WorldWideScience

Sample records for project green recycling

  1. Texas ''Recycled Content''/Advanced Green Builder Demonstration Home Project

    International Nuclear Information System (INIS)

    Fisk, P. III; Vittori, G.

    1993-01-01

    This paper presents an overview of principal issues addressed in the Advanced Green Builder Demonstration Home Project, with units to be constructed in Austin and Laredo. The project's objective is to introduce these distinct communities to a range of ''green'' housing materials and methods, emphasizing opportunities for recycled-content and by-product based construction materials. The project, principally funded by U.S. Department of Energy Oil Overcharge Funds administered by the Texas Governor's Energy Office, also is supported by several state, regional, and municipal agencies. As such, the project reflects a regional process, as open to adaptation to a region's natural resources as it is to its peoples. The design is specifically intended to bridge issues of social and family concerns, such as affordability, expandibility, and economic development. This is a result of a modular-based design framework, coupled with reliance on environmentally-conscious regional manufacture of by-product based materials. Environmental issues are addressed by establishing a user for pollutants considered major contributors to global concerns of acid rain (due to release of sulphur dioxide), global warming (due to release of carbon dioxide), and deforestation. The homes will be built without virgin wood products or portland cement

  2. City of Austin: Green habitat learning project. A green builder model home project

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The purpose of the Year 14 UCETF project was to design and construct a residential structure that could serve as a demonstration facility, training site, and testing and monitoring laboratory for issues related to the implementation of sustainable building practices and materials. The Model Home Project builds on the previous and existing efforts, partially funded by the UCETF, of the City of Austin Green Builder Program to incorporate sustainable building practices into mainstream building activities. The Green Builder Program uses the term {open_quotes}green{close_quotes} as a synonym for sustainability. In the research and analysis that was completed for our earlier reports in Years 12 and 13, we characterized specific elements that we associate with sustainability and, thus, green building. In general, we refer to a modified life cycle assessment to ascertain if {open_quotes}green{close_quotes} building options reflect similar positive cyclical patterns found in nature (i.e. recyclability, recycled content, renewable resources, etc.). We additionally consider economic, human health and synergistic ecological impacts associated with our building choices and characterize the best choices as {open_quotes}green.{close_quotes} Our ultimate goal is to identify and use those {open_quotes}green{close_quotes} materials and processes that provide well for us now and do not compromise similar benefits for future generations. The original partnership developed for this project shifted during the year from a project stressing advanced (many prototypical) {open_quotes}green{close_quotes} building materials and techniques in a research and demonstration context, to off-the-shelf but underutilized {open_quotes}green{close_quotes} materials in the practical social context of using {open_quotes}green{close_quotes} technologies for low income housing. That project, discussed in this report, is called the Green Habitat Learning Project.

  3. Preliminary survey of `Green Recycling System`; Jigyo jizen chosa `green recycle system`

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    This report describes the construction of `Green Recycling System` which aims to change deserts to lush lands and to stabilize food supply. A cross-linked polymer produced by irradiating the gooey threads of natto (fermented soybeans) with gamma rays can absorb and hold up to 5,000 times its own weight of water. This biodegradable polymer may be used to develop seed gels and pellets to grow soybean, rice and wheat to improve the productivity of deserts and to protect threatened lands from desertification. This technology will be of great value in establishing stable supply of food resources, especially for the Middle East where deserts are expanding as well as for Africa where serious food shortage is already in place. To undertake the Green Recycling System Project, it is indispensable to develop technologies for producing PGA polymer in large quantity, mass production process of bridged PGA through radiation, chemical cross-linkers, new technologies for growing plants using water retainers, water-retaining materials for arid areas, general systems for growing plants in arid areas, and environmentally benign industrial infrastructures. 76 refs., 59 figs., 29 tabs.

  4. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA

    International Nuclear Information System (INIS)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-01-01

    Highlights: ► A new eco-efficient recycling route for post-consumer waste glass was implemented. ► Integrated waste management and industrial production are crucial to green products. ► Most of the waste glass rejects are sent back to the glass industry. ► Recovered co-products give more environmental gains than does avoided landfill. ► Energy intensive recycling must be limited to waste that cannot be closed-loop recycled. - Abstract: As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled.

  5. Eco-efficient waste glass recycling: Integrated waste management and green product development through LCA.

    Science.gov (United States)

    Blengini, Gian Andrea; Busto, Mirko; Fantoni, Moris; Fino, Debora

    2012-05-01

    As part of the EU Life + NOVEDI project, a new eco-efficient recycling route has been implemented to maximise resources and energy recovery from post-consumer waste glass, through integrated waste management and industrial production. Life cycle assessment (LCA) has been used to identify engineering solutions to sustainability during the development of green building products. The new process and the related LCA are framed within a meaningful case of industrial symbiosis, where multiple waste streams are utilised in a multi-output industrial process. The input is a mix of rejected waste glass from conventional container glass recycling and waste special glass such as monitor glass, bulbs and glass fibres. The green building product is a recycled foam glass (RFG) to be used in high efficiency thermally insulating and lightweight concrete. The environmental gains have been contrasted against induced impacts and improvements have been proposed. Recovered co-products, such as glass fragments/powders, plastics and metals, correspond to environmental gains that are higher than those related to landfill avoidance, whereas the latter is cancelled due to increased transportation distances. In accordance to an eco-efficiency principle, it has been highlighted that recourse to highly energy intensive recycling should be limited to waste that cannot be closed-loop recycled. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Superior cold recycling : The score project

    OpenAIRE

    LESUEUR, D; POTTI, JJ; SOUTHWELL, C; WALTER, J; CRUZ, M; DELFOSSE, F; ECKMANN, B; FIEDLER, J; RACEK, I; SIMONSSON, B; PLACIN, F; SERRANO, J; RUIZ, A; KALAAJI, A; ATTANE, P

    2004-01-01

    In order to develop Environmentally Friendly Construction Technologies (EFCT) and as part of the 5th Framework Program of Research and Development, the European Community has decided to finance a research project on cold recycling, entitled SCORE "Superior COld REcycling based on benefits of bituminous microemulsions and foamed bitumen. A EFCT system for the rehabilitation and the maintenance of roads". This research project gathers organizations from all over Europe, from industrial partners...

  7. The Fulton School Recycling Project.

    Science.gov (United States)

    Lindsay, Jean

    1994-01-01

    Outlines a school recycling project that started as a newspaper collection for library funds and evolved into a community service. Discusses problems that were overcome, strategies for implementation of the project, and related cross-curricular studies and activities. Contains two curriculum mind maps. (LZ)

  8. Green Science: Revisiting Recycling

    Science.gov (United States)

    Palliser, Janna

    2011-01-01

    Recycling has been around for a long time--people have reused materials and refashioned them into needed items for thousands of years. More recently, war efforts encouraged conservation and reuse of materials, and in the 1970s recycling got its official start when recycling centers were created. Now, curbside recycling programs and recycling…

  9. A Guide to Running a Recycling Project, Second Edition.

    Science.gov (United States)

    Oregon Recycling Information and Organizing Network, Portland.

    Today's increasing awareness of shortages has prompted people to reevaluate their consumption patterns of natural resources. In a time when there is no "away" location to throw wastes, many recycling centers have been organized. This guide contains information needed to organize and operate a recycling project. Suggestions for collection sites,…

  10. Greening the Department of Energy through waste prevention, recycling, and Federal acquisition. Strategic plan to implement Executive Order 13101

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-11-01

    This Plan provides strategies and milestones to implement Executive Order 13101, Greening the Government Through Waste Prevention, Recycling, and Federal Acquisition, and to achieve the new Secretarial goals for 2005 and 2010. It serves as the principal Secretarial guidance to Department of Energy (DOE) Headquarters, Field Offices, and laboratory and contractor staff to improve sanitary waste prevention, recycling, and the purchase and use of recycled content and environmentally preferable products and services in the DOE.

  11. ACSEPT. The current European project on actinide recycling

    International Nuclear Information System (INIS)

    Bourg, S.; Bouvet, S.; Caravaca, C.

    2011-01-01

    ACSEPT (Actinide reCycling by SEParation and Transmutation) is a European research project dedicated to the development of advanced separation processes for transuranium elements (TRU) in the P and T context. 34 partners from 12 European countries plus Japan and Australia contribute to this project for 130 men years over a period of four years (2008-2012). General objective is developing hydrometallurgical and pyrometallurgical actinide separation processes suitable for both heterogeneous and homogeneous recycling strategies. To make such a large project manageable, ACSEPT consists of four domains, DM1 (hydrometallurgy), DM2 (pyrometallurgy), DM3 (cross-cutting activities), and DM4 (training and education). DM1 and DM2 are sub-divided into work packages, covering fuel dissolution, core process and refabrication aspects. Both fundamental and process related issues are dealt with. (author)

  12. Chemical recycling of semi-rigid polyurethane foams by using an eco-friendly and green method

    Directory of Open Access Journals (Sweden)

    Mir Mohammad Alavi Nikje

    2012-07-01

    Full Text Available Degradation of integral skin polyurethane foams (ISPUFs was performed using diethylene glycol (DEG/-sorbitol/water ternary green solvent system as an effective polyurethane bond destroying agent in combination with basic catalysts, namely sodium and potassium hydroxides, sodium acetate and sodium carbonate. The effects of studied catalysts were investigated and data showed the high performances of sodium hydroxide in recycling process. After completion of the reactions, appeared split phases contained recycled polyols in the upper phase. Reactions were studied using various DEG/-sorbitol/water ratios and the recovered polyols were characterized and data compared with an authentic sample.

  13. Contractor firm strategies in delivering green project: A review

    Science.gov (United States)

    Powmya, Ayisha; Abidin, Nazirah Zainul; Azizi, Nurul Sakina Mokhtar

    2017-10-01

    Building green requires effort from various parties, from those who plan, design, manage and construct the building. Contractors are responsible for converting the design on paper into a real building and their role at the construction site support environmental sustainability by implementing responsible construction practices. Inefficient or inexperienced contractor in green construction project may find that delivering this type of project is not an easy task due to added requirement in design, stringent practices at site and the use of green technology and materials. Adopting suitable strategies at firm level will assist in preparatory process and readiness of delivering the green project. This paper reviews the strategies at firm level to deliver green construction project. From extensive literature review, it was discovered that there are six strategies to be adopted by the contractor. Understanding these strategies is expected to promote more contractors to be proactive in delivering green projects.

  14. Current organic waste recycling and the potential for local recycling through urban agriculture in Metro Manila.

    Science.gov (United States)

    Hara, Yuji; Furutani, Takashi; Murakami, Akinobu; Palijon, Armando M; Yokohari, Makoto

    2011-11-01

    Using the solid waste management programmes of three barangays (the smallest unit of local government in the Philippines) in Quezon City, Metro Manila, as a case study, this research aimed to further the development of efficient organic waste recycling systems through the promotion of urban agricultural activities on green and vacant spaces. First, the quantity of organic waste and compost produced through ongoing barangay projects was measured. The amount of compost that could potentially be utilized on farmland and vacant land within the barangays was then identified to determine the possibility of a local recycling system. The results indicate that, at present, securing buyers for compost is difficult and, therefore, most compost is distributed to large neighbouring farm villages. However, the present analysis of potential compost use within the barangay demonstrates that a more local compost recycling system is indeed feasible.

  15. Implementation of a real option in a sustainable supply chain: an empirical study of alkaline battery recycling

    Science.gov (United States)

    Cucchiella, Federica; D'Adamo, Idiano; Gastaldi, Massimo; Lenny Koh, S. C.

    2014-06-01

    Green supply chain management (GSCM) has emerged as a key approach for enterprises seeking to become environmentally sustainable. This paper aims to evaluate and describe the advantages of a GSCM approach by analysing practices and performance consequences in the battery recycling sector. It seeks to integrate works in supply chain management (SCM), environmental management, performance management and real option (RO) theory into one framework. In particular, life cycle assessment (LCA) is applied to evaluate the environmental impact of a battery recycling plant project, and life cycle costing (LCC) is applied to evaluate its economic impact. Firms, also understanding the relevance of GSCM, have often avoided applying the green principles because of the elevated costs that such management involved. Such costs could also seem superior to the potential advantages since standard performance measurement systems are internally and business focused; for these reasons, we consider all the possible value deriving also by uncertainty associated to a green project using the RO theory. This work is one of the few and pioneering efforts to investigate GSCM practices in the battery recycling sector.

  16. To Green or Not to Green? Evaluation of Green Stormwater Infrastructure in Kansas City Middle Blue River Project

    Science.gov (United States)

    The City of Kansas City, Mo., Water Services Department is implementing a pilot project to measure and evaluate the performance of green infrastructure. Information obtained through this pilot project will be used to guide the design of green solutions throughout Kansas City und...

  17. Recycling and composting demonstration projects for the Memphis region

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D. [Memphis and Shelby County Div. of Planning and Development, TN (United States)

    1992-05-01

    This report documents the development and implementation of the project entitled ``Recycling and Composting Demonstration Projects for the Memphis Region.`` The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

  18. Recycling and composting demonstration projects for the Memphis region

    Energy Technology Data Exchange (ETDEWEB)

    Muller, D. (Memphis and Shelby County Div. of Planning and Development, TN (United States))

    1992-05-01

    This report documents the development and implementation of the project entitled Recycling and Composting Demonstration Projects for the Memphis Region.'' The project was funded by the Energy Task Force of the Urban Consortium for Technology Initiatives. This Project was implemented by the staff of the Special Programs Section of the Memphis and Shelby County Division of Planning and Development. The project began November 1, 1990, and was completed December 31, 1991. The purpose of the project was to evaluate the feasibility of a variety of solid waste disposal alternatives.

  19. The Hydrological Performance of Lightweight Green Roofs Made From Recycled Waste Materials As the Drainage Layer

    Directory of Open Access Journals (Sweden)

    Afizah Asman Nurul Shahadahtul

    2017-01-01

    Full Text Available Green roofs can be used for promoting infiltration and provide temporary storage spaces. Hence, in urban stormwater structural design, the investigation of the hydrological performance investigation is often required. Thus, this paper presents the results of a hydrological investigation in term of peak flow reduction and green roof’s weight using 0, 2, and 6% slope for three specimens drainage layer in green roofs. Three types of recycled waste are selected for each test bed which is rubber crumbs, palm oil shell, and polyfoam. Another test bed without a drainage layer as a control. The result indicates that rubber crumbs can be used as a stormwater control and runoff reduction while ensuring a good drainage and aeration of the substrate and roofs. From the results obtained shows that rubber crumbs are suitable as a drainage layer and a proposed slope of 6% are suitable for lightweight green roofs.

  20. Investigation of the Relationship between Green Design and Project Delivery Methods

    Energy Technology Data Exchange (ETDEWEB)

    Bilec, Melissa M.; Ries, Robert J.

    2008-04-24

    The selection of the project delivery method (PDM) for any project is critical--it establishes communication, coordination, and contractual issues between the owner, contractor, and designer. With an increase in the number of green design projects, understanding the relationship between the PDM and green design is paramount to project and contract management. It is reasonable to assume that a positive relationship between green design and design-build (DB) exists since both theoretically are intended to foster an integrated, holistic, and collaborative project. This research examines the relationship between the design-bid-build (DBB), construction management (CM), and DB PDMs and green design with the goal of establishing best practices and identifying potential synergies between them. The research collected information by conducting primarily telephone interviews with approximately twenty-five individuals, including owners, contractors, and designers involved in completed green design projects, mainly in the public sector. The interviews developed a general understanding of the current state of knowledge and experience and not a rigorous quantitative analysis. Upon completion of the interviews, the tabulated results were summarized and green project characteristics and project-PDM interactions emerged. Existing published research was evaluated to reveal aspects of PDMs independent of green design. Best practices were ascertained by combining information from the interviews and published research. Best practices are as follows: (1) Project implementation features--The decision to use DB as PDM on green design or other projects should be based on the specific project features; e.g., well-defined scope and adequate owner staffing. DB will not produce successful results on all projects. (2) Collaboration--Project team collaboration early in the design and construction process is an important aspect of green projects, and collaboration was considered somewhat more

  1. A Train-the-Trainer Design for Green Ambassadors in an Environmental Education Programme on Plastic Waste Recycling

    Science.gov (United States)

    Cheung, Yannes Tsz-Yan; Chow, Cheuk-Fai; So, Winnie Wing-Mui

    2018-01-01

    To educate a sustainable future, a train-the-trainer (TTT) approach was adopted to train student teachers (STs) from a teacher education institute to be green ambassadors (GAs) in an environmental education (EE) programme with the aim of promoting plastic waste recycling among primary school pupils. The design of the TTT course for the GAs not…

  2. Optimum Identification Method of Sorting Green Household Waste

    Directory of Open Access Journals (Sweden)

    Daud Mohd Hisam

    2016-01-01

    Full Text Available This project is related to design of sorting facility for reducing, reusing, recycling green waste material, and in particular to invent an automatic system to distinguish household waste in order to separate them from the main waste stream. The project focuses on thorough analysis of the properties of green household waste. The method of identification is using capacitive sensor where the characteristic data taken on three different sensor drive frequency. Three types of material have been chosen as a medium of this research, to be separated using the selected method. Based on capacitance characteristics and its ability to penetrate green object, optimum identification method is expected to be recognized in this project. The output capacitance sensor is in analogue value. The results demonstrate that the information from the sensor is enough to recognize the materials that have been selected.

  3. Impact of metals recycling on a Swedish BWR decommissioning project

    International Nuclear Information System (INIS)

    Larsson, Arne; Lidar, Per; Hedin, Gunnar; Bergh, Niklas

    2014-01-01

    Decommissioning of nuclear power plants generates large volumes of radioactive or potentially contaminated metals. By proper management of the waste streams significant amounts can be free released and recycled either directly or after decontamination and melting. A significant part of the required work should be performed early in the process to make the project run smoothly without costly surprises and delays. A large portion of the clearance activities can be performed on-site. This on-site work should focus on the so called low-risk for contamination material. Other material can be decontaminated and released on site if schedule and the available facility areas so allow. It should be noted that the on-site decontamination and clearance activities can be a significant bottle neck for a decommissioning project. The availability of and access to a specialized metals recycling facility is an asset for a decommissioning project. This paper will describe the forecasted positive impact of a well-structured metals characterisation, categorisation and clearance process for a BWR plant decommissioning project. The paper is based on recent studies, performed projects and recent in-house development. (authors)

  4. Financing green energy projects in Malaysia

    International Nuclear Information System (INIS)

    Eddynor Manshor; Yvonne Lunsong; Norhayati Kamaruddin

    2000-01-01

    Kyoto Protocol is the first global commitment to reduce greenhouse gas (GHG) emissions. Malaysia, which signed the Protocol on 12 March 1999, must also take steps to address the climate change concerns. The use of renewable energy sources is seen as a feasible way to address the issue. Despite their environment-friendliness, these sources of energy are grossly under-utilised even though Malaysia is amply endowed with renewable energies, particularly biomass and solar. As a unique domestic resource, recurring energy savings from energy efficiency could also qualify as renewable energy. At present, the contribution of renewable energy in the country's energy mix is very small compared to its large potential. The Malaysian Government recognizes the potential of this form of energy. As part of its fuel diversification policy, the government plans to expand the four-fuel strategy to include renewable energy as the fifth fuel. Due to all year constant sunshine and vast oil palm cultivation, both solar and palm oil residues are identified as the most promising green energy option. Efforts are underway to embark on programs to demonstrate and evaluate the viability of these emerging green technologies. A few organizations are given grants to undertake pre-feasibility studies of pre-commercialization demonstration projects. When approved, viable projects could also qualify for technical and financial assistance from foreign partners. However, grants are limited and under World Trade Organization rules such subsidies should not exceed 30 percent in most cases. Commercialization of green energy projects must therefore involve full participation of private developers and financial institutions. Yet, virtually no attempt is made to promote financing of such projects in Malaysia. In most cases, financial institutions are not aware of the economic potential of these unique and under exploited sources. This paper will discuss problems in financing green energy projects and then

  5. Research on Green Construction Technology Applied at Guangzhou Hongding Building Project

    Science.gov (United States)

    Lou, Yong Zhong

    2018-06-01

    The green construction technology is the embodiment of sustainable development strategy in the construction industry, and it is a new construction mode which requires a higher environmental protection. Based on the Hongding building project, this paper describes the application and innovation of technical in the process of implementing green construction in the project, as well as the difficulties and characteristics in the specific practice; .The economic and social benefits of green construction are compared to the traditional construction model; .The achievements and experience of the green construction technology are summarized in the project; The ideas and methods in the process of implementing green construction are abstracted; some suggestions are put forward for the development of green construction.

  6. A systems approach to the management of a contaminated metal recycle project

    International Nuclear Information System (INIS)

    Pincock, L.; Wahnachaffe, S.

    1994-01-01

    Westinghouse Idaho Nuclear Company (WINCO) is working with private industry to recycle contaminated metal from the dismantling and decommissioning of Department of Energy sites and commercial reactors. The recycled metal could be used in many applications such as fabrication of canisters and waste boxes for the storage of spent nuclear fuel and radioactive waste. Management of technical projects similar to this is difficult because these projects consist of a myriad of complex and interrelated issues ranging from technical feasibility to stakeholder acceptance. Systems Analysis provides a way to deal with many complex issues and supports effective decision making

  7. India's ship recycling trade-off

    NARCIS (Netherlands)

    Worrell, E.; Athanasopoulou, V.

    2014-01-01

    The special nature of India's steel industry lends particular importance to ship recycling as a source of scrap. Ship recycling in upgraded 'green' facilities can substitute other 'dirty' ironmaking processes, resulting in energy savings and air pollutant emission reductions for the Indian steel

  8. It’s Time for Green Banking Management in Romania

    Directory of Open Access Journals (Sweden)

    Ioana Florentina Savu

    2012-04-01

    Full Text Available In the current Romanian economic climate banks will have to develop a series of initiativesin order to reduce environmental impact. The article is intended to define banks ecological behaviorand establish the role of non – governmental organizations and banking products in bank’s ecologicalmanagement. It focuses on projects that banks can undertake in partnership with environmentalorganizations such as paper recycling, forestationwith employees - volunteers from the banks,"canvas bag", building solar panels and "sustainability tour". For an appropriate environmentalbehavior, banks should encourage customers to use banking products and services in a friendlyenvironment, opting for green cards, online banking, electronic bank statements, green mortgages,green home equity loans, green commercial buildingsloans or green car loans.

  9. A financing model to solve financial barriers for implementing green building projects.

    Science.gov (United States)

    Lee, Sanghyo; Lee, Baekrae; Kim, Juhyung; Kim, Jaejun

    2013-01-01

    Along with the growing interest in greenhouse gas reduction, the effect of greenhouse gas energy reduction from implementing green buildings is gaining attention. The government of the Republic of Korea has set green growth as its paradigm for national development, and there is a growing interest in energy saving for green buildings. However, green buildings may have financial barriers that have high initial construction costs and uncertainties about future project value. Under the circumstances, governmental support to attract private funding is necessary to implement green building projects. The objective of this study is to suggest a financing model for facilitating green building projects with a governmental guarantee based on Certified Emission Reduction (CER). In this model, the government provides a guarantee for the increased costs of a green building project in return for CER. And this study presents the validation of the model as well as feasibility for implementing green building project. In addition, the suggested model assumed governmental guarantees for the increased cost, but private guarantees seem to be feasible as well because of the promising value of the guarantee from CER. To do this, certification of Clean Development Mechanisms (CDMs) for green buildings must be obtained.

  10. Green residues from Bangkok green space for renewable energy recovery, phosphorus recycling and greenhouse gases emission reduction.

    Science.gov (United States)

    Thitanuwat, Bussarakam; Polprasert, Chongchin; Englande, Andrew J

    2017-03-01

    Effective ways to integrate human life quality, environmental pollution mitigation and efficient waste management strategies are becoming a crisis challenge for sustainable urban development. The aims of this study are: (1) to evaluate and recommend an optimum Urban Green Space (UGS) area for the Bangkok Metropolitan Administration (BMA); and (2) to quantify potential renewable resources including electricity generation and potential nutrient recovery from generated ash. Green House Gases (GHGs) emissions from the management of Green Residues (GR) produced in a recommended UGS expansion are estimated and compared with those from the existing BMA waste management practice. Results obtained from this study indicate that an increase in UGS from its current 2.02% to 22.4% of the BMA urban area is recommended. This optimum value is primarily due to the area needed as living space for its population. At this scale, GR produced of about 334kt·y -1 may be used to generate electricity at the rate of 206GWh·y -1 by employing incineration technology. Additionally, instead of going to landfill, phosphorus (P) contained in the ash of 1077 t P·y -1 could be recovered to produce P fertilizer to be recycled for agricultural cultivation. Income earned from selling these products is found to offset all of the operational cost of the proposed GR management methodology itself plus 7% of the cost of BMA's Municipal Solid Waste (MSW) operations. About 70% of the current GHGs emission may be reduced based on incineration simulation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A Financing Model to Solve Financial Barriers for Implementing Green Building Projects

    Science.gov (United States)

    Lee, Baekrae; Kim, Juhyung; Kim, Jaejun

    2013-01-01

    Along with the growing interest in greenhouse gas reduction, the effect of greenhouse gas energy reduction from implementing green buildings is gaining attention. The government of the Republic of Korea has set green growth as its paradigm for national development, and there is a growing interest in energy saving for green buildings. However, green buildings may have financial barriers that have high initial construction costs and uncertainties about future project value. Under the circumstances, governmental support to attract private funding is necessary to implement green building projects. The objective of this study is to suggest a financing model for facilitating green building projects with a governmental guarantee based on Certified Emission Reduction (CER). In this model, the government provides a guarantee for the increased costs of a green building project in return for CER. And this study presents the validation of the model as well as feasibility for implementing green building project. In addition, the suggested model assumed governmental guarantees for the increased cost, but private guarantees seem to be feasible as well because of the promising value of the guarantee from CER. To do this, certification of Clean Development Mechanisms (CDMs) for green buildings must be obtained. PMID:24376379

  12. Alternative Solvents through Green Chemistry Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this project is to develop state-of-the-art, green precision cleaning technologies for NASA’s 21st Century Launch Complex thus eliminating...

  13. Reduce, reuse and recycle: a green solution to Canada's medical isotope shortage.

    Science.gov (United States)

    Galea, R; Ross, C; Wells, R G

    2014-05-01

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC's involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. © 2013 Published by Elsevier Ltd.

  14. Effects of Green River Project on Cassava Farmers Production in ...

    African Journals Online (AJOL)

    This paper examined the effects of Green River project on cassava farmers' production in Ogba/Egbema/ Ndoni LGA of Rivers State. Purposive and stratified random sampling techniques were used to select the locations of Green River project, cooperative societies and respondents. Using structured questionnaire, a field ...

  15. Behaviour of Recycled Coarse Aggregate Concrete: Age and Successive Recycling

    Science.gov (United States)

    Sahoo, Kirtikanta; Pathappilly, Robin Davis; Sarkar, Pradip

    2016-06-01

    Recycled Coarse Aggregate (RCA) concrete construction technique can be called as `green concrete', as it minimizes the environmental hazard of the concrete waste disposal. Indian standard recommends target mean compressive strength of the conventional concrete in terms of water cement ratio ( w/ c). The present work is an attempt to study the behaviour of RCA concrete from two samples of parent concrete having different age group with regard to the relationship of compressive strength with water cement ratios. Number of recycling may influence the mechanical properties of RCA concrete. The influence of age and successive recycling on the properties such as capillary water absorption, drying shrinkage strain, air content, flexural strength and tensile splitting strength of the RCA concrete are examined. The relationship between compressive strength at different w/ c ratios obtained experimentally is investigated for the two parameters such as age of parent concrete and successive recycling. The recycled concrete using older recycled aggregate shows poor quality. While the compressive strength reduces with successive recycling gradually, the capillary water absorption increases abruptly, which leads to the conclusion that further recycling may not be advisable.

  16. Recycling entire DOE facilities: The National Conversion Pilot Project

    International Nuclear Information System (INIS)

    Floyd, D.R.

    1996-01-01

    The Mission of the National Conversion Pilot Project - to demonstrate, at the Rocky Flats Site, the feasibility of economic conversion of DOE Sites - is succeeding. Contaminated facilities worth $92 million are being cleaned and readied for reuse by commercial industry to manufacture products needed in the DOE cleanup and elsewhere. Former Rocky Flats workers have been hired, recultured, are conducting the cleanup and are expected to perform the future manufacturing by recycling DOE RSM and other metals requiring special environmental controls. Stakeholder sway over project activities is welcome and strong

  17. A Service Learning Project on Aluminum Recycling--Developing Soft Skills in a Material and Energy Balances Course

    Science.gov (United States)

    West, Christy Wheeler

    2017-01-01

    This paper describes a project carried out in a sophomore chemical engineering course, in which students studied the energetic differences between refining and recycling aluminum. They worked in teams to prepare a presentation about the importance of aluminum recycling to a lay audience. The project reinforced classroom learning and provided an…

  18. The Cyclohexanol Cycle and Synthesis of Nylon 6,6: Green Chemistry in the Undergraduate Organic Laboratory

    Science.gov (United States)

    Dintzner, Matthew R.; Kinzie, Charles R.; Pulkrabek, Kimberly; Arena, Anthony F.

    2012-01-01

    A one-term synthesis project that incorporates many of the principles of green chemistry is presented for the undergraduate organic laboratory. In this multistep scheme of reactions, students react, recycle, and ultimately convert cyclohexanol to nylon 6,6. The individual reactions in the project employ environmentally friendly methodologies, and…

  19. A Study of the Effect of Recycled Mix Glass on the Mechanical Properties of Green Concrete

    Directory of Open Access Journals (Sweden)

    Aseel B. Al-Zubaidi

    2017-12-01

    Full Text Available In this paper we utilized mixing of different types of recycled glass such as (neon glass, brown glass, and green glass that has high percentage of silicon dioxide (SiO2 with different concentrations. Utilization these landfall materials can be considered as keeping on resources. Different waste glasses used as a partial replacement of cement with different concentrations 11%, 13%, and 15% of cement weight for each type, and study the effect of it on the mechanical properties of concrete. After mixing, casting, and curing in water at (20±2°C for (7, 14, and 28 days, the mechanical properties showed that the compressive strength and flexural showed highest results at 13% from cement weight of neon glass, whereas splitting tensile strength showed the highest value at the same percentage, but from green glass.

  20. Improving the competitiveness of green ship recycling

    OpenAIRE

    Jain, K.P.

    2017-01-01

    The end of life of a ship is determined by its owner on the basis of various commercial and technical factors. Once decided to scrap a ship, almost all end-of-life (EOL) ships are sold to recycling yards for dismantling; except for a few which are converted into museums, hotels, storage, and artificial reefs. As the decision is a commercial one, the selection of a yard is predominantly based on the offer price, which depends on the location of the yard and the recycling process employed.Among...

  1. 75 FR 71003 - America Recycles Day, 2010

    Science.gov (United States)

    2010-11-19

    ... help create green jobs, support a vibrant American recycling and refurbishing industry, and advance our..., including the recycling of electronic products. The increased use of electronics and technology in our homes... harmful effects of the improper handling and disposal of these products. Currently, most discarded...

  2. Demonstrating leadership inside and out : green building project trains employees, educates clients

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-01-15

    This article described a full-scale green renovation project undertaken by a construction management firm in Newton, Massachusetts. Chapman Construction and Design began renovating its own office building in late 2007 and completed it in September 2008. The firm set out to achieve LEED Platinum certification from the United States Green Building Council. The project involved energy saving modifications to its mechanical systems; replacing plumbing fixtures with high efficiency alternatives to reduce water consumption by at least 40 per cent; installing skylights and additional windows to allow more natural light into the interior space; salvaging doors, lighting, metal studs and masonry whenever possible; and using sustainable products such as recyclable carpets, tiles and low-VOC paint. The main feature of the renovation was a new 47 kW (DC) photovoltaic (PV) solar power array installed on the rooftop. The PV array includes 208 panels and a SunPower SPR-225 system that produces 55,000 kWh of clean power per year. This grid connected system will supply 90 per cent of the company's electricity needs. During times of peak production, excess power will be sent back to the utility. This article also described the 3 different roofing systems upon which the PV system was installed. All of the roofing systems were manufactured by the Firestone Building Products Company and included an innovative and highly reflective white thermoplastic polyolefin (TPO) single-ply roofing system; a RubberGard EPDM roofing system that was coated with Firestone's white AcryliTop coating which exceeds Energy Star requirements for energy efficiency; and a 1.5 mm Firestone UltraPly TPO membrane. The easy to install roofing systems were designed to prolong the service life of the roof and reflect solar radiation. 1 ref., 2 figs.

  3. Alabama Institute for Deaf and Blind Biodiesel Project Green

    Energy Technology Data Exchange (ETDEWEB)

    Edmiston, Jessica L

    2012-09-28

    Through extensive collaboration, Alabama Institute for Deaf and Blind (AIDB) is Alabama's first educational entity to initiate a biodiesel public education, student training and production program, Project Green. With state and national replication potential, Project Green benefits local businesses and city infrastructures within a 120-mile radius; provides alternative education to Alabama school systems and to schools for the deaf and blind in Appalachian States; trains students with sensory and/or multiple disabilities in the acquisition and production of biodiesel; and educates the external public on alternative fuels benefits.

  4. Green Building Tools for Tribes

    Science.gov (United States)

    Tribal green building tools and funding information to support tribal building code adoption, healthy building, siting, energy efficiency, renewable energy, water conservation, green building materials, recycling and adaptation and resilience.

  5. Recycling of Malaysia's electric arc furnace (EAF) slag waste into heavy-duty green ceramic tile.

    Science.gov (United States)

    Teo, Pao-Ter; Anasyida, Abu Seman; Basu, Projjal; Nurulakmal, Mohd Sharif

    2014-12-01

    Recently, various solid wastes from industry such as glass waste, fly ash, sewage sludge and slag have been recycled into various value-added products such as ceramic tile. The conventional solutions of dumping the wastes in landfills or incineration, including in Malaysia are getting obsolete as the annual huge amount of the solid wastes would boost-up disposal cost and may cause permanent damage to the flora and fauna. This recent waste recycling approach is much better and greener as it can resolve problems associated with over-limit storage of industrial wastes and reduce exploration of natural resources for ceramic tile to continuously sustain the nature. Therefore, in this project, an attempt was made to recycle electric arc furnace (EAF) slag waste, obtained from Malaysia's steel making industry, into ceramic tile via conventional powder compaction method. The research work was divided into two stages. The first stage was to evaluate the suitability of EAF slag in ceramic tile by varying weight percentage of EAF slag (40 wt.%, 50 wt.% and 60 wt.%) and ball clay (40 wt.%, 50 wt.% and 60 wt.%), with no addition of silica and potash feldspar. In the second stage, the weight percentage of EAF slag was fixed at 40 wt.% and the percentage of ball clay (30 wt.% and 40 wt.%), feldspar (10 wt.% and 20 wt.%) and silica (10 wt.% and 20 wt.%) added was varied accordingly. Results obtained show that as weight percentage of EAF slag increased up to 60 wt.%, the percentage of apparent porosity and water absorption also rose, with a reduction in tile flexural strength and increased porosity. On the other hand, limiting the weight percentage of EAF slag to 40 wt.% while increasing the weight percentage of ball clay led to a higher total percentage of anorthite and wollastonite minerals, resulting in higher flexural strength. It was found that introduction of silica and feldspar further improved the flexural strength due to optimization of densification process. The highest

  6. Green economy in Finnish society; Vihreae talous suomalaisessa yhteiskunnassa

    Energy Technology Data Exchange (ETDEWEB)

    Antikainen, R.; Laehtinen, K.; Leppaenen, M.; Furman, E.

    2013-02-15

    The concept of a green economy is commonly used in public discussion, but no unanimity exists as to its definition. The objective of this report was to increase understanding of the concept of green economy and the changes required by the transition to a green economy. The report is part of the 'Green economy - analysis of the concept and its consequences for various parties' project, implemented by the Finnish Environment Institute (SYKE) in 2012. The research material comprised literature, web-based background surveys, results of a multidisciplinary workshop for scientists and a workshop for relevant actors, opening presentations for the workshops, expert opinions voiced in the workshops, and discussions of the project steering group. Examples of the elements of a green economy are resource - i.e. energy and material - efficiency, the reduction of resource use, the improvement of resource use efficiency and recycling of resources, the move from tangible to intangible value creation, and the revising of corporate business models, such as models of industrial symbiosis and increased service orientation. Of key importance in this transformation are new models for production and communities, the preservation of natural capital and taking account of challenges presented by the global operating environment, as well as the implementation of sustainability principles. A green economy is seen to contribute to domestic well-being, employment and the economy, while enabling the internationalisation of companies and international business. Finland's strengths lie in expertise related to areas such as bioeconomy, cleantech, water and water supply, and recycling. A further strength is the traditionally close cooperative relationships between various actors. However, silo thinking should be further reduced, as it slows down reform, and collaboration initiatives and experiments between actors and on the level of policies should be supported. In the future, it

  7. A Practical Recycling Project . . .

    Science.gov (United States)

    Durant, Raymond H.; Mikuska, James M.

    1973-01-01

    Descirbes a school district's recycling program of aluminum lunch trays that are collected after their use. The trays are used as scrap metal in industrial education workshop and used for sand castings. (PS)

  8. Integrating recycling, renewable energy and agriculture for commercial waste to wealth businesses

    International Nuclear Information System (INIS)

    Gan Khai Chung; Angeline Pang

    2010-01-01

    Recycling organic material to produce renewable energy and organic fertilizer is an attractive business model in waste to wealth business proposition. Azed Bina Sdn Bhd has developed an integrated recycling facility to recycle solid organic materials into energy and organic fertilizer, a project partially funded by MOSTI TechnoFund in 2008. The novel and innovative aspect is the water disassociation technology which separates the water into hydrogen gas and oxygen gas economically using thermal heat from the burning of biomass which is a waste material. This system is modular, scalable, economical and environmental friendly. It has many applications in the field of, Environment and Solid Waste Management - recycling organic waste into energy and organic fertilizer rather than disposal at the landfill, hence preserving our environment. Green technology - economical biogas production consists of 50% hydrogen gas which is a clean and renewable energy source. The biogas has many applications in the food industry, manufacturing industry and agriculture sector. Agro-based industry - production of clean heat energy is useful for the drying of agriculture crops. Agriculture Sector - production of ash can be used to produce organic fertilizer by incorporating effective microbes. Reduce the dependence on chemical fertilizer which is bad for the environment Rural Development - developing rural area by integrating small scale industries, agro based industry, agriculture and rural area. The company commercial applications of recycling organic materials to produce energy for companies such as laundry business, agro based food drying and waste management recycling. The next project is to provide chilled water using organic waste. (author)

  9. Risk assessment by percolation leaching tests of extensive green roofs with fine fraction of mixed recycled aggregates from construction and demolition waste.

    Science.gov (United States)

    López-Uceda, Antonio; Galvín, Adela P; Ayuso, Jesús; Jiménez, José Ramón; Vanwalleghem, Tom; Peña, Adolfo

    2018-03-19

    Extensive green roofs are urban construction systems that provide thermal regulation and sound proofing for the buildings involved, in addition to providing an urban heat island mitigation or water retention. On the other hand, policies towards reduction of energy consumption, a circular economy and sustainability are core in the European Union. Motivated by this, an experimental study was carried out to evaluate the environmental risk assessment according to release levels of polluting elements on leachates of different green roof substrate mixtures based on recycled aggregates from construction and demolition waste through (i) the performance in laboratory of two procedures: compliance and percolation tests and (ii) an upscaled experimental leaching test for long-term on-site prediction. Four plots were built on a building roof and covered with autochthonous Mediterranean plants in Córdoba, South of Spain. As growing substrate, four mixtures were used of a commercial growing substrate with different proportions of a fine mixed recycled aggregate ranging from 0 to 75% by volume. The results show that these mixtures were classified as non-hazardous materials according to legal limits of the Landfill Directive 2003/33/CE. The release levels registered in extensive green roofs were lower compared to the laboratory test data. This shows how laboratory conditions can overestimate the potential pollutant effect of these materials compared to actual conditions.

  10. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    hill, amanda; Leinikka Dall, Ole; Andersen, Frits Møller

    2014-01-01

    % for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...

  11. Evolutionary Game Model Study of Construction Green Supply Chain Management under the Government Intervention

    Science.gov (United States)

    Xing, Yuanzhi; Deng, Xiaoyi

    2017-11-01

    The paper first has defined the concepts of green supply chain management and evolution game theory, and pointed out the characteristics of green supply chain management in construction. The main participants and key links of the construction green supply chain management are determined by constructing the organization framework. This paper established the evolutionary game model between construction enterprises and recycling enterprises for the green supply chain closed-loop structure. The waste recycling evolutionary stability equilibrium solution is obtained to explore the principle and effective scope of government policy intervention. This paper put forward the relevant countermeasures to the green supply chain management in construction recycling stage from the government point of view. The conclusion has reference value and guidance to the final product construction enterprises, recycling enterprises and the government during green supply chain.

  12. Project summary plan for HTGR recycle reference facility

    International Nuclear Information System (INIS)

    Baxter, B.J.

    1979-11-01

    A summary plan is introduced for completing conceptual definition of an HTGR Recycle Reference Facility (HRRF). The plan describes a generic project management concept, often referred to as the requirements approach to systems engineering. The plan begins with reference flow sheets and provides for the progressive evolution of HRRF requirements and definition through feasibility, preconceptual, and conceptual phases. The plan lays end-to-end all the important activities and elements to be treated during each phase of design. Identified activities and elements are further supported by technical guideline documents, which describe methodology, needed terminology, and where relevant a worked example

  13. Agile project management with GreenHopper 6 blueprints

    CERN Document Server

    Malik, Jaibeer

    2013-01-01

    A step-by-step tutorial-based approach.This book is of great help for agile teams who are already using or planning to use the GreenHopper tooling system to execute agile projects. It suits all roles in an agile project including system administrators, stakeholders, product owners, scrum masters, and team members. Fundamental knowledge of JIRA is essential.

  14. Reduce, reuse and recycle: A green solution to Canada's medical isotope shortage

    International Nuclear Information System (INIS)

    Galea, R.; Ross, C.; Wells, R.G.

    2014-01-01

    Due to the unforeseen maintenance issues at the National Research Universal (NRU) reactor at Chalk River and coincidental shutdowns of other international reactors, a global shortage of medical isotopes (in particular technetium-99m, Tc-99m) occurred in 2009. The operation of these research reactors is expensive, their age creates concerns about their continued maintenance and the process results in a large amount of long-lived nuclear waste, whose storage cost has been subsidized by governments. While the NRU has since revived its operations, it is scheduled to cease isotope production in 2016. The Canadian government created the Non-reactor based medical Isotope Supply Program (NISP) to promote research into alternative methods for producing medical isotopes. The NRC was a member of a collaboration looking into the use of electron linear accelerators (LINAC) to produce molybdenum-99 (Mo-99), the parent isotope of Tc-99m. This paper outlines NRC’s involvement in every step of this process, from the production, chemical processing, recycling and preliminary animal studies to demonstrate the equivalence of LINAC Tc-99m with the existing supply. This process stems from reusing an old idea, reduces the nuclear waste to virtually zero and recycles material to create a green solution to Canada's medical isotope shortage. - Highlights: • Commercial power electron accelerators are realistic option to produce 99 Mo. • Could cover national demand of Canada. • Demonstrate LINAC- 99 Mo as environmental and economical solution to isotope crisis. • Demonstrate LINAC- 99m Tc to be clinically equivalent to current fission- 99m Tc supply

  15. Plans and Living Practices for the Green Campus of Portland State University

    Directory of Open Access Journals (Sweden)

    Yoon Jung Choi

    2017-02-01

    Full Text Available This study aims to comprehend Portland State University (PSU’s green campus strategies, and students’ level of knowledge and living practices relating to green campus. PSU’s sustainable campus plan has been nationally and internationally recognized. A literature review, field investigation, and interviews were conducted to ascertain the PSU green campus strategies. This study also used a survey to understand students’ level of knowledge and practices. The survey results were analyzed by SPSS. Green campus projects at PSU were operated by official organizations and funded according to PSU’s long term plans in 12 multilateral categories: administration, energy, water, climate action, green buildings, green purchasing, waste reduction and recycling, food and dining services, transportation, land use, action, and education and student activity. The survey results show that the level of students’ understanding about PSU’s green campus strategies was somewhat low, but the amount of practice of a sustainable lifestyle was higher. Students who had taken courses related with sustainability or were engaged in sustainable activities had more knowledge about green campus strategies than students who had not. Therefore, it would be important to focus more on educating students and developing related programs in order to have more positive effects of green campus projects.

  16. Supporting Sustainability through Recycling on Office Premises

    OpenAIRE

    Sierra Quiros, Maria

    2016-01-01

    This thesis is about recycling at the Deloitte office. Recycling of office material can be considered as a rather easy way to influence aspects of sustainability. The starting point for this thesis was to give support to Deloitte´s Green Agenda team, who’s aim is to consider recycling and sustainability from business perspectives. One of the main objectives in this thesis is to provide Deloitte with a frame of solutions for them to establish clear rules, policies and norms that encourage...

  17. The importance of recycling - Responsible recycling

    International Nuclear Information System (INIS)

    Svensson, Joens Petter

    2014-01-01

    7 times the total emissions from Sweden are saved each year by the recycling industry. It reduces CO 2 emissions and saves the environment. In fact it annually reduces global CO 2 emissions by 500 million tons, which is more than what is being emitted by the world wide aviation industry. Recycling of iron and steel saves 74% energy and reduces water and air pollution by respectively 76% and 86%, compared to primary production. It provides new raw materials and contributes to save energy. There's no sense in producing goods in a permanent material like plastics, that's supposed to be used only once. It's a huge waste of resources. Today the recycling industry provides half of the world's raw materials and this figure is set to increase. It's about environmentally sound management of resources. It's about plain common sense. There has to be a political willingness to facilitate recycling in every way. And from a corporate perspective social responsibility is becoming an increasingly important competitive edge. This is also a communication issue, it has to be a fact that is well known to the market when a company is doing valuable environmental work. We also need a well functioning global market with easy to understand regulations to facilitate global trade. The global demand for recycled materials should influence their collection and use. Fraud and theft has also to be kept at bay which calls for a close collaboration between organizations such as The International Chamber of Commerce, The International Trade Council and the International Maritime Bureau of the commercial crime services. Increasing recycling is the only way to go if we want to minimize our effect on the environment. We have to remember that recycling is essential for the environment. An increase would be a tremendous help to reduce the green house effect. Increasing recycling is not rocket science. We know how to do it, we just have to decide to go through with it

  18. Modelling Recycling Targets

    DEFF Research Database (Denmark)

    Hill, Amanda Louise; Leinikka Dall, Ole; Andersen, Frits M.

    2014-01-01

    Within the European Union (EU) a paradigm shift is currently occurring in the waste sector, where EU waste directives and national waste strategies are placing emphasis on resource efficiency and recycling targets. The most recent Danish resource strategy calculates a national recycling rate of 22......% for household waste, and sets an ambitious goal of a 50% recycling rate by 2020. This study integrates the recycling target into the FRIDA model to project how much waste and from which streams should be diverted from incineration to recycling in order to achieve the target. Furthermore, it discusses how...... the existing technological, organizational and legislative frameworks may affect recycling activities. The results of the analysis show that with current best practice recycling rates, the 50% recycling rate cannot be reached without recycling of household biowaste. It also shows that all Danish municipalities...

  19. Waste material recycling: Assessment of contaminants limiting recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn

    systematically investigated. This PhD project provided detailed quantitative data following a consistent approach to assess potential limitations for the presence of chemicals in relation to material recycling. Paper and plastics were used as illustrative examples of materials with well-established recycling...... schemes and great potential for increase in recycling, respectively. The approach followed in the present work was developed and performed in four distinct steps. As step one, fractional composition of waste paper (30 fractions) and plastics (9 fractions) from households in Åbenrå municipality (Southern...... detrimental to their recycling. Finally, a material flow analysis (MFA) approach revealed the potential for accumulation and spreading of contaminants in material recycling, on the example of the European paper cycle. Assessment of potential mitigation measures indicated that prevention of chemical use...

  20. Going Green

    Centers for Disease Control (CDC) Podcasts

    This podcast is for a general audience and provides information on how to recycle, re-use, and restore. It also covers the benefits of “Going Green" on the environment, health, and social interaction.

  1. Gunite and associated tanks remediation project recycling and waste minimization effort

    International Nuclear Information System (INIS)

    Van Hoesen, S.D.; Saunders, A.D.

    1998-05-01

    The Department of Energy's Environmental Management Program at Oak Ridge National Laboratory has initiated clean up of legacy waste resulting from the Manhattan Project. The gunite and associated tanks project has taken an active pollution prevention role by successfully recycling eight tons of scrap metal, reusing contaminated soil in the Area of Contamination, using existing water (supernate) to aid in sludge transfer, and by minimizing and reusing personal protective equipment (PPE) and on-site equipment as much as possible. Total cost savings for Fiscal Year 1997 activities from these efforts are estimated at $4.2 million dollars

  2. Aluminium beverage can recycling

    Energy Technology Data Exchange (ETDEWEB)

    Lewinski, A von

    1985-08-01

    Canned beverages have become a controversial issue in this era of ecological sensitivity. METALL has already discussed the problem of can recycling. The present article discusses the technical aspects of aluminium can recycling. Two further articles will follow on aluminium can recycling in North America and on the results of European pilot projects.

  3. System Establishment and Method Application for Quantitatively Evaluating the Green Degree of the Products in Green Public Procurement

    Directory of Open Access Journals (Sweden)

    Shengguo Xu

    2016-09-01

    Full Text Available The government green purchase is widely considered to be an effective means of promoting sustainable consumption. However, how to identify the greener product is the biggest obstacle of government green purchase and it has not been well solved. A quantitative evaluation method is provided to measure the green degree of different products of the same use function with an indicator system established, which includes fundamental indicators, general indicators, and leading indicators. It can clearly show the products’ green extent by rating the scores of different products, which provides the government a tool to compare the green degree of different products and select greener ones. A comprehensive evaluation case of a project purchasing 1635 desk computers in Tianjin government procurement center is conducted using the green degree evaluation system. The environmental performance of the products were assessed quantitatively, and the evaluation price, which was the bid price minus the discount (the discount rate was according to the total scores attained by their environmental performance, and the final evaluation price ranking from low to high in turn is supplier C, D, E, A, and B. The winner, supplier C, was not the lowest bid price or the best environmental performance, but it performed well at both bid price and environmental performance so it deserved the project. It shows that the green extent evaluation system can help classify the different products by evaluating their environment performance including structure and connection technology, selection of materials and marks, prolonged use, hazardous substances, energy consumption, recyclability rate, etc. and price, so that it could help to choose the greener products.

  4. Improving the competitiveness of green ship recycling

    NARCIS (Netherlands)

    Jain, K.P.

    2017-01-01

    The end of life of a ship is determined by its owner on the basis of various commercial and technical factors. Once decided to scrap a ship, almost all end-of-life (EOL) ships are sold to recycling yards for dismantling; except for a few which are converted into museums, hotels, storage, and

  5. A New Dynamic Multicriteria Decision-Making Approach for Green Supplier Selection in Construction Projects under Time Sequence

    Directory of Open Access Journals (Sweden)

    Shi Yin

    2017-01-01

    Full Text Available Nowadays, due to the lack of natural resources and environment problems which have been appearing increasingly, green building is more and more involved in the construction industry. The evaluation and selection of green supplier are a significant part of the development of green building. In this paper, we propose a new dynamic multicriteria decision-making approach in construction projects under time sequence to deal with these problems. First, the paper establishes 4 main criteria and 17 subcriteria for green supplier selection in construction projects. Then, a method considering interaction between criteria and the influence of constructors subjective preference and objective criteria information is proposed. It uses the interval-valued intuitionistic fuzzy geometric weighted Heronian means (IVIFGWHM operator and multitarget nonlinear programming model to calculate the comprehensive evaluation results of potential green suppliers. The proposed method is much easier for constructors to select green supplier and make the localization of green supplier more practical and accurate in construction projects. Finally, a case study about a green building project is given to verify practicality and effectiveness of the proposed approach.

  6. Biodegradable green composites reinforced by the fiber recycling from disposable chopsticks

    International Nuclear Information System (INIS)

    Shih, Yeng-Fong; Huang, Chien-Chung; Chen, Po-Wei

    2010-01-01

    The use of disposable chopsticks is very popular in chopsticks-using countries, such as Taiwan, China and Japan, and is one of the major sources of waste in these countries. In this study, the fiber recycling from disposable chopsticks was chemically modified by coupling agents. Furthermore, the modified fiber was added to the biodegradable polymer (polylactic acid, PLA), to form novel fiber-reinforced green composites. These composites prepared by melt-mixing method, were examined by scanning electron microscopy, differential scanning calorimetry, thermogravimetric analysis, and mechanical tests. The results indicated that the T g of PLA was increased by the addition of fiber, which may improve the heat resistance of PLA. The thermogravimetric analysis of the composites showed that the degradation process of fiber-filled systems started earlier than that of plain PLA, but possessed a higher char yield. Mechanical tests showed that the tensile strength of the composites markedly increased with the fiber content, reaching 115 MPa in the case of being reinforced with 40 phr fiber, which is about 3 times higher as compared to the pristine PLA. Furthermore, this type of reinforced PLA would be more environmental friendly than the artificial additive-reinforced one, and could effectively reduce and reuse the waste of disposable chopsticks.

  7. Implementing a campus wide recycling program

    International Nuclear Information System (INIS)

    Alvarez, L.

    2002-01-01

    'Full text:' The University of Windsor is currently expanding its recycling program to include all buildings on campus, but faces two challenges: 1) uncertainty about the current waste composition and distribution on campus; and 2) uncertainty about the effectiveness of increased recycling. This project assesses the current waste composition and the attitudes of the students towards recycling, and evaluates the effectiveness of proposed recycling activities. At present, paper is the only material that is collected throughout the entire campus. Except for two buildings, all other potentially recyclable materials within buildings, such as metal, glass, and plastic beverage containers, are discarded. The main focus of this research is on beverage containers as they represent clearly identifiable materials, but other materials were examined as well. To quantify the waste, different buildings on campus were classified according to their function: academic,operational and administrative. The waste composition study indicated that approximately 33% of the campus waste which is landfilled is composed of potentially recyclable material. A survey was then conducted to gauge the campus population's views on recycling issues that could affect the design of a recycling program. Interestingly, 97% of the respondents indicated a high willingness to recycle, but were uncertain as to how and where to recycle on campus. The project is currently assessing potential diversion rates using new, clearly identifiable recycling receptacles placed within selected classrooms for all major materials. There is a significant tradeoff however because the cost for new receptacles is considerable: multiple materials containers are often placed in high pedestrian traffic locations (e.g., hallways) and not always in classrooms,of which there are often many. This project will evaluate the basic benefits and costs of implementing a more comprehensive recycling program, and recommend how other

  8. Recycle and reduction of waste water in ISL operation

    International Nuclear Information System (INIS)

    Du Zhiming; Liu Naizhong; Su Xuebin; Li Jianhua; Zou Maoqing; Xing Yongguo

    2014-01-01

    Sandstone type uranium resources will be promote the main force of natural uranium production in China. The wastewater produced in the process of in-situ leaching mining need to be studied specially, so as to meet the requirements of green mining and realize the recycling of wastewater and decrement. We have researched and adopted including nature groundwater environmental recycling, liquor of precipitation recycling, optimization of elution process, the transformation waste water reduction, water evaporation reduction and a series of technological measures. The field application results show that the wastewater recycling and reduction in the process of production achieved a good environmental protection effect. (authors)

  9. Hanford recycling

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, I.M.

    1996-09-01

    DOE recycling contract at the Hanford site and a central group to control the contract. 0 Using a BOA or MTS contract as a way to get proceeds from recycling back to site facilities to provide incentives for recycling. . Upgrading tracking mechanisms to track and recycle construction waste which is presently buried in onsite pits. . Establishing contract performance measures which hold each project accountable for specific waste reduction goals. * Recycling and reusing any material or equipment possible as buildings are dismantled.

  10. DURABILITY OF GREEN CONCRETE WITH TERNARY CEMENTITIOUS SYSTEM CONTAINING RECYCLED AGGREGATE CONCRETE AND TIRE RUBBER WASTES

    Directory of Open Access Journals (Sweden)

    MAJID MATOUQ ASSAS

    2016-06-01

    Full Text Available All over the world billions of tires are being discarded and buried representing a serious ecological threat. Up to now a small part is recycled and millions of tires are just stockpiled, landfilled or buried. This paper presents results about the properties and the durability of green concrete contains recycled concrete as a coarse aggregate with partial replacement of sand by tire rubber wastes for pavement use. Ternary cementious system, Silica fume, Fly ash and Cement Kiln Dust are used as partial replacement of cement by weight. Each one replaced 10% of cement weight to give a total replacement of 30%. The durability performance was assessed by means of water absorption, chloride ion permeability at 28 and 90 days, and resistance to sulphuric acid attack at 1, 7, 14 and 28 days. Also to the compression behaviors for the tested specimens at 7, 14, 28 and 90 days were detected. The results show the existence of ternary cementitious system, silica fly ash and Cement Kiln Dust minimizes the strength loss associated to the use of rubber waste. In this way, up to 10% rubber content and 30% ternary cementious system an adequate strength class value (30 MPa, as required for a wide range of common structural uses, can be reached both through natural aggregate concrete and recycled aggregate concrete. Results also show that, it is possible to use rubber waste up to 15% and still maintain a high resistance to acid attack. The mixes with 10%silica fume, 10% fly ash and 10% Cement Kiln Dust show a higher resistance to sulphuric acid attack than the reference mix independently of the rubber waste content. The mixes with rubber waste and ternary cementious system was a lower resistance to sulphuric acid attack than the reference mix.

  11. Challenges of Green Logistics in Southeast Europe

    OpenAIRE

    Beškovnik, Bojan; Jakomin, Livio

    2010-01-01

    This paper describes the trends towards green logistics in global aspect and challenges of adopting green logistics in the region of Southeast Europe. Modern logistics with supply chain management is experiencing a period of important evolution. From reversible logistics, we came to green logistics, which is a wider concept of environmentally friendly thinking. Reverse logistics includes processes of movements and transportation of waste from users to recycling plants; meanwhile, green logist...

  12. Synthesis of the european national requirements and practices for recycling in HMA and WMA (DIRECT_MAT PROJECT)

    OpenAIRE

    IPAVEC , Aleksander; Marsac , Paul; Mollenhauer , Konrad

    2012-01-01

    The purpose of the 2009-2011 European project DIsmantling and RECycling Techniques for road MATerials is to contribute to the waste minimization in road maintenance and construction by sharing and disseminating, at a European level, the national know-how and sustainable practices regarding the dismantling of the pavements and the recycling of the reclaimed materials. In the framework of the DIRECT_MAT subproject Asphalt materials, the present paper gives a broad overview of the European polic...

  13. Utilizing Coal Fly Ash and Recycled Glass in Developing Green Concrete Materials

    Science.gov (United States)

    2012-06-01

    The environmental impact of Portland cement concrete production has motivated researchers and the construction industry to evaluate alternative technologies for incorporating recycled cementing materials and recycled aggregates in concrete. One such ...

  14. Characterization of quality recycled gypsum and plasterboard with maximized recycled content

    International Nuclear Information System (INIS)

    Jiménez-Rivero, J.; García-Navarro, J.

    2017-01-01

    The quality of secondary materials is imperative to promote a circular economy. In order to improve the way in which the quality of recycled gypsum is assessed, European guidelines on recycled gypsum (RG) quality criteria have been outlined in the framework of the Life+ Gypsum to Gypsum (GtoG) project. Such GtoG guidelines, along with the European Standard on gypsum plasterboard EN 520, provided the basis for this study. During the GtoG project, gypsum recycling and plasterboard manufacturing processes were monitored by testing the gypsum feedstock and the plasterboard produced. The aim of this paper is to discuss the results obtained on relevant parameters that characterize gypsum as a secondary raw material, as well as the resulting product. The minimum requirements were fulfilled by 56% of the RG samples and 86% of the plasterboard with increased RG. [es

  15. Software recycling at the Hanford Site

    International Nuclear Information System (INIS)

    HINKELMAN, K.C.

    1999-01-01

    The Hanford Site was the first Department of Energy (DOE) complex to recycle excess software rather than dispose of it in the landfill. This plan, which took over a year to complete, was reviewed for potential legal conflicts, which could arise from recycling rather than disposal of software. It was determined that recycling was an approved method of destruction and therefore did not conflict with any of the licensing agreements that Hanford had with the software manufacturers. The Hanford Recycling Program Coordinator combined efforts with Pacific Northwest National Laboratory (PNNL) to recycle all Hanford software through a single contract, which went out for bid in January 1995. It was awarded to GreenDisk, Inc. located in Woodinville Washington and implemented in March 1995. The contract was later re-bid and awarded to EcoDisWGreenDisk in December 1998. The new contract included materials such as; software manuals, diskettes, tyvek wrapping, cardboard and paperboard packaging, compact disks (CDs), videotapes, reel-to-reel tapes, magnetic tapes, audio tapes, and many other types of media

  16. Assessing green waste route by using Network Analysis

    Science.gov (United States)

    Hasmantika, I. H.; Maryono, M.

    2018-02-01

    Green waste, such as waste from park need treat proper. One of the main problems of green waste management is how to design optimum collection. This research aims to determine the optimum green waste collection by determining optimum route among park. The route optimum was assessed by using network analysis method. And the region five of Semarang city’s park within 20 parks in chose as case study. To enhancing recycle of green waste, three scenarios of treatment are proposed. Scenario 1 used one integrated treatment facility as terminal for enhancing recycle of green waste, Scenario 2 used two sites and scenario 3 used three sites. According to the assessment, the length of route of scenario 1 is 36.126 km and the time for collection estimated is 46 minutes. In scenario 2, the length of route is 36.471 km with a travel time is 47 minutes. The length of scenario three is 46.934 km and the time of collection is 60 minutes.

  17. Recyclable epoxy resins: An example of green approach for advanced composite applications

    Science.gov (United States)

    Cicala, Gianluca; Rosa, Daniela La; Musarra, Marco; Saccullo, Giuseppe; Banatao, Rey; Pastine, Stefan

    2016-05-01

    Automotive composite applications are increasingly growing due to demand for lightweight structures to comply to the requirements for fuel reduction. HP-RTM is gaining relevance as one of the preferred production technologies for high volume applications. The BMW i3 life module being a notable example of HP-RTM application. The key aspects of HP-RTM are the short injection times (i.e. less than 1min) and the fast curing of the thermoset resins (i.e. less than 10min). The choice of using thermosets poses relevant issues for their limited recycling options. The standard recycling solution is the incineration but, this solution poses some concerns in terms of global environmental impact. Novel solutions are presented in this work based on the use of recyclable epoxy systems. In our work the results of experimentation carried out by our group with cleavable ammines by Connora Technologies and bioepoxy resins by Entropy Resins will be discussed. The multiple uses of recycled matrices obtained treating the recyclable epoxy resins are discussed in the framework of a "cradle" to "crave" approach. Finally, Life Cycle Assessment (LCA) is used to evaluate the environmental benefits of the proposed approach.

  18. Research on Recycling and Utilization of Solid Waste in Civil Airport

    Science.gov (United States)

    Li, Bo; Zhang, Wen; Wang, Jianping; Yi, Wei

    2018-05-01

    The aviation industry is embracing unprecedented prosperity together with the economic development. Building green airports resource-saving, environment-friendly and sustainable has become the inevitability of the times. The operation of airport will generate the large amount of waste every day, which certainly exposes airports and surrounding regions to waste disposal and ecological environment pressure. Waste disposal directly affects the surrounding environment of airports, which can be effectively mitigated by disposing waste into resources, i.e., sorting and recycling them into renewable materials. The development of green airport can also be promoted in this process. The article elaborates on the current methods of waste disposal adopted by airports. According to the principle of waste reduction, harmlessness, and resource recycling, a set of solid waste recycling and utilization methods suitable for airports are proposed, which can reduce the costs of waste transported to other places and landfilled. Various environmental pollution caused by landfill and other disposal methods can also be contained effectively. At the same time, resources can be fully recycled, converting waste into useful resources in an efficient and environmental-friendly way.

  19. Usage of Recycled Pet

    Directory of Open Access Journals (Sweden)

    A. Ebru Tayyar

    2010-01-01

    Full Text Available The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PET bottles are commonly used in beverage industry and can be reused after physical and chemical recycling processes. Usage areas of recycled PET have been developed rapidly. Although recycled PET is used in plastic industry, composite industry also provides usage alternatives of recycled PET. Textile is a suitable sector for recycling of some plastics made of polymers too. In this study, the recycling technologies and applications of waste PET bottles have been investigated and scientific works in this area have been summarized.

  20. A Guide to Running a Recycling Project. [Includes Recycling Handbook].

    Science.gov (United States)

    Oregon Recycling Information and Organizing Network, Portland.

    This guide, designed for both students and adults, is intended for individuals who feel they might be interested in establishing a recycling depot. The guide includes such pertinent information as deciding how to set up a depot, markets and transportation, preparation of materials, where to place the depot and when to operate it, publicity and…

  1. Building a Green Economy: Employment Effects of Green Energy Investments for Ontario

    OpenAIRE

    Robert Pollin; Heidi Garrett-Peltier

    2009-01-01

    In this study of Ontario’s green economy, Robert Pollin and Heidi Garrett-Peltier present an approach to realistically estimate the employment effects of green investments in Ontario. They focus on two alternative investment scenarios for the province: a baseline program of $18.6 billion invested in conservation and demand management; hydroelectric power; on-shore wind power; bioenergy; waste energy recycling; and solar power over 10 years, and a more ambitious $47.1 billion 10-year investmen...

  2. Effect of recycling activities on the heating value of solid waste: case study of the Greater Vancouver Regional District (Metro Vancouver).

    Science.gov (United States)

    Abedini, Ali R; Atwater, James W; Fu, George Yuzhu

    2012-08-01

    Two main goals of the integrated solid waste management system (ISWMS) of Metro Vancouver (MV) include further recycling of waste and energy recovery via incineration of waste. These two very common goals, however, are not always compatible enough to fit in an ISWMS depending on waste characteristics and details of recycling programs. This study showed that recent recycling activities in MV have negatively affected the net heating value (NHV) of municipal solid waste (MSW) in this regional district. Results show that meeting MV's goal for additional recycling of MSW by 2015 will further reduce the NHV of waste, if additional recycling activities are solely focused on more extensive recycling of packaging materials (e.g. paper and plastic). It is concluded that 50% additional recycling of paper and plastic in MV will increase the overall recycling rate to 70% (as targeted by the MV for 2015) and result in more than 8% reduction in NHV of MSW. This reduction translates to up to 2.3 million Canadian dollar (CAD$) less revenue at a potential waste-to-energy (WTE) plant with 500 000 tonnes year(-1) capacity. Properly designed recycling programmes, however, can make this functional element of ISWMS compatible with green goals of energy recovery from waste. Herein an explanation of how communities can increase their recycling activities without affecting the feasibility of potential WTE projects is presented.

  3. Integrated Nuclear Recycle Plant

    International Nuclear Information System (INIS)

    Patodi, Anuj; Parashar, Abhishek; Samadhiya, Akshay K.; Ray, Saheli; Dey, Mitun; Singh, K.K.

    2017-01-01

    Nuclear Recycle Board (NRB), Tarapur proposes to set up an 'Integrated Nuclear Recycle Plant' at Tarapur. This will be located in the premises of BARC facilities. The project location is at coastal town of Tarapur, 130 Km north of Mumbai. Project area cover of INRP is around 80 hectares. The plant will be designed to process spent fuel received from Pressurized Heavy Water Reactors (PHWRs). This is the first large scale integrated plant of the country. INRP will process spent fuel obtained from indigenous nuclear power plants and perform left over nuclear waste disposal

  4. Cacao Intensification in Sulawesi: A Green Prosperity Model Project

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

    2014-09-01

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates techniques to improve cacao farming in Sulawesi Indonesia with an emphasis on Farmer Field Schools and Cocoa Development Centers to educate farmers and for train the trainer programs. The study estimates the economic viability of cacao farming if smallholder implement techniques to increase yield as well as social and environmental impacts of the project.

  5. Proposal of a new model to improve the collection of small WEEE: a pilot project for the recovery and recycling of toys.

    Science.gov (United States)

    Solé, Miquel; Watson, Jenna; Puig, Rita; Fullana-i-Palmer, Pere

    2012-11-01

    A new collection model was designed and tested in Catalonia (Spain) to foster the separate collection and recycling of electrical and electronic toys, with the participation of selected primary and secondary schools, as well as waste collection points and municipalities. This project approach is very original and important because small household WEEE has low rates of collection (16-21% WEEE within the EU or 5-7% WEEE in Spain) and no research on new approaches to enhance the collection of small WEEE is found in the literature. The project was successful in achieving enhanced toys collection and recycling rates, which went up from the national Spanish average of 0.5% toys before the project to 1.9 and 6% toys during the two project years, respectively. The environmental benefits of the campaign were calculated through a life-cycle approach, accounting for the avoided impact afforded by the reuse of the toys and the recycling of the valuable materials contained therein (such as metals, batteries and circuit boards) and subtracting the additional environmental burdens associated with the establishment of the collection campaign.

  6. Going Green

    Centers for Disease Control (CDC) Podcasts

    2008-04-18

    This podcast is for a general audience and provides information on how to recycle, re-use, and restore. It also covers the benefits of “Going Green" on the environment, health, and social interaction.  Created: 4/18/2008 by National Center for Environmental Health (NCEH), ATSDR.   Date Released: 5/8/2008.

  7. Secondary resources and recycling in developing economies

    International Nuclear Information System (INIS)

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-01-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH and S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for “green economy”

  8. Fiscal 2000 survey report on rationalization project for international energy conservation, technological dissemination project for international energy conservation, and Green Helmet Project. Japan-China alternative energy seminar/waste disposal; 2000 nendo kokusai energy shiyo gorika nado taisaku jigyo, kokusai energy shohi koritsuka nado gijutsu fukyu jigyo, green helmet jigyo chosa hokokusho. Nicchu sekiyu daitai energy seminar haikibutsu shori

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    This paper explains the Japan-China alternative energy seminar (February 28 and March 1, 2001, at Beijing). The purpose of the seminar is to introduce systematic and three-dimensional or land/sea/air measures for waste disposal including recycling in Japan, to provide guidance of measures in improving recognition and methods for waste disposal in China, and also to contribute to the dissemination and promotion of a model project for effectively utilizing waste heat from rubbish incineration, a project being implemented in Harbin City now. The activities of NEDO were introduced, with emphasis placed on a model program, called Green Aid Project, for managing heat from waste incineration. On the subjects of sustainable development, urban environment, and energy, the policy of China's tenth five-year plan was demonstrated, and the treatment of wastes in China was also explained. The present state of waste processing in Japan was introduced, as was its maintenance of the facilities. Concerning Japan's waste processing technologies and characteristics of the equipment, there were presented non-incineration processing including crushing/separating, RDF, compost, methane fermentation, etc.; incineration plants; and each of the technologies such as combustion, exhaust gas, ash treatment, use of remaining heat, and gasification melting. (NEDO)

  9. Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda

    1996-01-01

    Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.

  10. The green highway forum

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    In late 2004, as part of American Coal Ash Association's (ACAA) strategic planning process, a plan was approved by its Board of Directors implementing a 'green highways' concept which emphasized use of coal combustion products (CCPs) in highways in a variety of ways including being used alone, in combination with other forms of CCPs, and combined with non ash materials. The incentives behind the developed concept were the derived advantages from beneficial technical economic and environmental impacts. Although the primary use of fly ash is concrete, other forms of CCPs could be considered for more non-traditional highway applications. For example, these might include soils stabilization, binders for in-place pavement recycling, use in flowable fills, aggregates, source materials for structural fills and embankments, components in manufactured soils, and for granular base courses beneath pavements. At this same time, unknown to ACCA, EPA Region 3 in Philadelphia was working with the Wetlands and Watershed Work Group, a non-profit organization involved in wetlands policy and management along with the Federal Highway Administration (FHWA) on their own Green Highways initiative. These groups were planning a conference, the 'Green Highway Forum'. This was held in College Park, Maryland at the University of Maryland, Nov 8-10 2005. At the conference a draft 'roadmap' was presented as a guide to executive level participants bringing the diverse viewpoints of many agencies and interest groups together. Ten guiding principals were considered. The 'Green Highways' is a new effort to recognize the 'greenness' of many projects already completed and those to be initiated. 2 photos.

  11. Green corridors basics

    DEFF Research Database (Denmark)

    Panagakos, George

    2016-01-01

    SuperGreen project, which aimed at advancing the green corridor concept through a benchmarking exercise involving Key Performance Indicators (KPIs). The chapter discusses the available definitions of green corridors and identifies the characteristics that distinguish a green corridor from any other...... efficient surface transportation corridor. After providing examples of green corridor projects in Europe, it focuses on the KPIs that have been proposed by various projects for monitoring the performance of a freight corridor. Emphasis is given to the SuperGreen KPIs, covering the economic, technical...

  12. Recent advances on green concrete for structural purposes the contribution of the EU-FP7 project EnCoRe

    CERN Document Server

    Ferrara, Liberato; Martinelli, Enzo

    2017-01-01

    This book is mainly based on the results of the EU-funded UE-FP7 Project EnCoRe, which aimed to characterize the key physical and mechanical properties of a novel class of advanced cement-based materials incorporating recycled powders and aggregates and/or natural ingredients in order to allow partial or even total replacement of conventional constituents. More specifically, the project objectives were to predict the physical and mechanical performance of concrete with recycled aggregates; to understand the potential contribution of recycled fibers as a dispersed reinforcement in concrete matrices; and to demonstrate the feasibility and possible applications of natural fibers as a reinforcement in cementitious composites. All of these aspects are fully covered in the book. The opening chapters explain the material concept and design and discuss the experimental characterization of the physical, chemical, and mechanical properties of the recycled raw constituents, as well as of the cementitious composite incor...

  13. 5W intracavity frequency-doubled green laser for laser projection

    Science.gov (United States)

    Yan, Boxia; Bi, Yong; Li, Shu; Wang, Dongdong; Wang, Dongzhou; Qi, Yan; Fang, Tao

    2014-11-01

    High power green laser has many applications such as high brightness laser projection and large screen laser theater. A compact and high power green-light source has been developed in diode-pumped solid-state laser based on MgO doped periodically poled LiNbO3 (MgO:PPLN). 5W fiber coupled green laser is achieved by dual path Nd:YVO4/MgO:PPLN intra-cacity frequency-doubled. Single green laser maximum power 2.8W at 532nm is obtained by a 5.5W LD pumped, MgO:PPLN dimensions is 5mm(width)×1mm(thickness)×2mm(length), and the optical to optical conversion efficiency is 51%. The second LD series connected with the one LD, the second path green laser is obtained using the same method. Then the second path light overlap with the first path by the reflection mirrors, then couple into the fiber with a focus mirror. Dual of LD, Nd:YVO4, MgO:PPLN are placed on the same heat sink using a TEC cooling, the operating temperature bandwidth is about 12°C and the stablity is 5% in 96h. A 50×50×17mm3 laser module which generated continuous-wave 5 W green light with high efficiency and width temperature range is demonstrated.

  14. [Effect of Recycled Water Irrieation on Heavy Metal Pollution in Irrigation Soil].

    Science.gov (United States)

    Zhou, Yi-qi; Liu, Yun-xia; Fu, Hui-min

    2016-01-15

    With acceleration of urbanization, water shortages will become a serious problem. Usage of reclaimed water for flushing and watering of the green areas will be common in the future. To study the heavy metal contamination of soils after green area irrigation using recycled wastewater from special industries, we selected sewage and laboratory wastewater as water source for integrated oxidation ditch treatment, and the effluent was used as irrigation water of the green area. The irrigation units included broad-leaved forest, bush and lawn. Six samples sites were selected, and 0-20 cm soil of them were collected. Analysis of the heavy metals including Cr, Mn, Ni, Cu, Zn, As, Cd and Pb in the soil showed no significant differences with heavy metals concentration in soil irrigated with tap water. The heavy metals in the soil irrigated with recycled water were mainly enriched in the surface layer, among which the contents of Cr, Ni, Cu, Zn and Pb were below the soil background values of Beijing. A slight pollution of As and Cd was found in the soil irrigated by recycled water, which needs to be noticed.

  15. Economic feasibility of radioactive scrap steel recycling

    International Nuclear Information System (INIS)

    Balhiser, R.; Rosholt, D.; Nichols, F.

    1995-01-01

    The goal of MSE's Radioactive Scrap Steel (RSS) Recycle Program is to develop practical methods for recycling RSS into useful product. This paper provides interim information about ongoing feasibility investigations that are scheduled for completion by September 1995. The project approach, major issues, and cost projections are outlined. Current information indicates that a cost effective RSS Recycling Facility can be designed, built, and in operation by 1999. The RSS team believes that high quality steel plate can be made from RSS at a conversion cost of $1500 per ton or less

  16. Direct regeneration of recycled cathode material mixture from scrapped LiFePO4 batteries

    Science.gov (United States)

    Li, Xuelei; Zhang, Jin; Song, Dawei; Song, Jishun; Zhang, Lianqi

    2017-03-01

    A new green recycling process (named as direct regeneration process) of cathode material mixture from scrapped LiFePO4 batteries is designed for the first time. Through this direct regeneration process, high purity cathode material mixture (LiFePO4 + acetylene black), anode material mixture (graphite + acetylene black) and other by-products (shell, Al foil, Cu foil and electrolyte solvent, etc.) are recycled from scrapped LiFePO4 batteries with high yield. Subsequently, recycled cathode material mixture without acid leaching is further directly regenerated with Li2CO3. Direct regeneration procedure of recycled cathode material mixture from 600 to 800 °C is investigated in detail. Cathode material mixture regenerated at 650 °C display excellent physical, chemical and electrochemical performances, which meet the reuse requirement for middle-end Li-ion batteries. The results indicate the green direct regeneration process with low-cost and high added-value is feasible.

  17. Modeling the Hydrologic Effects of Large-Scale Green Infrastructure Projects with GIS

    Science.gov (United States)

    Bado, R. A.; Fekete, B. M.; Khanbilvardi, R.

    2015-12-01

    Impervious surfaces in urban areas generate excess runoff, which in turn causes flooding, combined sewer overflows, and degradation of adjacent surface waters. Municipal environmental protection agencies have shown a growing interest in mitigating these effects with 'green' infrastructure practices that partially restore the perviousness and water holding capacity of urban centers. Assessment of the performance of current and future green infrastructure projects is hindered by the lack of adequate hydrological modeling tools; conventional techniques fail to account for the complex flow pathways of urban environments, and detailed analyses are difficult to prepare for the very large domains in which green infrastructure projects are implemented. Currently, no standard toolset exists that can rapidly and conveniently predict runoff, consequent inundations, and sewer overflows at a city-wide scale. We demonstrate how streamlined modeling techniques can be used with open-source GIS software to efficiently model runoff in large urban catchments. Hydraulic parameters and flow paths through city blocks, roadways, and sewer drains are automatically generated from GIS layers, and ultimately urban flow simulations can be executed for a variety of rainfall conditions. With this methodology, users can understand the implications of large-scale land use changes and green/gray storm water retention systems on hydraulic loading, peak flow rates, and runoff volumes.

  18. School Recycling Programs: A Handbook for Educators.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This brochure describes some of the many recycling program options that schools can implement in their communities. It focuses on implementing actual recycling projects as a way of teaching the importance and benefits of recycling. The text examines the solid waste crisis and why Americans cannot continue to possess a disposable mentality. It…

  19. The Recycling Solution: How I Increased Recycling on Dilworth Road

    Science.gov (United States)

    Keller, J. Jacob

    2010-01-01

    The grandson of Fred Keller, one of the founders of behavior analysis, Jacob was 10 years old when he conducted the project for his elementary school science fair. We recently contacted Jacob to learn more about his project. He told us the inspiration came from a class field trip to the county recycling center, which included seeing video footage…

  20. Dismantling of asphalt and recycling road materials in asphalt layers

    OpenAIRE

    Antunes, M. L.; Batista, F. A.

    2009-01-01

    Este registo pertence ao Repositório Científico do LNEC The interest of recycling of asphalt and other road materials for pavement construction and rehabilitation has been generally growing in Portugal, for the last 15 years. After some occasional demonstration projects dealing with hot and cold in situ recycling of asphalt layers, the first significant experiences with cold in situ recycling and hot mix plant recycling of asphalt applied in full scale rehabilitation projects, ...

  1. Secondary resources and recycling in developing economies.

    Science.gov (United States)

    Raghupathy, Lakshmi; Chaturvedi, Ashish

    2013-09-01

    Recycling of metals extends the efficient use of minerals and metals, reduces pressure on environment and results in major energy savings in comparison to primary production. In developing economies recycling had been an integral part of industrial activity and has become a major concern due to the handling of potentially hazardous material without any regard to the occupational health and safety (OH&S) needs. With rising awareness and interest from policy makers, the recycling scenario is changing and the large scale enterprises are entering the recycling sector. There is widespread expectation that these enterprises would use the Best Available Technologies (BAT) leading to better environment management and enhanced resource recovery. The major challenge is to enhance and integrate the activities of other stakeholders in the value chain to make recycling an economically viable and profitable enterprise. This paper is an attempt to propose a sustainable model for recycling in the developing economies through integration of the informal and formal sectors. The main objective is to augment the existing practices using a scientific approach and providing better technology without causing an economic imbalance to the present practices. In this paper studies on lead acid batteries and e-waste recycling in India are presented to evolve a model for "green economy". Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Japanese Fast Reactor Program for Homogeneous Actinide Recycling

    International Nuclear Information System (INIS)

    Ishikawa, Makoto; Nagata, Takashi; Kondo, Satoru

    2008-01-01

    In the present report, the homogeneous actinide recycling scenario of Fast Reactor (FR) Cycle Technology Development Project (FaCT) is summarized. First, the scenario of nuclear energy policy in Japan are briefly reviewed. Second, the basic plan of Japan to manage all minor actinide (MA) by recycling is summarized objectives of which are the efficiency increase of uranium resources, the environmental burden reduction, and the increase of nuclear non-proliferation potential. Third, recent results of reactor physics study related to MA-loaded FR cores are briefly described. Fourth, typical nuclear design of MA-loaded FR cores in the FaCT project and their main features are demonstrated with the feasibility to recycle all MA in the future FR equilibrium society. Finally, the research and development program to realize the MA recycling in Japan is introduced, including international cooperation projects. (authors)

  3. Build green and conventional materials off-gassing tests: A final report

    Energy Technology Data Exchange (ETDEWEB)

    Piersol, P.

    1995-12-31

    Build Green is a certification program that will identify and label building products with a known recycled content. The introduction of these recycled materials has raised the concern that they may emit more indoor pollutants than conventional materials. This study addresses that concern by analyzing Build Green and conventional materials to assess their potential for off-gassing. The study involved emission tests of 37 materials including carpets, carpet undercushions, structural lumber, foundation material, insulation, drywall, fiberboard, counter tops, and cabinetry. The results presented in this report include comparisons of Build Green and conventional materials in terms of emissions of volatile organic compounds and formaldehyde, the material loading ratio, and discussion of the specific sources of the emissions.

  4. Recycling Mentors: an intergenerational, service-learning program to promote recycling and environmental awareness.

    Science.gov (United States)

    D'abundo, Michelle L; Fugate-Whitlock, Elizabeth I; Fiala, Kelly A

    2011-01-01

    The purpose of Recycling Mentors was to implement an intergenerational, service-learning program focused on promoting recycling and environmental awareness among students enrolled in Community Health (HEA 301) and Current Issues in Gerontology (GRN 440/540) and adults older than 60 years. Recycling Mentors was conducted in New Hanover County (NHC), North Carolina, where a moderate climate and coastal location attracts many tourists, retirees, and college students. A community like NHC is a good place to implement service-learning that educates both students and older adults about the benefits of recycling to individual health and the environment. During the Fall 2009 semester, undergraduate and graduate students completed institutional review board training and then conducted the program with older adults. The education component of Recycling Mentors included a pre/post survey, brochure, and scheduled visits. Overall, Recycling Mentors was positive service-learning experience with students identifying salient outcomes such as learning about recycling and the environment and working with older adults. In addition, teaching the education component of Recycling Mentors was good practice for students who will be the future health professionals. While service-learning and environmentally themed projects are common, a program that combines the 2 like Recycling Mentors is unique and has the potential to motivate individual change while positively impacting the local community and the environment.

  5. PENGEMBANGAN TUGAS AKHIR MELALUI PROJECT BASED LEARNING MODEL UNTUK MENINGKATKAN GENERIC GREEN SKILLS SISWA

    Directory of Open Access Journals (Sweden)

    Ana Ana

    2015-02-01

    Full Text Available ABSTRACT The development of students’ final project through Project-based Learning (PBLapproach was conducted in the workshop of family resource management (FRM in 7th semester.PBL approach is expected to give contribution to students’ motivation and experience to finish their final assignments of FRM workshop. The objectives of the research are to: (1 develop PBL model for the students’final project; (2 produce learning instruments of PBL such as lesson plans, manual of FRM workshop, and scientific report of FRM workshop. The method of the study was using research and development of Plomp model and quasi experiment for testing the effectiveness of the model. The research subjects were the students from the class of 2009 and 2010 who joined FRM workshop course. The study produced model, lesson plans, and manual of FRM workshop as the outputs. The result showed that project based learning model was effective to improve the students’ generic green skills for project management, collaborative skills, and communicative competence. Keywords: final project, generic green skill, family resource management, Project-Based Learning

  6. Resonant scattering of green light enabled by Ag@TiO2 and its application in a green light projection screen.

    Science.gov (United States)

    Ye, Yiyang; Chen, Tupei; Zhen, Juyuan; Xu, Chen; Zhang, Jun; Li, Huakai

    2018-02-01

    The ability to selectively scatter green light is essential for an RGB transparent projection display, and this can be achieved by a silver-core, titania-shell nanostructure (Ag@TiO 2 ), based on the metallic nanoparticle's localized surface plasmon resonance. The ability to selectively scatter green light is shown in a theoretical design, in which structural optimization is included, and is then experimentally verified by characterization of a transparent film produced by dispersing such nanoparticles in a polymer matrix. A visual assessesment indicates that a high-quality green image can be clearly displayed on the transparent film. For completeness, a theoretical design for selective scattering of red light based on Ag@TiO 2 is also shown.

  7. Green composites of thermoplastic corn starch and recycled paper cellulose fibers

    Directory of Open Access Journals (Sweden)

    Amnuay Wattanakornsiri

    2011-08-01

    Full Text Available Ecological concerns have resulted in a renewed interest in environmental-friendly composites issues for sustainabledevelopment as a biodegradable renewable resource. In this work we used cellulose fibers from recycled newspaper as reinforcementfor thermoplastic starch in order to improve its mechanical, thermal and water resistance properties. The compositeswere prepared from corn starch plasticized by glycerol (30% wt/wt of glycerol to starch as matrix that was reinforcedwith micro-cellulose fibers, obtained from used newspaper, with fiber content ranging from 0 to 8% (wt/wt of fibers to matrix.Physical properties of composites were determined by mechanical tensile tests, differential scanning calorimetry, thermogravimetricanalysis, water absorption measurement and scanning electron microscopy. The results showed that higherfibers content raised the tensile strength and elastic modulus up to 175% and 292%, respectively, when compared to thenon-reinforced thermoplastic starch. The addition of the fibers improved the thermal resistance and decreased the waterabsorption up to 63%. Besides, scanning electron microscopy illustrated a good adhesion between matrix and fibers. Theseresults indicated that thermoplastic starch reinforced with recycled newspaper cellulose fibers could be fruitfully used ascommodity plastics being strong, cheap, abundant and recyclable.

  8. Green remediation and recycling of contaminated sediment by waste-incorporated stabilization/solidification.

    Science.gov (United States)

    Wang, Lei; Tsang, Daniel C W; Poon, Chi-Sun

    2015-03-01

    Navigational/environmental dredging of contaminated sediment conventionally requires contained marine disposal and continuous monitoring. This study proposed a green remediation approach to treat and recycle the contaminated sediment by means of stabilization/solidification enhanced by the addition of selected solid wastes. With an increasing amount of contaminated sediment (20-70%), the 28-d compressive strength of sediment blocks decreased from greater than 10MPa to slightly above 1MPa. For augmenting the cement hydration, coal fly ash was more effective than lime and ground seashells, especially at low sediment content. The microscopic and spectroscopic analyses showed varying amounts of hydration products (primarily calcium hydroxide and calcium silicate hydrate) in the presence of coal fly ash, signifying the influence of pozzolanic reaction. To facilitate the waste utilization, cullet from beverage glass bottles and bottom ashes from coal combustion and waste incineration were found suitable to substitute coarse aggregate at 33% replacement ratio, beyond which the compressive strength decreased accordingly. The mercury intrusion porosimetry analysis indicated that the increase in the total pore area and average pore diameter were linearly correlated with the decrease of compressive strength due to waste replacement. All the sediment blocks complied with the acceptance criteria for reuse in terms of metal leachability. These results suggest that, with an appropriate mixture design, contaminated sediment and waste materials are useful resources for producing non-load-bearing masonry units or fill materials for construction uses. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Municipal recycling support program. Guide to applicants

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    The Municipal Recycling Support Program stems from the Ontario Ministry of the Environment's policies and programs begun in 1980 aimed at encouraging the development of source separation projects in Ontario. To qualify for financial assistance, municipalities must play a central role in the implementation and ongoing development of recycling; applications will be supported only if there is adequate and reasonable commitment from markets for recovered materials; recycling systems must operate within the framework of a complete waste management system in which cost effectiveness is an important factor; multi-material projects are encouraged as much as possible; and the Ministry will share the costs of projects with the municipalities. The Ministry provides grants for up to 5 years per project to cover the net operating cost of a project up to a specified maximum percentage of eligible gross operating expenses. This manual provides guidelines for applying for such funding, including definitions of eligibility for operating and capital costs, the use of household bins, and guidelines for promotion and advertising, education, demonstration, and feasibility studies.

  10. [Biosorption of crystal violet and malachite green by Rhodotorula graminis Y-5].

    Science.gov (United States)

    Hu, Rong; Huang, Jian-Bo; Yang, Zhou-Ping; Cheng, Zi-Zhang; Jing, De-Jun; Huang, Qian-Ming

    2011-12-01

    With a shaker, this paper studied the characteristics of the biosorption of crystal violet and malachite green by Rhodotorula graminis Y-5 under different adsorption time, initial pH, and temperature, as well as the desorption and recycling use of the dyes. The biosorption of crystal violet and malachite green by R. graminis Y-5 had the peaks (93.8% and 87.7%, respectively) at pH 7.0, dye concentration 50 mg x L(-1), 150 r x min(-1), 30 degrees C, and lasting 10 hours. After desorption, the biosorption rate of crystal violet and malachite green by R. graminis was 85.5% and 78.5%, respectively, indicating that the biosorption of crystal violet and malachite green was reversible, and the recycling use of the dyes by R. graminis was quite good, i. e., the dyes were renewable and could be recycled. Biosorption could be the mechanism of the decolorization of the dyes. The dyes were mostly adsorbed on the R. graminis surface -OH. The adsorption process was fast, efficient, and reversible, suggesting that R. graminis had a high potential for waste water treatment.

  11. Green Chemistry Challenge: 2017 Greener Synthetic Pathways Award

    Science.gov (United States)

    Green Chemistry Challenge 2017 award winners, Merck, developed a novel asymmetric aza-Michael cyclization, employing a chemically stable and fully recyclable organocatalyst to make Letermovir, an antiviral drug

  12. Presidential Green Chemistry Challenge: 2006 Small Business Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2006 award winners, Arkon Consultants and NuPro Technologies, developed a safer processing system for flexographic printing that includes washout solvents and reclamation/recycling.

  13. Sustainability projects in Gundeldingen, Basel; Nachhaltigkeitsprojekte auf dem Gundeldingerfeld in Basel - Schlussbericht zum NaQu-Projekt

    Energy Technology Data Exchange (ETDEWEB)

    Binz, A.; Voyame, J.-P.; Mueller, W.

    2008-10-15

    This final report for the Swiss Federal Office of Energy (SFOE) takes a look at the results obtained from the 'sustainable quarter' project in Basel, Switzerland. Along with other sustainability projects in Lausanne, Lucerne and Zurich, this project was part of a research project on sustainable city district development. The projects realised in the Gundeldingen quarter in Basel are discussed, such as the gradual conversion of an industrial site into a public meeting place, information offers on sustainability, mobility projects, new green spaces, solar energy, recycling, energy management and future sustainable development in this city district.

  14. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Z; Manchiraju, K [Southwire Co.

    2012-02-22

    This project is to develop and demonstrate the concept feasibility of a highly energy-efficient solid-state material synthesis process, friction stir extrusion (FSE) technology. Specifically, the project seeks to explore and demonstrate the feasibility to recycle metals, produce nano-particle dispersion strengthened bulk materials and/or nano-composite materials from powders, chips or other recyclable feedstock metals or scraps through mechanical alloying and thermo-mechanical processing in a single-step. In this study, we focused on metal recycling, producing nano-engineered wires and evaluating their potential use in future generation long-distance electric power delivery infrastructure. More comprehensive R&D on the technology fundamentals and system scale-up toward early-stage applications in two targeted “showcase” fields of use: nano engineered bulk materials and Al recycling will be considered and planned as part of Project Continuation Plan.

  15. Recycled Uranium Mass Balance Project Y-12 National Security Complex Site Report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-12-01

    This report has been prepared to summarize the findings of the Y-12 National Security Complex (Y-12 Complex) Mass Balance Project and to support preparation of associated U. S. Department of Energy (DOE) site reports. The project was conducted in support of DOE efforts to assess the potential for health and environmental issues resulting from the presence of transuranic (TRU) elements and fission products in recycled uranium (RU) processed by DOE and its predecessor agencies. The United States government used uranium in fission reactors to produce plutonium and tritium for nuclear weapons production. Because uranium was considered scarce relative to demand when these operations began almost 50 years ago, the spent fuel from U.S. fission reactors was processed to recover uranium for recycling. The estimated mass balance for highly enriched RU, which is of most concern for worker exposure and is the primary focus of this project, is summarized in a table. A discrepancy in the mass balance between receipts and shipments (plus inventory and waste) reflects an inability to precisely distinguish between RU and non-RU shipments and receipts involving the Y-12 Complex and Savannah River. Shipments of fresh fuel (non-RU) and sweetener (also non-RU) were made from the Y-12 Complex to Savannah River along with RU shipments. The only way to distinguish between these RU and non-RU streams using available records is by enrichment level. Shipments of {le}90% enrichment were assumed to be RU. Shipments of >90% enrichment were assumed to be non-RU fresh fuel or sweetener. This methodology using enrichment level to distinguish between RU and non-RU results in good estimates of RU flows that are reasonably consistent with Savannah River estimates. Although this is the best available means of distinguishing RU streams, this method does leave a difference of approximately 17.3 MTU between receipts and shipments. Slightly depleted RU streams received by the Y-12 Complex from ORGDP and

  16. Sustainable green urban planning: the Green Credit Tool

    NARCIS (Netherlands)

    Cilliers, E.J.; Diemont, E.; Stobbelaar, D.J.; Timmermans, W.

    2010-01-01

    Purpose – The Green Credit Tool is evaluated as a method to quantify the value of green-spaces and to determine how these green-space-values can be replaced or compensated for within urban spatial planning projects. Design/methodology/approach – Amersfoort Local Municipality created the Green Credit

  17. The Green Dialysis Survey: Establishing a Baseline for Environmental Sustainability across Dialysis Facilities in Victoria, Australia.

    Science.gov (United States)

    Barraclough, Katherine A; Gleeson, Alice; Holt, Stephen G; Agar, John Wm

    2017-11-02

    The Green Dialysis Survey aimed to 1) establish a baseline for environmental sustainability (ES) across Victorian dialysis facilities, and 2) guide future initiatives to reduce the environmental impact of dialysis delivery. Nurse unit managers of all Victorian public dialysis facilities received an online link to the survey, which asked 107 questions relevant to the ES of dialysis services. Responses were received from 71/83 dialysis facilities in Victoria (86%), representing 628/660 dialysis chairs (95%). Low energy lighting was present in 13 facilities (18%), 18 (25%) recycled reverse osmosis water and 7 (10%) reported use of renewable energy. Fifty-six facilities (79%) performed comingled recycling but only 27 (38%) recycled polyvinyl chloride plastic. A minority educated staff in appropriate waste management (n=30;42%) or formally audited waste generation and segregation (n=19;27%). Forty-four (62%) provided secure bicycle parking but only 33 (46%) provided shower and changing facilities. There was limited use of tele- or video-conferencing to replace staff meetings (n=19;27%) or patient clinic visits (n=13;18%). A minority considered ES in procurement decisions (n=28;39%) and there was minimal preparedness to cope with climate change. Only 39 services (49%) confirmed an ES policy and few had ever formed a green group (n=14; 20%) or were currently undertaking a green project (n=8;11%). Only 15 facilities (21%) made formal efforts to raise awareness of ES. This survey provides a baseline for practices that potentially impact the environmental sustainability of dialysis units in Victoria, Australia. It also identifies achievable targets for attention. This article is protected by copyright. All rights reserved.

  18. Green polymer chemistry: biocatalysis and biomaterials

    Science.gov (United States)

    This overview briefly surveys the practice of green chemistry in polymer science. Eight related themes can be discerned from the current research activities: 1) biocatalysis, 2) bio-based building blocks and agricultural products, 3) degradable polymers, 4) recycling of polymer products and catalys...

  19. The direct-Mat Project: Dismantling and Recycling Techniques for road Materials. Sharing Knowledge and Practices; El proyecto DIRECT-MAT: Tecnicas de demolicion y reciclado de materiales para la carretera-Compartiendo conocimientos y practicas

    Energy Technology Data Exchange (ETDEWEB)

    Sinis Fernandez, F.; Rubio guzman, B.; Gonzalez Abadias, A. I.

    2011-07-01

    This article describes the content of the DIRECT-MAT (Dismantling and Recycling for road Materials) project. the DIRECT MAT project objectives consist of sharing and disseminating, at the European scale, national knowledge and field practices regarding the dismantling and recycling of road and road related materials, for the benefit of all European countries. Road material recycling processes have previously been studied in national research projects in the last years; unfortunately, the results of those projects almost never benefit other European countries. This is especially true for the newer Member States. The DIRECT-MAT project, within 7{sup t}h Framework Programme, is a three year project starting in 2009, and is comparised of 20 partners from 15 participating countries. to reach the aims of the project, a WEB database will be created to compile and display the extensive and already validated research and job site data and a set of Best Practices Guides on dismantling and recycling of different types of materials will be issued. Finally, guidelines will be proposed to ensure database updating, including the results of future researches. (Author) 6 refs.

  20. FROM ENVIRONMENTAL PROTECTION TO SUSTAINABLE DEVELOPMENT AND «GREEN ECONOMY»: NATIONAL PROJECT OF EDUCATION GREENING IN KAZAKHSTAN

    Directory of Open Access Journals (Sweden)

    Zhanbol O. Zhilbaev

    2016-01-01

    Full Text Available The aim of the investigation is to show an education system role during transition to "green economy" – to a new stage of development of world economy.Methods. The methods involve the analysis and generalization of contents of the international and interstate documents of the Republic of Kazakhstan urged to provide sustainable social and economic development. Retrospective and project analysis of course processes features of social and economic system greening of Kazakhstan is also applied.Results and scientific novelty. The essence of the concepts «green economy», "ecological enlightenment", "ecological education" and "greening of society" are disclosed. The Kazakh national specifics of implementation of the international documents on implementation of model of a sustainable development are shown. The Concept of ecological formation of the Republic of Kazakhstan according to which the education system of the country is urged to create, develop and fix effectively, along with a necessary complex of knowledge, stereotypes of behavior of the people capable to make reasonable decisions is provided and to work according to legislatively consolidated nature protection regulations and standards. It is stated that greening of content of education in the republic has the developed regulatory framework, however additional measures for upgrade of an education system are necessary: its theoretical and methodological reasons, preparation and advanced training of pedagogical personnel, development of the new methodical means bring into focus an ecological orientation of training and education, etc.Practical significance. Measures for further improvement of ecological education and ecological education at all steps of education are listed. 

  1. Presidential Green Chemistry Challenge: 2002 Greener Reaction Conditions Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2002 award winner, Cargill Dow, developed the NatureWorks process to make biobased, compostable, and recyclable polylactic acid polymers for fibers and plastic packaging.

  2. Presidential Green Chemistry Challenge: 2004 Greener Reaction Conditions Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2004 award winner, Buckman Laboratories International, developed Optimyze technology, which uses an esterase enzyme to remove sticky contaminants from paper products prior to recycling.

  3. Quality control of recycled asphaltic concrete : final report.

    Science.gov (United States)

    1982-07-01

    This study examined the variations found in recycled asphaltic concrete mix based upon plant quality control data and verification testing. The data was collected from four recycled hot-mix projects constructed in 1981. All plant control and acceptan...

  4. Fermilab Recycler Ring: Technical design report. Revision 1.1

    International Nuclear Information System (INIS)

    Jackson, G.

    1996-07-01

    This report describes the technical design of the Fermilab Recycler Ring. The purpose of the Recycler is to augment the luminosity increase anticipated from the implementation of the Fermi III upgrade project, which has as its main component the Fermilab Main Injector construction project. The Recycler is a fixed 8 GeV kinetic energy storage ring. It is located in the Main Injector tunnel directly above the Main Injector beamline, near the ceiling. The construction schedule calls for the installation of the Recycler ring before the installation shutdown of the Main Injector. This aggressive construction schedule is made possible by the exclusive use of permanent magnets in the ring lattice, removing the need for expensive conventional iron/copper magnet construction along with the related power supplies, cooling water system, and electrical safety systems. The location, operating energy, and mode of construction are chosen to minimize operational impacts on both Fermilab's ongoing High Energy Physics program and the Main Injector construction project

  5. Keep New Mexico Beautiful, Recycling Project Successful

    Science.gov (United States)

    Bickel, Victor R.

    1975-01-01

    Through the efforts of community groups, the support of local industries, and the state government, Keep New Mexico Beautiful, Inc. (KNMB) is now operating a large-scale recycling business. KNMB has been able to save tons of natural resources, provide local employment, and educate the public to this environmental concern. (MA)

  6. 78 FR 62361 - Green Mountain Power Corporation; Vermont; Otter Creek Hydroelectric Project; Notice of Proposed...

    Science.gov (United States)

    2013-10-21

    ... Power Corporation; Vermont; Otter Creek Hydroelectric Project; Notice of Proposed Restricted Service... issuance of a new license for the Otter Creek Hydroelectric Project No. 2558. The programmatic agreement... Agreement would be incorporated into any Order issuing a license. Green Mountain Power Corporation, as...

  7. The recycle of depleted uranium waste products by a hydrometallurgical process

    International Nuclear Information System (INIS)

    Nachtrab, William T.; Schlier, David S.; Pollock, Eugene N.; Shinopulos, George

    1992-01-01

    Nuclear Metals, Inc. has developed a process for recycling uranium scrap materials into high quality metal. The process involves the dissolution of scrap metal in an aqueous solution of 2.4 N HCI and 0.16 N HBF 4 , followed by precipitation of UF 4 through the addition of HF. The precipitated green salt is Filtered, washed, dried, and heat treated after which it is suitable for reduction to metal. The product and the process are referred to as Hydromet, since it is a hydrometallurgical approach to producing green salt. Conventionally, green salt is produced by a pyrometallurgical technique. The steps of the process are described and results presented for derbies produced using Hydromet green salt. With proper process selection and appropriate heat treatment, green salt produced by Hydromet is fully equivalent to pyrometallurgical green salt. Hydromet green salt can be reduced to metal using the identical process used for pyromet green salt. Good quality, well-formed derbies can be readily produced. (author)

  8. Metal recycling experience at Los Alamos National Laboratory. Reuse, release, and recycle of metals from radiological control areas

    International Nuclear Information System (INIS)

    Gogol, S.

    1997-01-01

    Approximately 15% of the Low-Level Waste (LLW) produced at Los Alamos consists of scrap metal equipment and materials. The majority of this material is produced by decommissioning and the modification of existing facilities. To reduce this waste stream, Department of Energy Headquarters, EM-77 Office, sponsored the Reuse, Recycle, and Release of Metals from Radiological Control Areas High Return on Investment (ROI) Project to implement recycle, reuse, and release of scrap metal at the laboratory. The goal of this project was to develop cost effective alternatives to LLW disposal of scrap metal and to avoid the disposal of 2,400 m 3 of scrap metal. The ROI for this project was estimated at 948%. The ROI project was funded in March 1996 and is scheduled for completion by October 1997. At completion, a total of 2,400 m 3 of LLW avoidance will have been accomplished and a facility to continue recycling activities will be operational. This paper will present the approach used to develop effective alternatives for scrap metal at Los Alamos and then discuss the tasks identified in the approach in detail. Current scrap metal inventory, waste projections, alternatives to LLW disposal, regulatory guidance, and efforts to institutionalize the alternatives to LLW disposal will be discussed in detail

  9. Importance of Green Marketing and Its Potential

    Directory of Open Access Journals (Sweden)

    Líšková Zuzana Dvořáková

    2016-11-01

    Full Text Available Green marketing is possibly the newest type of marketing. Recently, it has also been the most discussed one by organizations, companies and even states. Green marketing tries to produce, promote and recycle products that are friendly to the environment. Green marketing is a global concern and it is going to have a better future. However, this type of marketing meets a few problems such as much effort to replace conventional products and a lack of confidence. Many companies produce and promote such products as much as possible. In spite of this, the public is still sceptical. The paper presents the theoretical important knowledge on green marketing, its definitions, customer behaviour formulas, and its potential.

  10. Presidential Green Chemistry Challenge: 2011 Designing Greener Chemicals Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2011 award winner, Sherwin-Williams, developed water-based acrylic alkyd paints with VOCs that can be made from recycled soda bottle (PET), acrylics, and soybean oil.

  11. Idea Notebook: Recycling with an Educational Purpose.

    Science.gov (United States)

    Gerth, Tom; Wilson, David A.

    1986-01-01

    Four students at St. Louis University High School developed a project to clean up the environment while saving energy and natural resources. Aluminum and steel cans were recycled and the money was used to buy and plant trees. Students learned about recycling, organization, money management, and improving the environment. (JMM)

  12. Discovering Hidden Resources: Assistive Technology Recycling, Refurbishing, and Redistribution. RESNA Technical Assistance Project.

    Science.gov (United States)

    RESNA: Association for the Advancement of Rehabilitation Technology, Arlington, VA.

    This monograph discusses the benefits of recycling and reusing assistive technology for students with disabilities. It begins by discussing the benefits of recycled assistive technology for suppliers, students, and consumers, and then profiles programmatic models for assistive technology recycling programs. The advantages and disadvantages for…

  13. ELV Recycling Service Provider Selection Using the Hybrid MCDM Method: A Case Application in China

    Directory of Open Access Journals (Sweden)

    Fuli Zhou

    2016-05-01

    Full Text Available With the rapid depletion of natural resources and undesired environmental changes globally, more interest has been shown in the research of green supply chain practices, including end-of-life vehicle (ELV recycling. The ELV recycling is mandatory for auto-manufacturers by legislation for the purpose of minimizing potential environmental damages. The purpose of the present research is to determine the best choice of ELV recycling service provider by employing an integrating hybrid multi-criteria decision making (MCDM method. In this research, economic, environmental and social factors are taken into consideration. The linguistic variables and trapezoidal fuzzy numbers (TFNs are applied into this evaluation to deal with the vague and qualitative information. With the combined weight calculation of criteria based on fuzzy aggregation and Shannon Entropy techniques, the normative multi-criteria optimization technique (FVIKOR method is applied to explore the best solution. An application was performed based on the proposed hybrid MCDM method, and sensitivity analysis was conducted on different decision making scenarios. The present study provides a decision-making approach on ELV recycling business selection under sustainability and green philosophy with high robustness and easy implementation.

  14. Challenges in Delivering Green Building Projects: Unearthing the Transaction Costs (TCs

    Directory of Open Access Journals (Sweden)

    Queena K. Qian

    2015-03-01

    Full Text Available Delivering green building (GB projects involve some activities that are atypical in comparison with conventional buildings. Such new activities are characterized by uncertainty, and they incur hidden costs that have not been expected nor are they readily appreciated among the stakeholders. This paper develops a typology and chronology to examine the new activities that are associated with transaction costs (TCs in the real estate development process (REDP of green building. Through in-depth interviews with representatives from the major developers in Hong Kong who have experiences in GB practice, this study aims to unearth TCs involved at the critical stages of the REDP. Apart from reconfirming the early project planning stage as the most critical in the consideration of TCs, the study results also identified “extra legal liability risk of the GB product” as the major concern for any GB developer in Hong Kong. The key additional activities that bring significant TCs in developing GB are identified and compared to their traditional counterparts. In turn, project managers not only have to pursue overall cost management whilst winning more business, but they also have to pay particular attention to sustainability in order to minimize hidden societal costs. The study also provides a reference for governments and professionals that will aid in forming policy as well as advance the practice of the GB market by optimizing the societal costs.

  15. Pengaruh Program Green Hotel Terhadap Minat Beli Konsumen Di Hotel Di Indonesia

    OpenAIRE

    Sugianto, Evelyn; Kurniawan, Christabel Josephine

    2017-01-01

    Penelitian ini dilakukan untuk mengetahui seberapa besar pengaruh program green atau ramah lingkungan yang diterapkan oleh hotel di Indonesia terhadap minat menginap konsumen. Program green yang diteliti dalam penelitian ini adalah reduce consumption, green product and services, recyclables dan energy-saving. Teknik analisis data yangdigunakan dalam penelitian kuantitatif ini adalah Partial Least Square (PLS). Hasil penelitian menunjukkan bahwa program reduce consumption dan energy-saving ber...

  16. Conclusions of the DIRECT-MAT project: Dismantling and recycling techniques for road materials; Conclusiones del proyecto DIRECT-MAT: Tecnicas de demolicion y reciclado de materiales para la carretera

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Abadias, A. I.; Ruiz-Aucar Berlinches, E.; Sinis Fernandez, F.

    2012-07-01

    DIRECT-MAT (Dismantling and Recycling Techniques for road Materials) is a research project included in the 7{sup t}h Framework Programme of the EU, which counted with the participation of 20 partners from 15 different European countries. The Transport Research Centre of CEDEX (Spain) has been part of this project that began in January 2009. The aim of the DIRECT-MAT project has been to enable that national experience in the field of demolition and recycling of materials related to roads can be shared and disseminated among European countries for the benefit of all of them. In 2011 the paper the Direct-Mat Project: Dismantling and recycling techniques for road materials. Sharing knowledge and practices was published in the number 161 of Ingenieria Civil magazine. That paper consisted of an extensive description of the project, explaining in detail its structure, the status of the work in early 2011 and the conclusions drawn from the milestones (review of existing national documents). This paper is a continuation of the one previously published. This this article describes the work carried out since then and the collisions of the project. During this time, the main activities have been the compilation of several case studies and the developing of best practice guides. Regarding the results of the project, it is important to mention the database in which all the information gathered during the project is being uploads. Soon, it will have free online access. This database in perhaps the most remarkable results of the project, as it represents an invaluable reference tool for all the stake holders interested in the wide variety of recycling techniques that are being carried out today in Europe. (Author) 8 refs.

  17. Presidential Green Chemistry Challenge: 2003 Designing Greener Chemicals Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2003 award winner, Shaw Industries, developed EcoWorx carpet tiles with a backing that uses less toxic materials. The carpet tile fiber and backing are readily separated for recycling.

  18. Presidential Green Chemistry Challenge: 2008 Greener Synthetic Pathways Award

    Science.gov (United States)

    Presidential Green Chemistry Challenge 2008 award winner, Battelle, developed a biobased soy toner for laser printers and copiers. The technology saves energy and improves de-inking, allowing more paper fiber to be recycled.

  19. Green Port / Eco Port Project - Applications and Procedures in Turkey

    Science.gov (United States)

    Akgul, Burak

    2017-12-01

    As being the heartlands of international trade, sea ports are the junction points of land and sea routes. The growth of global trade has led to the development of number and capacity as well as the service quality of ports. The policies and procedures applied during construction, operation and development of ports under development with environmental considerations scope has evolved in accordance with the needs of global trends. Although maritime transportation provides the most ecofriendly transportation method, the reduction of potential environmental threats and continuous improvement of ports and their vicinity is paramount from environmental concerns with regards to the international environmental standards. In the context of the study, national and international legal regulations governing the control of the environmental impacts of the activity groups causing pollution in Turkey based sea ports were viewed. In addition, the models applied during the measurement and documentation of environmental impacts were investigated. The most important aspects in terms of the effectiveness of the environmental management models are legal regulations. However, the standards applied at the ports without any legal obligation, such as EcoPorts applications, ISO 14001 standard, and the EMAS (Eco-Management and Audit Scheme) were sought in the scope of the study. The boundaries of the study were determined as the EU based Environmental Management Systems and the Green Port/Eco Port Project which is being administered by the Turkish Ministry of Transport, Maritime and Communication. “Marport”, which is Turkey’s first certified Green Port / Eco Port is designated as the experimental study site. In addition, the provisions in the ports of ESPO member countries are approached in order to compare the effectiveness and applicability of Green Port / Eco Port Project.

  20. Plastic Recycling Experiments in Materials Education

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.

    1996-01-01

    The objective of this project was to introduce a series of plastic recycling experiments to students in materials-related courses such as materials science, material technology and materials testing. With the plastic recycling experiments, students not only can learn the fundamentals of plastic processing and properties as in conventional materials courses, but also can be exposed to the issue of materials life cycle and the impact on society and environment.

  1. Being in a "Green" Building Elicits "Greener" Recycling, but Not Necessarily "Better" Recycling.

    Science.gov (United States)

    Wu, David W-L; DiGiacomo, Alessandra; Lenkic, Peter J; Wong, Vanessa K; Kingstone, Alan

    2016-01-01

    Previous observational work revealed that transient populations in a sustainable building disposed of waste more accurately when compared to patrons in a non-sustainable building. The current study uses an experimental design to replicate this observed effect and to investigate whether or not the built environment influences motivational factors to impact behavior. We find support that a building designed and built to communicate an atmosphere of sustainability can influence waste disposal behavior. Participants in the sustainable building used the garbage receptacle significantly less and compensated by tending to select the containers and organics receptacle more, which actually resulted in more errors overall. Our findings suggest that building atmospherics can motivate people to recycle more. However, atmospherics alone do not appear to be sufficient to elicit the desired performance outcome.

  2. Green catalysis by nanoparticulate catalysts developed for flow processing? case study of glucose hydrogenation

    NARCIS (Netherlands)

    Gericke, D.; Ott-Reinhardt, D.; Matveeva, V.; Sulman, E.M.; Aho, A.; Murzin, D.Y.; Roggan, S.; Danilova, L.; Hessel, V.; Löb, P.; Kralisch, D.

    2015-01-01

    Heterogeneous catalysis, flow chemistry, continuous processing, green solvents, catalyst immobilization and recycling are some of the most relevant, emerging key technologies to achieve green synthesis. However, a quantification of potential effects on a case to case level is required to provide a

  3. MOX fuel reprocessing and recycling

    International Nuclear Information System (INIS)

    Guillet, J.L.

    1990-01-01

    This paper is devoted to the reprocessing of MOX fuel in UP2-800 plant at La Hague, and to the MOX successive reprocessing and recycling. 1. MOX fuel reprocessing. In a first step, the necessary modifications in UP2-800 to reprocess MOX fuel are set out. Early in the UP2-800 project, actions have been taken to reprocess MOX fuel without penalty. They consist in measures regarding: Dissolution; Radiological shieldings; Nuclear instrumentation; Criticality. 2. Mox successive reprocessing and recycling. The plutonium recycling in the LWR is now a reality and, as said before, the MOX fuel reprocessing is possible in UP2-800 plant at La Hague. The following actions in this field consist in verifying the MOX successive reprocessing and recycling possibilities. After irradiation, the fissile plutonium content of irradiated MOX fuel is decreased and, in this case, the re-use of plutonium in the LWR need an important increase of initial Pu enrichment inconsistent with the Safety reactor constraints. Cogema opted for reprocessing irradiated MOX fuel in dilution with the standard UO2 fuel in appropriate proportions (1 MOX for 4 UO2 fuel for instance) in order to save a fissile plutonium content compatible with MOX successive recycling (at least 3 recyclings) in LWR. (author). 2 figs

  4. Building HIA approaches into strategies for green space use: an example from Plymouth's (UK) Stepping Stones to Nature project.

    Science.gov (United States)

    Richardson, J; Goss, Z; Pratt, A; Sharman, J; Tighe, M

    2013-12-01

    The health and well-being benefits of access to green space are well documented. Research suggests positive findings regardless of social group, however barriers exist that limit access to green space, including proximity, geography and differing social conditions. Current public health policy aims to broaden the range of environmental public health interventions through effective partnership working, providing opportunities to work across agencies to promote the use of green space. Health Impact Assessment (HIA) is a combination of methods and procedures to assess the potential health and well-being impacts of policies, developments and projects. It provides a means by which negative impacts can be mitigated and positive impacts can be enhanced, and has potential application for assessing green space use. This paper describes the application of a HIA approach to a multi-agency project (Stepping Stones to Nature--SS2N) in the UK designed to improve local green spaces and facilitate green space use in areas classified as having high levels of deprivation. The findings suggest that the SS2N project had the potential to provide significant positive benefits in the areas of physical activity, mental and social well-being. Specific findings for one locality identified a range of actions that could be taken to enhance benefits, and mitigate negative factors such as anti-social behaviour. The HIA approach proved to be a valuable process through which impacts of a community development/public health project could be enhanced and negative impacts prevented at an early stage; it illustrates how a HIA approach could enhance multi-agency working to promote health and well-being in communities.

  5. Frontiers and prospects for recycling Waste Electrical and Electronic ...

    African Journals Online (AJOL)

    This paper reviews the frontlines and projections for the recycling of waste electrical and electronic equipment (WEEE) in Nigeria. The paper identified the sources of WEEE, showed chemical characterization of some WEEE components and presented measures to minimize these wastes through recycling opportunities.

  6. The Impact of Restaurants’ Green Supply Chain Practices on Firm Performance

    Directory of Open Access Journals (Sweden)

    Jun-Zhi Chiu

    2016-01-01

    Full Text Available This study investigated crucial green supply chain management (GSCM practice dimensions and firm performance based on restaurants firms in Taiwan. On the basis of a factor analysis, four green supply chain management dimensions were identified: corporate environment policy, green packing, green product, and economic transport. This study investigated crucial GSCM practice dimensions (including corporate environment policy, packaging waste, economic transport, and product recycling, green capability and organizational performance. The results shown: first, green practices in restaurants in Taiwan have an indirect effect on firm performance through green capability; second, when the ability of suppliers of green and green capability is at a higher degree, it will contribute to organizational performance, namely environmental and economic performance. Finally, green practices could be a key driver of green capability and it should be a priority in restaurants.

  7. Recovering valuable metals from recycled photovoltaic modules.

    Science.gov (United States)

    Yi, Youn Kyu; Kim, Hyun Soo; Tran, Tam; Hong, Sung Kil; Kim, Myong Jun

    2014-07-01

    Recovering valuable metals such as Si, Ag, Cu, and Al has become a pressing issue as end-of-life photovoltaic modules need to be recycled in the near future to meet legislative requirements in most countries. Of major interest is the recovery and recycling of high-purity silicon (> 99.9%) for the production of wafers and semiconductors. The value of Si in crystalline-type photovoltaic modules is estimated to be -$95/kW at the 2012 metal price. At the current installed capacity of 30 GW/yr, the metal value in the PV modules represents valuable resources that should be recovered in the future. The recycling of end-of-life photovoltaic modules would supply > 88,000 and 207,000 tpa Si by 2040 and 2050, respectively. This represents more than 50% of the required Si for module fabrication. Experimental testwork on crystalline Si modules could recover a > 99.98%-grade Si product by HNO3/NaOH leaching to remove Al, Ag, and Ti and other metal ions from the doped Si. A further pyrometallurgical smelting at 1520 degrees C using CaO-CaF2-SiO2 slag mixture to scavenge the residual metals after acid leaching could finally produce > 99.998%-grade Si. A process based on HNO3/NaOH leaching and subsequent smelting is proposed for recycling Si from rejected or recycled photovoltaic modules. Implications: The photovoltaic industry is considering options of recycling PV modules to recover metals such as Si, Ag, Cu, Al, and others used in the manufacturing of the PV cells. This is to retain its "green" image and to comply with current legislations in several countries. An evaluation of potential resources made available from PV wastes and the technologies used for processing these materials is therefore of significant importance to the industry. Of interest are the costs of processing and the potential revenues gained from recycling, which should determine the viability of economic recycling of PV modules in the future.

  8. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public

  9. Still the same after all these years: Santa Rosa`s curbside recycling model

    Energy Technology Data Exchange (ETDEWEB)

    Egan, K.

    1997-10-01

    When Santa Rosa, located north of San Francisco, first began its recycling program in 1977, it was no different from the other fledgling curbside recycling programs in the state. Back then, residents collected recyclables in their homes and put them out on the curb each week next to the garbage cans in whatever container they could find, whether it was a paper grocery bag or a cardboard box. The city`s pre-bin recycling program had a participation rate of about 25%. Then in 1978, with the firm`s help, Empire officials came up with the idea of providing recycling bins to residents. The program planners asked residents to source-separate their recyclables and then put the metals (including steel, tin, and aluminum); all three glass colors (brown, green, and clear); and newspaper in three individual bins. A few weeks after city officials distributed the bins to residents, the program showed a participation rate of 77%, indicating to Clark that the bins were necessary to significantly increase public awareness of the program.

  10. COPPER CABLE RECYCLING TECHNOLOGY

    International Nuclear Information System (INIS)

    Chelsea Hubbard

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  11. Recycling of polymers: a review.

    Science.gov (United States)

    Ignatyev, Igor A; Thielemans, Wim; Vander Beke, Bob

    2014-06-01

    Plastics are inexpensive, easy to mold, and lightweight. These and many other advantages make them very promising candidates for commercial applications. In many areas, they have substantially suppressed traditional materials. However, the problem of recycling still is a major challenge. There are both technological and economic issues that restrain the progress in this field. Herein, a state-of-art overview of recycling is provided together with an outlook for the future by using popular polymers such as polyolefins, poly(vinyl chloride), polyurethane, and poly(ethylene terephthalate) as examples. Different types of recycling, primary, secondary, tertiary, quaternary, and biological recycling, are discussed together with related issues, such as compatibilization and cross-linking. There are various projects in the European Union on research and application of these recycling approaches; selected examples are provided in this article. Their progress is mirrored by granted patents, most of which have a very limited scope and narrowly cover certain technologies. Global introduction of waste utilization techniques to the polymer market is currently not fully developed, but has an enormous potential. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Evaluation of recycled asphaltic concrete : final report.

    Science.gov (United States)

    1977-01-01

    This report describes a project in which approximately 6,200 tons (5,630 Mg) of asphaltic concrete were recycled through a conventional asphalt batch plant. During the construction of the project, a buildup of asphalt-coated fines occurred in the dry...

  13. Study on Effects of Different Replacement Rate on Bending Behavior of Big Recycled Aggregate Self Compacting Concrete

    Science.gov (United States)

    Li, Jing; Guo, Tiantian; Gao, Shuai; Jiang, Lin; Zhao, Zhijun; Wang, Yalin

    2018-03-01

    Big recycled aggregate self compacting concrete is a new type of recycled concrete, which has the advantages of low hydration heat and green environmental protection, but its bending behavior can be affected by different replacement rate. Therefor, in this paper, the research status of big Recycled aggregate self compacting concrete was systematically introduced, and the effect of different replacement rate of big recycled aggregate on failure mode, crack distribution and bending strength of the beam were studied through the bending behavior test of 4 big recycled aggregate self compacting concrete beams. The results show that: The crack distribution of the beam can be affected by the replacement rate; The failure modes of big recycled aggregate beams are the same as those of ordinary concrete; The plane section assumption is applicable to the big recycled aggregate self compacting concrete beam; The higher the replacement rate, the lower the bending strength of big recycled aggregate self compacting concrete beams.

  14. Design and Implementation of Green Construction Scheme for a High-rise Residential Building Project

    Science.gov (United States)

    Zhou, Yong; Huang, You Zhen

    2018-06-01

    This paper mainly studies the green construction scheme of a high-rise residential building project. From "four sections one environmental protection", saving material, water saving, energy saving, economical use of land and environmental protection conduct analysis and research. Adopting scientific, advanced, reasonable and economical construction technology measures, implementing green construction method. Promoting energy-saving technologies in buildings, ensuring the sustainable use of resources, Maximum savings of resources and energy, increase energy efficiency, to reduce pollution, reducing the adverse environmental impact of construction activities, ensure construction safety, build sustainable buildings.

  15. Speckle noise reduction on a laser projection display via a broadband green light source.

    Science.gov (United States)

    Yu, Nan Ei; Choi, Ju Won; Kang, Heejong; Ko, Do-Kyeong; Fu, Shih-Hao; Liou, Jiun-Wei; Kung, Andy H; Choi, Hee Joo; Kim, Byoung Joo; Cha, Myoungsik; Peng, Lung-Han

    2014-02-10

    A broadband green light source was demonstrated using a tandem-poled lithium niobate (TPLN) crystal. The measured wavelength and temperature bandwidth were 6.5 nm and 100 °C, respectively, spectral bandwidth was 36 times broader than the periodically poled case. Although the conversion efficiency was smaller than in the periodic case, the TPLN device had a good figure of merit owing to the extremely large bandwidth for wavelength and temperature. The developed broadband green light source exhibited speckle noise approximately one-seventh of that in the conventional approach for a laser projection display.

  16. Metallic mercury recycling. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Beck, M.A.

    1994-07-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made.

  17. Metallic mercury recycling. Final report

    International Nuclear Information System (INIS)

    Beck, M.A.

    1994-01-01

    Metallic mercury is known to be a hazardous material and is regulated as such. The disposal of mercury, usually by landfill, is expensive and does not remove mercury from the environment. Results from the Metallic Mercury Recycling Project have demonstrated that metallic mercury is a good candidate for reclamation and recycling. Most of the potential contamination of mercury resides in the scum floating on the surface of the mercury. Pinhole filtration was demonstrated to be an inexpensive and easy way of removing residues from mercury. The analysis method is shown to be sufficient for present release practices, and should be sufficient for future release requirements. Data from tests are presented. The consistently higher level of activity of the filter residue versus the bulk mercury is discussed. Recommendations for the recycling procedure are made

  18. Analysis on the Relationship between Green Accounting and Green Design for Enterprises

    Directory of Open Access Journals (Sweden)

    Jui-Che Tu

    2015-05-01

    Full Text Available Green design is advocated and developed in response to the increasingly deteriorating global environment, but its implementation is only based on the morality of the entrepreneurs, without economic incentive and legal restraint. As a result, green design has not been widely adopted. In recent years, the European countries, the U.S., Japan, the UN and Taiwan have successively promoted environmental accounting guidelines and required enterprises to disclose environmental improvement information, so as to improve the environment through production that will unavoidably impact product manufacturing. How product design should respond to this trend is a concern of this study. This study adopted the KJ (Kawakita Jiro method and the meta-research method to analyze the influence factors. Then, it was discussed whether green design is feasible. The results showed that the requirements of green accounting include: expanding corporate social responsibility, production cannot be exempted from environmental protection, the manufacturing of clean products can generate pollution, the external production cost should be internalized, the redesign to improve the product production process and packaging, reducing resource waste and implementing the (Reduce, Recycle, Reuse 3R policy, lifecycle assessment for all assessments and developing environmentally-friendly products, which can be solved with green design.

  19. Interconnection of the Degree of Risk and Life Cycle of the “Green Construction” Investment Projects

    OpenAIRE

    Lepehova Natalia; Shoshinov Vitaly

    2017-01-01

    This article analyses interconnection of the degree of risk and the life cycle of the “green building” investment projects, which is structured according to the life cycle. Main stages of the implementation of investment and construction project were considered, interconnection of the project life cycle and the level of project risk were presented in the form of graphical model, proposed a mathematical model of the risk calculation at different stages of the project life cycle, which is a fun...

  20. Advanced WEEE recovery and recycling management system (AWARENESS); AWARENESS-projekti

    Energy Technology Data Exchange (ETDEWEB)

    Malmstroem, P; Wiik, C [Technology Industries of Finland, Helsinki (Finland); Kirkkomaeki, T; Tirkkonen, T [Antrea Solutions Oy, Espoo (Finland)

    2004-07-01

    The aim of the AWARENESS project is to support companies in arriving at a consensus on WEEE implementation details, to start company co-operation in different product categories and to take the optimal recycling processes in use. The Internet-based information system, which will be developed during the project, is designed to meet the information needs of the producers of electronics products and to fulfil the information and reporting obligation imposed by the WEEE directive. In the AWARENESS project, there are two parallel subprojects called RecISys and SELMA, and in addition a supplementary co-operation project managed by the Technical Research Centre of Finland (VTT). Main focus in the SELMA subproject is to manage issues related to operational recycling and to carry out communication between companies and national authorities. The RecISys subproject will follow operational recycling processes and develop an Internet-based technical system to support producers as well as other parties and chosen processes. The co- operation project called RFID, pilots the utilisation of radiofrequency identification technique to the end-of-life products. (orig.)

  1. Being Green with Three More R's: Reduce, Reuse, Recycle Joins "Reading, Riting & Rithmatic"

    Science.gov (United States)

    Lyon, Sally

    2010-01-01

    When the term "green" is used to describe a product or way of life, it means "environmentally friendly." Followers of the green movement believe that by reducing their own usage of resources, they can reduce their negative impact on the environment and influence culture to the same ends. The green movement has spread from individuals to companies…

  2. Electric vehicle recycling 2020: Key component power electronics.

    Science.gov (United States)

    Bulach, Winfried; Schüler, Doris; Sellin, Guido; Elwert, Tobias; Schmid, Dieter; Goldmann, Daniel; Buchert, Matthias; Kammer, Ulrich

    2018-04-01

    Electromobility will play a key role in order to reach the specified ambitious greenhouse gas reduction targets in the German transport sector of 42% between 1990 and 2030. Subsequently, a significant rise in the sale of electric vehicles (EVs) is to be anticipated in future. The amount of EVs to be recycled will rise correspondingly after a delay. This includes the recyclable power electronics modules which are incorporated in every EV as an important component for energy management. Current recycling methods using car shredders and subsequent post shredder technologies show high recycling rates for the bulk metals but are still associated with high losses of precious and strategic metals such as gold, silver, platinum, palladium and tantalum. For this reason, the project 'Electric vehicle recycling 2020 - key component power electronics' developed an optimised recycling route for recycling power electronics modules from EVs which is also practicable in series production and can be implemented using standardised technology. This 'WEEE recycling route' involves the disassembly of the power electronics from the vehicle and a subsequent recycling in an electronic end-of-life equipment recycling plant. The developed recycling process is economical under the current conditions and raw material prices, even though it involves considerably higher costs than recycling using the car shredder. The life cycle assessment shows basically good results, both for the traditional car shredder route and the developed WEEE recycling route: the latter provides additional benefits from some higher recovery rates and corresponding credits.

  3. Heterogeneous all actinide recycling in LWR all actinide cycle closure concept

    International Nuclear Information System (INIS)

    Tondinelli, Luciano

    1980-01-01

    A project for the elimination of transuranium elements (Waste Actinides, WA) by neutron transmutation is developed in a commercial BWR with U-Pu (Fuel Actinides, FA) recycle. The project is based on the All Actinide Cycle Closure concept: 1) closure of the 'back end' of the fuel cycle, U-Pu coprocessing, 2) waste actinide disposal by neutron transmutation. The reactor core consists of Pu-island fuel assemblies containing WAs in target pins. Two parallel reprocessing lines for FAs and WAs are provided. Mass balance, hazard measure, spontaneous activity during 10 recycles are calculated. Conclusions are: the reduction in All Actinide inventory achieved by Heterogeneous All Actinide Recycling is on the order of 83% after 10 recycles. The U235 enrichment needed for a constant end of cycle reactivity decreases for increasing number of recycles after the 4th recycle. A diffusion-burnup calculation of the pin power peak factors in the fuel assembly shows that design limits can be satisfied. A strong effort should be devoted to the solution of the problems related to high values of spontaneous emission by the target pins

  4. OPERATIONAL AND FINANCIAL STRATEGIES FOR PEKING DUCK BREEDING START UP BUSINESS INTEGRATED WITH ECO-GREEN

    Directory of Open Access Journals (Sweden)

    Lie T.U.

    2018-04-01

    Full Text Available Duck farming needs to be innovated from traditional maintenance management systems that must be abandoned, costly modern intensive maintenance management and pollute the environment into an efficient and eco-green intensive maintenance system by applying the same system partnership pattern to its core. Integrated eco-green intensive peking duck breeding farm utilizing Azolla Microphylla and hedge leaf as feed supplement and other germplasm utilization. The Azolla Microphylla plant serves as a phytoremediation where it can recycle livestock wastewater into clean water thereby reducing excessive water exploitation and reducing the pollution of the stench. The purpose of this research is to obtain information about the financial strategy to start up the business of peking duck integrated with eco-green model. Beginning from planning activities, the company implements project management system with its Gantt Chart. The mapping of operational strategy is carried out comprehensively by always making continuous improvement (kaizen because in the current era to be good alone is not enough, but struggle is needed to be superior (market leader by beginning by cost leader.

  5. Fernald scrap metal recycling and beneficial reuse

    International Nuclear Information System (INIS)

    Motl, G.P.; Burns, D.D.

    1993-10-01

    The Fernald site, formerly the Feed Materials Production Facility, produced uranium metal products to meet defense production requirements for the Department of Energy from 1953 to 1989. In this report is is described how the Fernald scrap metal project has demonstrated that contractor capabilities can be used successfully to recycle large quantities of Department of Energy scrap metal. The project has proven that the open-quotes beneficial reuseclose quotes concept makes excellent economic sense when a market for recycled products can be identified. Topics covered in this report include the scrap metal pile history, the procurement strategy, scrap metal processing, and a discussion of lessons learned

  6. An Opportunity to Lead Sustainably: The Benefits and Considerations of Student-Led Green Revolving Fund Projects

    Science.gov (United States)

    Kononenko, Kevin

    2012-01-01

    In recent years, energy- and resource-reduction projects have compelled student leaders to create sustainability projects on campuses across the country. This paper examines the role that students play in green revolving funds, including identification, approval, and management. After speaking with numerous students on a variety of campuses, it is…

  7. Energy or compost from green waste? - A CO2 - Based assessment

    International Nuclear Information System (INIS)

    Kranert, Martin; Gottschall, Ralf; Bruns, Christian; Hafner, Gerold

    2010-01-01

    Green waste is increasingly extracted from the material recycling chain and, as a result of the financial subsidy arising from the German renewable energy law for the generation of energy from renewable raw materials; it is fed into the energy recovery process in biomass power stations. A reduction in climate relevant gases is also linked to the material recovery of green waste - in particular when using composts gained from the process as a new raw material in different types of potting compost and plant culture media as a replacement for peat. Unlike energy recovery, material valorisation is not currently subsidised. Through the analysis of material and energy valorisation methods for green waste, with particular emphasis on primary resource consumption and CO 2 -balance, it could be determined that the use of green waste for energy generation and its recovery for material and peat replacement purposes can be considered to be on a par. Based on energy recovery or material oriented scenarios, it can be further deduced that no method on its own will achieve the desired outcome and that a combination of recycling processes is more likely to lead to a significant decrease of greenhouse gas emissions.

  8. Adult Learning Meets the Green Economy: Lessons from a Green Jobs Education Project

    Science.gov (United States)

    Wagner, Cecelia

    2013-01-01

    The new "green economy" affects adult education and workforce development as adult workers seek skills and knowledge that will help them find success in work and life. Recent years have brought about increased interest in and discussion of training for green jobs. Since the introduction of the Green Jobs Act in 2007, questions about how exactly to…

  9. Effective regeneration of anode material recycled from scrapped Li-ion batteries

    Science.gov (United States)

    Zhang, Jin; Li, Xuelei; Song, Dawei; Miao, Yanli; Song, Jishun; Zhang, Lianqi

    2018-06-01

    Recycling high-valuable metal elements (such as Li, Ni, Co, Al and Cu elements) from scrapped lithium ion batteries can bring significant economic benefits. However, recycling and reusing anode material has not yet attracted wide attention up to now, due to the lower added-value than the above valuable metal materials and the difficulties in regenerating process. In this paper, a novel regeneration process with significant green advance is proposed to regenerate anode material recycled from scrapped Li-ion batteries for the first time. After regenerated, most acetylene black (AB) and all the styrene butadiene rubber (SBR), carboxymethylcellulose sodium (CMC) in recycled anode material are removed, and the surface of anode material is coated with pyrolytic carbon from phenolic resin again. Finally, the regenerated anode material (graphite with coating layer, residual AB and a little CMC pyrolysis product) is obtained. As expected, all the technical indexs of regenerated anode material exceed that of a midrange graphite with the same type, and partial technical indexs are even closed to that of the unused graphite. The results indicate the effective regeneration of anode material recycled from scrapped Li-ion batteries is really achieved.

  10. Regular Recycling of Wood Ash to Prevent Waste Production (RecAsh). Technical Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lars E-mail: lars.t.andersson@skogsstyreslen.se

    2007-03-15

    At present, the extraction of harvest residues is predicted to increase in Sweden and Finland. As an effect of the intensified harvesting, the export of nutrients and acid buffering substances from the growth site is also increased. Wood ash could be used to compensate forest soils for such losses. Most wood fuel ash is today often deposited in landfills. If the wood ash is recycled, wood energy is produced without any significant waste production. Ash recycling would therefore contribute to decreasing the production of waste, and to maintaining the chemical quality of forest waters and biological productivity of forest soils in the long term. The project has developed, analysed and demonstrated two regular ash-recycling systems. It has also distributed knowledge gathered about motives for ash recycling as well as technical and administrative solutions through a range of media (handbooks, workshops, field demonstrations, reports, web page and information videos). Hopefully, the project will contribute to decreasing waste problems related to bio-energy production in the EU at large. The project has been organised as a separate structure at the beneficiary and divided in four geographically defined subprojects, one in Finland and three in Sweden (Central Sweden, Northern Sweden, and South-western Sweden). The work in each subproject has been lead by a subproject leader. Each subproject has organised a regional reference group. A project steering committee has been established consisting of senior officials from all concerned partners. The project had nine main tasks with the following main expected deliverables and output: 1. Development of two complete full-scale ash-recycling systems; 2. Production of handbooks of the ash recycling system; 3. Ash classification study to support national actions for recommendations; 4. Organise regional demonstrations of various technical options for ash treatment and spreading; 5. Organise national seminars and demonstrations of

  11. Design jeans for recycling: a supply chain case study in The Netherlands.

    Science.gov (United States)

    van Bommel, Harrie; Goorhuis, Maarten

    2014-11-01

    Because the insight is raising that waste prevention needs an integral product chain approach, a product chain project was awarded with an International Solid Waste Association grant. The project decided to focus on jeans because of the large environmental impacts of cotton and the low recycling rates. The project used an open innovative approach by involving many actors from the different phases of the chain and included student and applied researchers. In a 'design jeans for recycling' students' workshop, prototypes of jeans that are easier to recycle have been developed. Integrating the new generation from different disciplines in the project proved to be very successful. The results show that an open innovation process can lead to very creative ideas and that lessons learned from this project could be used to develop new chain projects for other products. An important condition is that key actors are willing to cooperate in an open innovation approach. © The Author(s) 2014.

  12. Creating a Lean, Green, Library Machine: Easy Eco-Friendly Habits for Your Library

    Science.gov (United States)

    Blaine, Amy S.

    2010-01-01

    For some library media specialists, implementing the three Rs of recycling, reducing, and reusing comes easily; they've been environmentally conscious well before the concept of going green made its way into the vernacular. Yet for some of library media specialists, the thought of greening their library, let alone the entire school, can seem…

  13. Borrowing green : economic and environmental effects of green fiscal policy in the Netherlands

    NARCIS (Netherlands)

    Scholtens, B.

    2001-01-01

    This paper analyzes the economic and environmental impact of a policy instrument that is related to the tax deductibility of interest returns and dividend yields from specified 'green' projects. We investigate this so-called 'Green Project Facility' (Regeling Groenprojecten) in the Netherlands

  14. Recycling of aluminum to produce green energy

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, Susana Silva; Lopez Benites, Wendy; Alvarez Gallegos, Alberto A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Av. Universidad 1001, Col. Chamilpa, Cuernavaca, Morelos C.P. 62210 (Mexico); Sebastian, P.J. [Centro de Investigacion en Energia-UNAM, 62580 Temixco, Morelos (Mexico)

    2005-07-15

    High-purity hydrogen gas was generated from the chemical reaction of aluminum with sodium hydroxide. Several molar relations of sodium hydroxide/aluminum were investigated in this study. The experimental results showed that hydrogen yields are acceptable and its purity was good enough to be used in a proton exchange membrane (PEM) fuel cell to produce electricity. An estimation of the amount of energy produced from the reaction of 100 aluminum cans with caustic soda showed that the hydrogen production is feasible to be scaled up to reach up to 5kWh in a few hours. This study is environmentally friendly and also shows that green energy can be produced from aluminum waste at a low cost.

  15. Green Roofs: A Part of Green Infrastructure Strategy for Urban Areas

    Science.gov (United States)

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provides insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA rep...

  16. Pretreatment of eucalyptus with recycled ionic liquids for low-cost biorefinery.

    Science.gov (United States)

    Xu, Jikun; Liu, Bingchuan; Hou, Huijie; Hu, Jingping

    2017-06-01

    It is urgent to develop recycled ionic liquids (ILs) as green solvents for sustainable biomass pretreatment. The goal of this study is to explore the availability and performance of reusing 1-allyl-3-methylimidazolium chloride ([amim]Cl) and 1-butyl-3-methylimidazolium acetate ([bmim]OAc) for pretreatment, structural evolution, and enzymatic hydrolysis of eucalyptus. Cellulose enzymatic digestibility slightly decreased with the increased number of pretreatment recycles. The hydrolysis efficiencies of eucalyptus pretreated via 4th recycled ILs were 54.3% for [amim]Cl and 72.8% for [bmim]OAc, which were 5.0 and 6.7-folds higher than that of untreated eucalyptus. Deteriorations of ILs were observed by the relatively lower sugar conversion and lignin removal from eucalyptus after 4th reuse. No appreciable changes in fundamental framework and thermal stability of [amim]Cl were observed even after successive pretreatments, whereas the anionic structure of [bmim]OAc was destroyed or replaced. This study suggested that the biomass pretreatment with recycled ILs was a potential alternative for low-cost biorefinery. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Optimal facility and equipment specification to support cost-effective recycling

    International Nuclear Information System (INIS)

    Redus, K.S.; Yuracko, K.L.

    1998-01-01

    The authors demonstrate a project management approach for D and D projects to select those facility areas or equipment systems on which to concentrate resources so that project materials disposition costs are minimized, safety requirements are always met, recycle and reuse goals are achieved, and programmatic or stakeholder concerns are met. The authors examine a facility that contains realistic areas and equipment, and they apply the approach to illustrate the different results that can be obtained depending on the strength or weakness of safety risk requirements, goals for recycle and reuse of materials, and programmatic or stakeholder concerns

  18. Potential reuse of petroleum-contaminated soil: A directory of permitted recycling facilities

    International Nuclear Information System (INIS)

    Rosenthal, S.; Wolf, G.; Avery, M.; Nash, J.H.

    1992-06-01

    Soil contaminated by virgin petroleum products leaking from underground storage tanks is a pervasive problem in the United States. Economically feasible disposal of such soil concerns the responsible party (RP), whether the RP is one individual small business owner, a group of owners, or a large multinational corporation. They may need a starting point in their search for an appropriate solution, such as recycling. The report provides initial assistance in two important areas. First it discusses four potential recycling technologies that manufacture marketable products from recycled petroleum-contaminated soil: the hot mix asphalt process, the cold mix asphalt system, cement production, and brick manufacturing. The report also presents the results of a project survey designed to identify recycling facilities. It lists recycling facilities alphabetically by location within each state, organized by U.S. Environmental Protection Agency (EPA) Region. The report also includes detailed addresses, recycling locations, telephone numbers, and contacts for these facilities. The scope of the project limits listings to fixed facilities or small mobile facility owners that recycle soil contaminated by virgin petroleum products into marketable commodities. It does not address site-specific or commercial hazardous waste remediation facilities

  19. TECHNOLOGY EVALUATION REPORT: TORONTO HARBOUR COMMISSIONERS (THC) SOIL RECYCLE TREATMENT TRAIN. Project Summary

    Science.gov (United States)

    A demonstration of the Toronto Harbour Commissioners' (THC) Soil Recycle Treatment Train was performed under the Superfund Innovative Technology Evaluation (SITE) Program at a pilot plant facility in Toronto, Ontario, Canada. The Soil Recycle Treatment Train, which consists of s...

  20. Materials development and field demonstration of high-recycled-content concrete for energy-efficient building construction; FINAL

    International Nuclear Information System (INIS)

    Ostowari, Ken; Nosson, Ali

    2000-01-01

    The project developed high-recycled-content concrete material with balanced structural and thermal attributes for use in energy-efficient building construction. Recycled plastics, tire, wool, steel and concrete were used as replacement for coarse aggregates in concrete and masonry production. With recycled materials the specific heat and thermal conductivity of concrete could be tailored to enhance the energy-efficiency of concrete buildings. A comprehensive field project was implemented which confirmed the benefits of high-recycled-content concrete for energy-efficient building construction

  1. 75 FR 67391 - Notice of Intent To Prepare a Draft Environmental Impact Statement for the West Coast Recycling...

    Science.gov (United States)

    2010-11-02

    ... a Draft Environmental Impact Statement for the West Coast Recycling Group Project in West Sacramento... (EIS/EIR) for the development of the West Coast Recycling Group project located at the Port of West... meeting date. SUPPLEMENTARY INFORMATION: Description of the Proposed Action The West Coast Recycling Group...

  2. External costs of material recycling strategies for fusion power plants

    International Nuclear Information System (INIS)

    Hallberg, B.; Aquilonius, K.; Lechon, Y.; Cabal, H.; Saez, R.M.; Schneider, T.; Lepicard, S.; Ward, D.; Hamacher, T.; Korhonen, R.

    2003-01-01

    This paper is based on studies performed within the framework of the project Socio-Economic Research on Fusion (SERF3). Several fusion power plant designs (SEAFP Models 1-6) were compared focusing on part of the plant's life cycle: environmental impact of recycling the materials. Recycling was considered for materials replaced during normal operation, as well as materials from decommissioning of the plant. Environmental impact was assessed and expressed as external cost normalised with the total electrical energy output during plant operation. The methodology used for this study has been developed by the Commission of the European Union within the frame of the ExternE project. External costs for recycling, normalised with the energy production during plant operation, are very low compared with those for other energy sources. Results indicate that a high degree of recycling is preferable, at least when considering external costs, because external costs of manufacturing of new materials and disposal costs are higher

  3. Mechanical Properties of Portland Cement Concrete With Recycled Asphalt Pavement as Partial Replacement for Coarse Aggregate

    Science.gov (United States)

    2016-06-01

    Finding constructive uses for construction waste byproducts contributes to green engineering principles. One such plentiful material is recycled asphalt pavement (RAP). This report looks at the mechanical viability of including RAP in a high strength...

  4. Building the green way.

    Science.gov (United States)

    Lockwood, Charles

    2006-06-01

    Just five or six years ago, the term "green building" evoked visions of barefoot, tie-dyed, granola-munching denizens. There's been a large shift in perception. Of course, green buildings are still known for conserving natural resources by, for example, minimizing on-site grading, using alternative materials, and recycling construction waste. But people now see the financial advantages as well. Well-designed green buildings yield lower utility costs, greater employee productivity, less absenteeism, and stronger attraction and retention of workers than standard buildings do. Green materials, mechanical systems, and furnishings have become more widely available and considerably less expensive than they used to be-often cheaper than their standard counterparts. So building green is no longer a pricey experiment; just about any company can do it on a standard budget by following the ten rules outlined by the author. Reliable building-rating systems like the U.S. Green Building Council's rigorous Leadership in Energy and Environmental Design (LEED) program have done much to underscore the benefits of green construction. LEED evaluates buildings and awards points in several areas, such as water efficiency and indoor environmental quality. Other rating programs include the UK's BREEAM (Building Research Establishment's Environmental Assessment Method) and Australia's Green Star. Green construction is not simply getting more respect; it is rapidly becoming a necessity as corporations push it fully into the mainstream over the next five to ten years. In fact, the author says, the owners of standard buildings face massive obsolescence. To avoid this problem, they should carry out green renovations. Corporations no longer have an excuse for eschewing environmental and economic sustainability. They have at their disposal tools proven to lower overhead costs, improve productivity, and strengthen the bottom line.

  5. The Argus+ Project: Wide-field, high-resolution 3mm molecular imaging with the Green Bank Telescope

    Science.gov (United States)

    Lockman, Felix J.

    2018-06-01

    Argus+ is a large format radio camera system for the Green Bank Telescope (GBT) that will carry out high-fidelity spectroscopic mapping in the molecule-rich 3mm band. The project builds on the success of the prototype 16-pixel Argus 3mm receiver. Argus+ will be nine copies of Argus in a single dewer, with lower noise amplifiers, for an increase of a factor of ten in mapping speed. The Argus+ project includes a dedicated spectrometer and improvements to the GBT metrology that will more than double the amount of useful observing time at 3mm. With a footprint of 6'x6’, 144 pixels, an angular resolution of 6″ to 8″, and the sensitivity of a filled aperture, Argus+ will map fundamental transitions of important species over hundreds of square arc-min with a spatial dynamic range of 104 to 105. The Argus+ project includes two legacy surveys: a survey of molecules in the Gould Belt molecular clouds, and a survey of dense gas in nearby galaxies. These will be carried out by the scientific community and will be defined through a series of workshops. The Project has a strong educational component and will involve undergraduates at every stage. It will be incorporated into new and existing outreach programs, and will produce materials for the Green Bank Science Center. Argus+ will be operated as an open skies facility of the Green Bank Observatory, with the majority of its use being allocated through the normal proposal review process.

  6. Green and lean management

    CERN Document Server

    Davim, J

    2017-01-01

    This book focusses on the challenges and changes organizational management faces in an era when the need to develop environmentally aware processes meets high levels of competition. It covers the synergetic effects, how re-use, recycling, waste reduction, and other sustainable production strategies can add value, low costs and time of production. Sustainable business behavior is not only an environmental perspective on management, but more and more contains an organizational perspective. Taking into account these issues, green and lean management appears as the way managers can drive their employees to continuously improve the management processes that add value to the organization and costumers. This book provides information on principles, strategies, models, and applications of green and lean management, and at the same time communicates the latest research activity relating to this scientific field world-wide.

  7. On Tour... Primary Hardwood Processing, Products and Recycling Unit

    Science.gov (United States)

    Philip A. Araman; Daniel L. Schmoldt

    1995-01-01

    Housed within the Department of Wood Science and Forest Products at Virginia Polytechnic Institute is a three-person USDA Forest Service research work unit (with one vacancy) devoted to hardwood processing and recycling research. Phil Araman is the project leader of this truly unique and productive unit, titled ãPrimary Hardwood Processing, Products and Recycling.ä The...

  8. Evolution of water recycling in Australian cities since 2003.

    Science.gov (United States)

    Radcliffe, J C

    2010-01-01

    The prolonged Australian drought which commenced in 2002, and the agreement between Australia's Commonwealth and States/Territories governments to progress water reform through the National Water Initiative, has resulted in many new recycling projects in Australia's capital cities. Dual reticulation systems are being advanced in new subdivision developments in Sydney, Melbourne and Adelaide. Brisbane has installed three large Advanced Water Treatment Plants that are designed to send indirect potable recycled water to the Wivenhoe Dam which is Brisbane's principal water reservoir. Numerous water recycling projects are serving industry and agriculture. Experimental managed aquifer recharge is being undertaken with wetland-treated stormwater in Adelaide and reverse osmosis treated wastewater in Perth. New National Water Quality Management Strategy recycled water guidelines have been developed for managing environmental risks, for augmentation of drinking water supplies, for managed aquifer recharge and for stormwater harvesting and reuse. Many recent investments are part-supported through Commonwealth government grants. Desalination plants are being established in Melbourne and Adelaide and a second one in Perth in addition to the newly-operational plants in Perth, South-East Queensland and Sydney. Despite there being numerous examples of unplanned indirect potable recycling, most governments remain reluctant about moving towards planned potable recycling. There is evidence of some policy bans still being maintained by governments but the National Water Commission continues to reinforce the necessity of an even-handed objective consideration of all water supply options.

  9. Quantifying solid waste and recycling employment in Florida, USA: Trends in public and private sectors.

    Science.gov (United States)

    Park, Sunjoo; Yi, Hongtao; Feiock, Richard C

    2015-12-01

    Measuring and tracking the numbers of jobs in solid waste management and recycling industries over time provide basic data to inform decision makers about the important role played by this sector in a state or region's 'green economy'. This study estimates the number of people employed in the solid waste and recycling industry from 1989 through 2011 in the state of Florida (USA), applying a classification scheme based on the Standard Industrial Code (SIC) and utilizing the National Establishment Time Series (NETS) database. The results indicate that solid waste and recycling jobs in the private sector steadily increased from 1989 to 2011, whereas government employment for solid waste management fluctuated over the same period. © The Author(s) 2015.

  10. PLACE-BASED GREEN BUILDING: INTEGRATING LOCAL ENVIRONMENTAL AND PLANNING ANALYSIS INTO GREEN BUILDING GUIDELINES

    Science.gov (United States)

    This project will develop a model for place-based green building guidelines based on an analysis of local environmental, social, and land use conditions. The ultimate goal of this project is to develop a methodology and model for placing green buildings within their local cont...

  11. Green roof Malta

    OpenAIRE

    Gatt, Antoine

    2015-01-01

    In Malta, buildings cover one third of the Island, leaving greenery in the dirt track. Green roofs are one way to bring plants back to urban areas with loads of benefits. Antoine Gatt, who manages the LifeMedGreenRoof project at the University of Malta, tells us more. http://www.um.edu.mt/think/green-roof-malta/

  12. REAL OPTIONS ANALYSIS – ASSESSMENT METHOD OF INVESTMENT PROJECTS IN GREEN ENERGY

    Directory of Open Access Journals (Sweden)

    MAFTEI DANIEL

    2014-10-01

    Full Text Available This article highlights the importance of real options as a evaluation method of investment in green energy. Article consider several theoretical and practical approaches, the analysis based on real options by many authors who have theorized and used this method. Each approach provides a operationalisation through a steps series of specific evaluation. This paper highlights the different views: academics, financiers, managers and facilitates the access to an accurate evaluation decisions of projects.

  13. An approach to LCSA: the case of concrete recycling

    DEFF Research Database (Denmark)

    Hu, Mingming; Kleijn, René; Bozhilova-Kisheva, Kossara Petrova

    2013-01-01

    Purpose The framework of life cycle sustainability analysis (LCSA) has been developed within the CALCAS project but the procedure on how an LCSA should be carried out is still far from standardized. The purpose of this article is to propose an approach to put the LCSA framework into practice....... This approach is illustrated with an on-going case study on concrete recycling. Methods In the context of an EC-FP7 project on technology innovation for concrete recycling, five operational steps to implement the LCSA framework are proposed: (1) broad system definition, (2) making scenarios, (3) defining...

  14. Green-E general program and public information support program report, August 1, 1999 - September 30, 2000

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Kirk

    2000-09-30

    Green-E Program support from the Dept. of Energy augmented the costs of implementing the objectives of the Green-E Renewable Electricity Project; general program implementation; regional adaptation; developing strategic partnerships; and public information/education/outreach.

  15. Recycling of the product of thermal inertization of cement-asbestos for various industrial applications

    International Nuclear Information System (INIS)

    Gualtieri, Alessandro F.; Giacobbe, Carlotta; Sardisco, Lorenza; Saraceno, Michele; Lassinantti Gualtieri, Magdalena; Lusvardi, Gigliola; Cavenati, Cinzia; Zanatto, Ivano

    2011-01-01

    Recycling of secondary raw materials is a priority of waste handling in the countries of the European community. A potentially important secondary raw material is the product of the thermal transformation of cement-asbestos, produced by prolonged annealing at 1200-1300 o C. The product is chemically comparable to a Mg-rich clinker. Previous work has assured the reliability of the transformation process. The current challenge is to find potential applications as secondary raw material. Recycling of thermally treated asbestos-containing material (named KRY.AS) in traditional ceramics has already been studied with successful results. The results presented here are the outcome of a long termed project started in 2005 and devoted to the recycling of this secondary raw materials in various industrial applications. KRY.AS can be added in medium-high percentages (10-40 wt%) to commercial mixtures for the production of clay bricks, rock-wool glasses for insulation as well as Ca-based frits and glass-ceramics for the production of ceramic tiles. The secondary raw material was also used for the synthesis of two ceramic pigments; a green uvarovite-based pigment [Ca 3 Cr 2 (SiO 4 ) 3 ] and a pink malayaite-based pigment [Ca(Sn,Cr)SiO 5 ]. The latter is especially interesting as a substitute for cadmium-based pigments. This work also shows that KRY.AS can replace standard fillers in polypropylene plastics without altering the properties of the final product. For each application, a description and relevant results are presented and discussed.

  16. Green Mines green energy : establishing productive land on mine tailings

    Energy Technology Data Exchange (ETDEWEB)

    Tisch, B.; Zinck, J.; Vigneault, B. [Natural Resources Canada, Ottawa, ON (Canada). CANMET Mining and Mineral Sciences Laboratories

    2009-02-15

    The Green Mines green energy research project was initiated by the CANMET Mining and Mineral Sciences Laboratories of Natural Resources Canada. The objective of the initiative was to demonstrate that organic residuals could be used to remediate mine tailings and establish agriculturally productive land where energy crops such as corn, canola, soy, switchgrass and other species could be grown and harvested specifically as feedstock for the production of green fuels. This paper discussed the scope and progress to date of the Green Mines green energy project. This included discussion about a column leaching study and about effluent treatability and toxicity. Neutralization test results and the results of field trials were presented. The paper concluded with a discussion of next steps. An advisory committee has been established to review annual progress and establish research directions. Overall, preliminary results from the column study suggest that sulphate reduction at the tailings-biosolids interface is occurring, although steady state has not yet been reached after more than one year of testing. 1 tab., 3 figs.

  17. Green Mines green energy : establishing productive land on mine tailings

    International Nuclear Information System (INIS)

    Tisch, B.; Zinck, J.; Vigneault, B.

    2009-01-01

    The Green Mines green energy research project was initiated by the CANMET Mining and Mineral Sciences Laboratories of Natural Resources Canada. The objective of the initiative was to demonstrate that organic residuals could be used to remediate mine tailings and establish agriculturally productive land where energy crops such as corn, canola, soy, switchgrass and other species could be grown and harvested specifically as feedstock for the production of green fuels. This paper discussed the scope and progress to date of the Green Mines green energy project. This included discussion about a column leaching study and about effluent treatability and toxicity. Neutralization test results and the results of field trials were presented. The paper concluded with a discussion of next steps. An advisory committee has been established to review annual progress and establish research directions. Overall, preliminary results from the column study suggest that sulphate reduction at the tailings-biosolids interface is occurring, although steady state has not yet been reached after more than one year of testing. 1 tab., 3 figs

  18. EPA's Green Roof Research

    Science.gov (United States)

    This is a presentation on the basics of green roof technology. The presentation highlights some of the recent ORD research projects on green roofs and provices insight for the end user as to the benefits for green roof technology. It provides links to currently available EPA re...

  19. Development of Low Cost Soil Stabilization Using Recycled Material

    Science.gov (United States)

    Ahmad, F.; Yahaya, A. S.; Safari, A.

    2016-07-01

    Recycled tyres have been used in many geotechnical engineering projects such as soil improvement, soil erosion and slope stability. Recycled tyres mainly in chip and shredded form are highly compressible under low and normal pressures. This characteristic would cause challenging problems in some applications of soil stabilization such as retaining wall and river bank projects. For high tensile stress and low tensile strain the use of fiberglass would be a good alternative for recycled tyre in some cases. To evaluate fiberglass as an alternative for recycled tyre, this paper focused on tests of tensile tests which have been carried out between fiberglass and recycled tyre strips. Fibreglass samples were produced from chopped strand fibre mat, a very low-cost type of fibreglass, which is cured by resin and hardener. Fibreglass samples in the thickness of 1 mm, 2 mm, 3 mm and 4 mm were developed 100 mm x 300 mm pieces. It was found that 3 mm fibreglass exhibited the maximum tensile load (MTL) and maximum tensile stress (MTS) greater than other samples. Statistical analysis on 3 mm fibreglass indicated that in the approximately equal MTL fibreglass samples experienced 2% while tyre samples experienced 33.9% ultimate tensile strain (UTST) respectively. The results also showed an approximately linear relationship between stress and strain for fibreglass samples and Young's modulus (E), ranging from 3581 MPa to 4728 MPa.

  20. Green manufacturing processes and systems

    Energy Technology Data Exchange (ETDEWEB)

    Davim, J. Paulo (ed.) [Aveiro Univ. (Portugal). Dept. of Mechanical Engineering, Campus Universitario de Santiago

    2013-02-01

    This book provides the recent advances on green manufacturing processes and systems for modern industry. Chapter 1 provides information on sustainable manufacturing through environmentally-friendly machining. Chapter 2 is dedicated to environmentally-friendly machining: vegetable based cutting fluids. Chapter 3 describes environmental-friendly joining of tubes. Chapter 4 contains information on concepts, methods and strategies for zero-waste in manufacturing. Finally, chapter 5 is dedicated to the application of hybrid MCDM approach for selecting the best tyre recycling process.

  1. Green technology foresight of products and materials - some reflections and results from an ongoing Danish project

    DEFF Research Database (Denmark)

    Jørgensen, Michael Søgaard; Pedersen, Thomas Thoning; Falch, Morten

    2005-01-01

    The article presents some methodological and theoretical reflections and some preliminary results from a Danish Green Technology Foresight project about environmental friendly products and materials, where the environmental potentials and risks from three technology areas are analysed: nano- bio...

  2. Effectiveness of recycling light in ultra-bright short-arc discharge lamps.

    Science.gov (United States)

    Malul, Asher; Nakar, Doron; Feuermann, Daniel; Gordon, Jeffrey M

    2007-10-17

    Recycling light back into a plasma lamp's radiant zone can enhance its radiance. Measurements are reported for the effectiveness, spectral properties and modified plasma radiance maps that result from light recycling with a specular hemispherical mirror in commercial 150 W ultrabright Xenon short-arc discharge lamps, motivated by projection, biomedical and high-temperature furnace applications. For certain spectral windows and plasma arc regions, radiance can be heightened by up to 70%. However, the overall light recycling efficiency is reduced to about half this value due to lamp geometry. The manner in which light-plasma interactions affect light recycling efficacy is also elucidated.

  3. Methane for Power Generation in Muaro Jambi: A Green Prosperity Model Project

    Energy Technology Data Exchange (ETDEWEB)

    Moriarty, K.; Elchinger, M.; Hill, G.; Katz, J.; Barnett, J.

    2014-07-01

    NREL conducted eight model projects for Millennium Challenge Corporation's (MCC) Compact with Indonesia. Green Prosperity, the largest project of the Compact, seeks to address critical constraints to economic growth while supporting the Government of Indonesia's commitment to a more sustainable, less carbon-intensive future. This study evaluates electricity generation from the organic content of wastewater at a palm oil mill in Muaro Jambi, Sumatra. Palm mills use vast amounts of water in the production process resulting in problematic waste water called palm oil mill effluent (POME). The POME releases methane to the atmosphere in open ponds which could be covered to capture the methane to produce renewable electricity for rural villages. The study uses average Indonesia data to determine the economic viability of methane capture at a palm oil mill and also evaluates technology as well as social and environmental impacts of the project.

  4. Report on the behalf of the special commission for the examination of the bill project, after proceeding the accelerated procedure, modified by the Senate in first reading, related to energy transition for a green growth (nr 2611) - Nr 2736

    International Nuclear Information System (INIS)

    Bareigts, Ericka; Battistel, Marie-Noelle; Buis, Sabine; Baupin, Denis; Plisson, Philippe

    2015-01-01

    After a presentation of the commission works, this huge report presents and discusses the content and the modifications brought by the Senate to the bill project on energy transition for a green growth. Thus, it addresses the different articles of this bill project: to define common objectives for a successful energy transition, to strengthen France energy independence and economic competitiveness, to preserve health and the environment and to struggle against climatic change; to better renovate buildings to save energy, to reduce bills and to create jobs; to develop clean transports for a better air quality and to protect health; to struggle against spillages and to promote circular economy from product design to recycling; to promote renewable energies to diversify energies and valorise territorial resources; to strengthen nuclear safety and citizen information; to simplify and clarify procedures for better efficiency and competitiveness; to give to citizen, enterprises, territories and State the power to act together. A table gives a comparative vision of the successive versions of the bill project

  5. Harvard University: Green Loan Fund. Green Revolving Funds in Action: Case Study Series

    Science.gov (United States)

    Foley, Robert

    2011-01-01

    The Green Loan Fund at Harvard University has been an active source of capital for energy efficiency and waste reduction projects for almost a decade. This case study examines the revolving fund's history from its inception as a pilot project in the 1990s to its regeneration in the early 2000s to its current operations today. The green revolving…

  6. Compositional data analysis of household waste recycling centres in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Martín-Fernández, J. A.; Boldrin, Alessio

    of these projects on the recycling rates does not exist. Thus, compositional data analysis technique was applied to analyze consistently waste data. Based on the waste composition obtained from a recycling center in Denmark, we analyzed the composition of waste treatment and disposal options. Zero and non......The Danish government has set a target of 50% recycling rates for household waste by 2022. To achieve this goal, the Danish municipalities should increase the source separation of household waste. While significant knowledge and experiences were locally gained, lessons learnt have not been...

  7. EXAMINING THE INFLUENCE OF GREEN MANAGEMENT ON OPERATION FUNCTIONS: CASE OF A BUSINESS

    OpenAIRE

    Uygur, Akyay; Musluk, Berat Yasin; Ilbey, Nail

    2015-01-01

    Green management is a paradigm that includes improving environmental awareness, using energy resources and eco-friendly technologies, reuse of wastes, and recycling activities starting from production activities of businesses to packaging and delivering to consumers. Businesses have now become aware that environment must be preserved and tended towards green management as a result of destructed and demolished environment, and the effect of hunger, scarcity, global problems despite developed s...

  8. Continuation of Research, Commercialization, and Workforce Development in the Polymer/Electronics Recycling Industry

    Energy Technology Data Exchange (ETDEWEB)

    Mel Croucher; Rakesh Gupta; Hota GangaRao; Darran Cairns; Jinzing Wang; Xiaodong Shi; Jason Linnell; Karen Facemyer; Doug Ritchie; Jeff Tucker

    2009-09-30

    The MARCEE Project was established to understand the problems associated with electronics recycling and to develop solutions that would allow an electronics recycling industry to emerge. While not all of the activities have been funded by MARCEE, but through private investment, they would not have occurred had the MARCEE Project not been undertaken. The problems tackled and the results obtained using MARCEE funds are discussed in detail in this report.

  9. Performance of I-57 recycled concrete pavements.

    Science.gov (United States)

    2009-01-01

    In 1986-1987 the Illinois Department of Transportation (IDOT) constructed a demonstration project on I-57 near Effingham, Illinois to evaluate the viability : of recycling an existing jointed reinforced concrete pavement for use as its primary aggreg...

  10. Recycling Facilities - Land Recycling Cleanup Locations

    Data.gov (United States)

    NSGIC Education | GIS Inventory — Land Recycling Cleanup Location Land Recycling Cleanup Locations (LRCL) are divided into one or more sub-facilities categorized as media: Air, Contained Release or...

  11. Green Roofs for Stormwater Management

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Results indicate that the green roofs are capable of removing 40% of the annual rainfall volume from a roof through retention and evapotranspiration. Rainfall not retained by green roofs is detained, effectively...

  12. Show Me the Green

    Science.gov (United States)

    Norbury, Keith

    2013-01-01

    Gone are the days when green campus initiatives were a balm to the soul and a drain on the wallet. Today's environmental initiatives are all about saving lots of green--in every sense of the word. The environmental benefits of green campus projects--whether wind turbines or better insulation--are pretty clear. Unfortunately, in today's…

  13. Production of recyclates – compared with virgin Plastics – a LCA Study

    Directory of Open Access Journals (Sweden)

    Storm Birgit Kjærside

    2017-01-01

    Full Text Available Plastix A/S is a Danish cleantech company transforming discarded fishing trawls and nets into valuable green raw materials. Plastix– technology and processes solve a maritime waste problem and contribute to a more circular green economy and reduce landfilling, marine pollution, CO2 emissions and especially loss of valuable resources. Plastix– recycling technology enables recovery of discarded fishing trawls and nets via mechanical and thermal processes transforming the waste into valuable recycles which can be converted into plastic products replacing virgin raw materials. The performance has been proved through a Life Cycle Assessment (LCA study. The results from the LCA study are compared with the production of virgin materials. The results of the LCA show that especially the carbon footprint is remarkable better for Oceanix than for virgin plastics. Oceanix HDPE is 5 times better than virgin HDPE, when talking about the carbon foot print, and the results for Oceanix PP and Oceanix PA6 are 5 times and 20 times better compared with virgin PP and PA6. Also other environmental indicators are better for Oceanix compared with virgin plastics.

  14. Nuclear recycling

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This paper discusses two aspects of the economics of recycling nuclear fuel: the actual costs and savings of the recycling operation in terms of money spent, made, and saved; and the impact of the recycling on the future cost of uranium. The authors review the relevant physical and chemical processes involved in the recycling process. Recovery of uranium and plutonium is discussed. Fuel recycling in LWRs is examined and a table presents the costs of reprocessing and not reprocessing. The subject of plutonium in fast reactors is addressed. Safeguards and weapons proliferation are discussed

  15. BWR Assembly Optimization for Minor Actinide Recycling

    Energy Technology Data Exchange (ETDEWEB)

    G. Ivan Maldonado; John M. Christenson; J.P. Renier; T.F. Marcille; J. Casal

    2010-03-22

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs).

  16. Going for increased recycling. A social cost-benefit analysis; Inzetten op meer recycling. Een maatschappelijke kosten-batenanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Warringa, G.E.A.; De Bruyn, M.; Bijleveld, M.M.

    2013-05-15

    While the environmental benefits of scenarios geared to increased recycling have been convincingly demonstrated by previous studies, the question arises whether such scenarios bring economic benefits, too. This study therefore assesses the main economic effects of increased recycling in the Netherlands, providing data that can be used to advance policy development in this area. To address the main issue we performed a social cost-benefit analysis (SCBA), a welfare-theory-based tool that can be used to chart the full range of economic impacts ('welfare impacts') of a project or policy intervention. In doing so, a broad definition of welfare is adopted, encompassing not only financial and economic consequences, but also environmental and employment impacts and so on. Using SimaPro, all the environmental interventions inventoried (including energy consumption, transport and recycling process emissions) were assessed for each individual material flow, with impacts being expressed as far as possible in monetary terms to enable comparison. The main social costs of increased recycling are the higher costs for local authorities associated with separate waste collection. There is also reduced revenue for waste incinerators, because more waste will need to be imported from abroad. Finally, there are the policy costs of incentives for increased recycling and extra efforts to induce citizens to separate their waste. The latter costs were not quantified. Over and against these costs are positive welfare impacts. The main benefits are environmental, expressed monetarily in the present study in terms of avoided damage costs for society as a whole and avoided measures for securing government reduction targets. In addition, the separated waste has a value, reflected in lower processing costs. Increased recycling also creates new jobs, while recycling firms generate more profit than waste incinerators. Finally, there are the benefits accruing from greater innovation and

  17. Urban Greening Bay Area

    Science.gov (United States)

    Information about the San Francisco Bay Water Quality Project (SFBWQP) Urban Greening Bay Area, a large-scale effort to re-envision urban landscapes to include green infrastructure (GI) making communities more livable and reducing stormwater runoff.

  18. Green chemistry: to rethink chemistry for tomorrow's world. Press briefing of 20 January 2015

    International Nuclear Information System (INIS)

    Legrand, Francois

    2015-01-01

    This document discusses various issues related to the development of the green chemistry sector, and mentions and presents activities performed by the CEA in this respect. A first part outlines how green chemistry is an answer to stakes for a sustainable development. The second part addresses metal recycling: recovery of silver from photovoltaic cells, avoiding tensions related to rare earth supply. The third part discusses how to replace dangerous or costly compounds (chromium in aircraft paintings, platinum in fuel cells, ruthenium in photovoltaic cells, rare earth in magnetic wire). The fourth part addresses how to transform wastes into useful products (production of formamides, of aromatic compounds, and of methanol, respectively from waste recycling, natural lignin, and CO_2). The fifth part presents new concepts for chemical synthesis: chemistry under ultrasounds, production of hydrogen from water. The sixth part presents contributions of life sciences to green chemistry: reduction of carbon dioxide emissions, bioremediation (biology for soil rehabilitation), production of molecules of interest by using micro algae, enzymes or bacteria. The last part discusses issues which outline that chemistry is at the heart of challenges for a sustainable nuclear in terms of materials, for a closed fuel cycle, in terms of fuel cycle processes, of installation sanitation and dismantling. Appendices formulate 5 societal challenges for green chemistry, and 12 background principles of green chemistry

  19. Recycling of cellulases in a continuous process for production of bioethanol

    DEFF Research Database (Denmark)

    Haven, Mai Østergaard

    studies, this PhD project investigates enzyme recycling at industrial relevant conditions in the Inbicon process, e.g. high dry matter conditions and process configurations that could be implemented in large scale. The results point towards potential processes for industrial recycling of enzymes......The focus of the work presented in this thesis is recycling of commercial enzymes in a continuous process for production of bioethanol from biomass. To get a deeper understanding of the factors affecting the potential for enzyme recycling, the interactions between enzymes and biomass......, the adsorption and desorption as well as stability and recovery of activity was investigated. More knowledge on these factors have enabled a process adapted for enzyme recycling. The driver being that enzyme consumption remains a major cost when producing bioethanol from lignocellulosic biomass. Unlike previous...

  20. Environmental Education: Going Green Is a Library-Wide Effort

    Science.gov (United States)

    Helmer, Jodi

    2010-01-01

    Going green is a hot topic. Everyone from Hollywood to the White House is talking about the need to reduce, reuse, and recycle. Often, the messages are targeted to making changes at home: taking canvas bags to the supermarket, installing low flow showerheads and starting a compost pile. While these changes can make a big difference, such…

  1. Usage of Recycled Pet

    OpenAIRE

    Tayyar, A. Ebru; Üstün, Sevcan

    2010-01-01

    The increasing industrialization, urbanization and the technological development have caused to increase depletion of the natural resources and environmental pollution's problem. Especially, for the countries which have not enough space recycling of the waste eliminating waste on regular basis or decreasing the amount and volume of waste have provided the important advantages. There are lots of studies and projects to develop both protect resources and prevent environmental pollution. PE...

  2. An efficient method of material recycling of municipal plastic waste

    Czech Academy of Sciences Publication Activity Database

    Fortelný, Ivan; Michálková, Danuše; Kruliš, Zdeněk

    2004-01-01

    Roč. 85, č. 9 (2004), s. 975-979 ISSN 0141-3910. [IUPAC Microsymposium on Degradation, Stabilisation and Recycling of Polymers /42./. Prague, 14.07.2003-17.07.2003] R&D Projects: GA AV ČR(CZ) IBS4050008 Institutional research plan: CEZ:AV0Z4050913 Keywords : recycling * municipal plastic waste * compatibilisation Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.685, year: 2004

  3. Sustainable Building in China—A Green Leap Forward?

    Directory of Open Access Journals (Sweden)

    Jialiang Wang

    2013-09-01

    Full Text Available China is constructing new commercial buildings at an enormous rate—roughly 2 billion square meters per year, with considerable interest and activity in green design and construction. We review the context of commercial building design and construction in China, and look at a specific project as an example of a high performance, sustainable design, the Shenzhen Institute of Building Research (IBR. The IBR building incorporates over 40 sustainable technologies and strategies, including daylighting, natural ventilation, gray-water recycling, solar-energy generation, and highly efficient Heating Ventilation and Air Conditioning (HVAC systems. We present measured data on the performance of the building, including detailed analysis by energy end use, water use, and occupant comfort and satisfaction. Total building energy consumption in 2011 was 1151 MWh, with an Energy Use Intensity (EUI of 63 kWh/m2 (20 kBtu/ft2, which is 61% of the mean EUI value of 103 kWh/m2 (33 kBtu/ft2 for similar buildings in the region. We also comment on the unique design process, which incorporated passive strategies throughout the building, and has led to high occupant satisfaction with the natural ventilation, daylighting, and green patio work areas. Lastly we present thoughts on how the design philosophy of the IBR building can be a guide for low-energy design in different climate regions throughout China and elsewhere.

  4. Unconventional recycling

    Energy Technology Data Exchange (ETDEWEB)

    White, K.M.

    1996-05-01

    Despite advances made in recycling technology and markets for materials over the past few years, recycling at convention centers, particularly on the show floor itself, can be a vexing problem. Part of the problem lies in the fact that recycling at convention centers has more to do with logistics than it does with these industry trends. However, given the varied nature of convention centers, and the shows they book, a rigid approach to recycling at convention centers is not always feasible. Like the numerous different curbside programs serving communities across the country, what works for one convention center--and one show--many not work for another. These difficulties notwithstanding, more convention centers are offering recycling programs today, and more groups booking conventions these days have begun requesting recycling services.

  5. Familiarization and Detection of Green Monopropellants Project

    Science.gov (United States)

    Coan, Mary Rachel (Compiler)

    2014-01-01

    Ammonium dinitramide (ADN) and hydroxyl ammonium nitrate (HAN) are green monopropellants which will be appearing at Kennedy Space Center (KSC) for processing in the next few years. These are relatively safe replacements for hydrazine as a monopropellant; however, little is known about methods of leak detection, vapor scrubbing, air emissions, or cleanup that will be required for safe and environmentally benign operations at KSC. The goal of this work is to develop leak detection and related technologies for the two new green monopropellants.

  6. Recent trends in automobile recycling: An energy and economic assessment

    Energy Technology Data Exchange (ETDEWEB)

    Curlee, T.R.; Das, S.; Rizy, C.G. [Oak Ridge National Lab., TN (United States); Schexanyder, S.M. [Tennessee Univ., Knoxville, TN (United States). Dept. of Biochemistry

    1994-03-01

    Recent and anticipated trends in the material composition of domestic and imported automobiles and the increasing cost of landfilling the non-recyclable portion of automobiles (automobile shredder residue or ASR) pose questions about the future of automobile recycling. This report documents the findings of a study sponsored by the US Department of Energy`s Office of Environmental Analysis to examine the impacts of these and other relevant trends on the life-cycle energy consumption of automobiles and on the economic viability of the domestic automobile recycling industry. More specifically, the study (1) reviewed the status of the automobile recycling industry in the United States, including the current technologies used to process scrapped automobiles and the challenges facing the automobile recycling industry; (2) examined the current status and future trends of automobile recycling in Europe and Japan, with the objectives of identifying ``lessons learned`` and pinpointing differences between those areas and the United States; (3) developed estimates of the energy system impacts of the recycling status quo and projections of the probable energy impacts of alternative technical and institutional approaches to recycling; and (4) identified the key policy questions that will determine the future economic viability of automobile shredder facilities in the United States.

  7. Mechanical properties of AZ31 alloy processed by a green metallurgy route

    International Nuclear Information System (INIS)

    D'Enrico, F.; Garces, G.; Hofer, M.; Kim, S. K.; Perez, P.; Cabeza, S.; Adeva, P.

    2013-01-01

    Recently it has been proved that molding of defect-free components of various commercial alloys of magnesium can be carried out successfully when small amounts of CaO are added to the melt, making unnecessary the use of SF 6 coverage. In the case of AZ alloys, this process also remarkably improves their mechanical properties not only by the greater cleaning of alloys but also by the formation of CaAl 2 phase. This work, part of the Green project Metallurgy (http://www.green-metallurgy.eu) funded by the European Union (LIFE+2009), studies the influence of different CaO additions on the microstructure and mechanical properties of AZ31 Eco-Mg alloy. The alloy was processed by a conventional route involving extrusion of as-cast rods as well as by a powder metallurgy route (PM) using chips as starting material. The objective was to analyze the viability of recycling machining chips to manufacture components for the automobile industry and transportation in general, because of its low cost and environmental impact. It has been demonstrated that alloys processed from chips exhibit the highest tensile stress values, close to 320 MPa. (Author)

  8. Recycled palm oil spoilage: Correlation between physicochemical properties and oleophilicity

    Science.gov (United States)

    Kadir, Ili Afiqa Ab; Zubairi, Saiful Irwan; Jurid, Lailatul Syema

    2016-11-01

    Palm oil is widely used for domestic and commercial frying due to its techno-economic advantages as compared to other vegetable oils. However, if the oil is used beyond its recommended usage cycle, it might lead to oil spoilage. Therefore this study focuses on the comprehensive analysis of chemical and physical properties of recycled palm oil. Recycled palm oil was prepared by frying potato strips up to 4 batches; 5 cycles for each batch) was carried out with potato (g)-to-oil (ml) ratio of 3/20 prior to physico-chemical analysis (moisture content, color measurement, viscosity, density and iodine value. From 5 tests used to indicate physico-chemical properties of recycled palm oil, only color measurement, viscosity and IV shows results accordingly to theories. Whereas moisture content and density were not comply to theories. With increasing frying times, recycled palm oil color has been darker due to chemical reaction that occurs during frying. The trend line illustrates that with increasing frying times, recycled palm oil lightness decreases. It also means that its color has been darker. Meanwhile, b* rate increase indicating that recycled palm oil show tendency towards green color. Whereas, a* rate decreased, showing low tendency towards red color. Viscosity and moisture content increase with frying cycle. This situation occurred might be due to formation of hydrolysis products which are volatile while frying process. But the remaining non-volatile compounds among the hydrolysis products might also accumulate in palm oil and thus affect the total oil/fat chemical changes. Meanwhile the density of palm oil was quite constant at 0.15 g/cm3 except for cycle 2 with 0.17 g/cm3. The result obtained from this experiment were comply with previous study that stated frying batch number is a significant variable (a = 0.05) affecting the density of oil only after 20 frying batch. The contact angle of recycled palm oil on PHBV thin film was more than 90 °. Hence it shows

  9. Borrowing green. Economic and environmental effects of green fiscal policy in The Netherlands

    International Nuclear Information System (INIS)

    Scholtens, B.

    2001-01-01

    This paper analyzes the economic and environmental impact of a policy instrument that is related to the tax deductibility of interest returns and dividend yields from specified 'green' projects. We investigate this so-called 'Green Project Facility' (Regeling Groenprojecten) in the Netherlands during 1995-1999. We analyze the effect on tax income, economic growth, employment, as well as on the emission of a number of gases and on solid waste production. We find that the economic effects in general are positive. This policy instrument increases growth, employment, and net tax income. However, the environmental effects are quite mixed. This especially results from the fact that a lot of projects would have been undertaken anyhow. Furthermore, we find that this green fiscal policy instrument is skewed towards energy and building. It appears to neglect environmental problems with consumer households, industry, and transport. 8 refs

  10. Recycling Lesson Plan

    Science.gov (United States)

    Okaz, Abeer Ali

    2013-01-01

    This lesson plan designed for grade 2 students has the goal of teaching students about the environmental practice of recycling. Children will learn language words related to recycling such as: "we can recycle"/"we can't recycle" and how to avoid littering with such words as: "recycle paper" and/or "don't throw…

  11. A new contribution of the SFEN to the bill project on energy transition

    International Nuclear Information System (INIS)

    2014-01-01

    In a first part, this document presents the main opinions of the SFEN on energy transition for a green economic growth, based on six axis: priority to the decrease of carbonated energies, lifetime extension of nuclear power plants as the most competitive low carbon solution, a good and responsible management or recycling, packaging and storage techniques in the nuclear sector, efforts in nuclear research, the nuclear sector as a lever to finance energy transition. In a second part, the SFEN states its opinion on the various aspects and elements of the bill project on energy transition

  12. FY1998 research report on the R and D on recycling technology. Part 1; 1998 nendo recycle nado kankyo gijutsu kekyu kaihatsu seika hokokusho. 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    This project aims to develop recycling technology for reduction of environmental burden caused by waste, and promotion of recycling of wastes. As for advanced recycling technology for PET bottles, the facility was improved for improvement of a facility operability and product quality. Study was made on the effect of a raw bale quality and recycled flake colors on a product quality, the forming test with PS or PET labels, and the concentration and effect of washing liquid circulated in flake washing process. As for recycling technology of hard-to-dispose waste plastics, facility improvement and demonstration test were made for continuous operation of dry-distillation/gasification of shredder dusts and separation of nonferrous metals and glass. Study was also made on pulverizing and recycling technologies of FRP bath tubs, and such pulverization costs were estimated. As for production technology of chemical feed and fuel from wastes, study was made on removal technology of non-flammable substances, development of alkaline additives, reacting condition, development of reactors, and use technology as chemical feed. (NEDO)

  13. Santa Rosa Geysers Recharge Project: GEO-98-001. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, Edwin Jr.; Carlson, Daniel C.

    2002-10-01

    The Geysers steamfields in northern Sonoma County have produced reliable ''green'' power for many years. An impediment to long-term continued production has been the ability to provide a reliable source of injection water to replace water extracted and lost in the form of steam. The steamfield operators have historcially used cooling towers to recycle a small portion of the steam and have collected water during the winter months using stream extraction. These two sources, however, could not by themselves sustain the steamfield in the long term. The Lake County Reclaimed Water Project (SEGEP) was inititated in 1997 and provides another source of steamfield replenishment water. The Santa Rosa Geysers Recharge Project provides another significant step in replenishing the steamfield. In addition, the Santa Rosa Geysers Recharge Project has been built with capacity to potentially meet virtually all injection water requirements, when combined with these other sources. Figure 2.1 graphically depicts the combination of injection sources.

  14. Validation of dose calculation programmes for recycling

    International Nuclear Information System (INIS)

    Menon, Shankar; Brun-Yaba, Christine; Yu, Charley; Cheng, Jing-Jy; Williams, Alexander

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  15. Validation of dose calculation programmes for recycling

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Shankar [Menon Consulting, Nykoeping (Sweden); Brun-Yaba, Christine [Inst. de Radioprotection et Securite Nucleaire (France); Yu, Charley; Cheng, Jing-Jy [Argonne National Laboratory, IL (United States). Environmental Assessment Div.; Bjerler, Jan [Studsvik Stensand, Nykoeping (Sweden); Williams, Alexander [Dept. of Energy (United States). Office of Environmental Management

    2002-12-01

    This report contains the results from an international project initiated by the SSI in 1999. The primary purpose of the project was to validate some of the computer codes that are used to estimate radiation doses due to the recycling of scrap metal. The secondary purpose of the validation project was to give a quantification of the level of conservatism in clearance levels based on these codes. Specifically, the computer codes RESRAD-RECYCLE and CERISE were used to calculate radiation doses to individuals during the processing of slightly contaminated material, mainly in Studsvik, Sweden. Calculated external doses were compared with measured data from different steps of the process. The comparison of calculations and measurements shows that the computer code calculations resulted in both overestimations and underestimations of the external doses for different recycling activities. The SSI draws the conclusion that the accuracy is within one order of magnitude when experienced modellers use their programmes to calculate external radiation doses for a recycling process involving material that is mainly contaminated with cobalt-60. No errors in the codes themselves were found. Instead, the inaccuracy seems to depend mainly on the choice of some modelling parameters related to the receptor (e.g., distance, time, etc.) and simplifications made to facilitate modelling with the codes (e.g., object geometry). Clearance levels are often based on studies on enveloping scenarios that are designed to cover all realistic exposure pathways. It is obvious that for most practical cases, this gives a margin to the individual dose constraint (in the order of 10 micro sievert per year within the EC). This may be accentuated by the use of conservative assumptions when modelling the enveloping scenarios. Since there can obviously be a fairly large inaccuracy in the calculations, it seems reasonable to consider some degree of conservatism when establishing clearance levels based on

  16. Green Roofs for Stormwater Runoff Control

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  17. BWR Assembly Optimization for Minor Actinide Recycling

    International Nuclear Information System (INIS)

    Maldonado, G. Ivan; Christenson, John M.; Renier, J.P.; Marcille, T.F.; Casal, J.

    2010-01-01

    The Primary objective of the proposed project is to apply and extend the latest advancements in LWR fuel management optimization to the design of advanced boiling water reactor (BWR) fuel assemblies specifically for the recycling of minor actinides (MAs). A top-level objective of the Advanced Fuel Cycle Systems Analysis program element of the DOE NERI program is to investigate spent fuel treatment and recycling options for current light water reactors (LWRs). Accordingly, this project targets to expand the traditional scope of nuclear fuel management optimization into the following two complementary specific objectives: (1) To develop a direct coupling between the pin-by-pin within-bundle loading control variables and core-wide (bundle-by-bundle) optimization objectives, (2) to extend the methodology developed to explicitly encompass control variables, objectives, and constraints designed to maximize minor actinide incineration in BWR bundles and cycles. The first specific objective is projected to 'uncover' dormant thermal margin made available by employing additional degrees of freedom within the optimization process, while the addition of minor actinides is expected to 'consume' some of the uncovered thermal margin. Therefore, a key underlying goal of this project is to effectively invest some of the uncovered thermal margin into achieving the primary objective.

  18. Implementing the green economy in a european context

    NARCIS (Netherlands)

    Saikku, Laura; Antikainen, Riina; Droste, Nils; Pitkänen, Kati; Loiseau, Eleonore; Hansjürgens, Bernd; Kuikman, P.J.; Leskinen, Pekka; Thomsen, Marianne

    2015-01-01

    This report summarises the key results of a PEER project analysing the green economy. The project explored green economy concepts and 10 practical cases from Finland, France, Germany, the Netherlands and Denmark.

  19. Chinese green product standards: international experience and pathway for a unified system

    Science.gov (United States)

    Yun, Fu; Ling, Lin; Dongfeng, Gao; Shuo, Yang

    2017-11-01

    The establishment of a unified green product standard system is of great importance regarding the effective supply of green products and meeting trend of the consumption upgrade. It also is helpful to reduce the cost of green information disclosure of enterprises, and facilitate the supply-side structural reform. Based on the experience of developing and implementing green product standards in the EU, Germany, America, Japan and so on, combined with current Chinese standard systems including environmental protection, energy conservation, water conservation, low carbon, recycling, regeneration and organic, with the adoption of the life cycle thinking, this paper brings forward basic requirements on organizations including pollutant emissions, establishment of management system, energy conservation and emission reduction technology and green supply chain management, and proposes indicator requirements on product including resource attributes, energy attributes, environmental attributes and quality attributes, so as to guide the establishment of green product evaluation standards in the context of China.

  20. Recycling as a Teaching Strategy for Environmental Conservation (Project execution

    Directory of Open Access Journals (Sweden)

    Deisy Yaneth Bonilla García

    2016-08-01

    Full Text Available This research study will aim to implement recycling as a teaching strategy for Environmental conservation aimed at students of the state Concentrared Sabaneta School of core Rural School No. 001 pedraza Municipality, Barinas State. It will focus on the qualitative paradigm and design will use action-research participant. The techniques of collecting information to be used will be the semi-structured interview and participant observation, taking as informants 3 students 2 teachers of the institution under study, analysis of information developed through qualitative techniques that will break down the data in their respective categories and sub categories with the final purpose responding to the questions raised in the context of study. This process will seek to integrate into a coherent and logical research results with the contributions of the authors outlined the theoretical framework after work crosscheck everything. The validity and reliability will be established through an exhaustive process of triangulation, in order to establish concrete actions to address the weaknesses detected in relation to the need to implement educational strategies supported in recycling to assist in environmental conservation.

  1. Green mortgages in the Netherlands

    International Nuclear Information System (INIS)

    Bosch, N.

    1997-01-01

    Since November 1996 sustainable building of houses is also part of the fiscal Regulation for Green Projects (i.e. the stimulation of environment-friendly investments). The extension of that financial regulation resulted in a new product: Green Mortgages. The conditions that have to be met to be qualified for a Green Mortgage are briefly outlined

  2. Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers.

    Science.gov (United States)

    Burns, Katrina N; Sun, Kan; Fobil, Julius N; Neitzel, Richard L

    2016-01-19

    Electronic waste (e-waste) is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people's livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA) and community (70 dBA) noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen's Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman's ρ 0.46, p stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage.

  3. Open-loop recycling: A LCA case study of PET bottle-to-fibre-recycling

    NARCIS (Netherlands)

    Shen, L.; Worrell, E.; Patel, M.K.

    2010-01-01

    This study assesses the environmental impact of polyethylene terephthalate (PET) bottle-to-fibre recycling using the methodology of life-cycle assessment (LCA). Four recycling cases, including mechanical recycling, semi-mechanical recycling, back-to-oligomer recycling and back-to-monomer recycling

  4. Green funds. The market and the environment

    International Nuclear Information System (INIS)

    Scholtens, L.J.R.

    1998-01-01

    January 1995 the Regulation for Green Projects ('Regeling Groenprojecten') was implemented in the Netherlands. The aim of the fiscal regulation is to stimulate investments in environment-friendly projects. A brief overview is given of the market for green investments in the Netherlands. 4 refs

  5. Cold in-place recycle phase III, mix design.

    Science.gov (United States)

    2014-10-01

    This projects purpose is to revise the UDOT accepted design methods for Cold In-Place Recycling so that they : better reflect field behavior and target the desirable attributes of the material. The previous design process failed to : adequately pr...

  6. Efficiency enhancement of liquid crystal projection displays using light recycle technology

    Science.gov (United States)

    Wang, Y.

    2002-01-01

    A new technology developed at JPL using low absorption color filters with polarization and color recycle system, is able to enhance efficiency of a single panel liquid crytal display (LCD) projector to the same efficiency of a 3 panel LCD projector.

  7. Coal and recycling mark the way forward

    Energy Technology Data Exchange (ETDEWEB)

    Bignell, E.

    2000-11-01

    A report is given of this year's Mineral Engineering Society's annual conference held in Scarborough, UK. The themes of recycling and coal were chosen for the two days of technical presentations. Topics included the cleaning up of brown field sites; the use of recycled waste oxide to replace iron ore pellets for cooling furnaces in steel making; high pressure filtration of industrial mineral effluent; iron ore mining in Australia; screen development; the status of coal preparation technology, by RJB Mining; study of movement of material (to simulate coal) in a hopper; and a UK-Chinese project on reduction of sulphur in coal.

  8. Demonstration of Advanced Technologies for Multi-Load Washers in Hospitality and Healthcare -- Wastewater Recycling Technology

    Energy Technology Data Exchange (ETDEWEB)

    Boyd, Brian K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Parker, Graham B. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Petersen, Joseph M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sullivan, Greg [Efficiency Solutions, LLC (United States); Goetzler, W. [Navigant Consulting, Inc. (United States); Foley, K. J. [Navigant Consulting, Inc. (United States); Sutherland, T. A. [Navigant Consulting, Inc. (United States)

    2014-08-14

    The objective of this demonstration project was to evaluate market-ready retrofit technologies for reducing the energy and water use of multi-load washers in healthcare and hospitality facilities. Specifically, this project evaluated laundry wastewater recycling technology in the hospitality sector and ozone laundry technology in both the healthcare and hospitality sectors. This report documents the demonstration of a wastewater recycling system installed in the Grand Hyatt Seattle.

  9. Creating Methane from Plastics: Recycling at a Lunar Outpost

    Science.gov (United States)

    Captain, Janine; Santiago, Eddie; Wheeler, Ray; Strayer, RIchard; Garland, Jay; Parrish, Clyde

    2010-01-01

    The high cost of re-supply from Earth demands resources to be utilized to the fullest extent for exploration missions. Recycling is a key technology that maximizes the available resources by converting waste products into useful commodities. One example of this is to convert crew member waste such as plastic packaging, food scraps, and human waste, into fuel. The ability to refuel on the lunar surface would reduce the vehicle mass during launch and provide excess payload capability. The goal of this project is to determine the feasibility of recycling waste into methane on the lunar outpost by performing engineering assessments and lab demonstrations of the technology. The first goal of the project was to determine how recycling could influence lunar exploration. Table I shows an estimation of the typical dried waste stream generated each day for a crew of four. Packaging waste accounts for nearly 86% of the dry waste stream and is a significant source of carbon on the lunar surface. This is important because methane (CH4) can be used as fuel and no other source of carbon is available on the lunar surface. With the initial assessment indicating there is sufficient resources in the waste stream to provide refueling capabilities, the project was designed to examine the conversion of plastics into methane.

  10. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil

    International Nuclear Information System (INIS)

    King, Megan F.; Gutberlet, Jutta

    2013-01-01

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in São Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions

  11. Contribution of cooperative sector recycling to greenhouse gas emissions reduction: A case study of Ribeirão Pires, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    King, Megan F., E-mail: mfking@uvic.ca [The Community-Based Research Laboratory, Department of Geography, University of Victoria, PO Box 3060 STN CSC, Victoria, BC V8W 3R4 (Canada); Gutberlet, Jutta, E-mail: gutber@uvic.ca [Department of Geography, University of Victoria, PO Box 3060 STN CSC, Victoria, BC V8W 3R4 (Canada)

    2013-12-15

    Highlights: • Cooperative recycling achieves environmental, economic and social objectives. • We calculate GHG emissions reduction for a recycling cooperative in São Paulo, Brazil. • The cooperative merits consideration as a Clean Development Mechanism (CDM) project. • A CDM project would enhance the achievements of the recycling cooperative. • National and local waste management policies support the recycling cooperative. - Abstract: Solid waste, including municipal waste and its management, is a major challenge for most cities and among the key contributors to climate change. Greenhouse gas emissions can be reduced through recovery and recycling of resources from the municipal solid waste stream. In São Paulo, Brazil, recycling cooperatives play a crucial role in providing recycling services including collection, separation, cleaning, stocking, and sale of recyclable resources. The present research attempts to measure the greenhouse gas emission reductions achieved by the recycling cooperative Cooperpires, as well as highlight its socioeconomic benefits. Methods include participant observation, structured interviews, questionnaire application, and greenhouse gas accounting of recycling using a Clean Development Mechanism methodology. The results show that recycling cooperatives can achieve important energy savings and reductions in greenhouse gas emissions, and suggest there is an opportunity for Cooperpires and other similar recycling groups to participate in the carbon credit market. Based on these findings, the authors created a simple greenhouse gas accounting calculator for recyclers to estimate their emissions reductions.

  12. a Multi Objective Model for Optimization of a Green Supply Chain Network

    Science.gov (United States)

    Paksoy, Turan; Özceylan, Eren; Weber, Gerhard-Wilhelm

    2010-06-01

    This study develops a model of a closed-loop supply chain (CLSC) network which starts with the suppliers and recycles with the decomposition centers. As a traditional network design, we consider minimizing the all transportation costs and the raw material purchasing costs. To pay attention for the green impacts, different transportation choices are presented between echelons according to their CO2 emissions. The plants can purchase different raw materials in respect of their recyclable ratios. The focuses of this paper are conducting the minimizing total CO2 emissions. Also we try to encourage the customers to use recyclable materials as an environmental performance viewpoint besides minimizing total costs. A multi objective linear programming model is developed via presenting a numerical example. We close the paper with recommendations for future researches.

  13. Possible Role of Green Chemistry in Addressing Environmenal Plastic Debris: Scientific, Economic and Policy Issues

    Science.gov (United States)

    Bayha, K. M.

    2016-02-01

    Plastics have revolutionized modern life, replacing other raw materials in a vast array of products, due to their ease in molding and shaping, as well as superior recalcitrance to wearing and aging. However, this functional benefit makes plastic one of the most problematic pollutants, since they accumulate as environmental debris for decades and possibly for centuries. Rightfully so, programs addressing plastic debris typically involve efforts to reduce consumption, reuse plastic products and recycle them when usefulness is complete. However, some of these options can be problematic for certain applications, as well as in countries that lack efficient municipal solid waste or recycling facilities. The principles of Green Chemistry were developed to help scientists design chemical products that reduce or eliminate the use or generation of hazardous substances. These principles have also been applied to developing sustainable or greener polymers for use in consumer plastics. For instance, the EPA's Green Chemistry Program awards the Presidential Green Chemistry Challenge Awards each year, with a large percentage of awards having gone to developments in greener polymers. Many of these advancements involve the development of sustainable bio-based, more degradable or more recyclable polymers that deliver significant environmental benefits. This presentation is meant to address what role the development of truly greener polymers might have in addressing environmental plastic debris in parallel with efforts to reduce, reuse and recycle. The intention is to evaluate the issues posed by traditional polymer types, address the ultimate goals of alternative polymer development and evaluate research on current alternative polymer technologies, in order to objectively assess their usefulness in addressing environmental plastic debris accumulation. In addition, the scientific, policy and market issues that may be impeding accurate development, evaluation and implementation of

  14. Environmental Science: 49 Science Fair Projects. Science Fair Projects Series.

    Science.gov (United States)

    Bonnet, Robert L.; Keen, G. Daniel

    This book contains 49 science fair projects designed for 6th to 9th grade students. Projects are organized by the topics of soil, ecology (projects in habitat and life cycles), pests and controls (projects in weeds and insects), recycling (projects in resources and conservation), waste products (projects in decomposition), microscopic organisms,…

  15. GreenSynFuels. Economical and technological statement regarding integration and storage of renewable energy in the energy sector by production of green synthetic fuels for utilization in fuel cells. Final project report

    Energy Technology Data Exchange (ETDEWEB)

    Lebaek, J. (Danish Technological Institute, Aarhus (Denmark)); Boegild Hansen, J. (Haldor Topsoee, Kgs. Lyngby (Denmark)); Mogensen, Mogens (Technical Univ. of Denmark, Risoe National Lab. for Sustainable Energy, Roskilde (Denmark)) (and others)

    2011-03-15

    The purpose of the project is to select and validate technology concepts for the establishment of a Danish production of green synthetic fuels primarily for fuel cells. The feasibility of the selected concepts is assessed trough a techno-economical calculation, which includes mass and energy balances and economics including CAPEX and OPEX assessments. It is envisioned by the project partners that a production of green synthetic fuels, such as methanol, can 1) bring stability to a future electricity grid with a high share of renewable energy, 2) replace fossil fuels in the transport sector, and 3) boost Danish green technology export. In the project, two technology concepts were derived through carefully considerations and plenum discussions by the project group members: Concept 1): Methanol/DME Synthesis based on Electrolysis assisted Gasification of Wood. Concept 2): Methanol/DME synthesis based on biogas temporarily stored in the natural gas network. Concept 1) is clearly the most favored by the project group and is therefore analyzed for its techno-economic feasibility. Using mass and energy balances the technical perspectives of the concept were investigated, along with an economic breakdown of the CAPEX and OPEX cost of the methanol production plant. The plant was technically compared to a traditional methanol production plant using gasified biomass. The project group has decided to focus on large scale plants, as the scale economics favor large scale plants. Therefore, the dimensioning input of the concept 1) plant is 1000 tons wood per day. This is truly a large scale gasification plant; however, in a methanol synthesis context the plant is not particularly large. The SOEC electrolyzer unit is dimensioned by the need of hydrogen to balance the stoichiometric ratio of the methanol synthesis reaction, which will result in 141 MW installed SOEC. The resulting methanol output is 1,050 tons methanol per day. In comparison to a traditional methanol synthesis plant

  16. Recycling: Establishing a Citizen-Sponsored Reclamation Center.

    Science.gov (United States)

    Keep America Beautiful, Inc., New York, NY.

    This booklet applies the Clean Community System (CCS) of Keep America Beautiful, Inc. to the development of citizen-sponsored recycling projects. Six initial steps in establishing a reclamation center are given and include information gathering, market analysis, legal requirements, and site location. Suggestions are included for recruiting staff…

  17. The effect of Cryogenic Crumb Rubber in cold recycled mixes for road pavements

    DEFF Research Database (Denmark)

    Pettinari, Matteo; Dondi, Giulio; Sangiorgi, Cesare

    2014-01-01

    of cold recycled mixes for road bases is considerable. Furthermore, new products are continuously being introduced or developed for recycling purposes. The objective of this research project was to test the effects, both mechanically and environmentally, of crumb rubber included in 100% Reclaimed Asphalt......Over recent years, the necessity of reducing the environmental mpact of building new infrastructures has increasingly directed research toward developing innovative manufacturing methods and materials that can satisfy these objectives. Cold recycling, widely used in renovating road pavements...

  18. Hydro to market green power at special prices

    International Nuclear Information System (INIS)

    McArthur, D.; Salaff, S.

    1996-01-01

    A 600 kW grid-connected demonstration wind turbine at Ontario Place will provide green power to Toronto residents early in 1997. The joint venture project partners include publicly owned Ontario Hydro, Toronto Hydro and Natural Resources Canada. The power will be sold at a premium under arrangements yet to be announced. The green power pricing initiative would allow some customers to buy their electricity at a green price. The project could be a self-financing model for future renewable energy development. The Ontario Place turbine project will determine whether Toronto electricity customers want green power or electricity from nuclear and fossil stations, and could determine which type of generation should be built in the future

  19. Developing improved opportunities for the recycling and reuse of materials in road, bridge, and construction projects.

    Science.gov (United States)

    2014-12-01

    The use of recycled and reused materials in transportation construction reduces consumption of non-renewable : resources. The objective of this research was to develop opportunities for improving the recycling and reuse of : materials in road and bri...

  20. The National Conversion Pilot Project

    International Nuclear Information System (INIS)

    Roberts, A.V.

    1995-01-01

    The National Conversion Pilot Project (NCPP) is a recycling project under way at the U.S. Department of Energy (DOE) Rocky Flats Environmental Technology Site (RFETS) in Colorado. The recycling aim of the project is threefold: to reuse existing nuclear weapon component production facilities for the production of commercially marketable products, to reuse existing material (uranium, beryllium, and radioactively contaminated scrap metals) for the production of these products, and to reemploy former Rocky Flats workers in this process

  1. Development of superior asphalt recycling agents. Phase 1, Technical feasibility. Final technical progress report

    Energy Technology Data Exchange (ETDEWEB)

    Bullin, J.A.; Davison, R.R.; Glover, C.J.; Chaffin, J.; Liu, M.; Madrid, R.

    1997-07-01

    After an introduction and a literature survey in Chap. 1, Chap. 2 describes the tasks, together with objectives and important results obtained for each task throughout the entire project. Chaps. 3 thru 7 detail work in developing a qualitative and quantitative knowledge of asphalt oxidation, composition dependence of asphalt properties, and guidelines for producing superior asphalt binders through composition control. They also detail the development of a kinetic model for asphalt oxidative aging and present an understanding of the composition dependence of asphalt oxidation as well as other performance-related properties. Chaps. 8 and 9 compare the aging performance of recycled blends produced using commercial recycling agents and industrial supercritical fractions as rejuvenating agents. Oxidative aging of the recycled blends were evaluated along with the performance of the recycled blends in terms of the strategic highway research program performance grading procedure. Chap. 10 summarizes the work completed in the areas of processing schemes development, projection updates, and scale-up and commercialization plans.

  2. Recycled industrial and construction waste for mutual beneficial use.

    Science.gov (United States)

    2016-08-01

    Instead of going to landfills, certain waste materials from industry and building construction can be recycled in transportation infrastructure projects, such as roadway paving. The beneficial use of waste materials in the construction of transportat...

  3. Green roof soil system affected by soil structural changes: A project initiation

    Science.gov (United States)

    Jelínková, Vladimíra; Dohnal, Michal; Šácha, Jan; Šebestová, Jana; Sněhota, Michal

    2014-05-01

    Anthropogenic soil systems and structures such as green roofs, permeable or grassed pavements comprise appreciable part of the urban watersheds and are considered to be beneficial regarding to numerous aspects (e.g. carbon dioxide cycle, microclimate, reducing solar absorbance and storm water). Expected performance of these systems is significantly affected by water and heat regimes that are primarily defined by technology and materials used for system construction, local climate condition, amount of precipitation, the orientation and type of the vegetation cover. The benefits and potencies of anthropogenic soil systems could be considerably threatened in case when exposed to structural changes of thin top soil layer in time. Extensive green roof together with experimental green roof segment was established and advanced automated monitoring system of micrometeorological variables was set-up at the experimental site of University Centre for Energy Efficient Buildings as an interdisciplinary research facility of the Czech Technical University in Prague. The key objectives of the project are (i) to characterize hydraulic and thermal properties of soil substrate studied, (ii) to establish seasonal dynamics of water and heat in selected soil systems from continuous monitoring of relevant variables, (iii) to detect structural changes with the use of X-ray Computed Tomography, (iv) to identify with the help of numerical modeling and acquired datasets how water and heat dynamics in anthropogenic soil systems are affected by soil structural changes. Achievements of the objectives will advance understanding of the anthropogenic soil systems behavior in conurbations with the temperate climate.

  4. Factors Affecting Green Supply Chain Operational Performance of the Thai Auto Parts Industry

    Directory of Open Access Journals (Sweden)

    Korrakot Yaibuathet Tippayawong

    2016-11-01

    Full Text Available In this work, operational performance in the green supply chain management (SCM of the Thai auto parts industry was investigated. A green supply chain performance measurement (GSPM model was developed from the combination of various concepts including an SCM logistics scorecard, a supply chain operations reference model, a balance scorecard, and green supply chain management. The GSPM has been designed for use as a self-evaluation tool focusing on five decisive areas, or factors, and 28 sub-factors. A factor analysis was conducted using the survey results of the GSPM in order to identify significant factors that represent the green supply chain operation performance. Grouped as three major factors, namely green procurement, green transportation, and green manufacturing; reverse logistics and eco-design; and reuse and recycle of manufacturing, their significance and impact on the auto parts industry in Thailand were highlighted. Specifically, the factor of green procurement, green transportation, and green manufacturing, as major factor 1, in relation with the factor of reverse logistics and eco-design, as major factor 2, were found to have a strong positive relationship with the asset turnover ratio.

  5. Sustainable Building in China -- A Green Leap Forward?

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, Richard [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ye, Qing [Shenzhen Inst. of Building Research (China); Feng, Wei [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Yan, Tao [Shenzhen Inst. of Building Research (China); Mao, Hongwei [Shenzhen Inst. of Building Research (China); Li, Yutong [Shenzhen Inst. of Building Research (China); Guo, Yongcong [Shenzhen Inst. of Building Research (China); Wang, Jialiang [Shenzhen Inst. of Building Research (China)

    2013-09-01

    China is constructing new commercial buildings at an enormous rate -- roughly 2 billion square meters per year, with considerable interest and activity in green design and construction. We review the context of commercial building design and construction in China, and look at a specific project as an example of a high performance, sustainable design, the Shenzhen Institute of Building Research (IBR). The IBR building incorporates over 40 sustainable technologies and strategies, including daylighting, natural ventilation, gray-water recycling, solar-energy generation, and highly efficient Heating Ventilation and Air Conditioning (HVAC) systems. We present measured data on the performance of the building, including detailed analysis by energy end use, water use, and occupant comfort and satisfaction. Total building energy consumption in 2011 was 1151 MWh, with an Energy Use Intensity (EUI) of 63 kWh/m2 (20 kBtu/ft2), which is 61% of the mean EUI value of 103 kWh/m2 (33 kBtu/ft2) for similar buildings in the region. We also comment on the unique design process, which incorporated passive strategies throughout the building, and has led to high occupant satisfaction with the natural ventilation, daylighting, and green patio work areas. Lastly we present thoughts on how the design philosophy of the IBR building can be a guide for low-energy design in different climate regions throughout China and elsewhere.

  6. Is 'green finance' actually green? 'Make The Planet Great Again' or 'Green-washing', we must choose. Report on green bonds and climate bonds

    International Nuclear Information System (INIS)

    Combes, Maxime; Plihon, Dominique; Zippert, Jean-Sebastien; Chaussalet, Alexis; Planche, Jeanne; Poulain, Melanie

    2017-12-01

    As Paris dreams of becoming the capital of green finance, the author proposes a discussion of the emerging market of green bonds, and formulates a set of recommendations for this new financial instrument not to be polluted by green-washing operations. He first describes what a green bond is, and then comments what the green bond market represents, discusses development perspectives for this market, comments the Paris dream of becoming the world capital of a green and sustainable finance. He explains why this green bond market appears to be so interesting, and what guarantees that a green bond will finance green projects. He discusses the role of rating agencies, whether the emitter of a green bond must be green, and the impact of green bonds on climate, on the environment and on populations. He discusses the possible evolution towards a constraining regulation, and examines whether this system can be an operational financing source for energy transition. Recommendations concern the market regulation by public authorities, the creation of a new rating agency for green finance, how to make the world bond market climate-compatible, and the creation of other financing channels for actors who have no access to the bond market

  7. Green Roofs for Stormwater Runoff Control - Abstract

    Science.gov (United States)

    This project evaluated green roofs as a stormwater management tool. Specifically, runoff quantity and quality from green and flat asphalt roofs were compared. Evapotranspiration from planted green roofs and evaporation from unplanted media roofs were also compared. The influence...

  8. Installation report : evaluation of recycled hot mix asphaltic concrete on Route 220.

    Science.gov (United States)

    1982-01-01

    This report describes a project in which the bituminous pavement on an approximately 8-mi. (13-km) section of roadway was removed, recycled through a conventional asphalt batch plant, and relaid. The project was accomplished with little difficulty an...

  9. Green Gold

    International Nuclear Information System (INIS)

    Salamandra Martinez, Carlos

    2004-01-01

    The main purpose of this work is to offer a general panoramic of the processes or experiences pilot that are carried out in the Project Green Gold, as strategy of environmental sustainability and organizational invigoration in Choco, especially in the 12 communities of the municipalities of Tado and Condoto. It is also sought to offer a minimum of information on the techniques of handmade production and to show the possibilities to carry out in a rational way the use and use of the natural resources. The Project Green Gold is carried out by the Corporation Green Gold (COV) and co-financed with resources of international and national character, the intervention of the financial resources it achievement mainly for the use of clean processes in the extraction stages and metals benefit. The project is centered primarily in the absence of use of products or toxic substances as the mercury, fair trade, organizational invigoration, execution of 11 approaches and certification of the metals Gold and Platinum. The COV, it has come executing the proposal from the year 2001 with the premise of contributing to the balance between the rational exploitation of the natural resources and the conservation of the environment in the Choco. In the project they are used technical handmade characteristic of the region framed inside the mining activity and production activities are diversified in the productive family units. Those producing with the support of entities of juridical character, specify the necessary game rules for the extraction and products commercialization

  10. KH 2PO4 as a novel catalyst for regioselective monobromination of aralkyl ketones using N-bromosuccinimide: a green methodology

    Directory of Open Access Journals (Sweden)

    P. Md. Khaja Mohinuddin

    2015-08-01

    Full Text Available A simple, regioselective and green method has been developed for the preparation of monobrominated ketones from various aralkyl ketones by using N-bromosuccinimide in presence of KH 2PO 4 in EtOH at reflux temperature. The present method is of short reaction time and simple with excellent isolated yields of products. The use of eco-friendly solvent, reuse of organic waste (succinimide and recyclable catalyst used for 4 times without loss of activity are advantageous. This is the first example of the use of KH 2PO 4 as a useful catalyst in organohalogen chemistry and the present method meets reduce-reuse-recycle (RRR principle towards development of green protocol.

  11. Design of the Advanced Virgo non-degenerate recycling cavities

    International Nuclear Information System (INIS)

    Granata, M; Barsuglia, M; Flaminio, R; Freise, A; Hild, S; Marque, J

    2010-01-01

    Advanced Virgo is the project to upgrade the interferometric gravitational wave detector Virgo, and it foresees the implementation of power and signal non-degenerate recycling cavities. Such cavities suppress the build-up of high order modes of the resonating sidebands, with some advantage for the commissioning of the detector and the build-up of the gravitational signal. Here we present the baseline design of the Advanced Virgo non-degenerate recycling cavities, giving some preliminary results of simulations about the tolerances of this design to astigmatism, mirror figure errors and thermal lensing.

  12. Green pricing: Customer-oriented marketing of the electricity industry

    International Nuclear Information System (INIS)

    Weller, T.

    1998-01-01

    There are at present about 15 established projects launched by energy suppliers in Germany which deserve to be called ''green pricing'' marketing strategies, and about an equal number of further projects at various stages of development which also offer as a ''green'' incentive for customers electricity from renewable energy sources. Worldwide, there are about 50 established green pricing projects, offered primarily in the USA, Switzerland and the Netherlands, and in Germany. The targeted customers of these projects for the time being are exclusively households that cannot easily switch over to other than their local suppliers. It can be expected that with progressive market liberalisation in Great Britain, the USA and, finally, in Germany, competition for this customer group will rapidly increase the number of green pricing marketing projects in these countries. This is why the article here presents a thorough analysis of the specific features of green pricing contracts, their impact on enhanced development and application of the technology for electricity generation from renewables, and a forecast on future developments. (orig./CB) [de

  13. Making green infrastructure healthier infrastructure.

    Science.gov (United States)

    Lõhmus, Mare; Balbus, John

    2015-01-01

    Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens' quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  14. Research on Durability of Big Recycled Aggregate Self-Compacting Concrete Beam

    Science.gov (United States)

    Gao, Shuai; Liu, Xuliang; Li, Jing; Li, Juan; Wang, Chang; Zheng, Jinkai

    2018-03-01

    Deflection and crack width are the most important durability indexes, which play a pivotal role in the popularization and application of the Big Recycled Aggregate Self-Compacting Concrete technology. In this research, comparative study on the Big Recycled Aggregate Self-Compacting Concrete Beam and ordinary concrete beam were conducted by measuring the deflection and crack width index. The results show that both kind of concrete beams have almost equal mid-span deflection value and are slightly different in the maximum crack width. It indicates that the Big Recycled Aggregate Self-Compacting Concrete Beam will be a good substitute for ordinary concrete beam in some less critical structure projects.

  15. Copper Cable Recycling Technology. Innovative Technology Summary Report

    International Nuclear Information System (INIS)

    2001-01-01

    The United States Department of Energy (DOE) continually seeks safer and more cost-effective technologies for use in deactivation and decommissioning (D and D) of nuclear facilities. The Deactivation and Decommissioning Focus Area (DDFA) of the DOE's Office of Science and Technology (OST) sponsors large-scale demonstration and deployment projects (LSDDPs). At these LSDDPs, developers and vendors of improved or innovative technologies showcase products that are potentially beneficial to the DOE's projects and to others in the D and D community. Benefits sought include decreased health and safety risks to personnel and the environment, increased productivity, and decreased costs of operation. The Idaho National Engineering and Environmental Laboratory (INEEL) generated a list of statements defining specific needs and problems where improved technology could be incorporated into ongoing D and D tasks. One such need is to reduce the volume of waste copper wire and cable generated by D and D. Deactivation and decommissioning activities of nuclear facilities generates hundreds of tons of contaminated copper cable, which are sent to radioactive waste disposal sites. The Copper Cable Recycling Technology separates the clean copper from contaminated insulation and dust materials in these cables. The recovered copper can then be reclaimed and, more importantly, landfill disposal volumes can be reduced. The existing baseline technology for disposing radioactively contaminated cables is to package the cables in wooden storage boxes and dispose of the cables in radioactive waste disposal sites. The Copper Cable Recycling Technology is applicable to facility decommissioning projects at many Department of Energy (DOE) nuclear facilities and commercial nuclear power plants undergoing decommissioning activities. The INEEL Copper Cable Recycling Technology Demonstration investigated the effectiveness and efficiency to recycle 13.5 tons of copper cable. To determine the effectiveness

  16. Packaging, Transportation and Recycling of NPP Condenser Modules - 12262

    Energy Technology Data Exchange (ETDEWEB)

    Polley, G.M. [Perma-Fix Environmental Services, 575 Oak Ridge Turnpike, Oak Ridge, TN 37830 (United States)

    2012-07-01

    Perma-Fix was awarded contract from Energy Northwest for the packaging, transportation and disposition of the condenser modules, water boxes and miscellaneous metal, combustibles and water generated during the 2011 condenser replacement outage at the Columbia Generating Station. The work scope was to package the water boxes and condenser modules as they were removed from the facility and transfer them to the Perma-Fix Northwest facility for processing, recycle of metals and disposition. The condenser components were oversized and overweight (the condenser modules weighed ∼102,058 kg [225,000 lb]) which required special equipment for loading and transport. Additional debris waste was packaged in inter-modals and IP-1 boxes for transport. A waste management plan was developed to minimize the generation of virtually any waste requiring landfill disposal. The Perma-Fix Northwest facility was modified to accommodate the ∼15 m [50-ft] long condenser modules and equipment was designed and manufactured to complete the disassembly, decontamination and release survey. The condenser modules are currently undergoing processing for free release to a local metal recycler. Over three millions pounds of metal will be recycled and over 95% of the waste generated during this outage will not require land disposal. There were several elements of this project that needed to be addressed during the preparation for this outage and the subsequent packaging, transportation and processing. - Staffing the project to support 24/7 generation of large components and other wastes. - The design and manufacture of the soft-sided shipping containers for the condenser modules that measured ∼15 m X 4 m X 3 m [50 ft X 13 ft X 10 ft] and weighed ∼102,058 kg [225,000 lbs] - Developing a methodology for loading the modules into the shipping containers. - Obtaining a transport vehicle for the modules. - Designing and modifying the processing facility. - Movement of the modules at the processing

  17. Evaluation of Green Dot's Locke Transformation Project: Findings for Cohort 1 and 2 Students. CRESST Report 815

    Science.gov (United States)

    Herman, Joan L.; Wang, Jia; Rickles, Jordan; Hsu, Vivian; Monroe, Scott; Leon, Seth; Straubhaar, Rolf

    2012-01-01

    With funding from the Bill and Melinda Gates Foundation, CRESST conducted a multi-year evaluation of a major school reform project at Alain Leroy Locke High School, historically one of California's lowest performing secondary schools. Beginning in 2007, Locke High School transitioned into a set of smaller, Green Dot Charter High Schools,…

  18. http://dx.doi.org/10.4314/jae.v18i1.4 Adoption of Green River Project ...

    African Journals Online (AJOL)

    PROF. MADUKWE

    Adoption of Green River Project Fish Farming Technologies by Farmers in Niger. Delta Region of ... Majority of the respondents adopted fish farm management ... is a decision of full use of an innovation as the best course of action available. ... It is also important to develop sustainable financing option, use well trained and.

  19. Economising subsidies for green housing features: A stated preference approach

    Directory of Open Access Journals (Sweden)

    Yung Yau

    2014-12-01

    Full Text Available In light of the enormous amounts of energy and resources consumed by housing development and operations, many governments have started recognising the urgent need to promote green or eco-friendly housing with the aim of achieving sustainable development. Apart from regulations, governments can offer incentives to developers to provide green features in their developments by offering subsidies in various forms. However, such subsidisation is often uneconomical. In theory, market forces can lead to green housing provision without any government intervention if the market players are willing to pay extra for the green features of housing. Against this background, this article presents the findings of a study that compared potential homebuyers’ willingness to pay (WTP for various green housing features based on findings from a structured questionnaire survey in Macau. The housing attributes under investigation included uses of green materials (e.g., sustainable forest products and construction methods (e.g., prefabrication, energy-efficient technologies (e.g., LED lighting and water-saving devices (e.g., grey-water recycling systems. Results indicate that the respondents’ WTP was mainly motivated by economic incentives. Green housing attributes that can offer direct financial benefits corresponded to greater WTP. The policy implications of the research findings then follow.

  20. Identifying challenges in project consultants engagement practices

    Science.gov (United States)

    Shariffuddin, Nadia Alina Amir; Abidin, Nazirah Zainul

    2017-10-01

    Construction projects, green or conventional, involve multi-faceted disciplines engaged with the goal of delivering products i.e. building, infrastructure etc. at the best quality within stipulated budgets. For green projects, additional attention is added for environmental quality. Due to the various responsibilities and liabilities involved as well as the complexity of the construction process itself, formal engagement of multi-disciplinary professionals i.e. project consultants is required in any construction project. Poor selection of project consultants will lead to a multitude of complications resulting in delay, cost escalation, conflicts and poor quality. This paper explores the challenges that occur during the engagement of project consultants in a green project. As the engagement decision involves developers and architects, these two groups of respondents with green project backgrounds were approached qualitatively using interview technique. The challenges identified are limited experience and knowledge, consultants' fee vs. quality, green complexity, conflicts of interest, clients' extended expectation and less demand in green projects. The construction shifts to green project demands engagement of project consultants with added skills. It is expected that through the identification of challenges, better management and administration can be created which would give impact to the overall process of engagement in green projects.

  1. Green Applications for Space Power Project

    Science.gov (United States)

    Robinson, Joel (Principal Investigator)

    2014-01-01

    Spacecraft propulsion and power for many decades has relied on Hydrazine monopropellant technology for auxiliary power units (APU), orbital circularization, orbit raising/lowering and attitude control. However, Hydrazine is toxic and therefore requires special ground handling procedures to ensure launch crew safety. The Swedish Company ECAPS has developed a technology based upon the propellant Ammonium Dinitramide (ADN) that offers higher performance, higher density and reduced ground handling support than Hydrazine. This blended propellant is called LMP-103S. Currently, the United States Air Force (USAF) is pursuing a technology based on Hydroxyl Ammonium Nitrate (HAN, otherwise known as AF-M315E) with industry partners Aerojet and Moog. Based on the advantages offered by these propellants, MSFC should explore powering APU's with these propellants. Due to the availability of space hardware, the principal investigator has found a collection of USAF hardware, that will act as a surrogate, which operates on a Hydrazine derivative. The F-16 fighter jet uses H-70 or 30% diluted Hydrazine for an Emergency Power Unit (EPU) which supplies power to the plane. The PI has acquired two EPU's from planes slated for destruction at the Davis Monthan AFB. This CIF will include a partnership with 2 other NASA Centers who are individually seeking seed funds from their respective organizations: Kennedy Space Center (KSC) and Dryden Flight Research Center (DFRC). KSC is preparing for future flights from their launch pads that will utilize green propellants and desire a low-cost testbed in which to test and calibrate new leak detection sensors. DFRC has access to F-16's which can be used by MSFC & KSC to perform a ground test that demonstrates emergency power supplied to the jet. Neither of the green propellant alternatives have been considered nor evaluated for an APU application. Work has already been accomplished to characterize and obtain the properties of these 2 propellants

  2. The Green Experiment: Cities, Green Stormwater Infrastructure, and Sustainability

    Directory of Open Access Journals (Sweden)

    Christopher M. Chini

    2017-01-01

    Full Text Available Green infrastructure is a unique combination of economic, social, and environmental goals and benefits that requires an adaptable framework for planning, implementing, and evaluating. In this study, we propose an experimental framework for policy, implementation, and subsequent evaluation of green stormwater infrastructure within the context of sociotechnical systems and urban experimentation. Sociotechnical systems describe the interaction of complex systems with quantitative and qualitative impacts. Urban experimentation—traditionally referencing climate change programs and their impacts—is a process of evaluating city programs as if in a laboratory setting with hypotheses and evaluated results. We combine these two concepts into a singular framework creating a policy feedback cycle (PFC for green infrastructure to evaluate municipal green infrastructure plans as an experimental process within the context of a sociotechnical system. After proposing and discussing the PFC, we utilize the tool to research and evaluate the green infrastructure programs of 27 municipalities across the United States. Results indicate that green infrastructure plans should incorporate community involvement and communication, evaluation based on project motivation, and an iterative process for knowledge production. We suggest knowledge brokers as a key resource in connecting the evaluation stage of the feedback cycle to the policy phase. We identify three important needs for green infrastructure experimentation: (i a fluid definition of green infrastructure in policy; (ii maintenance and evaluation components of a green infrastructure plan; and (iii communication of the plan to the community.

  3. Fuel recycling and 4. generation reactors

    International Nuclear Information System (INIS)

    Devezeaux de Lavergne, J.G.; Gauche, F.; Mathonniere, G.

    2012-01-01

    The 4. generation reactors meet the demand for sustainability of nuclear power through the saving of the natural resources, the minimization of the volume of wastes, a high safety standard and a high reliability. In the framework of the GIF (Generation 4. International Forum) France has decided to study the sodium-cooled fast reactor. Fast reactors have the capacity to recycle plutonium efficiently and to burn actinides. The long history of reprocessing-recycling of spent fuels in France is an asset. A prototype reactor named ASTRID could be entered into operation in 2020. This article presents the research program on the sodium-cooled fast reactor, gives the status of the ASTRID project and present the scenario of the progressive implementation of 4. generation reactors in the French reactor fleet. (A.C.)

  4. Green roof and storm water management policies: monitoring experiments on the ENPC Blue Green Wave

    Science.gov (United States)

    Versini, Pierre-Antoine; Gires, Auguste; Fitton, George; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2015-04-01

    Currently widespread in new urban projects, green roofs have shown a positive impact on urban runoff at the building/parcel scale. Nevertheless, there is no specific policy promoting their implementation neither in Europe nor in France. Moreover they are not taken into account (and usually considered as an impervious area) in the sizing of a retention basin for instance. An interesting example is located in the heart of the Paris-East Cluster for Science and Technology (Champs-sur-Marne, France). Since 2013 a large (1 ha) wavy-form vegetated roof (called bleu green wave) is implemented. Green roof area and impervious areas are connected to a large retention basin, which has been oversized. The blue green wave represents a pioneering site where an initially amenity (decorative) design project has been transformed into a research oriented one. Several measurement campaigns have been conducted to investigate and better understand the hydrological behaviour of such a structure. Rainfall, humidity, wind velocity, water content and temperature have been particularly studied. The data collected are used for several purposes: (i) characterize the spatio-temporal variability of the green roof response, (ii) calibrate and validate a specific model simulating its hydrological behavior. Based on monitoring and modeling results, green roof performances will be quantified. It will be possible to estimate how they can reduce stormwater runoff and how these performances can vary in space and in time depending on green roof configuration, rainfall event characteristics and antecedent conditions. These quantified impacts will be related to regulation rules established by stormwater managers in order to connect the parcel to the sewer network. In the particular case of the building of a retention basin, the integration of green roof in the sizing of the basin will be studied. This work is funded by the European Blue Green Dream project (http://bgd.org.uk/, funded by Climate

  5. Utilising Fine and Coarse Recycled Aggregates from the Gulf Region in Concrete

    Science.gov (United States)

    Jones, M. Rod; Halliday, Judith E.; Csetenyi, Laszlo; Zheng, Li; Strompinis, N.

    This paper explores the feasibility in utilising materials generated from C&DW to produce a `green' concrete. The two materials that are considered here are, (i) up-sizing silt-size material generated from recycled aggregates to produce a synthetic silt-sand and (ii) processed recycled coarse aggregates (RA) sourced from a Gulf Region landfill site. The work has demonstrated that there is potential for utilising silt wastes into foamed concrete, which can then be crushed to a sand-sized material suitable for use in concrete, however the porous nature of the material has highlighted that the water demand of this RA is high. RAs were characterised to BS EN 12620 and found suitable for use in concrete. The effect of RA on concrete properties is minimal when used up to 35% replacement levels, provided that they are pre-soaked.

  6. Recycling of polyurethanes from laboratory to industry, a journey towards the sustainability.

    Science.gov (United States)

    Simón, D; Borreguero, A M; de Lucas, A; Rodríguez, J F

    2018-06-01

    The recycling of any kind of plastic to convert it in valuable products is one of the main challenges of today's society. Besides, if the recycling process is itself green, then it would be a great achievement. This paper reviews the way covered from the first attempts of reusing the polyurethane (PU) scraps as a filler for cushions to the last chemical routes employing green recycling agents. Polyurethane is the 6th most used polymer all over the world with a production of 18 millions tons per year, which means a daily production of PU specialties greater than 1 million of cubic meters, equivalent to the volume of the Empire State Building. The thermostable nature of the majority of the polyurethanes specialties has made that the preferred solution for their recycling are the chemical recycling processes. Among them, glycolysis is the one that receives a greater attention from an industrial point of view, so this review puts the spotlight on it. However, the existing reviews in literature do not paid a special attention on glycolysis and only give a superficial description of the process. Nevertheless, in the present review, the scientific literature relative to glycolysis is completely reviewed, updated and ordered according the type of PU specialty recycled. Additionally, the other main chemical recycling processes are also revisited in a more extended and deeper way than in the previous approaches to this topic. Moreover, it is crucial to take into account that some of these technologies, which were described in the literature as promising technologies at laboratory scale are now commercial processes running at industrial scale. For that reason, it is essential to remark that the present review comprises not only a detailed state of art of the scientific literature on the subject, also includes a detailed revision of the past and running on pilot plants and industrial facilities, including several patents, which has never been covered in the current literature

  7. Green Building Research Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Sailor, David Jean [Portland State Univ., Portland, OR (United States)

    2013-12-29

    This project provided support to the Green Building Research Laboratory at Portland State University (PSU) so it could work with researchers and industry to solve technical problems for the benefit of the green building industry. It also helped to facilitate the development of PSU’s undergraduate and graduate-level training in building science across the curriculum.

  8. Making green infrastructure healthier infrastructure

    Directory of Open Access Journals (Sweden)

    Mare Lõhmus

    2015-11-01

    Full Text Available Increasing urban green and blue structure is often pointed out to be critical for sustainable development and climate change adaptation, which has led to the rapid expansion of greening activities in cities throughout the world. This process is likely to have a direct impact on the citizens’ quality of life and public health. However, alongside numerous benefits, green and blue infrastructure also has the potential to create unexpected, undesirable, side-effects for health. This paper considers several potential harmful public health effects that might result from increased urban biodiversity, urban bodies of water, and urban tree cover projects. It does so with the intent of improving awareness and motivating preventive measures when designing and initiating such projects. Although biodiversity has been found to be associated with physiological benefits for humans in several studies, efforts to increase the biodiversity of urban environments may also promote the introduction and survival of vector or host organisms for infectious pathogens with resulting spread of a variety of diseases. In addition, more green connectivity in urban areas may potentiate the role of rats and ticks in the spread of infectious diseases. Bodies of water and wetlands play a crucial role in the urban climate adaptation and mitigation process. However, they also provide habitats for mosquitoes and toxic algal blooms. Finally, increasing urban green space may also adversely affect citizens allergic to pollen. Increased awareness of the potential hazards of urban green and blue infrastructure should not be a reason to stop or scale back projects. Instead, incorporating public health awareness and interventions into urban planning at the earliest stages can help insure that green and blue infrastructure achieves full potential for health promotion.

  9. Implementing Green Walls in Schools.

    Science.gov (United States)

    McCullough, Michael B; Martin, Michael D; Sajady, Mollika A

    2018-01-01

    Numerous studies in applied pedagogical design have shown that, at all educational levels, direct exposure to the natural environment can enhance learning by improving student attention and behaviors. Implementing green walls-a "vertical garden," or "living wall" interior wall that typically includes greenery, a growing medium (soil or substrate) and a water delivery system-provides environmental health benefits, but also provides a practical application within classrooms for minimizing directed attention fatigue in students by connecting them to "outdoor nature" within the indoor environment. Hands-on "project-based" learning is another pedagogical strategy that has proved to be effective across the spectrum of educational levels and across subject areas. Green walls have the potential to inspire critical thinking through a combination of project-based learning strategies and environmental education. The authors have outlined a curriculum involving the implementation of an indoor living wall system within a classroom-learning environment, incorporating project-based learning modules that interact with the wall. In conjunction with the passive health benefits of a green wall, project-based curriculum models can connect students interactively with indoor nature and have the potential to inspire real-world thinking related to science, technology, engineering, art, and mathematics fields within the indoor learning environment. Through a combination of these passive and interactive modes, students are connected to nature in the indoor environment regardless of weather conditions outdoors. Future research direction could include post-construction studies of the effectiveness of project-based curricula related to living walls, and the long-term impacts of implementing green walls in classrooms on school achievement and student behaviors.

  10. Labelling it green

    Energy Technology Data Exchange (ETDEWEB)

    Evans, S.; Brocklehurst, F. [ETSU, Didcot (United Kingdom)

    1998-12-31

    The first two rounds of contracts awarded through the NFFO will expire in December 1998. These generators will then be looking for new contracts to supply renewable electricity. Since these projects were initiated the renewable energy market has grown steadily, but it is still mainly restricted to the protected market within NFFO. Consumer interest has grown steadily too, fuelled by the emergence of green energy supply companies. Market research has indicated that consumers would like the choice of green electricity, what remains unclear is if they would exercise this choice and to what extent they might pay a premium price for the privilege. From September 1998 the phased introduction of domestic sector franchise de-regulation commences. In principle, consumers can purchase their electricity from any supplier. This provides a golden opportunity for green generation. To make the most of this opportunity generators and suppliers will need to clearly explain to the public what their product is, how it is different and how everyone benefits from its use. A major marketing issue will be to provide assurance to the general public, that for example, they can indeed purchase energy from a windfarm in Wales, despite living in areas other than Wales. The DTI is assisting the expansion of the green market into the domestic sector via funding a project which plans to deliver an accreditation scheme in September 1998. This will provide a means of verifying the green claims of generators/supply companies. (Author)

  11. Don't Throw It Away!: Raise Recycling Awareness through Communications Project

    Science.gov (United States)

    Lazaros, Edward J.; Shackelford, Ray

    2008-01-01

    Americans discard a huge amount of material everyday. The activity described in this article--determining how much waste is thrown out or recycled in the school cafeteria over a five-day period--dramatically increases students' awareness of this fact of contemporary life. Armed with the information they've gathered, students go on to the…

  12. EIA and green procurement: Opportunities for strengthening their coordination

    International Nuclear Information System (INIS)

    Uttam, Kedar; Faith-Ell, Charlotta; Balfors, Berit

    2012-01-01

    EIA plays an important role in enhancing the environmental performance of the construction sector. In recent years, the construction sector has been developing green procurement practices. Green procurement is a process that involves the incorporation of environmental requirements during the procurement of services and products. However, discussion on green procurement is rarely seen during the EIA phase. This paper addresses possible opportunities for improving the coordination between EIA and green procurement within the construction sector. The linking of EIA and green procurement has been postulated in the paper as an aid to strengthen the coordination between project planning and implementation. The paper is based on a literature review and is an outcome of an on-going research project concerning EIA and green procurement. This study indicated that it would be appropriate to introduce green procurement during the pre-decision phase of an EIA. In the present study, the opportunities for integrating green procurement at the stage of EIA are associated with the integration of project planning and EIA. Future research should investigate the mechanism through which the link can be established. - Highlights: ► This paper identifies opportunities to link EIA and green procurement. ► Pre-decision phase of EIA could be appropriate for planning green procurement. ► Future research should investigate the mechanism for establishing the link.

  13. EIA and green procurement: Opportunities for strengthening their coordination

    Energy Technology Data Exchange (ETDEWEB)

    Uttam, Kedar, E-mail: kedar@kth.se [Department of Land and Water Resources Engineering, Royal Institute of Technology, Stockholm (Sweden); Faith-Ell, Charlotta, E-mail: charlotta.faith-ell@WSPGroup.se [WSP Sweden (Sweden); Balfors, Berit, E-mail: balfors@kth.se [Department of Land and Water Resources Engineering, Royal Institute of Technology, Stockholm (Sweden)

    2012-02-15

    EIA plays an important role in enhancing the environmental performance of the construction sector. In recent years, the construction sector has been developing green procurement practices. Green procurement is a process that involves the incorporation of environmental requirements during the procurement of services and products. However, discussion on green procurement is rarely seen during the EIA phase. This paper addresses possible opportunities for improving the coordination between EIA and green procurement within the construction sector. The linking of EIA and green procurement has been postulated in the paper as an aid to strengthen the coordination between project planning and implementation. The paper is based on a literature review and is an outcome of an on-going research project concerning EIA and green procurement. This study indicated that it would be appropriate to introduce green procurement during the pre-decision phase of an EIA. In the present study, the opportunities for integrating green procurement at the stage of EIA are associated with the integration of project planning and EIA. Future research should investigate the mechanism through which the link can be established. - Highlights: Black-Right-Pointing-Pointer This paper identifies opportunities to link EIA and green procurement. Black-Right-Pointing-Pointer Pre-decision phase of EIA could be appropriate for planning green procurement. Black-Right-Pointing-Pointer Future research should investigate the mechanism for establishing the link.

  14. Rethink, Rework, Recycle.

    Science.gov (United States)

    Wrhen, Linda; DiSpezio, Michael A.

    1991-01-01

    Information about the recycling and reuse of plastics, aluminum, steel, glass, and newspapers is presented. The phases of recycling are described. An activity that allows students to separate recyclable materials is included. The objectives, a list of needed materials, and procedure are provided. (KR)

  15. Recycling at Penn State's Beaver Stadium. "Recycle on the Go" Success Story

    Science.gov (United States)

    US Environmental Protection Agency, 2009

    2009-01-01

    With a 13-year-old recycling program, The Pennsylvania State University's (Penn State) Beaver Stadium in the past diverted nearly 30 tons of recyclables per year from local landfills. A new initiative to promote recycling in the stadium's tailgating area has helped Penn State more than triple its old recycling record, collecting 112 tons in 2008.…

  16. Towards green construction

    International Nuclear Information System (INIS)

    Bajracharya, Bijaya B.; Shrestha, Prasanna M.

    2000-01-01

    Sustainability is the key to any development works. In the operation phase, hydro power is the most sustainable form of energy. However construction activities for the same power station are usually far from being green. The popular myth is that construction activity converts green into grey. Despite this popular myth, construction of a hydro power project in Nepal has made the project area greener than earlier during the construction phase itself. Choice of construction technology, appropriate level of environmental impact assessment, monitoring of environmental parameters along side the construction progress followed by mitigation at the right time; launching community development programmes side by side, having environmental specification in contractual documents and self-reliance to fulfill environmental obligations by contractors itself are the key factors in the environmental management within the construction activities. The main conclusions in the paper is the need to change the way to think about the project constraints

  17. Recycling of electronic scrap

    DEFF Research Database (Denmark)

    Legarth, Jens Brøbech

    This Ph.D. thesis deals with the growingly important field of electronics recycling with special attention to the problem of printed circuit board recycling. A literature survey of contemporary electronics recycling and printed circuit board recycling is presented.Further, an analysis of the role...

  18. 绿色建筑项目融资风险分担机制研究%The Study of Green Building Project Financing Risk Distribution

    Institute of Scientific and Technical Information of China (English)

    马晓国; 熊向阳; 曲昳; 张福生

    2014-01-01

    绿色建筑项目融资的风险合理分担是项目融资的实现有限追索的内在要求,有助于激发绿色建筑各个参与方的积极性促使绿色建筑项目融资的成功。并对确保资金安全,促进绿色建筑健康发展起重要作用。从绿色建筑项目融资的特点出发,分析其项目融资的风险类别和利益相关者,探讨如何将绿色建筑项目融资的风险分配给最适合承担该风险的参与方的项目融资风险分担机制及最优分配原则。根据绿色建筑项目融资的风险度量与数据灰的特性,利用灰色系统分析法,建立灰色线性模型,利用GM(1,1)时间相应式得到该项目风险分配的预测值,可按灰色0-1规划求解。用于绿色建筑各参与方的项目融资风险分配更能反映实际情况。按照最优分配风险原则,为各类风险确定最优承担者。%The realization sharing risk of green building project financing is the inherent requirement of limited recourse, helps to stimulate the enthusiasm of the participants to green building green building project financing success. To ensure the safety of fund, promote green architecture plays an important role in the healthy development. From the characteristics of project financing, analysis of project financing risk categories and stakeholders , discusses the risk allocation. How to allocation risk of green building project financing to give the best fit to bear the risks of participating parties sharing mechanism and the optimal principles of project financing. According to the measurement and data gray characteristics of green building project financing risk. Using the method of gray system, to establish the gray linear model, using GM(1,1) time corresponding type predicted the risk al-location value, according to gray 0-1 programming. For the project financing risk allocation of green building better reflect the actual situation. Accordance to the optimal allocation

  19. Multi-stage IT project evaluation: The flexibility value obtained by implementing and resolving Berk, Green and Naik (2004) model

    Science.gov (United States)

    Abid, Fathi; Guermazi, Dorra

    2009-11-01

    In this paper, we evaluate a multi-stage information technology investment project, by implementing and resolving Berk, Green and Naik's (2004) model, which takes into account specific features of IT projects and considers the real option to suspend investment at each stage. We present a particular case of the model where the project value is the solution of an optimal control problem with a single state variable. In this case, the model is more intuitive and tractable. The case study confirms the practical potential of the model and highlights the importance of the real-option approach compared to classical discounted cash flow techniques in the valuation of IT projects.

  20. Design jeans for recycling: a supply chain case study in The Netherlands

    NARCIS (Netherlands)

    van Bommel, H.W.M.; van Bommel, Harrie; Goorhuis, Maarten

    2014-01-01

    Because the insight is raising that waste prevention needs an integral product chain approach, a product chain project was awarded with an International Solid Waste Association grant. The project decided to focus on jeans because of the large environmental impacts of cotton and the low recycling

  1. Highly recyclable and ultra-rapid catalytic reduction of organic pollutants on Ag-Cu@ZnO bimetal nanocomposite synthesized via green technology

    Science.gov (United States)

    Gangarapu, Manjari; Sarangapany, Saran; Suja, Devipriya P.; Arava, Vijaya Bhaskara Rao

    2018-04-01

    In this study, synthesis of Ag-Cu alloy bimetal nanoparticles anchored on high surface and porous ZnO using a facile, greener and low-cost aqeous bark extract of Aglaia roxburghiana for highly active, ultra-rapid and stable catalyst is performed. The nanocomposite was scrupulously characterized using UV-Vis spectrophotometer, X-ray diffraction, Raman spectrophotometer, high-resolution transmission electron microscope, selected area (electron) diffraction, scanning electron microscope with energy dispersive X-ray spectroscopy, and Fourier-transform infrared spectroscopy. The catalytic activity of the green synthesized Ag-Cu bimetal nanocomposite was evaluated in the reduction of 4-nitrophenol (4-NP), methylene blue (MB) and rhodamine B (Rh B) dyes. The different types of dye exhibited very high and effective catalytic activity within few seconds. The theoretical investigations reveal that the unique synergistic effect of Ag-Cu nanoparticles and immobilization over ZnO assists in the reduction of 4-NP, MB and Rh B. Loading and leaching of metal nanoparticles were obtained using inductively coupled plasma atomic emission spectroscopy. Moreover, the stable and efficient recyclability of nanocomposite by centrifugation after completion of the reaction was demonstrated. The results lead to the design different possible bimetal on ZnO with boosting and an effective catalyst for the environmental applications.

  2. Replacement of reserves zinc based on the recycling of technogenic raw materials

    Directory of Open Access Journals (Sweden)

    Olga Sergeevna Bryantseva

    2013-06-01

    Full Text Available In the article, the perspective trends of the expansion of the mineral-ore base of the Russian producers of zinc by recycling of technogenic raw materials are considered. The important role of recycling of resources for sustainable development of society and improve the environmental safety is justified. The main structural and dynamic characteristics of the use of mineral resource base for the production of zinc in Russia are considered. Raw materials opportunities and constraints for the development of zinc production are analyzed. In the paper, the structure and dynamics of the use of recycled materials by the largest producer of zinc in Russia are investigated. The methodical approach to the estimation of effectiveness of the industrial processing of technogenic metallurgical raw materials with the strategic flexibility of the implementation of projects is proposed and approved. The estimation of the effectiveness of a complex industrial processing of metallurgical zinc-containing dusts in a real production is carried out. The value of the strategic flexibility of the project of the industrial processing of the zinc-containing technogenic raw material is determined on the basis of the developed systematic approach. The value of the processes of recycling for sustainable production of zinc in Russia is revealed.

  3. Green transportation logistics: the quest for win-win solutions

    DEFF Research Database (Denmark)

    measures and speed and route optimization; Sulphur emissions; Lifecycle emissions; Green rail transportation; Green air transportation; Green inland navigation and possible areas for further research. Throughout, the book pursues the goal of “win-win” solutions and analyzes the phenomenon of “push......This book examines the state of the art in green transportation logistics from the perspective of balancing environmental performance in the transportation supply chain while also satisfying traditional economic performance criteria. Part of the book is drawn from the recently completed European...... Union project Super Green, a three-year project intended to promote the development of European freight corridors in an environmentally friendly manner. Additional chapters cover both the methodological base and the application context of green transportation logistics. Individual chapters look...

  4. Environmental and functional benefits and trade-offs of hot in-place recycling treatment techniques : final project report.

    Science.gov (United States)

    2016-12-01

    Surface recycling is suitable for pavements with minor cracks limited to 25-50 mm in depth. Hot-in-place recycling (HIR) process includes drying and heating the upper layers, scarifying the soft asphalt, mixing the scarified material with a rejuvenat...

  5. Recycling of actinides and nuclear waste products. Annual report of the research programme 1997

    International Nuclear Information System (INIS)

    Konings, R.J.M.; Bakker, K.; Boerrigter, H.; Damen, P.G.M.; Gruppelaar, H.; Huntelaar, M.E.; Kloosterman, J.L.

    1998-07-01

    The research program on the title subject started in 1994 and is planned to be completed in 1998. In this period several technical and scientific aspects of recycling and transmutation are investigated in different projects. The results of the 1997 projects, carried out in the period July 1997 to June 1998, are summarized and described in this report. The 1997 projects concern (1) transmutation of actinides in inert matrices with the aim to design, test and characterize uranium-free fission materials for the transmutation of actinides, both for single as for multiple recycling strategies; (2) scenario studies for plutonium recycling with the aim to gain insight into the possibilities to reduce plutonium reserves by using plutonium as a fissionable material in reactors; (3) transmutation by means of accelerator-driven systems with the aim to analyze the options for the burning of plutonium in accelerator-driven, thorium-based systems; and (4) separation of actinides and lanthanides by means of Supported Liquid Membranes with the aim to study the possibility to extract americium from nuclear waste materials. refs

  6. Compositional data analysis of household waste recycling centres in Denmark

    DEFF Research Database (Denmark)

    Edjabou, Maklawe Essonanawe; Martín-Fernández, J. A.; Boldrin, Alessio

    of these projects on the recycling rates does not exist. Thus, compositional data analysis technique was applied to analyze consistently waste data. Based on the waste composition obtained from a recycling center in Denmark, we analyzed the composition of waste treatment and disposal options. Zero and non......-zero pattern was used to describe historical changes in the definition and components of waste fractions. Variation array was applied to determine the relationship between waste treatment and disposal options. As a result, compositional data analysis technique enables to analyze waste data regardless...

  7. Energy conservation and recycling of wall and concrete may give large environmental profits in the construction industry. Environment taken seriously

    International Nuclear Information System (INIS)

    Nestvold, Veslemoey

    2000-01-01

    The article reviews some results from the 5 year project ''Oekobygg'', started in 1998, which studies energy conservation and recycling of wall and concrete in the construction industry. Reduction of the waste amounts, industrial recycling and ''smart housing'' are discussed. Recycling will result in the largest environmental benefits

  8. Recycling production designs: the value of coordination and flexibility in aluminum recycling operations

    Science.gov (United States)

    Brommer, Tracey H.

    The growing motivation for aluminum recycling has prompted interest in recycling alternative and more challenging secondary materials. The nature of these alternative secondary materials necessitates the development of an intermediate recycling facility that can reprocess the secondary materials into a liquid product Two downstream aluminum remelters will incorporate the liquid products into their aluminum alloy production schedules. Energy and environmental benefits result from delivering the products as liquid but coordination challenges persist because of the energy cost to maintain the liquid. Further coordination challenges result from the necessity to establish a long term recycling production plan in the presence of long term downstream aluminum remelter production uncertainty and inherent variation in the daily order schedule of the downstream aluminum remelters. In this context a fundamental question arises, considering the metallurgical complexities of dross reprocessing, what is the value of operating a coordinated set of by-product reprocessing plants and remelting cast houses? A methodology is presented to calculate the optimal recycling center production parameters including 1) the number of recycled products, 2) the volume of recycled products, 3) allocation of recycled materials across recycled products, 4) allocation of recycled products across finished alloys, 4) the level of flexibility for the recycling center to operate. The methods implemented include, 1) an optimization model to describe the long term operations of the recycling center, 2) an uncertainty simulation tool, 3) a simulation optimization method, 4) a dynamic simulation tool with four embedded daily production optimization models of varying degrees of flexibility. This methodology is used to quantify the performance of several recycling center production designs of varying levels of coordination and flexibility. This analysis allowed the identification of the optimal recycling

  9. Concrete produced with recycled aggregates

    Directory of Open Access Journals (Sweden)

    J. J. L. Tenório

    Full Text Available This paper presents the analysis of the mechanical and durable properties of recycled aggregate concrete (RAC for using in concrete. The porosity of recycled coarse aggregates is known to influence the fresh and hardened concrete properties and these properties are related to the specific mass of the recycled coarse aggregates, which directly influences the mechanical properties of the concrete. The recycled aggregates were obtained from construction and demolition wastes (CDW, which were divided into recycled sand (fine and coarse aggregates. Besides this, a recycled coarse aggregate of a specific mass with a greater density was obtained by mixing the recycled aggregates of the CDW with the recycled aggregates of concrete wastes (CW. The concrete was produced in laboratory by combining three water-cement ratios, the ratios were used in agreement with NBR 6118 for structural concretes, with each recycled coarse aggregates and recycled sand or river sand, and the reference concrete was produced with natural aggregates. It was observed that recycled aggregates can be used in concrete with properties for structural concrete. In general, the use of recycled coarse aggregate in combination with recycled sand did not provide good results; but when the less porous was used, or the recycled coarse aggregate of a specific mass with a greater density, the properties of the concrete showed better results. Some RAC reached bigger strengths than the reference concrete.

  10. In situ fabrication of green reduced graphene-based biocompatible anode for efficient energy recycle.

    Science.gov (United States)

    Cheng, Ying; Mallavarapu, Megharaj; Naidu, Ravi; Chen, Zuliang

    2018-02-01

    Improving the anode configuration to enhance biocompatibility and accelerate electron shuttling is critical for efficient energy recovery in microbial fuel cells (MFCs). In this paper, green reduced graphene nanocomposite was successfully coated using layer-by-layer assembly technique onto carbon brush anode. The modified anode achieved a 3.2-fold higher power density of 33.7 W m -3 at a current density of 69.4 A m -3 with a 75% shorter start period. As revealed in the characterization, the green synthesized nanocomposite film affords larger surface roughness for microbial colonization. Besides, gold nanoparticles, which anchored on graphene sheets, promise the relatively high electroactive sites and facilitate electron transfer from electricigens to the anode. The reduction-oxidation peaks in cyclic voltammograms indicated the mechanism of surface cytochromes facilitated current generation while the electrochemical impedance spectroscopy confirmed the enhanced electron transfer from surface cytochrome to electrode. The green synthesis process has the potential to generate a high performing anode in further applications of MFCs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. EPA’s Summary Report of the Collaborative Green Infrastructure Pilot Project for the Middle Blue River in Kansas City, MO

    Science.gov (United States)

    The United States Environmental Protection Agency evaluated the performance of a hybrid green-gray infrastructure pilot project installed into the Marlborough Neighborhood by the Kansas City Water Services Department. Kansas City installed 135 vegetated SCMs, 24,290 square feet o...

  12. Implementing Green Walls in Schools

    Directory of Open Access Journals (Sweden)

    Michael B. McCullough

    2018-06-01

    Full Text Available Numerous studies in applied pedagogical design have shown that, at all educational levels, direct exposure to the natural environment can enhance learning by improving student attention and behaviors. Implementing green walls—a “vertical garden,” or “living wall” interior wall that typically includes greenery, a growing medium (soil or substrate and a water delivery system—provides environmental health benefits, but also provides a practical application within classrooms for minimizing directed attention fatigue in students by connecting them to “outdoor nature” within the indoor environment. Hands-on “project-based” learning is another pedagogical strategy that has proved to be effective across the spectrum of educational levels and across subject areas. Green walls have the potential to inspire critical thinking through a combination of project-based learning strategies and environmental education. The authors have outlined a curriculum involving the implementation of an indoor living wall system within a classroom-learning environment, incorporating project-based learning modules that interact with the wall. In conjunction with the passive health benefits of a green wall, project-based curriculum models can connect students interactively with indoor nature and have the potential to inspire real-world thinking related to science, technology, engineering, art, and mathematics fields within the indoor learning environment. Through a combination of these passive and interactive modes, students are connected to nature in the indoor environment regardless of weather conditions outdoors. Future research direction could include post-construction studies of the effectiveness of project-based curricula related to living walls, and the long-term impacts of implementing green walls in classrooms on school achievement and student behaviors.

  13. Material properties of frc with recycled aggregate

    Czech Academy of Sciences Publication Activity Database

    Trčková, Jiřina; Procházka, P.

    2011-01-01

    Roč. 8, č. 2 (2011), s. 105-113 ISSN 1214-9705 R&D Projects: GA ČR GA103/08/1197 Institutional research plan: CEZ:AV0Z30460519 Keywords : recycled aggregate * concrete composite * pullout test Subject RIV: JM - Building Engineering Impact factor: 0.530, year: 2011 http://www.irsm.cas.cz/abstracts/AGG/02_11/1_Trckova.pdf

  14. Green synthesis of tetrahydrobenzo[b]Pyrans by microwave assisted multi-component one-pot reactions in PEG-400.

    Science.gov (United States)

    Feng, Chun; Wang, Qiuyan; Lu, Cuifen; Yang, Guichun; Chen, Zuxing

    2012-01-01

    Polyethylene glycol is found to be a nontoxic and recyclable reaction medium for the microwave-assisted, multi-component one-pot reactions of aromatic aldehydes with ethyl-2-cyanoacetate and 1,3-cyclohexanedione or 5,5- dimethyl-1,3-cyclohexanedione in the presence of piperidine. This environmentally friendly microwave protocol offers ease of operation and enables recyclability of reaction medium and synthesis of a variety of substituted tetrahydrobenzo[b]pyran derivatives. It is an efficient, promising, and green synthetic strategy to construct tetrahydrobenzo[b]pyran skeleton.

  15. The EVNATURB project: toward an operational platform to assess Blue Green Solutions eco-systemic services in urban environment

    Science.gov (United States)

    Schertzer, D. J. M.; Versini, P. A.; Tchiguirinskaia, I.

    2017-12-01

    Urban areas are facing an expected increase in intensity and frequency of extreme weather events due to climate change. Combined with unsustainable urbanization, this should exacerbate the environmental consequences related to the water cycle as stormwater management issues, urban heat island increase and biodiversity degradation. Blue Green Solutions (BGS), such as green roofs, vegetated swales or urban ponds, appear to be particularly efficient to reduce the potential impact of new and existing urban developments with respect to these issues. Based on this statement, the French ANR EVNATURB project aims to develop a platform to assess the eco-systemic services provided by BGS and related with the previously mentioned issues. By proposing a multi-disciplinary consortium coupling monitoring, modelling and prospecting, it attempts to tackle several scientific issues currently limiting BGS wide implementation. Based on high resolution monitored sites and modelling tools, space-time variability of the related physical processes will be studied over a wide range of scales (from the material to the district scale), as well as local social-environmental stakes and constraints, to better consider the complexity of the urban environment. The EVNATURB platform developed during the project is intended for every stakeholder involved in urban development projects (planners, architects, engineering and environmental certification companies…) and will help them to implement BGS and evaluate which ones are the most appropriate for a particular project depending on its environmental objectives and constraints, and particularly for obtaining environmental certification.

  16. The greenGain project - Biomass from landscape conservation and maintenance work for renewable energy production in the EU

    Science.gov (United States)

    Clalüna, Aline; Baumgarten, Wibke; García Galindo, Daniel; Lenz, Klaus; Doležal, Jan; De Filippi, Federico; Lorenzo, Joaquín; Montagnoli, Louis

    2017-04-01

    The project greenGain is looking for solutions to increase the energy production with regional and local biomass from landscape conservation and maintenance work, which is performed in the public interest. The relevant resources analysed in the greenGain model regions are, among others, biomass residues from clearing invasive vegetation in marginal agricultural lands in Spain, and residues from abandoned vineyards and olive groves in landscape protected areas in Italy. The main target groups are regional and local players who are responsible for maintenance and conservation work and for the biomass residue management in their regions. Moreover, the focus will be on service providers - including farmers and forest owners, their associations, NGOs, energy providers and consumers. Local companies, municipalities and public authorities are collaborating to identify the still underutilised non-food biomass resources and to discuss the way to integrate them into the local and regional biomass markets. Since the start of the three year project in January 2015, the partners from Italy, Spain, Czech Republic and Germany analysed, among other, the biomass feedstock potential coming from landscape maintenance work, and assessed various technological options to utilise this type of biomass. Further, political, legal and environmental aspects as well as awareness raising and public acceptance actions regarding the energetic use of biomass from public areas were assessed. greenGain also facilitates the exchange between model regions and other similar relevant players in the EU and shares examples of good practice. General guidelines will be prepared to guarantee a wide dissemination to other regions in the EU. Thus, the project shows how to build-up reliable knowledge on local availability of this feedstock and provides know-how concerning planning, harvesting, pre-treatment, storage and sustainable conversion pathways to a wide range of stakeholders in the EU.

  17. Nuclear fuel cycle waste recycling technology deverlopment - Radioactive metal waste recycling technology development

    International Nuclear Information System (INIS)

    Oh, Won Zin; Moon, Jei Kwon; Jung, Chong Hun; Park, Sang Yoon

    1998-08-01

    With relation to recycling of the radioactive metal wastes which are generated during operation and decommissioning of nuclear facilities, the following were described in this report. 1. Analysis of the state of the art on the radioactive metal waste recycling technologies. 2. Economical assessment on the radioactive metal waste recycling. 3. Process development for radioactive metal waste recycling, A. Decontamination technologies for radioactive metal waste recycling. B. Decontamination waste treatment technologies, C. Residual radioactivity evaluation technologies. (author). 238 refs., 60 tabs., 79 figs

  18. The informal recycling in the international and local context: theoretical Elements

    International Nuclear Information System (INIS)

    Yepes P, Dora Luz

    2002-01-01

    This article is a synthesis of the theoretical aspects related with the urban problem of the informal recycling in our means, and it is framed inside the denominated investigation project alternatives for their invigoration of the informal recycling in Medellin, which is a thesis of the grade that looks for to strengthen the informal recycling through the study of the factors associated to the labor productivity of the informal recycle. Specifically, the study will identify options of improvement of its work y points to propose alternatives to dignify the labor of these people integrally by the light of environmental precepts, technicians, normative, institutional social and of sustainability. This document describe the theoretical elements in which this investigation will be based, showing the informal recycling inside of an international context, and their situation in a national and local environment. As a result of the bibliographical revision carried out, can be said, that it glimpses a low interest in to improve the conditions of work a International level of the informal recycle, unless the strategies that it outlines the international labor organization, with regard to the strengthening of the informal economy; in Latin America, it has not been possible to go further of the official rhetoric and the pro motion of the groups environmentalists, but in the issue of the recovery policies, reuse, and the recycling of solid wastes, if there. Has been a sustained advance; at national level clear strategies to improve the informal work of the recycle are being identified, however, lacks many efforts to develop the committed actions with these strategies, in spite of the fact that has been advancing the creation of recycle organizations little by little

  19. Towards green loyalty: the influences of green perceived risk, green image, green trust and green satisfaction

    Science.gov (United States)

    Chrisjatmiko, K.

    2018-01-01

    The paper aims to present a comprehensive framework for the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty. The paper also seeks to account explicitly for the differences in green perceived risk, green image, green trust, green satisfaction and green loyalty found among green products customers. Data were obtained from 155 green products customers. Structural equation modeling was used in order to test the proposed hypotheses. The findings show that green image, green trust and green satisfaction has positive effects to green loyalty. But green perceived risk has negative effects to green image, green trust and green satisfaction. However, green perceived risk, green image, green trust and green satisfaction also seems to be a good device to gain green products customers from competitors. The contributions of the paper are, firstly, a more complete framework of the influences of green perceived risk, green image, green trust and green satisfaction to green loyalty analyses simultaneously. Secondly, the study allows a direct comparison of the difference in green perceived risk, green image, green trust, green satisfaction and green loyalty between green products customers.

  20. Typology of Options for Metal Recycling: Australia’s Perspective

    Directory of Open Access Journals (Sweden)

    Artem Golev

    2015-12-01

    Full Text Available While Australia has traditionally relied on obtaining metals from primary sources (namely mined natural resources, there is significant potential to recover metals from end-of-life-products and industrial waste. Although any metals recycling value chain requires a feasible technology at its core, many other non-technical factors are key links in the chain, which can compromise the overall viability to recycle a commodity and/or product. The “Wealth from Waste” Cluster project funded by the Commonwealth Scientific Industrial Research Organisation (CSIRO Flagship Collaboration Fund and partner universities is focusing on identifying viable options to “mine” metals contained in discarded urban infrastructure, manufactured products and consumer goods. A key aspect of this research is to understand the critical non-technical barriers and system opportunities to enhance rates of metals recycling in Australia. Work to date has estimated the mass and current worth of metals in above ground resources. Using these outcomes as a basis, a typology for different options for (metal reuse and recycling has been developed to classify the common features, which is presented in this article. In addition, the authors investigate the barriers and enablers in the recycling value chain, and propose a set of requirements for a feasible pathway to close the material loop for metals in Australia.

  1. Benefit/cost analysis of plutonium recycle options in the United States

    International Nuclear Information System (INIS)

    Lowenberg, H.; Burnham, J.B.; Fisher, F.; Ray, W.H.

    1977-01-01

    Predictable effects of the recycle of plutonium and uranium recovered from spent LWR fuels were assessed in a final environmental statement (GESMO). Five alternative dispositions of LWR-produced plutonium ranging from prompt recycle of recovered plutonium and uranium to no recovery and no recycle are compared. The assessments consider cumulative effects for the period 1975 through 2000, and are centered on a conservative low growth rate resulting in about 500 LWR's in the U.S. in 2000. A more optimistic growth projection resulting in about 800 LWR's in 2000 is also analyzed in order to assess the effects of industry size upon the impacts. Demands for fuel cycle services were calculated with an ERDA program, NUFUEL, which was modified to include penalties for 236 U and 242 Pu. Unit cost data, including a simulation of market place reaction to supply-demand functions for uranium costs, were combined with the NUFUEL demand data in an economics code, NUCOST. Environmental impacts were also based upon NUFUEL demand data and were developed using a model plant industry concept. Using the most likely unit costs with a 10% discount rate, present worth incentives for prompt recycle over no recycle of $3.2 billion for the lower growth and about $6 billion for the higher growth were indicated. Present worth costs of delays in recycle of up to 5 years were less than $1 billion. Sensitivity of the economic assessments to unit cost variations and discount rates were also evaluated. Environmental impacts other than radiological were lowest for prompt Pu recycle and highest for no recycle. Radiological impacts for the total world wide total body exposure from U.S. industry for the 26 year period were estimated to be: - No recycle-8.2 million person-rem; U only recycle-9.5 million person-rem; Pu and U recycle-8.8 million person-rem. Comparison of the decreased radiological impact of the no recycle option with its increased costs relative to prompt plutonium recycle resulted in a

  2. Direct Solid-State Conversion of Recyclable Metals and Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Kiran Manchiraju

    2012-03-27

    Friction Stir Extrusion (FSE) is a novel energy-efficient solid-state material synthesis and recycling technology capable of producing large quantity of bulk nano-engineered materials with tailored, mechanical, and physical properties. The novelty of FSE is that it utilizes the frictional heating and extensive plastic deformation inherent to the process to stir, consolidate, mechanically alloy, and convert the powders, chips, and other recyclable feedstock materials directly into useable product forms of highly engineered materials in a single step (see Figure 1). Fundamentally, FSE shares the same deformation and metallurgical bonding principles as in the revolutionary friction stir welding process. Being a solid-state process, FSE eliminates the energy intensive melting and solidification steps, which are necessary in the conventional metal synthesis processes. Therefore, FSE is highly energy-efficient, practically zero emissions, and economically competitive. It represents a potentially transformational and pervasive sustainable manufacturing technology for metal recycling and synthesis. The goal of this project was to develop the technological basis and demonstrate the commercial viability of FSE technology to produce the next generation highly functional electric cables for electricity delivery infrastructure (a multi-billion dollar market). Specific focus of this project was to (1) establish the process and material parameters to synthesize novel alloys such as nano-engineered materials with enhanced mechanical, physical, and/or functional properties through the unique mechanical alloying capability of FSE, (2) verifying the expected major energy, environmental, and economic benefits of FSE technology for both the early stage 'showcase' electric cable market and the anticipated pervasive future multi-market applications across several industry sectors and material systems for metal recycling and sustainable manufacturing.

  3. Report on the behalf of the Joint Parliamentary Committee tasked with the proposition of a draft on issues which are still to be discussed in the bill project related to energy transition and green growth. Nr 2624, Nr 331

    International Nuclear Information System (INIS)

    Battistel, Marie-Noelle; Buis, Sabine; Plisson, Philippe; Poniatowski, Ladislas; Negre, Louis

    2015-01-01

    This document first reports the discussion of the Joint Parliamentary Committee on the proposition made by the French Senate and the French National Assembly about the bill project on energy transition and green growth. The second part contains a table which proposes a comparison between the text adopted by the National Assembly in first reading and the text adopted by the Senate in first reading. The bill project addresses: 1) the definition of common objectives for a successful energy transition, for a stronger energy independence for France, and for the struggle against climate change; 2) a better renovation of buildings to save energy, to lower energy bills, and to create jobs; 3) the development of clean transports to improve air quality and to protect health; 4) the struggle against wastage and the promotion of circular economy from product design to product recycling; 5) the promotion of renewable energies to diversify energies and to valorise territorial resources; 6) the strengthening of nuclear safety and citizen information; 7) the simplification and clarification of procedures for improved efficiency and competitiveness; 8) the possibility for citizen, enterprises, territories and State to act together

  4. The fast-recycling receptor Megalin defines the apical recycling pathway of epithelial cells

    Science.gov (United States)

    Perez Bay, Andres E.; Schreiner, Ryan; Benedicto, Ignacio; Paz Marzolo, Maria; Banfelder, Jason; Weinstein, Alan M.; Rodriguez-Boulan, Enrique J.

    2016-01-01

    The basolateral recycling and transcytotic pathways of epithelial cells were previously defined using markers such as transferrin (TfR) and polymeric IgA (pIgR) receptors. In contrast, our knowledge of the apical recycling pathway remains fragmentary. Here we utilize quantitative live-imaging and mathematical modelling to outline the recycling pathway of Megalin (LRP-2), an apical receptor with key developmental and renal functions, in MDCK cells. We show that, like TfR, Megalin is a long-lived and fast-recycling receptor. Megalin enters polarized MDCK cells through segregated apical sorting endosomes and subsequently intersects the TfR and pIgR pathways at a perinuclear Rab11-negative compartment termed common recycling endosomes (CRE). Whereas TfR recycles to the basolateral membrane from CRE, Megalin, like pIgR, traffics to subapical Rab11-positive apical recycling endosomes (ARE) and reaches the apical membrane in a microtubule- and Rab11-dependent manner. Hence, Megalin defines the apical recycling pathway of epithelia, with CRE as its apical sorting station. PMID:27180806

  5. Large-scale ash recycling in Central Sweden; Storskalig askhantering i mellansverige

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Mats [Stora Skog (Sweden)

    1998-08-01

    When logging residues (tops, branches) are withdrawn from the forest, most of the nutrient content of the trees is also lost. Some of the nutrient content of the soil is restored by weathering, but not all. When biomass is burnt as fuel most of the nutrients will be found in the ash. By recycling wood ash, in similar amounts as was withdrawn with the biomass, it is possible to compensate for the nutrient losses. This project was initiated to study how a rational recycling of wood ash could be performed under conditions valid for Stora, a large forest company in the middle of Sweden. A second aim was to give guiding principles for Stora`s own ash recycling while awaiting instructions from the authorities. In the project both theoretical studies and practical field studies were carried out. Studied areas are production of a stabilised ash product and different systems for transport and spreading of the ash product. The costs and results of spreading have also been monitored. The project showed that spreading of the ash can normally only take place when there is no snow. If production or transport is carried out during another time of the year, the ash has to be stored, either at the industry, in an intermediate storage, or in the forest. One important conclusion from the test period was that the result of the spreading depends heavily on the quality of the ash. Some of the ashes hardened in the spreading equipment, causing a complete stop of the spreading. It also caused problems if the ash was too wet. Plate-spreaders led to unequal quality of spreading, where some areas got more ash and some got less. Granulated ash was most easy to spread. Recommended system for spreading ash is: granulated ash transported unpacked in separate transports with lorries with exchangeable platforms. A large fores tractor spreads the ash in clearings, in the summer. The project has shown that large-scale ash recycling is possible to realize 22 figs, 5 tabs, 13 appendices

  6. One project`s waste is another project`s resource

    Energy Technology Data Exchange (ETDEWEB)

    Short, J.

    1997-02-01

    The author describes the efforts being made toward pollution prevention within the DOE complex, as a way to reduce overall project costs, in addition to decreasing the amount of waste to be handled. Pollution prevention is a concept which is trying to be ingrained into project planning. Part of the program involves the concept that ultimately the responsibility for waste comes back to the generator. Parts of the program involve efforts to reuse materials and equipment on new projects, to recycle wastes to generate offsetting revenue, and to increase awareness, accountability and incentives so as to stimulate action on this plan. Summaries of examples are presented in tables.

  7. Engineering work plan for implementing the Process Condensate Recycle Project at the 242-A evaporator

    International Nuclear Information System (INIS)

    Haring, D.S.

    1995-01-01

    The 242-A Evaporator facility is used to reduce the volume of waste stored in the Hanford double shell tanks. This facility uses filtered raw water for cooling, de-entrainment pad sprays, pump seal water, and chemical tank make-up. Some of these uses result in the introduction of filtered raw water into the process, thus increasing the volume of waste requiring evaporation and subsequent treatment by the 200 East Effluent Treatment Facility. The pump seal water and the de-entrainment pad spray systems were identified as candidates for a waste minimization upgrade. This work plan describes the activities associated with the design, installation, testing and initial operation of the process condensate recycle system. Implementation of the process condensate recycle system will permit the use of process condensate in place of raw water for the de-entrainment pad sprays and pump seals. This will reduce the amount of low-level liquid waste and generated during facility operation through source reduction and recycling

  8. Projected interaction picture of field operators and memory superoperators. A master equation for the single-particle Green's function in a Liouville space

    International Nuclear Information System (INIS)

    Grinberg, H.

    1983-11-01

    The projection operator method of Zwanzig and Feshbach is used to construct the time-dependent field operators in the interaction picture. The formula developed to describe the time dependence involves time-ordered cosine and sine projected evolution (memory) superoperators, from which a master equation for the interaction-picture single-particle Green's function in a Liouville space is derived. (author)

  9. The influence of clay fineness upon sludge recycling in a ceramic matrix

    Science.gov (United States)

    Szőke, A. M.; Muntean, M.; Sándor, M.; Brotea, L.

    2016-04-01

    The feasibility of sludge recycling in the ceramic manufacture was evaluated through laboratory testing. Such residues have similar chemical and mineralogical composition with the raw mixture of the green ceramic body used in construction. Several ceramic masses with clay and various proportion of sludge have been synthesized and then characterized by their physical-mechanical properties. The fineness of the clay, the main component of the green ceramic body, has been considered for every raw mixture. The proportion of the sludge waste addition depends on the clay fineness and the sintering capacity also, increases with the clay fineness. The ceramic properties, particularly, the open porosity, and mechanical properties, in presence of small sludge proportion (7, 20%) shows small modification. The introduction of such waste into building ceramic matrix (bricks, tiles, and plates) has a very good perspective.

  10. Durability assessment of recycled concrete aggregates for use in new concrete.

    Science.gov (United States)

    2012-06-01

    The primary goal of this research project was to investigate the long-term durability of concrete incorporating : recycled concrete aggregate (RCA) through accelerated laboratory testing. Overall it was found that modifications to : standard aggregat...

  11. Plasma energy recycle and conversion of polymeric (MSW) waste. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Knight, Richard; Grossman, Elihu D.

    2000-12-05

    Final report summarizing research project results of studies of the thermal plasma recycling of polymers, including polyethylene and polypropylene. High levels of recovery of monomers were obtained from the process developed under this study.

  12. Fate and transport with material response characterization of green sorption media for copper removal via adsorption process.

    Science.gov (United States)

    Chang, Ni-Bin; Houmann, Cameron; Lin, Kuen-Song; Wanielista, Martin

    2016-02-01

    Green adsorption media with the inclusion of renewable and recycled materials can be applied as a stormwater best management practice for copper removal. A green adsorption media mixture composed of recycled tire chunk, expanded clay aggregate, and coconut coir was physicochemically evaluated for its potential use in an upflow media filter. A suite of tests were conducted on the media mixture and the individual media components including studies of particle size distribution, isotherms, column adsorption and reaction kinetics. Isotherm test results revealed that the coconut coir had the highest affinity for copper (q(max) = 71.1 mg g(-1)), and that adsorption was maximized at a pH of 7.0. The coconut coir also performed the best under dynamic conditions, having an equilibrium uptake of 1.63 mg g(-1). FE-SEM imaging found a strong correlation between the porosity of the micro pore structure and the adsorptive capacity. The use of the green adsorption media mixture in isolation or the coconut coir with an expanded clay filtration chamber could be an effective and reliable stormwater best management practice for copper removal. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Green ergonomics: challenges and opportunities.

    Science.gov (United States)

    Hanson, Margaret A

    2013-01-01

    Addressing the causes and consequences of environmental degradation presents significant challenges for humankind. This paper considers what ergonomics/human factors (E/HF) professionals can contribute to understanding and tackling some of the issues that arise through the movement towards a more environmentally sustainable economy. These issues are considered in relation to work in green industries (specifically, sustainable energy production, recycling and organic food production), and there is a need to ensure that these jobs are safe and healthy; the design of products and systems that are 'environmentally friendly' to facilitate their acceptability and use and how E/HF professionals can contribute to understanding and promoting behavioural change relating to environmental choices. The activities of some international organisations in this area are identified and the potential for E/HF involvement is considered. The implications for the E/HF profession are discussed. This paper considers how ergonomics/human factors professionals can contribute to the movement towards more sustainable and 'environmentally friendly' design and work. Potential challenges and opportunities are discussed in relation to jobs in green industries, products and systems and behaviour change.

  14. Application and research of recyclable cables in foundation pit support engineering

    Science.gov (United States)

    Zheng, Suping

    2018-05-01

    Anchoring cables are widely used in the construction of foundation pit as a temporary support structure. After the construction is completed, the anchor cables left in the ground will not only cause environmental pollution but also cause a great waste of resources. The emergence of recyclable cable technology, to avoid such problems, to achieve the secondary use of the anchor cable, excavation in the excavation project is more and more widely used. Combined with the design and construction of recoverable anchor cable in engineering practice, the application effect of recoverable anchor cable in foundation pit support is analyzed, and the conclusion that the support effect of recoverable anchor cable is stable and safe can be obtained Recyclable anchor cable in the future support projects to provide a reference.

  15. Programme on the recyclability of food-packaging materials with respect to food safety considerations: polyethylene terephthalate (PET), paper and board, and plastics covered by functional barriers.

    Science.gov (United States)

    Franz, R

    2002-01-01

    Stimulated by new ecology-driven European and national regulations, news routes of recycling waste appear on the market. Since food packages represent a large percentage of the plastics consumption and since they have a short lifetime, an important approach consists in making new packages from post-consumer used packages. On the other hand, food-packaging regulations in Europe require that packaging materials must be safe. Therefore, potential mass transfer (migration) of harmful recycling-related substances to the food must be excluded and test methods to ensure the safety-in-use of recycled materials for food packaging are needled. As a consequence of this situation, a European research project FAIR-CT98-4318, with the acronym 'Recyclability', was initiated. The project consists of three sections each focusing on a different class of recycled materials: polyethylene terephthalate (PET), paper and board, and plastics covered by functional barriers. The project consortium consists of 28 project members from 11 EU countries. In addition, the project is during its lifetime in discussion with the US Food and Drug Administrations (FDA) to consider also US FDA regulatory viewpoints and to aim, as a consequence, to harmonizable conclusions and recommendations. The paper introduces the project and presents an overview of the project work progress.

  16. Demystifying first-cost green building premiums in healthcare.

    Science.gov (United States)

    Houghton, Adele; Vittori, Gail; Guenther, Robin

    2009-01-01

    This study assesses the extent of "first-cost green building construction premiums" in the healthcare sector based on data submitted by and interviews with 13 current LEED-certified and LEED-registered healthcare project teams, coupled with a literature survey of articles on the topics of actual and perceived first-cost premiums associated with green building strategies. This analysis covers both perceived and realized costs across a range of projects in this sector, leading to the following conclusions: Construction first-cost premiums may be lower than is generally perceived, and they appear to be independent of both building size and level of "green" achievement; projects are using financial incentives and philanthropy to drive higher levels of achievement; premiums are decreasing over time; and projects are benefiting from improvements in health and productivity which, although difficult to monetize, are universally valued.

  17. Commercial green energy. Final report

    International Nuclear Information System (INIS)

    Kalweit, B.

    1998-11-01

    Firms offering a Green electricity product have discovered that residential customers are willing to pay extra for the assurance that their electricity is generated through the use of non-polluting or renewable resources. This research investigated the market potential for Green energy at the next level of the energy consuming chain, commercial establishments at which small and medium sized businesses interface with customers. Green energy is proving to be an attractive proposition to some consumers in the residential marketplace. Is there a possibility that Green energy can also be sold to commercial enterprises? This research project sought to answer this question and to investigate the factors that might lead small business people to opt for Green. Answers to these questions will help energy companies target the businesses most likely to accept Green power with the right product set and product features

  18. Technological Proposals for Recycling Industrial Wastes for Environmental Applications

    Directory of Open Access Journals (Sweden)

    Isabel Romero-Hermida

    2014-08-01

    Full Text Available A two-fold objective is proposed for this research: removing hazardous and unpleasant wastes and mitigating the emissions of green house gasses in the atmosphere. Thus, the first aim of this work is to identify, characterize and recycle industrial wastes with high contents of calcium or sodium. This involves synthesizing materials with the ability for CO2 sequestration as preliminary work for designing industrial processes, which involve a reduction of CO2 emissions. In this regard, phosphogypsum from the fertilizer industry and liquid wastes from the green olive and bauxite industries have been considered as precursors. Following a very simple procedure, Ca-bearing phosphogypsum wastes are mixed with Na-bearing liquid wastes in order to obtain a harmless liquid phase and an active solid phase, which may act as a carbon sequestration agent. In this way, wastes, which are unable to fix CO2 by themselves, can be successfully turned into effective CO2 sinks. The CO2 sequestration efficiency and the CO2 fixation power of the procedure based on these wastes are assessed.

  19. Assessing changes on poly(ethylene terephthalate) properties after recycling: Mechanical recycling in laboratory versus postconsumer recycled material

    Energy Technology Data Exchange (ETDEWEB)

    López, María del Mar Castro, E-mail: quimcl02@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); Ares Pernas, Ana Isabel, E-mail: aares@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); Abad López, Ma José, E-mail: mjabad@udc.es [Grupo de Polímeros, Centro de Investigacións Tecnológicas (CIT), Departamento de Física, Escuela Universitaria Politécnica, Universidade de A Coruña, Campus de Ferrol, 15403 Ferrol (Spain); and others

    2014-10-15

    Keeping rheological, mechanical and thermal properties of virgin poly(ethylene terephthalate), PET, is necessary to assure the quality of second-market applications. A comparative study of these properties has been undertaken in virgin, mechanical recycled and commercial recycled PET samples. Viscoelastic characterization was carried out by rheological measurements. Mechanical properties were estimated by tensile and Charpy impact strength tests. Thermal properties and crystallinity were evaluated by differential scanning calorimetry and a deconvolution procedure was applied to study the population of the different crystals. Molecular conformational changes related to crystallinity values were studied by FTIR spectroscopy. Variations in average molecular weight were predicted from rheology. Besides, the presence-absence of linear and cyclic oligomeric species was measured by mass spectrometry techniques, as MALDI-TOF. Mechanical recycled PET undergoes a significant decline in rheological, mechanical and thermal properties upon increasing the number of reprocessing steps. This is due to the cleavage of the ester bonds with reduction in molar mass and raise in cyclic oligomeric species, in particular [GT{sub c}]{sub n} and [GT{sub c}]{sub n}-G type. Chain shortening plus enrichment in trans conformers favour the crystallization process which occurs earlier and faster with modification in crystal populations. Additional physicochemical steps are necessary to preserve the main benefits of PET. - Highlights: • Combination of multiple techniques to characterize the effects of recycling in PET. • Cleavage of ester bonds reduced viscosity, Mw, toughness in mechanical recycled PET. • Virgin, mechanical recycled and commercial recycled PET differ in crystal populations. • Cyclic oligomers [GT{sub c}]{sub n} and [GT{sub c}]{sub n}-G increase from the fourth extrusion cycle onwards.

  20. Dual recycling for GEO 600

    International Nuclear Information System (INIS)

    Grote, H; Freise, A; Malec, M; Heinzel, G; Willke, B; Lueck, H; Strain, K A; Hough, J; Danzmann, K

    2004-01-01

    Dual recycling is the combination of signal recycling and power recycling; both optical techniques improve the shot-noise-limited sensitivity of interferometric gravitational-wave detectors. In addition, signal recycling can reduce the loss of light power due to imperfect interference and allows us, in principle, to beat the standard quantum limit. The interferometric gravitational-wave detector GEO 600 is the first of the kilometre-scale detectors to use signal recycling. We have recently equipped the detector with a signal-recycling mirror with a transmittance of 1%. In this paper, we present details of the detector commissioning and the first locks of the dual-recycled interferometer

  1. AN EXPERIMENTAL STUDY ON BEHAVIOUR OF RECYCLED AGGREGATE CONCRETE WITH GROUND GRANULATED BLAST FURNACE SLAG FLYASH

    OpenAIRE

    B.Sasikala*, K.Shanthi, B.Jose RavindraRaj

    2017-01-01

    Concrete is the single largest manufactured material in the world . The use of recycled materials in construction is an issue of great importance. Utilization of Recycled Aggregates (RA), Ground Granulated Blast Furnace Slag (GGBFS) and fly ash in concrete addresses this issue. In this project, strength, durability of Recycled Aggregate Concrete (RAC) with GGBFS was studied. M-50 grade concrete with 0.30 w/c ratio and maximum size of 16mm course aggregate was used for this study. Totally 16 m...

  2. Green Infrastructure Models and Tools

    Science.gov (United States)

    The objective of this project is to modify and refine existing models and develop new tools to support decision making for the complete green infrastructure (GI) project lifecycle, including the planning and implementation of stormwater control in urban and agricultural settings,...

  3. Expansive development of a decommissioning program 'recycle simulator' in nuclear power station

    International Nuclear Information System (INIS)

    Nishiuchi, T.; Ozaki, S.; Hironaga, M.

    2004-01-01

    A decommissioning program 'Recycle Simulator' should be put into practice in careful consideration of both recycle of non-radioactive wastes and reduce of radioactive wastes in the coming circulatory social system. Nevertheless current support systems for decommissioning planning mainly deal with decontamination, safety storage and dismantlement, so-called the prior part of the total decommissioning process. Authors emphasize the necessity of total planning of decommissioning including recycle or reuse of a large amount of demolition materials and are propelling the development of the multi expert system named 'Recycle Simulator'. This paper presents an algorithm of the recycling and reusing scenario of demolition materials and a summarized configuration. 'Recycle Simulator' for the demolished concrete was developed in 2000 and presented at a previous International Conference on Nuclear Engineering. Construction of a supporting multi expert system for the totally planning of decommissioning projects is objected by expansive development of the previous version. 3 main conclusions obtained from this paper are the following. (1) The previously developed expert system was advanced in its estimation function toward the satisfaction of decommissioning planners. (2) The applicability of the system was enlarged to all the radioactive and non-radioactive wastes, demolished metal and concrete products, in a corresponding site of decommissioning. (3) Finally decommissioning recycle simulator was completed in a harmonized unification. (authors)

  4. Green Open Space: Awareness for Health or Sustainability?

    Science.gov (United States)

    Dewi, O. C.; Chairunnisa, I.; Hidayat, T.; Anggraini, M.; Napitupulu, A.

    2018-03-01

    Universitas Indonesia in cooperation with American Red Cross and Indonesian Red Cross have been assisting green open space revitalisation program in 7 locations in Bogor Regency (2016-2017). The program was held under The Urban Disaster Risk Reduction Greater Jakarta Project; an initiative program from American Red Cross Indonesia. This project was not only improving the existing green open space quality, but also creating one adapted from public land. The revitalization project figures what happened on daily basis on the existing land, proposing new programming facilities, community-based construction, monitoring and handing over. This paper discovers the meaning of a green space for the community, whether the community aware of its benefit on human health or environmental sustainability. The research question is does the community aware of green open space benefit for human health or environmental sustainability? Or both? The original data from the community was gathered and grouped based on its relevance with environmental quality and public health.

  5. Technical specifications for mechanical recycling of agricultural plastic waste

    International Nuclear Information System (INIS)

    Briassoulis, D.; Hiskakis, M.; Babou, E.

    2013-01-01

    Highlights: • Technical specifications for agricultural plastic wastes (APWs) recycling proposed. • Specifications are the base for best economical and environmental APW valorisation. • Analysis of APW reveals inherent characteristics and constraints of APW streams. • Thorough survey on mechanical recycling processes and industry as it applies to APW. • Specifications for APW recycling tested, adjusted and verified through pilot trials. - Abstract: Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project “LabelAgriWaste” revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process (“Quality I”) and another one for plastic profile production process (“Quality II”). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities

  6. Quantitative Decision Making Model for Carbon Reduction in Road Construction Projects Using Green Technologies

    Directory of Open Access Journals (Sweden)

    Woosik Jang

    2015-08-01

    Full Text Available Numerous countries have established policies for reducing greenhouse gas emissions and have suggested goals pertaining to these reductions. To reach the target reduction amounts, studies on the reduction of carbon emissions have been conducted with regard to all stages and processes in construction projects. According to a study on carbon emissions, the carbon emissions generated during the construction stage of road projects account for approximately 76 to 86% of the total carbon emissions, far exceeding the other stages, such as maintenance or demolition. Therefore, this study aims to develop a quantitative decision making model that supports the application of green technologies (GTs to reduce carbon emissions during the construction stage of road construction projects. First, the authors selected environmental soundness, economic feasibility and constructability as the key assessment indices for evaluating 20 GTs. Second, a fuzzy set/qualitative comparative analysis (FS/QCA was used to establish an objective decision-making model for the assessment of both the quantitative and qualitative characteristics of the key indices. To support the developed model, an expert survey was performed to assess the applicability of each GT from a practical perspective, which was verified with a case study using two additional GTs. The proposed model is expected to support practitioners in the application of suitable GTs to road projects and reduce carbon emissions, resulting in better decision making during road construction projects.

  7. Plastics disassembly versus bulk recycling: engineering design for end-of-life electronics resource recovery.

    Science.gov (United States)

    Rios, Pedro; Stuart, Julie Ann; Grant, Ed

    2003-12-01

    Annual plastic flows through the business and consumer electronics manufacturing supply chain include nearly 3 billion lb of high-value engineering plastics derived from petroleum. The recovery of resource value from this stream presents critical challenges in areas of materials identification and recycling process design that demand new green engineering technologies applied together with life cycle assessment and ecological supply chain analysis to create viable plastics-to-plastics supply cycles. The sustainable recovery of potentially high-value engineering plastics streams requires that recyclers either avoid mixing plastic parts or purify later by separating smaller plastic pieces created in volume reduction (shredding) steps. Identification and separation constitute significant barriers in the plastics-to-plastics recycling value proposition. In the present work, we develop a model that accepts randomly arriving electronic products to study scenarios by which a recycler might identify and separate high-value engineering plastics as well as metals. Using discrete eventsimulation,we compare current mixed plastics recovery with spectrochemical plastic resin identification and subsequent sorting. Our results show that limited disassembly with whole-part identification can produce substantial yields in separated streams of recovered engineering thermoplastics. We find that disassembly with identification does not constitute a bottleneck, but rather, with relatively few workers, can be configured to pull the process and thus decrease maximum staging space requirements.

  8. Is South Korea’s Green Job Policy Sustainable?

    Directory of Open Access Journals (Sweden)

    Yeon-Mi Jung

    2015-07-01

    Full Text Available South Korea’s green job policy was implemented in February 2008 as a part of low-carbon green growth policy, but has been discontinued at the present. The country’s actual energy and environmental consumption has continuously increased, and South Korean society has grown increasingly distant from sustainable development. The study constructs a theoretical framework centering on sustainable development and analyzes the process and contents of South Korea’s green job policy. We suggest four findings: First, in terms of ideology, the nation’s green job policy was based on green growth. Implemented as a strategy typical of developing countries, South Korea’s green growth was pursued as weak ecological modernization, relatively stressing economic growth and excluding citizens’ participation. Second, in terms of governance, the nation’s green job policy was led by the central government, thus nearly completely destroying existing legal and institutional infrastructures related to sustainable development. Third, South Korea’s green job policy was defined on the basis of a growth orientation and concentrated on the Four Major Rivers Restoration Project and the NPP project, both of which betrayed considerable problems from the perspective of sustainable development. Fourth, green jobs were created in traditional environmental protection and pollution reduction and therefore limited.

  9. Green Funds Scheme. Annual report 2010 with 2009 data

    International Nuclear Information System (INIS)

    2010-06-01

    Green Investing is the facility that can offer private persons tax benefits when they save or invest money with a green financial institute which uses such money to invest in or finance green projects. The Green Investment annual report for 2009 shows that Green Investment is still very popular. The number of participating money savers / investors has increased by 16,000 to 250,000 in total. [nl

  10. Recycle Alaska: Reduce, Reuse, Recycle. Activities Handbook, Teacher's Guide, and Student Worksheets.

    Science.gov (United States)

    Alaska State Dept. of Education, Juneau.

    Recycling is a very important aspect of conserving the environment for future generations. This guide addresses the topic of litter prevention for the Alaskan environment and contains 42 activities. Activity topics covered include Natural Cycles, Human Interruption of Natural Cycles, Reduce, Reuse, Recycle and Recycled Classroom. Grade level,…

  11. The Diffusion Effect of MSW Recycling

    Directory of Open Access Journals (Sweden)

    Yi-Tui Chen

    2017-12-01

    Full Text Available The purpose of this paper is to compare the recycling performance for some waste fractions selected including food waste, bulk waste, paper, metal products, plastics/rubber and glass products and then to develop some directions for the future improvements. The priority of each waste fraction for recycling is also analyzed by using an importance-performance analysis. Traditionally, the recycling rate that is calculated by the ratio of waste recycled to waste collected is used as an indicator to measure recycling performance. Due to a large variation among waste fractions in municipal solid waste (MSW, the recycling rate cannot reflect the actual recycling performance. The ceiling of recycling rate for each waste fraction estimated from the diffusion models is incorporated into a model to calculate recycling performance. The results show that (1 the diffusion effect exists significantly for the recycling of most recyclables but no evidence is found to support the diffusion effect for the recycling of food waste and bulk waste; (2 the recycling performance of waste metal products ranks the top, compared to waste paper, waste glass and other waste fractions; (3 furthermore, an importance-performance analysis (IPA is employed to analyze the priority of recycling programs and thus this paper suggests that the recycling of food waste should be seen as the most priority item to recycle.

  12. Guidelines for establishing a local authority market for green power

    International Nuclear Information System (INIS)

    1999-09-01

    This project summary considers the UK government's aim of achieving 10% of electricity from renewable energy sources by the year 2010, and its backing of the launch of the ''Future Energy'' accreditation scheme to accredit power derived from renewable energy sources and assist power supply companies to promote green energy. The benefits to local authorities of buying and/or selling green power are highlighted, and the objectives of the guidelines in helping local authorities to buy green power and suppliers to target local authorities are discussed. Five case studies are presented covering the successful purchase of green electricity by 3 local authorities, a local authority currently preparing for green electricity procurement, and 2 local authorities which were unsuccessful in purchasing green power. Issues identified by the project are outlined, and details of the guidelines for local authorities and green electricity suppliers are given

  13. Laboratory evaluation of recycled concrete as aggregate in new concrete pavements.

    Science.gov (United States)

    2014-09-01

    The Washington State Department of Transportation (WSDOT) has initiated a research project to investigate the use of recycled concrete as : aggregates (RCA) in Portland (hydraulic) cement concrete pavements (PCCP). The planned source for the RCA in t...

  14. Evaluation of Green IT services with Fuzzy Screening approach

    Directory of Open Access Journals (Sweden)

    Sajjad Shokouhyar‎

    2017-11-01

    Full Text Available Regarding development of Information Technology, the world of industry has inordinately benefited, albeit that has some losses. Unless the losses are considered, advanced losses will be seen after progress with which is more difficult to cope. Neglecting the future and the risk involved in the industry, not to mention the lack of knowledge in dealing with sudden alterations, compel irrecoverable loss. In this context, information technology services in organizations are aimed to be cost-effective and have minimum environmental impact, according to green information technology strategies. Concerning significance of the issue, purpose of this research is assessment of information technology services with respect to greenness level in a general contractor organization by combination of Fuzzy Analytic Hierarchy Process and Fuzzy Screening Procedure to enhance the greenness level of IT services. The effectiveness of using this approach is including qualitative, quantitative, and uncertainty nature of the problem. In this paper, to consider the Green IT services criteria, literatures have been studied by meta-synthesis method, then the importance of the criteria has been determined by questionnaires so as to rank Green IT criteria. Eventually, the organization level has been concluded in terms of the greenness level of IT services. As a case study, IT experts and managers of KAYSON Inc. organization are considered as statistical population of this research. The reduction had the highest weight among other criteria- recycling and reusing - in KAYSON Inc. organization. Finally, the organization greenness level was determined moderate in terms of IT services.

  15. Boric acid as cost-effective and recyclable catalyst for trimethylsilyl protection and deprotection of alcohols and phenols

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Amin; Akradi, Jamal; Ahmad-Jangi, Firoz, E-mail: a_rostami372@yahoo.co [University of Kurdistan, Sanandaj (Iran, Islamic Republic of). Faculty of Science. Dept. of Chemistry

    2010-07-01

    Boric acid has been used as a green, selective and recyclable catalyst for trimethysilylation of alcohols and phenols using hexamethyldisilazane in acetonitrile. Deprotection of trimethylsilyl ethers to their parent alcohols and phenols was also achieved using this catalyst in water at room temperature. The salient features of this methodology are cheap processing, mild acidity conditions, excellent yields of products and easy availability of the catalyst. (author)

  16. Airlie House Pollution Prevention Technology Transfer pilot projects

    Energy Technology Data Exchange (ETDEWEB)

    Thuot, J.R.; Myron, H.; Gatrone, R.; McHenry, J.

    1996-08-01

    The projects were a series of pilot projects developed for DOE with the intention of transferring pollution prevention technology to private industry. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education program, the microscale cost benefit study, and the Bethel New Life recycling trainee program. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The recycle trainee project provided training for two participants and identified recycling and source reduction opportunities in Argonne`s solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identification of target technologies that were already available, identification of target audiences, and a focus of effort to achieve a limited but defined objective.

  17. Heart Rate, Stress, and Occupational Noise Exposure among Electronic Waste Recycling Workers

    Directory of Open Access Journals (Sweden)

    Katrina N. Burns

    2016-01-01

    Full Text Available Electronic waste (e-waste is a growing occupational and environmental health issue around the globe. E-waste recycling is a green industry of emerging importance, especially in low-and middle-income countries where much of this recycling work is performed, and where many people’s livelihoods depend on this work. The occupational health hazards of e-waste recycling have not been adequately explored. We performed a cross-sectional study of noise exposures, heart rate, and perceived stress among e-waste recycling workers at a large e-waste site in Accra, Ghana. We interviewed 57 workers and continuously monitored their individual noise exposures and heart rates for up to 24 h. More than 40% of workers had noise exposures that exceeded recommended occupational (85 dBA and community (70 dBA noise exposure limits, and self-reported hearing difficulties were common. Workers also had moderate to high levels of perceived stress as measured via Cohen’s Perceived Stress Scale, and reported a variety of symptoms that could indicate cardiovascular disease. Noise exposures were moderately and significantly correlated with heart rate (Spearman’s ρ 0.46, p < 0.001. A mixed effects linear regression model indicated that a 1 dB increase in noise exposure was associated with a 0.17 increase in heart rate (p-value = 0.01 even after controlling for work activities, age, smoking, perceived stress, and unfavorable physical working conditions. These findings suggest that occupational and non-occupational noise exposure is associated with elevations in average heart rate, which may in turn predict potential cardiovascular damage.

  18. Radioactive Scrap Metal (RSM) recycling: A doe white paper

    International Nuclear Information System (INIS)

    Chatterjee, S.; Moore, H.H.; Ghoshal, A.

    1992-01-01

    An effective White Paper on recycling radioactive scrap metals has been drafted at the request of the U.S. Department of Energy (DOE) recently. The paper has received the praise and commendation of the DOE's Director of Environmental Management. However, obstructionist posturing by the petty bureaucrats in DOE continues to plague the meaningful implementation of RSM recycling. The key findings of the White Paper study and its major recommendations have discussed in this paper. The study indicates that several technologies, such as melt refining and electro refining, are currently available for surface and volume decontamination of metals. The unit cost of decontamination was found to vary from $700 to $400/ton; recycling of most low-contaminated metals can therefore be cost-effective vis-a vis the average cost of low-level radioactive wastes disposal of %400 to $2800/ton. Major recycling demonstration projects with emphasis on restricted RSM reuse options have been recommended. Volume contamination standard for unrestricted release should be established only after adequate studies of health effects and scientific/industrial effects of RSM reuse has been conducted by the Environmental Protection Agency (EPA) and the Nuclear Regulatory Commission (NRC). Some of the significant technical data developed during this study have also been briefly discussed in this paper. (author)

  19. Certified Electronics Recyclers

    Science.gov (United States)

    Learn how EPA encourages all electronics recyclers become certified by demonstrating to an accredited, independent third-party auditor and that they meet specific standards to safely recycle and manage electronics.

  20. High-performance green semiconductor devices: materials, designs, and fabrication

    Science.gov (United States)

    Jung, Yei Hwan; Zhang, Huilong; Gong, Shaoqin; Ma, Zhenqiang

    2017-06-01

    From large industrial computers to non-portable home appliances and finally to light-weight portable gadgets, the rapid evolution of electronics has facilitated our daily pursuits and increased our life comforts. However, these rapid advances have led to a significant decrease in the lifetime of consumer electronics. The serious environmental threat that comes from electronic waste not only involves materials like plastics and heavy metals, but also includes toxic materials like mercury, cadmium, arsenic, and lead, which can leak into the ground and contaminate the water we drink, the food we eat, and the animals that live around us. Furthermore, most electronics are comprised of non-renewable, non-biodegradable, and potentially toxic materials. Difficulties in recycling the increasing amount of electronic waste could eventually lead to permanent environmental pollution. As such, discarded electronics that can naturally degrade over time would reduce recycling challenges and minimize their threat to the environment. This review provides a snapshot of the current developments and challenges of green electronics at the semiconductor device level. It looks at the developments that have been made in an effort to help reduce the accumulation of electronic waste by utilizing unconventional, biodegradable materials as components. While many semiconductors are classified as non-biodegradable, a few biodegradable semiconducting materials exist and are used as electrical components. This review begins with a discussion of biodegradable materials for electronics, followed by designs and processes for the manufacturing of green electronics using different techniques and designs. In the later sections of the review, various examples of biodegradable electrical components, such as sensors, circuits, and batteries, that together can form a functional electronic device, are discussed and new applications using green electronics are reviewed.

  1. Recycling of rubble from building demolition for low-shrinkage concretes.

    Science.gov (United States)

    Corinaldesi, Valeria; Moriconi, Giacomo

    2010-04-01

    In this project concrete mixtures were prepared that were characterized by low ductility due to desiccation by using debris from building demolition, which after a suitable treatment was used as aggregate for partial replacement of natural aggregates. The recycled aggregate used came from a recycling plant, in which rubble from building demolition was selected, crushed, cleaned, sieved, and graded. Such aggregates are known to be more porous as indicated by the Saturated Surface Dry (SSD) moisture content. The recycled concrete used as aggregates were added to the concrete mixture in order to study their influence on the fresh and hardened concrete properties. They were added either after water pre-soaking or in dry condition, in order to evaluate the influence of moisture in aggregates on the performance of concrete containing recycled aggregate. In particular, the effect of internal curing, due to the use of such aggregates, was studied. Concrete behavior due to desiccation under dehydration was studied by means of both drying shrinkage test and German angle test, through which shrinkage under the restrained condition of early age concrete can be evaluated. Copyright 2009 Elsevier Ltd. All rights reserved.

  2. Investment Primer for Green Revolving Funds

    Science.gov (United States)

    Weisbord, Dano

    2012-01-01

    Developing return-oriented green revolving funds (GRFs) is a rapidly growing trend at colleges and universities. A green revolving fund (GRF) is a special account designated for investment in on-campus projects that improve energy efficiency or decrease material use. GRFs invest in a variety of cost-saving initiatives, resulting in significant…

  3. Cell phone recycling experiences in the United States and potential recycling options in Brazil.

    Science.gov (United States)

    Silveira, Geraldo T R; Chang, Shoou-Yuh

    2010-11-01

    This paper presents an overview of cell phone recycling programs currently available in the United States. At the same time, it also provides analyses of the current recycling situation and possible recycling alternatives for Brazil. Although there are several recycling options in the United States, collection rates are still only 10% of all potential devices because customers are not aware of these possibilities. The whole system is financially based on reselling refurbished cell phones and recycled materials to developing countries which represent an effective and strong market. Several recyclers offer funds to collection partners who are either charities or who work with charities while obtaining the materials that they need in order to run their operations. A mobile phone recycling system for Brazil considering the United States experience and the Extended Producer Responsibility (EPR) principle is suggested. A deposit/refund/advance-recycling fee is proposed which might be implemented as a voluntary industrial initiative managed by PRO Brazil, a producer responsibility organization. One widespread public-private agreement will integrate all mobile phone stakeholders, and environmental education actions and promotional events will promote citizen's participation. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Initial research on recycled tyre bales for road infrastructure applications

    Science.gov (United States)

    Duda, Aleksander; Sobala, Dariusz

    2017-12-01

    The paper reviews selected surveys carried out within the R&D project, co-financed with the European Regional Development Fund, called "ReUse - Innovative Recycling Materials, Enhancing the Sustainability of Bridge Facilities" (Innotech No. K3 / IN3 / 38/228116 / NCBiR / 15). The aim of the project and conducted research is to develop and implement innovative, cheap and environmentally-friendly recycled construction material in the form of tyre bales made from compressed used car tyres. This material is likely to be applied in civil engineering, especially in transport infrastructure, geotechnical and hydraulic engineering. New material is cheap and has unique properties such as low weight, high water permeability, high vibration and noise-damping capacity, low pressure coefficient values and other parameters that technically and economically allow it to replace natural aggregates. The extensive practical application of new material will facilitate the replacement of waste management methods with the environmentally friendly ones.

  5. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull. 2007; 6(4: 307-312

  6. PET and Recycling

    Directory of Open Access Journals (Sweden)

    Funda Sevencan

    2007-08-01

    Full Text Available This review aims to clarify the need of decreasing the environmental effects caused by human and draw attention to the increasing environmental effects of plastics wastes. Plastics consist of organic molecules with high density molecules or polymers. Main resources of plastics are the residue of oil rafineries. Several advantages of plastics, have increased the usage continuously. Polyethylene Terephthalate (PET is the most commonly used plastics. PET is used to protect food, drinking water, fruit juice, alcoholic beverage, and food packing films. By the increasing interest on the environmental effects of plastic wastes, concerns on the recyclable packing materials also grew up. Also the daily use of recyclable containers consisting PET have increased. There are five steps for recycling of plastics. These steps are; using large amounts of plastics, collecting them in a big center, classifying and sorting the plastics, reproducing the polymers and obtaining new products with melted plastics. Providing a healthy recycling of plastics, the consumers should have knowledge and responsibility. The consumer should know what he/she has to do before putting the plastics in the recycling containers. Recycling containers and bags should be placed near the sources of plastic wastes. Consequently, the plastic wastes and environmental problems they cause will be on the agenda in future. [TAF Prev Med Bull 2007; 6(4.000: 307-312

  7. Development of National Assessment Criteria for Green Schools in ...

    African Journals Online (AJOL)

    4carolinebell@gmail.com

    evaluation of the national green schools project in Mainland China in 2006. Background ... school management (the green school committee, the plan for green schools, training ... the processes of environmental education (inclusion of environmental education in the .... The basic reason is that the content about continued ...

  8. Reusing and recycling in Saskatchewan: Environmental benefits of reusing and recycling

    Energy Technology Data Exchange (ETDEWEB)

    1994-01-01

    After an introduction explaining the environmental benefits of reusing and recycling, as well as providing suggestions on minimizing waste and conserving energy, a directory of recyclers and handlers of various kinds of waste in Saskatchewan is presented. Names, addresses/telephone numbers, and types of materials accepted are given for recyclers of animal products, clothing or textiles, glass, compostable materials, industrial hardware, metals, office products, paper, plastic, and tires. Collection depots in the SARCAN recycling program for beverage containers are listed, giving town name, address, hours of operation, and telephone number. Receivers of waste dangerous goods are listed under the categories of ozone-depleting substances, waste batteries, solvents, lubricating oils and oil filters, paint, flammable liquids, antifreeze, drycleaning waste, and miscellaneous.

  9. The Chicago Center for Green Technology: life-cycle assessment of a brownfield redevelopment project

    International Nuclear Information System (INIS)

    Brecheisen, Thomas; Theis, Thomas

    2013-01-01

    The sustainable development of brownfields reflects a fundamental, yet logical, shift in thinking and policymaking regarding pollution prevention. Life-cycle assessment (LCA) is a tool that can be used to assist in determining the conformity of brownfield development projects to the sustainability paradigm. LCA was applied to the process of a real brownfield redevelopment project, now known as the Chicago Center for Green Technology, to determine the cumulative energy required to complete the following redevelopment stages: (1) brownfield assessment and remediation, (2) building rehabilitation and site development and (3) ten years of operation. The results of the LCA have shown that operational energy is the dominant life-cycle stage after ten years of operation. The preservation and rehabilitation of the existing building, the installation of renewable energy systems (geothermal and photovoltaic) on-site and the use of more sustainable building products resulted in 72 terajoules (TJ) of avoided energy impacts, which would provide 14 years of operational energy for the site. (letter)

  10. Recycling of Paper and Cardboard

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    waste. Recycling of paper and cardboard production waste and postconsumer waste has a long history in the pulp and paper industry. The recycled material now makes up more than half of the raw material used in European pulp and paper industry (ERPC, 2004). This chapter describes briefly how paper...... and cardboard are produced and how waste paper is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of paper recycling....

  11. Water Recycling in Australia

    Directory of Open Access Journals (Sweden)

    Ross Young

    2011-09-01

    Full Text Available Australia is the driest inhabited continent on earth and, more importantly, experiences the most variable rainfall of all the continents on our planet. The vast majority of Australians live in large cities on the coast. Because wastewater treatments plants were all located near the coast, it was thought that large scale recycling would be problematic given the cost of infrastructure and pumping required to establish recycled water schemes. This all changed when Australia experienced a decade of record low rainfall and water utilities were given aggressive targets to increase the volume of water recycled. This resulted in recycled water being accepted as a legitimate source of water for non-drinking purposes in a diversified portfolio of water sources to mitigate climate risk. To ensure community support for recycled water, Australia lead the world in developing national guidelines for the various uses of recycled water to ensure the protection of public health and the environment. Australia now provides a great case study of the developments in maximizing water recycling opportunities from policy, regulatory and technological perspectives. This paper explores the evolution in thinking and how approaches to wastewater reuse has changed over the past 40 years from an effluent disposal issue to one of recognizing wastewater as a legitimate and valuable resource. Despite recycled water being a popular choice and being broadly embraced, the concept of indirect potable reuse schemes have lacked community and political support across Australia to date.

  12. Green IT engineering concepts, models, complex systems architectures

    CERN Document Server

    Kondratenko, Yuriy; Kacprzyk, Janusz

    2017-01-01

    This volume provides a comprehensive state of the art overview of a series of advanced trends and concepts that have recently been proposed in the area of green information technologies engineering as well as of design and development methodologies for models and complex systems architectures and their intelligent components. The contributions included in the volume have their roots in the authors’ presentations, and vivid discussions that have followed the presentations, at a series of workshop and seminars held within the international TEMPUS-project GreenCo project in United Kingdom, Italy, Portugal, Sweden and the Ukraine, during 2013-2015 and at the 1st - 5th Workshops on Green and Safe Computing (GreenSCom) held in Russia, Slovakia and the Ukraine. The book presents a systematic exposition of research on principles, models, components and complex systems and a description of industry- and society-oriented aspects of the green IT engineering. A chapter-oriented structure has been adopted for this book ...

  13. Recycling of concrete

    International Nuclear Information System (INIS)

    Halaszovich, S.

    1988-01-01

    The paper reviews potentials and problems of disposal or recycling of concrete removed from nuclear installations. Due to the difficulties in determining radioactivity limits that are compatible with utilization of recycled material in practice, a method is proposed that takes into account inhalation of dusts, as occurring during the reprocessing or recycling of the concrete, for instance in road building. This method is based on the maximum permissible radioactivity uptake by inhalation of a nuclide mixture of unknown composition. (RB) [de

  14. Trading green electricity

    International Nuclear Information System (INIS)

    Davies, M.

    1997-01-01

    A study has been carried out into the feasibility of developing an electricity trading mechanism which would allow consumers to purchase electricity which has been derived from renewable energy resources. This study was part funded by the European Commission (ALTENER), the Department of Trade and Industry and a number of private sector companies. The trading mechanism is known as the Green Pool. As a result of the findings of this study discussions are being held with potential generators and suppliers to establish a Green Pool plc. The aim is to encourage the development of new renewable energy projects outside the NFFO and SRO schemes. The Green Pool plc will be owned by the generators and its main objective will be to market the electricity produced by its members. (Author)

  15. Improving the layout of recycling centres by use of lean production principles.

    Science.gov (United States)

    Sundin, Erik; Björkman, Mats; Eklund, Mats; Eklund, Jörgen; Engkvist, Inga-Lill

    2011-06-01

    There has been increased focus on recycling in Sweden during recent years. This focus can be attributed to external environmental factors such as tougher legislation, but also to the potential gains for raw materials suppliers. Recycling centres are important components in the Swedish total recycling system. Recycling centres are manned facilities for waste collection where visitors can bring, sort and discard worn products as well as large-sized, hazardous, and electrical waste. The aim of this paper was to identify and describe the main flows and layout types at Swedish recycling centres. The aim was also to adapt and apply production theory for designing and managing recycling centre operations. More specifically, this means using lean production principles to help develop guidelines for recycling centre design and efficient control. Empirical data for this research was primarily collected through interviews and questionnaires among both visitors and employees at 16 Swedish recycling centres. Furthermore, adapted observation protocols have been used in order to explore visitor activities. There was also close collaboration with a local recycling centre company, which shared their layout experiences with the researchers in this project. The recycling centres studied had a variety of problems such as queues of visitors, overloading of material and improper sorting. The study shows that in order to decrease the problems, the recycling centres should be designed and managed according to lean production principles, i.e. through choosing more suitable layout choices with visible and linear flows, providing better visitor information, and providing suitable technical equipment. Improvements can be achieved through proper planning of the layout and control of the flow of vehicles, with the result of increased efficiency and capacity, shorter visits, and cleaner waste fractions. The benefits of a lean production mindset include increased visitor capacity, waste

  16. The strategic industrial sectors of the green economy: stakes and perspectives

    International Nuclear Information System (INIS)

    Albertini, Jean-Paul; Larrieu, Catherine; Griot, Alain

    2013-03-01

    Proposing a transverse analysis and a synthesis, the first part of this voluminous report discusses the evolution of the context since 2009 for the green industry sector, outlines and comments the development stakes for the different sectors, analyses and comments their main evolutions for the last three years, outlines the development potential and perspectives of these activities in France, and proposes an overview of strategic policies implemented in the field of green economy in different countries (USA, Germany, United Kingdom, Japan, China, South Korea). The second part addresses the evolution and perspectives of each sector: energy production from renewable sources (biofuels, biomass, marine energies, wind energy, geothermal energy, solar energy), optimization of natural energy consumption (building with low environmental impact, green chemistry, hydrogen and fuel cells, biomaterials, optimization of industrial processes, smart grids, energy storage, low-carbon vehicles), natural resource life cycle management (CO 2 capture and storage, water, purification and ecologic engineering, metrology and instrumentation, recycling and waste valorization)

  17. Packaging waste recycling in Europe: Is the industry paying for it?

    International Nuclear Information System (INIS)

    Ferreira da Cruz, Nuno; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-01-01

    Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste

  18. Packaging waste recycling in Europe: Is the industry paying for it?

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira da Cruz, Nuno, E-mail: nunocruz@ist.utl.pt; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-02-15

    Highlights: • We study the recycling schemes of France, Germany, Portugal, Romania and the UK. • The costs and benefits of recycling are compared for France, Portugal and Romania. • The balance of costs and benefits depend on the perspective (strictly financial/economic). • Financial supports to local authorities ought to promote cost-efficiency. - Abstract: This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste

  19. Green power. Renewable electricity purchasing by Leicester City Council

    International Nuclear Information System (INIS)

    2000-05-01

    This case study describes the use of renewable energy by Leicester City Council in the East Midlands. The Council, which has a long-term commitment to sustainable energy and the environment, employs over 14,000 people. A contract was first negotiated with East Midlands Electricity (now PowerGen) to supply the Council's New Walk Centre with green electricity in 1995. Some of the green energy is supplied by the Milford Mill hydroelectric plant. Use of building energy monitoring systems (BEMSs) and other good practice has allowed the Council to achieve a 20% saving in its electricity bill. The Council has also negotiated contracts to supply two smaller sites (a recycling facility called Planet Works and the city's Energy Efficiency centre) with green electricity generated by Beacon Energy, a small renewable energy company which operates two 25 kW wind turbines and two 3 kW arrays of photovoltaic cells at a site some 15 miles from Leicester. The exemption given to renewable energy from the climate change levy makes these schemes even more economic; a worked example is provided to demonstrate the impact of the climate change levy on electricity costs at the New Walk Centre. Six steps to follow when seeking to connect to green electricity are advised

  20. Green Capital: Student Capital student-led evaluation

    OpenAIRE

    Runkle, Q.; Haines, T.; Piper, K.; Leach, S.

    2016-01-01

    To assess and evaluate the impact of the Green Capital: Student Capital project, the partnership (the University of the West of England, the University of Bristol, the Students’ Union at UWE, and Bristol Students’ Union) worked with NUS to train a team of students from both universities to lead an evaluation process. There were two key aims for the evaluation: \\ud \\ud • To verify the quantitative outputs of the Green Capital: Student Capital project; \\ud • And to make a qualitative assessment...

  1. Climate Benefits of Material Recycling: Inventory of Average Greenhouse Gas Emissions for Denmark, Norway and Sweden

    DEFF Research Database (Denmark)

    Hillman, Karl; Damgaard, Anders; Eriksson, Ola

    The purpose of this project is to compare emissions of greenhouse gases from material recycling with those from virgin material production, both from a material supply perspective and from a recycling system perspective. The method for estimating emissions and climate benefits is based on a review......, followed by a selection, of the most relevant publications on life cycle assessment (LCA) of materials for use in Denmark, Norway and Sweden. The proposed averages show that emissions from material recycling are lower in both perspectives, comparing either material supply or complete recycling systems....... The results can be used by companies and industry associations in Denmark, Norway and Sweden to communicate the current climate benefits of material recycling in general. They may also contribute to discussions on a societal level, as long as their average and historic nature is recognised....

  2. Can laboratory and pilot recycling trials predict adhesive removal in commercial recycling systems? : results from the USPS environmentally benign stamp project

    Science.gov (United States)

    Carl Houtman; Daniel Seiter; Nancy Ross Sutherland; Donald Donermeyer

    2002-01-01

    The ultimate goal of the US Postal Service (USPS) Environmentally Benign Stamp Program is to develop stamp laminates, i.e., face paper, adhesive and siliconized liner, that do not cause difficulties in recycling mills. The criterion for success, and the USPS definition of benignity, is the avoidance of process and product quality hardships when such PSA laminates are...

  3. Development of Recycling Compatible Pressure-Sensitive Adhesives and Coatings

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Severtson

    2010-02-15

    The objective of this project was the design of new water-based pressure-sensitive adhesive (PSA) products and coatings engineered for enhanced removal during the processing of recycled fiber. Research included the formulation, characterization, and performance measurements of new screenable coatings, testing of modified paper and board substrates and the design of test methods to characterize the inhibition of adhesive and coating fragmentation and relative removal efficiencies of developed formulations. This project was operated under the requirements that included commercially viable approaches be the focus, that findings be published in the open literature and that new strategies could not require changes in the methods and equipment used to produce PSA and PS labels or in the recycling process. The industrial partners benefited through the building of expertise in their company that they would not, and likely could not, have pursued if it had not been for the partnership. Results of research on water-based PSAs clearly identifies which PSA and paper facestock properties govern the fragmentation of the adhesive and provide multiple strategies for making (pressure-sensitive) PS labels for which the PSA is removed at very high efficiencies from recycling operations. The application of these results has led to the identification of several commercial products in Franklin International’s (industrial partner) product line that are recycling compatible. Several new formulations were also designed and are currently being scaled-up. Work on recycling compatible barrier coatings for corrugated containers examined the reinforcement of coatings using a small amount of exfoliated organically modified montmorillonite (OMMT). These OMMT/paraffin wax nanocomposites demonstrated significantly improved mechanical properties. Paraffin waxes containing clay were found to have significantly higher Young’s moduli and yield stress relative to the wax matrix, but the most

  4. Establishing a local authority market for green power

    International Nuclear Information System (INIS)

    Turnbull, A.; Evans, N.

    1999-01-01

    This report summarises the findings of a project examining ways to maximise the potential local authority market for green power by investigating procurement and supply issues, and also surveying local authorities engaged in green power procurement and green electricity suppliers. A review of the local authority procurement process is presented, and the way in which procurement practices had to be adapted to allow local authorities to purchase green power is explored. Appendices give details of the questionnaires used with 22 local authorities, five case study local authorities, and the green suppliers

  5. Establishing a local authority market for green power

    Energy Technology Data Exchange (ETDEWEB)

    Turnbull, A.; Evans, N.

    1999-07-01

    This report summarises the findings of a project examining ways to maximise the potential local authority market for green power by investigating procurement and supply issues, and also surveying local authorities engaged in green power procurement and green electricity suppliers. A review of the local authority procurement process is presented, and the way in which procurement practices had to be adapted to allow local authorities to purchase green power is explored. Appendices give details of the questionnaires used with 22 local authorities, five case study local authorities, and the green suppliers .

  6. The Fernald Waste Recycling Program

    International Nuclear Information System (INIS)

    Motl, G.P.

    1993-01-01

    Recycling is considered a critical component of the waste disposition strategy at the Fernald Plant. It is estimated that 33 million cubic feet of waste will be generated during the Fernald cleanup. Recycling some portion of this waste will not only conserve natural resources and disposal volume but will, even more significantly, support the preservation of existing disposition options such as off-site disposal or on-site storage. Recognizing the strategic implications of recycling, this paper outlines the criteria used at Fernald to make recycle decisions and highlights several of Fernald's current recycling initiatives

  7. A Green Urban Mobility System Solution from the EU Ingrid project

    Science.gov (United States)

    D'Errico, Fabrizio; Screnci, Adamo; Romeo, Marco

    With a mandate to reach 20/20/20 targets, new strategies are now focusing on the increased use of electricity to power transportation. Particularly in major urban areas of the EU, capillary use of electric vehicles are being encouraged, however, as these vehicles will be powered by the grid, there is always the risk that load peaks will occur. This work is just one of several being developed as part of the 23.9 MLN Euros INGRID European project started in July 2012, which combines solid-state high-density hydrogen storage systems with advanced ICT technologies for distribution grids. One possible solution which has been designed, is an off-grid utility to store renewable electricity captured from wind/solar sources and a re-charging point for full battery electric cars. This work shows the preliminary financial assessment of two business models for the Park-for-Recharging concept to promote green e-mobility as a more convenient and economical means of by-car transport.

  8. Green Power Procurement Library | Energy Analysis | NREL

    Science.gov (United States)

    ., and E.S. Brown. 2006. Utility-Marketer Partnerships: An Effective Strategy for Marketing Green Power Reduction Programs. Local Government Climate and Energy Strategy Series. EPA 430-R-09-045. Green Power Developing New Renewable Energy Projects. NREL/TP-6A20-51904. July. Natural Marketing Institute. 2011

  9. Environmental aspects of recycling

    International Nuclear Information System (INIS)

    Jansma, R.; Van Gemert, F.

    2001-01-01

    Advanced recycling options were studied. Emphasis was on the production of high-level waste. All other impacts, e.g. emissions, were considered to be of minor importance, since from a technical point of view they can be limited to any desired extent. An objective was to gather data from the industry and to use them in a Life Cycle Analysis (LCA) of several fuel cycle options. It was necessary to complete our data set with literature data. At the end of our project we could benefit from the results of several Expert Working Groups of OECD/NEA. Detailed information was available for the once-through fuel cycle (OFC) and the fuel cycle with mono recycling of MOX. For the other more advanced fuel cycle options information was of a more qualitative nature. The established set of data was sufficient to conduct a streamlined LCA with focus on waste production for final disposal. Some remarks should be made before comparing the various fuel cycle options studied. The first relates to plutonium that contributes to more than 90% of the radiotoxicity of the spent fuel for more than 1000 centuries. Large concern for transmutation of minor actinides will disproportional if plutonium itself is not eliminated. The second remark is that the fission products contribute potentially very little to the radiotoxicity especially when some long-lived radionuclides after separation are imprisoned in stable matrices to prevent them to be carried by underground water. From all nuclear fuel cycles considered, the MIX cycle in LWRs, with recycling of plutonium and minor actinides has the lowest minor actinides production (0.018 kg/TW e h) and the plutonium production is also quite low (0.06 kg/TW e h). The MIX cycle without minor actinides recycling performs a little better with respect to plutonium production (0.04 kg/TW e h) but has a relatively high minor actinides production (8.7 kg/TW e h). Another conclusion is that burning of minor actinides in fast reactors (MA 0.28 kg/TW e h, Pu 0

  10. The recycling is moving

    CERN Multimedia

    GS Department

    2011-01-01

    The recycling site currently situated near building 133 has been transferred to the car park of building 156. The site is identified by the sign “RECYCLING” and the above logo. In this new, more accessible site, you will find recycling bins for the following waste: PET (recyclable plastic bottles); Aluminium cans; Nespresso coffee capsules.  

  11. Life Cycle Assessment and Optimization-Based Decision Analysis of Construction Waste Recycling for a LEED-Certified University Building

    Directory of Open Access Journals (Sweden)

    Murat Kucukvar

    2016-01-01

    Full Text Available The current waste management literature lacks a comprehensive LCA of the recycling of construction materials that considers both process and supply chain-related impacts as a whole. Furthermore, an optimization-based decision support framework has not been also addressed in any work, which provides a quantifiable understanding about the potential savings and implications associated with recycling of construction materials from a life cycle perspective. The aim of this research is to present a multi-criteria optimization model, which is developed to propose economically-sound and environmentally-benign construction waste management strategies for a LEED-certified university building. First, an economic input-output-based hybrid life cycle assessment model is built to quantify the total environmental impacts of various waste management options: recycling, conventional landfilling and incineration. After quantifying the net environmental pressures associated with these waste treatment alternatives, a compromise programming model is utilized to determine the optimal recycling strategy considering environmental and economic impacts, simultaneously. The analysis results show that recycling of ferrous and non-ferrous metals significantly contributed to reductions in the total carbon footprint of waste management. On the other hand, recycling of asphalt and concrete increased the overall carbon footprint due to high fuel consumption and emissions during the crushing process. Based on the multi-criteria optimization results, 100% recycling of ferrous and non-ferrous metals, cardboard, plastic and glass is suggested to maximize the environmental and economic savings, simultaneously. We believe that the results of this research will facilitate better decision making in treating construction and debris waste for LEED-certified green buildings by combining the results of environmental LCA with multi-objective optimization modeling.

  12. The Ellweiler uranium plant - a demolition and recycling project

    International Nuclear Information System (INIS)

    Mika, S.; Rohr, T.; Seehars, R.; Feser, A.

    1999-01-01

    The uranium plant at Ellweiler, district of Birkenfeld, was used for the production and storage of uranium concentrates. The owner of the Ellweiler uranium plant (UAE), Gewerkschaft Brunhilde GmbH, ceased processing uranium ore and recycling in 1989 and has been in liquidation since September 1991. The State of Rhineland-Palatinate, had safety measures adopted in a first step, getting the plant into a safe state by former plant personnel. The entire plant was demolished in a second step. The contract for demolishing the former uranium plant was awarded to ABB Reaktor as the general contractor in August 1996. Demolition work was carried out between April 1997 and May 1999. A total of approx. 7900 Mg of material was disposed of. At present, recultivation measures are being carried out. (orig.) [de

  13. Reprocessing yields and material throughput: HTGR recycle demonstration facility

    International Nuclear Information System (INIS)

    Holder, N.; Abraham, L.

    1977-08-01

    Recovery and reuse of residual U-235 and bred U-233 from the HTGR thorium-uranium fuel cycle will contribute significantly to HTGR fuel cycle economics and to uranium resource conservation. The Thorium Utilization National Program Plan for HTGR Fuel Recycle Development includes the demonstration, on a production scale, of reprocessing and refabrication processes in an HTGR Recycle Demonstration Facility (HRDF). This report addresses process yields and material throughput that may be typically expected in the reprocessing of highly enriched uranium fuels in the HRDF. Material flows will serve as guidance in conceptual design of the reprocessing portion of the HRDF. In addition, uranium loss projections, particle breakage limits, and decontamination factor requirements are identified to serve as guidance to the HTGR fuel reprocessing development program

  14. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California

    Science.gov (United States)

    Hendrickson, Thomas P.; Kavvada, Olga; Shah, Nihar; Sathre, Roger; Scown, Corinne D.

    2015-01-01

    Plug-in electric vehicle (PEV) use in the United States (US) has doubled in recent years and is projected to continue increasing rapidly. This is especially true in California, which makes up nearly one-third of the current US PEV market. Planning and constructing the necessary infrastructure to support this projected increase requires insight into the optimal strategies for PEV battery recycling. Utilizing life-cycle perspectives in evaluating these supply chain networks is essential in fully understanding the environmental consequences of this infrastructure expansion. This study combined life-cycle assessment and geographic information systems (GIS) to analyze the energy, greenhouse gas (GHG), water use, and criteria air pollutant implications of end-of-life infrastructure networks for lithium-ion batteries (LIBs) in California. Multiple end-of-life scenarios were assessed, including hydrometallurgical and pyrometallurgical recycling processes. Using economic and environmental criteria, GIS modeling revealed optimal locations for battery dismantling and recycling facilities for in-state and out-of-state recycling scenarios. Results show that economic return on investment is likely to diminish if more than two in-state dismantling facilities are constructed. Using rail as well as truck transportation can substantially reduce transportation-related GHG emissions (23-45%) for both in-state and out-of-state recycling scenarios. The results revealed that material recovery from pyrometallurgy can offset environmental burdens associated with LIB production, namely a 6-56% reduction in primary energy demand and 23% reduction in GHG emissions, when compared to virgin production. Incorporating human health damages from air emissions into the model indicated that Los Angeles and Kern Counties are most at risk in the infrastructure scale-up for in-state recycling due to their population density and proximity to the optimal location.

  15. Life-cycle implications and supply chain logistics of electric vehicle battery recycling in California

    International Nuclear Information System (INIS)

    Hendrickson, Thomas P; Kavvada, Olga; Shah, Nihar; Sathre, Roger; D Scown, Corinne

    2015-01-01

    Plug-in electric vehicle (PEV) use in the United States (US) has doubled in recent years and is projected to continue increasing rapidly. This is especially true in California, which makes up nearly one-third of the current US PEV market. Planning and constructing the necessary infrastructure to support this projected increase requires insight into the optimal strategies for PEV battery recycling. Utilizing life-cycle perspectives in evaluating these supply chain networks is essential in fully understanding the environmental consequences of this infrastructure expansion. This study combined life-cycle assessment and geographic information systems (GIS) to analyze the energy, greenhouse gas (GHG), water use, and criteria air pollutant implications of end-of-life infrastructure networks for lithium-ion batteries (LIBs) in California. Multiple end-of-life scenarios were assessed, including hydrometallurgical and pyrometallurgical recycling processes. Using economic and environmental criteria, GIS modeling revealed optimal locations for battery dismantling and recycling facilities for in-state and out-of-state recycling scenarios. Results show that economic return on investment is likely to diminish if more than two in-state dismantling facilities are constructed. Using rail as well as truck transportation can substantially reduce transportation-related GHG emissions (23–45%) for both in-state and out-of-state recycling scenarios. The results revealed that material recovery from pyrometallurgy can offset environmental burdens associated with LIB production, namely a 6–56% reduction in primary energy demand and 23% reduction in GHG emissions, when compared to virgin production. Incorporating human health damages from air emissions into the model indicated that Los Angeles and Kern Counties are most at risk in the infrastructure scale-up for in-state recycling due to their population density and proximity to the optimal location. (letter)

  16. Analysis of the application of an interdisciplinar project in education of future engineers: assembly of thermal machines with recycled materials

    Directory of Open Access Journals (Sweden)

    Elaine Cristina Marques

    2015-12-01

    Full Text Available Teaching through the four areas of learning development is increasing in educational systems. The methods used for this purpose are: analysis and solving of problems, and development of integrative or interdisciplinary projects. Both use active learning methodologies, making it possible to circumvent the low capacity for concentration and retention of information from today’s students, so globalized and dependent on computers. In this sense, the development of this project aims for the students to manufacture a steam machine with reused/recycled materials, and to present it during a trial lesson. This project was developed in the Fundamentals of Thermodynamics and Engineering and Materials Science courses, taken in the first semester of 2014, and involved 130 students enrolled in the fifth semester of the Production Engineering course at Centro Universitário Padre Anchieta. A total of 28 steam machines were presented and, after prior modification, the majority succeeded in their functioning. Most of the groups used industrial materials and/or industrial tools in order to accomplish their projects. Due to this experience, they could apply their knowledge in both student and professional routines. Based on that, it is believed that the projects may play a role of meaningful learning for students. At the end of the activity, most students signaled their satisfaction with the project and their desire to repeat such activities, which interconnect disciplines. It is possible to conclude that teaching through interdisciplinary projects is an important tool in the teaching of engineering, thus, understanding of knowledge is more articulate and less fragmented. It contributes to the use of science as an element of interpretation and intervention of reality

  17. Polyurethane foams based entirely on recycled polyols derived from natural oils

    Czech Academy of Sciences Publication Activity Database

    Horák, Pavel; Beneš, Hynek

    2015-01-01

    Roč. 60, č. 9 (2015), s. 579-585 ISSN 0032-2725 R&D Projects: GA MPO(CZ) FR-TI4/133 Institutional support: RVO:61389013 Keywords : polyurethane foam * recycled polyol * rapeseed oil Subject RIV: CD - Macromolecular Chemistry Impact factor: 0.718, year: 2015

  18. Establishing green roof infrastructure through environmental policy instruments.

    Science.gov (United States)

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated

  19. Establishing Green Roof Infrastructure Through Environmental Policy Instruments

    Science.gov (United States)

    Carter, Timothy; Fowler, Laurie

    2008-07-01

    Traditional construction practices provide little opportunity for environmental remediation to occur in urban areas. As concerns for environmental improvement in urban areas become more prevalent, innovative practices which create ecosystem services and ecologically functional land cover in cities will be in higher demand. Green roofs are a prime example of one of these practices. The past decade has seen the North American green roof industry rapidly expand through international green roof conferences, demonstration sites, case studies, and scientific research. This study evaluates existing international and North American green roof policies at the federal, municipal, and community levels. Green roof policies fall into a number of general categories, including direct and indirect regulation, direct and indirect financial incentives, and funding of demonstration or research projects. Advantages and disadvantages of each category are discussed. Salient features and a list of prompting standards common to successfully implemented green roof strategies are then distilled from these existing policies. By combining these features with data collected from an experimental green roof site in Athens, Georgia, the planning and regulatory framework for widespread green roof infrastructure can be developed. The authors propose policy instruments be multi-faceted and spatially focused, and also propose the following recommendations: (1) Identification of green roof overlay zones with specifications for green roofs built in these zones. This spatial analysis is important for prioritizing areas of the jurisdiction where green roofs will most efficiently function; (2) Offer financial incentives in the form of density credits and stormwater utility fee credits to help overcome the barriers to entry of the new technology; (3) Construct demonstration projects and institutionalize a commitment greening roofs on publicly-owned buildings as an effective way of establishing an educated

  20. Tire Recycling

    Science.gov (United States)

    1997-01-01

    Cryopolymers, Inc. tapped NASA expertise to improve a process for recycling vehicle tires by converting shredded rubber into products that can be used in asphalt road beds, new tires, hoses, and other products. In conjunction with the Southern Technology Applications Center and Stennis Space Center, NASA expertise in cryogenic fuel-handling needed for launch vehicle and spacecraft operations was called upon to improve the recycling concept. Stennis advised Cryopolymers on the type of equipment required, as well as steps to reduce the amount of liquid nitrogen used in the process. They also guided the company to use more efficient ways to control system hardware. It is estimated that more than 300 million tires nationwide are produced per year. Cryopolymers expects to reach a production rate of 5,000 tires recycled per day.

  1. Next generation paradigm for urban pluvial flood modelling, prediction, management and vulnerability reduction - Interaction between RainGain and Blue Green Dream projects

    Science.gov (United States)

    Maksimovic, C.

    2012-04-01

    The effects of climate change and increasing urbanisation call for a new paradigm for efficient planning, management and retrofitting of urban developments to increase resilience to climate change and to maximize ecosystem services. Improved management of urban floods from all sources in required. Time scale for well documented fluvial and coastal floods allows for timely response but surface (pluvial) flooding caused by intense local storms had not been given appropriate attention, Pitt Review (UK). Urban surface floods predictions require fine scale data and model resolutions. They have to be tackled locally by combining central inputs (meteorological services) with the efforts of the local entities. Although significant breakthrough in modelling of pluvial flooding was made there is a need to further enhance short term prediction of both rainfall and surface flooding. These issues are dealt with in the EU Iterreg project Rain Gain (RG). Breakthrough in urban flood mitigation can only be achieved by combined effects of advanced planning design, construction and management of urban water (blue) assets in interaction with urban vegetated areas' (green) assets. Changes in design and operation of blue and green assets, currently operating as two separate systems, is urgently required. Gaps in knowledge and technology will be introduced by EIT's Climate-KIC Blue Green Dream (BGD) project. The RG and BGD projects provide synergy of the "decoupled" blue and green systems to enhance multiple benefits to: urban amenity, flood management, heat island, biodiversity, resilience to drought thus energy requirements, thus increased quality of urban life at lower costs. Urban pluvial flood management will address two priority areas: Short Term rainfall Forecast and Short term flood surface forecast. Spatial resolution of short term rainfall forecast below 0.5 km2 and lead time of a few hours are needed. Improvements are achievable by combining data sources of raingauge networks

  2. Recycle Glass in Foam Glass Production

    DEFF Research Database (Denmark)

    Petersen, Rasmus Rosenlund; König, Jakob; Yue, Yuanzheng

    The foam glass industry turn recycle glass into heat insulating building materials. The foaming process is relative insensitive to impurities in the recycle glass. It is therefore considered to play an important role in future glass recycling. We show and discuss trends of use of recycled glasses...... in foam glass industry and the supply sources and capacity of recycle glass....

  3. Recycled Portland cement concrete pavements : Part II, state-of-the art summary.

    Science.gov (United States)

    1979-01-01

    This report constitutes a review of the literature concerning recycling of portland cement concrete pavements by crushing the old pavement and reusing the crushed material as aggregate in a number of applications. A summary of the major projects cond...

  4. Auditing an intensive care unit recycling program.

    Science.gov (United States)

    Kubicki, Mark A; McGain, Forbes; O'Shea, Catherine J; Bates, Samantha

    2015-06-01

    The provision of health care has significant direct environmental effects such as energy and water use and waste production, and indirect effects, including manufacturing and transport of drugs and equipment. Recycling of hospital waste is one strategy to reduce waste disposed of as landfill, preserve resources, reduce greenhouse gas emissions, and potentially remain fiscally responsible. We began an intensive care unit recycling program, because a significant proportion of ICU waste was known to be recyclable. To determine the weight and proportion of ICU waste recycled, the proportion of incorrect waste disposal (including infectious waste contamination), the opportunity for further recycling and the financial effects of the recycling program. We weighed all waste and recyclables from an 11-bed ICU in an Australian metropolitan hospital for 7 non-consecutive days. As part of routine care, ICU waste was separated into general, infectious and recycling streams. Recycling streams were paper and cardboard, three plastics streams (polypropylene, mixed plastics and polyvinylchloride [PVC]) and commingled waste (steel, aluminium and some plastics). ICU waste from the waste and recycling bins was sorted into those five recycling streams, general waste and infectious waste. After sorting, the waste was weighed and examined. Recycling was classified as achieved (actual), potential and total. Potential recycling was defined as being acceptable to hospital protocol and local recycling programs. Direct and indirect financial costs, excluding labour, were examined. During the 7-day period, the total ICU waste was 505 kg: general waste, 222 kg (44%); infectious waste, 138 kg (27%); potentially recyclable waste, 145 kg (28%). Of the potentially recyclable waste, 70 kg (49%) was actually recycled (14% of the total ICU waste). In the infectious waste bins, 82% was truly infectious. There was no infectious contamination of the recycling streams. The PVC waste was 37% contaminated

  5. Ex-ante evaluation of Green Deals Energy; Ex-ante evaluatie van Green Deals Energie

    Energy Technology Data Exchange (ETDEWEB)

    Elzenga, H.; Kruitwagen, S.

    2012-06-15

    An overview is given of the results of a study of the bottlenecks experienced by initiators in the realization of green projects, the solutions for which the Dutch government has chosen, and the role that local authorities play in it. An important research question is to what extent it is likely that Green Deal projects will lead to imitation by others. The research has focused on four themes: Onshore wind energy, Energy production from co- fermentation of manure, Energy conservation of heat in the built environment, and Decentralised electricity generation with solar panels [Dutch] Een overzicht wordt gegeven van de resultaten van een onderzoek naar de knelpunten die initiatiefnemers ervaren bij de realisatie van groene projecten, de oplossingsrichtingen waarvoor de Rijksoverheid heeft gekozen, en de rol die decentrale overheden daarin spelen. Een belangrijke onderzoeksvraag is in hoeverre het aannemelijk is dat Green Deal-projecten zullen leiden tot navolging door anderen. Het onderzoek heeft zich toegespitst op vier thema's: Windenergie op land, Energieproductie uit (co)vergisting van mest, Energiebesparing op warmte in de gebouwde omgeving, en Decentrale elektriciteitsopwekking met zonnepanelen.

  6. Green Gram Rotation Effects on Maize Growth Parameters and Soil Quality in Myanmar

    Directory of Open Access Journals (Sweden)

    Myo Kywe

    2008-10-01

    Full Text Available At present maize–green gram crop rotations are not widely practiced among farmers in Myanmar. However, this cropping system might become more popular in the future given raising prices for green gram and maize grain and scarcity of mineral nitrogen (N fertilizers in this Asian country. The results of a cropping systems experiment with continuous maize versus a green gram-maize rotation, manure application (0 and 2 t ha−1 and phosphorus (P fertilization (0 and 15 kg P ha−1 in each of five consecutive seasons revealed a strong decline in total dry matter and grains yields for both crops irrespective of the treatment. Treatment effects on yield components, nutrient concentrations, mycorrhizal infection and nematode infestation were small or negligible. The data show that in addition to manure used at 2 t ha−1, application of mineral N fertilizers is essential to maintain particularly maize yields. A comparison of different green gram cultivars did not indicate genotype specific effects on maize growth. The incorporation of legume residues, unless they are used as animal feed, is recommended to increase the recycling of N and to balance N fluxes when green gram is cultivated for seed.

  7. Waste minimization and pollution prevention technology transfer : the Airlie House Projects

    International Nuclear Information System (INIS)

    Gatrone, R.; McHenry, J.; Myron, H.; Thout, J. R.

    1998-01-01

    The Airlie House Pollution Prevention Technology Transfer Projects were a series of pilot projects developed for the US Department of Energy with the intention of transferring pollution prevention technology to the private sector. The concept was to develop small technology transfer initiatives in partnership with the private sector. Argonne National Laboratory developed three projects: the microscale chemistry in education project, the microscale cost benefit study project, and the Bethel New Life recycling trainee project. The two microscale chemistry projects focused on introducing microscale chemistry technologies to secondary and college education. These programs were inexpensive to develop and received excellent evaluations from participants and regulators. The Bethel New Life recycling trainee project provided training for two participants who helped identify recycling and source reduction opportunities in Argonne National Laboratory's solid waste stream. The pilot projects demonstrated that technology transfer initiatives can be developed and implemented with a small budget and within a short period of time. The essential components of the pilot projects were identifying target technologies that were already available, identifying target audiences, and focusing on achieving a limited but defined objective

  8. Recycling of Metals

    DEFF Research Database (Denmark)

    Damgaard, Anders; Christensen, Thomas Højlund

    2011-01-01

    Metals like iron and aluminium are produced from mineral ore and used for a range of products, some of which have very short lifetimes and thus constitute a major fraction of municipal waste. Packaging in terms of cans, foils and containers are products with a short lifetime. Other products like...... appliances, vehicles and buildings, containing iron and aluminium metals, have long lifetimes before they end up in the waste stream. The recycling of production waste and postconsumer metals has a long history in the metal industry. Some metal smelters are today entirely based on scarp metals. This chapter...... describes briefly how iron and aluminium are produced and how scrap metal is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of metal recycling. Copper and other metals are also found in waste but in much smaller...

  9. Nuclear reactor recyclation device

    International Nuclear Information System (INIS)

    Takigawa, Yukio; Chuma, Kazuto

    1987-01-01

    Purpose: To prevent the unevenness for the coolant flow rate even when abnormality occurs to one of recycling pumps. Constitution: A plurality of jet pumps disposed at an interval around the reactor core are divided circumferentially into two sets, and a pipeway is disposed to the outside of each pair including recycling pumps corresponding to each of the sets. The pipeway is connected to the recycling inlet of the jet pump by way of a manifold. The discharge portion of the recycling pumps of the loop pipeway are connected with each other by way of communication pipes, and a normally closed valve is disposed to the communication pipe and the normally closed valve of the communication pipe is opened upon detecting abnormality for one of the recycling pumps. Thus, if either one of the pair of recycling pumps shows abnormal state, coolants flows from the other of pipeway to the outside of the loop pipeway and coolants are supplied from all the jet pumps to the reactor core portion and, accordingly, the not-uniform flow rate can be prevented to eliminate undesired effect on the reactor core. (Kamimura, M.)

  10. Recycling - Danish Waste Management Strategy

    DEFF Research Database (Denmark)

    Romann, Anne Funch; Thøgersen, John; Husmer, Lis

    The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials.......The report challanges recycling as the only waste handling strategy. The tonnes of recycled materials should not be the only goal - it is essential to minimize the waste production and focus on eliminating hazardous materials....

  11. Length sensing and control of a Michelson interferometer with power recycling and twin signal recycling cavities.

    Science.gov (United States)

    Gräf, Christian; Thüring, André; Vahlbruch, Henning; Danzmann, Karsten; Schnabel, Roman

    2013-03-11

    The techniques of power recycling and signal recycling have proven as key concepts to increase the sensitivity of large-scale gravitational wave detectors by independent resonant enhancement of light power and signal sidebands within the interferometer. Developing the latter concept further, twin signal recycling was proposed as an alternative to conventional detuned signal recycling. Twin signal recycling features the narrow-band sensitivity gain of conventional detuned signal recycling but furthermore facilitates the injection of squeezed states of light, increases the detector sensitivity over a wide frequency band and requires a less complex detection scheme for optimal signal readout. These benefits come at the expense of an additional recycling mirror, thus increasing the number of degrees of freedom in the interferometer which need to be controlled.In this article we describe the development of a length sensing and control scheme and its successful application to a tabletop-scale power recycled Michelson interferometer with twin signal recycling. We were able to lock the interferometer in all relevant longitudinal degrees of freedom and thus laid the foundation for further investigations of this interferometer configuration to evaluate its viability for the application in gravitational wave detectors.

  12. Innovative insurance plan promises to leverage green power

    International Nuclear Information System (INIS)

    Edge, Gordon

    1999-01-01

    This article explains the gap between customers of green power signing short term (1-2 year) contracts and the banks wanting power purchase agreements for ten or more years before lending on new projects. Details are given of a new initiative from the US green power industry for a green premium for green power marketeers with the idea of an insurance product to take some of the risk and bridge the gap. Examples of coverage under the green power insurance proposal are discussed, and the funding and implementation of the scheme, and the effect of the insurance are considered

  13. Nuclear recycling: costs, savings, and safeguards

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This chapter discusses the economics, physical and chemical processes, and safety of nuclear fuel recycling. The spent fuel must be chemically reprocessed in order to recover uranium and plutonium. Topics considered include indifference costs, recycling in light water reactors (LWRs), plutonium in fast reactors, the choice between recycling and storage, safeguards, and weapons proliferation. It is shown that the economics of recycling nuclear fuel involves the actual costs and savings of the recycling operation in terms of money spent, made, and saved, and the impact of the recycling on the future cost of uranium

  14. Design and development of indoor device for recycling of domestic vegetable scrap.

    Science.gov (United States)

    Harshitha, Jampala; Krupanidhi, Sreerama; Kumar, Sunil; Wong, Jonathan

    2016-01-01

    Since the municipal waste management and community garbage-treating systems are in vogue, there is a growing need for the waste minimization to keep our vicinity clean and green. Therefore, a feasible indoor device is designed for recycling domestic vegetable scrap by adopting the principle of soil ecosystem. To arrive at the composting process control parameters in the proposed device, the soil from landfill and quarry along with supplements namely sawdust, cow dung/yeast and the resident thermophilic bacteria are analysed. The soil parameters namely pH, electrical conductivity, Organic carbon, P, K, Fe, moisture content and the presence of thermophilic bacteria varied significantly between negative control sample (NCS) and positive control sample (PCS) and post-treatment positive control group with dried cow dung (PPC-C)-derived compost is soft-textured and homogenous. Furthermore, the double-compartment-based device would be more feasible and appealing as a recycling bin rather than as a refuse storage bin primarily due to the inclusion of dish-plantation. The standardization of composting control parameters is discussed in this article.

  15. Benchmarking survey for recycling.

    Energy Technology Data Exchange (ETDEWEB)

    Marley, Margie Charlotte; Mizner, Jack Harry

    2005-06-01

    This report describes the methodology, analysis and conclusions of a comparison survey of recycling programs at ten Department of Energy sites including Sandia National Laboratories/New Mexico (SNL/NM). The goal of the survey was to compare SNL/NM's recycling performance with that of other federal facilities, and to identify activities and programs that could be implemented at SNL/NM to improve recycling performance.

  16. ECO-WALL SYSTEMS: USING RECYCLED MATERIAL IN THE DESIGN OF COMMERCIAL INTERIOR WALL SYSTEMS FOR BUILDINGS

    Science.gov (United States)

    This proposal describes an interdisciplinary project involving students from several academic departments at Miami University in the design of commercial wall systems to be manufactured from recycled materials. The goal of Phase I of the project is to develop and conduct prelimi...

  17. A tale of five cities: Using recycling frameworks to analyse inclusive recycling performance.

    Science.gov (United States)

    Scheinberg, Anne; Simpson, Michael

    2015-11-01

    'Recycling' is a source of much confusion, particularly when comparing solid waste systems in high-income countries with those in low- and middle-income countries. Few analysts can explain why the performance and structure of recycling appears to be so different in rich countries from poor ones, nor why well-meaning efforts to implement recycling so often fail. The analysis of policy drivers, and the Integrated Sustainable Waste Management (ISWM) framework, come close to an explanation.This article builds on these earlier works, focusing in on five cities profiled in the 2010 UN-Habitat publication (Scheinberg A, Wilson DC and Rodic L (2010) Solid Waste Management in the World's Cities. UN-Habitat's Third Global Report on the State of Water and Sanitation in the World's Cities. Newcastle-on-Tyne, UK: Earthscan Publications). Data from these cities and others provides the basis for developing a new tool to analyse inclusive recycling performance. The points of departure are the institutional and economic relationships between the service chain, the public obligation to remove waste, pollution, and other forms of disvalue, and the value chain, a system of private enterprises trading valuable materials and providing markets for recyclables. The methodological innovation is to use flows of materials and money as indicators of institutional relationships, and is an extension of process flow diagramming.The authors are using the term 'recycling framework analysis' to describe this new form of institutional analysis. The diagrams increase our understanding of the factors that contribute to high-performance inclusive recycling. By focusing on institutional relationships, the article seeks to improve analysis, planning, and ultimately, outcomes, of recycling interventions. © The Author(s) 2015.

  18. Resource Efficient Metal and Material Recycling

    Science.gov (United States)

    Reuter, Markus A.; van Schaik, Antoinette

    Metals enable sustainability through their use and their recyclability. However, various factors can affect the Resource Efficiency of Metal Processing and Recycling. Some typical factors that enable Resource Efficiency include and arranged under the drivers of sustainability: Environment (Maximize Resource Efficiency — Energy, Recyclates, Materials, Water, Sludges, Emissions, Land); Economic Feasibility (BAT & Recycling Systems Simulation / Digitalization, Product vis-à-vis Material Centric Recycling); and Social — Licence to Operate (Legislation, consumer, policy, theft, manual labour.). In order to realize this primary production has to be linked systemically with typical actors in the recycling chain such as Original Equipment Manufacturers (OEMs), Recyclers & Collection, Physical separation specialists as well as process metallurgical operations that produce high value metals, compounds and products that recycle back to products. This is best done with deep knowledge of multi-physics, technology, product & system design, process control, market, life cycle management, policy, to name a few. The combination of these will be discussed as Design for Sustainability (DfS) and Design for Recycling (DfR) applications.

  19. Portuguese Consumers’ Green Purchase Behavior: An Analysis of its Antecedents and a Proposal of Segmentation

    Directory of Open Access Journals (Sweden)

    Paulo Ribeiro Cardoso

    2017-06-01

    Full Text Available This study analyzes how “Knowledge about environmental problems,” "Perceived consumer effectiveness,” and "Recycling behavior” can predict “Reported purchase of green products in general,” and “Reported purchase of specific green products.”  Another objective of this study is to identify different consumer segments based on antecedents of green purchasing behavior, observing demographic profiles and willingness to buy this type of products.  The data was collected in Portugal with the use of an online survey and the instrument was composed of five scales, adapted from previous studies.  The results confirm the existence of a positive relationship between the constructs.  It is also possible to identify three segments of consumers: “Less involved,” “Moderate,” and “Ecologists.”  This study has some practical implications, showing that consumption of green products can be stimulated if consumers are more aware of environmental problems and understand the importance of their individual behavior to prevent them.

  20. High efficient OLED displays prepared with the air-gapped bridges on quantum dot patterns for optical recycling

    Science.gov (United States)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo

    2017-02-01

    An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.

  1. Education & Collection Facility GSHP Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Joplin, Jeff [Denver Museum of Nature and Science, Denver, CO (United States)

    2015-03-28

    The Denver Museum of Nature & Science (DMNS) designed and implemented an innovative ground source heat pump (GSHP) system for heating and cooling its new Education and Collection Facility (ECF) building addition. The project goal was to successfully design and install an open-loop GSHP system that utilized water circulating within an underground municipal recycled (non-potable) water system as the heat sink/source as a demonstration project. The expected results were to significantly reduce traditional GSHP installation costs while increasing system efficiency, reduce building energy consumption, require significantly less area and capital to install, and be economically implemented wherever access to a recycled water system is available. The project added to the understanding of GSHP technology by implementing the first GSHP system in the United States utilizing a municipal recycled water system as a heat sink/source. The use of this fluid through a GSHP system has not been previously documented. This use application presents a new opportunity for local municipalities to develop and expand the use of underground municipal recycled (non-potable) water systems. The installation costs for this type of technology in the building structure would be a cost savings over traditional GSHP costs, provided the local municipal infrastructure was developed. Additionally, the GSHP system functions as a viable method of heat sink/source as the thermal characteristics of the fluid are generally consistent throughout the year and are efficiently exchanged through the GSHP system and its components. The use of the recycled water system reduces the area required for bore or loop fields; therefore, presenting an application for building structures that have little to no available land use or access. This GSHP application demonstrates the viability of underground municipal recycled (non-potable) water systems as technically achievable, environmentally supportive, and an efficient

  2. Printability of papers recycled from toner and inkjet-printed papers after deinking and recycling processes.

    Science.gov (United States)

    Karademir, Arif; Aydemir, Cem; Tutak, Dogan; Aravamuthan, Raja

    2018-04-01

    In our contemporary world, while part of the fibers used in the paper industry is obtained from primary fibers such as wood and agricultural plants, the rest is obtained from secondary fibers from waste papers. To manufacture paper with high optical quality from fibers of recycled waste papers, these papers require deinking and bleaching of fibers at desired levels. High efficiency in removal of ink from paper mass during recycling, and hence deinkability, are especially crucial for the optical and printability quality of the ultimate manufactured paper. In the present study, deinkability and printability performance of digitally printed paper with toner or inkjet ink were compared for the postrecycling product. To that end, opaque 80 g/m 2 office paper was digitally printed under standard printing conditions with laser toner or inkjet ink; then these sheets of paper were deinked by a deinking process based on the INGEDE method 11 p. After the deinking operation, the optical properties of the obtained recycled handsheets were compared with unprinted (reference) paper. Then the recycled paper was printed on once again under the same conditions as before with inkjet and laser printers, to monitor and measure printing color change before and after recycling, and differences in color universe. Recycling and printing performances of water-based inkjet and toner-based laser printed paper were obtained. The outcomes for laser-printed recycled paper were better than those for inkjet-printed recycled paper. Compared for luminosity Y, brightness, CIE a* and CIE b* values, paper recycled from laser-printed paper exhibited higher value than paper recycled from inkjet-printed paper.

  3. Green Trends in the Hotel Industry - Status and Opportunities of SERBIA

    Directory of Open Access Journals (Sweden)

    Bela Muhi Muhi

    2013-03-01

    Full Text Available So-called "green" hotels that are trying to respect the rules of environmental pollution and reduce it to a minimum have become wide spread recently. The main principle of this trend is to use a variety of methods of responsible hotel operations, to reduce energy, water consumption and carbon dioxide emissions, to take care of the decomposition of solid waste and increase the recycling of waste materials, to use conventional detergents and other chemical agents to the lower measure and replace it by harmless "organic", to prevent or at least reduce the pollution of the environment and, wherever possible to preserve local biodiversity. In this paper, the authors provide an overview of green trends in the hotel industry with a focus on status and opportunities in Serbia.

  4. Architectural dimension of sustainability: Re-establishing the concept of recycling

    Directory of Open Access Journals (Sweden)

    Šijaković Milan

    2017-01-01

    Full Text Available Building related processes as water pollution, landfill waste, energy use and related emissions of global warming gases, material and land loss, are undisputable proofs of the devastating effects of the construction industry on our environment. Given that only a small percentage of a total building stock is made out of new work, it is not enough to develop strategies and principles for a sustainable design only for the new projects, but for the existing buildings as well. Therefore, it is essential that, through repurposing, we consider what can be done with what we already have if we are to significantly benefit sustainability agenda in the future. This research focuses on the concept of architectural recycling as a method for achieving sustainable architectural design. In the first place, two concepts, two extremes in dealing with existing buildings will be analysed: 1 preservation as radical stasis and 2 destruction as radical change. This analysis will enable the formulation of the concept of architectural recycling as the ‘preservation through change’, viewed as a sustainable response to rapidly changing conditions. The elaboration of the concept of architectural recycling, as a key method for responding to the sustainability agenda, is the focus of this paper. [Project of the Serbian Ministry of Education, Science and Technological Development, Grant no. TR 36035: Spatial, Environmental, Energy and Social Aspects of Developing Settlements and Climate Change - Mutual Impacts

  5. Recycling of Glass

    DEFF Research Database (Denmark)

    Christensen, Thomas Højlund; Damgaard, Anders

    2011-01-01

    Glass is used for many purposes, but in the waste system glass is predominantly found in terms of beverage and food containers with a relatively short lifetime before ending up in the waste. Furthermore there is a large amount of flat glass used in building materials which also ends up in the waste...... system; this glass though has a long lifetime before ending up in the waste. Altogether these product types add up to 82% of the production of the European glass industry (IPCC, 2001). Recycling of glass in terms of cleaning and refilling of bottles as well as the use of broken glass in the production...... of new glass containers is well established in the glass industry. This chapter describes briefly howglass is produced and howwaste glass is recycled in the industry. Quality requirements and use of recycled products are discussed, as are the resource and environmental issues of glass recycling....

  6. Recycle and reuse of radioactive scrap metals within the department of energy

    International Nuclear Information System (INIS)

    Adams, V.; Murphie, W.; Gresalfi, M.

    2000-01-01

    The United States Department of Energy (DOE) National Center of Excellence for Metals Recycle (NMR) is pursuing recycle and reuse alternatives to burial of radioactive scrap metal. This approach is being implemented in a safe and environmentally sound manner, while significantly lowering dis-positioning cost and accelerating cleanup activities. This paper will define the NMR's success to date in promoting safe and cost effective recycle and reuse strategies for DOE's excess metals, through the use of case studies. The paper will also present actual volumes of metal moved by DOE into restricted and unrestricted uses since 1997. In addition, this paper will discuss the principle underlying the Three Building Decommissioning and Decontamination (D and D) Project in Oak Ridge, Tennessee. In January 2000, the Secretary of Energy placed a moratorium on the unrestricted release of volumetrically contaminated metals from the DOE sites. Pursuant to that moratorium, the Secretary also established a ''Re-Use and Recycling Task Force'' to conduct a review of DOE policies regarding the management and release of all materials for recycle and reuse from DOE facilities. This task force was charged to develop a set of recommendations to ensure the protection of public health and the environment, openness and public trust, and fiscal responsibility. This paper will present an overview of the DOE's present range of recycle and reuse alternatives to disposal, as practiced by the NMR, and discuss the policy and issues associated with the task force mission. (authors)

  7. Visualization of Environmental Waste by Manufacturing : Equip VSM with Green Perspective

    OpenAIRE

    Hu, Juebin; Lu, Shan

    2011-01-01

    This thesis is a subtask of the research projectGreen Production System”, which is jointly launched and run by Volvo/Volvo Technology, Haldex, Saab and All-Emballage J.E. AB as industrial party, and Mälardalen University as academic party. The whole project is dedicated to develop “green production system” to be a competitive mean to Swedish automotive and manufacturing industry through four work packages, which are “Wet preconditions and frames of a green production system”, “Visualization...

  8. The status quo of green-building education in South Africa

    African Journals Online (AJOL)

    2015-10-30

    Oct 30, 2015 ... on projects in the property-development industry. The purpose of this study ... adequate technical understanding of sustainable building methods. ... skills in green building as promptly as role players in the green-building sector might .... The body of knowledge about sustainability and green buildings is ...

  9. Technical specifications for mechanical recycling of agricultural plastic waste.

    Science.gov (United States)

    Briassoulis, D; Hiskakis, M; Babou, E

    2013-06-01

    Technical specifications appropriate for the recycling of agricultural plastic wastes (APWs), widely accepted by the recycling industry were developed. The specifications establish quality standards to be met by the agricultural plastics producers, users and the agricultural plastic waste management chain. They constitute the base for the best economical and environmental valorisation of the APW. The analysis of the APW streams conducted across Europe in the framework of the European project "LabelAgriWaste" revealed the inherent characteristics of the APW streams and the inherent constraints (technical or economical) of the APW. The APW stream properties related to its recycling potential and measured during pilot trials are presented and a subsequent universally accepted simplified and expanded list of APW recycling technical specifications is proposed and justified. The list includes two sets of specifications, applied to two different quality categories of recyclable APW: one for pellet production process ("Quality I") and another one for plastic profile production process ("Quality II"). Parameters that are taken into consideration in the specifications include the APW physical characteristics, contamination, composition and degradation. The proposed specifications are focused on polyethylene based APW that represents the vast majority of the APW stream. However, the specifications can be adjusted to cover also APW of different materials (e.g. PP or PVC) that are found in very small quantities in protected cultivations in Europe. The adoption of the proposed specifications could transform this waste stream into a labelled commodity traded freely in the market and will constitute the base for the best economical and environmental valorisation of the APW. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. You're a "What"? Recycling Coordinator

    Science.gov (United States)

    Torpey, Elka Maria

    2011-01-01

    Recycling coordinators supervise curbside and dropoff recycling programs for municipal governments or private firms. Today, recycling is mandatory in many communities. And advancements in collection and processing methods have helped to increase the quantity of materials for which the recycling coordinator is responsible. In some communities,…

  11. DOE's Public Database for Green Building Case Studies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Torcellini, P. A.; Crawley, D. B.

    2003-11-01

    To help capture valuable information on''green building'' case studies, the U.S. Department of Energy has created an online database for collecting, standardizing, and disseminating information about high-performance, green projects. Type of information collected includes green features, design processes, energy performance, and comparison to other high-performance, green buildings.

  12. WATER RESISTANCE OF RECYCLED PAPER PANEL

    Directory of Open Access Journals (Sweden)

    Alexander Rani Suryandono

    2017-06-01

    Alice Wisler (2015 Facts about Recycling Paper. http://greenliving.lovetoknow.com/Facts_About_Recycling_Paper. Accessed 2 April 2016 Clay Miller (2011 5 Benefits of Recycling Paper. http://www.ways2gogreenblog.com/2011/09/28/5-benefits-of-recycling-paper/. Accessed 10 May 2016 Hari Goyal (2015 Grades of Paper. http://www.paperonweb.com/grade.htm. Accessed 2 April 2016 Hari Goyal (2015 Properties of Paper. http://www.paperonweb.com/paperpro.htm. Accessed 2 April 2016 Kathryn Sukalich (2016 Everything You Need to Know about Paper Recycling. http://earth911.com/business-policy/business/paper-recycling-details-basics/. Accessed 15 July 2016 [U1] Larry West (2015 Why Recycle Paper. http://environment.about.com/od/recycling/a/The-Benefits-Of-Paper-Recycling-Why-Recycle-Paper.htm. Accesed 15 June 2016 Marie-Luise Blue (2008 The Advantages of Recycling Paper. http://education.seattlepi.com/advantages-recycling-paper-3440.html. Accessed 15 June 2016 Nina Spitzer (2009 http://www.sheknows.com/home-and-gardening/articles/810025/the-impact-of-disposable-coffee-cups-on-the-environment. Accessed 15 June 2016 Radio New Zealand (2010 Iwi not Giving Up Fight against Tasman Mill Discharges. http://www.radionz.co.nz/news/regional/64521/iwi-not-giving-up-fight-against-tasman-mill-discharges. Accessed 15 July 2016 Rick LeBlanc (2016 Paper Recycling Facts, Figures and Information Sources. https://www.thebalance.com/paper-recycling-facts-figures-and-information-sources-2877868?_ga=1.192832942.544061388.1477446686. Accesed 2 April 2016 Robinson Meyer (2016 Will More Newspapers Go Nonprofit? http://www.theatlantic.com/technology/archive/2016/01/newspapers-philadelphia-inquirer-daily-news-nonprofit-lol-taxes/423960/. Accessed 3 August 2016 School of Engineering at Darthmouth (2010 Forest and Paper Industry. http://engineering.dartmouth.edu/~d30345d/courses/engs171/Paper.pdf. Accessed 2 April 2016 T. Subramani, V. Angappan. (2015. Experimental Investigation of Papercrete Concrete

  13. Technology options for future recycling

    International Nuclear Information System (INIS)

    Kikuchi, T.

    2001-01-01

    Recycling of nuclear material is indispensable, not only for using valuable resources but also for reducing the debt which we may leave to the next generations. Advanced reprocessing technologies have been developed in several countries to deal with the diversification of nuclear fuels. Also technologies derived from reprocessing or other fuel cycle areas have continued to be developed in terms of recycling. Cost effectiveness and waste-free processing are increasingly important factors in the applicable of an alternate recycling policy. This paper introduces an example of the studies in this field conducted in some countries including Japan and considers the establishment of effective recycling methodologies taking into account the uncertainty of future recycling policy. (author)

  14. Participatory financing for green growth

    International Nuclear Information System (INIS)

    Laville, Dorine; Phantharangsi, Maryvonne; Monnoyer-Smith, Laurence; Demeulenaere, Laurence; Lequeux, Typhaine; Cuny, Alicia

    2017-01-01

    As for the French Ministry of the Environment, participatory financing can be an innovating and mobilising tool to finance projects related to the energy and ecological transition, and as such a financing is promoted by the law on energy transition for a green growth, this publication presents this type of financing. It evokes its legal framework, its different forms (loan to companies, loan to individuals, gift, capital investment), its safe legal framework (definition of different types of status). It outlines how it can be a lever for energy and ecological transition even if green projects are difficult to quantify. It evokes the future introduction of a label, and the introduction of legal and regulatory measures to develop the renewable energy sector

  15. Toughening of recycled poly(ethylene terephthalate) with clay-compatibilized rubber phase

    Czech Academy of Sciences Publication Activity Database

    Kelnar, Ivan; Sukhanov, Valentin; Rotrekl, Jakub; Kaprálková, Ludmila

    2010-01-01

    Roč. 116, č. 6 (2010), s. 3621-3628 ISSN 0021-8995 R&D Projects: GA ČR GA106/06/0044 Institutional research plan: CEZ:AV0Z40500505 Keywords : recycled poly (ethylene terephthalate) * nanocomposite * clay compatibilization Subject RIV: JI - Composite Materials Impact factor: 1.240, year: 2010

  16. Recycled PET-organoclay nanocomposites with enhanced processing properties and thermal stability

    Czech Academy of Sciences Publication Activity Database

    Kráčalík, Milan; Studenovský, Martin; Mikešová, Jana; Kovářová, Jana; Sikora, Antonín; Thomann, R.; Friedrich, Ch.

    2007-01-01

    Roč. 106, č. 3 (2007), s. 2092-2100 ISSN 0021-8995 R&D Projects: GA MŽP 1C/7/48/04 Institutional research plan: CEZ:AV0Z40500505 Keywords : recycled PET * organoclay * melt compounding Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.008, year: 2007

  17. The nonlinear relationship between paper recycling and primary pulp requirements : modeling paper production and recycling in Europe

    NARCIS (Netherlands)

    Schenk, Niels J.; Moll, Henri C.; Potting, Josepha

    Waste paper is suitable for recycling back into paper or for incineration for energy recovery. If waste paper is used for recycling, secondary pulp replaces virgin pulp. Fiber recycling is limited, however, because of physical constraints—particularly the breakage of fiber in the recycling

  18. The Three Rs: Reduce, Reuse, Recycle.

    Science.gov (United States)

    Science Activities, 1991

    1991-01-01

    A student hand-out for a recycling unit defines the terms reduce, recycle, and reuse as they relate to solid waste management. Presents the characteristics of recyclable items such as yard wastes, metals, glass, and paper. Lists organizations through which more information about recycling can be obtained. (MCO)

  19. Green Trends in the Hotel Industry - Status and Opportunities of SERBIA

    OpenAIRE

    Bela Muhi; Jasmina Stankovic; Dusan Jovanovic; Rade B. Bozovic

    2013-01-01

    So-called "green" hotels that are trying to respect the rules of environmental pollution and reduce it to a minimum have become wide spread recently. The main principle of this trend is to use a variety of methods of responsible hotel operations, to reduce energy, water consumption and carbon dioxide emissions, to take care of the decomposition of solid waste and increase the recycling of waste materials, to use conventional detergents and other chemical agents to the lower measure and replac...

  20. Green knowledge management to support environmental sustainability; Green knowledge management zur Unterstuetzung oekologischer Nachhaltigkeit

    Energy Technology Data Exchange (ETDEWEB)

    Dornhoefer, Mareike-Jessica

    2017-01-24

    with the help of exemplary implementations. An additional aspect for the development of Green Knowledge Management bases on the intensive analysis of environmental information systems and the possibilities for extending these systems to environmental knowledge systems. The work presents a model of an environmental knowledge system called UmweltWiS. The logic of the system applies semantic technologies to provide a flexible and extensible structure to integrate public linked open data sources with an environmental background. The UmweltWiS concept is designed to be applicable in different application scenarios, in public and private context. This is documented with the help of three use case scenarios of forestry, material science and modern industry 4.0 production environments. At the end of the work it is discussed how Green Knowledge Management may address the recycling and reduction of knowledge to provide possibilities for reusability. The reduction of knowledge supports the prevention of redundant knowledge fragmentation or the usage of outdated knowledge.

  1. Expanding worldwide urban solid waste recycling: The Brazilian social technology in waste pickers inclusion.

    Science.gov (United States)

    Rutkowski, Jacqueline E; Rutkowski, Emília W

    2015-12-01

    'If an integrated urban waste management system includes the informal recycling sector (IRS), there is a good chance that more solid waste is recycled' is common sense. However, informal integration brings additional social, environmental, and economic benefits, such as reduction of operational costs and environmental impacts of landfilling. Brazil is a global best practice example in terms of waste picker inclusion, and has received international recognition for its recycling levels. In addition to analysing the results of inclusive recycling approaches, this article evaluates a selection of the best Brazilian inclusive recycling practices and summaries and presents the resulting knowledge. The objective is to identify processes that enable the replication of the inclusion of the informal recycling sector model as part of municipal solid waste management. Qualitative and quantitative data have been collected in 25 Brazilian cities that have contracted waste pickers co-operatives for door-to-door selective collection of recyclables. Field data was collected in action research projects that worked with waste pickers co-operatives between 2006 and 2013. The Brazilian informal recycling sector integration model improves municipal solid waste recycling indicators: it shows an increase in the net tonness recycled, from 140 to 208 t month(-1), at a much lower cost per tonne than conventional selective collection systems. Inclusive systems show costs of US$35 per tonne of recyclables collected, well below the national average of US$195.26. This inclusive model improves the quality of collected material and the efficiency of municipal selective collection. It also diminishes the negative impacts of informal recycling, by reducing child labour, and by improving the conditions of work, occupational health and safety, and uncontrolled pollution. Although treating the Brazilian experience as a blueprint for transfer of experience in every case is unrealistic, the results

  2. Green Transformational Leadership and Green Performance: The Mediation Effects of Green Mindfulness and Green Self-Efficacy

    Directory of Open Access Journals (Sweden)

    Yu-Shan Chen

    2014-09-01

    Full Text Available No prior literature explores the influence of green transformational leadership on green performance, thus, this study develops a novel research framework to fill the research gap. This study investigates the influence of green transformational leadership on green performance and discusses the mediation effects of green mindfulness and green self-efficacy by means of structural equation modeling (SEM. The results indicate that green transformational leadership positively influences green mindfulness, green self-efficacy, and green performance. Moreover, this study demonstrates that the positive relationship between green transformational leadership and green performance is partially mediated by the two mediators: green mindfulness and green self-efficacy. It means that green transformational leadership can not only directly affect green performance positively but also indirectly affect it positively through green mindfulness and green self-efficacy. Therefore, firms need to raise their green transformational leadership, green mindfulness, and green self-efficacy to increase their green performance.

  3. Reuse, Reduce, Recycle.

    Science.gov (United States)

    Briscoe, Georgia

    1991-01-01

    Discussion of recycling paper in law libraries is also applicable to other types of libraries. Results of surveys of law libraries that investigated recycling practices in 1987 and again in 1990 are reported, and suggestions for reducing the amount of paper used and reusing as much as possible are offered. (LRW)

  4. Creating a marketplace for green roofs in Chicago

    International Nuclear Information System (INIS)

    Vitt Sale, L.; Berkshire, M.

    2004-01-01

    Since 2003, the Chicago Department of Planning and Development has been encouraging city developers to consider installing green roofs on buildings in Chicago, with the belief that this practice results in mitigation of the urban heat island effect, cleaner runoff leaving green roofs, sound attenuation, aesthetic value, oxygen production, and mitigation of carbon dioxide emissions. However, the benefits to developers, which include reduced stormwater runoff, extended roof life and energy savings, in total do not offset the first cost premium of a green roof. Despite this, and with no mandate requiring green roofs, the marketplace is growing. After seeing green roofs on a tour in Europe, the mayor of Chicago encouraged the first design and installation of a 20,300 square foot demonstration green roof in Chicago, and other city-sponsored pilot projects followed shortly after. Since then, the number of green roofs in Chicago has grown to over one million square feet. A map of Chicago showing locations of most of the projects was presented. It was suggested that lower prices for green roofs, higher energy costs and an inclination to invest in long-term strategies would accelerate the market. In an effort to engage the public in dialogue, the Department of Planning and Development held seminars to promote the benefits of green roofs . Participants had many questions about the applicability of green roofs to Chicago, expressing skepticism that Chicago's climate would provide the same benefits as in Europe. Other concerns were expressed regarding the devaluation of property values resulting from placing green roofs on buildings; doubts about roof leaks; maintenance practices; and, bugs and mold. Since the first cost premium of the system remains a question, most participants expressed interest in some kind of incentive program, but remained open-minded if benefits could be proved. 6 figs

  5. Creating a marketplace for green roofs in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Vitt Sale, L. [Wright and Co. Chicago, IL (United States); Berkshire, M. [City of Chicago, IL (United States)

    2004-07-01

    Since 2003, the Chicago Department of Planning and Development has been encouraging city developers to consider installing green roofs on buildings in Chicago, with the belief that this practice results in mitigation of the urban heat island effect, cleaner runoff leaving green roofs, sound attenuation, aesthetic value, oxygen production, and mitigation of carbon dioxide emissions. However, the benefits to developers, which include reduced stormwater runoff, extended roof life and energy savings, in total do not offset the first cost premium of a green roof. Despite this, and with no mandate requiring green roofs, the marketplace is growing. After seeing green roofs on a tour in Europe, the mayor of Chicago encouraged the first design and installation of a 20,300 square foot demonstration green roof in Chicago, and other city-sponsored pilot projects followed shortly after. Since then, the number of green roofs in Chicago has grown to over one million square feet. A map of Chicago showing locations of most of the projects was presented. It was suggested that lower prices for green roofs, higher energy costs and an inclination to invest in long-term strategies would accelerate the market. In an effort to engage the public in dialogue, the Department of Planning and Development held seminars to promote the benefits of green roofs . Participants had many questions about the applicability of green roofs to Chicago, expressing skepticism that Chicago's climate would provide the same benefits as in Europe. Other concerns were expressed regarding the devaluation of property values resulting from placing green roofs on buildings; doubts about roof leaks; maintenance practices; and, bugs and mold. Since the first cost premium of the system remains a question, most participants expressed interest in some kind of incentive program, but remained open-minded if benefits could be proved. 6 figs.

  6. Central sorting and recovery of MSW recyclable materials: A review of technological state-of-the-art, cases, practice and implications for materials recycling

    DEFF Research Database (Denmark)

    Cimpan, Ciprian; Maul, Anja; Jansen, Michael

    2015-01-01

    Today's waste regulation in the EU comprises stringent material recovery targets and calls for comprehensive programs in order to achieve them. A similar movement is seen in the US where more and more states and communities commit to high diversion rates from landfills. The present paper reviews...... scientific literature, case studies and results from pilot projects, on the topic of central sorting of recyclable materials commonly found in waste from households. The study contributes, inter alia, with background understanding on the development of materials recovery, both in a historical...... sorting of residual MSW is found for areas where source separation and separate collection is difficult, such as urban agglomerations, and can in such areas contribute to increasing recycling rates, either complementary to- or as a substitute for source separation of certain materials, such as plastics...

  7. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    International Nuclear Information System (INIS)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-01-01

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: (1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs; (2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs; (3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs; and (4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs

  8. FEASIBILITY OF RECYCLING PLUTONIUM AND MINOR ACTINIDES IN LIGHT WATER REACTORS USING HYDRIDE FUEL

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud; Todreas, Neil; Taiwo, Temitope

    2009-03-10

    The objective of this DOE NERI program sponsored project was to assess the feasibility of improving the plutonium (Pu) and minor actinide (MA) recycling capabilities of pressurized water reactors (PWRs) by using hydride instead of oxide fuels. There are four general parts to this assessment: 1) Identifying promising hydride fuel assembly designs for recycling Pu and MAs in PWRs 2) Performing a comprehensive systems analysis that compares the fuel cycle characteristics of Pu and MA recycling in PWRs using the promising hydride fuel assembly designs identified in Part 1 versus using oxide fuel assembly designs 3) Conducting a safety analysis to assess the likelihood of licensing hydride fuel assembly designs 4) Assessing the compatibility of hydride fuel with cladding materials and water under typical PWR operating conditions Hydride fuel was found to offer promising transmutation characteristics and is recommended for further examination as a possible preferred option for recycling plutonium in PWRs.

  9. What can recycling in thermal reactors accomplish?

    International Nuclear Information System (INIS)

    Piet, Steven J.; Matthern, Gretchen E.; Jacobson, Jacob J.

    2007-01-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives. (authors)

  10. What can Recycling in Thermal Reactors Accomplish?

    International Nuclear Information System (INIS)

    Steven Piet; Gretchen E. Matthern; Jacob J. Jacobson

    2007-01-01

    Thermal recycle provides several potential benefits when used as stop-gap, mixed, or backup recycling to recycling in fast reactors. These three roles involve a mixture of thermal and fast recycling; fast reactors are required to some degree at some time. Stop-gap uses thermal reactors only until fast reactors are adequately deployed and until any thermal-recycle-only facilities have met their economic lifetime. Mixed uses thermal and fast reactors symbiotically for an extended period of time. Backup uses thermal reactors only if problems later develop in the fast reactor portion of a recycling system. Thermal recycle can also provide benefits when used as pure thermal recycling, with no intention to use fast reactors. However, long term, the pure thermal recycling approach is inadequate to meet several objectives

  11. All projects related to | Page 622 | IDRC - International Development ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Topic: Waste management, WASTE RECYCLING, Poverty alleviation, ENVIRONMENTAL HEALTH, CARBON DIOXIDE, GREENHOUSE EFFECT. Region: Far East Asia, Indonesia, Central Asia, South Asia. Program: Climate Change. Total Funding: CA$ 180,800.00. Replicable Waste Recycling Project in Gianyar, Bali.

  12. Green corridors in freight logistics

    DEFF Research Database (Denmark)

    Panagakos, George

    of the performance of a green corridor in terms of pre-specified Key Performance Indicators (KPIs). The thesis builds on previous own work under the EUfinanced SuperGreen project and applies the new methodology on the GreCOR corridor extending from Oslo to Rotterdam. The scope of the two other objectives relates...... the rationale for a performance monitoring scheme has been established, the thesis critically reviews the SuperGreen methodology which consists of: (i) decomposing the corridor into transport chains, (ii) selecting a sample of typical chains, (iii) assessing these chains through a set of KPIs, and (iv......) aggregating the chain-level KPIs to corridor-level ones using proper weights. Unlike SuperGreen that suggests a study-based approach for constructing the corridor sample, the thesis proposes founding the selection of typical chains on the outcome of specialised transport models. The periodic collection...

  13. A Green Building--The Good, the Bad, the Neutral

    Science.gov (United States)

    McDermott, Richard L.

    2010-01-01

    In 2010, it's good to be Green. In the stampede to sustainable design, there are probably some Green features that have not received a lot of scrutiny, and some that may not apply to all projects. The author happens to have joined an institution with one of the larger Green office/classrooms buildings in the U.S. The University of Texas Health…

  14. Packaging waste recycling in Europe: is the industry paying for it?

    Science.gov (United States)

    da Cruz, Nuno Ferreira; Ferreira, Sandra; Cabral, Marta; Simões, Pedro; Marques, Rui Cunha

    2014-02-01

    This paper describes and examines the schemes established in five EU countries for the recycling of packaging waste. The changes in packaging waste management were mainly implemented since the Directive 94/62/EC on packaging and packaging waste entered into force. The analysis of the five systems allowed the authors to identify very different approaches to cope with the same problem: meet the recovery and recycling targets imposed by EU law. Packaging waste is a responsibility of the industry. However, local governments are generally in charge of waste management, particularly in countries with Green Dot schemes or similar extended producer responsibility systems. This leads to the need of establishing a system of financial transfers between the industry and the local governments (particularly regarding the extra costs involved with selective collection and sorting). Using the same methodological approach, the authors also compare the costs and benefits of recycling from the perspective of local public authorities for France, Portugal and Romania. Since the purpose of the current paper is to take note of who is paying for the incremental costs of recycling and whether the industry (i.e. the consumer) is paying for the net financial costs of packaging waste management, environmental impacts are not included in the analysis. The work carried out in this paper highlights some aspects that are prone to be improved and raises several questions that will require further research. In the three countries analyzed more closely in this paper the industry is not paying the net financial cost of packaging waste management. In fact, if the savings attained by diverting packaging waste from other treatment (e.g. landfilling) and the public subsidies to the investment on the "recycling system" are not considered, it seems that the industry should increase the financial support to local authorities (by 125% in France, 50% in Portugal and 170% in Romania). However, in France and

  15. Greening America's Capitals - Austin, TX

    Science.gov (United States)

    Report on the technical assistance project to help Austin, TX, develop a vision for the South Central Waterfront that incorporates green infrastructure to manage stormwater runoff, makes streets safer, and spurs investment.

  16. Blue green component and integrated urban design

    Directory of Open Access Journals (Sweden)

    Stanković Srđan M.

    2016-01-01

    Full Text Available This paper aims to demonstrate the hidden potential of blue green components, in a synergetic network, not as separate systems, like used in past. The innovative methodology of the project Blue Green Dream is presented through examples of good practice. A new approach in the project initiate thoughtful planning and remodeling of the settlement for the modern man. Professional and scientific public is looking for way to create more healthy and stimulating place for living. However, offered integrative solutions still remain out of urban and architectural practice. Tested technologies in current projects confirmed measurability of innovative approaches and lessons learned. Scientific and professional contributions are summarized in master's and doctoral theses that have been completed or are in process of writing.

  17. Project in fiscal 2000 of developing international standards for supporting new industries. Standardization of method for calculating recycling rate of automotive products; 2000 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Jidosha seihin no recycle ritsu no santei hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    With international standardization as a target, research has been performed for three years since fiscal 1998 on a method for calculating the recycling rate of automotive products. This paper summarizes the achievements thereof. In fiscal 1998, studies were conducted on major automobile materials, state of recycling in Japan and Europe, and trial monitoring on recycling execution rate in the dismantling and shredding stages. Despite uncertainties that remain in recycling, the importance of standardization has been affirmed. Beginning in fiscal 1999, discussions have been given on requirements for establishing the recycling possibility by means of dismantling automobiles. In the requirements for establishing thermal recycling, discussions were given, taking into account the state of legal regulations in Germany and the trial execution of the container and packaging recycling law in Japan. As a result, the standard draft for the method for calculating the recycling rate was established for automotive products, including the method for calculating the recycling possibility rate, and the requirements for establishing thermal recycling. For international standardization of the method for calculating the recycling possibility rate, discussions have begun at ISO/TC22/WG10. (NEDO)

  18. Many-Body Green Function of Degenerate Systems

    International Nuclear Information System (INIS)

    Brouder, Christian; Panati, Gianluca; Stoltz, Gabriel

    2009-01-01

    A rigorous nonperturbative adiabatic approximation of the evolution operator in the many-body physics of degenerate systems is derived. This approximation is used to solve the long-standing problem of the choice of the initial states of H 0 leading to eigenstates of H 0 +V for degenerate systems. These initial states are eigenstates of P 0 VP 0 , where P 0 is the projection onto a degenerate eigenspace of H 0 . This result is used to give the proper definition of the Green function, the statistical Green function and the nonequilibrium Green function of degenerate systems. The convergence of these Green functions is established.

  19. Lamps recycling aiming at the environment preservation

    International Nuclear Information System (INIS)

    Yamachita, Roberto Akira; Gama, Paulo Henrique R. Pereira; Haddad, Jamil; Santos, Afonso H. Moreira; Guardia, Eduardo C.

    1999-01-01

    The article discusses the following issues of lamps recycling in Brazil: mercury lamps recycling, recycling potential, energy conservation and environmental impacts, enterprises lamps recycling, and incentives policy

  20. A green roof grant program for Washington DC

    International Nuclear Information System (INIS)

    Johnson, P.A.

    2007-01-01

    The Chesapeake Bay Foundation (CBF) began its green roof demonstration project with $300,000 in funding provided by the DC Water and Sewer Authority. This paper reviewed the history of the project, its goals and early findings. The main objective was to demonstrate the technical, policy and economic feasibility of installing green roofs on commercial buildings in Washington DC and to promote green roofs as a means to manage storm water and improve water quality through the reduction of excessive runoff. The CBF has issued grants for the installation of 7 green roofs varying in size, design, location, and use. The projects included both new and existing structures designed to improve storm-water management in an urban area with significant pollution stress on the adjacent rivers. This paper provided technical, cost, and performance evaluations of each roof. A public outreach segment provided information to decision-makers to encourage more widespread replication of green roof technology throughout the metropolitan area. Much of the District of Columbia is served by a combined sewer system that becomes overloaded and discharges raw sewage into adjacent rivers during even moderately heavy rains. An average of 75 overflow events each year result in 1.5 billion gallons discharged into the Anacostia River. The installation of green roofs on buildings in the combined sewer area would retain storm water during these heavy rains and reduce the amount of overflow discharges. Apartments, as well as commercial and government buildings with mostly flat roofs are the most likely candidates for green roofs. The demonstration roofs are intended to become models, which all building owners could use as a guide for future plans for construction or re-construction to expand green roof coverage in Washington DC. It was emphasized that although such large-scale replication will take time and financial investments, it is achievable given enough political will and commercial awareness of

  1. Optical Determination of Lead Chrome Green in Green Tea by Fourier Transform Infrared (FT-IR Transmission Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Xiaoli Li

    Full Text Available The potential of Fourier transform infrared (FT-IR transmission spectroscopy for determination of lead chrome green in green tea was investigated based on chemometric methods. Firstly, the qualitative analysis of lead chrome green in tea was performed based on partial least squares discriminant analysis (PLS-DA, and the correct rate of classification was 100%. And then, a hybrid method of interval partial least squares (iPLS regression and successive projections algorithm (SPA was proposed to select characteristic wavenumbers for the quantitative analysis of lead chrome green in green tea, and 19 wavenumbers were obtained finally. Among these wavenumbers, 1384 (C = C, 1456, 1438, 1419(C = N, and 1506 (CNH cm-1 were the characteristic wavenumbers of lead chrome green. Then, these 19 wavenumbers were used to build determination models. The best model was achieved by least squares support vector machine (LS-SVMalgorithm with high coefficient of determination and low root-mean square error of prediction set (R2p = 0.864 and RMSEP = 0.291. All these results indicated the feasibility of IR spectra for detecting lead chrome green in green tea.

  2. An industry response to recycle 2000

    International Nuclear Information System (INIS)

    Motl, G.P.; Loiselle, V.

    1996-01-01

    The US DOE is expected to issue a policy early this year articulating DOE's position on the recycle of DOE radioactive scrap metal. In anticipation of this 'Recycle 2000' initiative, the nuclear industry has formed a new trade association called the Association of Radioactive Metal Recyclers (ARMR). This article describes the Recycle 2000 initiative, provides some background on the ARMR and its membership, and identifies industry views on the actions to be taken and issues to be resolved in Recycle 2000 is to become a reality

  3. Construction Waste Recycling Technologies: How to Define and Assess Their Economic, Environmental and Social Effects by the use of Input-Output Analysis

    DEFF Research Database (Denmark)

    Bozhilova-Kisheva, Kossara Petrova; Olsen, Stig Irving

    2012-01-01

    aggregates that due to the less quality are used mainly in road construction and less in buildings. Within the EU FP7 project Advanced Technologies for the Production of Cement and Clean Aggregates from Construction and Demolition Waste (C2CA), an innovative technology for CDW recycling to clean aggregates......Concrete is one of the most important building materials and it entails a big environmental impact making recycling relevant from an environmental perspective. Recycling of construction and demolition waste (CDW) containing concrete is being performed in the Netherlands resulting in recycled...

  4. Recycling Behavior: A Multidimensional Approach

    Science.gov (United States)

    Meneses, Gonzalo Diaz; Palacio, Asuncion Beerli

    2005-01-01

    This work centers on the study of consumer recycling roles to examine the sociodemographic and psychographic profile of the distribution of recycling tasks and roles within the household. With this aim in mind, an empirical work was carried out, the results of which suggest that recycling behavior is multidimensional and comprises the undertaking…

  5. Attributes to facilitate e-waste recycling behaviour

    Directory of Open Access Journals (Sweden)

    Senawi Nur Hidayah

    2016-01-01

    Full Text Available This study aims to identify the set of attributes to facilitate electronic waste (e-waste behaviour among the community. E-waste disposal is increasing from year to year in parallel with increasing of global population. The short lifespan of electronics and poor e-waste recycling behaviour is among the main contributors to the steadily increasing of e-waste generated. Current recycling rate among the nation is lacking behind, which is only 10.5%. A questionnaire survey has been conducted among the students in Universiti Teknologi Malaysia to evaluate the current e-waste recycling practice. The results showed that majority of the respondents did not recycle their e-waste on campus. Aggressive efforts is needed to realize the country’s target of 20% recycling rate in year 2020, one of the effective paths is to minimize e-waste generation via active e-waste recycling behaviour among the community. Extensive literatures have been reviewed to classify the attributes to facilitate effective e-waste recycling among the community. Total of five attributes that identified in this study which are Convenience of E- waste Recycling Infrastruture and Services, E-waste Recycling Information, Incentives For E-waste Recycling, Reminder to Recycle E-waste And E-waste Recycling Infrastructure and Services. The set of attributes identified in this study may serve as guideline for the management in designing program to foster e-waste recycling behaviour among the community.

  6. Mechanical properties of concrete containing recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate replacement

    Science.gov (United States)

    Khalid, Faisal Sheikh; Azmi, Nurul Bazilah; Sumandi, Khairul Azwa Syafiq Mohd; Mazenan, Puteri Natasya

    2017-10-01

    Many construction and development activities today consume large amounts of concrete. The amount of construction waste is also increasing because of the demolition process. Much of this waste can be recycled to produce new products and increase the sustainability of construction projects. As recyclable construction wastes, concrete and ceramic can replace the natural aggregate in concrete because of their hard and strong physical properties. This research used 25%, 35%, and 45% recycled concrete aggregate (RCA) and ceramic waste as coarse aggregate in producing concrete. Several tests, such as concrete cube compression and splitting tensile tests, were also performed to determine and compare the mechanical properties of the recycled concrete with those of the normal concrete that contains 100% natural aggregate. The concrete containing 35% RCA and 35% ceramic waste showed the best properties compared with the normal concrete.

  7. Recycling of used oil

    International Nuclear Information System (INIS)

    Vipulanandan, C.; Ghurye, G.

    1992-01-01

    This paper reports on used oil which is a valuable resource that should be recycled. Recycling used oil saves energy and natural resources. Used oil can be reprocessed and used as fuel in industrial burners and boilers. Unfortunately, more than 400 million gallons/year of used oil is lost through widespread dumping, partly due to lack of effective recycling procedures. Although used oil is not currently a federally listed hazardous waste, the U.S. EPA has proposed to list it as a hazardous waste, which will make recycling of used oil even more attractive. Laboratory samples, representing used oil, were used for detailed parametric studies and to determine the limitation of extending some of the current physical separation techniques such as sedimentation and centrifuging developed for oil-water and solid-liquid separation

  8. Challenges in plastics recycling

    DEFF Research Database (Denmark)

    Pivnenko, Kostyantyn; Jakobsen, L. G.; Eriksen, Marie Kampmann

    2015-01-01

    Recycling of waste plastics still remains a challenging area in the waste management sector. The current and potential goals proposed on EU or regional levels are difficult to achieve, and even to partially fullfil them the improvements in collection and sorting should be considerable. A study...... was undertaken to investigate the factors affecting quality in plastics recycling. The preliminary results showed factors primarily influencing quality of plastics recycling to be polymer cross contamination, presence of additives, non-polymer impurities, and polymer degradation. Deprivation of plastics quality......, with respect to recycling, has been shown to happen throughout the plastics value chain, but steps where improvements may happen have been preliminary identified. Example of Cr in plastic samples analysed showed potential spreading and accumulation of chemicals ending up in the waste plastics. In order...

  9. Applying green chemistry to the photochemical route to artemisinin

    Science.gov (United States)

    Amara, Zacharias; Bellamy, Jessica F. B.; Horvath, Raphael; Miller, Samuel J.; Beeby, Andrew; Burgard, Andreas; Rossen, Kai; Poliakoff, Martyn; George, Michael W.

    2015-06-01

    Artemisinin is an important antimalarial drug, but, at present, the environmental and economic costs of its semi-synthetic production are relatively high. Most of these costs lie in the final chemical steps, which follow a complex acid- and photo-catalysed route with oxygenation by both singlet and triplet oxygen. We demonstrate that applying the principles of green chemistry can lead to innovative strategies that avoid many of the problems in current photochemical processes. The first strategy combines the use of liquid CO2 as solvent and a dual-function solid acid/photocatalyst. The second strategy is an ambient-temperature reaction in aqueous mixtures of organic solvents, where the only inputs are dihydroartemisinic acid, O2 and light, and the output is pure, crystalline artemisinin. Everything else—solvents, photocatalyst and aqueous acid—can be recycled. Some aspects developed here through green chemistry are likely to have wider application in photochemistry and other reactions.

  10. Applying green chemistry to the photochemical route to artemisinin.

    Science.gov (United States)

    Amara, Zacharias; Bellamy, Jessica F B; Horvath, Raphael; Miller, Samuel J; Beeby, Andrew; Burgard, Andreas; Rossen, Kai; Poliakoff, Martyn; George, Michael W

    2015-06-01

    Artemisinin is an important antimalarial drug, but, at present, the environmental and economic costs of its semi-synthetic production are relatively high. Most of these costs lie in the final chemical steps, which follow a complex acid- and photo-catalysed route with oxygenation by both singlet and triplet oxygen. We demonstrate that applying the principles of green chemistry can lead to innovative strategies that avoid many of the problems in current photochemical processes. The first strategy combines the use of liquid CO2 as solvent and a dual-function solid acid/photocatalyst. The second strategy is an ambient-temperature reaction in aqueous mixtures of organic solvents, where the only inputs are dihydroartemisinic acid, O2 and light, and the output is pure, crystalline artemisinin. Everything else-solvents, photocatalyst and aqueous acid-can be recycled. Some aspects developed here through green chemistry are likely to have wider application in photochemistry and other reactions.

  11. Studies on recycled aggregates-based concrete.

    Science.gov (United States)

    Rakshvir, Major; Barai, Sudhirkumar V

    2006-06-01

    Reduced extraction of raw materials, reduced transportation cost, improved profits, reduced environmental impact and fast-depleting reserves of conventional natural aggregates has necessitated the use of recycling, in order to be able to conserve conventional natural aggregate. In this study various physical and mechanical properties of recycled concrete aggregates were examined. Recycled concrete aggregates are different from natural aggregates and concrete made from them has specific properties. The percentages of recycled concrete aggregates were varied and it was observed that properties such as compressive strength showed a decrease of up to 10% as the percentage of recycled concrete aggregates increased. Water absorption of recycled aggregates was found to be greater than natural aggregates, and this needs to be compensated during mix design.

  12. Recycling of waste poly(ethylene terephthalate) with castor oil using microwave heating

    Czech Academy of Sciences Publication Activity Database

    Beneš, Hynek; Slabá, J.; Walterová, Zuzana; Rais, David

    2013-01-01

    Roč. 98, č. 11 (2013), s. 2232-2243 ISSN 0141-3910 R&D Projects: GA MPO 2A-2TP1/135 Institutional support: RVO:61389013 Keywords : poly(ethylene terephthalate) * castor oil * chemical recycling Subject RIV: CD - Macromolecular Chemistry Impact factor: 2.633, year: 2013

  13. Analysis of the electric conductivity and pH behaviors in recycled drainage solution of rose cv. Charlotte plants grown in substrate

    Directory of Open Access Journals (Sweden)

    Luis Fernando Yepes V

    2013-12-01

    Full Text Available In open soilless cropping systems contamination from nutrient lixiviation is generated making it necessary to design closed or semi-closed systems, which require the determination of the maximum saline levels in recycling solutions. In this study, the electric conductivity (EC and pH behaviors were analyzed in drainage solution intended for recycling in the crop; in addition, parameters were used to estimate nutrient availability for the plants in a substrate based cropping system. This research project was carried out under greenhouse conditions in the municipality of Mosquera (Colombia. Rose cv. Charlotte grafted on "Natal briar" stocks were used, sown in pots arranged on elevated beds, 15 m in length. This project was carried out using a split-plot design with sub-plots (with the substrate as the main plot and the recycling as the sub-plot, three kinds of substrate and three recycling percentages (0, 50, and 100%, for a total of 27 experimental units. Substrate mixtures based on burned rice husk and coconut fiber were used. Recycling during one harvest cycle of the roses did not show EC and pH values above those that are considered to have a negative impact on production; however, an increasing behavior in the EC and pH values was observed. Likewise, no significant differences between the 50 and 100% recycling were observed, which means 100% recycling can be used, optimizing nutrient use and water conservation

  14. Recycling of Rare Earth Elements

    Science.gov (United States)

    Lorenz, Tom; Bertau, Martin

    2017-01-01

    Any development of an effective process for rare earth (RE) recycling has become more and more challenging, especially in recent years. Since 2011, when commodity prices of REs had met their all-time maximum, prices have dropped rapidly by more than 90 %. An economic process able to offset these fluctuations has to take unconventional methods into account beside well-known strategies like acid/basic leaching or solvent extraction. The solid-state chlorination provides such an unconventional method for mobilizing RE elements from waste streams. Instead of hydrochloric acid this kind of chlorination decomposes NH4Cl thermally to release up to 400 °C hot HCl gas. After cooling the resulting solid metal chlorides may be easily dissolved in pH-adjusted water. Without producing strongly acidic wastes and with NH4Cl as cheap source for hydrogen chloride, solid-state chlorination provides various advantages in terms of costs and disposal. In the course of the SepSELSA project this method was examined, adjusted and optimized for RE recycling from fluorescent lamp scraps as well as Fe14Nd2B magnets. Thereby many surprising influences and trends required various analytic methods to examine the reasons and special mechanisms behind them.

  15. Innovative Vacuum Distillation for Magnesium Recycling

    Science.gov (United States)

    Zhu, Tianbai; Li, Naiyi; Mei, Xiaoming; Yu, Alfred; Shang, Shixiang

    Magnesium recycling now becomes a very important subject as magnesium consumption increases fast around the world. All commonly used magnesium die-casting alloys can be recycled and recovered to the primary metal quality. The recycled materials may be comprised of biscuits, sprues, runners, flash, overflows, dross, sludge, scrap parts, and old parts that are returned from service, An innovative magnesium recycle method, vacuum distillation, is developed and proved out to be able to recycle magnesium scraps, especially machining chips, oily magnesium, smelting sludge, dross or the mixture. With this process at a specific temperature and environment condition, magnesium in scraps can be gasified and then solidified to become crystal magnesium crown. This `recycled' magnesium crown is collected and used as the raw material of magnesium alloys. The experimental results show the vacuum distillation is a feasible and plausible method to recycle magnesium. Further, the cost analysis will be addressed in this paper.

  16. Management and recycling of electronic waste

    International Nuclear Information System (INIS)

    Tanskanen, Pia

    2013-01-01

    Waste electrical and electronic equipment (WEEE) is one of the largest growing waste streams globally. Hence, for a sustainable environment and the economic recovery of valuable material for reuse, the efficient recycling of electronic scrap has been rendered indispensable, and must still be regarded as a major challenge for today’s society. In contrast to the well-established recycling of metallic scrap, it is much more complicated to recycle electronics products which have reached the end of their life as they contain many different types of material types integrated into each other. As illustrated primarily for the recycling of mobile phones, the efficient recycling of WEEE is not only a challenge for the recycling industry; it is also often a question of as-yet insufficient collection infrastructures and poor collection efficiencies, and a considerable lack of the consumer’s awareness for the potential of recycling electronics for the benefit of the environment, as well as for savings in energy and raw materials

  17. Establishing a green lights revolving fund

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-07-01

    The report details the experiences of the City of Houston in establishing a Green Lights Revolving Fund. It provides examples of key documents and guidelines which can be used in other jurisdictions to establish an internal revolving fund to provide continuing monies through recapture of cost savings for an ongoing program of energy improvements in governmental facilities. It provides guidelines on how to establish a continuing source of funds for governmental facility energy improvements. The report provides background information on the ongoing energy improvement programs in the City of Houston, including its participation in the Environmental Protection Agency`s Green Lights Program. It reviews the steps required to establish a Green Lights Revolving Fund, including the administrative, legal, budgetary, accounting, interdepartmental, mayoral, and governing body approvals and actions needed to create a self-sustaining revolving fund devoted to energy improvements. The report also describes two funding sources in addition to the grant seed funds which were used to increase the initial funds available in the Green Lights Revolving Fund. It provides sample documents for modification and use in other jurisdictions that want to use similar funding sources. It reports the initial project submission and selection procedure and criteria, and provides a transferable project application kit based on the criteria specified. It also details a sample repayment memorandum of understanding between departments, which can be used in other governments. Other transferable products provided in the report are sample energy audit summaries which were conducted by qualified, independent staff to determine the accuracy of the departmental project costs and savings payback calculations.

  18. Green business will remain green

    International Nuclear Information System (INIS)

    Marcan, P.

    2008-01-01

    It all started with two words. Climate change. The carbon dioxide trading scheme, which was the politicians' idea on solving the number one global problem, followed. Four years ago, when the project was begun, there was no data for project initiation. Quotas for polluters mainly from energy production and other energy demanding industries were distributed based on spreadsheets, maximum output and expected future development of economies. Slovak companies have had a chance to profit from these arrangements since 2005. Many of them took advantage of the situation and turned the excessive quotas into an extraordinary profit which often reached hundreds of million Sk. The fact that the price of free quotas offered for sale dropped basically to 0 in 2006 only proved that the initial distribution was too generous. And the market reacted to the first official measurements of emissions. Slovak companies also contributed to this development. However, when planning the maximum emission volumes for 2008-2012 period, in spite of the fact that actual data were available, their expectations were not realistic. A glance at the figures in the proposal of the Ministry of Environment is sufficient to realize that there will be no major change in the future. And so for many Slovak companies business with a green future will remain green for the next five years. The state decided to give to selected companies even more free space as far as emissions are concerned. The most privileged companies can expect quotas increased by tens of percent. (author)

  19. Environmental Project of I.E.S. Antoni Maura

    Science.gov (United States)

    Crespi Salom, Pere

    2010-05-01

    Environmental Project of I.E.S. Antoni Maura Author(s): Pere Crespí i Salom Teacher of Department of Biology and Geology and Environmental Coordinator (2009-2010) from I.E.S. Antoni Maura . Mallorca. Illes Balears. Spain Teachers participating in the project : Myriam Fuentes Milani, Olga Ballester Nebot, Antoni Salom Ruiz, Julio René Loayza Casanova, Puy Aguirre Rémirez, Yolanda Martínez Laserna, Jaume Puppo Lama, Carme Arrom , Dolors Aguiló Segura, Marga Ordinas Boter, Angel Fernàndez Albertí , Immaculada Suau López, Antònia Florit Torrandell, Isabel Mateu Arcos, Román Piña Valls i Pere Crespí Salom. Our institute takes part since 2004 in adapting environmentally the schools in the Balearics which consists of developing activities which aim is that both teachers and students acquire habits so as to apply to their ordinary lives though different participative commissions ( 10-15 teachers): 1st commission: recycling and reusing materials. Enough bins in the classrooms and floors: yellow for plastic, blue for paper, and green for the other. We tend to use recycled materials in different celebrations such as Carnival, Christmas, Saint Jordi and Environmental day. We also organise workshops for the teachers to develop afterwards with the students and nature of environmental exposures. 2nd commission: Scatter information ( MonMaura, Maurifull, Green window and website).Throughout different means we inform the teachers and students about all the school activities and where to consult.( www.iesantonimaura.net, Playful area , environmental project ). 3rd commission: Reusing text books.( there is a students service of borrowing books and giving them back at the end of the school year if the book is in good use.) 4th commission: Improving the school surroundings, the back garden and garden with native plants. Department of Biology and Geology is responsible for caring for an organic garden and in turn improve the center's garden with native plants within the

  20. The Compressor Recycle System

    OpenAIRE

    Barstad, Bjørn Ove

    2010-01-01

    The compressor recycle system is the main focus of this thesis. When the mass flow through a compressor becomes too low, the compressor can plunge into surge. Surge is a term that is used for axisymmetric oscillation through a compressor and is highly unwanted. The recycle system feeds compressed gas back to the intake when the mass flow becomes too low, and thereby act as a safety system.A mathematical model of the recycle system is extended and simulated in SIMULINK. The mathematical model ...

  1. Green Polymer Chemistry: Enzyme Catalysis for Polymer Functionalization

    Directory of Open Access Journals (Sweden)

    Sanghamitra Sen

    2015-05-01

    Full Text Available Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.

  2. Green polymer chemistry: enzyme catalysis for polymer functionalization.

    Science.gov (United States)

    Sen, Sanghamitra; Puskas, Judit E

    2015-05-21

    Enzyme catalyzed reactions are green alternative approaches to functionalize polymers compared to conventional methods. This technique is especially advantageous due to the high selectivity, high efficiency, milder reaction conditions, and recyclability of enzymes. Selected reactions can be conducted under solventless conditions without the application of metal catalysts. Hence this process is becoming more recognized in the arena of biomedical applications, as the toxicity created by solvents and metal catalyst residues can be completely avoided. In this review we will discuss fundamental aspects of chemical reactions biocatalyzed by Candida antarctica lipase B, and their application to create new functionalized polymers, including the regio- and chemoselectivity of the reactions.

  3. Ecological Footprint of Biological Resource Consumption in a Typical Area of the Green for Grain Project in Northwestern China

    Directory of Open Access Journals (Sweden)

    Jie Hu

    2015-01-01

    Full Text Available Following the implementation of the Green for Grain Project in 2000 in Guyuan, China, the decrease in cultivated land and subsequent increase in forest and grassland pose substantial challenges for the supply of biological products. Whether the current biologically productive land-use patterns in Guyuan satisfy the biological product requirements for local people is an urgent problem. In this study, the ecological footprints of biological resource consumption in Guyuan were calculated and analyzed based on the ‘City Hectare’ Ecological Footprint (EF Method. The EFs of different types of biological resource products consumed from different types of biologically productive land were then analyzed. In addition, the EFs of various biological resource products before and after the implementation of the Green for Grain Project (1998 and 2012 were assessed. The actual EF and bio-capacity (BC were compared, and differences in the EF and BC for different types of biologically productive lands before and after the project were analyzed. The results showed that the EF of Guyuan’s biological resource products was 0.65866 ha/cap, with an EF outflow and EF inflow of 0.2280 ha/cap and 0.0951 ha/cap, respectively. The per capita EF of Guyuan significantly decreased after the project, as did the ecological deficit. Whereas the cultivated land showed a deficit, grasslands were characterized by ecological surplus. The total EF of living resource consumption in Guyuan was 810,941 ha, and the total BC was 768,065 ha. In additional to current biological production areas, approximately 42,876 ha will be needed to satisfy the demands of Guyuan’s people. Cultivated land is the main type of biologically productive land that is needed.

  4. Impact on geologic repository usage from limited actinide recycle in pressurized light water reactors

    International Nuclear Information System (INIS)

    Wigeland, Roald A.; Bauer, Theodore H.; Hill, Robert N.; Stillman, John A.

    2007-01-01

    A project has been conducted as part of the U.S. Department of Energy Advanced Fuel Cycle Initiative to evaluate the impact of limited actinide recycling in light water reactors on the utilization of a geologic repository where loading of the repository is constrained by the decay heat of the emplaced materials. In this study, it was assumed that spent PWR fuel was processed, removing the uranium, plutonium, americium, and neptunium, along with the fission products cesium and strontium. Previous work had demonstrated that these elements were responsible for limiting loading in the repository based on thermal constraints. The plutonium, americium, and neptunium were recycled in a PWR, with process waste and spent recycled fuel being sent to the repository. The cesium and strontium were placed in separate storage for 100-300 years to allow for decay prior to disposal. The study examined the effect of single and multiple recycles of the recovered plutonium, americium, and neptunium, as well as different processing delay times. The potential benefit to the repository was measured by the increase in utilization of repository space as indicated by the allowable linear loading in the repository drifts (tunnels). The results showed that limited recycling would provide only a small fraction of the benefit that could be achieved with repeated processing and recycling, as is possible in fast neutron reactors. (author)

  5. Recycling of construction and demolition waste in Kuwait

    International Nuclear Information System (INIS)

    Kartam, N.; Al-Mutairi, N.; Al-Ghusain, I.; Al-Humoud, J.

    2002-01-01

    'Full text:' There is an increasing pressure on the construction industry to reduce costs and improve our environment. The fact is that both of these goals can be achieved at the same time. Although construction and demolition (C and D) constitutes a major type of waste in terms of volume and weight, its management and recycling efforts have not seen the light in Kuwait. The goal of this research project is to study methods leading to the minimization of the total C and D waste that is landfilled in Kuwait. This can be achieved by applying the waste management hierarchy in order of importance: 1) reduce, 2) re-use, 3) recycle, 4) incineration (energy recovery), and 5) safe disposal. This paper presents the current C and D waste disposal system in Kuwait and identifies potential problems to the environment, people and economy. Then, it investigates the recycling option to manage and control this major type of waste in an economically efficient and environmentally safe manner. There are significant volumes of potentially valuable and recoverable resources being wasted in the construction industry, and these figures are continuously growing as we are starting the new millennium. C and D waste constitutes 15%-30% of all solid waste entering landfills in various countries [Bossink 1995]; and thus it is a major type of waste. An estimated 2-3 million ton of construction and demolition waste are being only disposed of in Kuwait's landfill sites each year despite the limited available land (Industrial Investment Company, 1990). C and D waste is a target because it is both heavy and bulky, and therefore undesirable for disposal in engineered, lined landfills because of the space it consumes. On the other hand, many C and D materials have high potential for recovery and use. Recovering C and D waste can help communities reach their recycling goals, preserve valuable space in their local landfills, and create better opportunities for handling other kind of waste. Therefore

  6. MOX recycling-an industrial reality

    International Nuclear Information System (INIS)

    Shallo, G.D.F.

    1996-01-01

    Reprocessing and plutonium recycling have now attained industrial maturity in France and Europe. Specifically, mixed-oxide (MOX) fuel is fabricated and used in light water reactors (LWRs) in satisfactory operating conditions. The utilities and the fuel cycle industry experience no technical difficulties, and European recycling programs are growing steadily, from 18 reactors in operation today up to 50 expected around the year 2000, putting the system reprocessing-recycling in coherence: 25 t of plutonium will then be used each year to produce the electricity equivalence of 25 millions tons of oil. Plutonium recycling in MOX fuel in current LWRs proves to be technically safe and economically competitive and meets natural resource savings and environmental protection objectives. And recycling responds properly to the nonproliferation concerns. Such an industrial experience gives a unique reference for weapons plutonium disposition through MOX use in reactors

  7. Glycolysis of flexible polyurethane foam in recycling of car seats

    Czech Academy of Sciences Publication Activity Database

    Beneš, Hynek; Rösner, J.; Holler, Petr; Synková, Hana; Kotek, Jiří; Horák, Zdeněk

    2007-01-01

    Roč. 18, č. 2 (2007), s. 149-156 ISSN 1042-7147. [International Conference on Polymeric Materials in Automotive , Slovak Rubber Conference /17./. Bratislava, 10.5.2005-12.5.2005] R&D Projects: GA MŽP SL/7/26/05 Institutional research plan: CEZ:AV0Z40500505 Keywords : polyurethanes * foams * recycling Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.504, year: 2007

  8. ZZ WPPR, Pu Recycling Benchmark Results

    International Nuclear Information System (INIS)

    Lutz, D.; Mattes, M.; Delpech, Marc; Juanola, Marc

    2002-01-01

    Description of program or function: The NEA NSC Working Party on Physics of Plutonium Recycling has commissioned a series of benchmarks covering: - Plutonium recycling in pressurized-water reactors; - Void reactivity effect in pressurized-water reactors; - Fast Plutonium-burner reactors: beginning of life; - Plutonium recycling in fast reactors; - Multiple recycling in advanced pressurized-water reactors. The results have been published (see references). ZZ-WPPR-1-A/B contains graphs and tables relative to the PWR Mox pin cell benchmark, representing typical fuel for plutonium recycling, one corresponding to a first cycle, the second for a fifth cycle. These computer readable files contain the complete set of results, while the printed report contains only a subset. ZZ-WPPR-2-CYC1 are the results from cycle 1 of the multiple recycling benchmarks

  9. FY 1999 project on the development of new industry support type international standards. Standardization of a method to calculate recycling rates of automobile products; 1999 nendo shinki sangyo shiengata kokusai hyojun kaihatsu jigyo seika hokokusho. Jidosha seihin no recycle ritsu no santei hoho no hyojunka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose not only of solving the environmental problem but also of making effective use of resources and contributing to the appropriate treatment in the stage of the used resource, study was conducted of the standardization of a method to calculate recycle rates of automobile products. The FY 1999 results were summarized. In this fiscal year, to give definition of the recycle potentiality and thermal recycle, the following were proceeded with: trial evaluation of recycle potentiality, survey of the actual state of recycling of rubber/plastic parts, study of the requirements to realize the recycle potentiality, study of the requirements to realize the thermal recycle, and approaches to the international standardization. As to the trial evaluation of the recycle potentiality, tests to dismantle automobiles were made to assess the dismantlement, separation and recognition. The requirements to realize the recycle potentiality were studied. It was found out that few non-metallic materials are not recycled in the present situation. The paper studied what the requirements to realize the recycle potentiality and thermal recycle should be like basically since there is no recognition internationally unified. (NEDO)

  10. Fertilizer Effect of Phosphorus Recycling Products

    Directory of Open Access Journals (Sweden)

    Wilhelm Römer

    2018-04-01

    Full Text Available Between 2004 and 2011 the German Government funded 17 different projects to develop techniques of phosphorus recycling from wastewater, sewage sludges, and sewage sludge ashes. Several procedures had been tested, such as precipitation, adsorption, crystallization, nano-filtration, electro-dialysis, wet oxidation, pyrolysis, ion exchange, or bioleaching. From these techniques, 32 recycling products were tested by five different institutes for their agronomic efficiency, that is, their plant availability, mainly in pot experiments. This manuscript summarizes and compares these results to evaluate the suitability of different technical approaches to recycle P from wastes into applicable fertilizers. In total, 17 products of recycled sewage sludge ashes (SSA, one meat and bone meal ash, one sinter product of meat and bone meal, one cupola furnace slag, nine Ca phosphates from crystallization or from precipitation, Seaborne-Ca-phosphates, Seaborne-Mg-phosphate, and 3 different struvites were tested in comparison to controls with water soluble P, that is, either single super phosphate (SSP or triple super phosphate (TSP. Sandy and loamy soils (pH: 4.7–6.8; CAL-P: 33–49 ppm were used. The dominant test plant was maize. Phosphorus uptake from fertilizer was calculated by the P content of fertilized plants minus P content of unfertilized plants. Calculated uptake from all products was set in relation to uptake from water soluble P fertilizers (SSP or TSP as a reference value (=100%. The following results were found: (1 plants took up less than 25% P in 65% of all SSA (15 products; (2 6 products (26% resulted in P uptake of 25 and 50% relatively to water soluble P. Only one Mg-P product resulted in an uptake of 67%. With cupola furnace slag, 24% P uptake was reached on sandy soil and nearly the same value as TSP on loamy soil. The uptake results of Ca phosphates were between 0 and 50%. Mg-P products from precipitation processes consistently showed a

  11. Hot trends in design : chic sustainability, unique driving factors and boutique green roofs

    Energy Technology Data Exchange (ETDEWEB)

    Velazquez, L.S. [American Society of Landscape Architects, Washington, DC (United States)]|[Greenroofs.com, Alpharetta, GA (United States); Kiers, K. [Greenroofs.com, Alpharetta, GA (United States)

    2007-07-01

    Green roofs are well known for their ecological benefits but less for their architectural usage. Green roofs offer more to the urban landscape than simply ecological, economic and aesthetic attributes of storm water management, temperature and energy reduction, and provision of additional green space. This paper focused on the top ten architectural trends in vegetated rooftop design. It addressed issues regarding client demands for green roofs and questioned if green roofs should be defined solely by their function as an ecological cover. The top ten trends revealed out-of-the ordinary applications, specialty designs and unusual projects on the boards. The paper looked beyond storm water and heat islands, and explored plans for innovative recreation, including a rooftop ski slope in Delft, the Netherlands, and a converted helipad turned into temporary grass tennis court in Dubai. The paper also presented less typical green roof market drivers, such as a doggie green space for a 10-year old, 9-pound Yorkie and a rooftop garden with plants from the Bible as a teaching laboratory for ministers. Other proposed projects that were discussed included plans for rice paddies on rooftop farms in China and the Vancouver Olympic Village with 50 per cent green roof coverage. The top ten list was organized under the following topics: boutique green roofs; sports and recreation; living roofs and living walls; eco resorts, hotels and therapeutic gardens; food on the roof; cutting edge applications; government and big box applications, cool green residences; mega green roofs; and, visionary proposed projects. 77 refs., 77 figs.

  12. Support Process Development for Assessing Green Infrastructure in Omaha, NE

    Science.gov (United States)

    Evaluates Omaha’s current process for assessing green infrastructure projects and recommends improvements for comparing green and gray infrastructure. Compares Omaha’s design criteria to other cities. Reviews other US programs with rights-of-way criteria.

  13. Approaching value added planning in the green environment

    NARCIS (Netherlands)

    Cilliers, E.J.; Timmermans, W.

    2013-01-01

    Purpose – The purpose of this paper is to link economic value to urban green spaces to enhance the value of green urban spaces, along with the added benefit it can offer to the urban environment. Design/methodology/approach – As part of the VALUE project (Valuing Attractive Landscapes in the Urban

  14. Frequent Questions on Recycling

    Science.gov (United States)

    This is a list of frequent questions on recycling, broken down into five categories. These are answers to common questions that EPA has received from press and web inquiries. This list is located on the Reduce, Reuse, Recycle website.

  15. Evaluation of Green Roof Water Quantity and Quality Performance in an Urban Climate

    Science.gov (United States)

    In this report we present an analysis of water benefits from an array of observed green roof and control (non-vegetated) roof project sites throughout NYC. The projects are located on a variety of building sites and represent a diverse set of available extensive green roof instal...

  16. Recycled concrete with coarse recycled aggregate. An overview and analysis

    Directory of Open Access Journals (Sweden)

    B. González-Fonteboa

    2018-04-01

    Full Text Available The construction field has contributed to environmental degradation, producing a high amount of construction and demolition waste (C&D waste and consuming large volumes of natural resources. In this context, recycled concrete (RC has been recognised as a means to preserve natural resources and reduce space for waste storage. During the last decades, many researchers have developed works studying different recycled concrete properties. This review focuses on structural RC made with coarse recycled aggregate from concrete waste. The main objective is to provide a state of the art report on RC’s properties and an analysis on how to predict them taking into account relevant research works. Moreover, the study tries to collect and update RC findings, proposing equations to define RC’s performance, in terms of mechanical strength, modulus of elasticity, stress-strain, creep and shrinkage.

  17. Green roofs: potential at LANL

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Elena M [Los Alamos National Laboratory

    2009-01-01

    strokes, heat exhaustion, and pollution that can agitate the respiratory system. The most significant savings associated with green roofs is in the reduction of cooling demands due to the green roof's thermal mass and their insulating properties. Unlike a conventional roof system, a green roof does not absorb solar radiation and transfer that heat into the interior of a building. Instead the vegetation acts as a shade barrier and stabilizes the roof temperature so that interior temperatures remain comfortable for the occupants. Consequently there is less of a demand for air conditioning, and thus less money spent on energy. At LANL the potential of green roof systems has already been realized with the construction of the accessible green roof on the Otowi building. To further explore the possibilities and prospective benefits of green roofs though, the initial capital costs must be invested. Three buildings, TA-03-1698, TA-03-0502, and TA-53-0031 have all been identified as sound candidates for a green roof retrofit project. It is recommended that LANL proceed with further analysis of these projects and implementation of the green roofs. Furthermore, it is recommended that an urban forestry program be initiated to provide supplemental support to the environmental goals of green roofs. The obstacles barring green roof construction are most often budgetary and structural concerns. Given proper resources, however, the engineers and design professionals at LANL would surely succeed in the proper implementation of green roof systems so as to optimize their ecological and monetary benefits for the entire organization.

  18. Integración conceptual Green-Lean en el diseño, planificación y construcción de proyectos Green-Lean conceptual integration in the project design, planning and construction

    Directory of Open Access Journals (Sweden)

    Patricia Martinez

    2009-01-01

    begin to be managed by all the agents involved: engineers, architects, owners, among others. Sustainability concept, being of general character, has remained in a conceptual context, becoming difficult the development of tools that facilitate its consideration through the entire project life cycle. This study had as purpose to integrate the philosophies of Sustainable Construction, or Green Building, and Lean Construction, the latter employee as the necessary complement to give an analysis baseline focused on the production management. The design, planning and construction stages were defined as the enclosed life cycle, being determined integration vectors by means of the morphological analysis and cross-impact matrix. The vectors with direct relationship for the implementation of the Green-Lean integration were determined. As implementation tool of the Green-Lean integration, Constructability was used which allowed sequencing the construction processes. This conceptual exercise was only applied at design level. As a result, at conceptual level was stated that the tools applied in the project management (Lean Construction and Constructability, give a sound support for the implementation, and future application, of Sustainability criteria in the processes and stages involving the whole project life cycle.

  19. Experimental Demonstration of a Suspended Dual Recycling Interferometer for Gravitational Wave Detection

    OpenAIRE

    Heinzel, G.; Strain, K.; Mizuno, J.; Skeldon, K.; Willke, B.; Winkler, W.; Schilling, R.; Rüdiger, A.; Danzmann, K.

    1998-01-01

    The advanced scheme of “signal recycling” is to be used in the British-German GEO 600 project, in addition to “power recycling” (which has become standard for all laser-interferometer gravitational wave detector projects). This combination, “dual recycling,” has been demonstrated for the first time on a fully suspended interferometer, the Garching prototype with 30 m arm length. Signal enhancement and power buildup were as predicted; operation was reliable, and a significant contrast enhancem...

  20. Solid waste recycling in Rajshahi city of Bangladesh.

    Science.gov (United States)

    Bari, Q Hamidul; Hassan, K Mahbub; Haque, M Ehsanul

    2012-11-01

    Efficient recycling of solid wastes is now a global concern for a sustainable and environmentally sound management. In this study, traditional recycling pattern of solid waste was investigated in Rajshahi municipality which is the fourth largest city of Bangladesh. A questionnaire survey had been carried out in various recycle shops during April 2010 to January 2011. There were 140 recycle shops and most of them were located in the vicinity of Stadium market in Rajshahi. About 1906 people were found to be involved in recycling activities of the city. The major fraction of recycled wastes were sent to capital city Dhaka for further manufacture of different new products. Only a small amount of wastes, specially plastics, were processed in local recycle factories to produce small washing pots and bottle caps. Everyday, an estimated 28.13 tons of recycled solid wastes were handled in Rajshahi city area. This recycled portion accounted for 8.25% of the daily total generated wastes (341 ton d(-1)), 54.6% of total recyclable wastes (51.49 ton d(-1)) and 68.29% of readily recyclable wastes (41.19 ton d(-1)). Major recycled materials were found to be iron, glass, plastic, and papers. Only five factories were involved in preliminary processing of recyclable wastes. Collecting and processing secondary materials, manufacturing recycled-content products, and then buying recycled products created a circle or loop that ensured the overall success of recycling and generated a host of financial, environmental, and social returns. Copyright © 2012 Elsevier Ltd. All rights reserved.