P.

    1995-01-01

    Automated Manifest Planner (AMP) computer program applies combination of artificial-intelligence techniques to assist both expert and novice planners, reducing planning time by orders of magnitude. Gives planners flexibility to modify plans and constraints easily, without need for programming expertise. Developed specifically for planning space shuttle missions 5 to 10 years ahead, with modifications, applicable in general to planning other complex projects requiring scheduling of activities depending on other activities and/or timely allocation of resources. Adaptable to variety of complex scheduling problems in manufacturing, transportation, business, architecture, and construction.

  8. Establishment of a solar utilisation plan

    International Nuclear Information System (INIS)

    Gernhardt, D.; Mohr, M.; Unger, H.

    1992-01-01

    One of the main bases of the project ''Analysis of Possibilities of Solar Power Supply in Nordrhein-Westfalen and its Development until 2020'' is the achievement of a solar surface utilization plan. The duty of this plan is to indicate usefull areas for solar application in Nordrhein-Westfalen. This report shows the task of the solar surface utilization plan and explains attributes to describe surfaces for solar applications. (orig.) [de

  9. Risks management in project planning

    OpenAIRE

    Stankevičiūtė, Roberta

    2017-01-01

    Project management consists of two very important aspects – managing the right project and managing the project right. To know that you are managing the right project you need to ensure that your project is based on an actual requirement and that your project goal is relevant and beneficial. And professional project planning assists in managing project the right way. The project planning process is very time consuming and is one of the most important parts of the project management process. T...

  10. Planned Positron Factory project

    International Nuclear Information System (INIS)

    Okada, Sohei

    1990-01-01

    The Japan Atomic Energy Research Institute, JAERI, has started, drafting a construction plan for the 'Positron Factory', in which intense energy-controllable monoenergetic positron beams are produced from pair-production reactions caused by high-energy electrons from a linac. The JAERI organized a planning committee to provide a basic picture for the Positron Factory. This article presents an overview of the interactions of positrons, intense positron sources and the research program and facilities planned for the project. The interactions of positrons and intense positron sources are discussed focusing on major characteristics of positrons in different energy ranges. The research program for the Positron Factory is then outlined, focusing on advanced positron annihilation techniques, positron spectroscopy (diffraction, scattering, channeling, microscopy), basic positron physics (exotic particle science), and positron beam technology. Discussion is also made of facilities required for the Positron Factory. (N.K.)

  11. Project Management Plan

    International Nuclear Information System (INIS)

    1988-01-01

    The mission of the Uranium Mill Tailings Remedial Action (UMTRA) Project is explicitly stated and directed in the Uranium Mill Tailings Radiation Control Act of 1978, Public Law 95-604, 42 USC 7901 (hereinafter referred to as the ''Act''). Title I of the Act authorizes the Department of Energy (DOE) to undertake remedial actions at 24 designated inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and other residual radioactive materials derived from the processing sites. The Act, amended in January 1983, by Public Law 97-415, also authorizes DOE to perform remedial actions at vicinity properties in Edgemont, South Dakota. Cleanup of the Edgemont processing site is the responsibility of the Tennessee Valley Authority. This document describes the plan, organization, system, and methodologies used to manage the design, construction, and other activities required to clean up the designated sites and associated vicinity properties in accordance with the Act. The plan describes the objectives of the UMTRA Project, defines participants' roles and responsibilities, outlines the technical approach for accomplishing the objectives, and describes the planning and managerial controls to be used in integrating and performing the Project mission. 21 figs., 21 tabs

  12. PACTEL OECD project planning (PACO). PACTEL OECD project planning

    Energy Technology Data Exchange (ETDEWEB)

    Kouhia, V.; Purhonen, H. [Lappeenranta University of Technology (Finland)

    2004-07-01

    OECD launched the SETH project to investigate issues relevant for accident prevention and management and to ensure the existence of integral thermal hydraulic test facilities. The facilities included in the SETH project are PKL from Germany and PANDA from Switzerland. At the early stages of the SETH project an idea was raised to exploit the PACTEL facility in a similar OECD project. Without any external funding the analytical work in the required extent would not be possible within Lappeenranta University of Technology, the party responsible of operating PACTEL. This fact directed the PACO project proposal to be conducted for the SAFIR programme. The aim of the PACO project is to prepare a project proposal to OECD of a PACTEL related project. To attain this objective some preliminary analyses have to be performed to ensure the relevancy of the proposed topic. The low power situation, i.e. midloop state was chosen to be the topic in the PACO studies and project planning basis. The plan is to use PACTEL to examine vertical steam generator behaviour during the midloop operation and the following loss of residual heat removal system transient. Such a possibility is acknowledged with special alterations to PACTEL. The APROS code version 5.04.07 was selected as a tool for the preanalyses. The virtual simulation of the chosen experimental situation would give a preconception on the phenomena to be expected and the progression of the transient. Originally the PACO project was planned to continue only for a few months, ending up with the project proposal to OECD during the summer time 2004. During the pre-calculation process it became obvious that the time expected was not enough to establish good pre-calculation results. The reasons for this relates to time used to learn and adapt the use of the chosen code, improvements and corrections in modelling as well as the code ability to manage the special conditions defined for the project topic. Another aspect on completing a

  13. IX Disposition Project - project management plan

    International Nuclear Information System (INIS)

    Choi, I.G.

    1994-01-01

    This report presents plans for resolving saving and disposal concerns for ion exchange modules, cartridge filters and columns. This plan also documents the project baselines for schedules, cost, and technical information

  14. Project Management Plan Solution Stabilization

    Energy Technology Data Exchange (ETDEWEB)

    SATO, P.K.

    1999-08-31

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process.

  15. Project Management Plan Solution Stabilization

    International Nuclear Information System (INIS)

    SATO, P.K.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Solutions Stabilization subproject. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Integrated Project Management Plan (IPMP) for the Plutonium Finishing Plant Stabilization and Deactivation Project, HNF-3617. This project plan is the top-level definitive project management document for the PFP Solution Stabilization subproject. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Solution Stabilization subproject. Any deviations to the document must be authorized through the appropriate change control process

  16. Licensing plan for UMTRA project disposal sites

    International Nuclear Information System (INIS)

    1993-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Office developed a plan to define UMTRA Project licensing program objectives and establish a process enabling the DOE to document completion of remedial actions in compliance with 40 CFR 1 92 and the requirements of the NRC general license. This document supersedes the January 1987 Project Licensing Plan (DOE, 1987). The plan summarizes the legislative and regulatory basis for licensing, identifies participating agencies and their roles and responsibilities, defines key activities and milestones in the licensing process, and details the coordination of these activities. This plan provides an overview of the UMTRA Project from the end of remedial actions through the NRC's acceptance of a disposal site under the general license. The licensing process integrates large phases of the UMTRA Project. Other programmatic UMTRA Project documents listed in Section 6.0 provide supporting information

  17. Neste plans three projects

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Neste Chemicals (Helsinki) is discussing three joint ventures with local authorities in China, says Mikko Haapavaara, v.p./Asia. The projects should help the Finnish producer to increase sales in Asia by a considerable amount by 2000, he says. The plan involves production of polyethylene (PE), unsaturated polyester resins and PE compounding-all core operations. Sites have not been selected, but Shanghai is the favored location for the PE operations. The company is also looking at a site in the south, near Hong Kong, and at locations near Beijing. The PE plant would need to be near an ethylene unit, says Haapavaara. The PE resin plant would be designed to produce about 150,000 m.t./year and would cost about No. 150 million. A part of the output would need to be exported to take care of the financing, the company says. A feasibility study now under way with the potential Chinese partners should be completed by the end of March. The plant would use Neste's linear low-density PE process, proved in a world-scale plant at Beringen, Belgium. The compounding units would produce specialty PE material for the wire and cable and pipe industry. The company is a joint venture partner in a propane dehydrogenation/polypropylene (PP) plant and a minority partner in a Qualipoly, the 20,000 m.t./year unsaturated polyester resin producer

  18. Project Cost Estimation for Planning

    Science.gov (United States)

    2010-02-26

    For Nevada Department of Transportation (NDOT), there are far too many projects that ultimately cost much more than initially planned. Because project nominations are linked to estimates of future funding and the analysis of system needs, the inaccur...

  19. The Project of Planning

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    1986-01-01

    This article contains an interview with John Friedmann. The interview covers two core areas in John Friedmann's work: (a) The history of planning, from the beginning of the industrial era till today and (b) radical planning and social mobilization. In relation to radical planning and social mobil...

  20. Project Specific Quality Assurance Plan

    International Nuclear Information System (INIS)

    Pedersen, K.S.

    1995-01-01

    This Quality Assurance Project Plan (QAPP) identifies the Westinghouse Hanford Co. (WHC) Quality Assurance (QA) program requirements for all contractors involved in the planning and execution of the design, construction, testing and inspection of the 200 Area Effluent BAT/AKART Implementation, Project W-291

  1. UMTRA Project: Environment, Safety, and Health Plan

    International Nuclear Information System (INIS)

    1995-02-01

    The US Department of Energy has prepared this UMTRA Project Environment, Safety, and Health (ES and H) Plan to establish the policy, implementing requirements, and guidance for the UMTRA Project. The requirements and guidance identified in this plan are designed to provide technical direction to UMTRA Project contractors to assist in the development and implementation of their ES and H plans and programs for UMTRA Project work activities. Specific requirements set forth in this UMTRA Project ES and H Plan are intended to provide uniformity to the UMTRA Project's ES and H programs for processing sites, disposal sites, and vicinity properties. In all cases, this UMTRA Project ES and H Plan is intended to be consistent with applicable standards and regulations and to provide guidance that is generic in nature and will allow for contractors' evaluation of site or contract-specific ES and H conditions. This plan specifies the basic ES and H requirements applicable to UMTRA Project ES and H programs and delineates responsibilities for carrying out this plan. DOE and contractor ES and H personnel are expected to exercise professional judgment and apply a graded approach when interpreting these guidelines, based on the risk of operations

  2. Why does project planning fail

    International Nuclear Information System (INIS)

    Foley, M.; Luciano, G.

    1991-01-01

    The technology of project controls have become increasingly sophisticated. Some say that the technological advancements of the Nineteen-Eighties represented a maturation of project control tools. Others say that the advancements were merely bells and whistles that added little or nothing to the project management process. Above it all, as we enter the Nineties, there is a popular outcry to get back to the basics of planning. The genesis of this outcry is the sobering impact of significant cost overruns and schedule extensions, even on projects that have employed the most advanced project control tools and systems. This paper examines the merits of taking a strategic approach to the project planning process. Within that context, there are basic goals of planning which are enduring through the life cycle of the project. Key reasons for failure and inability to achieve the goals of project planning are explained. By examining the goals of project planning and the reasons for failure, insight is provided into the role of project controls specialists and sophisticated project control tools in meeting the challenges of complex project management in the 1990's

  3. Project Quality Plan

    DEFF Research Database (Denmark)

    Sandborg-Petersen, Ulrik; Øhrstrøm, Peter

    This document defines the procedures, standards, and strategies which will be used to ensure high standards of quality of the work produced within the HANDS project. It contains the following sections...

  4. Planning and Managing Drupal Projects

    CERN Document Server

    Nordin, Dani

    2011-01-01

    If you're a solo website designer or part of a small team itching to build interesting projects with Drupal, this concise guide will get you started. Drupal's learning curve has thrown off many experienced designers, particularly the way it handles design challenges. This book shows you the lifecycle of a typical Drupal project, with emphasis on the early stages of site planning. Learn how to efficiently estimate and set up your own project, so you can focus on ways to make your vision a reality, rather than let project management details constantly distract you. Plan and estimate your projec

  5. Research Planning and Evaluation Project

    International Nuclear Information System (INIS)

    Song, Seunghyun; Kim, Doyang; Ryu, Byunghoon; Lim, Chaeyoung; Song, Leeyoung; Lee, Youngchul; Han, Changsun; Kim, Hackchoon

    2011-12-01

    - To activate R and D through a systematic and impartial evaluation by using information on efficient distribution of research resource, setting project priorities, and measuring achievement against goals produced after research on planning and evaluation system for the government-funded project for KAERI was conducted. - Nuclear R and D project is the representative national R and D project which has been implemented in Korea. For the sustainable development of nuclear energy which supplies about 40% of total electricity generation and the enhancement of it innovative ability in the future, a systematic and efficient strategy in the planning stage is required

  6. Establishing predictors for successfully planned endotracheal extubation.

    Science.gov (United States)

    Lai, Chih-Cheng; Chen, Chin-Ming; Chiang, Shyh-Ren; Liu, Wei-Lun; Weng, Shih-Feng; Sung, Mei-I; Hsing, Shu-Chen; Cheng, Kuo-Chen

    2016-10-01

    The aim of this study was to establish predictors for successfully planned extubation, which can be followed by medical personnel. The patients who were admitted to the adult intensive care unit of a tertiary hospital and met the following criteria between January 2005 and December 2014 were collected retrospectively: intubation > 48 hours; and candidate for extubation. The patient characteristics, including disease severity, rapid shallow breath index (RSBI), maximal inspiratory pressure (MIP), maximal expiratory pressure (MEP), cuff leak test (CLT) before extubation, and outcome, were recorded. The CLT was classified as 2+ with audible flow without a stethoscope, 1+ with audible flow using a stethoscope, and negative (N) with no audible flow, even with a stethoscope. Failure to extubate was defined as reintubation within 48 hours. In total, 6583 patients were enrolled and 403 patients (6.1%) had extubation failures. Male patients dominated the patient cohort (4261 [64.7%]). The mean age was 64.5±16.3 years. The overall in-hospital mortality rate was 11.3%. The extubation failure rate for females was greater than males (7.7% vs 5.3%, P respiratory capacity, was developed to better predict extubation success.

  7. Project implementation plan: ASTD remote deployment

    International Nuclear Information System (INIS)

    CRASS, D.W.

    1999-01-01

    This document is the project implementation plan for the ASTD Remote Deployment Project. The Plan identifies the roles and responsibilities for the project and defines the integration between the ASTD Project and the B-Cell Cleanout Project

  8. HANDI 2000 project execution plan

    International Nuclear Information System (INIS)

    BENNION, S.I.

    1999-01-01

    The HANDI 2000 project will meet some of the major objectives and goals of the PHMC Management and Integration Plan, HNF-MP-00/Rev. 11, by integrating the major Hanford business processes and their supporting information systems

  9. Next Generation Nuclear Plant Project Preliminary Project Management Plan

    International Nuclear Information System (INIS)

    Dennis J. Harrell

    2006-01-01

    This draft preliminary project management plan presents the conceptual framework for the Next Generation Nuclear Plant (NGNP) Project, consistent with the authorization in the Energy Policy Act of 2005. In developing this plan, the Idaho National Laboratory has considered three fundamental project planning options that are summarized in the following section. Each of these planning options is literally compliant with the Energy Policy Act of 2005, but each emphasizes different approaches to technology development risks, design, licensing and construction risks, and to the extent of commercialization support provided to the industry. The primary focus of this draft preliminary project management plan is to identify those activities important to Critical Decision-1, at which point a decision on proceeding with the NGNP Project can be made. The conceptual project framework described herein is necessary to establish the scope and priorities for the technology development activities. The framework includes: A reference NGNP prototype concept based on what is judged to be the lowest risk technology development that would achieve the needed commercial functional requirements to provide an economically competitive nuclear heat source and hydrogen production capability. A high-level schedule logic for design, construction, licensing, and acceptance testing. This schedule logic also includes an operational shakedown period that provides proof-of-principle to establish the basis for commercialization decisions by end-users. An assessment of current technology development plans to support Critical Decision-1 and overall project progress. The most important technical and programmatic uncertainties (risks) are evaluated, and potential mitigation strategies are identified so that the technology development plans may be modified as required to support ongoing project development. A rough-order-of-magnitude cost evaluation that provides an initial basis for budget planning. This

  10. Route planning algorithms: Planific@ Project

    Directory of Open Access Journals (Sweden)

    Gonzalo Martín Ortega

    2009-12-01

    Full Text Available Planific@ is a route planning project for the city of Madrid (Spain. Its main aim is to develop an intelligence system capable of routing people from one place in the city to any other using the public transport. In order to do this, it is necessary to take into account such things as: time, traffic, user preferences, etc. Before beginning to design the project is necessary to make a comprehensive study of the variety of main known route planning algorithms suitable to be used in this project.

  11. Quality Assurance Project Plan for Citizen Science Projects

    Science.gov (United States)

    The Quality Assurance Project Plan is necessary for every project that collects or uses environmental data. It documents the project planning process and serves as a blueprint for how your project will run.

  12. Project Execution Plan

    International Nuclear Information System (INIS)

    1999-01-01

    Created in 1989 to address over 50 years of environmental liabilities arising out of nuclear weapons production and testing in the United States since World War II, the U.S. Department of Energy's (DOE's) Environmental Management (EM) Programs decade-long effort to reduce the costs of those environmental liabilities, collectively known as DOE's ''environmental mortgage,'' includes past as well as future cleanup costs associated with environmental contamination, hazardous and radioactive materials and wastes, contaminated buildings and facilities, and their associated risks. Tasked with the bulk of these cleanup efforts, the U.S. Department of Energy, Nevada Operations Office's (DOE/NV's), Nevada Environmental Restoration Project (NV ERP) is attempting to complete applicable corrective actions at inactive contaminated sites and facilities managed by DOE/NV, while at the same time protecting human health and the environment. Regulated under the Federal Facility Agreement and Consent Order, the objectives of the NV ERP are to identify the nature and extent of the contamination, determine its potential risk to the public and the environment, and to perform the necessary corrective actions in compliance with this and other state and federal regulations, guidelines, and requirements. Associated with this vast effort are approximately 2,000 sites both on and off of the Nevada Test Site (NTS) that were used primarily for nuclear testing and are addressed in the NV ERP. This includes sites that were underground areas where tests were actually conducted, contaminated surface soils resulting from aboveground testing activities, and sites that supported other related testing hardware paraphenalia and/or NTS real estate properties (e.g., underground storage tanks, leachfields, landfills, contaminated waste areas, injection wells, muckpiles, and ponds). To assist in this effort, a NV ERP Team was assembled which is composed of organizations from both the public and private

  13. Project Surveillance and Maintenance Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The Project Surveillance and Maintenance Plan (PSMP) describes the procedures that will be used by the US Department of Energy (DOE), or other agency as designated by the President to verify that inactive uranium tailings disposal facilities remain in compliance with licensing requirements and US Environmental Protection Agency (EPA) standards for remedial actions. The PSMP will be used as a guide for the development of individual Site Surveillance and Maintenance Plans (part of a license application) for each of the UMTRA Project sites. The PSMP is not intended to provide minimum requirements but rather to provide guidance in the selection of surveillance measures. For example, the plan acknowledges that ground-water monitoring may or may not be required and provides the [guidance] to make this decision. The Site Surveillance and Maintenance Plans (SSMPs) will form the basis for the licensing of the long-term surveillance and maintenance of each UMTRA Project site by the NRC. Therefore, the PSMP is a key milestone in the licensing process of all UMTRA Project sites. The Project Licensing Plan (DOE, 1984a) describes the licensing process. 11 refs., 22 figs., 8 tabs

  14. Project Hanford management contract quality improvement project management plan; TOPICAL

    International Nuclear Information System (INIS)

    ADAMS, D.E.

    1999-01-01

    On July 13, 1998, the U.S. Department of Energy, Richland Operations Office (DOE-RL) Manager transmitted a letter to Fluor Daniel Hanford, Inc. (FDH) describing several DOE-RL identified failed opportunities for FDH to improve the Quality Assurance (QA) Program and its implementation. In addition, DOE-RL identified specific Quality Program performance deficiencies. FDH was requested to establish a periodic reporting mechanism for the corrective action program. In a July 17, 1998 response to DOE-RL, FDH agreed with the DOE concerns and committed to perform a comprehensive review of the Project Hanford Management Contract (PHMC) QA Program during July and August, 1998. As a result, the Project Hanford Management Contract Quality Improvement Plan (QIP) (FDH-3508) was issued on October 21, 1998. The plan identified corrective actions based upon the results of an in-depth Quality Program Assessment. Immediately following the scheduled October 22, 1998, DOE Office of Enforcement and Investigation (EH-10) Enforcement Conference, FDH initiated efforts to effectively implement the QIP corrective actions. A Quality Improvement Project (QI Project) leadership team was assembled to prepare a Project Management Plan for this project. The management plan was specifically designed to engage a core team and the support of representatives from FDH and the major subcontractors (MSCs) to implement the QIP initiatives; identify, correct, and provide feedback as to the root cause for deficiency; and close out the corrective actions. The QI Project will manage and communicate progress of the process

  15. Single-Shell Tank (SST) Interim Stabilization Project Plan

    International Nuclear Information System (INIS)

    VLADIMIROFF, D.T.; BOYLES, V.C.

    2000-01-01

    This project plan establishes the management framework for the conduct of the CHG Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organization structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline

  16. Single-shell tank interim stabilization project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.E.

    1998-05-11

    This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities, and interfaces; and operational methods. This plan serves as the project executional baseline.

  17. Project Execution Plan, Rev. 3

    International Nuclear Information System (INIS)

    IT Corporation, Las Vegas

    2002-01-01

    This plan addresses project activities encompassed by the U.S. Department of Energy's (DOE's), National Nuclear Security Administration Nevada Operations Office, Environmental Restoration Division and conforms to the requirements contained in the Life-Cycle Asset Management, DOE Order 430.1A; The Joint Program Office Policy on Project Management in Support of DOE Order 430.1; Program and Project Management for the Acquisition of Capital Assets, DOE Order 413.3; the Project Execution and Engineering Management Planning Guide, GPG-FM-010; and other applicable Good Practice Guides; and the FY 2001 Integrated Planning, Accountability, and Budgeting System Policy Guidance. The plan also reflects the milestone philosophies of the Federal Facility Agreement and Consent Order, as agreed to by the State of Nevada, the DOE, and the U.S. Department of Defense; and traditional project management philosophies such as the development of life-cycle costs, schedules, and work scope; identification o f roles and responsibilities; and baseline management and controls

  18. Spent Nuclear Fuel Project dose management plan

    International Nuclear Information System (INIS)

    Bergsman, K.H.

    1996-03-01

    This dose management plan facilitates meeting the dose management and ALARA requirements applicable to the design activities of the Spent Nuclear Fuel Project, and establishes consistency of information used by multiple subprojects in ALARA evaluations. The method for meeting the ALARA requirements applicable to facility designs involves two components. The first is each Spent Nuclear Fuel Project subproject incorporating ALARA principles, ALARA design optimizations, and ALARA design reviews throughout the design of facilities and equipment. The second component is the Spent Nuclear Fuel Project management providing overall dose management guidance to the subprojects and oversight of the subproject dose management efforts

  19. Quality planning in Construction Project

    Science.gov (United States)

    Othman, I.; Shafiq, Nasir; Nuruddin, M. F.

    2017-12-01

    The purpose of this paper is to investigate deeper on the factors that contribute to the effectiveness of quality planning, identifying the common problems encountered in quality planning, practices and ways for improvements in quality planning for construction projects. This paper involves data collected from construction company representatives across Malaysia that are obtained through semi-structured interviews as well as questionnaire distributions. Results shows that design of experiments (average index: 4.61), inspection (average index: 4.45) and quality audit as well as other methods (average index: 4.26) rank first, second and third most important factors respectively.

  20. Planning for high performance project teams

    International Nuclear Information System (INIS)

    Reed, W.; Keeney, J.; Westney, R.

    1997-01-01

    Both industry-wide research and corporate benchmarking studies confirm the significant savings in cost and time that result from early planning of a project. Amoco's Team Planning Workshop combines long-term strategic project planning and short-term tactical planning with team building to provide the basis for high performing project teams, better project planning, and effective implementation of the Amoco Common Process for managing projects

  1. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ

    2008-07-10

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  2. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    CERTA PJ

    2008-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, the ORP is responsible for the retrieval, treatment, and disposal of the approximately 57 million gallons of radioactive waste contained in the Hanford Site waste tanks and closure of all the tanks and associated facilities. The previous revision of the System Plan was issued in September 2003. ORP has approved a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. The ORP has established contracts to implement this strategy to establish a basic capability to complete the overall mission. The current strategy for completion of the mission uses a number of interrelated activities. The ORP will reduce risk to the environment posed by tank wastes by: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) for treatment and disposal; (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) and about half of the low-activity waste (LAW) contained in the tank farms, and maximizing its capability and capacity; (3) Developing and deploying supplemental treatment capability or a second WTP LAW Facility that can safely treat about half of the LAW contained in the tank farms; (4) Developing and deploying treatment and packaging capability for transuranic (TRU) tank waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP); (5) Deploying interim storage capacity for the immobilized HLW and shipping that waste to Yucca Mountain for disposal; (6) Operating the Integrated Disposal Facility for the disposal of immobilized LAW, along with the associated secondary waste, (7) Closing the SST and DST tank farms, ancillary facilities, and al1 waste

  3. SADC establishes a regional action plan.

    Science.gov (United States)

    Klouda, T

    1997-02-01

    The regional meeting held on AIDS strategy in Lilongwe, Malawi, in December, 1996, made important advances. The 12 countries of the SADC (Southern Africa Development Community) joined the European Union to institute a regional action plan for the reduction of susceptibility of people to HIV because of social, cultural, and environmental factors; the vulnerability of people with HIV infection to social and other difficulties; and the vulnerability of institutions because of the foregoing impacts. At the conference the issues explored were employment, mining, medical drugs, education, and tourism. An employment charter was seen as crucial for the success of AIDS and workplace activities. Facilitation of travel across borders was important for the reduction of susceptibility to HIV infection. Enhancement of regional policies for essential drugs was vital for drugs for the treatment of AIDS. The clarification of the regional role was critical for regional support of national action (strengthening technical and institutional capacities) and for regional joint action such as studies on research, harmonization of data collection on HIV/AIDS; organization of training; development of information and education on HIV/AIDS; facilitation of manufacturing of drugs and condoms; and the development of a regional information and education program about HIV/AIDS. The conference also clarified HIV/AIDS programs in relation to other health and socioeconomic problems.

  4. RIVER PROTECTION PROJECT SYSTEM PLAN

    International Nuclear Information System (INIS)

    Certa, P.J.; Kirkbride, R.A.; Hohl, T.M.; Empey, P.A.; Wells, M.N.

    2009-01-01

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and disposal

  5. RIVER PROTECTION PROJECT SYSTEM PLAN

    Energy Technology Data Exchange (ETDEWEB)

    CERTA PJ; KIRKBRIDE RA; HOHL TM; EMPEY PA; WELLS MN

    2009-09-15

    The U.S. Department of Energy (DOE), Office of River Protection (ORP) manages the River Protection Project (RPP). The RPP mission is to retrieve and treat Hanford's tank waste and close the tank farms to protect the Columbia River. As a result, ORP is responsible for the retrieval, treatment, and disposal of approximately 57 million gallons 1 of radioactive waste contained in the Hanford Site waste tanks and closure2 of all the tanks and associated facilities. The previous revision of the System Plan was issued in May 2008. ORP has made a number of changes to the tank waste treatment strategy and plans since the last revision of this document, and additional changes are under consideration. ORP has contracts in place to implement the strategy for completion of the mission and establish the capability to complete the overall mission. The current strategl involves a number of interrelated activities. ORP will reduce risk to the environment posed by tank wastes by the following: (1) Retrieving the waste from the single-shell tanks (SST) to double-shell tanks (DST) and delivering the waste to the Waste Treatment and Immobilization Plant (WTP). (2) Constructing and operating the WTP, which will safely treat all of the high-level waste (HLW) fraction contained in the tank farms. About one-third of the low-activity waste (LAW) fraction separated from the HLW fraction in the WTP will be immobilized in the WTP LAW Vitrification Facility. (3) Developing and deploying supplemental treatment capability assumed to be a second LAW vitrification facility that can safely treat about two-thirds of the LAW contained in the tank farms. (4) Developing and deploying supplemental pretreatment capability currently assumed to be an Aluminum Removal Facility (ARF) using a lithium hydrotalcite process to mitigate sodium management issues. (5) Developing and deploying treatment and packaging capability for contact-handled transuranic (CH-TRU) tank waste for possible shipment to and

  6. UMTRA Project environmental, health, and safety plan

    International Nuclear Information System (INIS)

    1989-02-01

    The basic health and safety requirements established in this plan are designed to provide guidelines to be applied at all Uranium Mill Tailings Remedial Action (UMTRA) Project sites. Specific restrictions are given where necessary. However, an attempt has been made to provide guidelines which are generic in nature, and will allow for evaluation of site-specific conditions. Health and safety personnel are expected to exercise professional judgment when interpreting these guidelines to ensure the health and safety of project personnel and the general population. This UMTRA Project Environmental, Health, and Safety (EH ampersand S) Plan specifies the basic Federal health and safety standards and special DOE requirements applicable to this program. In addition, responsibilities in carrying out this plan are delineated. Some guidance on program requirements and radiation control and monitoring is also included. An Environmental, Health, and Safety Plan shall be developed as part of the remedial action plan for each mill site and associated disposal site. Special conditions at the site which may present potential health hazards will be described, and special areas that should should be addressed by the Remedial Action Contractor (RAC) will be indicated. Site-specific EH ampersand S concerns will be addressed by special contract conditions in RAC subcontracts. 2 tabs

  7. Tank waste remediation system privatization Phase 1 infrastructure, project W-519, project execution plan

    International Nuclear Information System (INIS)

    Parazin, R.J.

    1998-01-01

    This Project Execution Plan (PEP) defines the overall strategy, objectives, and contractor management requirements for the execution phase of Project W-519 (98-D403), Privatization Phase 1 Infrastructure Support, whose mission is to effect the required Hanford site infrastructure physical changes to accommodate the Privatization Contractor facilities. This plan provides the project scope, project objectives and method of performing the work scope and achieving objectives. The plan establishes the work definitions, the cost goals, schedule constraints and roles and responsibilities for project execution. The plan also defines how the project will be controlled and documented

  8. Advanced Life Support Project Plan

    Science.gov (United States)

    2002-01-01

    Life support systems are an enabling technology and have become integral to the success of living and working in space. As NASA embarks on human exploration and development of space to open the space frontier by exploring, using and enabling the development of space and to expand the human experience into the far reaches of space, it becomes imperative, for considerations of safety, cost, and crew health, to minimize consumables and increase the autonomy of the life support system. Utilizing advanced life support technologies increases this autonomy by reducing mass, power, and volume necessary for human support, thus permitting larger payload allocations for science and exploration. Two basic classes of life support systems must be developed, those directed toward applications on transportation/habitation vehicles (e.g., Space Shuttle, International Space Station (ISS), next generation launch vehicles, crew-tended stations/observatories, planetary transit spacecraft, etc.) and those directed toward applications on the planetary surfaces (e.g., lunar or Martian landing spacecraft, planetary habitats and facilities, etc.). In general, it can be viewed as those systems compatible with microgravity and those compatible with hypogravity environments. Part B of the Appendix defines the technology development 'Roadmap' to be followed in providing the necessary systems for these missions. The purpose of this Project Plan is to define the Project objectives, Project-level requirements, the management organizations responsible for the Project throughout its life cycle, and Project-level resources, schedules and controls.

  9. SNF Project Engineering Process Improvement Plan

    International Nuclear Information System (INIS)

    DESAI, S.P.

    2000-01-01

    This plan documents the SNF Project activities and plans to support its engineering process. It describes five SNF Project Engineering initiatives: new engineering procedures, qualification cards process; configuration management, engineering self assessments, and integrated schedule for engineering activities

  10. Strategic planning for remediation projects

    International Nuclear Information System (INIS)

    Tapp, J.W.

    1995-01-01

    Remediation projects may range from a single leaking storage tank to an entire plant complex or producing oil and gas field. Strategic planning comes into play when the contamination of soil and groundwater is extensive. If adjacent landowners have been impacted or the community at large is concerned about the quality of drinking water, then strategic planning is even more important. (1) To manage highly complex interrelated issues--for example, the efforts expended on community relations can alter public opinion, which can impact regulatory agency decisions that affect cleanup standards, which can...and so on. (2) To ensure that all potential liabilities are managed--for example, preparation for the defense of future lawsuits is essential during site investigation and remediation. (3) To communicate with senior management--when the remediation team provides a strategic plan that includes both technical and business issues, senior management has the opportunity to become more involved and make sound policy decisions. The following discusses the elements of a strategic plan, who should participate in it, and the issues that should be considered

  11. Closure plan for the proposed Millennium Project

    International Nuclear Information System (INIS)

    Tuttle, S.; Sisson, R.

    1999-01-01

    A $2.2 billion expansion of the current oil sands operation has been proposed by Suncor Energy Inc. The expansion would more than double the productive capacity of the present facility. As part of the application for this expansion, called Project Millennium, a comprehensive closure plan has been developed and filed by the Corporation. The Plan includes a systematic evaluation of the area to be developed, a description of the development activities planned, and the goals and objectives of the Corporation in re-establishing the landforms and ecosystems concurrently with running the operation. The Plan envisages surface contouring as early as practicable during the mine development, soil reconstruction, and re-establishment of vegetation, surface drainage and wetlands. The Corporation undertakes to monitor the performance of the reclaimed areas based on landform performance, the impact of chemical constituents on the landscape and ecosystem sustainability. An annual monitoring report assessing herbaceous vegetation growth, major species composition, tree and shrub survival and growth rate, groundwater conditions, amount of precipitation, the utility of constructed wetlands for treatment of reclamation area seepage and runoff waters, and wildlife population changes, will be prepared annually. A future research program associated with the Reclamation and Closure Plan will also examine the effectiveness of the reclamation drainage system as fish habitat, and the potential of the proposed end-pit lake to provide a viable aquatic ecosystem. 8 refs., 2 figs

  12. Project Plan Remote Target Fabrication Refurbishment Project

    International Nuclear Information System (INIS)

    Bell, Gary L.; Taylor, Robin D.

    2009-01-01

    In early FY2009, the DOE Office of Science - Nuclear Physics Program reinstated a program for continued production of 252 Cf and other transcurium isotopes at the Radiochemical Engineering Development Center (REDC) at Oak Ridge National Laboratory (ORNL). The FY2009 major elements of the workscope are as follows: (1) Recovery and processing of seven transuranium element targets undergoing irradiation at the High Flux Isotope Reactor (HFIR) at ORNL; (2) Development of a plan to manufacture new targets for irradiation beginning in early- to mid-FY10 to supply irradiated targets for processing Campaign 75 (TRU75); and (3) Refurbishment of the target manufacturing equipment to allow new target manufacture in early FY10 The 252 Cf product from processing Campaign 74 (recently processed and currently shipping to customers) is expected to supply the domestic demands for a period of approximately two years. Therefore it is essential that new targets be introduced for irradiation by the second quarter of FY10 (HFIR cycle 427) to maintain supply of 252 Cf; the average irradiation period is ∼10 HFIR cycles, requiring about 1.5 calendar years. The strategy for continued production of 252 Cf depends upon repairing and refurbishing the existing pellet and target fabrication equipment for one additional target production campaign. This equipment dates from the mid-1960s to the late 1980s, and during the last target fabrication campaign in 2005- 2006, a number of component failures and operations difficulties were encountered. It is expected that following the target fabrication and acceptance testing of the targets that will supply material for processing Campaign 75 a comprehensive upgrade and replacement of the remote hot-cell equipment will be required prior to subsequent campaigns. Such a major refit could start in early FY 2011 and would take about 2 years to complete. Scope and cost estimates for the repairs described herein were developed, and authorization for the work

  13. Project Planning and Implementation: Lessons Learned From the AQBMP Project

    National Research Council Canada - National Science Library

    1997-01-01

    ...). This NSRP report is funded as an addendum to the Air Quality Best Management Practices (AQBMP) project (N1 -944). The AQBMP project was completed using an intensive project planning process using a variety of quality management tools...

  14. Project planning and project management of Baseball II-T

    International Nuclear Information System (INIS)

    Kozman, T.A.; Chargin, A.K.

    1975-01-01

    The details of the project planning and project management work done on the Baseball II-T experiment are reviewed. The LLL Baseball program is a plasma confinement experiment accomplished with a superconducting magnet in the shape of a baseball seam. Both project planning and project management made use of the Critical Path Management (CPM) computer code. The computer code, input, and results from the project planning and project management runs, and the cost and effectiveness of this method of systems planning are discussed

  15. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Frazier, T.P.

    1994-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the Facility Effluent Monitoring Plans, which are part of the overall Hanford Site Environmental Protection Plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of the individual Facility Effluent Monitoring Plans

  16. Spent Nuclear Fuel project interface control plan

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1995-01-01

    This implementation process philosophy is in keeping with the ongoing reengineering of the WHC Controlled Manuals to achieve interface control within the SNF Project. This plan applies to all SNF Project sub-project to sub-project, and sub-project to exteranl (both on and off the Hanford Site) interfaces

  17. Project structure plan requirements for the deconstruction projects

    International Nuclear Information System (INIS)

    Petrasch, Peter; Schmitt, Christian; Stapf, Meike

    2011-01-01

    The deconstruction of nuclear facilities requires due to the particular conditions and the size of the project a special project planning. The authors analyze the possible requirements to be fulfilled by a project structure plan for nuclear facilities, including personnel resources, organization structure, budget questions, operation and project oriented measures, possibility of modifications and supplements. Further topics include controlling and project realization procedures, documentation, third party activities (authorities, consultants, surveyors), logistics and transport, and radiation protection issues. Several questions remain for plants-specific planning, including the integration of the plant personnel, administrative work, project management, economic and financial issues, radioactive waste management issues.

  18. 78 FR 21414 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2013-04-10

    ... Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The following Water Management Plans are available for review... establish and administer an office on Central Valley Project water conservation best management practices...

  19. Quality Assurance Project Plan Development Tool

    Science.gov (United States)

    This tool contains information designed to assist in developing a Quality Assurance (QA) Project Plan that meets EPA requirements for projects that involve surface or groundwater monitoring and/or the collection and analysis of water samples.

  20. Fast flux test facility, transition project plan

    International Nuclear Information System (INIS)

    Guttenberg, S.

    1994-01-01

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  1. Fast flux test facility, transition project plan

    Energy Technology Data Exchange (ETDEWEB)

    Guttenberg, S.

    1994-11-15

    The FFTF Transition Project Plan, Revision 1, provides changes and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  2. Energy Strategic Planning & Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Retziaff, Greg

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follows: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  3. Comprehensive Evaluation of Large Infrastructure Project Plan with ANP

    Institute of Scientific and Technical Information of China (English)

    HAN Chuan-feng; CHEN Jian-ye

    2005-01-01

    Analytic Network Process(ANP) was used in comprehensive evaluation of large infrastructure project plan. A model including social economy, ecological environment, and resources was established with ANP method. The evaluation pattern of hierarchy structure and comprehensive evaluation method for quantity and quality of large infrastructure project were put forward, which provides an effective way to evaluate the large infrastructure project plan. Quantitative analysis indicated that the internal dependence relation of hierarchy structure has influence on ranking results of plan. It is suggested that considering the internal relation can helps managers make effective decisions.

  4. Understanding Applications of Project Planning and Scheduling in Construction Projects

    OpenAIRE

    AlNasseri, Hammad Abdullah

    2015-01-01

    Construction project life-cycle processes must be managed in a more effective and predictable way to meet project stakeholders’ needs. However, there is increasing concern about whether know-how effectively improves understanding of underlying theories of project management processes for construction organizations and their project managers. Project planning and scheduling are considered as key and challenging tools in controlling and monitoring project performance, but many worldwide constru...

  5. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-11-30

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff.

  6. The CHPRC Columbia River Protection Project Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    Fix, N.J.

    2008-01-01

    Pacific Northwest National Laboratory researchers are working on the CHPRC Columbia River Protection Project (hereafter referred to as the Columbia River Project). This is a follow-on project, funded by CH2M Hill Plateau Remediation Company, LLC (CHPRC), to the Fluor Hanford, Inc. Columbia River Protection Project. The work scope consists of a number of CHPRC funded, related projects that are managed under a master project (project number 55109). All contract releases associated with the Fluor Hanford Columbia River Project (Fluor Hanford, Inc. Contract 27647) and the CHPRC Columbia River Project (Contract 36402) will be collected under this master project. Each project within the master project is authorized by a CHPRC contract release that contains the project-specific statement of work. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Columbia River Project staff

  7. Tools for Supporting Distributed Agile Project Planning

    Science.gov (United States)

    Wang, Xin; Maurer, Frank; Morgan, Robert; Oliveira, Josyleuda

    Agile project planning plays an important part in agile software development. In distributed settings, project planning is severely impacted by the lack of face-to-face communication and the inability to share paper index cards amongst all meeting participants. To address these issues, several distributed agile planning tools were developed. The tools vary in features, functions and running platforms. In this chapter, we first summarize the requirements for distributed agile planning. Then we give an overview on existing agile planning tools. We also evaluate existing tools based on tool requirements. Finally, we present some practical advices for both designers and users of distributed agile planning tools.

  8. Quality Assurance Project Plan for Facility Effluent Monitoring Plan activities

    International Nuclear Information System (INIS)

    Nickels, J.M.

    1991-06-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the Facility Monitoring Plans of the overall site-wide environmental monitoring plan. This plan specifically applies to the sampling and analysis activities and continuous monitoring performed for all Facility Effluent Monitoring Plan activities conducted by Westinghouse Hanford Company. It is generic in approach and will be implemented in conjunction with the specific requirements of individual Facility Effluent Monitoring Plans. This document is intended to be a basic road map to the Facility Effluent Monitoring Plan documents (i.e., the guidance document for preparing Facility Effluent Monitoring Plans, Facility Effluent Monitoring Plan determinations, management plan, and Facility Effluent Monitoring Plans). The implementing procedures, plans, and instructions are appropriate for the control of effluent monitoring plans requiring compliance with US Department of Energy, US Environmental Protection Agency, state, and local requirements. This Quality Assurance Project Plan contains a matrix of organizational responsibilities, procedural resources from facility or site manuals used in the Facility Effluent Monitoring Plans, and a list of the analytes of interest and analytical methods for each facility preparing a Facility Effluent Monitoring Plan. 44 refs., 1 figs., 2 tabs

  9. Uranium Mill Tailings Remedial Action Project surface project management plan

    International Nuclear Information System (INIS)

    1994-09-01

    This Project Management Plan describes the planning, systems, and organization that shall be used to manage the Uranium Mill Tailings Remedial Action Project (UMTRA). US DOE is authorized to stabilize and control surface tailings and ground water contamination at 24 inactive uranium processing sites and associated vicinity properties containing uranium mill tailings and related residual radioactive materials

  10. Planning a change project in mental health nursing.

    Science.gov (United States)

    Thorpe, Rebecca

    2015-09-02

    This article outlines a plan for a change project to improve the quality of physical health care on mental health wards. The plan was designed to improve the monitoring and recording of respiratory rates on mental health wards, through the implementation of a training programme for staff. A root cause analysis was used to explore the reasons for the low incidence of respiratory rate measurement on mental health wards, and the results of this establish the basis of the proposed change project and its aims and objectives. The article describes how the project could be implemented using a change management model, as well as how its effects could be measured and evaluated. Potential barriers to the planned change project are discussed, including the human dimensions of change. The article suggests methods to overcome such barriers, discusses the value of leadership as an important factor, and examines the principles of clinical governance in the context of the planned change project.

  11. Sample management implementation plan: Salt Repository Project

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Sample Management Implementation Plan is to define management controls and building requirements for handling materials collected during the site characterization of the Deaf Smith County, Texas, site. This work will be conducted for the US Department of Energy Salt Repository Project Office (SRPO). The plan provides for controls mandated by the US Nuclear Regulatory Commission and the US Environmental Protection Agency. Salt Repository Project (SRP) Sample Management will interface with program participants who request, collect, and test samples. SRP Sample Management will be responsible for the following: (1) preparing samples; (2) ensuring documentation control; (3) providing for uniform forms, labels, data formats, and transportation and storage requirements; and (4) identifying sample specifications to ensure sample quality. The SRP Sample Management Facility will be operated under a set of procedures that will impact numerous program participants. Requesters of samples will be responsible for definition of requirements in advance of collection. Sample requests for field activities will be approved by the SRPO, aided by an advisory group, the SRP Sample Allocation Committee. This document details the staffing, building, storage, and transportation requirements for establishing an SRP Sample Management Facility. Materials to be managed in the facility include rock core and rock discontinuities, soils, fluids, biota, air particulates, cultural artifacts, and crop and food stuffs. 39 refs., 3 figs., 11 tabs

  12. Spent Nuclear Fuel project systems engineering management plan

    International Nuclear Information System (INIS)

    Womack, J.C.

    1995-01-01

    The purpose of the WHC Systems Engineering Management Plan (SEMP) is to describe the systems engineering approach and methods that will be integrated with established WHC engineering practices to enhance the WHC engineering management of the SNF Project. The scope of the SEMP encompasses the efforts needed to manage the WHC implementation of systems engineering on the SNF Project. This implementation applies to, and is tailored to the needs of the SNF project and all its subprojects, including all current and future subprojects

  13. Project Plan IRRS Ireland 2015

    International Nuclear Information System (INIS)

    Ryan, T.

    2015-02-01

    The IAEA Integrated Regulatory Review Service, IRRS was established to strengthen and enhance the effectiveness of national regulatory infrastructure for nuclear safety, radiation safety, radioactive waste and transport safety, and the security of radioactive sources, while recognising the ultimate responsibility of each Member State to ensure safety in these areas. The IRRS process sets out to accomplish this expressed purpose through consideration of both technical and policy issues of a regulatory nature against IAEA safety standards and, where appropriate, good practice elsewhere. The regulatory review process directly draws upon the wide-ranging international experience and expertise of IRRS review team members. Peer exchange on technical and policy issues gives insight into the efficiency and effectiveness of the legal and governmental framework and regulatory infrastructure for safety. Through this process, opportunities for improvement are explored and potential improvement strategies identified which may be shared with other States. IRRS missions provide an opportunity for sharing regulatory experiences, harmonising regulatory approaches among States, and creating mutual learning opportunities among regulators. IRRS discussions focus on issues arising from the State's self-assessment and the evaluation of technical areas and policy issues. There are binding legal requirements in both the Euratom Nuclear Safety and Radioactive Waste Directives that the national regulatory framework, including the regulatory body, is subject to a periodic international peer review. In practice these peer reviews are organised by the IAEA through an agreement with the EU and comprise a detailed examination of national provisions against the IAEA's Safety Standards. Ireland applied for its peer review mission on the 28th September 2010 and in an exchange of letters, 2015 was agreed between the IAEA and Ireland with a follow up mission foreseen for 2018 Appendix 1

  14. Graduate Student Project: Operations Management Product Plan

    Science.gov (United States)

    Fish, Lynn

    2007-01-01

    An operations management product project is an effective instructional technique that fills a void in current operations management literature in product planning. More than 94.1% of 286 graduates favored the project as a learning tool, and results demonstrate the significant impact the project had in predicting student performance. The author…

  15. 233S Decommissioning Project Environmental Control Plan

    International Nuclear Information System (INIS)

    Zoric, J.P.

    2000-01-01

    This Environmental Control Plan is for the 233S Decommissioning activities conducted under the removal action report for the 233S Decontamination and Demolition Project. The purpose of this ECP is to identify environmental requirements for the 233S project. The ECP is a compilation of existing environmental permit conditions, regulatory requirements, and environmental requirements applicable to the specific project or functional activity

  16. Otter Brook Lake, New Hampshire Connecticut River Basin, Flood Control Project, Solid Waste Management Plan

    National Research Council Canada - National Science Library

    1996-01-01

    .... This plan provides guidance to establish policies, and responsibilities, procedures, and instructions for proper handling, storage, disposal and recycling of solid waste generated at the flood control project...

  17. Project Management Plan for Material Stabilization

    International Nuclear Information System (INIS)

    SPEER, D.R.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the plutonium Finishing Plant (PFP) Materials Stabilization project. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617/Rev. 0. This is the top-level definitive project management document that specifies the technical (work scope), schedule, and cost baselines to manager the execution of this project. It describes the organizational approach and roles/responsibilities to be implemented to execute the project. This plan is under configuration management and any deviations must be authorized by appropriate change control action. Materials stabilization is designated the responsibility to open and stabilize containers of plutonium metal, oxides, alloys, compounds, and sources. Each of these items is at least 30 weight percent plutonium/uranium. The output of this project will be containers of materials in a safe and stable form suitable for storage pending final packaging and/or transportation offsite. The corrosion products along with oxides and compounds will be stabilized via muffle furnaces to reduce the materials to high fired oxides

  18. Policy and planning for large infrastructure projects

    DEFF Research Database (Denmark)

    Flyvbjerg, Bent

    2005-01-01

    This paper focuses on problems and their causes and cures in policy and planning for large infrastructure projects. First, it identifies as the main problem in major infrastructure development pervasive misinformation about the costs, benefits, and risks involved. A consequence of misinformation ...... for large infrastructure projects, with a focus on better planning methods and changed governance structures, the latter being more important.......This paper focuses on problems and their causes and cures in policy and planning for large infrastructure projects. First, it identifies as the main problem in major infrastructure development pervasive misinformation about the costs, benefits, and risks involved. A consequence of misinformation...... the likelihood that it is their projects, and not the competition's, that gain approval and funding. This results in the "survival of the unfittest," where often it is not the best projects that are built, but the most misrepresented ones. Finally, the paper presents measures for reforming policy and planning...

  19. UMTRA Project value engineering plan

    International Nuclear Information System (INIS)

    1990-06-01

    The objective of value engineering (VE) on the Uranium MILL Tailings Remedial Action (UMTRA) Project is to ensure that remedial action at the UMTRA Project sites is performed to meet the US Environmental Protection Agency (EPA) standards for inactive uranium mill tailings sites at the lowest cost, while maintaining a high quality of work. Through review of designs and consideration of reasonable, less expensive alternatives, VE can be an effective cost reduction tool and a means to improve the design. The UMTRA Project products are the design and construction of stabilized tailings embankments

  20. Industrial Sites Project Establishment of Final Action Levels

    International Nuclear Information System (INIS)

    Boehlecke, Robert F.

    2006-01-01

    The U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) oversees numerous sites on the Nevada Test Site (NTS) and other locations in the State of Nevada that have been impacted by activities related to the development and testing of nuclear devices and by other activities. NNSA/NSO is responsible for protecting members of the public, including site workers, from harmful exposure to both chemical and radiological contaminants at these sites as they remediate these sites. The Nevada Division of Environmental Protection (NDEP) is the primary state agency responsible for protection of human health and the environment with respect to chemical and radiological wastes. In 1996 the DOE, U.S. Department of Defense, and the State of Nevada entered into an agreement known as the ''Federal Facility Agreement and Consent Order'' (FFACO) (1996). Appendix VI to the FFACO describes the strategy employed to plan, implement, and complete environmental corrective action activities at NTS and other locations in the state of Nevada. One of the categories of corrective action units (CAUs) is Industrial Sites, which consists of approximately 1,150 locations that may require some level of investigation and corrective action. To evaluate the need for the extent of corrective action at a particular site, NNSA/NSO assesses the potential impacts to receptors by comparing measurements of contaminant concentrations to risk-based (chemical) and dose-based (radionuclide) standards (action levels). Preliminary action levels (PALs) are established as part of the data quality objective (DQO) process, and are presented in one or more FFACO documents generated as part of the corrective action process. This document formally defines and clarifies the NDEP-approved process NNSA/NSO Industrial Sites Project uses to fulfill the requirements of the FFACO and state regulations. This process establishes final action levels (FALs) based on the risk

  1. SNF project engineering process improvement plan

    International Nuclear Information System (INIS)

    KELMENSON, R.L.

    1999-01-01

    This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project (the Project) to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819 (1819). These requirements are imposed on all engineering activities performed for the Project and apply to all life-cycle stages of the Project's systems, structures and components (SSCs). This Plan describes the steps that will be taken by the Project during the transition period to ensure that new procedures are effectively integrated into the Project's work process as these procedures are issued. The consolidated procedures will be issued and implemented by September 30, 1999

  2. Watershed manipulation project: Field implementation plan for 1990-1992

    International Nuclear Information System (INIS)

    Erickson, H.; Narahara, A.M.; Rustad, L.E.; Mitchell, M.; Lee, J.

    1993-02-01

    The Bear Brook Watershed in Maine (BBWM) was established in 1986 at Lead Mountain, Maine as part of the Environmental Protection Agency's (EPA) Watershed Manipulation Project (WPM). The goals of the project are to: (1) assess the chemical response of a small upland forested watershed to increased loadings of SO4, (2) determine interactions among biogeochemical mechanisms controlling watershed response to acidic deposition, and (3) test the assumptions of the Direct/Delayed Response Programs (DDRP) computer models of watershed acidification. The document summarizes the field procedures used in the establishment and initial implementation of the plot- and catchment- scale activities at the BBWM, and outlines plans for 1990-02 project activities

  3. Conceptual Design Plan SM-43 Replacement Project

    Energy Technology Data Exchange (ETDEWEB)

    University of California, Los Alamos National Laboratory, SCC Project Office

    2000-11-01

    The Los Alamos National Laboratory Conceptual Design Plan for the SM-43 Replacement Project outlines plans for replacing the SM-43 Administration Building. Topics include the reasons that replacement is considered a necessity; the roles of the various project sponsors; and descriptions of the proposed site and facilities. Also covered in this proposal is preliminary information on the project schedule, cost estimates, acquisition strategy, risk assessment, NEPA strategy, safety strategy, and safeguards and security. Spreadsheets provide further detail on space requirements, project schedules, and cost estimates.

  4. 76 FR 5774 - Planning and Establishment of Consumer Operated and Oriented Plan Program; Request for Comments...

    Science.gov (United States)

    2011-02-02

    ...) of the Affordable Care Act directs the Secretary to establish a program to foster, through grants and... in feasibility studies, business plans, and marketing plans provided by prospective applicants before... are the advantages and disadvantages of a regional qualified nonprofit issuer or a regional federation...

  5. Life sciences space biology project planning

    Science.gov (United States)

    Primeaux, G.; Newkirk, K.; Miller, L.; Lewis, G.; Michaud, R.

    1988-01-01

    The Life Sciences Space Biology (LSSB) research will explore the effect of microgravity on humans, including the physiological, clinical, and sociological implications of space flight and the readaptations upon return to earth. Physiological anomalies from past U.S. space flights will be used in planning the LSSB project.The planning effort integrates science and engineering. Other goals of the LSSB project include the provision of macroscopic view of the earth's biosphere, and the development of spinoff technology for application on earth.

  6. SNF project engineering process improvement plan

    International Nuclear Information System (INIS)

    DESAI, S.P.

    1999-01-01

    This Engineering Process Improvement Plan documents the activities and plans to be taken by the SNF Project to support its engineering process and to produce a consolidated set of engineering procedures that are fully compliant with the requirements of HNF-PRO-1819. All new procedures will be issued and implemented by September 30, 1999

  7. UMTRA Project Office quality assurance program plan. Revision 6

    International Nuclear Information System (INIS)

    1994-09-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project was established to accomplish remedial actions at inactive uranium mill tailings sites. The UMTRA Project's mission is to stabilize and control the residual radioactive materials at designated sites in a safe and environmentally sound manner so as to minimize or eliminate radiation health hazards to the public. Because these efforts may involve possible risks to public health and safety, a quality assurance (QA) program that conforms to the applicable criteria has been established to control the quality of the work. This document, the Quality Assurance Program Plan (QAPP), brings into one document the essential criteria to be applied on a selective basis, depending upon the nature of the activity being conducted, and describes how those criteria shall be applied to the UMTRA Project. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the UMTRA Project Office and its contractors

  8. Automated Procurement System (APS) revised project management plan (DS-03)

    Science.gov (United States)

    Murphy, Diane R.

    1995-01-01

    The Project Plan is the governing document for the implementation of the Automated Procurement System (APS). It includes a description of the proposed system, describes the work to be done, establishes a schedule of deliverables, and discusses the major standards and procedures to be followed.

  9. The Groundwater Performance Assessment Project Quality Assurance Plan

    International Nuclear Information System (INIS)

    Luttrell, Stuart P.

    2006-01-01

    U.S. Department of Energy (DOE) has monitored groundwater on the Hanford Site since the 1940s to help determine what chemical and radiological contaminants have made their way into the groundwater. As regulatory requirements for monitoring increased in the 1980s, there began to be some overlap between various programs. DOE established the Groundwater Performance Assessment Project (groundwater project) in 1996 to ensure protection of the public and the environment while improving the efficiency of monitoring activities. The groundwater project is designed to support all groundwater monitoring needs at the site, eliminate redundant sampling and analysis, and establish a cost-effective hierarchy for groundwater monitoring activities. This document provides the quality assurance guidelines that will be followed by the groundwater project. This QA Plan is based on the QA requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--General Provisions/Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory's Standards-Based Management System. In addition, the groundwater project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The groundwater project has determined that the Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan

  10. Fiscal planning of private electricity production projects

    International Nuclear Information System (INIS)

    Gauthier, R.

    2002-01-01

    Various fiscal considerations frequently encountered in the context of the planning of private electricity production projects were described. Two major themes were discussed: 1) the different jurisdictional vehicles that can be used during the planning of private electricity production projects and the associated fiscal considerations, and 2) the two main fiscal incentives of the Income Tax Act (Canada) which could impact on the financing and operation costs of such a project, namely the accelerated amortization and the possibility of deducting the costs associated to renewable energies and energy savings in Canada. This was a general presentation that did not go into specific details and did not represent a legal opinion. refs

  11. Dynamic and stochastic multi-project planning

    CERN Document Server

    Melchiors, Philipp

    2015-01-01

    This book deals with dynamic and stochastic methods for multi-project planning. Based on the idea of using queueing networks for the analysis of dynamic-stochastic multi-project environments this book addresses two problems: detailed scheduling of project activities, and integrated order acceptance and capacity planning. In an extensive simulation study, the book thoroughly investigates existing scheduling policies. To obtain optimal and near optimal scheduling policies new models and algorithms are proposed based on the theory of Markov decision processes and Approximate Dynamic programming.

  12. Project MOHAVE data analysis plan

    International Nuclear Information System (INIS)

    Watson, J.G.; Green, M.; Hoffer, T.E.; Lawson, D.R.; Pitchford, M.; Eatough, D.J.; Farber, R.J.; Malm, W.C.; McDade, C.E.

    1993-01-01

    Project MOHAVE is intended to develop ambient and source emissions data for use with source models, receptor models, and data analysis methods in order to explain the nature and causes of visibility degradation in the Grand Canyon. Approximately 50% of the modeling and data analysis effort will be directed toward understanding the contributions from the Mohave Power Project to haze in the Grand Canyon and other nearby Class areas; the remaining resources will be used to understand the contribution from other sources. The major goals of Project MOHAVE and data analysis are: to evaluate the measurement for applicability to modeling and data analysis activities; to describe the visibility, air quality and meteorology during the field study period and to determine the degree to which these measurements represent typical visibility events at the Grand Canyon; to further develop conceptual models of physical and chemical processes which affect visibility impairment at the Grand Canyon; to estimate the contributions from different emission sources to visibility impairment at the Grand Canyon, and to quantitatively evaluate the uncertainties of those estimates; to reconcile different scientific interpretations of the same data and to present this reconciliation to decision-makers. Several different approaches will be applied. Each approach will involve explicit examination of measurement uncertainties, compliance with implicit and explicit assumptions, and representativeness of the measurements. Scientific disagreements will be sought, expressed, explained, quantified, and presented. Data which can be used to verify methods will be withheld for independent evaluation of the validity of those methods. All assumptions will be stated and evaluated against reality. Data analysis results not supporting hypotheses will be presented with those results supporting the hypotheses. Uncertainty statements will be quantitative and consistent with decision-making needs

  13. National Security Technology Incubation Project Continuation Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    2008-09-30

    This document contains a project continuation plan for the National Security Technology Incubator (NSTI). The plan was developed as part of the National Security Preparedness Project (NSPP) funded by a Department of Energy (DOE)/National Nuclear Security Administration (NNSA) grant. This continuation plan describes the current status of NSTI (staffing and clients), long-term goals, strategies, and long-term financial solvency goals.The Arrowhead Center of New Mexico State University (NMSU) is the operator and manager of the NSTI. To realize the NSTI, Arrowhead Center must meet several performance objectives related to planning, development, execution, evaluation, and sustainability. This continuation plan is critical to the success of NSTI in its mission of incubating businesses with security technology products and services.

  14. 75 FR 38538 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2010-07-02

    ... to establish and administer an office on Central Valley Project water conservation best management... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  15. Spent nuclear fuel project integrated schedule plan

    International Nuclear Information System (INIS)

    Squires, K.G.

    1995-01-01

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel

  16. Spent nuclear fuel project integrated schedule plan

    Energy Technology Data Exchange (ETDEWEB)

    Squires, K.G.

    1995-03-06

    The Spent Nuclear Fuel Integrated Schedule Plan establishes the organizational responsibilities, rules for developing, maintain and status of the SNF integrated schedule, and an implementation plan for the integrated schedule. The mission of the SNFP on the Hanford site is to provide safe, economic, environmentally sound management of Hanford SNF in a manner which stages it to final disposition. This particularly involves K Basin fuel.

  17. The role of project planning in project management

    OpenAIRE

    Klitsenko, A. I.; Клиценко, А. И.

    2013-01-01

    This article describes the importance of the process of project planning. The author gives irrefutable arguments concerning crucial role of project planning. This article presents the definition, objects and the main goal of project planning. The purpose of this article is to review such objects of project planning as project scope, risk and human resources. Данная статья описывает важность процесса проектного планирования. Автор дает неопровержимые доводы, касающиеся решающей роли проектн...

  18. The Human Variome Project (HVP) 2009 Forum "Towards Establishing Standards".

    Science.gov (United States)

    Howard, Heather J; Horaitis, Ourania; Cotton, Richard G H; Vihinen, Mauno; Dalgleish, Raymond; Robinson, Peter; Brookes, Anthony J; Axton, Myles; Hoffmann, Robert; Tuffery-Giraud, Sylvie

    2010-03-01

    The May 2009 Human Variome Project (HVP) Forum "Towards Establishing Standards" was a round table discussion attended by delegates from groups representing international efforts aimed at standardizing several aspects of the HVP: mutation nomenclature, description and annotation, clinical ontology, means to better characterize unclassified variants (UVs), and methods to capture mutations from diagnostic laboratories for broader distribution to the medical genetics research community. Methods for researchers to receive credit for their effort at mutation detection were also discussed. (c) 2010 Wiley-Liss, Inc.

  19. Spent Nuclear Fuel Project operational staffing plan

    International Nuclear Information System (INIS)

    Debban, B.L.

    1996-03-01

    Using the Spent Nuclear Fuel (SNF) Project's current process flow concepts and knowledge from cognizant engineering and operational personnel, an initial assessment of the SNF Project radiological exposure and resource requirements was completed. A small project team completed a step by step analysis of fuel movement in the K Basins to the new interim storage location, the Canister Storage Building (CSB). This analysis looked at fuel retrieval, conditioning of the fuel, and transportation of the fuel. This plan describes the staffing structure for fuel processing, fuel movement, and the maintenance and operation (M ampersand O) staffing requirements of the facilities. This initial draft does not identify the support function resources required for M ampersand O, i.e., administrative and engineering (technical support). These will be included in future revisions to the plan. This plan looks at the resource requirements for the SNF subprojects, specifically, the operations of the facilities, balances resources where applicable, rotates crews where applicable, and attempts to use individuals in multi-task assignments. This plan does not apply to the construction phase of planned projects that affect staffing levels of K Basins

  20. Achieving Sustainable Value Planning For Malaysian Public Projects

    Directory of Open Access Journals (Sweden)

    Muhammad Faudzi

    2016-01-01

    Full Text Available Sustainability is the central development issue in the modern economy. Through sustainable development, quality of life can be improved or maintained over time. Since Malaysia is targeting to become a high-income nation by the year 2020, financial investment in public projects should be planned comprehensively so that it will generate immediate and long-term benefits to the country and the people. Within the currently tight financial environment, achieving value for money in public spending is seen as one of the enablers to maintain the right momentum of economic growth. Previous studies have established the importance of integrating sustainability consideration into Value Planning protocol in order to achieve value for money, underpinned by the sustainable development agenda. Despite the establishment of the framework for the integration, the opportunity of such integration within the Malaysian Value Planning protocol for public projects remains unclear. The present state of sustainability consideration within the Value Planning practice should be first evaluated, so that potential interventions to enhance the integration can be introduced. Responding to the gap, this exploratory study was conducted. The data was collected by means of document analysis, interviews and observations; subsequently analysed using the Template Analysis technique. Based on the current practice of Value Planning in Malaysia, ten interventions are proposed to transform the present practice into Sustainable Value Planning. Sustainable Value Planning is seen as a comprehensive concept in achieving value for money in public spending underpinned by the overarching concept of sustainability

  1. New Production Reactor project-management plan

    International Nuclear Information System (INIS)

    McCrosson, F.J.; Hibbard, L.; Buckner, M.R.

    1982-01-01

    This document provides a project management plan for the first phase of a project to design and build a new production reactor (NPR) at SRP. The design of the NPR is based upon proven SRP heavy water reactor design, with several enhancements such as full containment, moderator detritiation, improved cooling, and modernized control rooms and instrumentation. The first phase of the NPR project includes environmental and safety analyses, preparation of the technical data summary and basic data, site studies, engineering studies, and conceptual design. The project management plan was developed by a 14-member task force comprised of representatives from the Technical Division, the Manufacturing Division, the Departmental Engineer's Office, and the Engineering Department

  2. Project Execution Plan,Rev. 3; FINAL

    International Nuclear Information System (INIS)

    IT Corporation, Las Vegas

    2002-01-01

    This plan addresses project activities encompassed by the U.S. Department of Energy's (DOE's), National Nuclear Security Administration Nevada Operations Office, Environmental Restoration Division and conforms to the requirements contained in the Life-Cycle Asset Management, DOE Order 430.1A; The Joint Program Office Policy on Project Management in Support of DOE Order 430.1; Program and Project Management for the Acquisition of Capital Assets, DOE Order 413.3; the Project Execution and Engineering Management Planning Guide, GPG-FM-010; and other applicable Good Practice Guides; and the FY 2001 Integrated Planning, Accountability, and Budgeting System Policy Guidance. The plan also reflects the milestone philosophies of the Federal Facility Agreement and Consent Order, as agreed to by the State of Nevada, the DOE, and the U.S. Department of Defense; and traditional project management philosophies such as the development of life-cycle costs, schedules, and work scope; identification o f roles and responsibilities; and baseline management and controls

  3. AVLIS Production Plant Project Management Plan

    International Nuclear Information System (INIS)

    1984-01-01

    The AVLIS Production Plant is designated as a Major System Acquisition (in accordance with DOE Order 4240.IC) to deploy Atomic Vapor Laser Isotope Separation (AVLIS) technology at the Oak Ridge, Tennessee site, in support of the US Uranium Enrichment Program. The AVLIS Production Plant Project will deploy AVLIS technology by performing the design, construction, and startup of a production plant that will meet capacity production requirements of the Uranium Enrichment Program. The AVLIS Production Plant Project Management Plan has been developed to outline plans, baselines, and control systems to be employed in managing the AVLIS Production Plant Project and to define the roles and responsibilities of project participants. Participants will develop and maintain detailed procedures for implementing the management and control systems in agreement with this plan. This baseline document defines the system that measures work performed and costs incurred. This plan was developed by the AVLIS Production Plant Project staff of Martin Marietta Energy Systems, Inc. and Lawrence Livermore National Laboratory in accordance with applicable DOE directives, orders and notices. 38 figures, 19 tables

  4. Environmental Restoration Project - Systems Engineering Management Plan

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1998-06-01

    This Environmental Restoration (ER) Project Systems Engineering Management Plan (SEMP) describes relevant Environmental Restoration Contractor (ERC) management processes and shows how they implement systems engineering. The objective of this SEMP is to explain and demonstrate how systems engineering is being approached and implemented in the ER Project. The application of systems engineering appropriate to the general nature and scope of the project is summarized in Section 2.0. The basic ER Project management approach is described in Section 3.0. The interrelation and integration of project practices and systems engineering are outlined in Section 4.0. Integration with sitewide systems engineering under the Project Hanford Management Contract is described in Section 5.0

  5. Cesium legacy safety project management work plan

    International Nuclear Information System (INIS)

    Durham, J.S.

    1998-01-01

    This Management Work Plan (MWP) describes the process flow, quality assurance controls, and the Environment, Safety, and Health requirements of the Cesium Legacy Safety Project. This MWP provides an overview of the project goals and methods for repackaging the non-conforming Type W overpacks and packaging the CsCl powder and pellets. This MWP is not intended to apply to other activities associated with the CsCl Legacy Safety Program (i.e., clean out of South Cell)

  6. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    Fix, Anne

    2007-01-01

    The U.S. Department of Energy (DOE) has conducted interim groundwater remedial activities on the Hanford Site since the mid-1990s for several groundwater contamination plumes. DOE established the Columbia River Protection Supplemental Technologies Project (Technologies Project) in 2006 to evaluate alternative treatment technologies. The objectives for the technology project are as follows: develop a 300 Area polyphosphate treatability test to immobilize uranium, design and test infiltration of a phosphate/apatite technology for Sr-90 at 100-N, perform carbon tetrachloride and chloroform attenuation parameter studies, perform vadose zone chromium characterization and geochemistry studies, perform in situ biostimulation of chromium studies for a reducing barrier at 100-D, and perform a treatability test for phytoremediation for Sr-90 at 100-N. This document provides the quality assurance guidelines that will be followed by the Technologies Project. This Quality Assurance Project Plan is based on the quality assurance requirements of DOE Order 414.1C, Quality Assurance, and 10 CFR 830, Subpart A--Quality Assurance Requirements as delineated in Pacific Northwest National Laboratory?s Standards-Based Management System. In addition, the technology project is subject to the Environmental Protection Agency (EPA) Requirements for Quality Assurance Project Plans (EPA/240/B-01/003, QA/R-5). The Hanford Analytical Services Quality Assurance Requirements Documents (HASQARD, DOE/RL-96-68) apply to portions of this project and to the subcontractors. HASQARD requirements are discussed within applicable sections of this plan.

  7. Pu-238 Supply Program Project Execution Plan

    International Nuclear Information System (INIS)

    Wham, Robert M.; Martin, Sherman

    2012-01-01

    This Pu-238 Supply Program Project Execution Plan (PEP) summarizes critical information and processes necessary to manage the program. The PEP is the primary agreement regarding planning and objectives between The Department of Energy Office of Nuclear Energy (DOE NE-75), Oak Ridge National Laboratory Site Office (OSO) and the Oak Ridge National Laboratory (ORNL). The acquisition executive (AE) will approve the PEP. The PEP is a living document that will be reviewed and revised periodically until the project is complete. The purpose of the project is to reestablish the capability to produce plutonium-238 (Pu-238) domestically. This capability consists primarily of procedures, processes, and design information, not capital assets. As such, the project is not subject to the requirements of DOE O 413.3B, but it will be managed using the project management principles and best practices defined there. It is likely that some capital asset will need to be acquired to complete tasks within the project. As these are identified, project controls and related processes will be updated as necessary. Because the project at its initiation was envisioned to require significant capital assets, Critical Decision 0 (CD-0) was conducted in accordance with DOE O 413.3B, and the mission need was approved on December 9, 2003, by William Magwood IV, director of the Office of Nuclear Energy (NE), Science and Technology, DOE. No date was provided for project start-up at that time. This PEP is consistent with the strategy described in the June 2010 report to Congress, Start-up Plan for Plutonium-238 Production for Radioisotope Power Systems.

  8. Salt Repository Project. FY-84 technical project plan

    International Nuclear Information System (INIS)

    1984-08-01

    The FY 84 technical plans for the Salt Repository Project (SRP) are briefly presented. The objectives of the project in relation to the Civilian Radioactive Waste Management (CRWM) program are discused and the technical activities directed toward accomplishing these objectives are detailed. A budget is presented for each of the Level 2 Work Breakdown Structure Tasks (Systems, Waste Package, Site, Repository, Regulatory and Institutional, Test Facilities, Exploratory Shaft, Land Acquisition, and Program Management) in an appendix. An overall description, current status, and planned activities are presented for each of the subtasks which make up the above-mentioned Level 2 tasks. Milestones and their definitions for the plan year, as well as milestones for the outyears are also presented at this same subtask level for each subtask

  9. Spent Nuclear Fuel Project Document Management Plan

    International Nuclear Information System (INIS)

    Connor, M.D.; Harizison, G.L.; Rice, W.C.

    1995-12-01

    The SNF Project Document Management Plan identifies and describes the currently available systems and processes for implementing and maintaining an effective document control and records management program. This program governs the methods by which documents are generated, released, distributed, maintained current, retired, and ultimately disposed

  10. National Ignition Facility project acquisition plan

    International Nuclear Information System (INIS)

    Callaghan, R.W.

    1996-04-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility (NIF) Project. The scope of the plan describes the procurement activities and acquisition strategy for the following phases of the NIF Project, each of which receives either plant and capital equipment (PACE) or other project cost (OPC) funds: Title 1 and 2 design and Title 3 engineering (PACE); Optics manufacturing facilitization and pilot production (OPC); Convention facility construction (PACE); Procurement, installation, and acceptance testing of equipment (PACE); and Start-up (OPC). Activities that are part of the base Inertial Confinement Fusion (ICF) Program are not included in this plan. The University of California (UC), operating Lawrence Livermore National Laboratory (LLNL) and Los Alamos National Laboratory, and Lockheed-Martin, which operates Sandia National Laboratory (SNL) and the University of Rochester Laboratory for Laser Energetics (UR-LLE), will conduct the acquisition of needed products and services in support of their assigned responsibilities within the NIF Project structure in accordance with their prime contracts with the Department of Energy (DOE). LLNL, designated as the lead Laboratory, will have responsibility for all procurements required for construction, installation, activation, and startup of the NIF

  11. Establishing the quality assurance programme for a nuclear power plant project

    International Nuclear Information System (INIS)

    1984-01-01

    This Safety Guide provides requirements, recommendations and illustrative examples for establishing the overall quality assurance programme, and its constituent programmes, for a nuclear power plant project. It also provides guidance on the planning and documenting of programme plans and actions that are intended to ensure the achievement of the appropriate quality throughout the design, procurement, manufacture, construction, commissioning, operation and decommissioning of the nuclear power plant. The provisions of this Safety Guide are applicable to all organizations performing activities affecting the quality of items important to safety, such as designing, purchasing, fabricating, manufacturing, handling, shipping, storing, cleaning, erecting, installing, testing, commissioning, operating, inspecting, maintaining, repairing, refuelling, modifying and decommissioning

  12. Salt Repository Project: FY 85 technical project plan

    International Nuclear Information System (INIS)

    1985-07-01

    The FY 85 technical plan for the Salt Repository Project is briefly presented. The objectives of the project in relation to the Civilian Radioactive Waste Management Program are discussed, and the technical activities directed toward accomplishing these objectives are detailed. A budget is presented for each of the Level 2 work breakdown structure tasks (Systems, Waste Package, Site, Repository, Regulatory and Institutional, Exploratory Shaft, Test Facilities, Land Acquisition, and Project Management) in the various sections. An overall description, current status, and planned activities are presented for each of the subtasks which make up the above-mentioned Level 2 tasks. A strategy diagram and a master schedule are included and each of the milestones is also listed chronologically in the sections

  13. Single-shell tank interim stabilization project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ross, W.E.

    1998-03-27

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE`s Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  14. Single-shell tank interim stabilization project plan

    International Nuclear Information System (INIS)

    Ross, W.E.

    1998-01-01

    Solid and liquid radioactive waste continues to be stored in 149 single-shell tanks at the Hanford Site. To date, 119 tanks have had most of the pumpable liquid removed by interim stabilization. Thirty tanks remain to be stabilized. One of these tanks (C-106) will be stabilized by retrieval of the tank contents. The remaining 29 tanks will be interim stabilized by saltwell pumping. In the summer of 1997, the US Department of Energy (DOE) placed a moratorium on the startup of additional saltwell pumping systems because of funding constraints and proposed modifications to the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) milestones to the Washington State Department of Ecology (Ecology). In a letter dated February 10, 1998, Final Determination Pursuant to Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) in the Matter of the Disapproval of the DOE's Change Control Form M-41-97-01 (Fitzsimmons 1998), Ecology disapproved the DOE Change Control Form M-41-97-01. In response, Fluor Daniel Hanford, Inc. (FDH) directed Lockheed Martin Hanford Corporation (LNMC) to initiate development of a project plan in a letter dated February 25, 1998, Direction for Development of an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan in Support of Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement). In a letter dated March 2, 1998, Request for an Aggressive Single-Shell Tank (SST) Interim Stabilization Completion Project Plan, the DOE reaffirmed the need for an aggressive SST interim stabilization completion project plan to support a finalized Tri-Party Agreement Milestone M-41 recovery plan. This project plan establishes the management framework for conduct of the TWRS Single-Shell Tank Interim Stabilization completion program. Specifically, this plan defines the mission needs and requirements; technical objectives and approach; organizational structure, roles, responsibilities

  15. Major issues on establishing an emergency plan in nuclear facilities

    International Nuclear Information System (INIS)

    Chen, Zhu-zhou

    1988-03-01

    Several major issues on emergency planning and preparation in nuclear facilities were discussed -- such as the importance of emergency planning and preparation, basic principles of intervention and implementation of emergency plan and emergency training and drills to insure the effectiveness of the emergency plan. It is emphasized that the major key point of emergency planning and response is to avoid the occurrence of serious nonrandom effect. 12 refs., 3 tabs

  16. Subjective risk assessment for planning conservation projects

    International Nuclear Information System (INIS)

    Game, Edward T; Fitzsimons, James A; Lipsett-Moore, Geoff; McDonald-Madden, Eve

    2013-01-01

    Conservation projects occur under many types of uncertainty. Where this uncertainty can affect achievement of a project’s objectives, there is risk. Understanding risks to project success should influence a range of strategic and tactical decisions in conservation, and yet, formal risk assessment rarely features in the guidance or practice of conservation planning. We describe how subjective risk analysis tools can be framed to facilitate the rapid identification and assessment of risks to conservation projects, and how this information should influence conservation planning. Our approach is illustrated with an assessment of risks to conservation success as part of a conservation plan for the work of The Nature Conservancy in northern Australia. Risks can be both internal and external to a project, and occur across environmental, social, economic and political systems. Based on the relative importance of a risk and the level of certainty in its assessment we propose a series of appropriate, project level responses including research, monitoring, and active amelioration. Explicit identification, prioritization, and where possible, management of risks are important elements of using conservation resources in an informed and accountable manner. (letter)

  17. FY95 software project management plan: TMACS, CASS computer systems

    International Nuclear Information System (INIS)

    Spurling, D.G.

    1994-01-01

    The FY95 Work Plan for TMACS and CASS Software Projects describes the activities planned for the current fiscal year. This plan replaces WHC-SD-WM-SDP-008. The TMACS project schedule is included in the TWRS Integrated Schedule

  18. 33 CFR 385.24 - Project Management Plans.

    Science.gov (United States)

    2010-07-01

    ... 33 Navigation and Navigable Waters 3 2010-07-01 2010-07-01 false Project Management Plans. 385.24... Processes § 385.24 Project Management Plans. (a) General requirements. (1) The Corps of Engineers and the... agencies, develop a Project Management Plan prior to initiating activities on a project. (2) The Project...

  19. Business System Planning Project, Preliminary System Design

    International Nuclear Information System (INIS)

    EVOSEVICH, S.

    2000-01-01

    CH2M HILL Hanford Group, Inc. (CHG) is currently performing many core business functions including, but not limited to, work control, planning, scheduling, cost estimating, procurement, training, and human resources. Other core business functions are managed by or dependent on Project Hanford Management Contractors including, but not limited to, payroll, benefits and pension administration, inventory control, accounts payable, and records management. In addition, CHG has business relationships with its parent company CH2M HILL, U.S. Department of Energy, Office of River Protection and other River Protection Project contractors, government agencies, and vendors. The Business Systems Planning (BSP) Project, under the sponsorship of the CH2M HILL Hanford Group, Inc. Chief Information Officer (CIO), have recommended information system solutions that will support CHG business areas. The Preliminary System Design was developed using the recommendations from the Alternatives Analysis, RPP-6499, Rev 0 and will become the design base for any follow-on implementation projects. The Preliminary System Design will present a high-level system design, providing a high-level overview of the Commercial-Off-The-Shelf (COTS) modules and identify internal and external relationships. This document will not define data structures, user interface components (screens, reports, menus, etc.), business rules or processes. These in-depth activities will be accomplished at implementation planning time

  20. SRP [Salt Repository Project] configuration management plan

    International Nuclear Information System (INIS)

    1987-01-01

    This configuration management plan describes the organization, policies, and procedures that will be used on the Salt Repository Project (SRP) to implement the configuration management disciplines and controls. Configuration management is a part of baseline management. Baseline management is defined in the SRP Baseline Procedures Notebook and also includes cost and schedule baselines. Configuration management is a discipline applying technical and administrative direction and surveillance to identify and document the functional and physical characteristics of an item, to control changes to those characteristics, to record and report change processing and implementation status, and to audit the results. Configuration management is designed as a project management tool to determine and control baselines, and ensure and document all components of a project interface both physically and functionally. The purpose is to ensure that the product acquired satisfies the project's technical and operational requirements, and that the technical requirements are clearly defined and controlled throughout the development and acquisition process. 5 figs

  1. Planning Report for Establishment and Management of IAEA Designated International Cooperation Center

    International Nuclear Information System (INIS)

    Byun, Myung Woo; Jo, Cheol Hun; Noh, Yong Chang

    2006-05-01

    Establishment of research infrastructure and assistant of industry renovation is needed to achieve technology level-up in the all industry areas including plant engineering, material engineering, polymers, nondestructive tests, radioisotope tracer application, environment engineering, medical science, agriculture, sterilization, sprouting, biotechnology and aerospace, which would be the core motivation of our future industry. Early settlement of research environment is needed for the new RT-specialized national institute, Advanced Radiation Technology Institute (ARTi) in Jeongup, Chonbuk, Korea. From the early settlement, development of user program, technical assistance, and trendy information can be rapidly initiated by an industry-university-institute network. As a result, a RT hub in the northeast Asia will be founded with upgrade of international level of Korea. For this purpose, an intensive system construction is demanded. Establishment of a basic and advanced analysis system should be set up to analyze and evaluate the research products scientifically and industrially produced by using the RT-based research facilities. Establishment of a collaboration network in R and D among industry, university and institutes related to RT or RFT as well as development of an advanced RT industry system is demanded for the assistance of technology transfer. From the clarification of project details, comparisons of domestic/international technology levels and the demand of project in technical and economical aspects, and the prospect of development tendency of related technology, it is expected the effect and possible utilization after completion of the project. Especially, we proposed the direction for development of IAEA appointed international cooperation center with a long term development plan for the national radiation technology. This project report was consistently prepared with a long term development plan and consisted of establishments of training system for

  2. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fishler, B

    2011-03-18

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  3. NIF Projects Controls and Information Systems Software Quality Assurance Plan

    International Nuclear Information System (INIS)

    Fishler, B.

    2011-01-01

    Quality achievement for the National Ignition Facility (NIF) and the National Ignition Campaign (NIC) is the responsibility of the NIF Projects line organization as described in the NIF and Photon Science Directorate Quality Assurance Plan (NIF QA Plan). This Software Quality Assurance Plan (SQAP) is subordinate to the NIF QA Plan and establishes quality assurance (QA) activities for the software subsystems within Controls and Information Systems (CIS). This SQAP implements an activity level software quality assurance plan for NIF Projects as required by the LLNL Institutional Software Quality Assurance Program (ISQAP). Planned QA activities help achieve, assess, and maintain appropriate quality of software developed and/or acquired for control systems, shot data systems, laser performance modeling systems, business applications, industrial control and safety systems, and information technology systems. The objective of this SQAP is to ensure that appropriate controls are developed and implemented for management planning, work execution, and quality assessment of the CIS organization's software activities. The CIS line organization places special QA emphasis on rigorous configuration control, change management, testing, and issue tracking to help achieve its quality goals.

  4. Gas generation matrix depletion quality assurance project plan

    International Nuclear Information System (INIS)

    1998-01-01

    The Los Alamos National Laboratory (LANL) is to provide the necessary expertise, experience, equipment and instrumentation, and management structure to: Conduct the matrix depletion experiments using simulated waste for quantifying matrix depletion effects; and Conduct experiments on 60 cylinders containing simulated TRU waste to determine the effects of matrix depletion on gas generation for transportation. All work for the Gas Generation Matrix Depletion (GGMD) experiment is performed according to the quality objectives established in the test plan and under this Quality Assurance Project Plan (QAPjP)

  5. EXPENSES FORECASTING MODEL IN UNIVERSITY PROJECTS PLANNING

    Directory of Open Access Journals (Sweden)

    Sergei A. Arustamov

    2016-11-01

    Full Text Available The paper deals with mathematical model presentation of cash flows in project funding. We describe different types of expenses linked to university project activities. Problems of project budgeting that contribute most uncertainty have been revealed. As an example of the model implementation we consider calculation of vacation allowance expenses for project participants. We define problems of forecast for funds reservation: calculation based on methodology established by the Ministry of Education and Science calculation according to the vacation schedule and prediction of the most probable amount. A stochastic model for vacation allowance expenses has been developed. We have proposed methods and solution of the problems that increase the accuracy of forecasting for funds reservation based on 2015 data.

  6. 14 CFR 152.109 - Project eligibility: Airport planning.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Project eligibility: Airport planning. 152....109 Project eligibility: Airport planning. (a) Airport master planning. A proposed project for airport master planning is not approved unless— (1) The location of the existing or proposed airport is included...

  7. N Area Final Project Program Plan

    International Nuclear Information System (INIS)

    Day, R.S.; Duncan, G.M; Trent, S.J.

    1998-07-01

    The N Area Final Project Program Plan is issued for information and use by the U.S. Department of Energy (DOE), the Environmental Restoration Contractor (ERC) for the Hanford Site, and other parties that require workscope knowledge for the deactivation of N Reactor facilities and remediation of the 100-N Area. This revision to the program plan contains the updated critical path schedule to deactivate N Reactor and its supporting facilities, cleanout of the N Reactor Fuel Storage Basin (105-N Basin), and remediate the 100-N Area. This document reflects notable changes in the deactivation plan for N Reactor, including changes in deactivation status, the N Basin cleanout task, and 100-N Area remediation

  8. Project management plan for the gunite and associated tanks treatability studies project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1995-12-01

    This plan for the Gunite and Associated Tanks (GAAT) Treatability Studies Project satisfies the requirements of the program management plan for the Oak Ridge National Laboratory (ORNL) Environmental Restoration (ER) Program as established in the Program Management Plan for the Martin Marietta Energy Systems, Inc., Oak Ridge National Laboratory Site Environmental Restoration Program. This plan is a subtier of several other ER documents designed to satisfy the US Department of Energy (DOE) Order 4700.1 requirement for major systems acquisitions. This project management plan identifies the major activities of the GAAT Treatability Studies Project; establishes performance criteria; discusses the roles and responsibilities of the organizations that will perform the work; and summarizes the work breakdown structure, schedule, milestones, and cost estimate for the project

  9. 29 CFR 1608.4 - Establishing affirmative action plans.

    Science.gov (United States)

    2010-07-01

    ... taken pursuant to an affirmative action plan or program must be reasonable in relation to the problems... remedy the situation. Such steps, which in design and execution may be race, color, sex or ethnic...

  10. Project X Accelerator R and D Plan

    International Nuclear Information System (INIS)

    2008-01-01

    Project X is a high intensity proton facility conceived to support a world-leading program in neutrino and flavor physics over the next two decades at Fermilab. Project X is an integral part of the Fermilab Roadmap as described in the Fermilab Steering Group Report. Project X is based on an 8 GeV superconducting H-linac, paired with the existing (but modified) Main Injector and Recycler Ring, to provide in excess of 2 MW of beam power throughout the energy range 60-120 GeV, simultaneous with at least 100 kW of beam power at 8 GeV. The linac utilizes technology in common with the ILC over the energy range 0.6-8.0 GeV. Beam current parameters can be made identical to ILC resulting in identical rf generation and distribution systems. This alignment of ILC and Project X technologies allows for a shared development effort. The initial 0.6 GeV of the linac draws heavily on technology developed by Argonne National Laboratory for a facility for rare isotope beams. It is anticipated that the exact configuration and operating parameters of the linac will be defined through the R and D program and will retain alignment with the ILC plan as it evolves over this period. Utilization of the Recycler Ring as an H - stripper and accumulator ring is the key element that provides the flexibility to operate the linac with the same beam parameters as the ILC. The linac operates at 5 Hz with a total of 5.6 x 10 13 H - ions delivered per pulse. H - are stripped at injection into the Recycler in a manner that 'paints' the beam both transversely and longitudinally to reduce space charge forces. Following the 1 ms injection, the orbit moves off the stripping foil and circulates for 200 msec, awaiting the next injection. Following three such injections a total of 1.7 x 10 14 protons are transferred in a single turn to the Main Injector. These protons are then accelerated to 120 GeV and fast extracted to a neutrino target. The Main Injector cycle takes 1.4 seconds, producing approximately 2

  11. 7 CFR 1219.50 - Budgets, programs, plans, and projects.

    Science.gov (United States)

    2010-01-01

    ... of appropriate programs, plans, or projects for advertising, sales promotion, other promotion, and... HASS AVOCADO PROMOTION, RESEARCH, AND INFORMATION Hass Avocado Promotion, Research, and Information... promotion, industry information, consumer information, and related research programs, plans, and projects...

  12. Outage planning in nuclear power plants. A paradigm shift from an external towards an integrated project planning tool

    Energy Technology Data Exchange (ETDEWEB)

    Rosemann, Andreas [Gesellschaft fuer integrierte Systemplanung (GIS) mbH, Weinheim (Germany)

    2014-07-01

    Latest demands on nuclear plant inspections are the ongoing actualisation of the outage plan on the basis of the current work progress and current events as well as the permanent access to the current planning status and work process of all people involved in the outage. Modern EAM systems (EAM: Enterprise Application Management) made up ground on established project planning tools with regard to functionalities for scheduling work orders. A shift towards an integrated planning in the EAM system increases the efficiency in the outage planning and improves the communication of current states of planning. (orig.)

  13. Outage planning in nuclear power plants. A paradigm shift from an external towards an integrated project planning tool

    International Nuclear Information System (INIS)

    Rosemann, Andreas

    2014-01-01

    Latest demands on nuclear plant inspections are the ongoing actualisation of the outage plan on the basis of the current work progress and current events as well as the permanent access to the current planning status and work process of all people involved in the outage. Modern EAM systems (EAM: Enterprise Application Management) made up ground on established project planning tools with regard to functionalities for scheduling work orders. A shift towards an integrated planning in the EAM system increases the efficiency in the outage planning and improves the communication of current states of planning. (orig.)

  14. Salt Repository Project transportation program plan

    International Nuclear Information System (INIS)

    Fisher, R.L.; Greenberg, A.H.; Anderson, T.L.; Yates, K.R.

    1987-01-01

    The Salt Repository Project (SRP) has the responsibility to develop a comprehensive transportation program plan (TrPP) that treats the transportation of workers, supplies, and high-level radioactive waste to the site and the transportation of salt, low-level, and transuranic wastes from the site. The TrPP has developed a systematic approach to transportation which is directed towards satisfying statutes, regulations, and directives and is guided by a hierarchy of specific functional requirements, strategies, plans, and reports. The TrPP identifies and develops the planning process for transportation-related studies and provides guidance to staff in performing and documenting these activities. The TrPP also includes an explanation of the responsibilities of the organizational elements involved in these transportation studies. Several of the report chapters relate to identifying routes for transporting nuclear waste to the site. These include a chapter on identifying an access corridor for a new rail route leading to the site, identifying and evaluating emergency-response preparedness capabilities along candidate routes in the state, and identifying alternative routes from the state border, ports, or in-state reactors to the site. The TrPP also includes plans for identifying salt disposal routes and a discussion of repository/transportation interface requirements. 89 refs., 6 figs

  15. Project No. 8 - Final decommissioning plan

    International Nuclear Information System (INIS)

    2000-01-01

    Ignalina NPP should prepare the final Ignalina NPP unit 1 decommissioning plan by march 31, 2002. This plan should include the following : description of Ignalina NPP and the Ignalina NPP boundary that could be influenced by decommissioning process; decommissioning strategy selected and a logical substantiation for this selection; description of the decommissioning actions suggested and a time schedule for the actions to be performed; conceptual safety and environmental impact assessment covering ionizing radiation and other man and environment impact; description of the environmental monitoring program proposed during decommissioning process; description of the waste management proposed; assessment of decommissioning expenses including waste management, accumulated funds and other sources. Estimated project cost - 0.75 M EURO

  16. Incorporating climate change projections into riparian restoration planning and design

    Science.gov (United States)

    Perry, Laura G.; Reynolds, Lindsay V.; Beechie, Timothy J.; Collins, Mathias J.; Shafroth, Patrick B.

    2015-01-01

    Climate change and associated changes in streamflow may alter riparian habitats substantially in coming decades. Riparian restoration provides opportunities to respond proactively to projected climate change effects, increase riparian ecosystem resilience to climate change, and simultaneously address effects of both climate change and other human disturbances. However, climate change may alter which restoration methods are most effective and which restoration goals can be achieved. Incorporating climate change into riparian restoration planning and design is critical to long-term restoration of desired community composition and ecosystem services. In this review, we discuss and provide examples of how climate change might be incorporated into restoration planning at the key stages of assessing the project context, establishing restoration goals and design criteria, evaluating design alternatives, and monitoring restoration outcomes. Restoration planners have access to numerous tools to predict future climate, streamflow, and riparian ecology at restoration sites. Planners can use those predictions to assess which species or ecosystem services will be most vulnerable under future conditions, and which sites will be most suitable for restoration. To accommodate future climate and streamflow change, planners may need to adjust methods for planting, invasive species control, channel and floodplain reconstruction, and water management. Given the considerable uncertainty in future climate and streamflow projections, riparian ecological responses, and effects on restoration outcomes, planners will need to consider multiple potential future scenarios, implement a variety of restoration methods, design projects with flexibility to adjust to future conditions, and plan to respond adaptively to unexpected change.

  17. Pilot project concerning the establishment of a collective biomass conversion plant on the island of Mors

    International Nuclear Information System (INIS)

    1993-06-01

    This pilot project comprises a feasibility study in connection with plans to establish a biomass conversion plant, on the Danish island of Mors, which would provide methane to be used as fuel, in combination with natural gas, for a cogeneration plant serving six villages. The subjects of location, organization, the transportation of biomass, the design of the biomass conversion plant, economical aspects and conditions of the use of the methane are discussed as a basis for decisions in this respect. Environmental considerations are also dealt with. (AB)

  18. 300 Area Revitalization Project Management Plan

    International Nuclear Information System (INIS)

    Downey, H. D.

    1999-01-01

    The 300 Area Revitalization Team has been tasked with the responsibility to develop an integrated path forward for the 300 Area, as part of a commitment stemming from the 300 Area Disposition Workshop that was held on March 17, 1998. The integrated path forward that is needed must ensure that budget, schedule, and work scopes are complementary between the Programs that are involved in the 300Area. This Project Management Plan (PMP) defines the roles and responsibilities, and the overall approach, to development of a prioritized schedule for 300 Area activities that will achieve the end-state condition

  19. Yucca Mountain Site Characterization Project Waste Package Plan

    International Nuclear Information System (INIS)

    Harrison-Giesler, D.J.; Jardine, L.J.

    1991-02-01

    The goal of the US Department of Energy's (DOE) Yucca Mountain Site Characterization Project (YMP) waste package program is to develop, confirm the effectiveness of, and document a design for a waste package and associated engineered barrier system (EBS) for spent nuclear fuel and solidified high-level nuclear waste (HLW) that meets the applicable regulatory requirements for a geologic repository. The Waste Package Plan describes the waste package program and establishes the technical approach against which overall progress can be measured. It provides guidance for execution and describes the essential elements of the program, including the objectives, technical plan, and management approach. The plan covers the time period up to the submission of a repository license application to the US Nuclear Regulatory Commission (NRC). 1 fig

  20. 78 FR 54949 - Major Project Financial Plan Guidance

    Science.gov (United States)

    2013-09-06

    ...'' (GA-090-751). That report recommended that Financial Plans include the cost of financing the project... Project Financial Plan Guidance AGENCY: Federal Highway Administration (FHWA), DOT. ACTION: Notice; Request for comments. SUMMARY: This notice requests comments on draft Major Project Financial Plan...

  1. Business System Planning Project, Alternatives Analysis

    International Nuclear Information System (INIS)

    EVOSEVICH, S.

    2000-01-01

    The CHG Chief Information Officer (CIO) requested a study of alternatives to the current business system computing environment. This Business Systems Planning (BSP) Project Alternatives Analysis document presents an analysis of the current Project Controls, Work Management, and Business Management systems environment and alternative solutions that support the business functions. The project team has collected requirements and priorities from stakeholders in each business area and documented them in the BSP System Requirements Specification (SRS), RPP-6297. The alternatives analysis process identifies and measures possible solutions in each of the business process areas against the requirements as documented in the SRS. The team gathered input from both internal and external sources to identify and grade the possible solutions. This document captures the results of that activity and recommends a suite of software products. This study was to select the best product based on how well the product met the requirements, not to determine the platform or hardware environment that would be used. Additional analysis documentation can be found in BSP project files

  2. Business plan to establish a CT colonography service.

    Science.gov (United States)

    Fajardo, Laurie L; Hurley, James P; Brown, Bruce P; Summers, Robert W; McDaniel, R Donald

    2006-03-01

    The authors describe the University of Iowa Department of Radiology's business planning process to initiate a new service in computed tomographic colonography (CTC). Also known as virtual colonoscopy, CTC is a noninvasive technology that offers less risk, and potentially similar sensitivity and specificity, than conventional optical colonoscopy (OC). Although not currently covered by all insurance payers, about a year ago, the Centers for Medicare and Medicaid Services instituted temporary Current Procedural Terminology codes (Category III) for CTC. In locales where the procedure is not covered by insurers, it is likely to be sought by patients willing to pay out of pocket to undergo noninvasive cancer screening as an alternative to OC. Thus, CTC could become the preferred method of colon cancer surveillance by insurance providers in the near future. In developing the business plan, the authors reviewed pertinent scientific and clinical data to evaluate the need for and efficacy of CTC. Local market data were used to estimate patient and procedure volumes and utilization. The authors modeled financial expectations with respect to return on investment on the basis of recently reported models specific to CTC, resource requirements, and the operational impact of the new service on existing hospital and departmental clinical functions. Because there are few local providers of CTC in the authors' region, the business plan also included a publicity campaign and plan to market the new service, stimulate general public interest early, and differentiate the program as a leader in applying this unique new technology to promote cancer screening. Finally, the planning committee acknowledged and accommodated needs specific to the missions of an academic medical center with respect to research and education in designing the new service.

  3. Project management plan for Reactor 105-C Interim Safe Storage project

    International Nuclear Information System (INIS)

    Plagge, H.A.

    1996-09-01

    Reactor 105-C (located on the Hanford Site in Richland, Washington) will be placed into an interim safe storage condition such that (1) interim inspection can be limited to a 5-year frequency; (2) containment ensures that releases to the environmental are not credible under design basis conditions; and (3) final safe storage configuration shall not preclude or significantly increase the cost for any decommissioning alternatives for the reactor assembly.This project management plan establishes plans, organizational responsibilities, control systems, and procedures for managing the execution of Reactor 105-C interim safe storage activities to meet programmatic requirements within authorized funding and approved schedules

  4. Uranium Mill Tailings remedial action project waste minimization and pollution prevention awareness program plan

    International Nuclear Information System (INIS)

    1994-07-01

    The purpose of this plan is to establish a waste minimization and pollution prevention awareness (WM/PPA) program for the U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project. The program satisfies DOE requirements mandated by DOE Order 5400.1. This plan establishes planning objectives and strategies for conserving resources and reducing the quantity and toxicity of wastes and other environmental releases

  5. Project W-314 specific test and evaluation plan 241-AN-B valve pit

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AN-B Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  6. Project W-314 specific test and evaluation plan for 241-AN-A valve pit

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AN-A Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  7. Countrywide Evaluation of the Long-Term Family Self-Sufficiency Plan. Establishing the Baselines

    National Research Council Canada - National Science Library

    Schoeni, Robert

    2002-01-01

    ...) Plan on November 16,1999. The LTFSS Plan consists of 46 projects whose goal is to promote self-sufficiency among families that are participating in the California Work Opportunity and Responsibility to Kids (CalWORKs...

  8. Performance assessment plans and methods for the Salt Repository Project

    International Nuclear Information System (INIS)

    1984-08-01

    This document presents the preliminary plans and anticipated methods of the Salt Repository Project (SRP) for assessing the postclosure and radiological aspects of preclosure performance of a nuclear waste repository in salt. This plan is intended to be revised on an annual basis. The emphasis in this preliminary effort is on the method of conceptually dividing the system into three subsystems (the very near field, the near field, and the far field) and applying models to analyze the behavior of each subsystem and its individual components. The next revision will contain more detailed plans being developed as part of Site Characterization Plan (SCP) activities. After a brief system description, this plan presents the performance targets which have been established for nuclear waste repositories by regulatory agencies (Chapter 3). The SRP approach to modeling, including sensitivity and uncertainty techniques is then presented (Chapter 4). This is followed by a discussion of scenario analysis (Chapter 5), a presentation of preliminary data needs as anticipated by the SRP (Chapter 6), and a presentation of the SRP approach to postclosure assessment of the very near field, the near field, and the far field (Chapters 7, 8, and 9, respectively). Preclosure radiological assessment is discussed in Chapter 10. Chapter 11 presents the SRP approach to code verification and validation. Finally, the Appendix lists all computer codes anticipated for use in performance assessments. The list of codes will be updated as plans are revised

  9. Tank Waste Remediation System Projects Document Control Plan

    International Nuclear Information System (INIS)

    Slater, G.D.; Halverson, T.G.

    1994-01-01

    The purpose of this Tank Waste Remediation System Projects Document Control Plan is to provide requirements and responsibilities for document control for the Hanford Waste Vitrification Plant (HWVP) Project and the Initial Pretreatment Module (IPM) Project

  10. MEET : project action plan for AUMA energy management program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-11-22

    The Municipal Energy Efficiency Trust (MEET) action plan offers a framework to help municipalities in Alberta demonstrate leadership in reducing energy consumption. It sets out targets for energy reductions and the associated capital investment. As more information is compiled from energy audits, the targets will be refined. AUMA and Enmax Energy Corp have partnered to provide energy audits designed to allow all municipalities to undertake energy savings projects. The program is divided into 8 basic categories for energy savings projects including: water and sewage collection, treatment and distribution; recreation centres such as pools and skating rinks; streetlights; office buildings; garages, shops and parking lots; other and innovative projects; municipal audit evaluation support; and, direct grants applied to each project. The estimates for energy savings within each category are provided. The maximum allowable payback period for the project is assumed to be 15 years. Total municipal energy use in Alberta is estimated at 1,100,000 MWh per year. A province wide program will enable AUMA to provide centralized services such as project management and procurement services to address municipal resource constraints and provide some economies of scale for smaller municipalities. AUMA will act as the fund administrator and will set criteria for acceptable projects. The action plan focuses on the energy audit program, municipal facility data collection, municipal staff education, and the establishment of a funding pool. The target for 2002/2003 will be to identify projects with energy savings of at least 15,000 MWh for water treatment and distribution recreation centres for a total capital cost of $13,500,000. 1 tab., 3 figs.

  11. ANALYSIS OF THE POSSIBILITY FOR ESTABLISHING PROJECT MANAGEMENT OFFICE (PMO IN COMPANIES IN SERBIA

    Directory of Open Access Journals (Sweden)

    Dragana Milin

    2012-09-01

    Full Text Available Project Management Office (PMO is an organizational unit established to help project managers, project teams and the various levels of management in carrying out the principles of project management. The research was carried out in Serbia, in 2011, with the aim to establish which methodologies and techniques are used for project m anagement, and which of them are used the most frequently. Furthermore, the need for establishment of PMOs in Serbia is discussed. These offices should help in establishing a standardized methodology (at the organization level and thus overcome the obviou s poor use of any project management methodology at all.

  12. Implementation plan for the Operations Center Upgrade project

    International Nuclear Information System (INIS)

    Pope, N.G.; Brown, R.E.; Turner, W.J.; Courtney, K.; Joseph, E.L.; Jones, D.; Pruett, S.

    1996-06-01

    The crossover from the existing TA-55 Facility Control System to a newly constructed system will be implemented over a four-month period beginning the first week in January, 1997. Personnel requirements and task duration have been established using planning and scheduling project management techniques. Each facility subsystem will be crossed over on individual four-day maintenance weekends during which building PF-4 will be exclusively reserved for these tasks. Each subsystem will be validated prior to the resumption of normal programmatic activities. PF-4 will be open for normal activities between each four-day maintenance weekend. Crossover will not begin until specifically outlined tasks are completed

  13. 242-A evaporator quality assurance project plan: Revision 1

    International Nuclear Information System (INIS)

    Tucker, B.J.

    1994-01-01

    The scope of this quality assurance project plan (Plan) is sampling and analytical services including, but not limited to, sample receipt, handling and storage, analytical measurements, submittal of data deliverables, archiving selected portions of samples, returning unneeded sample material to Westinghouse Hanford Company (WHC), and/or sample disposal associated with candidate feed samples and process condensate compliance samples. Sampling and shipping activities are also included within the scope. The purpose of this project is to provide planning, implementation, and assessment guidance for achieving established data quality objectives measurement parameters. This Plan requires onsite and offsite laboratories to conform to that guidance. Laboratory conformance will help ensure that quality data are being generated and therefore, that the 242-A evaporator is operating in a safe and compliant manner. The 242-A evaporator feed stream originates from double-shell tanks (DSTs) identified as candidate feed tanks. The 242-A evaporator reduces the volume of aqueous waste contained in DSTs by boiling off water and sending it to the Liquid Effluent Retention Facility (LERF) storage basin before further treatment. The slurry product is returned to DSTs. Evaporation results in considerable savings by reducing the volume of mixed waste for disposal

  14. Project W-314 specific test and evaluation plan for 241-AY-02A pump pit upgrade

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    This Specific Test and Evaluation Plan (STEP) defines the test and evaluation activities encompassing the upgrade of the 241-AY-02A Pump Pit for the W-314 Project. The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AY-02A Pump Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  15. Project W-314 specific test and evaluation plan for 241-AY-01A pump pit upgrade

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    This Specific Test and Evaluation Plan (STEP) defines the test and evaluation activities encompassing the upgrade of the 241-AY-0IA Pump Pit for the W-314 Project. The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AY-01A Pump Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation Plan (TEP)

  16. Rural planning organizations--their role in transportation planning and project development in Texas : technical report.

    Science.gov (United States)

    2010-10-01

    While a formal planning and programming process is established for urbanized areas through Metropolitan : Planning Organizations, no similar requirement has been established for rural areas. Currently, under the : Safe, Accountable, Flexible, Efficie...

  17. UMTRA project water sampling and analysis plan, Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-06-01

    This water sampling and analysis plan summarizes the results of previous water sampling activities and the plan for water sampling activities for calendar year 1994. A buffer zone monitoring plan is included as an appendix. The buffer zone monitoring plan is designed to protect the public from residual contamination that entered the ground water as a result of former milling operations. Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually in 1994 at the Gunnison processing site (GUN-01) and disposal site (GUN-08). Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer (Tertiary gravels) at the Gunnison disposal site. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation. Water sampling will be conducted at least semiannually during and one year following the period of construction activities, to comply with the ground water protection strategy discussed in the remedial action plan (DOE, 1992a)

  18. Defense Forensics: Additional Planning and Oversight Needed to Establish an Enduring Expeditionary Forensic Capability

    Science.gov (United States)

    2013-06-01

    forensic pathology, forensic anthropology, and forensic toxicology . 13DOD’s forensic directive defines DOD components as the Office of the...DEFENSE FORENSICS Additional Planning and Oversight Needed to Establish an Enduring Expeditionary Forensic ...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Defense Forensics : Additional Planning and Oversight Needed to Establish an Enduring

  19. Linear-programming-based heuristics for project capacity planning

    NARCIS (Netherlands)

    Gademann, A.J.R.M.; Schutten, J.M.J.

    2005-01-01

    Many multi-project organizations are capacity driven, which means that their operations are constrained by various scarce resources. An important planning aspect in a capacity driven multi-project organization is capacity planning. By capacity planning, we mean the problem of matching demand for

  20. 76 FR 43237 - Patient Protection and Affordable Care Act; Establishment of Consumer Operated and Oriented Plan...

    Science.gov (United States)

    2011-07-20

    ... have a choice of health plans to fit their needs. Exchanges will give individuals and small businesses... Protection and Affordable Care Act; Establishment of Consumer Operated and Oriented Plan (CO-OP) Program... implement the Consumer Operated and Oriented Plan (CO-OP) program, which provides loans to foster the...

  1. A study on the establishment of practical program for the RT promotion plan

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong Yen; Jin, J. H.; Beyn, M. W.; Han, H. S.; Park, C.; Lee, J. W.; Yang, M. S.; Jeong, I. H.; Nho, Y. C

    2003-03-01

    The present state of RT utilizations in Korea is categorized into radioisotope applications to treat incurable diseases, food irradiation, and nondestructive test, and radiation applications by radiation generators such as cyclotrons to produce short half-life radioisotopes for medical uses and electron accelerators to make better products of cables and radial tiers. In order to activate more utilizations of RT, the followings should be carried out: 1. Establishment of RT Research Institute and RT Industrial Complex - Establishment of the tentatively named [Radiation Science and Technology Research Center] and 'Cyclotron Center' in four provinces should be effectively carried out as scheduled. - Successful pursuing design and construction of the proton accelerator for research and technology development, and CNS research facility. - Radiation area workers training participating the RT projects; Participation and training of university graduates to the on-going and planned RT projects, Classes for special skills and experts to radiation could be designed at the Consociated Graduate School, being established by joining national research organizations, if necessary. - Secure minimum number of R and D man power for RT development 2. Review design and construction of RI production reactor and construct distribution and transportation of RIs - Constructions of distribution lines and a central depository site with the establishment of Cyclotron Centers and RI production reactor - Designation, as early as possible, of the organization to handle the constructions of the distribution lines and the central depository site. 3. Establishment of an organization to appeal RT industries' concerns - An organization composed of governmental officials, researchers from national research institutes and/or private research institutes, representatives from associations and RT industries should be formed to define the issues to promote radiation uses. 4. Establishment of

  2. A study on the establishment of practical program for the RT promotion plan

    International Nuclear Information System (INIS)

    Kim, Seong Yen; Jin, J. H.; Beyn, M. W.; Han, H. S.; Park, C.; Lee, J. W.; Yang, M. S.; Jeong, I. H.; Nho, Y. C.

    2003-03-01

    The present state of RT utilizations in Korea is categorized into radioisotope applications to treat incurable diseases, food irradiation, and nondestructive test, and radiation applications by radiation generators such as cyclotrons to produce short half-life radioisotopes for medical uses and electron accelerators to make better products of cables and radial tiers. In order to activate more utilizations of RT, the followings should be carried out: 1. Establishment of RT Research Institute and RT Industrial Complex - Establishment of the tentatively named [Radiation Science and Technology Research Center] and 'Cyclotron Center' in four provinces should be effectively carried out as scheduled. - Successful pursuing design and construction of the proton accelerator for research and technology development, and CNS research facility. - Radiation area workers training participating the RT projects; Participation and training of university graduates to the on-going and planned RT projects, Classes for special skills and experts to radiation could be designed at the Consociated Graduate School, being established by joining national research organizations, if necessary. - Secure minimum number of R and D man power for RT development 2. Review design and construction of RI production reactor and construct distribution and transportation of RIs - Constructions of distribution lines and a central depository site with the establishment of Cyclotron Centers and RI production reactor - Designation, as early as possible, of the organization to handle the constructions of the distribution lines and the central depository site. 3. Establishment of an organization to appeal RT industries' concerns - An organization composed of governmental officials, researchers from national research institutes and/or private research institutes, representatives from associations and RT industries should be formed to define the issues to promote radiation uses. 4. Establishment of Pan-ministry PR

  3. National Ignition Facility project acquisition plan revision 1

    International Nuclear Information System (INIS)

    Clobes, A.R.

    1996-01-01

    The purpose of this National Ignition Facility Acquisition Plan is to describe the overall procurement strategy planned for the National Ignition Facility M Project. It was prepared for the NIP Prood Office by the NIF Procurement Manager

  4. River Protection Project waste feed delivery program technical performance measurement assessment plan

    International Nuclear Information System (INIS)

    O'TOOLE, S.M.

    1999-01-01

    This plan establishes a formal technical performance-monitoring program. Technical performance is assessed by establishing requirements based performance goals at the beginning of a program and routinely evaluating progress in meeting these goals at predetermined milestones throughout the project life cycle

  5. PUREX/UO3 deactivation project management plan

    International Nuclear Information System (INIS)

    Washenfelder, D.J.

    1993-12-01

    From 1955 through 1990, the Plutonium-Uranium Extraction Plant (PUREX) provided the United States Department of Energy Hanford Site with nuclear fuel reprocessing capability. It operated in sequence with the Uranium Trioxide (UO 3 ) Plant, which converted the PUREX liquid uranium nitrate product to solid UO 3 powder. Final UO 3 Plant operation ended in 1993. In December 1992, planning was initiated for the deactivation of PUREX and UO 3 Plant. The objective of deactivation planning was to identify the activities needed to establish a passively safe, environmentally secure configuration at both plants, and ensure that the configuration could be retained during the post-deactivation period. The PUREX/UO 3 Deactivation Project management plan represents completion of the planning efforts. It presents the deactivation approach to be used for the two plants, and the supporting technical, cost, and schedule baselines. Deactivation activities concentrate on removal, reduction, and stabilization of the radioactive and chemical materials remaining at the plants, and the shutdown of the utilities and effluents. When deactivation is completed, the two plants will be left unoccupied and locked, pending eventual decontamination and decommissioning. Deactivation is expected to cost $233.8 million, require 5 years to complete, and yield $36 million in annual surveillance and maintenance cost savings

  6. Double Star project - master science operations plan

    Science.gov (United States)

    Shen, C.; Liu, Z.

    2005-11-01

    For Double Star Project (DSP) exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2) and during the mission operating phase, the long-term and short-term master science operations plans (MSOP) were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.

  7. Double Star project - master science operations plan

    Directory of Open Access Journals (Sweden)

    C. Shen

    2005-11-01

    Full Text Available For Double Star Project (DSP exploration, the scientific operations are very important and essential for achieving its scientific objectives. Two years before the launch of the DSP satellites (TC-1 and TC-2 and during the mission operating phase, the long-term and short-term master science operations plans (MSOP were produced. MSOP is composed of the operation schedules of all the scientific instruments, the modes and timelines of the Payload Service System on TC-1 and TC-2, and the data receiving schedules of the three ground stations. The MSOP of TC-1 and TC-2 have been generated according to the scientific objectives of DSP, the orbits of DSP, the near-Earth space environments and the coordination with Cluster, etc., so as to make full use of the exploration resources provided by DSP and to acquire as much quality scientific data as possible for the scientific communities. This paper has summarized the observation resources of DSP, the states of DSP and its evolution since the launch, the strategies and rules followed for operating the payload and utilizing the ground stations, and the production of MSOP. Until now, the generation and execution of MSOP is smooth and successful, the operating of DSP is satisfactory, and most of the scientific objectives of DSP have been fulfilled.

  8. Fast Flux Test Facility project plan. Revision 2

    International Nuclear Information System (INIS)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition

  9. Fast Flux Test Facility project plan. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Hulvey, R.K.

    1995-11-01

    The Fast Flux Test Facility (FFTF) Transition Project Plan, Revision 2, provides changes to the major elements and project baseline for the deactivation activities necessary to transition the FFTF to a radiologically and industrially safe shutdown condition.

  10. Project Management Plan (PMP) for Work Management Implementation

    International Nuclear Information System (INIS)

    SHIPLER, C.E.

    2000-01-01

    The purpose of this document is to provide a project plan for Work Management Implementation by the River Protection Project (RPP). Work Management is an information initiative to implement industry best practices by replacing some Tank Farm legacy system

  11. Integrated multi-resource planning and scheduling in engineering project

    Directory of Open Access Journals (Sweden)

    Samer Ben Issa

    2017-01-01

    Full Text Available Planning and scheduling processes in project management are carried out sequentially in prac-tice, i.e. planning project activities first without visibility of resource limitation, and then schedul-ing the project according to these pre-planned activities. This is a need to integrate these two pro-cesses. In this paper, we use Branch and Bound approach for generating all the feasible and non-feasible project schedules with/without activity splitting, and with a new criterion called “the Minimum Moments of Resources Required around X-Y axes (MMORR”, we select the best feasible project schedule to integrate plan processing and schedule processing for engineering projects. The results illustrate that this integrated approach can effectively select the best feasible project schedule among alternatives, improves the resource utilization, and shortens the project lead time.

  12. I-15 integrated corridor management system : project management plan.

    Science.gov (United States)

    2011-06-01

    The Project Management Plan (PMP) assists the San Diego ICM Team by defining a procedural framework for : management and control of the I-15 Integrated Corridor Management Demonstration Project, and development and : deployment of the ICM System. The...

  13. AMADEUS Project Deliverable 1.2: Data Management Plan

    OpenAIRE

    Ana Belén Cristobal

    2018-01-01

    This document describes the initial Data Management Plan (DMP) for AMADEUS project. It addresses Project administration data collected as part of the execution and management of a disruptive research that could be in the market in the incoming years.

  14. Energy Strategic Planning & Self-Sufficiency Project

    Energy Technology Data Exchange (ETDEWEB)

    Greg Retzlaff

    2005-03-30

    This report provides information regarding options available, their advantages and disadvantages, and the costs for pursuing activities to advance Smith River Rancheria toward an energy program that reduces their energy costs, allows greater self-sufficiency and stimulates economic development and employment opportunities within and around the reservation. The primary subjects addressed in this report are as follow: (1) Baseline Assessment of Current Energy Costs--An evaluation of the historical energy costs for Smith River was conducted to identify the costs for each component of their energy supply to better assess changes that can be considered for energy cost reductions. (2) Research Viable Energy Options--This includes a general description of many power generation technologies and identification of their relative costs, advantages and disadvantages. Through this research the generation technology options that are most suited for this application were identified. (3) Project Development Considerations--The basic steps and associated challenges of developing a generation project utilizing the selected technologies are identified and discussed. This included items like selling to third parties, wheeling, electrical interconnections, fuel supply, permitting, standby power, and transmission studies. (4) Energy Conservation--The myriad of federal, state and utility programs offered for low-income weatherization and utility bill payment assistance are identified, their qualification requirements discussed, and the subsequent benefits outlined. (5) Establishing an Energy Organization--The report includes a high level discussion of formation of a utility to serve the Tribal membership. The value or advantages of such action is discussed along with some of the challenges. (6) Training--Training opportunities available to the Tribal membership are identified.

  15. The ENN project. ENN exploitation plan.

    Science.gov (United States)

    Dekena, R; Rehm-Berbenni, C; Seyfried, K

    2000-01-01

    The objective of the ENN-European Neurologic Network project is to improve knowledge and treatment of sleep disorders, headache and epilepsy. The means to obtain this objective shall be certain software to be distributed to the appropriate users in the medical field and the collection of relevant cases, in order to set up a neurological database. It is intended that the distribution of the above mentioned software and access to the database, will be able to finance research projects in the neurological field. The outcome of the EU funded project have been six prototypes, which need further work in order to establish a system of compatible and linked products. A particular emphasis of this work should be put on making the products as process oriented as possible. At the time being there are already products available in the market, which would be competing with particular ENN prototypes, but there is no set of compatible and linked products, which would be comparable with the intended set of ENN neurological tools. Such set of tools therefore could be a unique selling proposition. Intellectual property rights and legal implications have to be taken into consideration for the marketing of the ENN products. It has to be made sure, that no third party can assert violation of its IPRs and that, a protection of the products can be attained by appropriate application for IPRs. In the legal field in particular the prescriptions of data protection legislation have to be observed e.g. by obtaining the written consent of patients, whose cases are reported. The marketing concept should be set up as a short-term, middle-term, long-term strategy. The short-term strategy should concentrate on carrying out a market validation study at European level and simultaneously the development from prototype to products. The middle-term strategy should be directed towards the market introduction of the ENN products in Europe. The long-term strategy should comprise marketing of the products

  16. Sensemaking in Enterprise Resource Planning Project Deescalation: An Empirical Study

    Science.gov (United States)

    Battleson, Douglas Aloys

    2013-01-01

    Enterprise resource planning (ERP) projects, a type of complex information technology project, are very challenging and expensive to implement. Past research recognizes that escalation, defined as the commitment to a failing course of action, is common in such projects. While the factors that contribute to escalation (e.g., project conditions,…

  17. Integrated Project Teams - An Essential Element of Project Management during Project Planning and Execution - 12155

    Energy Technology Data Exchange (ETDEWEB)

    Burritt, James G.; Berkey, Edgar [Longenecker and Associates, Las Vegas, NV 89135 (United States)

    2012-07-01

    Managing complex projects requires a capable, effective project manager to be in place, who is assisted by a team of competent assistants in various relevant disciplines. This team of assistants is known as the Integrated Project Team (IPT). he IPT is composed of a multidisciplinary group of people who are collectively responsible for delivering a defined project outcome and who plan, execute, and implement over the entire life-cycle of a project, which can be a facility being constructed or a system being acquired. An ideal IPT includes empowered representatives from all functional areas involved with a project-such as engineering design, technology, manufacturing, test and evaluation, contracts, legal, logistics, and especially, the customer. Effective IPTs are an essential element of scope, cost, and schedule control for any complex, large construction project, whether funded by DOE or another organization. By recently assessing a number of major, on-going DOE waste management projects, the characteristics of high performing IPTs have been defined as well as the reasons for potential IPT failure. Project managers should use IPTs to plan and execute projects, but the IPTs must be properly constituted and the members capable and empowered. For them to be effective, the project manager must select the right team, and provide them with the training and guidance for them to be effective. IPT members must treat their IPT assignment as a primary duty, not some ancillary function. All team members must have an understanding of the factors associated with successful IPTs, and the reasons that some IPTs fail. Integrated Project Teams should be used by both government and industry. (authors)

  18. Outage planning in nuclear power plants. A paradigm shift from an external towards an integrated project planning tool

    Energy Technology Data Exchange (ETDEWEB)

    Rosemann, Andreas [Gesellschaft fuer integrierte Systemplanung (GiS) mbH, Weinheim (Germany)

    2014-05-15

    In nuclear power plants it is common to carry out the technical planning of the annual outage work orders in an Enterprise Application Management (EAM) system and to schedule the outage tasks in a project planning tool. The reason for this is historical: Former EAM systems did not (or just to some extend) offer the necessary functionalities to realise the scheduling of the outage; graphical support for the planning was not provided at all. Consequently, scheduling the annual outage was performed in a separate planning tool. Modern Enterprise Application Management (EAM) software builds on established project planning tools with respect to the functionalities and timing of work orders. As a standard they provide editable charts as well as a lot of functionalities which are required for scheduling the annual outage. The functional gap between the demanded planning functionalities and the functionalities provided by the EAM system has been significantly reduced. Depending on the deployed software itself it is possible to extend the EAM system with little effort (in comparison to the promising advantages) so that external project timing planning tools are not required any more. By shifting towards an integrated planning tool, efficiency in planning an outage as well as the quality of communication of the current planning status increases. Furthermore, the basis of information for work orders by the control room staff and therefore safety can be enhanced. (orig.)

  19. Outage planning in nuclear power plants. A paradigm shift from an external towards an integrated project planning tool

    International Nuclear Information System (INIS)

    Rosemann, Andreas

    2014-01-01

    In nuclear power plants it is common to carry out the technical planning of the annual outage work orders in an Enterprise Application Management (EAM) system and to schedule the outage tasks in a project planning tool. The reason for this is historical: Former EAM systems did not (or just to some extend) offer the necessary functionalities to realise the scheduling of the outage; graphical support for the planning was not provided at all. Consequently, scheduling the annual outage was performed in a separate planning tool. Modern Enterprise Application Management (EAM) software builds on established project planning tools with respect to the functionalities and timing of work orders. As a standard they provide editable charts as well as a lot of functionalities which are required for scheduling the annual outage. The functional gap between the demanded planning functionalities and the functionalities provided by the EAM system has been significantly reduced. Depending on the deployed software itself it is possible to extend the EAM system with little effort (in comparison to the promising advantages) so that external project timing planning tools are not required any more. By shifting towards an integrated planning tool, efficiency in planning an outage as well as the quality of communication of the current planning status increases. Furthermore, the basis of information for work orders by the control room staff and therefore safety can be enhanced. (orig.)

  20. Project Plan For Remove Special Nuclear Material (SNM) from Plutonium Finishing Plant (PFP) Project

    International Nuclear Information System (INIS)

    BARTLETT, W.D.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove SNM Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617. This project plan is the top-level definitive project management document for the PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baseline to manage the execution of the Remove SNM Materials project. Any deviation to the document must be authorized through the appropriate change control process. The Remove SNM Materials project provides the necessary support and controls required for DOE-HQ, DOE-RL, BWHC, and other DOE Complex Contractors the path forward to negotiate shipped/receiver agreements, schedule shipments, and transfer material out of PFP to enable final deactivation

  1. Planning of development strategy for establishment of advanced simulation of nuclear system

    International Nuclear Information System (INIS)

    Chung, Bubdong; Ko, Wonil; Kwon Junhyun

    2013-12-01

    In this product, the long term development plan in each technical area has been prosed with the plan of coupled code system. The consolidated code system for safety analysis has been proposing for future needs. The computing hardware needed for te advanced simulation is also proposing. The best approach for future safety analysis simulation capabilities may be a dual-path program. i. e. the development programs for an integrated analysis tool and multi-scale/multi-physic analysis tools, where the former aims at reducing uncertainty and the latter at enhancing accuracy. Integrated analysis tool with risk informed safety margin quantification It requires a significant extension of the phenomenological and geometric capabilities of existing reactor safety analysis software, capable of detailed simulations that reduce the uncertainties. Multi-scale, multi-physics analysis tools. Simplifications of complex phenomenological models and dependencies have been made in current safety analyses to accommodate computer hardware limitations. With the advent of modern computer hardware, these limitations may be removed to permit greater accuracy in representation of physical behavior of materials in design basis and beyond design basis conditions, and hence more accurate assessment of the true safety margins based on first principle methodology. The proposals can be utilized to develop the advanced simulation project and formulation of organization and establishment of high performance computing system in KAERI

  2. The establishment of master plan for developing advanced I and C technology -The development of advanced instrumentation and control technology-

    International Nuclear Information System (INIS)

    Ham, Chang Shik; Lee, Byung Sun; Kwon, Kee Choon; Lee, Dong Young; Hwang, In Koo; Lee, Jang Soo; Kim, Jung Soo; Kim, Chang Hwoi; Jung, Chul Hwan; Na, Nan Ju; Dong, In Sook; Kang, Soon Gu; Lyu, Chan Ho; Song, Soon Ja

    1994-07-01

    Although several organizations are performing their tasks making efforts to develop new digital technology for application to existing nuclear power plants as well as new plants of the future, their projects are similar to each other and have possibilities of redundant investment. Therefore, KAERI have established a Master Plan to define the suitable work-scope of each Instrumentation and Control (I and C) development project and proceed its development items continuously. Furthermore, in the project, several kinds of advanced technology for application of computer science and digital electronics were studied to obtain better reliability of the I and C systems and reduce opertor's burden. For establishing the Master Plan, functions of I and C system of NPPs were surveyed. Especially EPRI URD was deeply analyzed for setting up a basis of the foreign countries were referred for the Master Plan. For the new technology survey, fault-tolerant control technology and control system performance analysis methods were studied. Requirements of alarm and information system as well as technology of I and C network system of NPPs were also established to introduce the advantages of commercial distributed control system. (Author)

  3. Establishing a portfolio of quality-improvement projects in pediatric surgery through advanced improvement leadership systems.

    Science.gov (United States)

    Gerrein, Betsy T; Williams, Christina E; Von Allmen, Daniel

    2013-01-01

    Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children's Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution's strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division's efficiency and effectiveness in pursing the QI mission that is integral at our hospital.

  4. Establishing a Portfolio of Quality-Improvement Projects in Pediatric Surgery through Advanced Improvement Leadership Systems

    Science.gov (United States)

    Gerrein, Betsy T; Williams, Christina E; von Allmen, Daniel

    2013-01-01

    Formal quality-improvement (QI) projects require that participants are educated in QI methods to provide them with the capability to carry out successful, meaningful work. However, orchestrating a portfolio of projects that addresses the strategic mission of the institution requires an extension of basic QI training to provide the division or business unit with the capacity to successfully develop and manage the portfolio. Advanced Improvement Leadership Systems is a program to help units create a meaningful portfolio. This program, used by the Division of Pediatric General and Thoracic Surgery at Cincinnati Children’s Hospital Medical Center, helped establish a portfolio of targeted QI projects designed to achieve outstanding outcomes at competitive costs in multiple clinical areas aligned with the institution’s strategic goals (improve disease-based outcomes, patient safety, flow, and patient and family experience). These objectives are addressed in an institutional strategic plan built around 5 core areas: Safety, Productivity, Care Coordination and Outcomes, Patient and Family Experience, and Value. By combining the portfolio of QI projects with improvements in the divisional infrastructure, effective improvement efforts were realized throughout the division. In the 9 months following the program, divisional capability resulted in a 16.5% increase (5.7% to 22.2%) of formally trained staff working on 10 QI teams. Concurrently, a leadership team, designed to coordinate projects, remove barriers, and provide technical support, provided the capacity to pursue this ongoing effort. The Advanced Improvement Leadership Systems program increased the Division’s efficiency and effectiveness in pursing the QI mission that is integral at our hospital. PMID:24361020

  5. Yakima Habitat Improvement Project Master Plan, Technical Report 2003.

    Energy Technology Data Exchange (ETDEWEB)

    Golder Associates, Inc.

    2003-04-22

    result of the planning effort leading to this Master Plan, a Technical Working Group (TWG) was established that represents most, if not all, fish and wildlife agencies/interests in the subbasin. This TWG met regularly throughout the planning process to provide input and review and was instrumental in the development of this plan. Preparation of this plan included the development of a quantitative prioritization process to rank 40,000 parcels within the Urban Growth Area based on the value of fish and wildlife habitat each parcel provided. Biological and physical criteria were developed and applied to all parcels through a GIS-based prioritization model. In the second-phase of the prioritization process, the TWG provided local expert knowledge and review of the properties. In selecting the most critical areas within the Urban Growth Area for protection, this project assessed the value of fish and wildlife habitat on the Yakima River. Well-developed habitat acquisition efforts (e.g., Yakima River Basin Water Enhancement Project by the Bureau of Reclamation and Yakama Nation acquisition projects) are already underway on the Yakima River mainstem. These efforts, however, face several limitations in protection of floodplain function that could be addressed through the support of the Yakima Habitat Improvement Project. This Master Plan integrates tributary habitat acquisition efforts with those ongoing on the Yakima River to best benefit fish and wildlife in the Urban Growth Area. The parcel ranking process identified 25 properties with the highest fish and wildlife value for habitat acquisition in the Yakima Urban Area. These parcels contain important fish and wildlife corridors on Ahtanum and Wide Hollow Creeks and the Naches River. The fifteen highest-ranking parcels of the 25 parcels identified were considered very high priority for protection of fish and wildlife habitat. These 15 parcels were subsequently grouped into four priority acquisition areas. This Master Plan

  6. 78 FR 63481 - Therapeutic Area Standards Initiative Project Plan; Availability

    Science.gov (United States)

    2013-10-24

    ... disadvantages of current and emerging alternatives for the exchange of regulated study data, and (2) issuing a... primary document for guiding all major aspects of FDA's multi-year initiative to develop and implement TA... is announcing the availability of the TA Project Plan. This TA Project Plan will be the primary...

  7. Automated transportation management system (ATMS) software project management plan (SPMP)

    Energy Technology Data Exchange (ETDEWEB)

    Weidert, R.S., Westinghouse Hanford

    1996-05-20

    The Automated Transportation Management System (ATMS) Software Project Management plan (SPMP) is the lead planning document governing the life cycle of the ATMS and its integration into the Transportation Information Network (TIN). This SPMP defines the project tasks, deliverables, and high level schedules involved in developing the client/server ATMS software.

  8. Project plan remove special nuclear material from PFP project plutonium finishing plant; TOPICAL

    International Nuclear Information System (INIS)

    BARTLETT, W.D.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove Special Nuclear Material (SNM) Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617,Rev. 0. This project plan is the top-level definitive project management document for PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Remove SNM Materials project. Any deviations to the document must be authorized through the appropriate change control process

  9. Project plan remove special nuclear material from PFP project plutonium finishing plant

    International Nuclear Information System (INIS)

    BARTLETT, W.D.

    1999-01-01

    This plan presents the overall objectives, description, justification and planning for the Plutonium Finishing Plant (PFP) Remove Special Nuclear Material (SNM) Materials. The intent of this plan is to describe how this project will be managed and integrated with other facility stabilization and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev. 0. This project plan is the top-level definitive project management document for PFP Remove SNM Materials project. It specifies the technical, schedule, requirements and the cost baselines to manage the execution of the Remove SNM Materials project. Any deviations to the document must be authorized through the appropriate change control process

  10. Finance and supply management project execution plan

    Energy Technology Data Exchange (ETDEWEB)

    BENNION, S.I.

    1999-02-10

    As a subproject of the HANDI 2000 project, the Finance and Supply Management system is intended to serve FDH and Project Hanford major subcontractor with financial processes including general ledger, project costing, budgeting, and accounts payable, and supply management process including purchasing, inventory and contracts management. Currently these functions are performed with numerous legacy information systems and suboptimized processes.

  11. Marketing plan for establishment of a sport shop with sport accesories sale and additional services

    OpenAIRE

    Trakalová, Aneta

    2011-01-01

    Purpose of bachelor study is marketing plan for establishment of a sport shop with sport accesories sale and additional services. Suggested marketing process will respect supply and competition analysis and individual target groups trends of prospective customers. Lay-out of target market is oriented on marketing strategy and financial plan forming.

  12. Tank Waste Remediation System Characterization Project Programmatic Risk Management Plan

    International Nuclear Information System (INIS)

    Baide, D.G.; Webster, T.L.

    1995-12-01

    The TWRS Characterization Project has developed a process and plan in order to identify, manage and control the risks associated with tank waste characterization activities. The result of implementing this process is a defined list of programmatic risks (i.e. a risk management list) that are used by the Project as management tool. This concept of risk management process is a commonly used systems engineering approach which is being applied to all TWRS program and project elements. The Characterization Project risk management plan and list are subset of the overall TWRS risk management plan and list

  13. Fuzzy multi-project rough-cut capacity planning

    NARCIS (Netherlands)

    Masmoudi, Malek; Hans, Elias W.; Leus, Roel; Hait, Alain; Sotskov, Yuri N.; Werner, Frank

    2014-01-01

    This chapter studies the incorporation of uncertainty into multi-project rough-cut capacity planning. We use fuzzy sets to model uncertainties, adhering to the so-called possibilistic approach. We refer to the resulting proactive planning environment as Fuzzy Rough Cut Capacity Planning (FRCCP).

  14. Yakima fisheries project spring chinook supplementation monitoring plan

    International Nuclear Information System (INIS)

    Busack, C.; Pearsons, T.; Knudsen, C.; Phelps, S.; Watson, B.; Johnston, M.

    1997-08-01

    The Yakima Fisheries Project (YFP), a key element in the Northwest Power Planning Council's Fish and Wildlife Program, has been in planning for more than ten years. It was initially conceived as, and is still intended to be, a multipurpose project. Besides increasing fish production in the Yakima basin, it is also intended to yield information about supplementation that will be of value to the entire Columbia basin, and hopefully the entire region. Because of this expectation of increased knowledge resulting from the project, a large and comprehensive monitoring program has always been seen as an integral part of the project. Throughout 1996 the Monitoring Implementation and Planning Team (MIPT), an interdisciplinary group of biologists who have worked on the project for several years, worked to develop a comprehensive spring chinook monitoring plan for the project. The result is the present document

  15. Project gnome decontamination and decommissioning plan

    International Nuclear Information System (INIS)

    1979-04-01

    The document presents the operational plan for conducting the final decontamination and decommissioning work at the site of the first U.S. nuclear detonation designed specifically for peaceful purposes and the first underground event on the Plowshare Program to take place outside the Nevada Test Site. The plan includes decontamination and decommissioning procedures, radiological guidelines, and the NV concept of operations

  16. Groundwater/Vadose Zone Integration Project Management Plan

    International Nuclear Information System (INIS)

    Hughes, M. C.

    1999-01-01

    This Project Management Plan (PMP) defines the authorities, roles, and responsibilities of the US Department of Energy (DOE), Richland Operations Office (RL) and those contractor organizations participating in the Hanford Site' s Groundwater/Vadose Zone (GW/VZ) Integration Project. The PMP also describes the planning and control systems, business processes, and other management tools needed to properly and consistently conduct the Integration Project scope of work

  17. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    International Nuclear Information System (INIS)

    Duncan, David

    2011-01-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  18. Technical program plan, Basalt Waste Isolation Project

    International Nuclear Information System (INIS)

    1979-12-01

    The Basalt Waste Isolation Project (BWIP) program as administered by the DOE's Richland Operations Office and Rockwell Hanford Operations is described. The objectives, scope and scientific technologies are discussed. The work breakdown structure of the project includes: project management and support, systems integration, geosciences, hydrology, engineered barriers, test facility design and construction, engineering testing, repository studies, and schedules. The budget of the program including operating and capital cost control is also included

  19. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Hartman, Mary J.; Dresel, P. Evan; Lindberg, Jon W.; Newcomer, Darrell R.; Thornton, Edward C.

    2000-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954; the Resource Conservation and Recovery Act of 1976; the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The U.S. Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/ frequency matrix for the entire site. The objectives of monitoring fall into three general categories: plume and trend tracking, treatment/ storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  20. Integrated Monitoring Plan for the Hanford Groundwater Monitoring Project

    International Nuclear Information System (INIS)

    Newcomer, D.R.; Thornton, E.C.; Hartman, M.J.; Dresel, P.E.

    1999-01-01

    Groundwater is monitored at the Hanford Site to fulfill a variety of state and federal regulations, including the Atomic Energy Act of 1954 the Resource Conservation and Recovery Act of 1976 the Comprehensive Environmental Response, Compensation, and Liability Act of 1980; and Washington Administrative Code. Separate monitoring plans are prepared for various requirements, but sampling is coordinated and data are shared among users to avoid duplication of effort. The US Department of Energy manages these activities through the Hanford Groundwater Monitoring Project. This document is an integrated monitoring plan for the groundwater project. It documents well and constituent lists for monitoring required by the Atomic Energy Act of 1954 and its implementing orders; includes other, established monitoring plans by reference; and appends a master well/constituent/frequency matrix for the entire site. The objectives of monitoring fall into three general categories plume and trend tracking, treatment/storage/disposal unit monitoring, and remediation performance monitoring. Criteria for selecting Atomic Energy Act of 1954 monitoring networks include locations of wells in relation to known plumes or contaminant sources, well depth and construction, historical data, proximity to the Columbia River, water supplies, or other areas of special interest, and well use for other programs. Constituent lists were chosen based on known plumes and waste histories, historical groundwater data, and, in some cases, statistical modeling. Sampling frequencies were based on regulatory requirements, variability of historical data, and proximity to key areas. For sitewide plumes, most wells are sampled every 3 years. Wells monitoring specific waste sites or in areas of high variability will be sampled more frequently

  1. A hierarchical approach to multi-project planning under uncertainty

    NARCIS (Netherlands)

    Leus, R.; Wullink, Gerhard; Hans, Elias W.; Herroelen, W.

    2004-01-01

    We survey several viewpoints on the management of the planning complexity of multi-project organisations under uncertainty. A positioning framework is proposed to distinguish between different types of project-driven organisations, which is meant to aid project management in the choice between the

  2. Phased project planning and development in anticipation of operational programs

    Science.gov (United States)

    Stroud, W. G.

    1973-01-01

    The impact of future operational status on the planning and execution of the research and development activities for major space flight projects is assessed. These projects, within NASA, are part of the Applications Program involving communications and meteorology. The NASA management approach to these projects is determined by national policies governing the responsibilities and relationships among the various government agencies and private industries.

  3. A hierarchical approach to multi-project planning under uncertainty

    NARCIS (Netherlands)

    Hans, Elias W.; Herroelen, W.; Wullink, Gerhard; Leus, R.

    2007-01-01

    We survey several viewpoints on the management of the planning complexity of multi-project organisations under uncertainty. Based on these viewpoints we propose a positioning framework to distinguish between different types of project-driven organisations. This framework is meant to aid project

  4. Spent Nuclear Fuel Project Configuration Management Plan

    International Nuclear Information System (INIS)

    Reilly, M.A.

    1995-01-01

    This document is a rewrite of the draft ''C'' that was agreed to ''in principle'' by SNF Project level 2 managers on EDT 609835, dated March 1995 (not released). The implementation process philosphy was changed in keeping with the ongoing reengineering of the WHC Controlled Manuals to achieve configuration management within the SNF Project

  5. HTI retrieval demonstration project execution plan

    International Nuclear Information System (INIS)

    Ellingson, D.R.

    1997-01-01

    This plan describes the process for demonstrating the retrieval of difficult Hanford tank waste forms utilizing commercial technologies and the private sector to conduct the operations. The demonstration is to be conducted in Tank 241-C-106

  6. KCBX Quality Assurance Project Plan - October 2014

    Science.gov (United States)

    This revised plan's standards for data quality, sampling and testing methods, and task management guide the implementation of Ambient Air Monitoring by URS Corporation at the KCBX Terminals Company North and South Terminals in Chicago, Ill.

  7. KCBX Quality Assurance Project Plan - February 2014

    Science.gov (United States)

    This plan's standards for data quality, sampling and testing methods, and task management guide the implementation of Ambient Air Monitoring, by URS Corporation, at the KCBX Terminals Company North and South Terminals in Chicago, IL.

  8. 27 September 1991-Royal Order establishing an emergency plan for nuclear risks on Belgian territory

    International Nuclear Information System (INIS)

    1992-01-01

    This emergency plan is to serve as guidance for the protection measures to be taken whenever necessary. It establishes the duties of the different services and bodies, in accordance with their responsibilities under the national laws and regulations. The plan, which describes the general organisation, must be supplemented by intervention plans at the different action levels: by the provincial authorities, the communal authorities and the various services and institutions concerned. This plan mainly concerns large nuclear installations and transport of nuclear fuels and radioactive materials; however, lower risks from other activities are also covered. (NEA)

  9. Systems Engineering Plan and project record Configuration Management Plan for the Mixed Waste Disposal Initiative

    International Nuclear Information System (INIS)

    Bryan, W.E.; Oakley, L.B.

    1993-04-01

    This document summarizes the systems engineering assessment that was performed for the Mixed Waste Disposal Initiative (MWDI) Project to determine what types of documentation are required for the success of the project. The report also identifies the documents that will make up the MWDI Project Record and describes the Configuration Management Plan describes the responsibilities and process for making changes to project documentation

  10. Archaeological Handbook for Establishing Offshore Wind Farms in Sweden. Lillgrund Pilot Project

    Energy Technology Data Exchange (ETDEWEB)

    Bengtsson, Boel [Bohuslaens Museum, Uddevalla (Sweden)

    2008-03-15

    The purpose of this handbook is to provide a structured guide for contractors interested in establishing offshore wind farms within Swedish territorial waters and its extended economical zone, in relation to Underwater Cultural Heritage (UCH). It is also applicable to UCH in inland waters. Therefore, this handbook seeks to provide information on; - The management structure of underwater/maritime cultural heritage in Sweden, including institutions and units with maritime antiquarian expertise, - The different types of archaeological remains that can be found around the Swedish coast - in offshore, coastal areas and on the foreshore - which can potentially be affected by offshore wind farm projects, - The laws that underwater archaeological remains are subject to - within the National Maritime Boundary as well as within the contiguous and exclusive economical zones - and the necessary archaeological investigations that need to be considered in order to avoid and/or protect the cultural heritage provided by those remains, - Archaeological standards and methods for assessing and evaluating the potential for finding archaeological remains under water, - The steps that need to be to considered during the planning process of establishing offshore wind farms, and how the contractor and archaeologist can work together in order to make the process more cost effective, and - Considerations for the future. Furthermore, this handbook includes a presentation of archaeological finds made during archaeological surveys in connection with the Lillgrund project. The handbook does not make references to any investigations that may be required in relation to land based archaeological sites other than those which are undertaken close to the shoreline (situated on the foreshore), nor does it consider the visual impact sea-based wind farms might have on cultural heritage

  11. A planning and scheduling system for the LHC project

    CERN Document Server

    Bachy, Gérard; Tarrant, M

    1995-01-01

    The purpose of this paper is to present modern ways to manage time, resources and progress in a large-scale project. Over the last ten years, new project management techniques and tools have appeared such as concurrent engineering, Continuous Acquisition Lifecycle Support (CALS) and Engineering Data Management System (EDMS). The world downturn of the early 90s influenced project management: increasing constraints on time and budget and more external direction on spending that, for example, requires sophisticated sub-contracting practises. However, the evolution of the software and hardware market makes project control tools cheaper and easier to use. All project groups want to have their scope of work considered as complete projects and to control them themselves. This has several consequences on project staff behaviour concerning project control, and has to be taken into account in every planning process designed today. The system described will be at the heart of the planning and scheduling procedures issue...

  12. The Columbia River Protection Supplemental Technologies Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Fix, N. J.

    2008-03-12

    Pacific Northwest National Laboratory researchers are working on the Columbia River Protection Supplemental Technologies Project. This project is a U. S. Department of Energy, Office of Environmental Management-funded initiative designed to develop new methods, strategies, and technologies for characterizing, modeling, remediating, and monitoring soils and groundwater contaminated with metals, radionuclides, and chlorinated organics. This Quality Assurance Project Plan provides the quality assurance requirements and processes that will be followed by the Technologies Project staff.

  13. An approach to establishing cooperative R ampersand D projects with Russian Institutes

    International Nuclear Information System (INIS)

    Hunter, T.; Albert, T.; Fryberger, T.; Romanovsky, V.

    1993-01-01

    An important part of technology exchange between the US and the former Soviet Union is the identification and implementation of cooperative projects that benefit both Russia and the US. The US Department of Energy and its laboratories have established an approach to identify potential technologies that can contribute to solving US environmental problems and to establish projects for enhancing technology development. This approach consists of screening technologies for US applications, conducting small-scale pilot projects with Russian scientists to evaluate the validity of mechanisms for larger projects, helping develop direct communication between US and Russian scientists who are developing these technologies, and implementing major projects in specific technology development areas. A recent example of this approach is the initiation of projects between the Khlopin Radium Institute and DOE through Sandia National Laboratories and SAIC. This effort has resulted in not only enhanced technology for the US but has also provided an example for future cooperative projects

  14. Diagnostic planning in JT-60 project

    International Nuclear Information System (INIS)

    Matoba, Tohru; Suzuki, Yasuo; Funahashi, Akimasa; Itagaki, Tokiyoshi

    1977-08-01

    The diagnostic plans of JT-60 were made along with design of the main machine. Basic requirements of the diagnostic program are (1) multiple measurement of respective plasma parameters, (2) efficient usage of the discharge, (3) capable data acquisition system, (4) high reliability of the diagnostic equipments, and (5) systematic development of new diagnostic techniques. Dimensions of the diagnostic ports were determined in detailed design of the vacuum vessel, anticipating the possible diagnostic methods. The proposed diagnostic systems and the plans are shown in table and figures respectively. Problems in the diagnostics are also described. (auth.)

  15. Project management plan for Project W-178, 219-S secondary containment

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1995-01-01

    This Project Management Plan (PMP) establishes the organizational responsibilities, control systems, and procedures for managing the execution of project activities for Project W-178, the 219-S Secondary Containment Upgrade. The scope of this project will provide the 219-S Facility with secondary containment for all tanks and piping systems. Tank 103 will be replaced with a new tank which will be designated as Tank 104. Corrosion protection shall be installed as required. The cells shall be cleaned and the surface repaired as required. The 219-S Waste Handling Facility (219-S Facility), located in the 200 West Area, was constructed in 1951 to support the 222-S Laboratory Facility. The 219-S Facility has three tanks, TK-101, TK-102, and TK-103, which receive and neutralize low level radioactive wastes from the 222-S Laboratory. For purposes of the laboratory, the different low level waste streams have been designated as high activity and intermediate activity. The 219-S Facility accumulates and treats the liquid waste prior to transferring it to SY Tank Farm in the 200-W Area. Transfers are normally made by pipeline from the 219-S Facility to the 241-SY Tank Farm. Presently transfers are being made by tanker truck to the 200-E Area Tank Farms due to the diversion box catch tank which has been removed from service

  16. Quality assurance program plan fuel supply shutdown project

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1998-01-01

    This Quality Assurance Program plan (QAPP) describes how the Fuel Supply Shutdown (FSS) project organization implements the quality assurance requirements of HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) and the B and W Hanford Company Quality Assurance Program Plan (QAPP), FSP-MP-004. The QAPP applies to facility structures, systems, and components and to activities (e.g., design, procurement, testing, operations, maintenance, etc.) that could affect structures, systems, and components. This QAPP also provides a roadmap of applicable Project Hanford Policies and Procedures (PHPP) which may be utilized by the FSS project organization to implement the requirements of this QAPP

  17. Use of the project management methodology to establish physical protection system at nuclear facility

    International Nuclear Information System (INIS)

    Gramotkin, F.; Kuzmyak, I.; Kravtsov, V.

    2015-01-01

    The paper considers the possibility of using the project management methodology developed by the Project Management Institute (USA) in nuclear security in terms of modernization or development of physical protection system at nuclear facility. It was demonstrated that this methodology allows competent and flexible management of the projects on physical protection, ensuring effective control of their timely implementation in compliance with the planned budget and quality

  18. Automated Procurement System (APS): Project management plan (DS-03), version 1.2

    Science.gov (United States)

    Murphy, Diane R.

    1994-01-01

    The National Aeronautics and Space Administration (NASA) Marshall Space Flight Center (MSFC) is implementing an Automated Procurement System (APS) to streamline its business activities that are used to procure goods and services. This Project Management Plan (PMP) is the governing document throughout the implementation process and is identified as the APS Project Management Plan (DS-03). At this point in time, the project plan includes the schedules and tasks necessary to proceed through implementation. Since the basis of APS is an existing COTS system, the implementation process is revised from the standard SDLC. The purpose of the PMP is to provide the framework for the implementation process. It discusses the roles and responsibilities of the NASA project staff, the functions to be performed by the APS Development Contractor (PAI), and the support required of the NASA computer support contractor (CSC). To be successful, these three organizations must work together as a team, working towards the goals established in this Project Plan. The Project Plan includes a description of the proposed system, describes the work to be done, establishes a schedule of deliverables, and discusses the major standards and procedures to be followed.

  19. Using Project Complexity Determinations to Establish Required Levels of Project Rigor

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, Thomas D.

    2015-10-01

    This presentation discusses the project complexity determination process that was developed by National Security Technologies, LLC, for the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office for implementation at the Nevada National Security Site (NNSS). The complexity determination process was developed to address the diversity of NNSS project types, size, and complexity; to fill the need for one procedure but with provision for tailoring the level of rigor to the project type, size, and complexity; and to provide consistent, repeatable, effective application of project management processes across the enterprise; and to achieve higher levels of efficiency in project delivery. These needs are illustrated by the wide diversity of NNSS projects: Defense Experimentation, Global Security, weapons tests, military training areas, sensor development and testing, training in realistic environments, intelligence community support, sensor development, environmental restoration/waste management, and disposal of radioactive waste, among others.

  20. Marketing plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2014-01-01

    North Central Texas is a unique region in terms of its combination of recent, current and projected size, growth rate, ethnic diversity, and transportation profile specifically in relation to congestion. This document summarizes a plan to market ...

  1. 7 CFR 1209.40 - Programs, plans, and projects.

    Science.gov (United States)

    2010-01-01

    ..., plan, or project, no reference to a brand name, trade name, or State or regional identification of any... SERVICE (MARKETING AGREEMENTS AND ORDERS; MISCELLANEOUS COMMODITIES), DEPARTMENT OF AGRICULTURE MUSHROOM...

  2. Project management plan for exploratory shaft at Yucca Mountain

    International Nuclear Information System (INIS)

    1983-08-01

    This Project Management Plan (PMP) provides the basic guidance and describes the organizational structure and procedures for the design, construction, and testing of a large-diameter Exploratory Shaft (ES) in tuffaceous media as a major element within the Nevada Nuclear Waste Storage Investigations (NNWSI) project, which is a part of the National Waste Terminal Storage (NWTS) Program, US Department of Energy (DOE). The PMP encompasses activities identified as construction phase and in situ phase testing to be conducted from the ES through September 30, 1986. Specific topics addressed are the ES project objectives, the management organization and responsibilities, functional support requirements, work plan (including quality assurance aspects), work breakdown structure, milestone schedule, logic diagram, performance criteria, cost estimates, management control systems, procurement plan, test plan, and environmental, health and safety plans

  3. Project management plan : Dallas Integrated Corridor Management (ICM) demonstration project.

    Science.gov (United States)

    2010-12-01

    The Dallas Integrated Corridor Management System Demonstration Project is a multi-agency, de-centralized operation which will utilize a set of regional systems to integrate the operations of the corridor. The purpose of the Dallas ICM System is to im...

  4. Tailoring Small IT Projects in the Project Planning Phase

    Science.gov (United States)

    Mulhearn, Michael F.

    2011-01-01

    Project management (PM) and systems engineering (SE) are essential skills in information technology (IT). There is an abundance of information available detailing the comprehensive bodies of knowledge, standards, and best practices. Despite the volume of information, there is surprisingly little information about how to tailor PM and SE tasks for…

  5. Guidance and Control Software Project Data - Volume 1: Planning Documents

    Science.gov (United States)

    Hayhurst, Kelly J. (Editor)

    2008-01-01

    The Guidance and Control Software (GCS) project was the last in a series of software reliability studies conducted at Langley Research Center between 1977 and 1994. The technical results of the GCS project were recorded after the experiment was completed. Some of the support documentation produced as part of the experiment, however, is serving an unexpected role far beyond its original project context. Some of the software used as part of the GCS project was developed to conform to the RTCA/DO-178B software standard, "Software Considerations in Airborne Systems and Equipment Certification," used in the civil aviation industry. That standard requires extensive documentation throughout the software development life cycle, including plans, software requirements, design and source code, verification cases and results, and configuration management and quality control data. The project documentation that includes this information is open for public scrutiny without the legal or safety implications associated with comparable data from an avionics manufacturer. This public availability has afforded an opportunity to use the GCS project documents for DO-178B training. This report provides a brief overview of the GCS project, describes the 4-volume set of documents and the role they are playing in training, and includes the planning documents from the GCS project. Volume 1 contains five appendices: A. Plan for Software Aspects of Certification for the Guidance and Control Software Project; B. Software Development Standards for the Guidance and Control Software Project; C. Software Verification Plan for the Guidance and Control Software Project; D. Software Configuration Management Plan for the Guidance and Control Software Project; and E. Software Quality Assurance Activities.

  6. Adoption of Building Information Modelling in project planning risk management

    Science.gov (United States)

    Mering, M. M.; Aminudin, E.; Chai, C. S.; Zakaria, R.; Tan, C. S.; Lee, Y. Y.; Redzuan, A. A.

    2017-11-01

    An efficient and effective risk management required a systematic and proper methodology besides knowledge and experience. However, if the risk management is not discussed from the starting of the project, this duty is notably complicated and no longer efficient. This paper presents the adoption of Building Information Modelling (BIM) in project planning risk management. The objectives is to identify the traditional risk management practices and its function, besides, determine the best function of BIM in risk management and investigating the efficiency of adopting BIM-based risk management during the project planning phase. In order to obtain data, a quantitative approach is adopted in this research. Based on data analysis, the lack of compliance with project requirements and failure to recognise risk and develop responses to opportunity are the risks occurred when traditional risk management is implemented. When using BIM in project planning, it works as the tracking of cost control and cash flow give impact on the project cycle to be completed on time. 5D cost estimation or cash flow modeling benefit risk management in planning, controlling and managing budget and cost reasonably. There were two factors that mostly benefit a BIM-based technology which were formwork plan with integrated fall plan and design for safety model check. By adopting risk management, potential risks linked with a project and acknowledging to those risks can be identified to reduce them to an acceptable extent. This means recognizing potential risks and avoiding threat by reducing their negative effects. The BIM-based risk management can enhance the planning process of construction projects. It benefits the construction players in various aspects. It is important to know the application of BIM-based risk management as it can be a lesson learnt to others to implement BIM and increase the quality of the project.

  7. Spent Nuclear Fuel (SNF) Project Execution Plan

    International Nuclear Information System (INIS)

    LEROY, P.G.

    2000-01-01

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities

  8. Spent Nuclear Fuel (SNF) Project Execution Plan

    Energy Technology Data Exchange (ETDEWEB)

    LEROY, P.G.

    2000-11-03

    The Spent Nuclear Fuel (SNF) Project supports the Hanford Site Mission to cleanup the Site by providing safe, economic, environmentally sound management of Site spent nuclear fuel in a manner that reduces hazards by staging it to interim onsite storage and deactivates the 100 K Area facilities.

  9. Non-Profit/Higher Education Project Management Series: The Project Plan

    Science.gov (United States)

    Burgher, Karl E.; Snyder, Michael

    2012-01-01

    This is the second installment of the AACRAO management series focusing on project management in the academy. In this article, the authors focus on white papers (often called charters, briefs, or fact sheets) and their partner, the work plan. The work plan is a detailed document that defines each aspect of a project. It is often preceded by a…

  10. 7 CFR 1250.314 - Plans and projects.

    Science.gov (United States)

    2010-01-01

    ... research, consumer and producer education, advertising, marketing, product development, and promotion plans... 7 Agriculture 10 2010-01-01 2010-01-01 false Plans and projects. 1250.314 Section 1250.314 Agriculture Regulations of the Department of Agriculture (Continued) AGRICULTURAL MARKETING SERVICE (MARKETING...

  11. Columbia River Channel Improvement Project Rock Removal Blasting: Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, Thomas J.; Johnson, Gary E.

    2010-01-29

    This document provides a monitoring plan to evaluate take as outlined in the National Marine Fisheries Service 2002 Biological Opinion for underwater blasting to remove rock from the navigation channel for the Columbia River Channel Improvement Project. The plan was prepared by the Pacific Northwest National Laboratory (PNNL) for the U.S. Army Corps of Engineers (USACE), Portland District.

  12. Project Rulison: post-shot plans and evaluations

    Energy Technology Data Exchange (ETDEWEB)

    1969-12-01

    Project Rulison post-shot plans and evaluations are discussed and include physical characteristics of the Rulison cavity; pressure and temperature expected in the cavity; amount, nature, and distribution of radioactivity in the cavity; reentry plan; radioactive species which may be encountered during reentry; public safety considerations arising from release of radioactivity; procedures to assure public safety; and the radiological safety plan. Maximum hypothetical accidents and ecological considerations are discussed in the appendices.

  13. Planned Change in Future Models of Project Follow Through: A Concept Paper.

    Science.gov (United States)

    Simpkins, Edward; Brown, Asa

    The three chapters included in this paper establish a basis for organizing future implementations of Project Follow Through. Specifically, chapter 1 identifies four planning objectives for coordinating such programs. Emphasis is given to the need to focus on one fundamental, pervasive variable possibly accounting for program success: time…

  14. Salt project environmental assessment issues and plans

    International Nuclear Information System (INIS)

    McIntosh, W.H.

    1983-01-01

    The provisions for public hearings provide for the public to raise the questions it believes need answered before that confidence is established. This paper describes (1) questions raised in the public hearings on potentially acceptable sites, (2) the long process of providing answers to the questions, and (3) some ways for the participants in the process to become confident that enough is known to proceed through each step of repository development. 14 references, 4 tables

  15. Advanced Hybrid Particulate Collector Project Management Plan

    Energy Technology Data Exchange (ETDEWEB)

    Miller, S.J.

    1995-11-01

    As the consumption of energy increases, its impact on ambient air quality has become a significant concern. Recent studies indicate that fine particles from coal combustion cause health problems as well as atmospheric visibility impairment. These problems are further compounded by the concentration of hazardous trace elements such as mercury, cadmium, selenium, and arsenic in fine particles. Therefore, a current need exists to develop superior, but economical, methods to control emissions of fine particles. Since most of the toxic metals present in coal will be in particulate form, a high level of fine- particle collection appears to be the best method of overall air toxics control. However, over 50% of mercury and a portion of selenium emissions are in vapor form and cannot be collected in particulate control devices. Therefore, this project will focus on developing technology not only to provide ultrahigh collection efficiency of particulate air toxic emissions, but also to capture vapor- phase trace metals such as mercury and selenium. Currently, the primary state-of-the-art technologies for particulate control are fabric filters (baghouses) and electrostatic precipitators (ESPs). However, they both have limitations that prevent them from achieving ultrahigh collection of fine particulate matter and vapor-phase trace metals. The objective of this project is to develop a highly reliable advanced hybrid particulate collector (AHPC) that can provide > 99.99 % particulate collection efficiency for all particle sizes between 0.01 and 50 14m, is applicable for use with all U.S. coals, and is cost-0443competitive with existing technologies. Phase I of the project is organized into three tasks: Task I - Project Management, Reporting, and Subcontract Consulting Task 2 - Modeling, Design, and Construction of 200-acfm AHPC Model Task 3 - Experimental Testing and Subcontract Consulting

  16. Planning risk communication for UMTRA project groundwater restoration

    Energy Technology Data Exchange (ETDEWEB)

    Hundertmark, Charles [Jacobs Engineering Group Inc. and University of Phoenix (United States); Hoopes, Jack [Jacobs Engineering Group Inc. (United States); Flowers, Len [Roy F. Weston Company (United States); Jackson, David G [U.S. Department of Energy (United States)

    1992-07-01

    The U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is entering a new phase in which groundwater contamination will become a growing focus as surface remedial action draws toward completion. Planning for risk communication associated with the groundwater project will be a major factor in the successful initiation of the program. (author)

  17. Projects of Strategic Action Plan of S&T Innovation

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    @@ In July 2001, CAS decided to shift the focus of the current Knowledge Innovation Program (KIP) onto research projects designed to meet the country's strategic needs, and Iaunched the strategic action plan of innovation (SAPI). Under the SAPI, CAS organized the implementation of seven major projects in 2001.The followings are their profiles.

  18. QUEST2: Release 1: Project plan deliverable set

    International Nuclear Information System (INIS)

    Braaten, F.D.

    1995-01-01

    This Project Management Plan combines the project management deliverables from the P+ methodology which are applicable to Release 1 of the QUEST2 work. This consolidation reflects discussions with WHC QA regarding an appropriate method for ensuring that P+ deliverables fulfill the intent of WHC-CM-3-10 and QR-19

  19. Planning risk communication for UMTRA project groundwater restoration

    International Nuclear Information System (INIS)

    Hundertmark, Charles; Hoopes, Jack; Flowers, Len; Jackson, David G.

    1992-01-01

    The U.S. Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project is entering a new phase in which groundwater contamination will become a growing focus as surface remedial action draws toward completion. Planning for risk communication associated with the groundwater project will be a major factor in the successful initiation of the program. (author)

  20. Reduction of radiation area project plan

    International Nuclear Information System (INIS)

    1979-08-01

    This plan deals with the overall reduction of outdoor surface radiation areas under Rockwell's jurisdiction. Four basic alternatives are identified which will reduce and/or stabilize radiation areas until long-term disposal decisions are made: (1) continued routine surveillance and maintenance; (2) reduction or elimination of effluent discharges; (3) improved site stabilization; and (4) site removal. The four major transport mechanisms at Hanford that are the primary forces for contamination spread are identified as wind, animal transport, concentration and dispersal by plants, and transport resulting from human activities

  1. Guidelines for the development of a Project Data Management Plan (PDMP)

    Science.gov (United States)

    Green, James L.; King, Joseph H.

    1988-01-01

    The purpose of this document is to assist NASA Project personnel in the preparation of their Project Data Management Plans (PDMP) in accordance with NASA Management Instruction (NMI) 8030.3A. In addition, this report summarizes the scope of a PDMP and establishes important aspects that must be addressed for the long term management and archiving of the data from a NASA space flight investigation.

  2. Project management plan for the 105-C Reactor interim safe storage project. Revision 1

    International Nuclear Information System (INIS)

    Miller, R.L.

    1997-01-01

    In 1942, the Hanford Site was commissioned by the US Government to produce plutonium. Between 1942 and 1955, eight water-cooled, graphite-moderated reactors were constructed along the Columbia River at the Hanford Site to support the production of plutonium. The reactors were deactivated from 1964 to 1971 and declared surplus. The Surplus Production Reactor Decommissioning Project (BHI 1994b) will decommission these reactors and has selected the 105-C Reactor to be used as a demonstration project for interim safe storage at the present location and final disposition of the entire reactor core in the 200 West Area. This project will result in lower costs, accelerated schedules, reduced worker exposure, and provide direct benefit to the US Department of Energy for decommissioning projects complex wide. This project sets forth plans, organizational responsibilities, control systems, and procedures to manage the execution of the Project Management Plan for the 105-C Reactor Interim Safe Storage Project (Project Management Plan) activities to meet programmatic requirements within authorized funding and approved schedules. The Project Management Plan is organized following the guidelines provided by US Department of Energy Order 4700.1, Project Management System and the Richland Environmental Restoration Project Plan (DOE-RL 1992b)

  3. Pre-Project planning of Capital Facilities at NASA

    OpenAIRE

    Barrow, Benjamin John

    1999-01-01

    This thesis details the development of a NASA specific Project Definition Rating Index (PDRI) tool. This tool is to be used as a checklist for determining the necessary steps to follow in defining project scope and as a means to monitor progress and assess scope definition completeness at various stages during the NASA Pre-Project Planning process. This thesis also describes and identifies specific points in the NASA Capital Facility Programming Cycle for the performance of PDRI assessments ...

  4. Uranium mill tailings remedial action project real estate management plan

    International Nuclear Information System (INIS)

    1994-09-01

    This plan summarizes the real estate requirements of the US Department of Energy's (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence

  5. Uranium mill tailings remedial action project real estate management plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    This plan summarizes the real estate requirements of the US Department of Energy`s (DOE) Uranium Mill Tailings Action (UMTRA) Project, identifies the roles and responsibilities of project participants involved in real estate activities, and describes the approaches used for completing these requirements. This document is intended to serve as a practical guide for all project participants. It is intended to be consistent with all formal agreements, but if a conflict is identified, the formal agreements will take precedence.

  6. ERD UMTRA Project quality assurance program plan, Revision 7

    International Nuclear Information System (INIS)

    1995-09-01

    This document is the revised Quality Assurance Program Plan (QAPP) dated September, 1995 for the Environmental Restoration Division (ERD) Uranium Mill Tailings Remedial Action Project (UMTRA). Quality Assurance requirements for the ERD UMTRA Project are based on the criteria outlined in DOE Order 5700.6C or applicable sections of 10 CFR 830.120. QA requirements contained in this QAPP shall apply to all personnel, processes, and activities, including planning, scheduling, and cost control, performed by the ERD UMTRA Project and its contractors

  7. Evaluation of Urban Planning Projects Criteria Using Fuzzy AHP Technique

    Directory of Open Access Journals (Sweden)

    Walid Mustafa Kamas

    2017-05-01

    Full Text Available In this research, Fuzzy Analytic Hierarchy Process technique is applied (Fuzzy AHP which is one of multi-criteria decision making techniques to evaluate the criteria for urban planning projects, the project of developing master plan of Al-Muqdadiyah city to 2035 has been chosen as a case study. The researcher prepared a list of criteria in addition to the authorized departments criteria and previous researches in order to choose optimized master plan according to these criteria. This research aims at employing the foundations of (Fuzzy AHP technique in evaluating urban planning criteria precisely and flexible. The results of the data analysis to the individuals of the sample who are specialists, in this aspect. The land use criteria are more important than the rest of the criteria in these projects, where it received the relative importance with percentile (42.1 %.

  8. Siberian Chemical Combine laboratory project work plan, fiscal year 1999

    International Nuclear Information System (INIS)

    Morgado, R.E.; Acobyan, R.; Shropsire, R.

    1998-01-01

    The Siberian Chemical Combine (SKhK), Laboratory Project Work Plan (Plan) is intended to assist the US Laboratory Project Team, and Department of Energy (DOE) staff with the management of the FY99 joint material protection control and accounting program (MPC and A) for enhancing nuclear material safeguards within the Siberian Chemical Combine. The DOE/Russian/Newly Independent States, Nuclear Material Task Force, uses a project work plan document for higher-level program management. The SKhK Plan is a component of the Russian Defense related Sites' input to that document. In addition, it contains task descriptions and a Gantt Chart covering the FY99 time-period. This FY99 window is part of a comprehensive, Project Status Gantt Chart for tasking and goal setting that extends to the year 2003. Secondary and tertiary levels of detail are incorporated therein and are for the use of laboratory project management. The SKhK Plan is a working document, and additions and modifications will be incorporated as the MPC and A project for SKhK evolves

  9. Project management a systems approach to planning, scheduling, and controlling

    CERN Document Server

    Kerzner, Harold

    2017-01-01

    Project Management is the bestselling text for students and professionals, presenting a streamlined approach to project management functions in full alignment with PMI(r)'s latest Project Management Body of Knowledge (PMBOK(r)). This new 12th edition has been updated to reflect the latest changes found in the PMBOK(r) Guide--Sixth Edition, and features new coverage of emerging topics including global stakeholder management, causes of failure, agile project management, project governance failure, customer approval milestones, classifying project metrics, and more. Supplementary materials are available for students, working professionals, and instructors. * Understand organizational structures and project management functions * Learn how to control costs, manage risk, and analyze trade-offs * Examine different methods used for planning, scheduling, QA, and more * Work effectively with customers and stakeholders from around the globe Project Management is the comprehensive reference to keep within arm's reach. ...

  10. Project Management Plan for the INEL technology logic diagrams

    International Nuclear Information System (INIS)

    Rudin, M.J.

    1992-10-01

    This Project Management Plan (PjMP) describes the elements of project planning and control that apply to activities outlined in Technical Task Plan (TTP) ID-121117, ''Technology Logic Diagrams For The INEL.'' The work on this project will be conducted by personnel in EG ampersand G Idaho, Inc.'s Waste Technology Development Program. Technology logic diagrams represent a formal methodology to identify technology gaps or needs within Environmental Restoration/Waste Management Operations, which will focus on Office of Environmental Restoration and Waste Management (EM-50) research and development, demonstration, test, and evaluation efforts throughout the US Department of Energy complex. This PjMP describes the objectives, organization, roles and responsibilities, workscope and processes for implementing and managing the technology logic diagram for the Idaho National Engineering Laboratory project

  11. Pad A treatability study long-range project plan

    International Nuclear Information System (INIS)

    Mousseau, J.D.

    1991-06-01

    This plan addresses the work to be accomplished by the Pad A Treatability Study Project. The purpose of this project is to investigate potential treatment and separation technologies, identify the best technologies, and to demonstrate by both lab- and pilot-scale demonstration, the most applicable remedial technologies for treating plutonium-contaminated salts at the Pad A site located at the Subsurface Disposal Area (SDA) at the Radioactive Waste Management Complex (RWMC) a the Idaho National Engineering Laboratory (INEL). The conduct of this project will be supported by other DOE laboratories, universities, and private industries, who will provide support for near-term demonstrations of treatment and separation technologies. The purpose of this long-range planning document is to present the detailed plan for the implementation of the Pad A Treatability Study Project

  12. Crawler Acquisition and Testing Demonstration Project Management Plan

    International Nuclear Information System (INIS)

    DEFIGH-PRICE, C.

    2000-01-01

    If the crawler based retrieval system is selected, this project management plan identifies the path forward for acquiring a crawler/track pump waste retrieval system, and completing sufficient testing to support deploying the crawler for as part of a retrieval technology demonstration for Tank 241-C-104. In the balance of the document, these activities will be referred to as the Crawler Acquisition and Testing Demonstration. During recent Tri-Party Agreement negotiations, TPA milestones were proposed for a sludge/hard heel waste retrieval demonstration in tank C-104. Specifically one of the proposed milestones requires completion of a cold demonstration of sufficient scale to support final design and testing of the equipment (M-45-03G) by 6/30/2004. A crawler-based retrieval system was one of the two options evaluated during the pre-conceptual engineering for C-104 retrieval (RPP-6843 Rev. 0). The alternative technology procurement initiated by the Hanford Tanks Initiative (HTI) project, combined with the pre-conceptual engineering for C-104 retrieval provide an opportunity to achieve compliance with the proposed TPA milestone M-45-03H. This Crawler Acquisition and Testing Demonstration project management plan identifies the plans, organizational interfaces and responsibilities, management control systems, reporting systems, timeline and requirements for the acquisition and testing of the crawler based retrieval system. This project management plan is complimentary to and supportive of the Project Management Plan for Retrieval of C-104 (RPP-6557). This project management plan focuses on utilizing and completing the efforts initiated under the Hanford Tanks Initiative (HTI) to acquire and cold test a commercial crawler based retrieval system. The crawler-based retrieval system will be purchased on a schedule to support design of the waste retrieval from tank C-104 (project W-523) and to meet the requirement of proposed TPA milestone M-45-03H. This Crawler

  13. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    International Nuclear Information System (INIS)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J.

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process

  14. Decommissioning plan - decommissioning project for KRR 1 and 2 (revised)

    Energy Technology Data Exchange (ETDEWEB)

    Jung, K. J.; Paik, S. T.; Chung, U. S.; Jung, K. H.; Park, S. K.; Lee, D. G.; Kim, H. R.; Kim, J. K.; Yang, S. H.; Lee, B. J

    2000-10-01

    This report is the revised Decommissioning Plan for the license of TRIGA research reactor decommissioning project according to Atomic Energy Act No. 31 and No. 36. The decommissioning plan includes the TRIGA reactor facilities, project management, decommissioning method, decontamination and dismantling activity, treatment, packaging, transportation and disposal of radioactive wastes. the report also explained the radiation protection plan and radiation safety management during the decommissioning period, and expressed the quality assurance system during the period and the site restoration after decommissioning. The first decommissioning plan was made by Hyundai Engineering Co, who is the design service company, was submitted to the Ministry of Science and Technology, and then was reviewed by the Korea Institute of Nuclear Safety. The first decommissioning plan was revised including answers for the questions arising from review process.

  15. Project summary plan for HTGR recycle reference facility

    International Nuclear Information System (INIS)

    Baxter, B.J.

    1979-11-01

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example

  16. Project planning and management techniques of the fast-paced TMX-Upgrade construction

    International Nuclear Information System (INIS)

    Seberger, C.D.; Chargin, A.K.

    1981-01-01

    The Tandem Mirror Experiment-Upgrade (TMX-Upgrade) construction will be completed in 18 months at a total cost of $14.5 million. This paper describes the project planning and the management techniques used to complete the TMX-Upgrade within its allocated cost and schedule. In the planning stages of a project, before approval of the proposal, we define major project objectives, create a work breakdown structure (WBS), detail a technical description for each level of the WBS, and provide detailed bottoms-up cost estimates and summary schedules. In the operating phase, which continues throughout the project, we establish budget and schedule baselines. The reporting phase includes The Department of Energy (DOE) reviews of project status at monthly, quarterly, and semiannual intervals. These reports include cost, schedule, manpower, major procurement, and technical status information

  17. 77 FR 36579 - Establishing Indicators to Determine Whether State Plan Operations Are at Least as Effective as...

    Science.gov (United States)

    2012-06-19

    ...] Establishing Indicators to Determine Whether State Plan Operations Are at Least as Effective as Federal OSHA... establishing definitions and measures to determine whether OSHA-approved State Plans for occupational safety and health (State Plans) are at least as effective as the Federal OSHA program as required by the...

  18. Richland Environmental Restoration Project Baseline Multi Year Work Plan Volume 1 Richland Environmental Restoration Project Plan

    International Nuclear Information System (INIS)

    Wintczak, T.M.

    2001-01-01

    The purpose of this project specification is to provide an overall scoping and document for the Environmental Restoration project, and to provide a link between the overall Hanford Site scope and the ER project. The purpose of this project specification is to provide an overall scoping document for the ER Project, and to provide a link between the overall Hanford Site scope and the ER Project. Additionally, this specification provides an integrated and consolidated source of information for the Richland ER Project. It identifies the ER Project vision, mission, and goals, as well as the operational history of the Hanford Site, along with environmental setting and hazards. This ER Project Specification is part of the overall ER Project baseline

  19. 49 CFR 633.25 - Contents of a project management plan.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Contents of a project management plan. 633.25... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.25 Contents of a project management plan. At a minimum, a recipient's project management plan shall include...

  20. 49 CFR 633.27 - Implementation of a project management plan.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 7 2010-10-01 2010-10-01 false Implementation of a project management plan. 633... TRANSIT ADMINISTRATION, DEPARTMENT OF TRANSPORTATION PROJECT MANAGEMENT OVERSIGHT Project Management Plans § 633.27 Implementation of a project management plan. (a) Upon approval of a project management plan by...

  1. The PLX- α Project: Progress and Plans

    Science.gov (United States)

    Hsu, S.; Witherspoon, F. D.; Cassibry, J.; Gilmore, M.; Samulyak, R.; Stoltz, P.; PLX-α Team

    2016-10-01

    The Plasma Liner Experiment-ALPHA (PLX- α) project aims to demonstrate the viability of spherically imploding plasma liners as a standoff driver for plasma-jet-driven magneto-inertial fusion (PJMIF). In the past year, progress has been made in designing and testing new contoured-gap coaxial guns, 3D model development and simulations (via Eulerian and Lagrangian hydrocodes) of PLX- α-relevant plasma-liner formation/implosion via up to 60 plasma jets ( 100 kJ of liner kinetic energy), 1D semi-analytic and numerical modeling of reactor-scale PJMIF (10s of MJ of liner kinetic energy), and preparation/upgrade of the PLX facility/diagnostics. The design goal for the coaxial guns is to form plasma jets of up to initial n 2 ×1016 cm-3, mass 5 mg, Vjet 50 km/s, rjet = 4 cm, and length 10 cm. The modeling research is assessing ram-pressure amplification and Mach-number degradation during liner convergence, evolution of liner non-uniformity amplitude and mode number, and exploration of PJMIF configurations with promising 1D and 2D fusion gains. Conical multi-jet-merging and full-4 π experiments will commence in Fall, 2016 and late 2017, respectively. Supported by the ARPA-E ALPHA Program.

  2. Using project management methodology to plan and track inpatient care.

    Science.gov (United States)

    Kaufman, Darren S

    2005-08-01

    Effective care of each patient throughout a hospital admission involves executing a specific set of tasks to produce a favorable outcome within an appropriate time frame. The ProjectRounds methodology, which can be implemented using widely available software, incorporates the principles of project management in planning and control hospital inpatient care. It consists of four stages--clinical assessment, planning, scheduling, and tracking. OVERVIEW OF PROJECTROUNDS AND EXAMPLE: As an example, a 68-year-old-man is admitted with pneumonia. In clinical assessment, the admitting physician uses an assessment tool that prompts her to list all the patient's clinical issues, define the conditions that need to be met to discharge the patient, highlight special problems, and list any consultations, diagnostic tests, and procedures that are planned. In planning, the work breakdown structure--a tabulation of all the tasks in the "project" (the admission)--is created. In scheduling, a project schedule is generated, and in tracking, the clinical team evaluates and monitors the project's course. During interdisciplinary clinical rounds, the progress of the patient's hospital care can be tracked and quantified by employing the percent complete method. Tracking can be used as a "dashboard," providing a concise summary of the care that needs to be and has been rendered to the patient. Applying the tenets of project management can optimize the process of providing health care to hospital inpatients.

  3. Final Report for the Soboba Strategic Tribal Energy Planning Project

    Energy Technology Data Exchange (ETDEWEB)

    Miller, Kim [EPA Specialist

    2013-09-17

    In 2011 the Tribe was awarded funds from the Department of Energy to formulate the Soboba Strategic Tribal Energy Plan. This will be a guiding document used throughout the planning of projects focused on energy reduction on the Reservation. The Soboba Strategic Tribal Energy Plan's goal is to create a Five Year Energy Plan for the Soboba Band of Luiseno Indians in San Jacinto, California. This plan will guide the decision making process towards consistent progress leading to the Tribal goal of a 25% reduction in energy consumption in the next five years. It will additionally outline energy usage/patterns and will edentify areas the Tribe can decrease energy use and increase efficiency. The report documents activities undertaken under the grant, as well as incldues the Tribe's strategif energy plan.

  4. Preliminary Project Execution Plan for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This preliminary project execution plan (PEP) defines U.S. Department of Energy (DOE) project objectives, roles and responsibilities of project participants, project organization, and controls to effectively manage acquisition of capital funds for construction of a proposed remote-handled low-level waste (LLW) disposal facility at the Idaho National Laboratory (INL). The plan addresses the policies, requirements, and critical decision (CD) responsibilities identified in DOE Order 413.3B, 'Program and Project Management for the Acquisition of Capital Assets.' This plan is intended to be a 'living document' that will be periodically updated as the project progresses through the CD process to construction and turnover for operation.

  5. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    2007-01-01

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, 'Quality Assurance Requirements', ANSI/ASQC E4-2004, 'Quality Systems for Environmental Data and Technology Programs - Requirements with Guidance for Use', and ISO 14001-2004, 'Environmental Management Systems', have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, 'Quality Assurance Program', identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, 'QA Program Implementation', identifies the TAC organizations that have responsibility for implementing the QA

  6. 327 Building liquid waste handling options modification project plan

    International Nuclear Information System (INIS)

    Ham, J.E.

    1998-01-01

    This report evaluates the modification options for handling radiological liquid waste (RLW) generated during decontamination and cleanout of the 327 Building. The overall objective of the 327 Facility Stabilization Project is to establish a passively safe and environmentally secure configuration of the 327 Facility. The issue of handling of RLW from the 327 Facility (assuming the 34O Facility is not available to accept the RLW) has been conceptually examined in at least two earlier engineering studies (Parsons 1997a and Hobart l997). Each study identified a similar preferred alternative that included modifying the 327 Facility RLWS handling systems to provide a truck load-out station, either within the confines of the facility or exterior to the facility. The alternatives also maximized the use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes. An issue discussed in each study involved the anticipated volume of the RLW stream. Estimates ranged between 113,550 and 387,500 liters in the earlier studies. During the development of the 324/327 Building Stabilization/Deactivation Project Management Plan, the lower estimate of approximately 113,550 liters was confirmed and has been adopted as the baseline for the 327 Facility RLW stream. The goal of this engineering study is to reevaluate the existing preferred alternative and select a new preferred alternative, if appropriate. Based on the new or confirmed preferred alternative, this study will also provide a conceptual design and cost estimate for required modifications to the 327 Facility to allow removal of RLWS and treatment of the RLW generated during deactivation

  7. Identifying Factors Influencing the Establishment of a Health System Reform Plan in Iran's Public Hospitals

    Directory of Open Access Journals (Sweden)

    Rasul Fani khiavi

    2016-09-01

    Full Text Available In today's world, health views have found a wider perspective in which non-medical expectations are particularly catered to. The health system reform plan seeks to improve society's health, decrease treatment costs, and increase patient satisfaction. This study investigated factors affecting the successful establishment of a health system reform plan. A mixed qualitative – quantitative approach was applied to conduct to explore influential factors associated with the establishment of a health system reform plan in Iran's public hospitals. The health systems and approaches to improving them in other countries have been studied. A Likert-based five-point questionnaire was the measurement instrument, and its content validity based on content validity ratio (CVR was 0.87. The construct validity, calculated using the factorial analysis and Kaiser Mayer Olkin (KMO techniques, was 0.964, which is a high level and suggests a correlation between the scale items. To complete the questionnaire, 185 experts, specialists, and executives of Iran’s health reform plan were selected using the Purposive Stratified Non Random Sampling and snowball methods. The data was then analyzed using exploratory factorial analysis and SPSS and LISREL software applications. The results of this research imply the existence of a pattern with a significant and direct relationship between the identified independent variables and the dependent variable of the establishment of a health system reform plan. The most important indices of establishing a health system reform plan, in the order of priority, were political support; suitable proportion and coverage of services presented in the society; management of resources; existence of necessary infrastructures; commitment of senior managers; constant planning, monitoring, and evaluation; and presentation of feedback to the plan's executives, intrasector/extrasector cooperation, and the plan’s guiding committee. Considering the

  8. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    International Nuclear Information System (INIS)

    1996-02-01

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site

  9. Resource Constrained Planning of Multiple Projects with Separable Activities

    Science.gov (United States)

    Fujii, Susumu; Morita, Hiroshi; Kanawa, Takuya

    In this study we consider a resource constrained planning problem of multiple projects with separable activities. This problem provides a plan to process the activities considering a resource availability with time window. We propose a solution algorithm based on the branch and bound method to obtain the optimal solution minimizing the completion time of all projects. We develop three methods for improvement of computational efficiency, that is, to obtain initial solution with minimum slack time rule, to estimate lower bound considering both time and resource constraints and to introduce an equivalence relation for bounding operation. The effectiveness of the proposed methods is demonstrated by numerical examples. Especially as the number of planning projects increases, the average computational time and the number of searched nodes are reduced.

  10. First-of-A-Kind Control Room Modernization Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Kenneth David [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This project plan describes a comprehensive approach to the design of an end-state concept for a modernized control room for Palo Verde. It describes the collaboration arrangement between the DOE LWRS Program Control Room Modernization Project and the APS Palo Verde Nuclear Generating Station. It further describes the role of other collaborators, including the Institute for Energy Technology (IFE) and the Electric Power Research Institute (EPRI). It combines advanced tools, methodologies, and facilities to enable a science-based approach to the validation of applicable engineering and human factors principles for nuclear plant control rooms. It addresses the required project results and documentation to demonstrate compliance with regulatory requirements. It describes the project tasks that will be conducted in the project, and the deliverable reports that will be developed through these tasks. This project plan will be updated as new tasks are added and as project milestones are completed. It will serve as an ongoing description on the project both for project participants and for industry stakeholders.

  11. Evolution of project planning tools in a matrix organization

    Energy Technology Data Exchange (ETDEWEB)

    Furaus, J.P.; Figueroa-McInteer, C.; McKeever, P.S.; Wisler, D.B. [Sandia National Labs., Albuquerque, NM (United States); Zavadil, J.T. [Infomatrix (United States)

    1996-10-01

    Until recently, the Corporate Construction Program at Sandia was experiencing difficulties in managing projects: poor planning and cost estimating caused schedule and budget problems. The first step taken was a Microsoft {reg_sign} Project schedule that provides a standard template for scheduling individual construction projects. It is broken down according to the life cycle of the project and prevents the project team from leaving out an important item. A WBS (work breakdown structure) dictionary was also developed that describes how capital and operating funds are used to develop, design, construct, equip, and manage projects. We also developed a matrix chart that maps the planning guide against the major types of construction projects at Sandia. The guide, dictionary, and matrix chart offer enough flexibility that the project manager can make choices about how to structure work, yet ensure that all work rolls up to the cost categories and key DOE WBS elements. As requirements change, the tools can be updated; they also serve as training tools for new project team members.

  12. Project Execution Plan Project 98L-EWW-460 Plutonium Stabilization and Handling DOE No. 98-D-453

    International Nuclear Information System (INIS)

    HOLSTEIN, W.A.

    1999-01-01

    This Project Execution Plan (PEP) describes the management methods and responsibilities of the project participants. Project W-460 is sufficiently large to warrant a stand alone PEP. This project specific PEP describes the relationships and responsibilities of the project team and identifies the technical, schedule, and cost baselines that have been established for the project. The Department of Energy (DOE), Hanford Works (Hanford), at Richland, WA., currently does not have a system capable of stabilizing or packaging large quantities of plutonium-bearing solids to meet DOE technical standard DOE-STD-3013-96. This project will allow Hanford to meet this standard by installing stabilization and packaging equipment (SPE). The SPE is capable of stabilizing and packaging the current inventory of greater than 50 percent plutonium-bearing materials currently stored in the Plutonium Finishing Plant's (PFP) vaults into 3013 storage containers. The scope of this project is to procure and install the SPE via a Hanford contract and coordination with the Savannah River Site. In addition, the project will modify PFP vaults and upgrade the PFP Laboratory measurement systems. The Facility infrastructure will be modified to support the new SPE system and the new standardized storage container configuration. Use of this document is described in the Project Hanford Policy and Procedure System under HNF-PRO-1999, Construction Program Conceptual Phase

  13. Establishment of the international collaboration and licensing preparation planning for the specific design of a prototype SFR

    International Nuclear Information System (INIS)

    Kim, Y. G.; Joo, H. K.; Cho, C. H.; Yoo, J. W.; Lee, D. U.; Ahn, K. S.; Hwang, Y. S.

    2013-05-01

    The conceptual design of prototype of Gen IV SFR (PGSFR) will be early determined through the review of the international experts. After this, the technology demonstration plan and validation of fuel design will be determined in more detail. The project will be accomplished efficiently by introducing the proven technology already validated from the international collaboration. The conceptual design and its requirements of PGSFR will be reviewed by ANL, who has a lot of design experiences in the metal fueled SFR development. The collaboration with ANL has been done through Work For Others (WFO) contract, and the MOU was signed between SFRA and Terra Power(USA), and SFRA and IGCAR. The licensing issues raised during PFBR and FBTR licensing in India will be discussed and reflected into the PGSFR design by inviting the high level expert from India, for example Dr. Chetal in IGCAR. The specific design, technology validation plan and fuel development plan will be established in more detail through the annual International Technical Review Meeting (ITRM) and experimental facilities available from the international institute and companies, which will be the basis for shortening the project period and to reduce the development cost

  14. Near-facility environmental monitoring quality assurance project plan

    International Nuclear Information System (INIS)

    McKinney, S.M.

    1997-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near facility environmental monitoring performed by Waste Management Federal Services, Inc., Northwest Operations and supersedes WHC-EP-0538-2. This plan applies to all sampling and monitoring activities performed by waste management Federal Services, Inc., Northwest Operations in implementing facility environmental monitoring at the Hanford Site

  15. The Single And Multi Project Approach To Planning And Scheduling

    DEFF Research Database (Denmark)

    Andersson, Niclas

    2008-01-01

    The fragmentation of the construction industry in Denmark is reflected in the organisation of construction projects, which typically involves a large number of subcontractors. The main contractor, being responsible for the planning and scheduling of construction work, is thus faced with the chall......The fragmentation of the construction industry in Denmark is reflected in the organisation of construction projects, which typically involves a large number of subcontractors. The main contractor, being responsible for the planning and scheduling of construction work, is thus faced...

  16. Selection of projects in the regional energy planning

    International Nuclear Information System (INIS)

    Ramirez P, R.; Navas M, F.

    1993-01-01

    The processes of regional energy planning have changed vastly in the last years and it will continue changing in the future for the new norm of the State. This work tries to show the use of systematic tools in the selection of regional energy projects. It discusses a methodology of selection of projects based on a multivariate technical. It is applied in the Southwestern region of Colombia and both selection and priority results are obtained. The designed methodology allows to make the selection of projects in an automatic way with a software designed for such an end. In the case of Southwestern it arrives to a briefcase of projects for an energy plan and made for other races

  17. Work plan for the Hanford Environmental Dose Reconstruction Project

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    The primary objective of the Hanford Environmental Dose Reconstruction (HEDR) Project is to estimate the radiation doses that populations could have received from nuclear operations at the Hanford Site since 1944, with descriptions of uncertainties inherent in such estimates. The secondary objective is to make project records--information that HEDR staff members used to estimate radiation doses--available to the public. Preliminary dose estimates for a limited geographic area and time period, certain radionuclides, and certain populations are planned to be available in 1990; complete results are planned to be reported in 1993. Project reports and references used in the reports are available to the public in the DOE Public Reading Room in Richland, Washington. Project progress is documented in monthly reports, which are also available to the public in the DOE Public Reading Room.

  18. Quality assurance program plan for cesium legacy project

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Cesium Legacy Project. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP). These activities include all aspects of cask transportation, project related operations within the 324 Building, and waste management as it relates to the specific activities of this project. General facility activities (i.e. 324 Building Operations, Central Waste Complex Operations, etc.) are covered in other appropriate QAPPs. The 324 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a B and W Hanford Company (BWHC) managed facility. During this transition process existing PNNL procedures and documents will be utilized until replaced by BWHC procedures and documents

  19. Strategic plan: A tool to improve IPP project earnings

    International Nuclear Information System (INIS)

    LeClerc, S.

    1997-01-01

    This paper presents a strategic plan to analyze and convert project operations to gain short-term and long-term economic benefits. Areas of Opportunity were identified which may result in improved project economics from Independent Power Producers' project reviews. This paper discusses each Area of Opportunity, suggests options for investigation, and provides a potential magnitude of upside for solid fuel circulating fluidized bed projects in the 50 MW project size. The Areas of Opportunity are: (1) Power Purchase Agreement Modifications; (2) Fuel Use Optimization; (3) Power Plant Upgrades; (4) Power Plant Depreciation Schedule And FAS 121 Analysis; (5) Operation ampersand Maintenance Review; (6) Financial Contract Review; (7) Environmental Review; (8) Insurance Coverage Review; (9) Internal Management Review; and (10) Strategic Development For Energy Sales. Ten appendices are included which comprise a sample Strategic Plan: (1) Potential Plant Upgrades, (2) Enhancement Criteria, (3) Age of Coal Burning Plants, (4) Btu Energy Price Summary, (5) Typical Operation and Maintenance Audit Findings, (6) Typical Performance Objectives and Guidelines, (7) Typical Heavy Metal Emissions, (8) Typical Strategic Plan Formulation, (9) Strategic Plan Implementation Schedule, and (10) Typical Decision Tree. 8 refs

  20. Remedial action and waste disposal project - ERDF readiness evaluation plan

    International Nuclear Information System (INIS)

    Casbon, M.A.

    1996-06-01

    This Readiness Evaluation Report presents the results of the project readiness evaluation to assess the readiness of the Environmental Restoration and Disposal Facility. The evaluation was conducted at the conclusion of a series of readiness activities that began in January 1996. These activities included completion of the physical plant; preparation, review, and approval of operating procedures; definition and assembly of the necessary project and operational organizations; and activities leading to regulatory approval of the plant and operating plans

  1. 77 FR 36406 - Connect America Fund; a National Broadband Plan for Our Future; Establishing Just and Reasonable...

    Science.gov (United States)

    2012-06-19

    ... America Fund; a National Broadband Plan for Our Future; Establishing Just and Reasonable Rates for Local Exchange Carriers; High-Cost Universal Service Support; Correction AGENCY: Federal Communications...

  2. Project Execution Plan Project 98L-EWW-460 Plutonium Stabilization and Handling DOE 98-D-453

    International Nuclear Information System (INIS)

    MCGRATH, G.M.

    2000-01-01

    This Project Execution Plan (PEP) describes the management methods and responsibilities of the project participants. Project W-460 is sufficiently large to warrant a stand alone PEP. This project specific PEP describes the relationships and responsibilities of the project team and identifies the technical, schedule, and cost baselines that have been established for the project. The Department of Energy (DOE), Hanford Works (Hanford), at Richland, Wa. currently does not have a system capable of stabilizing or packaging large quantities of plutonium-bearing solids to meet DOE technical standard DOE-STD-3013-99. This project will allow Hanford to meet this standard by installing stabilization and packaging equipment (SPE). The SPE is capable of stabilizing and packaging the current inventory of greater than 30 percent plutonium-bearing materials currently stored in the Plutonium Finishing Plant's (PFP) vaults into 3013 storage containers. The scope of this project is to procure and install the SPE via a Hanford contract and coordination with the Savannah River Site. In addition, the project will modify PFP vaults and upgrade the PFP Laboratory measurement systems. The Facility infrastructure will be modified to support the new SPE system and the new standardized storage container configuration

  3. Project Execution Plan Project 98L-EWW-460 Plutonium Stabilization and Handling DOE 98-D-453

    Energy Technology Data Exchange (ETDEWEB)

    HOLSTEIN, W.A.

    1999-08-01

    This Project Execution Plan (PEP) describes the management methods and responsibilities of the project participants. Project W-460 is sufficiently large to warrant a stand alone PEP. This project specific PEP describes the relationships and responsibilities of the project team and identifies the technical, schedule, and cost baselines that have been established for the project. The Department of Energy (DOE), Hanford Works (Hanford), at Richland Wa. currently does not have a system capable of stabilizing or packaging large quantities of plutonium-bearing solids to meet DOE technical standard DOE-STD-3013-96. This project will allow Hanford to meet this standard by installing stabilization and packaging equipment (SPE). The SPE is capable of stabilizing and packaging the current inventory of greater than 50 percent plutonium-bearing materials currently stored in the Plutonium Finishing Plant's (PFP) vaults into 3013 storage containers. The scope of this project is to procure and install the SPE via a Hanford contract and coordination with the Savannah River Site. In addition, the project will modify PFP vaults and upgrade the PFP Laboratory measurement systems. The Facility infrastructure will be modified to support the new SPE system and the new standardized storage container configuration.

  4. Project Execution Plan Project 98L-EWW-460 Plutonium Stabilization and Handling DOE 98-D-453

    Energy Technology Data Exchange (ETDEWEB)

    MCGRATH, G.M.

    2000-06-21

    This Project Execution Plan (PEP) describes the management methods and responsibilities of the project participants. Project W-460 is sufficiently large to warrant a stand alone PEP. This project specific PEP describes the relationships and responsibilities of the project team and identifies the technical, schedule, and cost baselines that have been established for the project. The Department of Energy (DOE), Hanford Works (Hanford), at Richland, Wa. currently does not have a system capable of stabilizing or packaging large quantities of plutonium-bearing solids to meet DOE technical standard DOE-STD-3013-99. This project will allow Hanford to meet this standard by installing stabilization and packaging equipment (SPE). The SPE is capable of stabilizing and packaging the current inventory of greater than 30 percent plutonium-bearing materials currently stored in the Plutonium Finishing Plant's (PFP) vaults into 3013 storage containers. The scope of this project is to procure and install the SPE via a Hanford contract and coordination with the Savannah River Site. In addition, the project will modify PFP vaults and upgrade the PFP Laboratory measurement systems. The Facility infrastructure will be modified to support the new SPE system and the new standardized storage container configuration.

  5. Marine radioecology. Annual report 1996. Project plan 1997

    International Nuclear Information System (INIS)

    1997-06-01

    The project plan for the EKO-1 project states that 'the main aim of the EKO-1 project is to enable faster and better assessments to be made of the effects of releases of radionuclides into the marine environment'. To meet this goal the main parts of the project were defined as follows: Model work - Identifying parameters of main interest including estimating and validating the values of these parameters; Research - Field studies, environments typical for various Nordic regions, environments with special physical or chemical characteristics. Laboratory studies; Dissemination of information - Seminars, reports, articles. During the project period emphasis has also been put on quality issues concerning sampling and analysis. The project work has progressed in accordance with project plans in 1996 and within the set budget. In modelling a parameter sensitivity analysis was carried out for a radiological assessment model used for the prediction of doses to man from dumping of radioactive waste in the Kara Sea. Doses to man were found to be generally dominated by contributions from long-lived transuranic radionuclides (plutonium and americium) which associate readily with sediments. Sediment related processes and parameters show therefore high sensitivities, especially at long distances (e.g. Barents Sea). Within the EKO-1 project there has been emphasis on encouraging the Nordic aspect of sediment research in spite of the limitations set by nationally run sampling projects. The EKO-1 project has managed this by e.g.: Organizing exchange of samples for analysis links with the EKO-2.3 project ('Limnic systems'). (EG) 52 refs

  6. 25 CFR 170.415 - What is pre-project planning?

    Science.gov (United States)

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false What is pre-project planning? 170.415 Section 170.415... PROGRAM Planning, Design, and Construction of Indian Reservation Roads Program Facilities Long-Range Transportation Planning § 170.415 What is pre-project planning? (a) Pre-project planning is part of overall...

  7. UMTRA project office federal employee occupational safety and health program plan

    International Nuclear Information System (INIS)

    1994-06-01

    This document establishes the Federal Employee Occupational Safety and Health (FEOSH) Program for the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project Office. This program will ensure compliance with applicable requirements of DOE Order 3790.1B and DOE Albuquerque Operations Office (AL) Order 3790.lA. FEOSH Program responsibilities delegated by the DOE-AL to the UMTRA Project Office by AL Order 3790.1A also are assigned. The UMTRA Project Office has developed the UMTRA Project Environmental, Safety, and Health (ES ampersand H) Plan (DOE, 1992), which establishes the basic programmatic ES ampersand H requirements for all participants on the UMTRA Project. The ES ampersand H plan is designed primarily to cover remedial action activities at UMTRA sites and defines the ES ampersand H responsibilities of both the UMTRA Project Office and its contractors. The UMTRA FEOSH Program described herein is a subset of the overall UMTRA ES ampersand H program and covers only federal employees working on the UMTRA Project

  8. Planning construction of integrative schedule management for nuclear power project

    International Nuclear Information System (INIS)

    Zeng Zhenglin; Wang Wenying; Peng Fei

    2012-01-01

    This paper introduces the planning construction of integrative schedule management for Nuclear Power Project. It details schedule management system and the requirement of schedulers and the mode of three schedule management flats. And analysis it combing with the implementation of construction water and all special schedules before FCD to further propose the improving and researching direction for the integrative schedule management. (authors)

  9. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    International Nuclear Information System (INIS)

    Shank, D.R.

    1994-01-01

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium

  10. Fast Flux Test Facility, Sodium Storage Facility project-specific project management plan

    Energy Technology Data Exchange (ETDEWEB)

    Shank, D.R.

    1994-12-29

    This Project-Specific Project Management Plan describes the project management methods and controls used by the WHC Projects Department to manage Project 03-F-031. The Sodium Storage Facility provides for storage of the 260,000 gallons of sodium presently in the FFTF Plant. The facility will accept the molten sodium transferred from the FFTF sodium systems, and store the sodium in a solid state under an inert cover gas until such time as a Sodium Reaction Facility is available for final disposal of the sodium.

  11. Spent nuclear fuel project high-level information management plan

    Energy Technology Data Exchange (ETDEWEB)

    Main, G.C.

    1996-09-13

    This document presents the results of the Spent Nuclear Fuel Project (SNFP) Information Management Planning Project (IMPP), a short-term project that identified information management (IM) issues and opportunities within the SNFP and outlined a high-level plan to address them. This high-level plan for the SNMFP IM focuses on specific examples from within the SNFP. The plan`s recommendations can be characterized in several ways. Some recommendations address specific challenges that the SNFP faces. Others form the basis for making smooth transitions in several important IM areas. Still others identify areas where further study and planning are indicated. The team`s knowledge of developments in the IM industry and at the Hanford Site were crucial in deciding where to recommend that the SNFP act and where they should wait for Site plans to be made. Because of the fast pace of the SNFP and demands on SNFP staff, input and interaction were primarily between the IMPP team and members of the SNFP Information Management Steering Committee (IMSC). Key input to the IMPP came from a workshop where IMSC members and their delegates developed a set of draft IM principles. These principles, described in Section 2, became the foundation for the recommendations found in the transition plan outlined in Section 5. Availability of SNFP staff was limited, so project documents were used as a basis for much of the work. The team, realizing that the status of the project and the environment are continually changing, tried to keep abreast of major developments since those documents were generated. To the extent possible, the information contained in this document is current as of the end of fiscal year (FY) 1995. Programs and organizations on the Hanford Site as a whole are trying to maximize their return on IM investments. They are coordinating IM activities and trying to leverage existing capabilities. However, the SNFP cannot just rely on Sitewide activities to meet its IM requirements

  12. Nevada Nuclear Waste Storage Investigations. FY 1979 project plan

    International Nuclear Information System (INIS)

    1979-03-01

    This document presents the management and cost for the Nevada Nuclear Waste Storage Investigations (disposal of high-level wastes at Nevada Test Site) and provides a complete description of the overall project, management structure, technical approach, and work breakdown structure. The document is organized into five major sections. Section I summarizes the history of the project and indicates a potential future course of action. FY 1979 project work is briefly described in Section II. Section III outlines the delegated responsibilities of all project management functions. A list of critical questions that guide the technical approach of the project are presented in Section IV. Section V contains subtask work plans which outline the work in detail for this fiscal year

  13. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    International Nuclear Information System (INIS)

    Vollmer, A.T.

    1993-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references

  14. Uranium Mill Tailings Remedial Action Project Environmental Protection Implementation Plan

    Energy Technology Data Exchange (ETDEWEB)

    Vollmer, A.T.

    1993-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the US Department of Energy (DOE) Order 5400.1. The UMTRA EPIP covers the time period of November 9, 1993, through November 8, 1994. It will be updated annually. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies. Contents of this report are: (1) general description of the UMTRA project environmental protection program; (2) notifications; (3) planning and reporting; (4) special programs; (5) environmental monitoring programs; (6) quality assurance and data verification; and (7) references.

  15. UMTRA project water sampling and analysis plan, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1994-07-01

    Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing

  16. Project Management Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1995-04-01

    The purpose of the Isotopes Facilities Deactivation Project (IFDP) is to place former isotopes production facilities at the Oak Ridge National Laboratory in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance (S ampersand M) and as quickly and economically as possible. Implementation and completion of the deactivation project will further reduce the already small risks to the environment and to public safety and health. Furthermore, the project should result in significant S ampersand M cost savings in the future. The IFDP management plan has been prepared to document the project objectives, define organizational relationships and responsibilities, and outline the management control systems to be employed in the management of the project. The project has adopted a strategy to deactivate the simple facilities first, to reduce the scope of the project, and to gain experience before addressing more difficult facilities. A decision support system is being developed to identify those activities, that best promote the project mission and result in largest cost savings. The Work Plan for the Isotopes Facilities Deactivation Project at Oak Ridge National Laboratory (Energy Systems 1994) defines the project schedule, the cost estimate, and the technical approach for the project

  17. FY 1991 project plan for the Hanford Environmental Dose Reconstruction Project, Phase 2

    International Nuclear Information System (INIS)

    1991-02-01

    Phase 1 of the Hanford Environmental Dose Reconstruction Project was designed to develop and demonstrate a method for estimating radiation doses people may have received from Hanford Site operations since 1944. The method researchers developed relied on a variety of measured and reconstructed data as input to a modular computer model that generates dose estimates and their uncertainties. As part of Phase 1, researchers used the reconstructed data and computer model to calculate preliminary dose estimates for populations in a limited geographical area and time period. Phase 2, now under way, is designed to evaluate the Phase 1 data and model and improve them to calculate more accurate and precise dose estimates. Phase 2 will also be used to obtain preliminary estimates of two categories of doses: for Native American tribes and for individuals included in the pilot phase of the Hanford Thyroid Disease Study (HTDS). TSP Directive 90-1 required HEDR staff to develop Phase 2 task plans for TSP approval. Draft task plans for Phase 2 were submitted to the TSP at the October 11--12, 1990 public meeting, and, after discussions of each activity and associated budget needs, the TSP directed HEDR staff to proceed with a slate of specific project activities for FY 1991 of Phase 2. This project plan contains detailed information about those activities. Phase 2 is expected to last 15--18 months. In mid-FY 1991, project activities and budget will be reevaluated to determine whether technical needs or priorities have changed. Separate from, but related to, this project plan, will be an integrated plan for the remainder of the project. HEDR staff will work with the TSP to map out a strategy that clearly describes ''end products'' for the project and the work necessary to complete them. This level of planning will provide a framework within which project decisions in Phases 2, 3, and 4 can be made

  18. National energy projections and plans of the USA

    International Nuclear Information System (INIS)

    1977-01-01

    Within the context of dwindling United States and world oil and gas resources, the development and evolution of the Energy Research and Development Administration's National Plan for Energy Research, Development and Demonstration is reviewed and basic goals and strategies are discussed. U.S. energy projections to the end of this century are estimated and ways of meeting them assessed. Options are then considered for the introduction of new technologies designed to lessen the nation's 75-per cent dependence on oil and gas fuels while simultaneously creating alternative energy choices for the future. The Plan singles out energy efficiency technologies for increased attention; identifies the major near and mid-term supply technologies; outlines initial program steps to overcome technological barriers to the large-scale implementation of these technologies, and reviews longer-range energy programs and prospects. To provide the basis for setting technology development priorities and for establishing implementation strategies, eight national energy technology goals are presented. Then, the strategies for attaining these goals are outlined for the near term (to 1985 and beyond), the mid term (1985-2000 and beyond), and the long term (21st century). Preliminary analyses have shown that only by introducing a number of these technologies in a combination of approaches can adequate solutions be found to pressing national energy problems. It is demonstrated that light water reactor power generation is crucial to the future U.S. energy supply. A number of nuclear areas requiring increased emphasis are then considered, including continued improvements in LWR technology; better definition of recoverable domestic uranium resources; expansion of U.S. capacity to meet future domestic and foreign demand for uranium enrichment services; development of a commercial fuel reprocessing and recycling capacity; demonstration of safe and environmentally acceptable waste treatment, storage

  19. UMTRA project technical assistance contractor quality assurance implementation plan

    International Nuclear Information System (INIS)

    1994-03-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Technical Assistance contractor (TAC) Quality Assurance Implementation Plan (QAIP) outlines the primary requirements for integrating quality functions for TAC technical activities applied to the surface and ground water phases of the UMTRA Project. The QAIP is subordinate to the latest issue of the UMTRA Project TAC Quality Assurance Program Plan (QAPP) (DOE, 1993a), which was developed using US Department of Energy (DOE) Order 5700.6C quality assurance (QA) criteria. The QAIP addresses technical aspects of the TAC UMTRA Project surface and ground water programs. All QA issues in the QAIP shall comply with requirements contained in the TAC QAPP (DOE, 1933a). Because industry standards for data acquisition and data control are not addressed in DOE Order 5700.6C, the QAIP has been formatted to the 14 US Environmental Protection Agency (EPA) Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) QA requirements. DOE Order 5700.6C criteria that are not contained in the CERCLA requirements are added to the QAIP as additional requirements in Sections 15.0 through 18.0. Project documents that contain CERCLA requirements and 5700.6 criteria shall be referenced in this document to avoid duplication. Referenced documents are not included in this QAIP but are available through the UMTRA Project Document Control Center

  20. 77 FR 3635 - Connect America Fund; A National Broadband Plan for Our Future; Establishing Just and Reasonable...

    Science.gov (United States)

    2012-01-25

    ...-208; Report No. 2945] Connect America Fund; A National Broadband Plan for Our Future; Establishing Just and Reasonable Rates for Local Exchange Carriers; High-Cost Universal Service Support et al... applicability. Subject: Connect America Fund: A National Broadband Plan for Our Future; Establishing Just and...

  1. A study on the establishment of the national mid and long-term R and D plan for the nuclear technology

    International Nuclear Information System (INIS)

    Lee, Kang il; Oh, K. B.; Kim, S. W.; Won, B. C.; Park, S. G.; Kim, S. K.; Cho, S. G.; Kim, M. Y.; Jung, Y. H.

    1993-01-01

    The main objective of this study is to establish practice plan of them and to propose main R and D projects achieving the National Nuclear R and D target - becoming one of an advanced nuclear countries in the early 2000s. With this point of view, this study especially carried out the analysis of the Japanese long-term plans for nuclear power utilization and development. And we tried to propose main R and D projects with Nuclear Power Technology Relevance Tree. Also, the budget essential to the R and D plan for nuclear technology is estimated and the method to finance the budget for the next 10 years (1992-2001) has been considered in this study so as to make the national R and D plan more realistic. (Author)

  2. International differences in project planning and organizational project planning support in Sweden, Japan, Israel, and Malaysia

    OpenAIRE

    Amy, Chin Mei Yen; Pulatov, Bakhtier

    2008-01-01

    The study of the cultures has been a primary focus of sociology, psychology and anthropology since their inception. Increasing globalization has brought the attention of academics and practitioners to the study of national cultures and their differences into the management area. Likewise, the parallel trend towards running some business through projects has brought broader perspectives such as national cultures into the project management field. Recent academic literature demonstrated that na...

  3. Japanese national project for establishment of codes and standards for stationary PEFC system

    International Nuclear Information System (INIS)

    Sumi, S.; Ohmura, T.; Yamaguchi, R.; Kikuzawa, H.

    2003-01-01

    For the purpose of practical utilization of the PEFC cogeneration system, we are promoting the national projects of the 'Establishment of Codes and Standards for Stationary PEFC System'. The objective is to prepare the software platforms for wide spreading use, which are required in the introduction stage of the PEFC cogeneration systems, such as code and standards for safety, reliability, performance and so on. For this objective, using test samples of the systems and the stacks, developments of test and evaluation devices, collection of various kinds of data and establishment of test and evaluation methods are under way. (author)

  4. Legacy Management CERCLA Sites. Quality Assurance Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Riddle, Donna L.

    2007-05-03

    S.M. Stoller Corporation is the contractor for the Technical Assistance Contract (TAC) for the U.S. Department of Energy (DOE) Office of Legacy Management (LM) operations. Stoller employs a management system that applies to all programs, projects, and business management systems funded through DOE-LM task orders. The management system incorporates the philosophy, policies, and requirements of health and safety, environmental compliance, and quality assurance (QA) in all aspects of project planning and implementation. Health and safety requirements are documented in the Health and Safety Manual (STO 2), the Radiological Control Manual (STO 3), the Integrated Safety Management System Description (STO 10), and the Drilling Health and Safety Requirements (STO 14). Environmental compliance policy and requirements are documented in the Environmental Management Program Implementation Manual (STO 11). The QA Program is documented in the Quality Assurance Manual (STO 1). The QA Manual (STO 1) implements the specific requirements and philosophy of DOE Order 414.1C, Quality Assurance. This manual also includes the requirements of other standards that are regularly imposed by customers, regulators, or other DOE orders. Title 10 Code of Federal Regulations Part 830, “Quality Assurance Requirements,” ANSI/ASQC E4-2004, “Quality Systems for Environmental Data and Technology Programs – Requirements with Guidance for Use,” and ISO 14001-2004, “Environmental Management Systems,” have been included. These standards are similar in content. The intent of the QA Manual (STO 1) is to provide a QA management system that incorporates the requirements and philosophy of DOE and other customers within the QA Manual. Criterion 1, “Quality Assurance Program,” identifies the fundamental requirements for establishing and implementing the QA management system; QA Instruction (QAI) 1.1, “QA Program Implementation,” identifies the TAC organizations that have responsibility for

  5. Quinault Indian Nation Comprehensive Biomass Strategic Planning Project

    Energy Technology Data Exchange (ETDEWEB)

    Cardenas, Jesus [American Community Enrichment, Elma, WA (United States)

    2015-03-31

    The overall purposes of the Quinault Indian Nation’s Comprehensive Biomass Strategic Planning Project were to: (1) Identify and confirm community and tribal energy needs; (2) Conducting an inventory of sustainable biomass feedstock availability; (3) Development of a biomass energy vision statement with goals and objectives; (4) Identification and assessment of biomass options for both demand-side and supply side that are viable to the Quinault Indian Nation (QIN); and (5) Developing a long-term biomass strategy consistent with the long-term overall energy goals of the QIN. This Comprehensive Biomass Strategic Planning Project is consistent with the QIN’s prior two-year DOE Renewable Energy Study from 2004 through 2006. That study revealed that the most viable options to the QIN’s renewable energy options were biomass and energy efficiency best practices. QIN's Biomass Strategic Planning Project is focused on using forest slash in chipped form as feedstock for fuel pellet manufacturing in support of a tribal biomass heating facility. This biomass heating facility has been engineered and designed to heat existing tribal facilities as well as tribal facilities currently being planned including a new K-12 School.

  6. Software for project-based learning of robot motion planning

    Science.gov (United States)

    Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.

    2013-12-01

    Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can be explained in a simplified two-dimensional setting, but this masks many of the subtleties and complexities of the underlying problem. We have developed software for project-based learning of motion planning that enables deep learning. The projects that we have developed allow advanced undergraduate students and graduate students to reflect on the performance of existing textbook algorithms and their own variations on such algorithms. Formative assessment has been conducted at three institutions. The core of the software used for this teaching module is also used within the Robot Operating System, a widely adopted platform by the robotics research community. This allows for transfer of knowledge and skills to robotics research projects involving a large variety robot hardware platforms.

  7. Final Hanford Site Transuranic (TRU) Waste Characterization QA Project Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    The Quality Assurance Project Plan (QAPjP) has been prepared for waste characterization activities to be conducted by the Transuranic (TRU) Project at the Hanford Site to meet requirements set forth in the Waste Isolation Pilot Plan (WIPP) Hazardous Waste Facility Permit, 4890139088-TSDF, Attachment B, including Attachments B1 through B6 (WAP) (DOE, 1999a). The QAPjP describes the waste characterization requirements and includes test methods, details of planned waste sampling and analysis, and a description of the waste characterization and verification process. In addition, the QAPjP includes a description of the quality assurance/quality control (QA/QC) requirements for the waste characterization program. Before TRU waste is shipped to the WIPP site by the TRU Project, all applicable requirements of the QAPjP shall be implemented. Additional requirements necessary for transportation to waste disposal at WIPP can be found in the ''Quality Assurance Program Document'' (DOE 1999b) and HNF-2600, ''Hanford Site Transuranic Waste Certification Plan.'' TRU mixed waste contains both TRU radioactive and hazardous components, as defined in the WLPP-WAP. The waste is designated and separately packaged as either contact-handled (CH) or remote-handled (RH), based on the radiological dose rate at the surface of the waste container. RH TRU wastes are not currently shipped to the WIPP facility

  8. Planning support concept to implementation of sustainable parking development projects in ancient Mediterranean cities

    Directory of Open Access Journals (Sweden)

    Nikša Jajac

    2014-12-01

    Full Text Available This paper proposes a planning support concept (PSC to implementation of sustainable parking development projects (SPDP in ancient Mediterranean cities. It is conceptualized by the logic of decision support systems and a multicriteria analysis approach. The purpose of the concept is to support setting of implementation priorities for subprojects (construction of new and/or improvement of existing parking within a SPDP. Analysing the existing and a planned state of parking within the city a goal tree is established. Subprojects are defined accordingly. Objectives from the last hierarchy level within the goal tree are used as criteria for assessment of defined subprojects. Representatives of stakeholders provided criteria weights by application of AHP and SAW methods. PROMETHEE II was used for priority ranking and PROMETHEE V ensured a definition of project’s implementation phases. The result of the presented concept is the implementation plan for such projects. The concept is tested on the city of Trogir.

  9. As Built Verification Plan for Cask Transportation Facility Modifications (CTFM) - Project A.5 and A.6

    International Nuclear Information System (INIS)

    LANE, K.I.

    2000-01-01

    This document establishes an As-built Verification Plan (AVP) for implementing requirements in PHMC Engineering Requirements HNF-PRO-1819, Rev. 4, Sections 2.8.3.d and 2.10.8 and Spent Nuclear Fuels (SNF) Project Administrative Procedure EN-6-012-01. This AVP defines and implements approved processes to document the physical configuration of the project scope installed within the facility and identify discrepancies between the associated project engineering drawings and the field configuration, and the component index (CI) database as defined in AP EN 6-005-02. This AVP defines requirements for project activities verifying conformance of structures, systems, and components (SSCs) to project specified requirements

  10. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. (Oak Ridge National Lab., TN (United States)); Barron, W.F. (Hong Kong Univ. (Hong Kong)); Kamel, A.M. (Ain Shams Univ., Cairo (Egypt)); Santiago, H.T. (USDOE, Washington, DC (United States))

    1992-01-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an intermediate evaluation'' of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  11. Intermediate evaluation of USAID/Cairo energy policy planning project

    Energy Technology Data Exchange (ETDEWEB)

    Wilbanks, T.J.; Wright, S.B. [Oak Ridge National Lab., TN (United States); Barron, W.F. [Hong Kong Univ. (Hong Kong); Kamel, A.M. [Ain Shams Univ., Cairo (Egypt); Santiago, H.T. [USDOE, Washington, DC (United States)

    1992-09-01

    Three years ago, a team from the Oak Ridge National Laboratory and the Oak Ridge Associated Universities, supplemented by an expert from the US Department of Energy and a senior Egyptian energy professional, carried out what was termed an ``intermediate evaluation`` of a major energy policy project in Egypt. Supported by USAID/Cairo, the project had concentrated on developing and strengthening an Organization for Energy Planning (OEP) within the Government of India, and it was actually scheduled to end less than a year after this evaluation. The evaluation was submitted to USAID/Cairo and circulated elsewhere in the US Agency for International Development and the Government of Egypt as an internal report. Over the next several years, the USAID energy planning project ended and the functions performed by OEP were merged with planning capabilities in the electric power sector. Now that the major issues addressed by the evaluation report have been resolved, we are making it available to a broader audience as a contribution to the general literature on development project evaluation and institution-building.

  12. Getting to the core: establishing a business plan for a new company

    International Nuclear Information System (INIS)

    DeBoni, W.

    1998-01-01

    The challenge of establishing a distinctive strategy for a new Canadian oil and gas company was discussed. In Calgary alone, there are about 500 companies trying to establish a fundamental business plan which is distinctive and superior to their competitors. A newly established company, such as Bow Valley Energy Ltd., has the advantage of starting with a clean slate. The questions that should be considered when establishing a business plan for a new company were cited as: (1) where should the company be focused geographically? (2) should exploration or development be pursued? and (3) how can value be added to each deal? It was noted that 50 per cent of the discovered petroleum reserves are located in the Middle East and Africa. Since 70 per cent of the remaining reserves are also located in these areas, it makes sense that a prime decision factor would be to focus on those regions of the world where most of the oil is located. However, it is imperative that in reorienting efforts towards those regions issues of fiscal regime and the political stability of these areas are also addressed. It was suggested that having the ability to recognize opportunities and act quickly to capitalize on them, management and operational skills to operate marginal fields profitably, and ability to efficiently manage late-life fields to extract a maximum amount of oil at a low cost, will be the most important assets for a new company to succeed. Focusing efforts in areas with proven, low-cost reserves potential would also be important in the current oil pricing environment. 2 figs

  13. Large-scale projects between regional planning and environmental protection

    International Nuclear Information System (INIS)

    Schmidt, G.

    1984-01-01

    The first part of the work discusses the current law of land-use planning, municipal and technical construction planning, and licensing under the atomic energy law and the federal law on immission protection. In the second part some theses suggesting modifications are submitted. In the sector of land-use planning substantial contributions to the protection of the environment can only be expected from programs and plans (aims). For the environmental conflicts likely to arise from large-scale projects (nuclear power plant, fossil-fuel power plant) this holds good for the most part of site selection plans. They have bearings on environmental protection in that they presuppose thorough examination of facts, help to recognize possible conflicts at an early date and provide a frame for solving those problems. Municipal construction planning is guided by the following principles: Environmental protection is an equivalent planning target. Environmental data and facts and their methodical processing play a fundamental part as they constitute the basis of evaluation. Under the rules and regulations of the federal law on immission protection, section 5, number 2 - prevention of nuisances - operators are obliged to take preventive care of risks. That section is not concerned with planning or distribution. Neither does the licensing of nuclear plants have planning character. So far as the legal preconditions of licensing are fulfilled, the scope for rejection of an application under section 7, subsection 2 of the atomic energy law in view of site selection and requirement of a plant hardly carries any practical weight. (orig./HP) [de

  14. The school environmental projects inside the planning and the territorial ordering

    International Nuclear Information System (INIS)

    Pablo Emilio Bonilla Luque

    2006-01-01

    The scholastic institutions of the country, must fulfill the established thing in decree 1743 of the 3 of august of 1994, sent by the ministry of national education, forces to that all the establishments of education formal, as much officials as private, in their different levels from pre-student, basic and average, include within their institutional educative projects, scholastic environmental projects within the framework of environmental, local, regional and/or national diagnoses, with a view to helping to the resolution of specific environmental problems. Within this contextual frame the Universidad Libre create inter-institutional project PRAES integrated by its faculties of accountants office, of sciences of the education, and engineering. Through the program of environmental engineering it covers the own technical-practical requirements with the georreferencial frame that implies non-single concerning the cartography aspects, teledetection, photogrammetry and territorial planning, but that coordinates with the department of engineering of systems the development of computer developing of the project, environmentally the geographic boundary in cartography, for all and each one of the educative establishments by UPZ, model applicable to local, regional and national level settles down, the computer science support helps by means of the development of the respective page web from each locality to the diffusion, overcrowded and access of the information, that finally it must allow the establishment of network PRAE of the scholastic environmental projects

  15. The scholastic environmental projects inside of the planning and the territorial ordering

    International Nuclear Information System (INIS)

    Bonilla Luque, Pablo Emilio

    2005-01-01

    The scholastic institutions of the country, must fulfill the established thing in decree 1743 of the 3 of august of 1994, sent by the ministry of national education, forces to that all the establishments of education formal, as much officials as private, in their different levels from pre-student, basic and average, include within their institutional educative projects, scholastic environmental projects within the framework of environmental, local, regional and/or national diagnoses, with a view to helping to the resolution of specific environmental problems. Within this contextual frame the Universidad Libre create inter-institutional project PRAES integrated by its faculties of accountants office, of sciences of the education, and engineering. Through the program of environmental engineering it covers the own technical-practical requirements with the georreferencial frame that implies non-single concerning the cartography aspects, teledetection, photogrammetry and territorial planning, but that coordinates with the department of engineering of systems the development of computer Developing of the project, environmentally the geographic boundary in cartography, for all and each one of the educative establishments by UPZ, model applicable escalarmente to local regional and national level settles down, the computer science support helps by means of the development of the respective page web from each locality to the diffusion, overcrowded and access of the information, that finally it must allow the establishment of network PRAE of the scholastic environmental projects

  16. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    International Nuclear Information System (INIS)

    1994-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies

  17. Uranium Mill Tailings Remedial Action Project environmental protection implementation plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-10-01

    The Uranium Mill Tailings Remedial Action (UMTRA) Project Environmental Protection Implementation Plan (EPIP) has been prepared in accordance with the requirements of the U.S. Department of Energy (DOE) Order 5400.1. The UMTRA EPIP is updated annually. This version covers the time period of 9 November 1994, through 8 November 1995. Its purpose is to provide management direction to ensure that the UMTRA Project is operated and managed in a manner that will protect, maintain, and where necessary, restore environmental quality, minimize potential threats to public health and the environment, and comply with environmental regulations and DOE policies.

  18. Development of a biogas planning tool for project owners

    DEFF Research Database (Denmark)

    Fredenslund, Anders Michael; Kjær, Tyge

    are considered: Combined heat and power and natural gas grid injection. The main input to the model is the amount and types of substrates available for anaerobic digestion. By substituting the models’ default values with more project specific information, the model can be used in a biogas projects later phases......A spreadsheet model was developed, which can be used as a tool in the initial phases of planning a centralized biogas plant in Denmark. The model assesses energy production, total plant costs, operational costs and revenues and effect on greenhouse gas emissions. Two energy utilization alternatives...

  19. Computational methods for planning and evaluating geothermal energy projects

    International Nuclear Information System (INIS)

    Goumas, M.G.; Lygerou, V.A.; Papayannakis, L.E.

    1999-01-01

    In planning, designing and evaluating a geothermal energy project, a number of technical, economic, social and environmental parameters should be considered. The use of computational methods provides a rigorous analysis improving the decision-making process. This article demonstrates the application of decision-making methods developed in operational research for the optimum exploitation of geothermal resources. Two characteristic problems are considered: (1) the economic evaluation of a geothermal energy project under uncertain conditions using a stochastic analysis approach and (2) the evaluation of alternative exploitation schemes for optimum development of a low enthalpy geothermal field using a multicriteria decision-making procedure. (Author)

  20. Crowdsourcing methodology: establishing the Cervid Disease Network and the North American Mosquito Project.

    Science.gov (United States)

    Cohnstaedt, Lee W; Snyder, Darren; Maki, Elin; Schafer, Shawn

    2016-06-30

    Crowdsourcing is obtaining needed services, ideas, or content by soliciting contributions from a large group of people. This new method of acquiring data works well for single reports, but fails when long-term data collection is needed, mainly due to reporting fatigue or failure of repeated sampling by individuals. To establish a crowdsourced collections network researchers must recruit, reward, and retain contributors to the project. These 3 components of crowdsourcing are discussed using the United States Department of Agriculture social networks, the Cervid Disease Network, and the North American Mosquito Project. The North American Mosquito Project is a large network of professional mosquito control districts and public health agencies, which collects mosquito specimens for genetic studies. The Cervid Disease Network is a crowd-sourced disease monitoring system, which uses voluntary sentinel farms or wildlife programs throughout the United States of America to report the onset and severity of diseases in local areas for pathogen surveillance studies.

  1. Project Swiftsure final report: Destruction of chemical agent waste at Defence Research Establishment Suffield. Special publication

    Energy Technology Data Exchange (ETDEWEB)

    McAndless, J.M.

    1994-04-01

    Project Swiftsure describes a three-year project at the Defence Research Establishment Suffield to safely destroy stockpiles of mustard lewisite, nerve agents and decontaminate scrap material which was stored on the DRES Experimental Proving Ground. Using both in-house and contracted resources, the agent waste was destroyed by chemical neutralization or incineration. With the exception of the arsenic byproducts from the lewisite neutralization process, all secondary waste generated by chemical neutralization was incinerated. Mustard in different forms was thermally destroyed using a transportable incinerator of commercial design. Extensive environmental monitoring and public consultation programs were conducted during the project. Results of the monitoring programs verified that the chemical warfare agents were destroyed in a safe, environmentally-responsible manner. jg p.329.

  2. UMTRA project water sampling and analysis plan, Maybell, Colorado

    International Nuclear Information System (INIS)

    1994-06-01

    This water sampling and analysis plan (WSAP) describes planned water sampling activities and provides the regulatory and technical basis for ground water sampling in 1994 at the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Maybell, Colorado. The WSAP identifies and justifies sampling locations, analytical parameters, and sampling frequencies at the site. The ground water data will be used for site characterization and risk assessment. The regulatory basis for the ground water and surface water monitoring activities is derived from the EPA regulations in 40 CFR Part 192 (1993) and the proposed EPA standards of 1987 (52 FR 36000). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site. This WSAP also includes a summary and the results of water sampling activities from 1989 through 1992 (no sampling was performed in 1993)

  3. Systems engineering management plan for the Salt Repository Project

    International Nuclear Information System (INIS)

    Neff, J.O.

    1986-08-01

    This document presents the plan for using systems engineering in conducting and managing the technical work of the Salt Repository Project (SRP) of the US Department of Energy's Civilian Radioactive Waste Management Program. The need for preparing a Systems Engineering Management Plan (SEMP) is traced back to relevant DOE directives. These directives are interpreted as SRP requirements in the context of the Mined Geologic Disposal System. The strategy for conducting systems engineering on the SRP, including the role of the systems engineering process, is then described. The SEMP also designates who in the project organization will be responsible for carrying out the activities. Finally, the management tools that are used to implement the systems engineering process, including associated documentation on the SRP, are described

  4. 77 FR 60319 - Harbor Porpoise Take Reduction Plan; Coastal Gulf of Maine Closure Area Established With a...

    Science.gov (United States)

    2012-10-03

    ...-XC099 Harbor Porpoise Take Reduction Plan; Coastal Gulf of Maine Closure Area Established With a... Atmospheric Administration (NOAA), Commerce. ACTION: Establishment of the Coastal Gulf of Maine Closure Area... Service (NMFS) announces the establishment of the Coastal Gulf of Maine Closure Area under the Harbor...

  5. National plan project of quotas allocation. Reference period

    International Nuclear Information System (INIS)

    2004-06-01

    This document described the national plan project of greenhouse gases quotas allocation, in application of the directive 2003/87/CE. It is a preliminary document providing hypothesis, data and results which could well be modified. It presents in seven chapters the determination of the final quotas quantity, the determination of the final quotas quantity per each activity sectors and per installation, the technical aspects, the community policy and legislation, the public consultation and other criteria analysis. (A.L.B.)

  6. Prospective study establishing a management plan for impacted third molar in patients undergoing hematopoietic stem cell transplantation

    OpenAIRE

    Yamagata, Kenji; Onizawa, Kojiro; Yanagawa, Toru; Takeuchi, Yasutoshi; Hasegawa, Yuichi; Chiba, Shigeru; Bukawa, Hiroki

    2011-01-01

    ObjectiveAlthough dental treatment before hematopoietic stem cell transplantation (HSCT) is essential to prevent serious infections from oral sources, the best management plan for impacted third molar (ITM) is unclear.Study designThis study was planned to establish a management plan for ITM. Eighty-four candidates for HSCT therapy were consecutively enrolled in the prospective trial. The management plan, which was evidence based and prospectively decided, was to extract the symptomatic ITMs a...

  7. Planned and ongoing projects (pop) database: development and results.

    Science.gov (United States)

    Wild, Claudia; Erdös, Judit; Warmuth, Marisa; Hinterreiter, Gerda; Krämer, Peter; Chalon, Patrice

    2014-11-01

    The aim of this study was to present the development, structure and results of a database on planned and ongoing health technology assessment (HTA) projects (POP Database) in Europe. The POP Database (POP DB) was set up in an iterative process from a basic Excel sheet to a multifunctional electronic online database. The functionalities, such as the search terminology, the procedures to fill and update the database, the access rules to enter the database, as well as the maintenance roles, were defined in a multistep participatory feedback loop with EUnetHTA Partners. The POP Database has become an online database that hosts not only the titles and MeSH categorizations, but also some basic information on status and contact details about the listed projects of EUnetHTA Partners. Currently, it stores more than 1,200 planned, ongoing or recently published projects of forty-three EUnetHTA Partners from twenty-four countries. Because the POP Database aims to facilitate collaboration, it also provides a matching system to assist in identifying similar projects. Overall, more than 10 percent of the projects in the database are identical both in terms of pathology (indication or disease) and technology (drug, medical device, intervention). In addition, approximately 30 percent of the projects are similar, meaning that they have at least some overlap in content. Although the POP DB is successful concerning regular updates of most national HTA agencies within EUnetHTA, little is known about its actual effects on collaborations in Europe. Moreover, many non-nationally nominated HTA producing agencies neither have access to the POP DB nor can share their projects.

  8. Quality assurance program plan for SNF characterization support project

    International Nuclear Information System (INIS)

    Tanke, J.M.

    1997-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Quality Assurance Program is implemented for the Spent Nuclear Fuel Characterization Support Project. This QAPP has been developed specifically for the Spent Nuclear Fuel Characterization Support Project, per Letter of Instruction (LOI) from Duke Engineering and Services Company, letter No. DESH-9655870, dated Nov. 22, 1996. It applies to those items and tasks which affect the completion of activities identified in the work breakdown structure of the Project Management Plan (PMP) and LOI. These activities include installation of sectioning equipment and furnace, surface and subsurface examinations, sectioning for metallography, and element drying and conditioning testing, as well as project related operations within the 327 facility as it relates to the specific activities of this project. General facility activities are covered in other appropriate QA-PPS. In addition, this QAPP supports the related quality assurance activities addressed in CM-2-14, Hazardous Material Packaging and Shipping,1261 and HSRCM-1, Hanford Site Radiological Control Manual. The 327 Building is currently transitioning from being a Pacific Northwest National Laboratory (PNNL) managed facility to a Babcock and Wilcox Hanford Company (BVMC) managed facility. During this transition process existing procedures and documents will be utilized until replaced by BVMC procedures and documents. These documents conform to the requirements found in PNL-MA-70, Quality Assurance Manual and PNL-MA-8 1, Hazardous Materials Shipping Manual. The Quality Assurance Program Index (QAPI) contained in Table 1 provides a matrix which shows how project activities relate to IO CFR 830.120 and 5700.6C criteria. Quality Assurance program requirements will be addressed separate from the requirements specified in this document. Other Hanford Site organizations/companies may be utilized in support of this project and the subject organizations are

  9. Nuclear emergency planning in Spain. The PLABEN review project

    International Nuclear Information System (INIS)

    Lentijo Lentijo, J. C.; Vila Pena, M.

    2002-01-01

    The international rules and recommendations for nuclear emergency planning and the Spanish experience gained in the management of event with radiological risk have noticed that is necessary to review the planning radiological bases for emergencies in nuclear power plants and to define the planning radiological bases for radiological emergencies that could happen in radioactive facilities or in activities out of the regulatory framework. The paper focuses on CSN actions concerning the Plaben review project related to define the new radiological principles taking into account the current international recommendations for interventions, make a proposal about the organisation and operation of the provincial radiological action group and the national support level for radiological emergency response. (Author) 7 refs

  10. A study to analyze IAEA planning of 2004-2005 programme and to establish cooperation directions with the IAEA

    Energy Technology Data Exchange (ETDEWEB)

    Oh, K. B.; Lee, K. S.; Lee, B. W.; Ko, H. S.; Ryu, J. S.; Lee, T. J.; Kim, M. R

    2003-07-01

    The objective of this study is to utilize the IAEA effectively through reflecting Korea's opinion fully for the planning of the Agency's 2004{approx}2005 Programme. This study first analyzed the current status of the IAEA Programme and Budget and reviewed the issues relevant to Korea. Second, this study assessed the IAEA 2004{approx}2005 Programme and drew up Korea's opinion for it. The official document including the opinions was submitted to the Secretariat. In reviewing the Programme, this study considered the strengths of Korea related to the Programme. Also some projects and CRPs, which can be lead by Korea, were proposed. The IAEA 2004{approx}2005 Programme reflected well the technical and social changes and its structure seems to be proper. The budget was proposed to be increased over 10%, violating the zero-real growth principle. This seems to be inevitable considering the increase of safeguards activities. However, there should be prepared some measures to avoid rapid increase of the burdens of the Member States. In the process of the planning of the IAEA 2004{approx}2005 Programme, the following points should be emphasized. First, SMR activities should be given a high priority considering the high interests of developing countries and be set up as a separate project as in the 2002{approx}2003 Programme. Second, more budget should be allocated for Project A.4.04(Support for demonstration of nuclear seawater desalination), considering the highest priority of the project in Program A. Third, it's better to change the title of Subprogram C.3 to 'Nuclear knowledge Preservation' to stick to the original rationale of the subprogram. There is a need for further activities such as establishing and implementing the concept of international nuclear school based on the result of the feasibility study done in 2002{approx}2003. Fourth, further activities needs to be added to the Project D.2.03 for the efficient conversion to high density

  11. A study to analyze IAEA planning of 2004-2005 programme and to establish cooperation directions with the IAEA

    International Nuclear Information System (INIS)

    Oh, K. B.; Lee, K. S.; Lee, B. W.; Ko, H. S.; Ryu, J. S.; Lee, T. J.; Kim, M. R.

    2003-07-01

    The objective of this study is to utilize the IAEA effectively through reflecting Korea's opinion fully for the planning of the Agency's 2004∼2005 Programme. This study first analyzed the current status of the IAEA Programme and Budget and reviewed the issues relevant to Korea. Second, this study assessed the IAEA 2004∼2005 Programme and drew up Korea's opinion for it. The official document including the opinions was submitted to the Secretariat. In reviewing the Programme, this study considered the strengths of Korea related to the Programme. Also some projects and CRPs, which can be lead by Korea, were proposed. The IAEA 2004∼2005 Programme reflected well the technical and social changes and its structure seems to be proper. The budget was proposed to be increased over 10%, violating the zero-real growth principle. This seems to be inevitable considering the increase of safeguards activities. However, there should be prepared some measures to avoid rapid increase of the burdens of the Member States. In the process of the planning of the IAEA 2004∼2005 Programme, the following points should be emphasized. First, SMR activities should be given a high priority considering the high interests of developing countries and be set up as a separate project as in the 2002∼2003 Programme. Second, more budget should be allocated for Project A.4.04(Support for demonstration of nuclear seawater desalination), considering the highest priority of the project in Program A. Third, it's better to change the title of Subprogram C.3 to 'Nuclear knowledge Preservation' to stick to the original rationale of the subprogram. There is a need for further activities such as establishing and implementing the concept of international nuclear school based on the result of the feasibility study done in 2002∼2003. Fourth, further activities needs to be added to the Project D.2.03 for the efficient conversion to high density, low enriched uranium in Member States; for instance, review

  12. Uranium Mill Tailings Remedial Action Project: Cost Reduction and Productivity Improvement Program Project Plan

    International Nuclear Information System (INIS)

    1991-11-01

    The purpose of the Cost Reduction/Productivity Improvement Program Plan is to formalize and improve upon existing efforts to control costs which have been underway since project inception. This program plan has been coordinated with the Department of Energy (DOE) Office of Environmental Management (EM) and the DOE Field Office, Albuquerque (AL). It incorporates prior Uranium Mill Tallings Remedial Action (UMTRA) Project Office guidance issued on the subject. The opportunities for reducing cosh and improving productivity are endless. The CR/PIP has these primary objectives: Improve productivity and quality; heighten the general cost consciousness of project participants, at all levels of their organizations; identify and implement specific innovative employee ideas that extend beyond what is required through existing processes and procedures; emphasize efforts that create additional value for the money spent by maintaining the project Total Estimated Cost (TEC) at the lowest possible level

  13. Planning international transit oil pipeline projects in Croatia

    International Nuclear Information System (INIS)

    Sekulic, G.; Vrbic, D.

    2004-01-01

    Planning and development of international oil pipeline projects are aimed primarily at enhancing the safety of crude oil supply. Pipeline development is affected by a variety of overlapping factors, such as energy - and environment-protection-related factors, as well as political, economic, legislative, social, technical and technological ones. The success of any pipeline planning, construction and operation in the present conditions will depend upon the degree to which the above factors have been brought in line with global trends. The government should create stable political, economic and legislative frameworks that will meet the global requirements of crude oil transport development. As regards (new) transportation companies, their function is to secure safe transport by providing competitive tariffs and granting environmental protection. A prerequisite for the pipeline planning is to have both major crude oil consumers and producers (as well as their economic and political integrations) consider any state or company as potential partners for crude oil transport and transit, respectively. Croatia and the JANAF transport company have been 'chosen' as one of priority routes for European supply with crude oil from the Caspian region and Russia and one of the directions for Russian crude oil export due to a number of advantages, opportunities and prospects for a successful development. Two international oil pipeline projects - the Druzba Adria Project and the Constanta-Pancevo-Omisalj-Trieste Project - are currently under consideration. The government commitment towards these projects has been documented by the Croatian Energy Development Strategy (April 2002) and by the Programme for its implementation (March 2004). JANAF has assumed the responsibility for carrying out the project preparation activities assigned to it by the Croatian Government and the pertinent ministries. Cooperation between JANAF and government institutions is an integral part of the procedure

  14. Near-Facility Environmental Monitoring Quality Assurance Project Plan

    International Nuclear Information System (INIS)

    MCKINNEY, S.M.

    2000-01-01

    This Quality Assurance Project Plan addresses the quality assurance requirements for the activities associated with the preoperational and near-facility environmental monitoring directed by Waste Management Technical Services and supersedes HNF-EP-0538-4. This plan applies to all sampling and monitoring activities performed by Waste Management Technical Services in implementing near-facility environmental monitoring at the Hanford Site. This Quality Assurance Project Plan is required by U.S. Department of Energy Order 5400.1 (DOE 1990) as a part of the Environmental Monitoring Plan (DOE-RL 1997) and is used to define: Environmental measurement and sampling locations used to monitor environmental contaminants near active and inactive facilities and waste storage and disposal sites; Procedures and equipment needed to perform the measurement and sampling; Frequency and analyses required for each measurement and sampling location; Minimum detection level and accuracy; Quality assurance components; and Investigation levels. Near-facility environmental monitoring for the Hanford Site is conducted in accordance with the requirements of U.S. Department of Energy Orders 5400.1 (DOE 1990), 5400.5 (DOE 1993), 5484.1 (DOE 1990), and 435.1 (DOE 1999), and DOE/EH-O173T (DOE 1991). It is Waste Management Technical Services' objective to manage and conduct near-facility environmental monitoring activities at the Hanford Site in a cost-effective and environmentally responsible manner that is in compliance with the letter and spirit of these regulations and other environmental regulations, statutes, and standards

  15. Managing uncertainty in flood protection planning with climate projections

    Science.gov (United States)

    Dittes, Beatrice; Špačková, Olga; Schoppa, Lukas; Straub, Daniel

    2018-04-01

    Technical flood protection is a necessary part of integrated strategies to protect riverine settlements from extreme floods. Many technical flood protection measures, such as dikes and protection walls, are costly to adapt after their initial construction. This poses a challenge to decision makers as there is large uncertainty in how the required protection level will change during the measure lifetime, which is typically many decades long. Flood protection requirements should account for multiple future uncertain factors: socioeconomic, e.g., whether the population and with it the damage potential grows or falls; technological, e.g., possible advancements in flood protection; and climatic, e.g., whether extreme discharge will become more frequent or not. This paper focuses on climatic uncertainty. Specifically, we devise methodology to account for uncertainty associated with the use of discharge projections, ultimately leading to planning implications. For planning purposes, we categorize uncertainties as either visible, if they can be quantified from available catchment data, or hidden, if they cannot be quantified from catchment data and must be estimated, e.g., from the literature. It is vital to consider the hidden uncertainty, since in practical applications only a limited amount of information (e.g., a finite projection ensemble) is available. We use a Bayesian approach to quantify the visible uncertainties and combine them with an estimate of the hidden uncertainties to learn a joint probability distribution of the parameters of extreme discharge. The methodology is integrated into an optimization framework and applied to a pre-alpine case study to give a quantitative, cost-optimal recommendation on the required amount of flood protection. The results show that hidden uncertainty ought to be considered in planning, but the larger the uncertainty already present, the smaller the impact of adding more. The recommended planning is robust to moderate changes in

  16. Identifying Contractors’ Planned Quality Costs in Indonesian Construction Projects

    Directory of Open Access Journals (Sweden)

    Puti F. Marzuki

    2014-12-01

    Full Text Available In a very competitive construction industry, quality costs have to be measured to be able to identify potential quality problem areas and to focus attention on work output improvement opportunities. The awareness of contractors on the importance of quality costs could be reflected in the extent of their quality costs planning. This paper presents an identification of planned quality costs in three construction projects executed by two large Indonesian contractors, a state-owned company and a private company in Jakarta. The objective is to enable the contractors to elaborate their quality costs planning and thereby improve their work output based on the findi ngs. Quality costs are first grouped into three categories: prevention, appraisal, and failure costs. Based on the works of previous researchers, a list of quality management activities that should be covered in each quality costs category is then created. The contractors’ planned quality costs data for each category are identified and collected through interviews and questionnaire surveys that refer to the list. Quality costs are expressed as a percentage of contract value. It is revealed that although large contractors already have certain knowledge on quality costs in construction projects, these costs are not planned in a structured way through an analysis of systematic quality costs records. Through cost categorization it is also shown that higher prevention and appraisal costs lead to lower failure costs. It is then concluded that a lot of work is still to be done by the contractors to set up a quality costs recording system which can serve as a basis for their quality improvement planning.

  17. Integrated project management plan for the Plutonium Finishing Plant stabilization and deactivation project

    International Nuclear Information System (INIS)

    SINCLAIR, J.C.

    1999-01-01

    This document sets forth the plans, organization, and control systems for managing the PFP Stabilization and Deactivation Project, and includes the top level cost and schedule baselines. The project includes the stabilization of Pu-bearing materials, storage, packaging, and transport of these and other nuclear materials, surveillance and maintenance of facilities and systems relied upon for storage of the materials, and transition of the facilities in the PFP Complex

  18. River Protection Project FY 2000 Multi Year Work Plan Summary

    International Nuclear Information System (INIS)

    LENSEIGNE, D.L.

    1999-01-01

    The River Protection Project (RPP), formerly the Tank Waste Remediation System (TWRS), is a major part of the U.S. Department of Energy's (DOE) Office of River Protection (ORP). The ORP was established as directed by Congress in Section 3139 of the Strom Thurmond National Defense Authorization Act for Fiscal Year (FY) 1999. The ORP was established to elevate the reporting and accountability for the RPP to the DOE-Headquarters level. This was done to gain Congressional visibility and obtain support for a major $10 billion high-level liquid waste vitrification effort

  19. European DataGrid project: status and plans

    International Nuclear Information System (INIS)

    Kunszt, P.

    2003-01-01

    The European DataGrid (EDG) project has reached, after 1.5 years, the middle of its lifetime. In this article we give an overview of the status, components, procedures and plans of the EDG project as of June 2002. The objective of the EDG project is to assist the next generation of scientific exploration, computation and analysis of large-scale data sets--from hundreds of terabytes to petabytes, across widely distributed scientific communities. The primary goal of the first phase of the EDG project was to assemble a distributed testbed to demonstrate that the EDG middleware components could be integrated into a production-quality computational Grid, as well as to gain experience with such a system. The very first version of the EDG testbed was deployed toward the end of 2001. At the first official European Union review of the project on March 1, 2002, it has been found that the project is on the right track to achieve its goals. Since then the EDG middleware, testbed components and procedures have been continuously refined according to the requirements of our user communities and our experience

  20. European DataGrid project Status and plans

    CERN Document Server

    Kunszt, Peter Z

    2003-01-01

    The European DataGrid (EDG) project has reached, after 1.5 years, the middle of its lifetime. In this article we give an overview of the status, components, procedures and plans of the EDG project as of June 2002. The objective of the EDG project is to assist the next generation of scientific exploration, computation and analysis of large-scale data sets - from hundreds of terabytes to petabytes, across widely distributed scientific communities. The primary goal of the first phase of the EDG project was to assemble a distributed testbed to demonstrate that the EDG middleware components could be integrated into a production-quality computational Grid, as well as to gain experience with such a system. The very first version of the EDG testbed was deployed toward the end of 2001. At the first official European Union review of the project on March 1, 2002, it has been found that the project is on the right track to achieve its goals. Since then the EDG middleware, testbed components and procedures have been conti...

  1. Project planning of Gen-IV sodium cooled fast reactor technology

    International Nuclear Information System (INIS)

    Yoo, Jaewoon; Joo, H. K.; Cho, C. H.; Kim, Y. G.; Lee, D. U.; Jin, M. W.

    2013-05-01

    The project program will be established to shorten the design schedule by sharing the design man power and experimental facility, and by introducing the proven technology through international collaboration and the project plan including preliminary specific design, technology validation and fuel design validation plan will be more detail by reviewing the plan at the International Technical Review Meeting (ITRM). Periodic project progress review meeting will be held to find the technical issues and to resolve them. The results of the progress review meeting will be reflected into the final assessment of research project. The project progress review meeting will be held every quarter and external expert will also participate in the meeting. In parallel with the PGSFR development, innovative small modular SFR will be developed aiming to the international nuclear market. The system and component technologies of both system can be shared but innovative concept will be implemented into the design. Ultra long life core design concept and supercritical CO 2 Brayton cycle will be considered as the innovative concept for enhancing the plant economy and safety

  2. Project planning of Gen-IV sodium cooled fast reactor technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jaewoon; Joo, H. K.; Cho, C. H.; Kim, Y. G.; Lee, D. U.; Jin, M. W.

    2013-05-15

    The project program will be established to shorten the design schedule by sharing the design man power and experimental facility, and by introducing the proven technology through international collaboration and the project plan including preliminary specific design, technology validation and fuel design validation plan will be more detail by reviewing the plan at the International Technical Review Meeting (ITRM). Periodic project progress review meeting will be held to find the technical issues and to resolve them. The results of the progress review meeting will be reflected into the final assessment of research project. The project progress review meeting will be held every quarter and external expert will also participate in the meeting. In parallel with the PGSFR development, innovative small modular SFR will be developed aiming to the international nuclear market. The system and component technologies of both system can be shared but innovative concept will be implemented into the design. Ultra long life core design concept and supercritical CO{sub 2} Brayton cycle will be considered as the innovative concept for enhancing the plant economy and safety.

  3. Project W-314 specific test and evaluation plan for 241-AN-A valve pit

    International Nuclear Information System (INIS)

    Hays, W.H.

    1997-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made to the 241-AN-A Valve Pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a ''lower tier'' document based on the W-314 Test and Evaluation Plan (TEP) This STEP encompasses all testing activities required to demonstrate compliance to the project design criteria as it relates to the modifications of the AN-A valve pit. The Project Design Specifications (PDS) identify the specific testing activities required for the Project. Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities), Factory Acceptance Tests (FATs), installation tests and inspections, Construction Acceptance Tests (CATs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). It should be noted that POTPs are not required for testing of the modifications to the 241-AN-A Valve Pit. The STEP will be utilized in conjunction with the TEP for verification and validation

  4. THE CONTEXT OF ESTABLISHING PROJECT MANAGEMENT OFFICES IN THE IT AREA: TWO CASE STUDIES

    Directory of Open Access Journals (Sweden)

    Andrea Giovanni Spelta

    2010-01-01

    Full Text Available Completing strategic Information Technology (IT projects as planned is certainly an important objective for large firms. One of the measures adopted to reach this goal systematically is to create a Project Management Office in the IT area (PMO-IT. However, many firms consider the possibility of creating a PMO-IT, but decide not to do it. This paper presents the results of an exploratory research about the contextual drivers that determine the decision to create PMO-Its. Through two case studies of large Brazilian firms – one that created the entity and another which believes does not need it –, the drivers of the decision to create or not to create a PMO-IT were identified, and it was possible to confirm some of the drivers mentioned in the literature. This paper increases the undertstanding about this topic, which is important in the Management Information Systems field, as well as indicates paths for future research.

  5. Project licensing plan for UMTRA [Uranium Mill Tailings Remedial Action] sites

    International Nuclear Information System (INIS)

    1984-07-01

    The purpose of the Uranium Mill Tailings Remedial Action (UMTRA) Project Licensing Plan is to establish how a disposal site will be licensed, and to provide responsibilities of participatory agencies as legislated by the Uranium Mill Tailings Radiation Control Act (UMTRCA) of 1978 (Public Law 95-604). This Plan has been developed to ensure that the objectives of licensing are met by identifying the necessary institutional controls, participatory agency responsibilities, and key milestones in the licensing process. The Plan contains the legislative basis for and a description of the licensing process (''Process'') for UMTRA sites. This is followed by a discussion of agency responsibilities, and milestones in the Process. The Plan concludes with a generic timeline of this Process. As discussed in Section 2.1, a custodial maintenance and surveillance plan will constitute the basis for a site license. The details of maintenance and surveillance are discussed in the Project Maintenance and Surveillance Plan (AL-350124.0000). 5 refs., 4 figs

  6. Integrated development and testing plan for the plutonium immobilization project

    International Nuclear Information System (INIS)

    Kan, T.

    1998-01-01

    This integrated plan for the DOE Office of Fissile Materials Disposition (MD) describes the technology development and major project activities necessary to support the deployment of the immobilization approach for disposition of surplus weapons-usable plutonium. The plan describes details of the development and testing (D and T) tasks needed to provide technical data for design and operation of a plutonium immobilization plant based on the ceramic can-in-canister technology (''Immobilization Fissile Material Disposition Program Final Immobilization Form Assessment and Recommendation'', UCRL-ID-128705, October 3, 1997). The plan also presents tasks for characterization and performance testing of the immobilization form to support a repository licensing application and to develop the basis for repository acceptance of the plutonium form. Essential elements of the plant project (design, construction, facility activation, etc.) are described, but not developed in detail, to indicate how the D and T results tie into the overall plant project. Given the importance of repository acceptance, specific activities to be conducted by the Office of Civilian Radioactive Waste Management (RW) to incorporate the plutonium form in the repository licensing application are provided in this document, together with a summary of how immobilization D and T activities provide input to the license activity. The ultimate goal of the Immobilization Project is to develop, construct, and operate facilities that will immobilize from about 18 to 50 tonnes (MT) of U.S. surplus weapons usable plutonium materials in a manner that meets the ''spent fuel'' standard (Fissile Materials Storage and Disposition Programmatic Environmental Impact Statement Record of Decision, ''Storage and Disposition Final PEIS'', issued January 14, 1997, 62 Federal Register 3014) and is acceptable for disposal in a geologic repository. In the can-in-canister technology, this is accomplished by encapsulating the

  7. FRG sealed isotopic heat sources project (C-229) project management plan

    International Nuclear Information System (INIS)

    Metcalf, I.L.

    1997-01-01

    This Project Management Plan defines the cost, scope, schedule, organizational responsibilities, and work breakdown structure for the removal of the Federal Republic of Germany (FRG) Sealed Isotopic Heat Sources from the 324 Building and placed in interim storage at the Central Waste Complex (CWC)

  8. Up-Stream Dissolved Oxygen TMDL Project Quality Assurance ProjectPlan

    Energy Technology Data Exchange (ETDEWEB)

    Stringfellow, William T.

    2005-05-13

    A quality assurance project plan (QAPP) for the execution of an ecosystem level monitoring and research program examining algal ecology in highly impaired rivers. Procedures for executing both field and laboratory surface water quality and flow analysis are described. The procedures described here are compatible with the California Surface Water Ambient Monitoring program (SWAMP).

  9. 42 CFR 59.5 - What requirements must be met by a family planning project?

    Science.gov (United States)

    2010-10-01

    ... requirements must be met by a family planning project? (a) Each project supported under this part must: (1... (iii) Promote continued participation in the project by persons to whom family planning services may be... services purchased for project participants will be authorized by the project director or his designee on...

  10. Establishing Sustainable Nuclear Education: Education Capability Assessment and Planning (ECAP) Assist Mission

    International Nuclear Information System (INIS)

    Ugbor, U.; Peddicord, K.; Dies, J.; Philip, B.; Artisyuk, V.

    2016-01-01

    Full text: The development of nuclear education, science and technology programmes is affected by the national context including national needs and capacities. The role and expectations for nuclear education and training might be different in technically matured countries, from countries where the technology is emerging. In this regard, particularly in developing countries, there is a need to balance nuclear education and training between immediate critical issues of radiation safety or human health and longer-term priorities in agriculture or industry. These priorities may or may not include the nuclear energy option. This paper shows how the Education Capability Assessment and Planning (ECAP) Assist Mission can contribute towards establishing sustainable nuclear education, including highlighting the various activities of each phase of the ECAP Process. (author

  11. Hellsgate Winter Range Mitigation Project; Long-term Management Plan, Project Report 1993, Final Draft.

    Energy Technology Data Exchange (ETDEWEB)

    Berger, Matthew T.

    1994-01-01

    A study was conducted on the Hellsgate Winter Range Mitigation Project area, a 4,943 acre ranch purchased for mitigating some habitat losses associated with the original construction of Grand Coulee Dam and innundation of habitat by Lake Roosevelt. A Habitat Evaluation Procedure (HEP) study was used to determine habitat quality and quantity baseline data and future projections. Target species used in the study were sharp-tailed grouse (Tympanuchus phasianellus), mule deer (Odocoileus hemoinus), mink (Mustela vison), spotted sandpiper (Actiius colchicus), bobcat (Felis reufs), blue grouse (Dendragapus obscurus), and mourning dove (Zenaida macroura). From field data collected, limiting life values or HSI's (Habitat Suitability Index's) for each indicator species was determined for existing habitats on project lands. From this data a long term management plan was developed. This report is designed to provide guidance for the management of project lands in relation to the habitat cover types discussed and the indicator species used to evaluate these cover types. In addition, the plan discusses management actions, habitat enhancements, and tools that will be used to enhance, protect and restore habitats to desired conditions. Through planned management actions biodiversity and vegetative structure can be optimized over time to reduce or eliminate, limiting HSI values for selected wildlife on project lands.

  12. Nuclear criticality project plan for the Hanford Site tank farms

    Energy Technology Data Exchange (ETDEWEB)

    Bratzel, D.R., Westinghouse Hanford

    1996-08-06

    The mission of this project is to provide a defensible technical basis report in support of the Final Safety Analysis Report (FSAR). This technical basis report will also be used to resolve technical issues associated with the nuclear criticality safety issue. The strategy presented in this project plan includes an integrated programmatic and organizational approach. The scope of this project plan includes the provision of a criticality technical basis supporting document (CTBSD) to support the FSAR as well as for resolution of the nuclear criticality safety issue. Specifically, the CTBSD provides the requisite technical analysis to support the FSAR hazard and accident analysis as well as for the determination of the required FSAR limits and controls. The scope of The CTBSD will provide a baseline for understanding waste partitioning and distribution phenomena and mechanistics for current operational activities inclusive of single-shell tanks, double-shell tanks, double-contained receiver tanks, and miscellaneous underground storage tanks.. Although the FSAR does not include future operational activities, the waste partitioning and distribution phenomena and mechanistics work scope identified in this project plan provide a sound technical basis as a point of departure to support independent safety analyses for future activities. The CTBSD also provides the technical basis for resolution of the technical issues associated with the nuclear criticality safety issue. In addition to the CTBSD, additional documentation will be required to fully resolve U.S. Department of Energy-Headquarters administrative and programmatic issues. The strategy and activities defined in this project plan provide a CTBSD for the FSAR and for accelerated resolution of the safety issue in FY 1996. On April 30, 1992, a plant review committee reviewed the Final Safety Analysis Reports for the single-shell, double-shell, and aging waste tanks in light of the conclusions of the inadequate waste

  13. Climatic Action Plan Project for the state of Veracruz (Mexico)

    Science.gov (United States)

    Tejeda, A.; Ochoa, C.

    2007-05-01

    power stations (Tuxpan and Laguna Verde) will be affected directly if they're still operating within half century. The lagoons of Alvarado and Tamiahua will be part of the sea. In heavy numbers, more than six hundred kilometers of beaches will be lost (and, of course, good part of the tourist infrastructure including Costa Esmeralda and Veracruz Boca del Río), along with more than two hundred kilometers of routes and around twenty kilometers of seaports. More than three thousand urban hectares will become floodable as two hundred thousand fields and agriculture. Because of all this, a study is proposed that considers a revision of the state's variability and climatic change in Veracruz; an inventory of GEI emissions and its respective scenes; data bases with quality control and analysis of climatic variability; regional climatic scenes (years 2025, 2050 and 2075), and scenes of vulnerability and adaptation measures, mitigation in coast affectations and coastal infrastructure, water availability, biodiversity, agriculture, human establishments and energy consumption by air conditioning of houses. Approaches of the study will be discussed and advances during the first semester of the project will appear in this presentation.

  14. Treatment planning systems dosimetry auditing project in Portugal.

    Science.gov (United States)

    Lopes, M C; Cavaco, A; Jacob, K; Madureira, L; Germano, S; Faustino, S; Lencart, J; Trindade, M; Vale, J; Batel, V; Sousa, M; Bernardo, A; Brás, S; Macedo, S; Pimparel, D; Ponte, F; Diaz, E; Martins, A; Pinheiro, A; Marques, F; Batista, C; Silva, L; Rodrigues, M; Carita, L; Gershkevitsh, E; Izewska, J

    2014-02-01

    The Medical Physics Division of the Portuguese Physics Society (DFM_SPF) in collaboration with the IAEA, carried out a national auditing project in radiotherapy, between September 2011 and April 2012. The objective of this audit was to ensure the optimal usage of treatment planning systems. The national results are presented in this paper. The audit methodology simulated all steps of external beam radiotherapy workflow, from image acquisition to treatment planning and dose delivery. A thorax CIRS phantom lend by IAEA was used in 8 planning test-cases for photon beams corresponding to 15 measuring points (33 point dose results, including individual fields in multi-field test cases and 5 sum results) in different phantom materials covering a set of typical clinical delivery techniques in 3D Conformal Radiotherapy. All 24 radiotherapy centers in Portugal have participated. 50 photon beams with energies 4-18 MV have been audited using 25 linear accelerators and 32 calculation algorithms. In general a very good consistency was observed for the same type of algorithm in all centres and for each beam quality. The overall results confirmed that the national status of TPS calculations and dose delivery for 3D conformal radiotherapy is generally acceptable with no major causes for concern. This project contributed to the strengthening of the cooperation between the centres and professionals, paving the way to further national collaborations. Copyright © 2013 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  15. Mizunami Underground Research Laboratory project. Plan for fiscal year 2017

    International Nuclear Information System (INIS)

    Ishibashi, Masayuki; Hama, Katsuhiro; Iwatsuki, Teruki; Matsui, Hiroya; Takeuchi, Ryuji; Ikeda, Koki; Mikake, Shinichiro; Iyatomi, Yosuke; Sasao, Eiji; Koide, Kaoru

    2017-10-01

    The Mizunami Underground Research Laboratory (MIU) Project is being pursued by the Japan Atomic Energy Agency (JAEA) to enhance the reliability of geological disposal technologies through investigations of the deep geological environment in the crystalline host rock (granite) at Mizunami, Gifu Prefecture, central Japan. On the occasion of the reform of the entire JAEA organization in 2014, JAEA identified three important issues on the geoscientific research program: 'Development of countermeasure technologies for reducing groundwater inflow', 'Development of modelling technologies for mass transport' and 'Development of drift backfilling technology', based on the latest results of the synthesizing research and development (R and D). The R and D on three remaining important issues has been carrying out on the MIU Project. This report summarizes the R and D activities planned for fiscal year 2017 on the basis of the MIU Master Plan updated in 2015 and Investigation Plan for the Third Medium to Long-term Research Phase. (author)

  16. SNF sludge treatment system preliminary project execution plan

    International Nuclear Information System (INIS)

    Flament, T.A.

    1998-01-01

    The Fluor Daniel Hanford, Inc. (FDH) Project Director for the Spent Nuclear Fuel (SNF) Project has requested Numatec Hanford Company (NHC) to define how Hanford would manage a new subproject to provide a process system to receive and chemically treat radioactive sludge currently stored in the 100 K Area fuel retention basins. The subproject, named the Sludge Treatment System (STS) Subproject, provides and operates facilities and equipment to chemically process K Basin sludge to meet Tank Waste Remediation System (TWRS) requirements. This document sets forth the NHC management approach for the STS Subproject and will comply with the requirements of the SNF Project Management Plan (HNF-SD-SNFPMP-011). This version of this document is intended to apply to the initial phase of the subproject and to evolve through subsequent revision to include all design, fabrication, and construction conducted on the project and the necessary management and engineering functions within the scope of the subproject. As Project Manager, NHC will perform those activities necessary to complete the STS Subproject within approved cost and schedule baselines and turn over to FDH facilities, systems, and documentation necessary for operation of the STS

  17. Development plan. High activity-long living wastes project. Abstract

    International Nuclear Information System (INIS)

    2007-01-01

    This brochure presents the actions that the ANDRA (the French national agency of radioactive wastes) has to implement in the framework of the project of high activity-long living (HALL) radioactive wastes (HAVL project) conformably to the requirements of the program defined in the law from June 28, 2006 (law no 2006-739). This law precises the three, complementary, research paths to explore for the management of this type of wastes: separation and transmutation of long-living radioactive elements, reversible disposal in deep geologic underground, and long duration storage. The ANDRA's action concerns the geologic disposal aspect. The following points are presented: the HALL wastes and their containers, the reversible disposal procedure, the HAVL project: financing of researches, storage concepts, development plan of the project (dynamics, information and dialogue approach, input data, main steps, schedule); the nine programs of the HAVL project (laboratory experiments and demonstration tests, surface survey, scientific program, simulation program, surface engineering studies and technological tests, information and communication program, program of environment and facilities surface observation and monitoring, waste packages management, monitoring and transport program, disposal program); the five transverse technical and scientific activities (safety, reversibility, cost, health and occupational safety, impact study). (J.S.)

  18. Environmental management plan (EMP) for Melamchi water supply project, Nepal.

    Science.gov (United States)

    Khadka, Ram B; Khanal, Anil B

    2008-11-01

    More than 1.5 million people live in the Kathmandu valley. The valley is facing an extreme shortage of water supply. At the same time the demand is escalating rapidly. To address this issue of scarcity of water, the government of Nepal has proposed a project of inter-basin transfer of water from Melamchi River located 40 km north-east of the Kathmandu valley. The project will cover two districts and three municipalities and will potentially have significant impacts on the environment. In accordance with the Environmental Protection Regulation of Nepal (1997), the Melamchi Water Supply Project (MWSP) has undergone an EIA during the feasibility study stage of the proposed project. The recommendations contained in the EIA were integrated into the project design for implementation in 2006. This paper summarizes the background of MWSP, the environmental concerns described in the EIA and the status of Environmental Management Plan (EMP) developed to address environmental compliance and other issues involving participation and support of the local people. This paper also provides some lessons to learn on the modalities of addressing the demands and grievances of the local people concerning environmental management.

  19. Ionospheric Response to Extremes in the Space Environment: Establishing Benchmarks for the Space Weather Action Plan.

    Science.gov (United States)

    Viereck, R. A.; Azeem, S. I.

    2017-12-01

    One of the goals of the National Space Weather Action Plan is to establish extreme event benchmarks. These benchmarks are estimates of environmental parameters that impact technologies and systems during extreme space weather events. Quantitative assessment of anticipated conditions during these extreme space weather event will enable operators and users of affected technologies to develop plans for mitigating space weather risks and improve preparedness. The ionosphere is one of the most important regions of space because so many applications either depend on ionospheric space weather for their operation (HF communication, over-the-horizon radars), or can be deleteriously affected by ionospheric conditions (e.g. GNSS navigation and timing, UHF satellite communications, synthetic aperture radar, HF communications). Since the processes that influence the ionosphere vary over time scales from seconds to years, it continues to be a challenge to adequately predict its behavior in many circumstances. Estimates with large uncertainties, in excess of 100%, may result in operators of impacted technologies over or under preparing for such events. The goal of the next phase of the benchmarking activity is to reduce these uncertainties. In this presentation, we will focus on the sources of uncertainty in the ionospheric response to extreme geomagnetic storms. We will then discuss various research efforts required to better understand the underlying processes of ionospheric variability and how the uncertainties in ionospheric response to extreme space weather could be reduced and the estimates improved.

  20. Large hadron collider (LHC) project quality assurance plan

    Energy Technology Data Exchange (ETDEWEB)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-09-30

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4).

  1. Large hadron collider (LHC) project quality assurance plan

    International Nuclear Information System (INIS)

    Gullo, Lisa; Karpenko, Victor; Robinson, Kem; Turner, William; Wong, Otis

    2002-01-01

    The LHC Quality Assurance Plan is a set of operating principles, requirements, and practices used to support Berkeley Lab's participation in the Large Hadron Collider Project. The LHC/QAP is intended to achieve reliable, safe, and quality performance in the LHC project activities. The LHC/QAP is also designed to fulfill the following objectives: (1) The LHC/QAP is Berkeley Lab's QA program document that describes the elements necessary to integrate quality assurance, safety management, and conduct of operations into the Berkeley Lab's portion of the LHC operations. (2) The LHC/QAP provides the framework for Berkeley Lab LHC Project administrators, managers, supervisors, and staff to plan, manage, perform, and assess their Laboratory work. (3) The LHC/QAP is the compliance document that conforms to the requirements of the Laboratory's Work Smart Standards for quality assurance (DOE O 414.1, 10 CFR 830.120), facility operations (DOE O 5480.19), and safety management (DOE P 450.4)

  2. Project W-314 specific test and evaluation plan for AZ tank farm upgrades

    International Nuclear Information System (INIS)

    Hays, W.H.

    1998-01-01

    The purpose of this Specific Test and Evaluation Plan (STEP) is to provide a detailed written plan for the systematic testing of modifications made by the addition of the SN-631 transfer line from the AZ-O1A pit to the AZ-02A pit by the W-314 Project. The STEP develops the outline for test procedures that verify the system's performance to the established Project design criteria. The STEP is a lower tier document based on the W-314 Test and Evaluation P1 an (TEP). Testing includes Validations and Verifications (e.g., Commercial Grade Item Dedication activities, etc), Factory Tests and Inspections (FTIs), installation tests and inspections, Construction Tests and Inspections (CTIs), Acceptance Test Procedures (ATPs), Pre-Operational Test Procedures (POTPs), and Operational Test Procedures (OTPs). The STEP will be utilized in conjunction with the TEP for verification and validation

  3. Salt Repository Project Waste Package Program Plan: Draft

    International Nuclear Information System (INIS)

    Carr, J.A.; Cunnane, J.C.

    1986-01-01

    Under the direction of the Office of Civilian Radioactive Waste Management (OCRWM) created within the DOE by direction of the Nuclear Waste Policy Act of 1982 (NWPA), the mission of the Salt Repository Project (SRP) is to provide for the development of a candidate salt repository for disposal of high-level radioactive waste (HLW) and spent reactor fuel in a manner that fully protects the health and safety of the public and the quality of the environment. In consideration of the program needs and requirements discussed above, the SRP has decided to develop and issue this SRP Waste Package Program Plan. This document is intended to outline how the SRP plans to develop the waste package design and to show, with reasonable assurance, that the developed design will satisfy applicable requirements/performance objectives. 44 refs., 16 figs., 16 tabs

  4. Office of Crystalline Repository Development FY 83 technical project plan

    International Nuclear Information System (INIS)

    1983-03-01

    The technical plan for FY 83 activities of the Office of Crystalline Repository Development is presented in detail. Crystalline Rock Project objectives are discussed in relation to the National Waste Terminal storage (NWTS) program. The plan is in full compliance with requirements mandated by the Nuclear Waste Policy Act of 1982. Implementation will comply with the requirements and criteria set forth in the Nuclear Regulatory Commission regulations (10 CFR 60) and the Environmental Protection Agency standard (40 CFR 191). Technical approaches and the related milestones and schedules are presented for each of the Level 3 NWTS work Breakdown Structure Tasks. These are: Systems, Waste Package, Site, Repository, Regulatory and Institutional, Test Facilities and Excavations, Land Acquisition, and Program Management

  5. Study on Top-Down Estimation Method of Software Project Planning

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jun-guang; L(U) Ting-jie; ZHAO Yu-mei

    2006-01-01

    This paper studies a new software project planning method under some actual project data in order to make software project plans more effective. From the perspective of system theory, our new method regards a software project plan as an associative unit for study. During a top-down estimation of a software project, Program Evaluation and Review Technique (PERT) method and analogy method are combined to estimate its size, then effort estimation and specific schedules are obtained according to distributions of the phase effort. This allows a set of practical and feasible planning methods to be constructed. Actual data indicate that this set of methods can lead to effective software project planning.

  6. Project Execution Plan for Project W-211 Initial Tank Retrieval Systems (ITRS)

    International Nuclear Information System (INIS)

    VAN BEEK, J.E.

    2000-01-01

    This Project Execution Plan documents the methodology for managing Project W-211. Project W-211, Initial Tank Retrieval Systems (ITRS), is a fiscal year 1994 Major Systems Acquisition that will provide systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for the future waste treatment plant, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. The ITRS scope has been revised to include waste retrieval systems for tanks AP-102, AP-104, AN-102, AN-103, AN-104, AN-105, AY-102, AZ-102, and SY-102. This current tank selection and sequence provides retrieval systems supporting the River Protection Project (RF'P) Waste Treatment Facility and sustains the ability to provide final remediation of several watch list DSTs via treatment. The ITRS is configured to support changing program needs, as constrained by available budget, by maintaining the flexibility for exchanging tanks requiring mixer pump-based retrieval systems and shifting the retrieval sequence. Preliminary design was configured such that an adequate basis exists for initiating Title II design of a mixer pump-based retrieval system for any DST. This Project Execution Plan (PEP), derived from the predecessor Project Management Plan, documents the methodology for managing the ITRS, formalizes organizational responsibilities and interfaces, and identifies project requirements such as change control, design verification, systems engineering, and human factors engineering

  7. Averaged 30 year climate change projections mask opportunities for species establishment

    Science.gov (United States)

    Serra-Diaz, Josep M.; Franklin, Janet; Sweet, Lynn C.; McCullough, Ian M.; Syphard, Alexandra D.; Regan, Helen M.; Flint, Lorraine E.; Flint, Alan L.; Dingman, John; Moritz, Max A.; Redmond, Kelly T.; Hannah, Lee; Davis, Frank W.

    2016-01-01

    Survival of early life stages is key for population expansion into new locations and for persistence of current populations (Grubb 1977, Harper 1977). Relative to adults, these early life stages are very sensitive to climate fl uctuations (Ropert-Coudert et al. 2015), which often drive episodic or ‘event-limited’ regeneration (e.g. pulses) in long-lived plant species (Jackson et al. 2009). Th us, it is diffi cult to mechanistically associate 30-yr climate norms to dynamic processes involved in species range shifts (e.g. seedling survival). What are the consequences of temporal aggregation for estimating areas of potential establishment? We modeled seedling survival for three widespread tree species in California, USA ( Quercus douglasii, Q. kelloggii , Pinus sabiniana ) by coupling a large-scale, multi-year common garden experiment to high-resolution downscaled grids of climatic water defi cit and air temperature (Flint and Flint 2012, Supplementary material Appendix 1). We projected seedling survival for nine climate change projections in two mountain landscapes spanning wide elevation and moisture gradients. We compared areas with windows of opportunity for seedling survival – defi ned as three consecutive years of seedling survival in our species, a period selected based on studies of tree niche ontogeny (Supplementary material Appendix 1) – to areas of 30-yr averaged estimates of seedling survival. We found that temporal aggregation greatly underestimated the potential for species establishment (e.g. seedling survival) under climate change scenarios.

  8. Rural water-supply and sanitation planning: The use of socioeconomic preconditions in project identification

    Science.gov (United States)

    Warner, Dennis B.

    1984-02-01

    Recognition of the socioeconomic preconditions for successful rural water-supply and sanitation projects in developing countries is the key to identifying a new project. Preconditions are the social, economic and technical characteristics defining the project environment. There are two basic types of preconditions: those existing at the time of the initial investigation and those induced by subsequent project activities. Successful project identification is dependent upon an accurate recognition of existing constraints and a carefully tailored package of complementary investments intended to overcome the constraints. This paper discusses the socioeconomic aspects of preconditions in the context of a five-step procedure for project identification. The procedure includes: (1) problem identification; (2) determination of socioeconomic status; (3) technology selection; (4) utilization of support conditions; and (5) benefit estimation. Although the establishment of specific preconditions should be based upon the types of projects likely to be implemented, the paper outlines a number of general relationships regarding favourable preconditions in water and sanitation planning. These relationships are used within the above five-step procedure to develop a set of general guidelines for the application of preconditions in the identification of rural water-supply and sanitation projects.

  9. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    Energy Technology Data Exchange (ETDEWEB)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site.

  10. Project management plan, Waste Receiving and Processing Facility, Module 1, Project W-026

    International Nuclear Information System (INIS)

    Starkey, J.G.

    1993-05-01

    The Hanford Waste Receiving and Processing Facility Module 1 Project (WRAP 1) has been established to support the retrieval and final disposal of approximately 400K grams of plutonium and quantities of hazardous components currently stored in drums at the Hanford Site

  11. UMTRA Project water sampling and analysis plan, Canonsburg, Pennsylvania. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    Surface remedial action was completed at the US Department of Energy (DOE) Canonsburg and Burrell Uranium Mill Tailings Remedial Action (UMTRA) Project sites in southwestern Pennsylvania in 1985 and 1987, respectively. The Burrell disposal site, included in the UMTRA Project as a vicinity property, was remediated in conjunction with the remedial action at Canonsburg. On 27 May 1994, the Nuclear Regulatory Commission (NRC) accepted the DOE final Long-Term Surveillance Plan (LTSP) (DOE, 1993) for Burrell thus establishing the site under the general license in 10 CFR section 40.27 (1994). In accordance with the DOE guidance document for long-term surveillance (DOE, 1995), all NRC/DOE interaction on the Burrell site's long-term care now is conducted with the DOE Grand Junction Projects Office in Grand Junction, Colorado, and is no longer the responsibility of the DOE UMTRA Project Team in Albuquerque, New Mexico. Therefore, the planned sampling activities described in this water sampling and analysis plan (WSAP) are limited to the Canonsburg site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring at the Canonsburg site for calendar years 1995 and 1996. Currently, the analytical data further the site characterization and demonstrate that the disposal cell's initial performance is in accordance with design requirements

  12. Hanford Waste Vitrification Plant Project Waste Form Qualification Program Plan

    International Nuclear Information System (INIS)

    Randklev, E.H.

    1993-06-01

    The US Department of Energy has created a waste acceptance process to help guide the overall program for the disposal of high-level nuclear waste in a federal repository. This Waste Form Qualification Program Plan describes the hierarchy of strategies used by the Hanford Waste Vitrification Plant Project to satisfy the waste form qualification obligations of that waste acceptance process. A description of the functional relationship of the participants contributing to completing this objective is provided. The major activities, products, providers, and associated scheduling for implementing the strategies also are presented

  13. Los Alamos National Laboratory transuranic waste quality assurance project plan. Revision 1

    International Nuclear Information System (INIS)

    1997-01-01

    This Transuranic (TRU) Waste Quality Assurance Project Plan (QAPjP) serves as the quality management plan for the characterization of transuranic waste in preparation for certification and transportation. The Transuranic Waste Characterization/Certification Program (TWCP) consists of personnel who sample and analyze waste, validate and report data; and provide project management, quality assurance, audit and assessment, and records management support, all in accordance with established requirements for disposal of TRU waste at the Waste Isolation Pilot Plant (WIPP) facility. This QAPjP addresses how the TWCP meets the quality requirements of the Carlsbad Area Office (CAO) Quality Assurance Program Description (QAPD) and the technical requirements of the Transuranic Waste Characterization Quality Assurance Program Plan (QAPP). The TWCP characterizes and certifies retrievably stored and newly generated TRU waste using the waste selection, testing, sampling, and analytical techniques and data quality objectives (DQOs) described in the QAPP, the Los Alamos National Laboratory Transuranic Waste Certification Plan (Certification Plan), and the CST Waste Management Facilities Waste Acceptance Criteria and Certification [Los Alamos National Laboratory (LANL) Waste Acceptance Criteria (WAC)]. At the present, the TWCP does not address remote-handled (RH) waste

  14. UMTRA project water sampling and analysis plan -- Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-02-01

    Water sampling and analysis plan (WSAP) is required for each U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site to provide a basis for ground water and surface water sampling at disposal and former processing sites. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring stations at the Navaho Reservation in Shiprock, New Mexico, UMTRA Project site. The purposes of the water sampling at Shiprock for fiscal year (FY) 1994 are to (1) collect water quality data at new monitoring locations in order to build a defensible statistical data base, (2) monitor plume movement on the terrace and floodplain, and (3) monitor the impact of alluvial ground water discharge into the San Juan River. The third activity is important because the community of Shiprock withdraws water from the San Juan River directly across from the contaminated alluvial floodplain below the abandoned uranium mill tailings processing site

  15. The Fermilab ISDN Pilot Project: Experiences and future plans

    Energy Technology Data Exchange (ETDEWEB)

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1995-12-31

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen users were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. Each home was equipped with a basic rate ISDN (BRI) line, a BRI Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking.

  16. The Fermilab ISDN Pilot Project: Experiences and future plans

    International Nuclear Information System (INIS)

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1995-01-01

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen users were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. Each home was equipped with a basic rate ISDN (BRI) line, a BRI Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking

  17. The Fermilab ISDN pilot project: experiences and future plans

    International Nuclear Information System (INIS)

    Martin, D.E.; Lego, A.J.; Clifford, A.E.

    1996-01-01

    Fully operational in June of 1994, the Fermilab ISDN Pilot Project was started to gain insight into the costs and benefits of providing ISDN service to the homes of Fermilab researchers. Fourteen were chosen from throughout Fermilab, but the number of Fermilab-employed spouses pushed the total user count to 20. each home was equipped with a basic rate ISDN (BRI) Ethernet half-bridge, and an NT-1. An inter-departmental team coordinated the project. Usage at each home was tracked and frequent surveys were attempted. Lessons learned include: working with Ameritech can be difficult; careful monitoring is essential; and configuration of home computing equipment is very time consuming. Plans include moving entirely to primary rate ISDN hubs, support for different home ISDN equipment and better usage and performance tracking. (author)

  18. 7 CFR 275.18 - Project area/management unit corrective action plan.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 4 2010-01-01 2010-01-01 false Project area/management unit corrective action plan... SYSTEM Corrective Action § 275.18 Project area/management unit corrective action plan. (a) The State agency shall ensure that corrective action plans are prepared at the project area/management unit level...

  19. Managing uncertainty in flood protection planning with climate projections

    Directory of Open Access Journals (Sweden)

    B. Dittes

    2018-04-01

    Full Text Available Technical flood protection is a necessary part of integrated strategies to protect riverine settlements from extreme floods. Many technical flood protection measures, such as dikes and protection walls, are costly to adapt after their initial construction. This poses a challenge to decision makers as there is large uncertainty in how the required protection level will change during the measure lifetime, which is typically many decades long. Flood protection requirements should account for multiple future uncertain factors: socioeconomic, e.g., whether the population and with it the damage potential grows or falls; technological, e.g., possible advancements in flood protection; and climatic, e.g., whether extreme discharge will become more frequent or not. This paper focuses on climatic uncertainty. Specifically, we devise methodology to account for uncertainty associated with the use of discharge projections, ultimately leading to planning implications. For planning purposes, we categorize uncertainties as either visible, if they can be quantified from available catchment data, or hidden, if they cannot be quantified from catchment data and must be estimated, e.g., from the literature. It is vital to consider the hidden uncertainty, since in practical applications only a limited amount of information (e.g., a finite projection ensemble is available. We use a Bayesian approach to quantify the visible uncertainties and combine them with an estimate of the hidden uncertainties to learn a joint probability distribution of the parameters of extreme discharge. The methodology is integrated into an optimization framework and applied to a pre-alpine case study to give a quantitative, cost-optimal recommendation on the required amount of flood protection. The results show that hidden uncertainty ought to be considered in planning, but the larger the uncertainty already present, the smaller the impact of adding more. The recommended planning is

  20. Healy Clean Coal Project, Healy, Alaska final Environmental Monitoring Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-14

    This Environmental Monitoring Plan (EMP) provides the mechanism to evaluate the integrated coal combustion/emission control system being demonstrated by the Healy Clean Coal Project (HCCP) as part-of the third solicitation of the US Department of Energy (DOE) Clean Coal Technology Demonstration Program (CCT-III). The EMP monitoring is intended to satisfy two objectives: (1) to develop the information base necessary for identification, assessment, and mitigation of potential environmental problems arising from replication of the technology and (2) to identify and quantify project-specific and site-specific environmental impacts predicted in the National Environmental Policy Act (NEPA) documents (Environmental Impact Statement and Record of Decision). The EMP contains a description of the background and history of development of the project technologies and defines the processes that will take place in the combustion and spray dryer absorber systems, including the formation of flash-calcined material (FCM) and its use in sulfur dioxide (SO{sub 2}) removal from the flue gases. It also contains a description of the existing environmental resources of the project area. The EMP includes two types of environmental monitoring that are to be used to demonstrate the technologies of the HCCP: compliance monitoring and supplemental monitoring. Compliance monitoring activities include air emissions, wastewater effluents, and visibility. Monitoring of these resources provide the data necessary to demonstrate that the power plant can operate under the required state and federal statutes, regulations, and permit requirements.

  1. Status and further plans for the Halden project MMS activities

    International Nuclear Information System (INIS)

    Oewre, Fridtjov

    2004-01-01

    The Halden Reactor Project is a joint undertaking of nuclear organizations in 19 countries sponsoring a jointly financed research programme under the auspices of the OECD NEA. The programme is renewed every third year. The three main research areas at the Halden Project are: Fuels-, Materials- and Man-Machine Systems (MMS) research. The MMS research addresses issues related to human-machine interaction in computerized control rooms as well as the development and test of new technology related to safe and reliable operation of nuclear power plants. The MMS research at the Halden Project is closely tied with experimental work in two laboratories constituting what is now called the MTO-labs (MTO=Man-Technology-Organization). The new MTO-lab building was opened in the spring 2004. One of the laboratories is the nuclear simulator-based Halden Man-Machine Laboratory (HAMMLAB). The other laboratory is called the Halden Virtual Reality Centre (HVRC). The paper first introduces the new MTO-lab and outlines Halden's capabilities of perform MMS research. Furthermore the paper discusses three selected topics addressed within the current Halden MMS programme focusing on our approach to obtain data for human reliability assessment, the work on design and evaluation of innovative human system interfaces and our work on integrated wearable computing technologies for field operators. A short overview of our plans for future research as part of the international Halden Reactor Project concludes the paper. (author)

  2. 7 CFR 1948.78 - Growth management and housing planning projects.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 13 2010-01-01 2009-01-01 true Growth management and housing planning projects. 1948... Impacted Area Development Assistance Program § 1948.78 Growth management and housing planning projects. (a) Existing plans for growth management and housing may be used to meet the planning requirements of this...

  3. Development and application of the methodology to establish life extension and modernization plan of aged hydropower plants

    International Nuclear Information System (INIS)

    Kim, Jong Sung; Kwon, Hyuck Cheon; Song, Byung Hun; Kwon, Chang Seop

    2009-01-01

    This paper provides how to establish an integrated plan for LE (Life Extension) and MD (MoDernization) of aged hydropower plants. The methodology is developed through review of overseas/domestic LE/MD histories, investigation of the previous overseas methodologies and consideration of domestic practices. The methodology includes reviews of the various factors such as condition, operation and maintenance history, up-to-date technology, and economic benefit. In order to establish the life extension/modernization plan, the methodology is applied to the domestic aged hydropower plants. Finally, priority rankings and draft practice plans for LE/MD are derived.

  4. Tracking planning and implementation interventions across regions and institutional boundaries: Failure to establish a uniform reporting language across government

    CSIR Research Space (South Africa)

    Brits, A

    2006-11-01

    Full Text Available delivery by government. Disparate information flows and a lack of alignment in semantic meaning that is differences in opinion of what constitutes a programme or project between established systems imply that information across organizations cannot...

  5. Quality assurance plan for the Objective Supply Capability Adaptive Redesign (OSCAR) project

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, K.A.; Rasch, K.A.; Reid, R.W.

    1996-11-01

    This document establishes the Quality Assurance Plan (QAP) for the National Guard Bureau Objective Supply Capability Adaptive Redesign (OSCAR) project activities under the Oak Ridge National Laboratory (ORNL) management. It defines the requirements and assigns responsibilities for ensuring, with a high degree of confidence, that project objectives will be achieved as planned. The QAP outlined herein is responsive to and meets the Quality Assurance Program standards for the U.S. Department of Energy (DOE), Lockheed Martin Energy Research Corporation and ORNL and the ORNL Computing, Robotics, and Education Directorate (CRE). This document is intended to be in compliance with DOE Order 5700.6C, Quality Assurance Program, and the ORNL Standard Practice Procedure, SPP X-QA-8, Quality Assurance for ORNL Computing Software. This standard allows individual organizations to apply the stated requirements in a flexible manner suitable to the type of activity involved. Section I of this document provides an introduction to the OSCAR project QAP; Sections 2 and 3 describe the specific aspects of quality assurance as applicable to the OSCAR project. Section 4 describes the project approach to risk management. The Risk Management Matrix given in Appendix A is a tool to assess, prioritize, and prevent problems before they occur. Therefore, the matrix will be reviewed and revised on a periodic basis.

  6. River Protection Project (RPP) Dangerous Waste Training Plan

    International Nuclear Information System (INIS)

    POHTO, R.E.

    2000-01-01

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E

  7. River Protection Project (RPP) Dangerous Waste Training Plan

    Energy Technology Data Exchange (ETDEWEB)

    POHTO, R.E.

    2000-03-09

    This supporting document contains the training plan for dangerous waste management at River Protection Project TSD Units. This document outlines the dangerous waste training program developed and implemented for all Treatment, Storage, and Disposal (TSD) Units operated by River Protection Project (RPP) in the Hanford 200 East, 200 West and 600 Areas and the <90 Day Accumulation Area at 209E. Operating TSD Units managed by RPP are: the Double-Shell Tank (DST) System, 204-AR Waste Unloading Facility, Grout, and the Single-Shell Tank (SST) System. The program is designed in compliance with the requirements of Washington Administrative Code (WAC) 173-303-330 and Title 40 Code of Federal Regulations (CFR) 265.16 for the development of a written dangerous waste training program and the Hanford Facility Permit. Training requirements were determined by an assessment of employee duties and responsibilities. The RPP training program is designed to prepare employees to operate and maintain the Tank Farms in a safe, effective, efficient, and environmentally sound manner. In addition to preparing employees to operate and maintain the Tank Farms under normal conditions, the training program ensures that employees are prepared to respond in a prompt and effective manner should abnormal or emergency conditions occur. Emergency response training is consistent with emergency responses outlined in the following Building Emergency Plans: HNF-IP-0263-TF and HNF-=IP-0263-209E.

  8. Regional cooperation planning. Project planning for JAEA/SNL regional cooperation on remote monitoring

    International Nuclear Information System (INIS)

    Olsen, John

    2006-01-01

    Developing cooperation between the JAEA's NPSTC and the NNCA may take advantage of bilateral activities between those parties and SNL. The merger of JNC and JAERI has affected the schedule for JAEA/SNL cooperation. Also, the evolution of the NNCA as an independent agency has slowed the projected schedule for cooperation between the JAEA and the NNCA. A potential schedule for establishment of a quadrilateral remote monitoring system may include interim activities, securing an agreement of some type, and actual establishment of VPN links. A parallel schedule might exist for informing other regional parties and gaining their interest. (author)

  9. Surfaced-based investigations plan, Volume 4: Yucca Mountain Project

    International Nuclear Information System (INIS)

    1988-12-01

    This document represents a detailed summary of design plans for surface-based investigations to be conducted for site characterization of the Yucca Mountain site. These plans are current as of December 1988. The description of surface-based site characterization activities contained in this document is intended to give all interested parties an understanding of the current plans for site characterization of Yucca Mountain. The maps presented in Volume 4 are products of the Geographic Information System (GIS) being used by the Yucca Mountain Project. The ARC/INFO GIS software, developed by Environmental Systems Research Institute, was used to digitize and process these SBIP maps. The maps were prepared using existing US Geological Survey (USGS) maps as a planimetric base. Roads and other surface features were interpreted from a variety of sources and entered into the GIS. Sources include the USGS maps, 1976 USGS orthophotoquads and aerial photography, 1986 and 1987 aerial photography, surveyed coordinates of field sites, and a combination of various maps, figures, descriptions and approximate coordinates of proposed locations for future activities

  10. Project management for small business: a streamlined approach from planning to completion

    National Research Council Canada - National Science Library

    Phillips, Joseph

    2012-01-01

    ... a Project Management Plan 81 72 Developing the Work Breakdown Structure 85 76 Selecting Your Project Management Software 83 65 CHAPTER 4: MANAGING PROJECT COSTS Building a Cost Management Frame...

  11. 324 Building liquid waste handling and removal system project plan

    Energy Technology Data Exchange (ETDEWEB)

    Ham, J.E.

    1998-07-29

    This report evaluates the modification options for handling radiological liquid waste generated during decontamination and cleanout of the 324 Building. Recent discussions indicate that the Hanford site railroad system will be closed by the end of FY 1998 necessitating the need for an alternate transfer method. The issue of handling of Radioactive Liquid Waste (RLW) from the 324 Building (assuming the 340 Facility is not available to accept the RLW) has been examined in at least two earlier engineering studies (Parsons 1997a and Hobart 1997). Each study identified a similar preferred alternative that included modifying the 324 Building RLWS to allow load-out of wastewater to a truck tanker, while making maximum use of existing piping, tanks, instrumentation, controls and other features to minimize costs and physical changes to the building. This alternative is accepted as the basis for further discussion presented in this study. The goal of this engineering study is to verify the path forward presented in the previous studies and assure that the selected alternative satisfies the 324 Building deactivation goals and objectives as currently described in the project management plan. This study will also evaluate options available to implement the preferred alternative and select the preferred option for implementation of the entire system. Items requiring further examination will also be identified. Finally, the study will provide a conceptual design, schedule and cost estimate for the required modifications to the 324 Building to allow removal of RLW. Attachment 5 is an excerpt from the project baseline schedule found in the Project Management Plan.

  12. A project to establish a skills competency matrix for EU nurses.

    Science.gov (United States)

    Cowan, David T; Norman, Ian J; Coopamah, Vinoda P

    Enhanced nurse workforce mobility in the European Union (EU) is seen as a remedy to shortages of nurses in some EU countries and a surplus in others. However, knowledge of differences in competence, culture, skill levels and working practices of nursing staff throughout EU countries is not fully documented because currently no tangible method exists to enable comparison. The European Healthcare Training and Accreditation Network (EHTAN) project intends to address this problem by establishing an assessment and evaluation methodology through the compilation of a skills competency matrix. To this end, subsequent to a review of documentation and literature on nursing competence definition and assessment, two versions of a nursing competence self-assessment questionnaire tool have been developed. The final competence matrix will be translated and disseminated for transnational use and it is hoped that this will inform EU and national policies on the training requirements of nurses and nursing mobility and facilitate the promotion of EU-wide recognition of nursing qualifications.

  13. Rac1 signaling in the establishment of the fucoid algal body plan

    Directory of Open Access Journals (Sweden)

    Whitney E Hable

    2014-12-01

    Full Text Available Fucoid zygotes use environmental vectors, including sunlight, to initiate a growth axis a few hours after fertilization. The first division is then transversely oriented by the growth axis, producing daughter cells of distinct fates. The tip growing rhizoid cell gives rise to the holdfast, anchoring the alga to the intertidal substratum, while the opposite thallus cell mainly generates the photosynthetic and reproductive stipe and fronds. Elaboration of this simple growth axis thus establishes the basic body plan of the adult; and elucidating the mechanisms responsible for formation of the growth axis is paramount to understanding fucoid morphogenesis. Recent studies have culminated in a model whereby sunlight, and perhaps other environmental cues, activate the signaling protein Rac1 at the rhizoid pole. Here it sets in motion nucleation of a patch of actin filaments that in turn, targets ions, proteins and cellular processes to the future growth site. At germination, Rac1 initiates morphogenesis by inducing transformation of the patch of actin filaments to a structure that delivers vesicles to the growing tip, and a few hours later orients the spindle and cytokinetic plate.

  14. STRATEGY AND PLANNING - PROJECT FOR MONITORING STRICTO SENSU POSTGRADUATE ALUMNI

    Directory of Open Access Journals (Sweden)

    Emerson Antonio Maccari

    2014-07-01

    Full Text Available The Coordination of Improvement of Higher Education Personnel (CAPES has been contributing to the development of post-graduate studies in Brazil, through its system of evaluation. Lately, CAPES signaled the importance of follow the professional performance of the alumni as a way to measure the quality of courses. One difficulty reported by institutions that intend to recognize the trajectory of its graduates is to compile a lot of isolated and outdated data. In order to structure the data collection and to assist educational managers in decision making, we propose the development of a system that enables the evolution of the students and alumni professional career, in order to diagnose the influence of the courses. Based on literature review, this study presents an analysis and makes recommendations about the Monitoring Alumni Project planning. As a result, it is expected that the analysis will serve as a driver for conducting the project, aiming to contribute to the academic reflections, and in practice, contribute to improve educational projects quality.

  15. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters

  16. Project Management Plan 105-KE Basin sludge retrieval and packaging

    International Nuclear Information System (INIS)

    McWethy, L.M.

    1994-01-01

    The KE Basin contains over 1,100 metric tons of spent nuclear fuel (SNF). The bulk of this inventory consists of over 50,000 zircaloy clad, uranium metal N-Reactor fuel element assemblies, along with less than half a metric ton of single-pass reactor fuel elements, stored in over 3,600 open top canister assemblies. In addition, sludge containing fissile and fission product material from damaged/degraded fuel has accumulated in the basin. The sludge, particularly the fines, impacts basin operations by clouding the water and making activities requiring a clear view impossible to complete until after sludge settles. Packaging would get the sludge out of the operator's way and allow it to be moved within the basin in a more manageable state. The primary project objective is to develop, procure, and quality the equipment needed to remove all sludge from the KE Basin with minimal dose commitment, minimal cost, and on schedule. The project will provide: (1) the development, testing, and installation of equipment for sludge retrieval and packaging; (2) understanding of and experience with actual sludge through near-term sludge packaging feature tests in the KE Basin; (3) sludge removal and handling equipment required to support debris removal, fuel handling, and other activities involving sludge within the KE Basin; and (4) enlist industry expertise in all phases of the project. This Project Management Plant establishes the organizational responsibilities, control systems, and procedures for the execution of project activities for KE Basin sludge retrieval packaging, to meet programmatic requirements within authorized funding and approved schedules

  17. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposal vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE

  18. Project Specific Quality Assurance Plan Project (QAPP) W-211 Initial Tank Retrieval Systems (ITRS)

    International Nuclear Information System (INIS)

    HALL, L.R.

    2000-01-01

    This Quality Assurance Program Plan (QAPP) provides information on how the Project Hanford Quality Assurance Program is implemented by CH2M HILL Hanford Group Inc (CHG) for managing the Initial Tank Retrieval Systems (ITRS), Project W-211. This QAPP is responsive to the CHG Quality Assurance Program Description (QAPD) (LMH-MP-599) which provides direction for compliance to 10 CFR 830 120, ''Nuclear Safety Management, Quality Assurance Requirements'', and DOE Order 5700 6C, ''Quality Assurance'' Project W-211 modifies existing facilities and provides systems for retrieval of radioactive wastes from selected double-shell tanks (DST). The contents of these tanks are a combination of supernatant liquids and settled solids. To retrieve waste from the tanks, it is first necessary to mix the liquid and solids prior to transferring the slurry to alternative storage or treatment facilities. The ITRS will provide systems to mobilize the settled solids and transfer the wastes out of the tanks. In so doing, ITRS provides feed for future processing plants, allows for consolidation of tank solids to manage space within existing DST storage capacity, and supports continued safe storage of tank waste. This project includes the design, procurement, construction, startup and turnover of these retrieval systems This QAPP identifies organizational structures and responsibilities. Implementing procedures used by CHG project management can be found in the CHG Quality Assurance Program (CHG QAP) Implementation Matrix located in HNF-IP-0842, Volume XI, Attachment Proposed verification and inspection activities for critical items within the scope of project W-211 are identified in Attachment 1 W-211. Project participants will identify the implementing procedures used by their organization within their QAF'Ps. This project specific QAPP is used to identify requirements in addition to the QAPD and provide, by reference, additional information to other project documents

  19. U.S. Department of Energy Uranium Mill Tailings Remedial Action Ground Water Project: Project plan

    International Nuclear Information System (INIS)

    1994-09-01

    The scope of the Project is to develop and implement a ground water compliance strategy for all 24 UMTRA Project processing sites. The compliance strategy for the processing sites must satisfy the proposed EPA ground water cleanup standards in 40 CFR Part 192, Subparts B and C (1987). This scope of work will entail the following activities on a site-specific basis: Develop a compliance strategy based on modification of the UMTRA Surface Project RAPs or develop Ground Water Project RAPs with NRC concurrence on the RAP and full participation of the affected states and tribes. Implement the RAP to include institutional controls, where appropriate, as an interim measure until compliance with the standards is achieved. Institute long-term verification monitoring for transfer to a separate long-term surveillance program on or before the Project end date. Prepare certification or confirmation reports and modify the long-term surveillance plan (LTSP), where needed, on those sites completed prior to the Project end date

  20. Development plan. High activity-long living wastes project. Abstract; Plan de developpement. Projet HAVL. Resume

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2007-07-01

    This brochure presents the actions that the ANDRA (the French national agency of radioactive wastes) has to implement in the framework of the project of high activity-long living (HALL) radioactive wastes (HAVL project) conformably to the requirements of the program defined in the law from June 28, 2006 (law no 2006-739). This law precises the three, complementary, research paths to explore for the management of this type of wastes: separation and transmutation of long-living radioactive elements, reversible disposal in deep geologic underground, and long duration storage. The ANDRA's action concerns the geologic disposal aspect. The following points are presented: the HALL wastes and their containers, the reversible disposal procedure, the HAVL project: financing of researches, storage concepts, development plan of the project (dynamics, information and dialogue approach, input data, main steps, schedule); the nine programs of the HAVL project (laboratory experiments and demonstration tests, surface survey, scientific program, simulation program, surface engineering studies and technological tests, information and communication program, program of environment and facilities surface observation and monitoring, waste packages management, monitoring and transport program, disposal program); the five transverse technical and scientific activities (safety, reversibility, cost, health and occupational safety, impact study). (J.S.)

  1. Quality initiatives: planning, setting up, and carrying out radiology process improvement projects.

    Science.gov (United States)

    Tamm, Eric P; Szklaruk, Janio; Puthooran, Leejo; Stone, Danna; Stevens, Brian L; Modaro, Cathy

    2012-01-01

    In the coming decades, those who provide radiologic imaging services will be increasingly challenged by the economic, demographic, and political forces affecting healthcare to improve their efficiency, enhance the value of their services, and achieve greater customer satisfaction. It is essential that radiologists master and consistently apply basic process improvement skills that have allowed professionals in many other fields to thrive in a competitive environment. The authors provide a step-by-step overview of process improvement from the perspective of a radiologic imaging practice by describing their experience in conducting a process improvement project: to increase the daily volume of body magnetic resonance imaging examinations performed at their institution. The first step in any process improvement project is to identify and prioritize opportunities for improvement in the work process. Next, an effective project team must be formed that includes representatives of all participants in the process. An achievable aim must be formulated, appropriate measures selected, and baseline data collected to determine the effects of subsequent efforts to achieve the aim. Each aspect of the process in question is then analyzed by using appropriate tools (eg, flowcharts, fishbone diagrams, Pareto diagrams) to identify opportunities for beneficial change. Plans for change are then established and implemented with regular measurements and review followed by necessary adjustments in course. These so-called PDSA (planning, doing, studying, and acting) cycles are repeated until the aim is achieved or modified and the project closed.

  2. Construction quality assurance program plan for the WIPP project, Carlsbad, NM

    International Nuclear Information System (INIS)

    1987-05-01

    The purpose of this plan is to describe the Quality Assurance (QA) Program to be established and implemented by the US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Project Office (WPO) and by the Major Project Participants: the Architect-Engineer (Bechtel), the Construction Manager (US Army Corps of Engineers), the Scientific Advisor (Sandia National Laboratory), and the Management and Operating Contractor (Westinghouse Electric Corporation). This plan addresses the construction, including site evaluation, design, and turnover phases of WIPP. Other work in progress during the same period is controlled by DOE documents applicable to that work effort. The prime responsibility for ensuring the quality of construction rests with the DOE WIPP Project Office and is implemented through the combined efforts of the Construction Manager, the Construction Contractors, the Management and Operating Contractor, and the Architect-Engineer. Inspection and burden of proof of acceptability rests with the Construction Contractor as defined by the technical provisions of the contract and as otherwise specified by the DOE WIPP Project Office on an individual work-package basis. To the maximum extent possible, acceptance of work will be based upon first-hand witnessing by the Construction Manager and other representatives of the DOE organization

  3. DECHEM: A remedial planning tool for metallic contaminants in soil at UMTRA Project sites

    International Nuclear Information System (INIS)

    1989-03-01

    The DECHEM (DEcontamination of CHEMicals) method was developed for the Uranium Mill Tailings Remedial Action (UMTRA) Project to guide characterization and remedial planning for metals contamination in soils. This is necessary because non-radiological hazardous constituents may be more mobile than radium-226 (Ra-226), and hence may migrate more deeply into subpile soils (beneath tailings that are to be relocated) or into adjacent contaminated soils at UMTRA Project sites. The result is that remedial action to the Ra-226 excavation limit, as specified in the US Environmental Protection Agency (EPA) standards, may not adequately remove hazardous non-radiological contamination. Unmitigated, these contaminants in soil may cause health risks because of their presence in resuspended particles, their uptake by crops or fodder their seepage into aquifers used for drinking water or other possible exposure pathways. The DECHEM method was developed in response to the need for advanced planning for the remediation of chemical contaminants at UMTRA Project sites, and includes the following elements: Establishment of acceptable exposure rates for humans to chemicals, based on EPA guidelines or other toxicological literature. Modeling of chemical migration through environmental pathways from a remediated UMTRA Project site to humans. Determination of allowable residual concentrations (i.e., cleanup guidelines) for chemicals in soils that results in doses to humans that are below established acceptable exposure rates. The initial development and application of the DECHEM method has focused upon hazardous metallic contaminants such as arsenic, lead, molybdenum, and selenium, which are known to occur in elevated concentrations at some UMTRA Project sites

  4. Advanced Seismic Probabilistic Risk Assessment Demonstration Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Coleman, Justin [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    Idaho National Laboratories (INL) has an ongoing research and development (R&D) project to remove excess conservatism from seismic probabilistic risk assessments (SPRA) calculations. These risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. This report presents a plan for improving our current traditional SPRA process using a seismic event recorded at a nuclear power plant site, with known outcomes, to improve the decision making process. SPRAs are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in general this approach has been conservative, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility).

  5. Planning and progress of the WAGR decommissioning project

    International Nuclear Information System (INIS)

    Boorman, T.

    1988-01-01

    In the United Kingdom, the earliest production reactors, which will be decommissioned first, are of the Magnox type. The Windscale Advanced Gas-cooled Reactor, is however, sufficiently similar to make it a suitable prototype decommissioning project. The planning and progress so far is described. Special decommissioning equipment, including a remote dismantling machine, has been developed and a waste packaging building built on site. Its function is to enable all intermediate-level and low-level radioactive waste removed from the reactor vault by remote equipment to be packaged remotely into suitable containers. The work done on the WAGR decommissioning has shown that the dismantling of a power-producing reactor is feasible and can be accomplished using existing engineering techniques. (U.K.)

  6. 105-C Reactor interim safe storage project technology integration plan

    International Nuclear Information System (INIS)

    Pulsford, S.K.

    1997-01-01

    The 105-C Reactor Interim Safe Storage Project Technology Integration Plan involves the decontamination, dismantlement, and interim safe storage of a surplus production reactor. A major goal is to identify and demonstrate new and innovative D and D technologies that will reduce costs, shorten schedules, enhance safety, and have the potential for general use across the RL complex. Innovative technologies are to be demonstrated in the following areas: Characterization; Decontamination; Waste Disposition; Dismantlement, Segmentation, and Demolition; Facility Stabilization; and Health and Safety. The evaluation and ranking of innovative technologies has been completed. Demonstrations will be selected from the ranked technologies according to priority. The contractor team members will review and evaluate the demonstration performances and make final recommendations to DOE

  7. Single-Shell Tank (SST) Retrieval Project Plan for Tank 241-C-104 Retrieval

    International Nuclear Information System (INIS)

    DEFIGH PRICE, C.

    2000-01-01

    In support of the SST Interim Closure Project, Project W-523 ''Tank 241-C-104 Waste Retrieval System'' will provide systems for retrieval and transfer of radioactive waste from tank 241-C-104 (C-104) to the DST staging tank 241-AY-101 (AY-101). At the conclusion of Project W-523, a retrieval system will have been designed and tested to meet the requirements for Acceptance of Beneficial Use and been turned over to operations. Completion of construction and operations of the C-104 retrieval system will meet the recently proposed near-term Tri-Party Agreement milestone, M-45-03F (Proposed Tri-Party Agreement change request M-45-00-01A, August, 30 2000) for demonstrating limits of retrieval technologies on sludge and hard heels in SSTs, reduce near-term storage risks associated with aging SSTs, and provide feed for the tank waste treatment plant. This Project Plan documents the methodology for managing Project W-523; formalizes responsibilities; identifies key interfaces required to complete the retrieval action; establishes the technical, cost, and schedule baselines; and identifies project organizational requirements pertaining to the engineering process such as environmental, safety, quality assurance, change control, design verification, testing, and operational turnover

  8. Concept and Establishment of the Mine Information System within the CROMAC GIP Project

    Directory of Open Access Journals (Sweden)

    Zvonko Biljecki

    2006-12-01

    Full Text Available In order to solve mine problems in the Republic of Croatia, a unique project CROMAC GIP (Croatian Mine Action Centre Geoinformation Project has been initiated significantly increasing the functional quality of the existing Mine Information System (MIS. Since mine problems are closely related to space, geodata are a crucial part of MIS intended for monitoring and planning of demining. Since the moment the Croatian Mine Action Centre was funded till today, the process of demining has progressed. The implementation of a topographic database in accordance with the CROTIS data model and the usage of orthophoto data produced according to the official product specifications can be pointed out in that progress. Usage of such geodata requires a sophisticated information system that enables a simultaneous usage of geodata and other data connected with solving mine problems. In order to reach all goals in demining and to use all advantages of geodata, it was indispensable to upgrade the existing Mine Information System by merging geodata and HCR data and to collect new data according to the standardized procedures, but controlling at the same time the quality and automated procedures of uploading into the system. Apart from being constructed in accordance with the Standard Operative Procedures (SOP, the modernised MIS is also based on generally accepted standards in the field of geoinformation and it is implemented on advanced technology. The core of the system is the Oracle database, and GeoMedia is a WebMap Professional tool on the basis of which the distribution and the work with spatial data is possible on intranet/Internet. In order to achieve full efficiency of the system, it is necessary to provide high quality and updated geodata. In this respect, photogrammetric data are the most efficient solution.

  9. The Swedish National Defence Research Establishment and the plans for Swedish nuclear weapons

    International Nuclear Information System (INIS)

    Jonter, Thomas

    2001-03-01

    This study analyses the Swedish nuclear weapons research since 1945 carried out by the Swedish National Defence Research Establishment (FOA). The most important aspect of this research was dealing with protection in broad terms against nuclear weapons attacks. However, another aspect was also important from early on - to conduct research aiming at a possible production of nuclear weapons. FOA performed an extended research up to 1968, when the Swedish Government signed the Non-Proliferation Treaty (NPT), which meant the end of these production plans. Up to this date, five main investigations about the technical conditions were made, 1948, 1953, 1955, 1957 and 1965, which all together expanded the Swedish know-how to produce a bomb. The Swedish plans to procure nuclear weapons were not an issue in the debate until the mid 50's. The reason for this was simple, prior to 1954 the plans were secretly held within a small group of involved politicians, military and researchers. The change of this procedure did take place when the Swedish Supreme Commander in a public defence report in 1954 favoured a Swedish Nuclear weapons option. In 1958 FOA had reached a technical level that allowed the Parliament to make a decision. Two programs were proposed - the L-programme (the Loading Programme), to be used if the parliament would say yes to a production of nuclear weapons, and the S-programme (the Protection Programme), if the Parliament would say no. The debate on the issue had now created problems for the Social Democratic Government. The Prime Minister, Tage Erlander, who had earlier defended a procurement of nuclear weapons, was now forced to reach a compromise. The compromise was presented to the parliament in a creative manner that meant that only the S-programme would be allowed. The Government argued that the technical level did allow a 'freedom of action' up to at least the beginning of the 60's when Sweden was mature to make a decision on the issue. During this period

  10. Fluid management plan for the Project Shoal Area Offsites Subproject

    International Nuclear Information System (INIS)

    1996-08-01

    The US Department of Energy, Nevada Operations Office (DOE/NV) has initiated the Offsites Subproject to characterize the hazards posed to human health and the environment as a result of underground nuclear testing activities at facilities other than the Nevada Test Site (NTS). A primary Subproject objective is to gather adequate data to characterize the various Subproject sites through the collection of surface and subsurface soil samples and by drilling several wells for the collection of groundwater data. The Project Shoal Area (PSA) is one of the Subproject's Nevada sites and is subject to the requirements set forth in the Federal Facility Compliance Agreement and Consent Order (FFACO) (DOE, 1996a). In accordance with the FFACO, a Corrective Action Investigation Plan (CAIP) has been developed for work at the PSA (designated as Corrective Action Unit Number 416). This Fluid Management Plan (FMP) provides guidance for the management of fluids generated from wells constructed at the PSA. Long-term monitoring and future activities at the site, if required, will be set forth in additional documents as required by the FFACO. The ultimate method for disposition of fluids generated by site operations depends upon sample analysis and process knowledge in relation to fluid management criteria. Section 2 describes well site operations; Section 3 discusses fluid management criteria; Section 4 includes the fluid monitoring program; Section 5 presents the fluid management strategy; Section 6 provides for fluid management during routine well monitoring; and Section 7 contains reporting criteria

  11. The Possibility Of Using The Business Model Canvas In The Establishment Of An Operator' S Business Plan

    Directory of Open Access Journals (Sweden)

    Andrzej Tokarski

    2017-12-01

    The objective of the paper is to present both theoretical and practical possibilities of using the BMC in creating a business plan of an economic entity, which is a useful tool used especially by micro and small economic entities at the stage of establishing a business activity and a business model popular among product managers. The paper was written based on the literature of the subject of management and business plans creation.

  12. UMTRA Project water sampling and analysis plan, Gunnison, Colorado: Revision 1

    International Nuclear Information System (INIS)

    1994-11-01

    This water sampling and analysis plan summarizes the results of previous water sampling activities and the plan for future water sampling activities, in accordance with the Guidance Document for Preparing Sampling and Analysis Plans for UMTRA Sites. A buffer zone monitoring plan for the Dos Rios Subdivision is included as an appendix. The buffer zone monitoring plan was developed to ensure continued protection to the public from residual contamination. The buffer zone is beyond the area depicted as contaminated ground water due to former milling operations. Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually at the Gunnison processing site and disposal site. Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer at the Gunnison disposal site. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation

  13. Establishing a PR Plan for Each School: Guidelines to Plan for Public Relations and Marketing for Individual Schools.

    Science.gov (United States)

    Journal of Educational Public Relations, 1989

    1989-01-01

    Presented are two plans for elementary and secondary school public relations and marketing. Emphasized are staff, parent, principal and student communication skills as well as activities designed to assess community and parent concerns. (SI)

  14. Update on Plans to Establish a National Phenology Network in the U.S.A.

    Science.gov (United States)

    Betancourt, J.; Schwartz, M.; Breshears, D.; Cayan, D.; Dettinger, M.; Inouye, D.; Post, E.; Reed, B.; Gray, S.

    2005-12-01

    The passing of the seasons is the most pervasive source of climatic and biological variability on Earth, yet phenological monitoring has been spotty worldwide. Formal phenological networks were recently established in Europe and Canada, and we are now following their lead in organizing a National Phenology Network (NPN) for the U.S.A. With support from federal agencies (NSF, USGS, NPS, USDA-FS, EPA, NOAA, NASA), on Aug. 22-26 we organized a workshop in Tucson, Arizona to begin planning a national-scale, multi-tiered phenological network. A prototype for a web-based NPN and preliminary workshop results are available at http://www.npn.uwm.edu. The main goals of NPN will be to: (1) facilitate thorough understanding of phenological phenomena, including causes and effects; (2) provide ground truthing to make the most of heavy public investment in remote sensing data; (3) allow detection and prediction of environmental change for a wide of variety of applications; (4) harness the power of mass participation and engage tens of thousands of "citizen scientists" in meeting national needs in Education, Health, Commerce, Natural Resources and Agriculture; (5) develop a model system for substantive collaboration across different levels of government, academia and the private sector. Just as the national networks of weather stations and stream gauges are critical for providing weather, climate and water-related information, NPN will help safeguard and procure goods and services that ecosystems provide. We expect that NPN will consist of a four-tiered, expandable structure: 1) a backbone network linked to existing weather stations, run by recruited public observers; 2) A smaller, second tier of intensive observations, run by scientists at established research sites; 3) a much larger network of observations made by citizen scientists; and 4) remote sensing observations that can be validated with surface observations, thereby providing wall-to-wall coverage for the U.S.A. Key to

  15. Planning the Human Variome Project: The Spain Report†

    Science.gov (United States)

    Kaput, Jim; Cotton, Richard G. H.; Hardman, Lauren; Al Aqeel, Aida I.; Al-Aama, Jumana Y.; Al-Mulla, Fahd; Aretz, Stefan; Auerbach, Arleen D.; Axton, Myles; Bapat, Bharati; Bernstein, Inge T.; Bhak, Jong; Bleoo, Stacey L.; Blöcker, Helmut; Brenner, Steven E.; Burn, John; Bustamante, Mariona; Calzone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T.; Díaz, Carlos; Dobrowolski, Steven; dos Santos, M. Rosário N.; Ekong, Rosemary; Flanagan, Simon B.; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V.; Greenblatt, Marc S.; Hamosh, Ada; Hancock, John M.; Hardison, Ross; Harrison, Terence M.; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J.; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L.; Macrae, Finlay A.; Maglott, Donna; Marafie, Makia J.; Marsh, Steven G.E.; Matsubara, Yoichi; Messiaen, Ludwine M.; Möslein, Gabriela; Netea, Mihai G.; Norton, Melissa L.; Oefner, Peter J.; Oetting, William S.; O’Leary, James C.; de Ramirez, Ana Maria Oller; Paalman, Mark H.; Parboosingh, Jillian; Patrinos, George P.; Perozzi, Giuditta; Phillips, Ian R.; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J.; Ramesar, Rajkumar S.; Richards, C. Sue; Savige, Judith; Scheible, Dagmar G.; Scott, Rodney J.; Seminara, Daniela; Shephard, Elizabeth A.; Sijmons, Rolf H.; Smith, Timothy D.; Sobrido, María-Jesús; Tanaka, Toshihiro; Tavtigian, Sean V.; Taylor, Graham R.; Teague, Jon; Töpel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J.; Vihinen, Mauno; Watson, Michael; Webb, Elizabeth; Weber, Thomas K.; Yeager, Meredith; Yeom, Young I.; Yim, Seon-Hee; Yoo, Hyang-Sook

    2018-01-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Since variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008. PMID:19306394

  16. Planning the human variome project: the Spain report.

    Science.gov (United States)

    Kaput, Jim; Cotton, Richard G H; Hardman, Lauren; Watson, Michael; Al Aqeel, Aida I; Al-Aama, Jumana Y; Al-Mulla, Fahd; Alonso, Santos; Aretz, Stefan; Auerbach, Arleen D; Bapat, Bharati; Bernstein, Inge T; Bhak, Jong; Bleoo, Stacey L; Blöcker, Helmut; Brenner, Steven E; Burn, John; Bustamante, Mariona; Calzone, Rita; Cambon-Thomsen, Anne; Cargill, Michele; Carrera, Paola; Cavedon, Lawrence; Cho, Yoon Shin; Chung, Yeun-Jun; Claustres, Mireille; Cutting, Garry; Dalgleish, Raymond; den Dunnen, Johan T; Díaz, Carlos; Dobrowolski, Steven; dos Santos, M Rosário N; Ekong, Rosemary; Flanagan, Simon B; Flicek, Paul; Furukawa, Yoichi; Genuardi, Maurizio; Ghang, Ho; Golubenko, Maria V; Greenblatt, Marc S; Hamosh, Ada; Hancock, John M; Hardison, Ross; Harrison, Terence M; Hoffmann, Robert; Horaitis, Rania; Howard, Heather J; Barash, Carol Isaacson; Izagirre, Neskuts; Jung, Jongsun; Kojima, Toshio; Laradi, Sandrine; Lee, Yeon-Su; Lee, Jong-Young; Gil-da-Silva-Lopes, Vera L; Macrae, Finlay A; Maglott, Donna; Marafie, Makia J; Marsh, Steven G E; Matsubara, Yoichi; Messiaen, Ludwine M; Möslein, Gabriela; Netea, Mihai G; Norton, Melissa L; Oefner, Peter J; Oetting, William S; O'Leary, James C; de Ramirez, Ana Maria Oller; Paalman, Mark H; Parboosingh, Jillian; Patrinos, George P; Perozzi, Giuditta; Phillips, Ian R; Povey, Sue; Prasad, Suyash; Qi, Ming; Quin, David J; Ramesar, Rajkumar S; Richards, C Sue; Savige, Judith; Scheible, Dagmar G; Scott, Rodney J; Seminara, Daniela; Shephard, Elizabeth A; Sijmons, Rolf H; Smith, Timothy D; Sobrido, María-Jesús; Tanaka, Toshihiro; Tavtigian, Sean V; Taylor, Graham R; Teague, Jon; Töpel, Thoralf; Ullman-Cullere, Mollie; Utsunomiya, Joji; van Kranen, Henk J; Vihinen, Mauno; Webb, Elizabeth; Weber, Thomas K; Yeager, Meredith; Yeom, Young I; Yim, Seon-Hee; Yoo, Hyang-Sook

    2009-04-01

    The remarkable progress in characterizing the human genome sequence, exemplified by the Human Genome Project and the HapMap Consortium, has led to the perception that knowledge and the tools (e.g., microarrays) are sufficient for many if not most biomedical research efforts. A large amount of data from diverse studies proves this perception inaccurate at best, and at worst, an impediment for further efforts to characterize the variation in the human genome. Because variation in genotype and environment are the fundamental basis to understand phenotypic variability and heritability at the population level, identifying the range of human genetic variation is crucial to the development of personalized nutrition and medicine. The Human Variome Project (HVP; http://www.humanvariomeproject.org/) was proposed initially to systematically collect mutations that cause human disease and create a cyber infrastructure to link locus specific databases (LSDB). We report here the discussions and recommendations from the 2008 HVP planning meeting held in San Feliu de Guixols, Spain, in May 2008. (c) 2009 Wiley-Liss, Inc.

  17. Quality Assurance Program Plan (QAPP) Waste Management Project

    Energy Technology Data Exchange (ETDEWEB)

    VOLKMAN, D.D.

    1999-10-27

    This document is the Quality Assurance Program Plan (QAPP) for Waste Management Federal Services of Hanford, Inc. (WMH), that implements the requirements of the Project Hanford Management Contract (PHMC), HNF-MP-599, Project Hanford Quality Assurance Program Description (QAPD) document, and the Hanford Federal Facility Agreement with Consent Order (Tri-Party Agreement), Sections 6.5 and 7.8. WHM is responsible for the treatment, storage, and disposal of liquid and solid wastes generated at the Hanford Site as well as those wastes received from other US Department of Energy (DOE) and non-DOE sites. WMH operations include the Low-Level Burial Grounds, Central Waste Complex (a mixed-waste storage complex), a nonradioactive dangerous waste storage facility, the Transuranic Storage Facility, T Plant, Waste Receiving and Processing Facility, 200 Area Liquid Effluent Facility, 200 Area Treated Effluent Disposal Facility, the Liquid Effluent Retention Facility, the 242-A Evaporator, 300 Area Treatment Effluent Disposal Facility, the 340 Facility (a radioactive liquid waste handling facility), 222-S Laboratory, the Waste Sampling and Characterization Facility, and the Hanford TRU Waste Program.

  18. The Texts of the Instruments connected with the Agency's Assistance to Finland in Establishing a Sub-Critical Assemblies Project

    International Nuclear Information System (INIS)

    1964-01-01

    The text of the Project Agreement between the Agency and the Government of Finland in connection with the Agency's assistance to that Government in establishing a sub-critical assemblies project is reproduced in Part I of this document for the information of all Members. This Agreement entered into force on 30 July 1963

  19. The Texts of the Instruments connected with the Agency's Assistance to Finland in Establishing a Sub-Critical Assemblies Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-02-10

    The text of the Project Agreement between the Agency and the Government of Finland in connection with the Agency's assistance to that Government in establishing a sub-critical assemblies project is reproduced in Part I of this document for the information of all Members. This Agreement entered into force on 30 July 1963.

  20. Site study plan for Playa investigations, Deaf Smith County, Texas: Salt Repository Project

    International Nuclear Information System (INIS)

    1987-01-01

    This plan defines the purpose and objectives of the Playa Investigation Study, presents a plan of work to provide the information necessary to resolve issues, and discusses the rationale for test method selection. The required information will be obtained from existing well drilling records, describing and testing of soil and rock samples recovered from project test holes, geophysical well logs, seismic surveys, and shallow test pits excavated at ground surface. There have been numerous, often conflicting, theories presented to explain the origin(s) of the playas of the Texas High Plains. The primary purpose of this study is to establish if existing playas and playa alignments are related to deeper subsurface structure, such as faulting or salt dissolution, the potential for future playa development, and the significance of existing and/or future playas on siting a repository in Deaf Smith County, Texas. 11 refs

  1. Project management plan double-shell tank system specification development

    International Nuclear Information System (INIS)

    Conrads, T.J.

    1998-01-01

    The Project Hanford Management Contract (PHMC) members have been tasked by the US Department of Energy (DOE) to support removal of wastes from the Hanford Site 200 Area tanks in two phases. The schedule for these phases allows focusing on requirements for the first phase of providing feed to the privatized vitrification plants. The Tank Waste Retrieval Division near-term goal is to focus on the activities to support Phase 1. These include developing an integrated (technical, schedule, and cost) baseline and, with regard to private contractors, establishing interface agreements, constructing infrastructure systems, retrieving and delivering waste feed, and accepting immobilized waste products for interim onsite storage. This document describes the process for developing an approach to designing a system for retrieving waste from double-shell tanks. It includes a schedule and cost account for the work breakdown structure task

  2. Solid waste information and tracking system server conversion project management plan

    International Nuclear Information System (INIS)

    MAY, D.L.

    1999-01-01

    The Project Management Plan governing the conversion of Solid Waste Information and Tracking System (SWITS) to a client-server architecture. The Solid Waste Information and Tracking System Project Management Plan (PMP) describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion will be released as supporting documents

  3. Planning "and" Sprinting: Use of a Hybrid Project Management Methodology within a CIS Capstone Course

    Science.gov (United States)

    Baird, Aaron; Riggins, Frederick J.

    2012-01-01

    An increasing number of information systems projects in industry are managed using hybrid project management methodologies, but this shift in project management methods is not fully represented in our CIS curriculums. CIS capstone courses often include an applied project that is managed with traditional project management methods (plan first,…

  4. Waste Management Project Quality Assurance Program Plan (QAPP)

    International Nuclear Information System (INIS)

    HORHOTA, M.J.

    2000-01-01

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence

  5. Quality Assurance Program Plan (QAPP) Waste Management Project

    Energy Technology Data Exchange (ETDEWEB)

    HORHOTA, M.J.

    2000-12-21

    The Waste Management Project (WMP) is committed to excellence in our work and to delivering quality products and services to our customers, protecting our employees and the public and to being good stewards of the environment. We will continually strive to understand customer requirements, perform services, and activities that meet or exceed customer expectations, and be cost-effective in our performance. The WMP maintains an environment that fosters continuous improvement in our processes, performance, safety and quality. The achievement of quality will require the total commitment of all WMP employees to our ethic that Quality, Health and Safety, and Regulatory Compliance must come before profits. The successful implementation of this policy and ethic requires a formal, documented management quality system to ensure quality standards are established and achieved in all activities. The following principles are the foundation of our quality system. Senior management will take full ownership of the quality system and will create an environment that ensures quality objectives are met, standards are clearly established, and performance is measured and evaluated. Line management will be responsible for quality system implementation. Each organization will adhere to all quality system requirements that apply to their function. Every employee will be responsible for their work quality, to work safely and for complying with the policies, procedures and instructions applicable to their activities. Quality will be addressed and verified during all phases of our work scope from proposal development through closeout including contracts or projects. Continuous quality improvement will be an ongoing process. Our quality ethic and these quality principles constantly guide our actions. We will meet our own quality expectations and exceed those of our customers with vigilance, commitment, teamwork, and persistence.

  6. White plan and crisis management. Help guide for the elaboration of extended white plans and of white plans for health establishments. Issue 2006, appendix to circular nr DHOS/CGR/2006/401 of 2006 September 14

    International Nuclear Information System (INIS)

    2006-01-01

    White plans are specific emergency plans to be implemented in public and private health establishments. While introducing necessary modifications and taking public health policy effects into account, this document first defines crises and their management (levels of intervention from the local to the national level, typology of emergency plans, emergency medical chain, extended white plans). The second part proposes a set of sheets which aim to be a support in the elaboration of the extended white plan and of the white plan. The third part, based on professional contributions and lessons learned, addresses two important issues: firstly, the crisis management exercise, and secondly the hospital under tension and white plan triggering thresholds

  7. H2020 692819 SIMPATICO - D1.1: Project Management Plan

    OpenAIRE

    Forner, Pamela; Gerosa, Matteo; Folograna, Antonio

    2017-01-01

    This document is the deliverable “D1.1 – Project Management Plan” of the European project “SIMPATICO - SIMplifying the interaction with Public Administration Through Information technology for Citizens and cOmpanies” (hereinafter also referred to as “SIMPATICO”, project reference: 692819). The SIMPATICO Project Management Plan (PMP) is the main planning document and describes how major aspects of the project are managed, monitored and controlled. It is intended to provide gu...

  8. Expedited technology demonstration project. Project baseline revision 2.2 and FY96 plan

    International Nuclear Information System (INIS)

    1996-07-01

    The Expedited Technology Demonstration Project Plan, Mixed Waste Management Facility (MWMF) current baseline. The revised plan will focus efforts specifically on the demonstration of an integrated Molten Salt Oxidation (MSO) system. In addition to the MSO primary unit, offgas, and salt recycle subsystems, the demonstrations will include feed preparation and feed delivery systems, and the generation of robust final forms from process mineral residues. A simplified process flow chart for the expedited demonstration is provided. To minimize costs and to accelerate the schedule for deployment, the integrated system will be staged in an existing facility at LLNL equipped to handle hazardous and radioactive materials. The MSO systems will be activated in fiscal year 97, followed by the activation of feed preparation and final forms in fiscal year 98

  9. Education Projects: Elaboration, Financing and Management. Fundamentals of Educational Planning, No. 38.

    Science.gov (United States)

    Magnen, Andre

    In many developing countries, the translation of political objectives to action projects is made difficult by the lack of training of staff of the ministry of education planning and managing units. This booklet deals with the implementation of these projects within the framework of the planning process. After defining projects, chapter 1 shows the…

  10. Project plan, Hazardous Materials Management and Emergency Response Training Center: Project 95L-EWT-100

    International Nuclear Information System (INIS)

    Borgeson, M.E.

    1994-01-01

    The Hazardous Materials Management and Emergency Response (HAMMER) Training Center will provide for classroom lectures and hands-on practical training in realistic situations for workers and emergency responders who are tasked with handling and cleanup of toxic substances. The primary objective of the HAMMER project is to provide hands-on training and classroom facilities for hazardous material workers and emergency responders. This project will also contribute towards complying with the planning and training provisions of recent legislation. In March 1989 Title 29 Code of Federal Regulations Occupational Safety and Health Administration 1910 Rules and National Fire Protection Association Standard 472 defined professional requirements for responders to hazardous materials incidents. Two general types of training are addressed for hazardous materials: training for hazardous waste site workers and managers, and training for emergency response organizations

  11. Project specific quality assurance plan for Project W-178, 219-S secondary containment

    International Nuclear Information System (INIS)

    Buckles, D.I.

    1994-01-01

    The scope of this Quality Assurance Program Plan (QAPP) is to provide a system of Quality Assurance reviews and verifications on the design, procurement and construction of the 219-S Secondary Containment Upgrade. The reviews and verifications will be on activities associated with design, procurement, and construction of the Secondary Containment Upgrade which includes, but is not limited to demolition, removal, new tank installation, tank 103 isolation, tank cell refurbishment, electrical, instrumentation, piping/tubing including supports, pump and valves, and special coatings. The full project scope is defined in the project Functional Design Criteria (FDC), SD-W178-FDC-001, and all activities must be in compliance with this FDC and related design documentation

  12. 75 FR 45584 - Planning and Establishment of State-Level Exchanges; Request for Comments Regarding Exchange...

    Science.gov (United States)

    2010-08-03

    ... governing board composition, etc.)? b. To what extent have States begun developing business plans or budgets... and what is the timing for such tasks? What kinds of business functions will need to be operational... operational functions (e.g., eligibility determination, plan qualification, data reporting, payment flows, etc...

  13. 77 FR 31647 - Establishing Indicators to Determine Whether State Plan Operations are At Least as Effective as...

    Science.gov (United States)

    2012-05-29

    ... working man and woman in the Nation safe and healthful working conditions * * *.'' The Act also encourages.... OSHA's mission is ``to assure safe and healthful working conditions for working men and women by... assessed the State Plans' progress toward achieving the performance goals established by their strategic...

  14. 77 FR 30903 - Connect America Fund; A National Broadband Plan for Our Future; Establishing Just and Reasonable...

    Science.gov (United States)

    2012-05-24

    ... America Fund; A National Broadband Plan for Our Future; Establishing Just and Reasonable Rates for Local Exchange Carriers; High-Cost Universal Service Support AGENCY: Federal Communications Commission. ACTION... of information collections associated with the Commission's; Connect America Fund; A National...

  15. 77 FR 35623 - Connect America Fund; a National Broadband Plan for Our Future; Establishing Just and Reasonable...

    Science.gov (United States)

    2012-06-14

    ... America Fund; a National Broadband Plan for Our Future; Establishing Just and Reasonable Rates for Local Exchange Carriers; High-Cost Universal Service Support AGENCY: Federal Communications Commission. ACTION... Fund, Report and Order (Order). The Commission submitted revisions to this information collection under...

  16. 78 FR 29655 - Connect America Fund; A National Broadband Plan for Our Future; Establishing Just and Reasonable...

    Science.gov (United States)

    2013-05-21

    ... Fund; A National Broadband Plan for Our Future; Establishing Just and Reasonable Rates for Local Exchange Carriers; High-Cost Universal Service Support AGENCY: Federal Communications Commission. ACTION.... Subpart D--Universal Service Support for High Cost Areas 0 2. In Sec. 54.313, revise paragraph (a)(9...

  17. Systems Engineering Implementation Plan for Single Shell Tanks (SST) Retrieval Projects

    Energy Technology Data Exchange (ETDEWEB)

    LEONARD, M.W.; HOFFERBER, G.A.

    2000-11-30

    This document communicates the planned implementation of the Systems Engineering processes and products for the SST retrieval projects as defined in the Systems Engineering Management Plan for the Tank Farm Contractor.

  18. Systems Engineering Implementation Plan for Single-Shell Tanks (SST) Retrieval Projects

    International Nuclear Information System (INIS)

    LEONARD, M.W.; HOFFERBER, G.A.

    2000-01-01

    This document communicates the planned implementation of the Systems Engineering processes and products for the SST retrieval projects as defined in the Systems Engineering Management Plan for the Tank Farm Contractor

  19. 75 FR 69698 - Central Valley Project Improvement Act, Criteria for Developing Refuge Water Management Plans

    Science.gov (United States)

    2010-11-15

    ... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Criteria for Developing Refuge Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The ``Criteria for Developing Refuge Water Management Plans'' (Refuge...

  20. Tank waste remediation system privatization phase I infrastructure, project W-519, Quality Assurance implementation plan

    International Nuclear Information System (INIS)

    HUSTON, J.J.

    1999-01-01

    This document has been prepared to identify the quality requirements for all products/activities developed by or for Project W-519. This plan is responsive to the Numatec Hanford Corporation, Quality Assurance Program Plan, NHC-MP-001

  1. Institutional interventions in complex urban systems: Coping with boundary issues in urban planning projects

    NARCIS (Netherlands)

    S. Verweij (Stefan); I.F. van Meerkerk (Ingmar); J.F.M. Koppenjan (Joop); H. Geerlings (Harry)

    2014-01-01

    markdownabstract__Abstract__ Urban planning projects are planned and organized through arrangements between actors. These arrangements are institutional interventions: they intervene in the institutional landscape as existing organizational boundaries are (temporarily) redrawn. Such boundary

  2. Environmental permits and approvals plan for high-level waste interim storage, Project W-464

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1998-01-01

    This report discusses the Permitting Plan regarding NEPA, SEPA, RCRA, and other regulatory standards and alternatives, for planning the environmental permitting of the Canister Storage Building, Project W-464

  3. Solid Waste Information and Tracking System Server Conversion Project Management Plan

    International Nuclear Information System (INIS)

    GLASSCOCK, J.A.

    2000-01-01

    The Project Management Plan governing the conversion of SWITS to a client-server architecture. The PMP describes the background, planning and management of the SWITS conversion. Requirements and specification documentation needed for the SWITS conversion

  4. Permitting plan for the immobilized low-activity waste project

    International Nuclear Information System (INIS)

    Deffenbaugh, M.L.

    1997-01-01

    This document addresses the environmental permitting requirements for the transportation and interim storage of the Immobilized Low-Activity Waste (ILAW) produced during Phase 1 of the Hanford Site privatization effort. Tri-Party Agreement (TPA) Milestone M-90 establishes a new major milestone, and associated interim milestones and target dates, governing acquisition and/or modification of facilities necessary for: (1) interim storage and disposal of Tank Waste Remediation Systems (TWRS) immobilized low-activity tank waste (ILAW) and (2) interim storage of TWRS immobilized HLW (IHLW) and other canistered high-level waste forms. Low-activity waste (LAW), low-level waste (LLW), and high-level waste (HLW) are defined by the TWRS, Hanford Site, Richland, Washington, Final Environmental Impact Statement (EIS) DOE/EIS-0189, August 1996 (TWRS, Final EIS). By definition, HLW requires permanent isolation in a deep geologic repository. Also by definition, LAW is ''the waste that remains after separating from high-level waste as much of the radioactivity as is practicable that when solidified may be disposed of as LLW in a near-surface facility according to the NRC regulations.'' It is planned to store/dispose of (ILAW) inside four empty vaults of the five that were originally constructed for the Group Program. Additional disposal facilities will be constructed to accommodate immobilized LLW packages produced after the Grout Vaults are filled. The specifications for performance of the low-activity vitrified waste form have been established with strong consideration of risk to the public. The specifications for glass waste form performance are being closely coordinated with analysis of risk. RL has pursued discussions with the NRC for a determination of the classification of the Hanford Site's low-activity tank waste fraction. There is no known RL action to change law with respect to onsite disposal of waste

  5. UMTRA project water sampling and analysis plan, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1994-04-01

    The Mexican Hat, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site is a former uranium mill that is undergoing surface remediation in the form of on-site tailings stabilization. Contaminated surface materials from the Monument Valley, Arizona, UMTRA Project site have been transported to the Mexican Hat site and are being consolidated with the Mexican Hat tailings. The scheduled completion of the tailings disposal cell is August 1995. Water is found in two geologic units at the site: the Halgaito Shale Formation and the Honaker Trail Formation. The tailings rest on the Halgaito Shale, and water contained in that unit is a result of milling activities and, to a lesser extent, water released from the tailings from compaction during remedial action construction of the disposal cell. Water in the Halgaito Shale flows through fractures and discharges at seeps along nearby arroyos. Flow from the seeps will diminish as water drains from the unit. Ground water in the lower unit, the Honaker Trail Formation, is protected from contamination by an upward hydraulic gradient. There are no nearby water supply wells because of widespread poor background ground water quality and quantity, and the San Juan River shows no impacts from the site. This water sampling and analysis plan (WSAP) recommends sampling six seeps and one upgradient monitor well compared in the Honaker Trail Formation. Samples will be taken in April 1994 (representative of high group water levels) and September 1994 (representative of low ground water levels). Analyses will be performed on filtered samples for plume indicator parameters

  6. Evaluating Levels of Project Planning and their Effects on Performance in the Nigerian Construction Industry

    Directory of Open Access Journals (Sweden)

    Godwin Idoro

    2012-11-01

    Full Text Available This study compares the level of project planning on public andprivate sectors projects and its impact on performance. Thepurpose is to create awareness of the level and effectivenessof the planning done by public and private clients in the deliveryof construction projects. A questionnaire survey administeredto a sample of 130 client representatives selected by stratifi edrandom sampling from the population of public and private clientsin the Nigerian construction industry is used and analysed usingdescriptive statistics, the t-test and Spearman correlation test. Theresults show that the level of preconstruction planning on privatesector projects is higher than that of public sector projects whilethe level of contract planning done by the latter is higher thanthat of the former. Furthermore, the performance of private sectorprojects is higher than that of public sector projects in many of theparameters used. However, the level of preparation of life-cyclecharts that concern project delivery time in both public and privatesectors projects is low and the level of project planning in the twocategories of projects has a limited impact on project performance.The understanding of how public and private sectors projectsperform in planning and its impact are expected to assist publicand private clients to know the challenges ahead of them in theireffort to improve the planning and performance of their projects.

  7. Project plan for the Background Soil Characterization Project on the Oak Ridge Reservation, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1992-08-01

    The Background Soil characterization Project (BSCP) will provide background concentration levels of selected metals, organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents

  8. Seismic safety margins research program. Project VIII load combination project: work plan

    International Nuclear Information System (INIS)

    Chou, C.K.; Vepa, K.; George, L.; Smith, P.D.

    1979-01-01

    The proposed load combination project has the following overall objectives: develop a methodology for appropriate combination of dynamic loads for nuclear power plants under normal plant operation, transients, accidents, and natural hazards; establish design criteria, load factors, and component service levels for appropriate combinations of dynamic loads or responses to be used in nuclear power plant design; determine the reliability of typical piping systems, both inside and outside the containment structure, and provide the NRC with a sound technical basis for defining the criteria for postulating pipe breaks; and determine the probabilities of a large LOCA induced directly and indirectly by a range of earthquakes

  9. Project plan for the Background Soil Characterization Project on the Oak Ridge Reservation, Oak Ridge, Tennessee

    Energy Technology Data Exchange (ETDEWEB)

    1992-08-01

    The Background Soil characterization Project (BSCP) will provide background concentration levels of selected metals, organic compounds, and radionuclides in soils from uncontaminated on-site areas at the Oak Ridge Reservation (ORR), and off-site in the western part of Roane County and the eastern part of Anderson County. The BSCP will establish a database, recommend how to use the data for contaminated site assessment, and provide estimates of the potential human health and environmental risks associated with the background level concentrations of potentially hazardous constituents.

  10. Significance of preoperative planning software for puncture and channel establishment in percutaneous endoscopic lumbar DISCECTOMY: A study of 40 cases.

    Science.gov (United States)

    Hu, Zhouyang; Li, Xinhua; Cui, Jian; He, Xiaobo; Li, Cong; Han, Yingchao; Pan, Jie; Yang, Mingjie; Tan, Jun; Li, Lijun

    2017-05-01

    Preoperative planning software has been widely used in many other minimally invasive surgeries, but there is a lack of information describing the clinical benefits of existing software applied in percutaneous endoscopic lumbar discectomy (PELD). This study aimed to compare the clinical efficacy of preoperative planning software in puncture and channel establishment of PELD with routine methods in treating lumbar disc herniation (LDH). From June 2016 to October 2016, 40 patients who had single L4/5 or L5/S1 disc herniation were divided into two groups. Group A adopted planning software for preoperative puncture simulation while Group B took routine cases discussion for making puncture plans. The channel establishment time, operative time, fluoroscopic times and complications were compared between the two groups. The surgical efficacy was evaluated according to the Visual Analogue Scale (VAS), Oswestry Disability Index (ODI) and modified Macnab's criteria. The mean channel establishment time was 25.1 ± 4.2 min and 34.6 ± 5.4 min in Group A and B, respectively (P  0.05). The findings of modified Macnab's criteria at each follow-up also showed no significant differences (P > 0.05). The application of preoperative planning software in puncture and cannula insertion planning in PELD was easy and reliable, and could reduce the channel establishment time, operative time and fluoroscopic times of PELD significantly. Copyright © 2017 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.

  11. The implementation goals of geoinformation support to planning and spatial management at the local level in the framework of the ONIX project

    Directory of Open Access Journals (Sweden)

    Franc J. Zakrajšek

    1999-01-01

    Full Text Available The project objective is to strengthen the development, establishment, maintenance and use of the geographical data bases in the processes of physical planning and urban management on local level. It is a part of the Slovenian environmental project Onix. The current state is the phase of implementation.

  12. 76 FR 77392 - Patient Protection and Affordable Care Act; Establishment of Consumer Operated and Oriented Plan...

    Science.gov (United States)

    2011-12-13

    ...,'' ``Exchange Functions in the Individual Market: Eligibility Determinations; Exchange Standards for Employers... plans,'' ``health insurance coverage,'' ``small employer,'' ``qualified employer,'' and ``qualified... shares common leadership with a pre-existing issuer be barred from sponsoring a CO- OP; another suggested...

  13. Project Management Plan to Maintain Safe and Compliant Conditions at the Plutonium Finishing Plant

    International Nuclear Information System (INIS)

    COX, G.J.

    1999-01-01

    This Project Management Plan presents the overall plan, description, mission, and workscope for the Plutonium Finishing Plant (PFP) maintain safe and compliant conditions project at PFP. This plan presents the overall description, mission, work scope, and planning for the Plutonium Finishing Plant (PFP) Maintain Safe and Compliant Conditions Project at PFP. This project includes all tasks required to maintain the safety boundary for the PFP Complex, except for the 2736-2 Vault Complex and the 234-52 vaults and vault-type rooms. The intent of this plan is to describe how this project will be managed and integrated with the stabilization, and deactivation activities. This plan supplements the overall integrated plan presented in the Plutonium Finishing Plant Integrated Project Management Plan (IPMP), HNF-3617, Rev. 0. This is the top-level definitive project management document that specifies the technical (work scope), schedule, and cost baselines that will manage the execution of this project. It describes the organizational approach and roles/responsibilities implemented to execute the project. This plan is under configuration management and any deviations must be authorized by appropriate change control action

  14. Rainwater Wildlife Area Management Plan Executive Summary : A Columbia Basin Wildlife Mitigation Project.

    Energy Technology Data Exchange (ETDEWEB)

    Childs, Allen B.

    2002-02-01

    This Executive Summary provides an overview of the Draft Rainwater Wildlife Area Management Plan. The comprehensive plan can be viewed on the Confederated Tribes of the Umatilla Indian Reservation (CTUIR) website at: www.umatilla.nsn.us or requested in hard copy from the CTUIR at the address below. The wildlife area was established in September 1998 when the CTUIR purchased the Rainwater Ranch through Bonneville Power Administration (BPA) for purposes of fish and wildlife mitigation for the McNary and John Day dams. The Management Plan has been developed under a standardized planning process developed by BPA for Columbia River Basin Wildlife Mitigation Projects (See Guiding Policies Section below). The plan outlines the framework for managing the project area, provides an assessment of existing conditions and key resource issues, and presents an array of habitat management and enhancement strategies. The plan culminates into a 5-Year Action Plan that will focus management actions and prioritize funding during the 2002-2006 planning period. Since acquisition of the property in late 1998, the CTUIR has conducted an extensive baseline resource assessment in preparation for the management plan, initiated habitat restoration in the Griffin Fork drainage to address road-related resource damage caused by roads constructed for forest practices and an extensive flood event in 1996, and initiated infrastructure developments associated with the Access and Travel Management Plan (i.e., installed parking areas, gates, and public information signs). In addition to these efforts, the CTUIR has worked to set up a long-term funding mechanism with BPA through the NPPC Fish and Wildlife Program. The CTUIR has also continued to coordinate closely with local and state government organizations to ensure consistency with local land use laws and maintain open lines of communication regarding important issues such as big game hunting, tribal member exercise of treaty rights, and public

  15. Project plan for PACS networking construction and cabling

    International Nuclear Information System (INIS)

    Luo Min; Wang Xiaolin; Luo Song; Lei Wenyong; Wang Xuejian; Wen Hongyue; Wu Hongxing

    2002-01-01

    Objective: To meet the networking requirement of the heave data flow, load balance, and potential networking storm during expanding the application of PACS. Methods: Intel Net Structure 480T Giga Switch was used as main switch and connected to each building by optical channel at 1 Giga speed to archive 100 MB/s to each port. At the same time, the in dependence of the original networking construction was physically kept. The layer 3 and 4 switchers was used as load balance to reduce the heavy load of the networking, and all the cabling for PACS used the super CAT5 along with the Intel Net Structure 1520 to prepare for the potential networking storm. Results: An advanced intranet was set up to fully meet the high standard requirement of PACS. The good foundation for upgrading the whole networking system to 1 Giga application was built for realized share and transmission of image, information, and patient data within the hospital. The base was established for the standardized management of the hospital. Conclusion: Good planning is the 1 st step in setting up PACS and the equipment are the platform to run PACS and all kinds of HIS. The networking construction is the foundation of e-hospitals

  16. Emission projections 2008-2012 versus national allocation plans II

    International Nuclear Information System (INIS)

    Neuhoff, Karsten; Ferrario, Federico; Grubb, Michael; Gabel, Etienne; Keats, Kim

    2006-01-01

    We compare the national allocation plans (NAPs), proposed and submitted by EU Member States as of October 2006, with our estimations for CO 2 emissions by the installations covered by these NAPs. The collective allocations proposed under phase II NAPs exceed the historic trend of emissions extrapolated forward. Using our projections we find, depending on uncertainty in fuel prices, economic growth rates, performance of the non-power sector and CDM/JI availability, a 15% chance of a 'dead market' with emissions below cap even at zero prices. With an expected inflow of committed CDM/JI credits of 100 MtCO 2 /year, allowance supply will exceed demand in 50% of cases without any carbon price, and in 80% of our euros20/tCO 2 scenarios. Banking of allowances towards post-2012 conditions could create additional demand, but this is difficult to anticipate and conditional on policy evolution. The proposed phase II NAPs would result in low prices and only small volumes of CDM/JI would enter the EU ETS. CDM/JI would almost exclusively be public-sector funded, placing the cost of Kyoto compliance entirely upon governments. (Author)

  17. Quality Assurance program plan - plutonium stabilization and handling project W-460

    International Nuclear Information System (INIS)

    SCHULTZ, J.W.

    1999-01-01

    This Quality Assurance Program Plan (QAPP) identifies Project Quality Assurance (QA) program requirements for all parties participating in the design, procurement, demolition, construction, installation, inspection and testing for Project W-460

  18. 77 FR 33240 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2012-06-05

    ... Project water conservation best management practices that shall ``develop criteria for evaluating the... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  19. 75 FR 70020 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2010-11-16

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior ACTION: Notice of Availability. SUMMARY: The...

  20. 76 FR 12756 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2011-03-08

    ... office on Central Valley Project water conservation best management practices that shall ``* * * develop... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  1. 76 FR 54251 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2011-08-31

    ... and administer an office on Central Valley Project water conservation best management practices that... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  2. 77 FR 64544 - Central Valley Project Improvement Act, Water Management Plans

    Science.gov (United States)

    2012-10-22

    ... Central Valley Project water conservation best management practices that shall ``develop criteria for... DEPARTMENT OF THE INTERIOR Bureau of Reclamation Central Valley Project Improvement Act, Water Management Plans AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of availability. SUMMARY: The...

  3. Using historical crash data as part of traffic work zone safety planning and project management strategies.

    Science.gov (United States)

    2014-07-01

    This funding enabled the project entitled, USING HISTORICAL CRASH DATA AS PART OF TRAFFIC WORK ZONE SAFETY : PLANNING AND PROJECT MANAGEMENT STRATEGIES to address the following: : Evaluate current organizational strategies with respect to w...

  4. HAZWOPER work plan and site safety and health plan for the Alpha characterization project at the solid waste storage area 4 bathtubbing trench at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    1994-07-01

    This work plan/site safety and health plan is for the alpha sampling project at the Solid Waste Storage Area 4 bathtubbing trench. The work will be conducted by the Oak Ridge National Laboratory (ORNL) Environmental Sciences Division and associated ORNL environmental, safety, and health support groups. This activity will fall under the scope of 29 CFR 1910.120, Hazardous Waste Operations and Emergency Response (HAZWOPER). The purpose of this document is to establish health and safety guidelines to be followed by all personnel involved in conducting work for this project. Work will be conducted in accordance with requirements as stipulated in the ORNL HAZWOPER Program Manual and applicable ORNL; Martin Marietta Energy Systems, Inc.; and U.S. Department of Energy policies and procedures. The levels of protection and the procedures specified in this plan are based on the best information available from historical data and preliminary evaluations of the area. Therefore, these recommendations represent the minimum health and safety requirements to be observed by all personnel engaged in this project. Unforeseeable site conditions or changes in scope of work may warrant a reassessment of the stated protection levels and controls. All adjustments to the plan must have prior approval by the safety and health disciplines signing the original plan

  5. CAREM-25. Project recovery plan of the site at Lima

    International Nuclear Information System (INIS)

    De Arenaza, Ignacio J.

    2009-01-01

    , will be equally reconditioned and reused. The uses that will be given to the currently available buildings are varied, among which it can be highlighted the presence of an important visitor centre, a simulator, a general file (which will keep both the documentation belonging to the CAREM-25 and the one belonging to the ex PEAP) several areas of offices for the site tools store and offices at the stage of construction, a canteen, a recreation centre and workshops, always following a schedule that plans to satisfy the current environmental, well-being and safety at work guidelines. In this report it is expressed that the currently available structures will be maintained, from their external aspect, with a layout and a style similar to the original, in which it will be mentioned and presented the function and use for what it has been built. What has been expressed shows the intention to provide a solution to which it is one of the current greatest problems of the atomic energy, as it is to give a new destiny to a facility that has fallen into disuse. In the same way, it enforces the idea of CAREM as a sustainable and economical Reactor, giving the project a unique character and an additional value. (author)

  6. PROJECT PLANNING AND CONTROLLING GEDUNG RUSUNAWA UNIVERSITAS INDONESIA DENGAN MS.PROJECT

    Directory of Open Access Journals (Sweden)

    Sanny Stephanie

    2016-09-01

    Full Text Available Suatu proyek konstruksi selalu dimulai dengan proses perencanaan proyek (Project planning hingga pengendalian proyek (Project controlling Apabila terjadi perencanaan yang tidak matang dan pengendalian proyek yang kurang efektif, maka akan mengakibatkan penyimpangan dalam proyek tersebut seperti proyek selesai lebih cepat ataupun keterlambatan proyek.. Penelitian ini bertujuan untuk menganalisis perencanaan dan pengendalian proyek gedung Rusunawa Universitas Indonesia (asrama UI Jakarta Selatan dengan menggunakan bantuan program Microsoft Project. Berdasarkan kontrak, proyek ini dimulai pada tanggal 4 Desember 2014 s/d 10 Juli 2015. Dilihat dari hasil analisa kurva S Rencana dan kurva S aktual sampai dengan tanggal 31 Mei 2015, kurva S Aktual berada dibawah kurva S Rencana, dimana pada minggu ke-9 s/d minggu ke -35 proyek mengalami keterlambatan sebesar 18%, yaitu terlambat 10 hari dari rencana. Namun, dengan dilakukannya percepatan jadwal pada proyek ini dengan memperpendek durasi dan menambah tenaga kerja, maka penyelesaian proyek Rusunawa UI Jakarta Selatan ini masih dapat diselesaikan tepat waktu dan sesuai dengan jadwal yang telah ditentukan.

  7. System Safety Program Plan for Project W-314, tank farm restoration and safe operations

    International Nuclear Information System (INIS)

    Boos, K.A.

    1996-01-01

    This System Safety Program Plan (SSPP) outlines the safety analysis strategy for project W-314, ''Tank Farm Restoration and Safe Operations.'' Project W-314 will provide capital improvements to Hanford's existing Tank Farm facilities, with particular emphasis on infrastructure systems supporting safe operation of the double-shell activities related to the project's conceptual Design Phase, but is planned to be updated and maintained as a ''living document'' throughout the life of the project to reflect the current safety analysis planning for the Tank Farm Restoration and Safe Operations upgrades. This approved W-314 SSPP provides the basis for preparation/approval of all safety analysis documentation needed to support the project

  8. Feasibility study on plan to utilize livestock excreta for bio-gas in Miyagi Village (Gunma Prefecture). Investigations on projects including district new energy vision establishment in fiscal 2000, and on feasibility for commercialization; Miyagimura chikusan haisetsubutsu bio gas ka energy riyo keikaku feasibility study. 2000 nendo chiiki shin energy vision sakutei nado jigyo, jigyoka feasibility study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-02-01

    With objectives to utilize energy available from livestock excreta, and to properly treat the livestock excreta, a feasibility study was performed on a plan to utilize livestock excreta for bio-gas. The system to be developed is a livestock wastes treatment system to utilize gas generated by efficiently fermenting the excreta as fuel, and residual sludge solids as compost. The activity achievements were put into order by the following nine items: 1) purpose of the feasibility study, 2) method for the feasibility study, 3) the situation where the livestock industry and the hog raising industry were selected as the object of the investigation, 4) properties of hog excreta, characteristics in urine foul water treatment, technologies for urine foul water treatment (biological treatment), 5) bio-gasification of livestock wastes, 6) the basic conditions for investigating the demonstration bio-bas plants, 7) proposals and standard cases of the demonstration bio gas plants, 8) discussions and positioning of the basic system for the demonstration bio gas plants, and 9) conclusion. (NEDO)

  9. Project management plan for the isotopes facilities deactivation project at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-08-01

    Purpose of the deactivation project is to place former isotopes production facilities at ORNL in a safe, stable, and environmentally sound condition suitable for an extended period of minimum surveillance and maintenance. This management plan was prepared to document project objectives, define organizational relationships and responsibilities, and outline the management control systems. The project has adopted the strategy of deactivating the simple facilities first. The plan provides a road map for the quality assurance program and identifies other documents supporting the Isotopes Facilities Deactivation Project

  10. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows.

  11. Project plan for the background soils project for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky

    International Nuclear Information System (INIS)

    1995-09-01

    The Background Soils Project for the Paducah Gaseous Diffusion Plant (BSPP) will determine the background concentration levels of selected naturally occurring metals, other inorganics, and radionuclides in soils from uncontaminated areas in proximity to the Paducah Gaseous Diffusion Plant (PGDP) in Paducah, Kentucky. The data will be used for comparison with characterization and compliance data for soils, with significant differences being indicative of contamination. All data collected as part of this project will be in addition to other background databases established for the PGDP. The BSPP will address the variability of surface and near-surface concentration levels with respect to (1) soil taxonomical types (series) and (2) soil sampling depths within a specific soil profile. The BSPP will also address the variability of concentration levels in deeper geologic formations by collecting samples of geologic materials. The BSPP will establish a database, with recommendations on how to use the data for contaminated site assessment, and provide data to estimate the potential human and health and ecological risk associated with background level concentrations of potentially hazardous constituents. BSPP data will be used or applied as follows

  12. Test Plan: Sludge Treatment Project Corrosion Process Chemistry Follow-on Testing

    Energy Technology Data Exchange (ETDEWEB)

    Delegard, Calvin H.; Schmidt, Andrew J.; Poloski, Adam P.

    2007-08-17

    This test plan was prepared by the Pacific Northwest National Laboratory (PNNL) under contract with Fluor Hanford (FH). The test plan describes the scope and conditions to be used to perform laboratory-scale testing of the Sludge Treatment Project (STP) hydrothermal treatment of K Basin sludge. The STP, managed for the U. S. Department of Energy (DOE) by FH, was created to design and operate a process to eliminate uranium metal from the sludge prior to packaging for Waste Isolation Pilot Plant (WIPP) by using high temperature liquid water to accelerate the reaction, produce uranium dioxide from the uranium metal, and safely discharge the hydrogen. The proposed testing builds on the approach and laboratory test findings for both K Basin sludge and simulated sludge garnered during prior testing from September 2006 to March 2007. The outlined testing in this plan is designed to yield further understanding of the nature of the chemical reactions, the effects of compositional and process variations and the effectiveness of various strategies to mitigate the observed high shear strength phenomenon observed during the prior testing. These tests are designed to provide process validation and refinement vs. process development and design input. The expected outcome is to establish a level of understanding of the chemistry such that successful operating strategies and parameters can be implemented within the confines of the existing STP corrosion vessel design. In July 2007, the DOE provided direction to FH regarding significant changes to the scope of the overall STP. As a result of the changes, FH directed PNNL to stop work on most of the planned activities covered in this test plan. Therefore, it is unlikely the testing described here will be performed. However, to preserve the test strategy and details developed to date, the test plan has been published.

  13. Learn More about EPA’s Plans to Establish Voluntary Criteria for Radon Credentialing Organizations

    Science.gov (United States)

    This page will provide the public with information on a Federal Register Notice of Intent to Establish Voluntary Criteria for Radon Credentialing Organizations.Topics covered include background and information on how to review and provide comments.

  14. UMTRA project water sampling and analysis plan, Naturita, Colorado

    International Nuclear Information System (INIS)

    1994-04-01

    Surface remedial action is scheduled to begin at the Naturita UMTRA Project processing site in the spring of 1994. No water sampling was performed during 1993 at either the Naturita processing site (NAT-01) or the Dry Flats disposal site (NAT-12). Results of previous water sampling at the Naturita processing site indicate that ground water in the alluvium is contaminated as a result of uranium processing activities. Baseline ground water conditions have been established in the uppermost aquifer at the Dry Flats disposal site. Water sampling activities scheduled for April 1994 include preconstruction sampling of selected monitor wells at the processing site, surface water sampling of the San Miguel River, sampling of several springs/seeps in the vicinity of the disposal site, and sampling of two monitor wells in Coke Oven Valley. The monitor well locations provide sampling points to characterize ground water quality and flow conditions in the vicinity of the sites. The list of analytes has been updated to reflect constituents related to uranium processing activities and the parameters needed for geochemical evaluation. Water sampling will be conducted annually at minimum during the period of construction activities

  15. Planning report for establishment of research infrastructure for national advanced radiation technology

    International Nuclear Information System (INIS)

    Kuk, Il Hyun; Byun, Myung Woo; Lee, Ju Woon

    2005-04-01

    Establishment of research infrastructure and assistant of industry renovation is needed to achieve technology level-up in the all industry areas including plant engineering, material engineering, polymers, nondestructive tests, radioisotope tracer application, environment engineering, medical science, agriculture, sterilization, sprouting, biotechnology and aerospace, which would be the core motivation of our future industry. Especially for early settlement of research environment for the new RT-specialized national institute, Advanced Radiation Technology Institute (ARTI) in Jeongup, Chonbuk, Korea is essential. For this purpose, an intensive system construction is demanded including: 1) Area of establishment of the system assisting radiation technology advancement: It is expected that radioisotope production for industrial or medical uses and activation of the related researches and training of experts by manufacture, installation, and operation of 30 MeV cyclotron. It also can be contributed in the promotion of national radiation related science and technology by establishment of a basic and advanced analysis system. 2) Area of establishment of training and education system of RT experts. 3) Area of establishment of a system for technological assistance for industry and industry-university-institute network. Contribution to balanced regional development and promotion of national RT-based science through establishment of RT industry cluster with Advanced Radiation Technology Institute (ARTi) at Jeongup as the center figure

  16. Legislative framework on establishing emergency response plan in the case of a nuclear accident

    International Nuclear Information System (INIS)

    Novosel, N.; Valcic, I.; Biscan, R.

    2000-01-01

    To give an overview of the legislative framework, which defined emergency planning in Croatia in the case of a nuclear accident, it's necessary to look at all international recommendations and obligations and the national legislation, acts and regulations. It has to be emphasized that Croatia signed three international conventions in this field, and by that took over some responsibilities and obligations. Beside that, it is also in Croatian interest to follow the recommendations of international institutions such as International Atomic Energy Agency (IAEA standards and technical documents). On the other hand, national legislation in this field consists of several laws, which cover nuclear safety measures, governmental organization, natural disasters and acts (decree, decisions) of responsible authority for emergency planning in the case of a nuclear accident (Ministry of Economy). This paper presents an overview of the international and Croatian legislation which influenced the emergency planning in the case of a nuclear accident. (author)

  17. Plan of intakes for establish more Shimane-3 in Shimane Nuclear Power Plant

    International Nuclear Information System (INIS)

    Ohmura, Tsuyoshi; Nakamoto, Kenji; Fukumoto, Tadashi; Kanda, Kazunori

    2007-01-01

    Shimane-3 reactor (ABWR) has been constructed to aim at operating in December, 2011. Outline of intakes works are stated. The environmental loads and cost were reduced by changing intake works from the embedded steel pipe method to the undersea tunnel method. Plan of intakes, development of Pneumatic Caisson intake, and investigation of bedrock of submarine in the surrounding of intake are reported. The construction planning of Pneumatic Caisson intake consists of the foundation work, installation of intake unit, connection of intake tunnels and flow of water. The uniformity intake structure was investigated by the hydraulic model tests and the numerical analysis. Dredging of rocks in the foundation spot of intake and construction of intakes on land are under construction. A construction work plan, design for intakes, the embedded steel pipe method, the undersea tunnel method, Pneumatic Caisson intake, topographic features and intake tanks are illustrated. (S.Y.)

  18. Project Planning and Control in a Developing Economy: Implementation and Realisation

    Directory of Open Access Journals (Sweden)

    H. Abdul-Rahman

    2005-12-01

    Full Text Available In the competitive and uncertain environment of the construction industry, the ability to deliver end products with the required quality, schedule and budget is vital to the survival of any construction-related firm. Before embarking on any project, realistic planning and, consequently, a control procedure must be in place to enable the parties to manage the project with sufficient degree of authority and certainty. This paper addresses issues associated with the implementation of project planning and control, identificati on of impacts in the implementation of project planning and the critical success factors of project planning. A questionnaire survey was conducted on construction professionals and contractors involved in the running of construction projects. The survey results showed that common problems associated with the project planning and control are the lack of experienced staff and poor coordination by the contractor. During site operation, a delay in decision making aggravates the effect of poor planning and control and much of the effect of project planning rests on the pro-activeness of experienced staff. The positive impact associated with proper planning and control is the high probability of finishing the project on time while the negative impact is that it is a time-consuming and costly process. The critical success factors identified from the survey are Excellent Teamwork and Experienced Team.

  19. Software for Project-Based Learning of Robot Motion Planning

    Science.gov (United States)

    Moll, Mark; Bordeaux, Janice; Kavraki, Lydia E.

    2013-01-01

    Motion planning is a core problem in robotics concerned with finding feasible paths for a given robot. Motion planning algorithms perform a search in the high-dimensional continuous space of robot configurations and exemplify many of the core algorithmic concepts of search algorithms and associated data structures. Motion planning algorithms can…

  20. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document.

  1. Project management plan for Project W-320, Tank 241-C-106 sluicing. Revision 2

    International Nuclear Information System (INIS)

    Phillips, D.R.

    1994-07-01

    A major mission of the US Department of Energy (DOE) is the permanent disposal of Hanford Site defense wastes by utilizing safe, environmentally acceptable, and cost-effective disposal methods that meet applicable regulations. The Tank Waste Remediation System (TWRS) Program was established at the Hanford Site to manage and control activities specific to the remediation of safety watch list tanks, including high-heat-producing tanks, and for the ultimate characterization, retrieval, pretreatment, and disposal of the low- and high-level fractions of the tank waste. Project W-320, Tank 241-C-106 Sluicing, provides the methodology, equipment, utilities, and facilities necessary for retrieving the high-heat waste from single-shell tank (SST) 24-C-106. Project W-320 is a fiscal year (FY) 1993 expense-funded major project, and has a design life of 2 years. Retrieval of the waste in tank 241-C-106 will be accomplished through mobilization of the sludge into a pumpable slurry using past-practice sluicing. The waste is then transferred directly to a double-shell tank for interim storage, subsequent pretreatment, and eventual disposal. A detailed description of the management organization and responsibilities of all participants is presented in this document

  2. The Texts of the Instruments connected with the Agency's Assistance to Mexico in Establishing a Sub-Critical Assembly Project

    International Nuclear Information System (INIS)

    1966-01-01

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico in connection with the Agency's assistance to that Government in establishing a sub-critical assembly project.. are reproduced in this document for the information of all Members. Both Agreements entered into force on 20 June 1966

  3. The Texts of the Instruments connected with the Agency's Assistance to Finland in Establishing a Research Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-01-24

    The texts of the Supply Agreement between the Agency, the Government of Finland and the Government of the United States of America, and of the Project Agreement between the Agency and the Government of Finland, in connection with the Agency's assistance to the Government of Finland in establishing a research reactor project, are reproduced in this document for the information of all Members of the Agency. These agreements entered into force on 30 December 1960.

  4. The Texts of the Instruments connected with the Agency's Assistance to Pakistan in Establishing a Research Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1962-03-22

    The texts of the Supply Agreement between the Agency, the Government of Pakistan and the Government of the United States of America, and of the Project Agreement between the Agency and the Government of Pakistan, in connection with the Agency's assistance to the Government of Pakistan-in establishing a research reactor project, are reproduced in this document for the information of all Members of the Agency. These Agreements entered into force on 5 March 1962.

  5. The Texts of the Instruments connected with the Agency's Assistance to Yugoslavia in Establishing a Research Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1961-11-24

    The texts of the Supply Agreement between the Agency, the Government of Yugoslavia and the Government of the United States of America, and of the Project Agreement between the Agency and the Government of Yugoslavia, in connection with the Agency's assistance to the Government of Yugoslavia in establishing a research reactor project, are reproduced in this document for the information of all Members of the Agency. These Agreements entered into force on 4 October 1961.

  6. The Texts of the Instruments connected with the Agency's Assistance to Mexico in Establishing a Research Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1964-01-30

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico, in connection with the Agency's assistance to that Government in establishing a research reactor project, are reproduced in this document for the information of all Members. These Agreements entered into force on 18 December 1963.

  7. The Texts of the Instruments connected with the Agency's Assistance to Iran in Establishing a Research Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-08-31

    The texts of the Supply Agreement between the Agency and the Governments of Iran and the United States of America, and of the Project Agreement between the Agency and the Government of Iran, connected with the Agency's assistance to the latter Government in establishing a research reactor project, are reproduced in this document for the information of all Members. The Agreements entered into force on 7 June and 10 May 1967 respectively.

  8. The Texts of the Instruments connected with the Agency's Assistance to Mexico in Establishing a Sub-Critical Assembly Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1967-10-25

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico, connected with the Agency's assistance to the latter Government in establishing a sub-critical assembly project, are reproduced in this document for the information of all Members. Both Agreements entered into force on 23 August 1967.

  9. The Texts of the Instruments Concerning the Agency's Assistance to Chile for the Establishment of a Research Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1970-02-09

    The texts of the Supply Agreement between the Agency and the Governments of Chile and the United States of America, and of the Project Agreement between the Agency and the Government of Chile concerning the Agency's assistance to that Government for the establishment of a research reactor project, are reproduced in this document for the information of all Members. Both Agreements entered into force on 19 December 1969.

  10. The Texts of the Instruments connected with the Agency's Assistance to Mexico in Establishing a Sub-Critical Assembly Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1966-07-07

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico in connection with the Agency's assistance to that Government in establishing a sub-critical assembly project.. are reproduced in this document for the information of all Members. Both Agreements entered into force on 20 June 1966.

  11. The Texts of the Instruments Concerning the Agency's Assistance to Chile for the Establishment of a Research Reactor Project

    International Nuclear Information System (INIS)

    1970-01-01

    The texts of the Supply Agreement between the Agency and the Governments of Chile and the United States of America, and of the Project Agreement between the Agency and the Government of Chile concerning the Agency's assistance to that Government for the establishment of a research reactor project, are reproduced in this document for the information of all Members. Both Agreements entered into force on 19 December 1969.

  12. The Texts of the Instruments connected with the Agency's assistance to Uruguay in Establishing a Research Reactor Project

    International Nuclear Information System (INIS)

    1965-01-01

    The texts of the Supply Agreement between the Agency and the Governments of the United States of America and Uruguay, and of the Project Agreement between the Agency and the Government of Uruguay, in connection with the Agency's assistance to the latter Government in establishing a research reactor project, are reproduced in this document for the information of all Members. These Agreements entered into force on 24 September 1965

  13. The texts of the instruments concerning the Agency's assistance to Romania for the establishment of a research reactor project

    International Nuclear Information System (INIS)

    1991-08-01

    On June 15, 1990, the Agency and the Government of Romania signed a letter constituting an agreement amending the Project Agreement (IAEA-INFCIRC/206, Part II) concluded in connection with the Agency's assistance to Romania for the establishment of a research reactor project. The text of that letter, which was approved by the Board of Governors on June 15, 1990, is reproduced in this document. 1 tab

  14. The Texts of the Instruments connected with the Agency's assistance to Uruguay in Establishing a Research Reactor Project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1965-12-09

    The texts of the Supply Agreement between the Agency and the Governments of the United States of America and Uruguay, and of the Project Agreement between the Agency and the Government of Uruguay, in connection with the Agency's assistance to the latter Government in establishing a research reactor project, are reproduced in this document for the information of all Members. These Agreements entered into force on 24 September 1965.

  15. The Texts of the Instruments connected with the Agency's Assistance to Mexico in Establishing a Sub-Critical Assembly Project

    International Nuclear Information System (INIS)

    1967-01-01

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico, connected with the Agency's assistance to the latter Government in establishing a sub-critical assembly project, are reproduced in this document for the information of all Members. Both Agreements entered into force on 23 August 1967

  16. The Texts of the Instruments connected with the Agency's Assistance to Pakistan in Establishing a Research Reactor Project

    International Nuclear Information System (INIS)

    1962-01-01

    The texts of the Supply Agreement between the Agency, the Government of Pakistan and the Government of the United States of America, and of the Project Agreement between the Agency and the Government of Pakistan, in connection with the Agency's assistance to the Government of Pakistan-in establishing a research reactor project, are reproduced in this document for the information of all Members of the Agency. These Agreements entered into force on 5 March 1962

  17. The Texts of the Instruments connected with the Agency's Assistance to Finland in Establishing a Research Reactor Project

    International Nuclear Information System (INIS)

    1961-01-01

    The texts of the Supply Agreement between the Agency, the Government of Finland and the Government of the United States of America, and of the Project Agreement between the Agency and the Government of Finland, in connection with the Agency's assistance to the Government of Finland in establishing a research reactor project, are reproduced in this document for the information of all Members of the Agency. These agreements entered into force on 30 December 1960

  18. The Texts of the Instruments connected with the Agency's Assistance to Iran in Establishing a Research Reactor Project

    International Nuclear Information System (INIS)

    1967-01-01

    The texts of the Supply Agreement between the Agency and the Governments of Iran and the United States of America, and of the Project Agreement between the Agency and the Government of Iran, connected with the Agency's assistance to the latter Government in establishing a research reactor project, are reproduced in this document for the information of all Members. The Agreements entered into force on 7 June and 10 May 1967 respectively

  19. The Texts of the Instruments connected with the Agency's Assistance to Yugoslavia in Establishing a Research Reactor Project

    International Nuclear Information System (INIS)

    1961-01-01

    The texts of the Supply Agreement between the Agency, the Government of Yugoslavia and the Government of the United States of America, and of the Project Agreement between the Agency and the Government of Yugoslavia, in connection with the Agency's assistance to the Government of Yugoslavia in establishing a research reactor project, are reproduced in this document for the information of all Members of the Agency. These Agreements entered into force on 4 October 1961

  20. The Texts of the Instruments connected with the Agency's Assistance to Mexico in Establishing a Research Reactor Project

    International Nuclear Information System (INIS)

    1964-01-01

    The texts of the Supply Agreement between the Agency and the Governments of Mexico and the United States of America, and of the Project Agreement between the Agency and the Government of Mexico, in connection with the Agency's assistance to that Government in establishing a research reactor project, are reproduced in this document for the information of all Members. These Agreements entered into force on 18 December 1963