WorldWideScience

Sample records for project flow measurement

  1. Simple Radiowave-Based Method For Measuring Peripheral Blood Flow Project

    Science.gov (United States)

    Oliva-Buisson, Yvette J.

    2014-01-01

    Project objective is to design small radio frequency based flow probes for the measurement of blood flow velocity in peripheral arteries such as the femoral artery and middle cerebral artery. The result will be the technological capability to measure peripheral blood flow rates and flow changes during various environmental stressors such as microgravity without contact to the individual being monitored. This technology may also lead to an easier method of detecting venous gas emboli during extravehicular activities.

  2. Feedwater flow measurements: challenges, current solutions, and 'soft' developments

    International Nuclear Information System (INIS)

    Ruan, D.; Roverso, D.; Fantoni, P.F.; Sanabrias, J.I.; Carrasco, J.A.; Fernandez, L.

    2002-07-01

    This report presents an early progress of a feasibility study of a computational intelligence approach to the enhancement of the accuracy of feedwater flow measurements in the framework of an ongoing cooperation between Tecnatom s.a. in Madrid and the OECD Halden Reactor Project (HRP) in Halden. The aim of this research project is to contribute to the development and validation of a flow sensor in a nuclear power plant (NPP). The basic idea is to combine the use of applied computational intelligence approaches (noise analysis, neural networks, fuzzy systems, wavelets etc.) with existing traditional flow measurements, and in particular with cross correlation flow meter concepts. In this report, Section 2 outlines relevant aspects of thermal power calculations on electrical power plants. Section 3 reviews from the available literature possible approaches and solutions for feedwater flow measurement, including ultrasonic flow meters, cross-correlation flow meters, and 'Virtural' flow meters with artificial neural networks. Section 4 reports typical experimental measurements at the Tecnatom's facility. Section 5 presents an integration approach and preliminary experimental tests. Section 6 discusses the role of soft computing techniques in the context of feedwater flow measurements related nuclear fields, and Section 7 highlights the future research direction. (Author)

  3. Standardizing instream flow requirements at hydropower projects in the Cascade Mountains, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Smith, I.M.; Sale, M.J.

    1993-06-01

    Instream flow requirements are common mitigation measures instituted in the bypassed reaches of hydroelectric diversion projects. Currently, there are two extremes among the ways to determine instream flow requirements: generic standard-setting methods and detailed, habitat-based, impact assessment methods such as the Instream Flow Incremental Methodology (IFIM). Data from streams in Washington state show a consistent pattern in the instream flow requirements resulting from the IFIM. This pattern can be used to refine the simpler standard-setting approaches and thereby provide better estimates of flow needs during early stages of project design.

  4. Instream flow needs below peaking hydroelectric projects

    International Nuclear Information System (INIS)

    Milhous, R.T.

    1991-01-01

    This paper reports on a method developed to assist in the determination of instream flow needs below hydroelectric projects operated in a peaking mode. Peaking hydroelectric projects significantly change streamflow over a short period of time; consequently, any instream flow methodology must consider the dual flows associated with peaking projects. The dual flows are the lowest flow and the maximum generation flow of a peaking cycle. The methodology is based on elements of the Physical Habitat Simulation System of the U.S. Fish and Wildlife Service and uses habitat, rather than fish numbers or biomas, as at basic response variable. All aquatic animals are subject to the rapid changes in streamflow which cause rapid swings in habitat quality. Some aquatic organisms are relatively fixed in location in the stream while others can move when flows change. The habitat available from a project operated in peaking mode is considered to be the minimum habitat occurring during a cycle of habitat change. The methodology takes in to consideration that some aquatic animals can move and others cannot move during a peaking cycle

  5. Development of an ultrasonic flow and temperature measurement system for pressurized water reactors

    International Nuclear Information System (INIS)

    James, R.W.; Lubnow, T.; Baumgart, G.; Ravetti, D.

    1996-01-01

    In U.S. nuclear plants, primary coolant flow and reactor thermal power are calculated from a measurement of feedwater flow to the steam generator combined with knowledge of steam generator heat transfer characteristics nd measurement of hot leg temperature by resistance temperature detectors (RTDs). The calculation of plant thermal output is complicated by an indirect measurement of primary coolant mass flow rate and thermal streaming in the region where hot leg temperature is typically measured. Uncertainty in the thermal output calculation results from uncertainties in steam generator characteristics, in the hot leg temperature due to thermal streaming, and in fouling of venturi nozzles used for feedwater flow measurement. This in turn leads to operation of power plants ar lower levels of efficiency. The Electric Power Research Institute (EPRI) has on ongoing project to develop a prototype system to directly measure primary coolant flow rate and bulk average temperature using ultrasonic transducers externally mounted on the pipe. The topic of this paper is a summary of the project experience in developing this system. The technology being developed in this project is based in part upon previously existing ultrasonic feedwater flow measurement technology developed by MPR Associates and Caldon, Inc EPRI is a non-profit company performing research for U.S. and international electric power utilities. (authors)

  6. Fast optical measurements and imaging of flow mixing

    DEFF Research Database (Denmark)

    Clausen, Sønnik; Fateev, Alexander; Nielsen, Karsten Lindorff

    Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics. F...... engine and visualisation of gas flow behaviour in cylinder.......Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics....... Fast time-and spectral-resolved measurements in 1.5-5.1 μm spectral range give information about flame characteristics like gas and particle temperatures, eddies and turbulent gas mixing. Time-resolved gas composition in that spectral range (H2O, CH4, CO2, CO) which is one of the key parameters...

  7. Uncertainty contributions to low flow projections in Austria

    Science.gov (United States)

    Parajka, J.; Blaschke, A. P.; Blöschl, G.; Haslinger, K.; Hepp, G.; Laaha, G.; Schöner, W.; Trautvetter, H.; Viglione, A.; Zessner, M.

    2015-11-01

    The main objective of the paper is to understand the contributions to the uncertainty in low flow projections resulting from hydrological model uncertainty and climate projection uncertainty. Model uncertainty is quantified by different parameterizations of a conceptual semi-distributed hydrologic model (TUWmodel) using 11 objective functions in three different decades (1976-1986, 1987-1997, 1998-2008), which allows disentangling the effect of modeling uncertainty and temporal stability of model parameters. Climate projection uncertainty is quantified by four future climate scenarios (ECHAM5-A1B, A2, B1 and HADCM3-A1B) using a delta change approach. The approach is tested for 262 basins in Austria. The results indicate that the seasonality of the low flow regime is an important factor affecting the performance of model calibration in the reference period and the uncertainty of Q95 low flow projections in the future period. In Austria, the calibration uncertainty in terms of Q95 is larger in basins with summer low flow regime than in basins with winter low flow regime. Using different calibration periods may result in a range of up to 60 % in simulated Q95 low flows. The low flow projections show an increase of low flows in the Alps, typically in the range of 10-30 % and a decrease in the south-eastern part of Austria mostly in the range -5 to -20 % for the period 2021-2050 relative the reference period 1976-2008. The change in seasonality varies between scenarios, but there is a tendency for earlier low flows in the Northern Alps and later low flows in Eastern Austria. In 85 % of the basins, the uncertainty in Q95 from model calibration is larger than the uncertainty from different climate scenarios. The total uncertainty of Q95 projections is the largest in basins with winter low flow regime and, in some basins, exceeds 60 %. In basins with summer low flows and the total uncertainty is mostly less than 20 %. While the calibration uncertainty dominates over climate

  8. Using Crossflow for Flow Measurements and Flow Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Chudnovsky, L.; Lopeza, A. [Advanced Measurement and Analysis Group Inc., Ontario (Canada); Park, M. H. [Sungjin Nuclear Engineering Co., Ltd., Gyeongju (Korea, Republic of)

    2016-10-15

    Ultrasonic Cross Correlation Flow Measurements are based on a flow measurement method that is based on measuring the transport time of turbulent structures. The cross correlation flow meter CROSSFLOW is designed and manufactured by Advanced Measurement and Analysis Group Inc. (AMAG), and is used around the world for various flow measurements. Particularly, CROSSFLOW has been used for boiler feedwater flow measurements, including Measurement Uncertainty Recovery (MUR) reactor power uprate in 14 nuclear reactors in the United States and in Europe. More than 100 CROSSFLOW transducers are currently installed in CANDU reactors around the world, including Wolsung NPP in Korea, for flow verification in ShutDown System (SDS) channels. Other CROSSFLOW applications include reactor coolant gross flow measurements, reactor channel flow measurements in all channels in CANDU reactors, boiler blowdown flow measurement, and service water flow measurement. Cross correlation flow measurement is a robust ultrasonic flow measurement tool used in nuclear power plants around the world for various applications. Mathematical modeling of the CROSSFLOW agrees well with laboratory test results and can be used as a tool in determining the effect of flow conditions on CROSSFLOW output and on designing and optimizing laboratory testing, in order to ensure traceability of field flow measurements to laboratory testing within desirable uncertainty.

  9. New sensor for measurement of low air flow velocity. Phase I final report

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Hashemian, M.; Riggsbee, E.T.

    1995-08-01

    The project described here is the Phase I feasibility study of a two-phase program to integrate existing technologies to provide a system for determining air flow velocity and direction in radiation work areas. Basically, a low air flow sensor referred to as a thermocouple flow sensor has been developed. The sensor uses a thermocouple as its sensing element. The response time of the thermocouple is measured using an existing in-situ method called the Loop Current Step Response (LCSR) test. The response time results are then converted to a flow signal using a response time-versus-flow correlation. The Phase I effort has shown that a strong correlation exists between the response time of small diameter thermocouples and the ambient flow rate. As such, it has been demonstrated that thermocouple flow sensors can be used successfully to measure low air flow rates that can not be measured with conventional flow sensors. While the thermocouple flow sensor developed in this project was very successful in determining air flow velocity, determining air flow direction was beyond the scope of the Phase I project. Nevertheless, work was performed during Phase I to determine how the new flow sensor can be used to determine the direction, as well as the velocity, of ambient air movements. Basically, it is necessary to use either multiple flow sensors or move a single sensor in the monitoring area and make flow measurements at various locations sweeping the area from top to bottom and from left to right. The results can then be used with empirical or physical models, or in terms of directional vectors to estimate air flow patterns. The measurements can be made continuously or periodically to update the flow patterns as they change when people and objects are moved in the monitoring area. The potential for using multiple thermocouple flow sensors for determining air flow patterns will be examined in Phase II

  10. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-07-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent).

  11. A new method of measuring the thermal flow

    Directory of Open Access Journals (Sweden)

    Grexová Slávka

    2001-03-01

    Full Text Available The subject of this article is the measurement of thermal flow under laboratory conditions. We can define thermal flow as the amount of heat transmitted through the surface of rock over a certain period of time.According to the Atlas of Geothermal Energy the thermal flow ranges from 40 to 120 mW/m2; it is not possible to measure directly on the surface of the rock. The conventional method of measurement is the use of “separation bar” thermic conduction measurement system or to measure the temperature of the rock in two different places at selected underground depth intervals.The method of measurement suggested by us combines these two techniques. The measurement is based on a sample of processed store from the Slovak Academy of Science. This sample represents the rock massiv:The complex model includes:- a heating system to imitate the thermal flow,- an isolation box to maintain stable conditions,- temperature stabilizing components (thermostat, bulbs, electric conductors,- a heat accumulator including a temperature sensor.A special computer program to measure the thermal flow was created using the Borland Delphi 3.0 programming language. The role of the program is to process extensive data quickly. The results of the measured temperatures and modelled thermal flow are displayed graphically in this article. As seen from the graph, the course of measurement thermal flow is linear. In our geographical location this value is cca 120 m W.m-2. This value proves, that at the projection physical model we are approximating to the reality in areas of sensitive elements. Another fact is that Joule heat which rose into a heater system of transformer straps under muster would thermal flow 2,25 W.m-2. From the present results that by follow the sensitivity measurement scanners it is needed to measure a minimum threefold during a longer time or to improve the sensitivity measurement chains.These measurements and analyses are not sufficient to make a final

  12. EDITORIAL: Measurement techniques for multiphase flows Measurement techniques for multiphase flows

    Science.gov (United States)

    Okamoto, Koji; Murai, Yuichi

    2009-11-01

    Research on multiphase flows is very important for industrial applications, including power stations, vehicles, engines, food processing and so on. Multiphase flows originally have nonlinear features because of multiphase systems. The interaction between the phases plays a very interesting role in the flows. The nonlinear interaction causes the multiphase flows to be very complicated. Therefore techniques for measuring multiphase flows are very useful in helping to understand the nonlinear phenomena. The state-of-the-art measurement techniques were presented and discussed at the sixth International Symposium on Measurement Techniques for Multiphase Flows (ISMTMF2008) held in Okinawa, Japan, on 15-17 December 2008. This special feature of Measurement Science and Technology includes selected papers from ISMTMF2008. Okinawa has a long history as the Ryukyus Kingdom. China, Japan and many western Pacific countries have had cultural and economic exchanges through Okinawa for over 1000 years. Much technical and scientific information was exchanged at the symposium in Okinawa. The proceedings of ISMTMF2008 apart from these special featured papers were published in Journal of Physics: Conference Series vol. 147 (2009). We would like to express special thanks to all the contributors to the symposium and this special feature. This special feature will be a milestone in measurement techniques for multiphase flows.

  13. Information Flows in Networked Engineering Design Projects

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Maier, Anja

    Complex engineering design projects need to manage simultaneously multiple information flows across design activities associated with different areas of the design process. Previous research on this area has mostly focused on either analysing the “required information flows” through activity...... networks at the project level or in studying the social networks that deliver the “actual information flow”. In this paper we propose and empirically test a model and method that integrates both social and activity networks into one compact representation, allowing to compare actual and required...... information flows between design spaces, and to assess the influence that these misalignments could have on the performance of engineering design projects....

  14. Cash flow forecasting model for nuclear power projects

    International Nuclear Information System (INIS)

    Liu Wei; Guo Jilin

    2002-01-01

    Cash flow forecasting is very important for owners and contractors of nuclear power projects to arrange the capital and to decrease the capital cost. The factors related to contractor cash flow forecasting are analyzed and a cash flow forecasting model is presented which is suitable for both contractors and owners. The model is efficiently solved using a cost-schedule data integration scheme described. A program is developed based on the model and verified with real project data. The result indicates that the model is efficient and effective

  15. The ZaP Flow Z-Pinch Project - Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Shumlak, Uri [Univ. of Washington, Seattle, WA (United States); Nelson, Brian A. [Univ. of Washington, Seattle, WA (United States)

    2013-12-31

    The ZaP Flow Z-Pinch Project is a project to extend the performance of the flow Z-pinch experiment at the University of Washington to investigate and isolate the relevant physics of the stabilizing effect of plasma flow. Experimental plasmas have exhibited an enhanced stability under certain operating parameters which generate a flow state (axial flows in Z-pinches and VH mode in tokamaks). Flow has also been suggested as the stabilizing mechanism in astrophysical jets.

  16. Validation of fracture flow models in the Stripa project

    International Nuclear Information System (INIS)

    Herbert, A.; Dershowitz, W.; Long, J.; Hodgkinson, D.

    1991-01-01

    One of the objectives of Phase III of the Stripa Project is to develop and evaluate approaches for the prediction of groundwater flow and nuclide transport in a specific unexplored volume of the Stripa granite and make a comparison with data from field measurements. During the first stage of the project, a prediction of inflow to the D-holes, an array of six parallel closely spaced 100m boreholes, was made based on data from six other boreholes. This data included fracture geometry, stress, single borehole geophysical logging, crosshole and reflection radar and seismic tomogram, head monitoring and single hole packer test measurements. Maps of fracture traces on the drift walls have also been made. The D-holes are located along a future Validation Drift which will be excavated. The water inflow to the D-holes has been measured in an experiment called the Simulated Drift Experiment. The paper reviews the Simulated Drift Experiment validation exercise. Following a discussion of the approach to validation, the characterization data and its preliminary interpretation are summarised and commented upon. That work has proved feasible to carry through all the complex and interconnected tasks associated with the gathering and interpretation of characterization data, the development and application of complex models, and the comparison with measured inflows. This exercise has provided detailed feed-back to the experimental and theoretical work required for measurements and predictions of flow into the Validation Drift. Computer codes used: CHANGE, FRACMAN, MAFIC, NAPSAC and TRINET. 2 figs., 2 tabs., 19 refs

  17. Tomographic multiphase flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Saetre, C., E-mail: camilla@ift.uib.no [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Johansen, G.A. [Department of Physics and Technology, University of Bergen (Norway); Michelsen Centre for Industrial Measurement Science and Technology (Norway); Tjugum, S.A. [Michelsen Centre for Industrial Measurement Science and Technology (Norway); Roxar Flow Measurement, Bergen (Norway)

    2012-07-15

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: Black-Right-Pointing-Pointer Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. Black-Right-Pointing-Pointer High-speed gamma ray tomograph as reference for the flow

  18. Tomographic multiphase flow measurement

    International Nuclear Information System (INIS)

    Sætre, C.; Johansen, G.A.; Tjugum, S.A.

    2012-01-01

    Measurement of multiphase flow of gas, oil and water is not at all trivial and in spite of considerable achievements over the past two decades, important challenges remain (). These are related to reducing measurement uncertainties arising from variations in the flow regime, improving long term stability and developing new means for calibration, adjustment and verification of the multiphase flow meters. This work focuses on the first two issues using multi gamma beam (MGB) measurements for identification of the type of flow regime. Further gamma ray tomographic measurements are used for reference of the gas/liquid distribution. For the MGB method one Am-241 source with principal emission at 59.5 keV is used because this relatively low energy enables efficient collimation and thereby shaping of the beams, as well as compact detectors. One detector is placed diametrically opposite the source whereas the second is positioned to the side so that this beam is close to the pipe wall. The principle is then straight forward to compare the measured intensities of these detectors and through that identify the flow pattern, i.e. the instantaneous cross-sectional gas-liquid distribution. The measurement setup also includes Compton scattering measurements, which can provide information about the changes in the water salinity for flow segments with high water liquid ratio and low gas fractions. By measuring the transmitted intensity in short time slots (<100ms), rapid regime variations are revealed. From this we can select the time sections suitable for salinity measurements. Since the salinity variations change at the time scale of hours, a running average can be performed to increase the accuracy of the measurements. Recent results of this work will be presented here. - Highlights: ► Multiphase flow gas-fraction and flow regime measurements by multi gamma ray beams. ► High-speed gamma ray tomograph as reference for the flow pattern and gas fraction. ► Dual modality

  19. Difference flow measurements in Greenland, drillhole DH-GAP04 in July 2011

    Energy Technology Data Exchange (ETDEWEB)

    Poellaenen, J.; Heikkinen, P. [Poyry Finland Oy, Vantaa (Finland); Lehtinen, A.

    2012-07-15

    To improve the understanding of processes associated with glaciation and their impact on the long-term performance of a deep geological repository of spent nuclear fuel, the Greenland Analogue Project (GAP) has been initiated collaboratively by SKB, Posiva and NWMO. The study site encompasses a land terminus portion of the Greenland ice sheet, east of Kangerlussuaq, and is in many ways considered to be an appropriate analogue of the conditions that are expected to prevail in much of Canada and Fennoscandia during future glacial cycles. The project began in 2009 and is scheduled for completion in 2012. In 2011, deep drillhole DH-GAP04 was drilled at the study site and Posiva Flow Log measurements were carried out in the drillhole. The Posiva Flow Log, Difference Flow Method (PFL DIFF) uses a flowmeter that incorporates a flow guide and can be used for relatively quick determinations of transmissivity and hydraulic head in fractures/fractured zones in cored drillholes. The aim of the measurements was to find high transmissive fractures, which would define the target for water sampling, i.e. the location for the packers in the drillhole. This report presents the principles of the method and the results of measurements carried out in drillhole DH-GAP04 in July 2011. The length of the flow guide in the flow logging measurements was 10 m (section length). Flow into the drillhole or from the drillhole to the bedrock was measured within the section length. The measurements were carried out in both pumped and natural (i.e. un-pumped) conditions. Calculations of the transmissivity (T) and the hydraulic head (h) of the fractures are shown in the results. Measurements were carried out in drillhole length interval 184 - 675 m without pumping. During pumping, measurements were conducted in drillhole length interval 274 - 675 m due to permafrost condition above this level. The risk for the drillhole freezing over in the permafrost area was remarkable. Due to lack of time, the

  20. Evaluation of flow hood measurements for residential register flows; TOPICAL

    International Nuclear Information System (INIS)

    Walker, I.S.; Wray, C.P.; Dickerhoff, D.J.; Sherman, M.H.

    2001-01-01

    Flow measurement at residential registers using flow hoods is becoming more common. These measurements are used to determine if the HVAC system is providing adequate comfort, appropriate flow over heat exchangers and in estimates of system energy losses. These HVAC system performance metrics are determined by using register measurements to find out if individual rooms are getting the correct airflow, and in estimates of total air handler flow and duct air leakage. The work discussed in this paper shows that commercially available flow hoods are poor at measuring flows in residential systems. There is also evidence in this and other studies that flow hoods can have significant errors even when used on the non-residential systems they were originally developed for. The measurement uncertainties arise from poor calibrations and the sensitivity of exiting flow hoods to non-uniformity of flows entering the device. The errors are usually large-on the order of 20% of measured flow, which is unacceptably high for most applications. Active flow hoods that have flow measurement devices that are insensitive to the entering airflow pattern were found to be clearly superior to commercially available flow hoods. In addition, it is clear that current calibration procedures for flow hoods may not take into account any field application problems and a new flow hood measurement standard should be developed to address this issue

  1. Radiotracer techniques for measuring fluid flow and calibrating flow meters

    International Nuclear Information System (INIS)

    Cooper, E.L.

    1987-08-01

    Radiotracer techniques can be used to measure accurately both gas and liquid flow rates under operating conditions in a wide range of flow systems. They are ideally suited for calibrating flow meters as well as for measuring unmetered flows in industrial plants. Applications of these techniques range from measuring the flows of fuels and process fluids for energy and mass balance studies to measuring the flows of liquid and airborne effluents for pollution control. This report describes the various radiotracer techniques which can be used to measure fluid flows. The range of application and inherent accuracy of each technique is discussed

  2. Discharge Coefficient Measurements for Flow Through Compound-Angle Conical Holes with Cross-Flow

    Directory of Open Access Journals (Sweden)

    M. E. Taslim

    2004-01-01

    Full Text Available Diffusion-shaped film holes with compound angles are currently being investigated for high temperature gas turbine airfoil film cooling. An accurate prediction of the coolant blowing rate through these film holes is essential in determining the film effectiveness. Therefore, the discharge coefficients associated with these film holes for a range of hole pressure ratios is essential in designing airfoil cooling circuits. Most of the available discharge coefficient data in open literature has been for cylindrical holes. The main objective of this experimental investigation was to measure the discharge coefficients for subsonic as well as supersonic pressure ratios through a single conical-diffusion hole. The conical hole has an exit-to-inlet area ratio of 4, a nominal flow length-to-inlet diameter ratio of 4, and an angle with respect to the exit plane (inclination angle of 0°, 30°, 45°, and 60°. Measurements were performed with and without a cross-flow. For the cases with a cross-flow, discharge coefficients were measured for each of the hole geometries and 5 angles between the projected conical hole axis and the cross-flow direction of 0°, 45°, 90°, 135°, and 180°. Results are compared with available data in open literature for cylindrical film holes as well as limited data for conical film holes.

  3. Flow field characteristics of impinging sweeping jets: TR-PIV measurement

    Science.gov (United States)

    Wen, Xin; Peng, Di; Liu, Yingzheng; Tang, Hui

    2017-11-01

    Influence of Reynolds number of sweeping jets on its impinging flow fields was extensively investigated in a water tank. Toward this end, a fluidic oscillator was specially designed to produce spatially sweeping jets which imping on a flat plate. Six Reynolds numbers were tested by controlling the supply flow rate of the fluidic oscillator. Impinging flow fields were captured by time-resolved Particle Image Velocimetry (TR-PIV) measurement. Reference signals were extracted from the flow fields for phase reconstruction. The oscillating flow fields with super-harmonic frequency at different regions were discussed in term of the phase-averaged velocity, vorticity and turbulent velocity. Dynamic mode decomposition (DMD) was used to capture the most-energetic flow patterns with distinct frequencies. By projecting the phase-averaged flow fields onto a reduced basis of DMD modes, the phase correlation between the distinct flow patterns were analyzed under different Reynolds numbers.

  4. Cooling flow measurement in fuel elements of the RA-6

    International Nuclear Information System (INIS)

    Brollo, F; Silin, N

    2009-01-01

    Under the UBERA6 project for the core change and power increase of the RA-6 reactor, the total coolant flow was increased to meet the requirements imposed by the new operating conditions. The flow through the fuel elements is an important parameter and is difficult to determine due to the geometric complexity of the core. To ensure safe operation of the reactor, adequate safety margins must be kept for all operating conditions. In the present work we performed the direct measurement of the cooling flow rate of a fuel in the reactor core, for which we used a turbine flowmeter built specifically for this use. This helped to confirm previous results obtained during the launch, made by an indirect method based on measuring the pressure difference of the core. The turbine flowmeter was chosen due to its robustness, ease of operation and low disturbance of the input stream to the fuel. We describe the calibration of this instrument and the results of flow measurements made on some of the RA6 reactor fuel elements under conditions of zero power. [es

  5. Modeling water flow and solute transport in unsaturated zone inside NSRAWD project

    International Nuclear Information System (INIS)

    Constantin, A.; Diaconu, D.; Bucur, C.; Genty, A.

    2015-01-01

    The NSRAWD project (2010-2013) - Numerical Simulations for Radioactive Waste Disposal was initiated under a collaboration agreement between the Institute for Nuclear Research and the French Alternative Energies and Atomic Energy Commission (CEA). The context of the project was favorable to combine the modeling activities with an experimental part in order to improve and validate the numerical models used so far to simulate water flow and solute transport at Saligny site, Romania. The numerical models developed in the project were refined and validated on new hydrological data gathered between 2010-2012 by a monitoring station existent on site which performs automatic determination of soil water content and matrix potential, as well as several climate parameters (wind, temperature and precipitations). Water flow and solute transport was modeled in transient conditions, by taking into consideration, as well as neglecting the evapotranspiration phenomenon, on the basis of a tracer test launched on site. The determination of dispersivities for solute transport was targeted from the solute plume. The paper presents the main results achieved in the NSRAWD project related to water flow and solute transport in the unsaturated area of the Saligny site. The results indicated satisfactory predictions for the simulation of water flow in the unsaturated area, in steady state and transient conditions. In the case of tracer transport modeling, dispersivity coefficients could not be finally well fitted for the data measured on site and in order to obtain a realistic preview over the values of these parameters, further investigations are recommended. The article is followed by the slides of the presentation

  6. LABORATORY EVALUATION OF AIR FLOW MEASUREMENT METHODS FOR RESIDENTIAL HVAC RETURNS

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain; Stratton, Chris

    2015-02-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The series of tests performed measured air flow using a range of techniques and devices. The measured air flows were compared to reference air flow measurements using inline air flow meters built into the test apparatus. The experimental results showed that some devices had reasonable results (typical errors of 5 percent or less) but others had much bigger errors (up to 25 percent). Because manufacturers’ accuracy estimates for their equipment do not include many of the sources of error found in actual field measurements (and replicated in the laboratory testing in this study) it is essential for a test method that could be used to determine the actual uncertainty in this specific application. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  7. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    International Nuclear Information System (INIS)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F.

    2015-01-01

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length

  8. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length.

    Science.gov (United States)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu; Jiao, Shuliang; Zhang, Hao F

    2015-09-01

    Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as -0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31 μl/min among four wild-type rats. The authors' measured flow rates were consistent with results in the literature. By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  9. Measuring retinal blood flow in rats using Doppler optical coherence tomography without knowing eyeball axial length

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenzhong; Yi, Ji; Chen, Siyu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 (United States); Jiao, Shuliang [Department of Biomedical Engineering, Florida International University, Miami, Florida 33174 (United States); Zhang, Hao F., E-mail: hfzhang@northwestern.edu [Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208 and Department of Ophthalmology, Northwestern University, Chicago, Illinois 60611 (United States)

    2015-09-15

    Purpose: Doppler optical coherence tomography (OCT) is widely used for measuring retinal blood flow. Existing Doppler OCT methods require the eyeball axial length, in which empirical values are usually used. However, variations in the axial length can create a bias unaccounted for in the retinal blood flow measurement. The authors plan to develop a Doppler OCT method that can measure the total retinal blood flow rate without requiring the eyeball axial length. Methods: The authors measured the retinal blood flow rate using a dual-ring scanning protocol. The small and large scanning rings entered the eye at different incident angles (small ring: 4°; large ring: 6°), focused on different locations on the retina, and detected the projected velocities/phase shifts along the probing beams. The authors calculated the ratio of the projected velocities between the two rings, and then used this ratio to estimate absolute flow velocity. The authors tested this method in both Intralipid phantoms and in vivo rats. Results: In the Intralipid flow phantom experiments, the preset and measured flow rates were consistent with the coefficient of determination as 0.97. Linear fitting between preset and measured flow rates determined the fitting slope as 1.07 and the intercept as −0.28. In in vivo rat experiments, the measured average total retinal blood flow was 7.02 ± 0.31μl/min among four wild-type rats. The authors’ measured flow rates were consistent with results in the literature. Conclusions: By using a dual-ring scanning protocol with carefully controlled incident angle difference between the two scanning rings in Doppler OCT, the authors demonstrated that it is feasible to measure the absolute retinal blood flow without knowing the eyeball axial length.

  10. Matas test combined with MR flow measurement

    International Nuclear Information System (INIS)

    Isoda, Haruo; Masui, Takayuki; Takahashi, Motoichiro; Mochizuki, Takao; Kaneko, Masao; Ohta, Atsuko; Shirakawa, Toyomi.

    1993-01-01

    Prior to the temporary or permanent therapeutic occlusion of the carotid artery, evaluation of the cerebral collateral circulation via the circle of Willis is necessary in order to prevent complications. The purpose of our study was to evaluate the flow velocity of the contralateral common carotid artery using Renal Time Acquisition and Velocity Evaluation (RACE) before and during a Matas test and to estimate brain collateral circulation. Five normal subjects were studied with a 1.5 T superconducting imager (Siemens, Erlangen) using a neck coil. RACE is a one-dimensional projective flow measurement technique using fast low angle shot (FLASH) without phase encoding gradient (FLASH sequence: TR=20 ms, TE=6 ms, FA=90 degrees, FOV=220 mm, slice thickness=8 mm). The total acquisition time is about 10 seconds without need for electrocardiographic synchronization. Flow velocity of the common carotid artery was evaluated using the RACE technique before and during a Matas test. The relative flow ratio of the contralateral carotid artery (flow velocity during the Matas test divided by that before the Matas test) was calculated. Additionally, using a head coil, 3 dimensional time-flight MR angiograms of the brain were obtained for each subject order to evaluate the anterior communicating artery. Six out of the 10 common carotid arteries were sufficiently compressed to stop blood flow. The relative mean ratio was 1.74 with a standard deviation of 0.36. The anterior communicating artery was visualized in all subjects. Increased blood volume is thus thought to maintain the blood supply of a cerebral hemisphere affected by compression of the common carotid artery via the anterior communicating artery. MR flow measurement using RACE before and during the Matas test seems to be a noninvasive method for evaluating cerebral collateral circulation via the circle of Willis. (author)

  11. Flow Rate Measurement in Multiphase Flow Rig: Radiotracer and Conventional

    International Nuclear Information System (INIS)

    Nazrul Hizam Yusoff; Noraishah Othman; Nurliyana Abdullah; Amirul Syafiq Mohd Yunos; Rasif Mohd Zain; Roslan Yahya

    2015-01-01

    Applications of radiotracer technology are prevalent throughout oil refineries worldwide, and this industry is one of the main users and beneficiaries of the technology. Radioactive tracers have been used to a great extent in many applications i.e. flow rate measurement, RTD, plant integrity evaluation and enhancing oil production in oil fields. Chemical and petrochemical plants are generally continuously operating and technically complex where the radiotracer techniques are very competitive and largely applied for troubleshooting inspection and process analysis. Flow rate measurement is a typical application of radiotracers. For flow measurements, tracer data are important, rather than the RTD models. Research is going on in refining the existing methods for single phase flow measurement, and in developing new methods for multiphase flow without sampling. The tracer techniques for single phase flow measurements are recognized as ISO standards. This paper presents technical aspect of laboratory experiments, which have been carried out using Molybdenum-99 - Mo99 (radiotracer) to study and determine the flow rate of liquid in multiphase flow rig. The multiphase flow rig consists of 58.7 m long and 20 cm diameter pipeline that can accommodate about 0.296 m 3 of liquid. Tap water was used as liquid flow in pipeline and conventional flow meters were also installed at the flow rig. The flow rate results; radiotracer and conventional flow meter were compared. The total count method was applied for radiotracer technique and showed the comparable results with conventional flow meter. (author)

  12. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G; Eckert, S [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  13. International workshop on measuring techniques for liquid metal flows (MTLM). Abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Gerbeth, G.; Eckert, S. [eds.

    1999-11-01

    The international workshop on 'Measuring techniques in liquid metal flows' (MTLM workshop) was organised in frame of the Dresden 'Innovationskolleg Magnetofluiddynamik'. The subject of the MTLM workshop was limited to methods to determine physical flow quantities such as velocity, pressure, void fraction, inclusion properties, crystallisation fronts etc. The present proceedings contain abstracts and viewgraphs of the oral presentations. During the last decades numerical simulations have become an important tool in industry and research to study the structure of flows and the properties of heat and mass transfer. However, in case of liquid metal flows there exists a significant problem to validate the codes with experimental data due to the lack of available measuring techniques. Due to the material properties (opaque, hot, chemical aggressive) the measurement of flow quantities is much more delicate in liquid metals compared to ordinary water flows. The generalisation of results obtained by means of water models to real liquid metal flows has often to be considered as difficult due to the problems to meet the actual values of n0n-dimensional flow parameters (Re, Pr, Gr, Ha, etc.). Moreover, a strong need has to be noted to make measuring techniques available tomonitor and to control flow processes in real industrial facilities. The objectives of the MTLM workshop were to: Review of existing information on a available techniques and experiences about the use in liquid metal flows, initiate a discussion between developers and potential users with respect to the actual need of information about the flow structure as well as the capabilities of existing and developing measuring techniques. Explore opportunities for co-operative R and D projects to expedite new developments and results, to share expertise and resources. (orig.)

  14. Gamma-ray CT from incomplete projections for two-phase pipe flow.

    Science.gov (United States)

    Xin, S; Wang, H X

    2017-02-01

    A low-energy low-dose γ-ray computed tomography (CT) system used in the gas-liquid two-phase pipe flow measurement has been studied at Tianjin University in recent years. The γ-ray CT system, having a third-generation X-ray CT scanning configuration, is comprised of one 300mCi 241 Am source and 17 CdZnTe detector units and achieves a spatial image resolution of about 7 mm. It is primarily intended to measure the two-phase pipe flow and provide improvement suggestions for industrial CT system. Recently we improve the design for image reconstruction from incomplete projection to optimize the scanning parameters and reduce the radiation dose. First, tomographic problem from incomplete projections is briefly described. Next, a system structure and a hardware circuit design are listed and explained, especially on time parameter setting of the pulse shaper. And then a detailed system analysis is provided in Section II, mainly focusing on spatial resolution, temporal resolution, system noise, and imaging algorithm. Finally, we carry on necessary static and dynamic experiments in a full scan (360°) and two sets of partial scan reconstruction tests to determine the feasibility of this γ-ray CT system for reconstructing the images from insufficient projections. And based on an A-variable algebraic reconstruction technique method, a specially designed algorithm, we evaluate the system performance and noise level of this CT system working quantitatively and qualitatively. Results of dynamic test indicate that the acceptable results can be acquired using a multi-source γ-ray CT system with the same parameters when the flow rate is less than 0.04 m/s and the imaging speed is slower than 33 frames/s.

  15. Recent progress in flow control for practical flows results of the STADYWICO and IMESCON projects

    CERN Document Server

    Barakos, George; Luczak, Marcin

    2017-01-01

    This book explores the outcomes on flow control research activities carried out within the framework of two EU-funded projects focused on training-through-research of Marie Sklodowska-Curie doctoral students. The main goal of the projects described in this monograph is to assess the potential of the passive- and active-flow control methods for reduction of fuel consumption by a helicopter. The research scope encompasses the fields of structural dynamics, fluid flow dynamics, and actuators with control. Research featured in this volume demonstrates an experimental and numerical approach with a strong emphasis on the verification and validation of numerical models. The book is ideal for engineers, students, and researchers interested in the multidisciplinary field of flow control. Provides highly relevant and up-to-date information on the topic of flow control; Includes assessments of a wide range of flow-control technologies and application examples for fixed and rotary-wing configurations; Reinforces reader u...

  16. Project Evaluation and Cash Flow Forecasting by Stochastic Simulation

    Directory of Open Access Journals (Sweden)

    Odd A. Asbjørnsen

    1983-10-01

    Full Text Available The net present value of a discounted cash flow is used to evaluate projects. It is shown that the LaPlace transform of the cash flow time function is particularly useful when the cash flow profiles may be approximately described by ordinary linear differential equations in time. However, real cash flows are stochastic variables due to the stochastic nature of the disturbances during production.

  17. Business valuation: an analysis of projected cash flows versus takeover bids

    Directory of Open Access Journals (Sweden)

    Camila Menezes

    2017-12-01

    Full Text Available One of the main financial statements is the Cash Flow. It became mandatory from the law # 11,638/2007 on, which changed the law # 6,404/1976 – the Corporations’ law, and the Cash Flow statement allows analysis about the companies’ operations activities effects, investing and financing, highlighting their main sources of financial allocation. In 2005 and 2006, 37 companies registered takeover bids in the Brazilian Securities Exchange Commission (CVM – Comissão de Valores Mobiliários. Based on these companies’ analysis of Projected Cash Flows (FCP – Fluxos de Caixa Projetados when the takeover bids were put in place and their Actual Cash Flows (FCR – Fluxo de Caixa Realizados the objective of this work was to compare those cash flows, to analyze the differences between the Statements of Cash Flows attached to the Appraisal Reports and the actual ones, as well as to check if these companies’ cash were in line with the balances projected in the takeover bids. The obtained results via statistical analysis of differences between the Projected Cash Flows attached to the Appraisal Reports and the effective Actual Cash Flows, all of them compared in the period between 2007 and 2013, did not show significant differences among them. IE: it was observed that, nevertheless the companies did not accomplish the promised Cash Flows delivery when the OPAs were put in place, the differences between the balances projected and the actual ones were not statistically significant.

  18. 2. Basis of measurement of plasma flow. 2.3 Plasma flow measurements. Spectroscopic methods

    International Nuclear Information System (INIS)

    Kado, Shinichiro

    2007-01-01

    The construction of optical system, optical fiber incident system, reciprocal linear dispersion, grating smile and astigmatism of the reflection plane diffraction grating spectrometer are explained in order to measure the plasma flow. The specification of flow measurement and evaluation of 0 point of velocity are stated. For examples of measurements, the fine structures of He II (Δn = 3 - 4) in material and plasma(MAP)-II of Tokyo University, plasma flow measurement by the charge exchange recombination spectroscopy using Large Helical Device and by Zeeman spectroscopy using TRIAM-1M tokamak plasma are stated. (S.Y.)

  19. Saturated Zone Flow and Transport Expert Elicitation Project

    Energy Technology Data Exchange (ETDEWEB)

    Coppersmith, Kevin J.; Perman, Roseanne C.

    1998-01-01

    This report presents results of the Saturated Zone Flow and Transport Expert Elicitation (SZEE) project for Yucca Mountain, Nevada. This project was sponsored by the US Department of Energy (DOE) and managed by Geomatrix Consultants, Inc. (Geomatrix), for TRW Environmental Safety Systems, Inc. The DOE's Yucca Mountain Site Characterization Project (referred to as the YMP) is intended to evaluate the suitability of the site for construction of a mined geologic repository for the permanent disposal of spent nuclear fuel and high-level radioactive waste. The SZEE project is one of several that involve the elicitation of experts to characterize the knowledge and uncertainties regarding key inputs to the Yucca Mountain Total System Performance Assessment (TSPA). The objective of the current project was to characterize the uncertainties associated with certain key issues related to the saturated zone system in the Yucca Mountain area and downgradient region. An understanding of saturated zone processes is critical to evaluating the performance of the potential high-level nuclear waste repository at Yucca Mountain. A major goal of the project was to capture the uncertainties involved in assessing the saturated flow processes, including uncertainty in both the models used to represent the physical processes controlling saturated zone flow and transport, and the parameter values used in the models. So that the analysis included a wide range of perspectives, multiple individual judgments were elicited from members of an expert panel. The panel members, who were experts from within and outside the Yucca Mountain project, represented a range of experience and expertise. A deliberate process was followed in facilitating interactions among the experts, in training them to express their uncertainties, and in eliciting their interpretations. The resulting assessments and probability distributions, therefore, provide a reasonable aggregate representation of the knowledge and

  20. Measuring surface flow velocity with smartphones: potential for citizen observatories

    Science.gov (United States)

    Weijs, Steven V.; Chen, Zichong; Brauchli, Tristan; Huwald, Hendrik

    2014-05-01

    Stream flow velocity is an important variable for discharge estimation and research on sediment dynamics. Given the influence of the latter on rating curves (stage-discharge relations), and the relative scarcity of direct streamflow measurements, surface velocity measurements can offer important information for, e.g., flood warning, hydropower, and hydrological science and engineering in general. With the growing amount of sensing and computing power in the hands of more outdoorsy individuals, and the advances in image processing techniques, there is now a tremendous potential to obtain hydrologically relevant data from motivated citizens. This is the main focus of the interdisciplinary "WeSenseIt" project, a citizen observatory of water. In this subproject, we investigate the feasibility of stream flow surface velocity measurements from movie clips taken by (smartphone-) cameras. First results from movie-clip derived velocity information will be shown and compared to reference measurements.

  1. Eddy-current flow rate meter for measuring sodium flow rates

    International Nuclear Information System (INIS)

    Knaak, J.

    1976-01-01

    For safety reasons flow rate meters for monitoring coolant flow rates are inserted in the core of sodium-cooled fast breeder reactors. These are so-called eddy-current flow rate meters which can be mounted directly above the fuel elements. In the present contribution the principle of measurement, the mechanical construction and the circuit design of the flow rate measuring device are described. Special problems and their solution on developing the measuring system are pointed out. Finally, results of measurement and experience with the apparatus in several experiments are reported, where also further possibilities of application were tested. (orig./TK) [de

  2. Flow-rate measurement using radioactive tracers and transit time method

    International Nuclear Information System (INIS)

    Turtiainen, Heikki

    1986-08-01

    The transit time method is a flow measurement method based on tracer techniques. Measurement is done by injecting to the flow a pulse of tracer and measuring its transit time between two detection positions. From the transit time the mean flow velosity and - using the pipe cross section area - the volume flow rate can be calculated. When a radioisotope tracer is used the measurement can be done from outside the pipe and without disturbing the process (excluding the tracer injection). The use of the transit time method has been limited because of difficulties associated with handling and availability of radioactive tracers and lack of equipment suitable for routine use in industrial environments. The purpose of this study was to find out if these difficulties may be overcome by using a portable isotope generator as a tracer source and automating the measurement. In the study a test rig and measuring equipment based on the use of a ''1''3''7Cs/''1''3''7''''mBa isotope generator were constructed. They were used to study the accuracy and error sources of the method and to compare different algorithms to calculate the transit time. The usability of the method and the equipment in industrial environments were studied by carrying out over 20 flow measurements in paper and pulp mills. On the basis of the results of the study, a project for constructing a compact radiatracer flowmeter for industrial use has been started. The application range of this kind of meter is very large. The most obvious applications are in situ calibration of flowmeters, material and energy balance studies, process equipment analyses (e.g. pump efficiency analyses). At the moment tracer techniques are the only methods applicable to these measurements on-line and with sufficient accuracy

  3. Projective measure without projective Baire

    DEFF Research Database (Denmark)

    Schrittesser, David; Friedman, Sy David

    We prove that it is consistent (relative to a Mahlo cardinal) that all projective sets of reals are Lebesgue measurable, but there is a ∆13 set without the Baire property. The complexity of the set which provides a counterexample to the Baire property is optimal.......We prove that it is consistent (relative to a Mahlo cardinal) that all projective sets of reals are Lebesgue measurable, but there is a ∆13 set without the Baire property. The complexity of the set which provides a counterexample to the Baire property is optimal....

  4. Flow speed measurement using two-point collective light scattering

    International Nuclear Information System (INIS)

    Heinemeier, N.P.

    1998-09-01

    Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au)

  5. Reactor coolant flow measurements at Point Lepreau

    International Nuclear Information System (INIS)

    Brenciaglia, G.; Gurevich, Y.; Liu, G.

    1996-01-01

    The CROSSFLOW ultrasonic flow measurement system manufactured by AMAG is fully proven as reliable and accurate when applied to large piping in defined geometries for such applications as feedwater flows measurement. Its application to direct reactor coolant flow (RCF) measurements - both individual channel flows and bulk flows such as pump suction flow - has been well established through recent work by AMAG at Point Lepreau, with application to other reactor types (eg. PWR) imminent. At Point Lepreau, Measurements have been demonstrated at full power; improvements to consistently meet ±1% accuracy are in progress. The development and recent customization of CROSSFLOW to RCF measurement at Point Lepreau are described in this paper; typical measurement results are included. (author)

  6. FLOW-BASED NETWORK MEASURES OF BRAIN CONNECTIVITY IN ALZHEIMER'S DISEASE.

    Science.gov (United States)

    Prasad, Gautam; Joshi, Shantanu H; Nir, Talia M; Toga, Arthur W; Thompson, Paul M

    2013-01-01

    We present a new flow-based method for modeling brain structural connectivity. The method uses a modified maximum-flow algorithm that is robust to noise in the diffusion data and guided by biologically viable pathways and structure of the brain. A flow network is first created using a lattice graph by connecting all lattice points (voxel centers) to all their neighbors by edges. Edge weights are based on the orientation distribution function (ODF) value in the direction of the edge. The maximum-flow is computed based on this flow graph using the flow or the capacity between each region of interest (ROI) pair by following the connected tractography fibers projected onto the flow graph edges. Network measures such as global efficiency, transitivity, path length, mean degree, density, modularity, small world, and assortativity are computed from the flow connectivity matrix. We applied our method to diffusion-weighted images (DWIs) from 110 subjects (28 normal elderly, 56 with early and 11 with late mild cognitive impairment, and 15 with AD) and segmented co-registered anatomical MRIs into cortical regions. Experimental results showed better performance compared to the standard fiber-counting methods when distinguishing Alzheimer's disease from normal aging.

  7. HANARO core channel flow-rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Heon Il; Chae, Hee Tae; Im, Don Soon; Kim, Seon Duk [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1996-06-01

    HANARO core consists of 23 hexagonal flow tubes and 16 cylindrical flow tubes. To get the core flow distribution, we used 6 flow-rate measuring dummy fuel assemblies (instrumented dummy fuel assemblies). The differential pressures were measured and converted to flow-rates using the predetermined relationship between AP and flow-rate for each instrumented dummy fuel assemblies. The flow-rate for the cylindrical flow channels shows +-7% relative errors and that for the hexagonal flow channels shows +-3.5% relative errors. Generally the flow-rates of outer core channels show smaller values compared to those of inner core. The channels near to the core inlet pipe and outlet pipes also show somewhat lower flow-rates. For the lower flow channels, the thermal margin was checked by considering complete linear power histories. From the experimental results, the gap flow-rate was estimated to be 49.4 kg/s (cf. design flow of 50 kg/s). 15 tabs., 9 figs., 10 refs. (Author) .new.

  8. Eddy Current Flow Measurements in the FFTF

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Deborah L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Polzin, David L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Omberg, Ronald P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Makenas, Bruce J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-02-02

    The Fast Flux Test Facility (FFTF) is the most recent liquid metal reactor (LMR) to be designed, constructed, and operated by the U.S. Department of Energy (DOE). The 400-MWt sodium-cooled, fast-neutron flux reactor plant was designed for irradiation testing of nuclear reactor fuels and materials for liquid metal fast breeder reactors. Following shut down of the Clinch River Breeder Reactor Plant (CRBRP) project in 1983, FFTF continued to play a key role in providing a test bed for demonstrating performance of advanced fuel designs and demonstrating operation, maintenance, and safety of advanced liquid metal reactors. The FFTF Program provides valuable information for potential follow-on reactor projects in the areas of plant system and component design, component fabrication, fuel design and performance, prototype testing, site construction, and reactor control and operations. This report provides HEDL-TC-1344, “ECFM Flow Measurements in the FFTF Using Phase-Sensitive Detectors”, March 1979.

  9. Flow speed measurement using two-point collective light scattering

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeier, N.P

    1998-09-01

    Measurements of turbulence in plasmas and fluids using the technique of collective light scattering have always been plagued by very poor spatial resolution. In 1994, a novel two-point collective light scattering system for the measurement of transport in a fusion plasma was proposed. This diagnostic method was design for a great improvement of the spatial resolution, without sacrificing accuracy in the velocity measurement. The system was installed at the W7-AS steallartor in Garching, Germany, in 1996, and has been operating since. This master thesis is an investigation of the possible application of this new method to the measurement of flow speeds in normal fluids, in particular air, although the results presented in this work have significance for the plasma measurements as well. The main goal of the project was the experimental verification of previous theoretical predictions. However, the theoretical considerations presented in the thesis show that the method can only be hoped to work for flows that are almost laminar and shearless, which makes it of very small practical interest. Furthermore, this result also implies that the diagnostic at W7-AS cannot be expected to give the results originally hoped for. (au) 1 tab., 51 ills., 29 refs.

  10. Deflection tomography of a complex flow field based on the visualization of projection array

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Bin; Miao Zhanli, E-mail: zb-sh@163.com [College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, Shandong 266061 (China)

    2011-02-01

    Tomographic techniques are used for the investigation of complex flow fields by means of deflectometric methods. A new deflection tomographic setup for obtaining an array of multidirectional deflectograms is presented. Deflection projections in different angles of view can be captured synchronously in same optical path condition and arranged on the camera in two rows with three views in each row. Tikhonov regularization method is used to reconstruct temperature distribution from deflectometric projection data. The conjugate gradient method is used to compute the regularized solution for the least-square equations. The asymmetric flame temperature distribution in the horizontal section was reconstructed from limited view angle projections. The experimental results of reconstruction from real projection data were satisfactory when compared with the direct thermocouple measurements.

  11. Unsteady flow measurements in centrifugal compressors

    International Nuclear Information System (INIS)

    Bammert, K.; Mobarak, A.; Rautenberg, M.

    1976-01-01

    Centrifugal compressors and blowers are often used for recycling the coolant gas in gas-cooled reactors. To achieve the required high pressure ratios, highly loaded centrifugal compressors are built. The paper deals with unsteady flow measurements on highly loaded centrifugal impellers. Measurements of the approaching flow have been done with hot wires. The method of measurement enabled us to get the velocity distribution across the pitch ahead of the inducer. The static pressure signals along the shroud line has been discussed on the basis of some theoretical considerations. Accordingly the form of flow in the impeller and the wave flow or separation zones in the impeller can now be better interpreted. The importance of the unsteady nature of the relative flow, especially at impeller exit, is clearly demonstrated. Measurements with high responsive total pressure probes in the vicinity of impeller exit and the subsequent calculations have shown, that the instantaneous energy transfer at a certain point after the impeller may differ by more than 30% from the Euler work. Lastly, unsteady pressure measurements along the shroud line have been performed during surge and rotating stall. The surge signal have been analyzed in more detail and the mechanism of flow rupture and pressure recovery during a surge cycle is thoroughly discussed. (orig.) [de

  12. MEASUREMENTS AND COMPUTATIONS OF FUEL DROPLET TRANSPORT IN TURBULENT FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Joseph Katz and Omar Knio

    2007-01-10

    The objective of this project is to study the dynamics of fuel droplets in turbulent water flows. The results are essential for development of models capable of predicting the dispersion of slightly light/heavy droplets in isotropic turbulence. Since we presently do not have any experimental data on turbulent diffusion of droplets, existing mixing models have no physical foundations. Such fundamental knowledge is essential for understanding/modeling the environmental problems associated with water-fuel mixing, and/or industrial processes involving mixing of immiscible fluids. The project has had experimental and numerical components: 1. The experimental part of the project has had two components. The first involves measurements of the lift and drag forces acting on a droplet being entrained by a vortex. The experiments and data analysis associated with this phase are still in progress, and the facility, constructed specifically for this project is described in Section 3. In the second and main part, measurements of fuel droplet dispersion rates have been performed in a special facility with controlled isotropic turbulence. As discussed in detail in Section 2, quantifying and modeling the of droplet dispersion rate requires measurements of their three dimensional trajectories in turbulent flows. To obtain the required data, we have introduced a new technique - high-speed, digital Holographic Particle Image Velocimetry (HPIV). The technique, experimental setup and results are presented in Section 2. Further information is available in Gopalan et al. (2005, 2006). 2. The objectives of the numerical part are: (1) to develop a computational code that combines DNS of isotropic turbulence with Lagrangian tracking of particles based on integration of a dynamical equation of motion that accounts for pressure, added mass, lift and drag forces, (2) to perform extensive computations of both buoyant (bubbles) and slightly buoyant (droplets) particles in turbulence conditions

  13. 40 CFR 89.414 - Air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Air flow measurement specifications... Emission Test Procedures § 89.414 Air flow measurement specifications. (a) The air flow measurement method... incorporates devices that affect the air flow measurement (such as air bleeds) that result in understated...

  14. A measurement device for electromagnetic flow tomography

    Science.gov (United States)

    Vauhkonen, M.; Hänninen, A.; Lehtikangas, O.

    2018-01-01

    Electromagnetic flow meters have succesfully been used in many industries to measure the mean flow velocity of conductive liquids. This technology works reliably in single phase flows with axisymmetric flow profiles but can be inaccurate with asymmetric flows, which are encountered, for example, in multiphase flows, pipe elbows and T-junctions. Some computational techniques and measurement devices with multiple excitation coils and measurement electrodes have recently been proposed to be used in cases of asymmetric flows. In earlier studies, we proposed a computational approach for electromagnetic flow tomography (EMFT) for estimating velocity fields utilizing several excitation coils and a set of measurement electrodes attached to the surface of the pipe. This approach has been shown to work well with simulated data but has not been tested extensively with real measurements. In this paper, an EMFT system with four excitation coils and 16 measurement electrodes is introduced. The system is capable of using both square wave and sinusoidal coil current excitations and all the coils can be excited individually, also enabling parallel excitations with multiple frequencies. The studies undertaken in the paper demonstrate that the proposed EMFT system, together with the earlier introduced velocity field reconstruction approach, is capable of producing reliable velocify field estimates in a laboratory environment with both axisymmetric and asymmetric single phase flows.

  15. Laboratory Evaluation of Air Flow Measurement Methods for Residential HVAC Returns for New Instrument Standards

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Chris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-08-01

    This project improved the accuracy of air flow measurements used in commissioning California heating and air conditioning systems in Title 24 (Building and Appliance Efficiency Standards), thereby improving system performance and efficiency of California residences. The research team at Lawrence Berkeley National Laboratory addressed the issue that typical tools used by contractors in the field to test air flows may not be accurate enough to measure return flows used in Title 24 applications. The team developed guidance on performance of current diagnostics as well as a draft test method for use in future evaluations. The study team prepared a draft test method through ASTM International to determine the uncertainty of air flow measurements at residential heating ventilation and air conditioning returns and other terminals. This test method, when finalized, can be used by the Energy Commission and other entities to specify required accuracy of measurement devices used to show compliance with standards.

  16. Flow measurement at the aortic root

    DEFF Research Database (Denmark)

    Bertelsen, Litten; Svendsen, Jesper Hastrup; Køber, Lars

    2016-01-01

    during CMR and aortic stenosis were excluded from the analyses. Stroke volumes were measured volumetrically (SVref) from steady-state free precision short axis images covering the entire left ventricle, excluding the papillary muscles and including the left ventricular outflow tract. Flow sequences......BACKGROUND: Cardiovascular magnetic resonance (CMR) is considered the gold standard of cardiac volumetric measurements. Flow in the aortic root is often measured at the sinotubular junction, even though placing the slice just above valve level may be more precise. It is unknown how much flow...... theoretically be equal to flow measurements, SVV and SVST were compared to SVref. RESULTS: Initially, 152 patients were included. 22 were excluded because of arrhythmias during scans and 9 were excluded for aortic stenosis. Accordingly, data from 121 patients were analysed and of these 63 had visually evident...

  17. A bi-projection method for Bingham type flows

    OpenAIRE

    Chupin , Laurent; Dubois , Thierry

    2015-01-01

    We propose and study a new numerical scheme to compute the isothermal and unsteady flow of an incompressible viscoplastic Bingham medium.The main difficulty, for both theoretical and numerical approaches, is due to the non-differentiability of the plastic part of stress tensor in regionswhere the rate-of-strain tensor vanishes. This is handled by reformulating the definition of the plastic stress tensor in terms ofa projection.A new time scheme, based on the classical incremental projection m...

  18. Image processing system for flow pattern measurements

    International Nuclear Information System (INIS)

    Ushijima, Satoru; Miyanaga, Yoichi; Takeda, Hirofumi

    1989-01-01

    This paper describes the development and application of an image processing system for measurements of flow patterns occuring in natural circulation water flows. In this method, the motions of particles scattered in the flow are visualized by a laser light slit and they are recorded on normal video tapes. These image data are converted to digital data with an image processor and then transfered to a large computer. The center points and pathlines of the particle images are numerically analized, and velocity vectors are obtained with these results. In this image processing system, velocity vectors in a vertical plane are measured simultaneously, so that the two dimensional behaviors of various eddies, with low velocity and complicated flow patterns usually observed in natural circulation flows, can be determined almost quantitatively. The measured flow patterns, which were obtained from natural circulation flow experiments, agreed with photographs of the particle movements, and the validity of this measuring system was confirmed in this study. (author)

  19. Debris flow cartography using differential GNSS and Theodolite measurements

    Science.gov (United States)

    Khazaradze, Giorgi; Guinau, Marta; Calvet, Jaume; Furdada, Gloria; Victoriano, Ane; Génova, Mar; Suriñach, Emma

    2016-04-01

    The presented results form part of a CHARMA project, which pursues a broad objective of reducing damage caused by uncontrolled mass movements, such as rockfalls, snow avalanches and debris flows. Ultimate goal of the project is to contribute towards the establishment of new scientific knowledge and tools that can help in the design and creation of early warning systems. Here we present the specific results that deal with the application of differential GNSS and classical geodetic (e.g. theodolite) methods for mapping debris and torrential flows. Specifically, we investigate the Portainé stream located in the Pallars Sobirà region of Catalonia (Spain), in the eastern Pyrenees. In the last decade more than ten debris-flow type phenomena have affected the region, causing considerable economic losses. Since early 2014, we have conducted several field campaigns within the study area, where we have employed a multi-disciplinary approach, consisting of geomorphological, dendro-chronological and geodetic methods, in order to map the river bed and reconstruct the history of the extreme flooding and debris flow events. Geodetic studies included several approaches, using the classical and satellite based methods. The former consisted of angle and distance measurements between the Geodolite 502 total station and the reflecting prisms placed on top of the control points located within the riverbed. These type of measurements are precise, although present several disadvantages such as the lack of absolute coordinates that makes the geo-referencing difficult, as well as a relatively time-consuming process that involves two persons. For this reason, we have also measured the same control points using the differential GNSS system, in order to evaluate the feasibility of replacing the total station measurements with the GNSS. The latter measuring method is fast and can be conducted by one person. However, the fact that the study area is within the riverbed, often below the trees

  20. Development of Millimeter-Wave Velocimetry and Acoustic Time-of-Flight Tomography for Measurements in Densely Loaded Gas-Solid Riser Flow

    Energy Technology Data Exchange (ETDEWEB)

    Fort, James A.; Pfund, David M.; Sheen, David M.; Pappas, Richard A.; Morgen, Gerald P.

    2007-04-01

    The MFDRC was formed in 1998 to advance the state-of-the-art in simulating multiphase turbulent flows by developing advanced computational models for gas-solid flows that are experimentally validated over a wide range of industrially relevant conditions. The goal was to transfer the resulting validated models to interested US commercial CFD software vendors, who would then propagate the models as part of new code versions to their customers in the US chemical industry. Since the lack of detailed data sets at industrially relevant conditions is the major roadblock to developing and validating multiphase turbulence models, a significant component of the work involved flow measurements on an industrial-scale riser contributed by Westinghouse, which was subsequently installed at SNL. Model comparisons were performed against these datasets by LANL. A parallel Office of Industrial Technology (OIT) project within the consortium made similar comparisons between riser measurements and models at NETL. Measured flow quantities of interest included volume fraction, velocity, and velocity-fluctuation profiles for both gas and solid phases at various locations in the riser. Some additional techniques were required for these measurements beyond what was currently available. PNNL’s role on the project was to work with the SNL experimental team to develop and test two new measurement techniques, acoustic tomography and millimeter-wave velocimetry. Acoustic tomography is a promising technique for gas-solid flow measurements in risers and PNNL has substantial related experience in this area. PNNL is also active in developing millimeter wave imaging techniques, and this technology presents an additional approach to make desired measurements. PNNL supported the advanced diagnostics development part of this project by evaluating these techniques and then by adapting and developing the selected technology to bulk gas-solids flows and by implementing them for testing in the SNL riser

  1. Benefits of fish passage and protection measures at hydroelectric projects

    International Nuclear Information System (INIS)

    Cada, G.F.; Jones, D.W.

    1993-01-01

    The US Department of Energy's Hydropower Program is engaged in a multi-year study of the costs and benefits of environmental mitigation measures at nonfederal hydroelectric power plants. An initial report (Volume 1) reviewed and surveyed the status of mitigation methods for fish passage, instream flows, and water quality; this paper focuses on the fish passage/protection aspects of the study. Fish ladders were found to be the most common means of passing fish upstream; elevators/lifts were less common, but their use appears to be increasing. A variety of mitigative measures is employed to prevent fish from being drawn into turbine intakes, including spill flows, narrow-mesh intake screens, angled bar racks, and lightor sound-based guidance measures. Performance monitoring and detailed, quantifiable performance criteria were frequently lacking at non-federal hydroelectric projects. Volume 2 considers the benefits and costs of fish passage and protection measures, as illustrated by case studies for which performance monitoring has been conducted. The report estimates the effectiveness of particular measures, the consequent impacts on the fish populations that are being maintained or restored, and the resulting use and non-use values of the maintained or restored fish populations

  2. Simultaneous, Unsteady PIV and Photogrammetry Measurements of a Tension-Cone Decelerator in Subsonic Flow

    Science.gov (United States)

    Schairer, Edward T.; Heineck, James T.; Walker, Louise Ann; Kushner, Laura Kathryn; Zilliac, Gregory

    2010-01-01

    This paper describes simultaneous, synchronized, high-frequency measurements of both unsteady flow in the wake of a tension-cone decelerator in subsonic flow (by PIV) and the unsteady shape of the decelerator (by photogrammetry). The purpose of these measurements was to develop the test techniques necessary to validate numerical methods for computing fluid-structure interactions of flexible decelerators. A critical need for this effort is to map fabric surfaces that have buckled or wrinkled so that code developers can accurately represent them. This paper describes a new photogrammetric technique that performs this measurement. The work was done in support of the Entry, Descent, and Landing discipline within the Supersonics Project of NASA s Fundamental Aeronautics Program.

  3. Quantitative tomographic measurements of opaque multiphase flows

    Energy Technology Data Exchange (ETDEWEB)

    GEORGE,DARIN L.; TORCZYNSKI,JOHN R.; SHOLLENBERGER,KIM ANN; O' HERN,TIMOTHY J.; CECCIO,STEVEN L.

    2000-03-01

    An electrical-impedance tomography (EIT) system has been developed for quantitative measurements of radial phase distribution profiles in two-phase and three-phase vertical column flows. The EIT system is described along with the computer algorithm used for reconstructing phase volume fraction profiles. EIT measurements were validated by comparison with a gamma-densitometry tomography (GDT) system. The EIT system was used to accurately measure average solid volume fractions up to 0.05 in solid-liquid flows, and radial gas volume fraction profiles in gas-liquid flows with gas volume fractions up to 0.15. In both flows, average phase volume fractions and radial volume fraction profiles from GDT and EIT were in good agreement. A minor modification to the formula used to relate conductivity data to phase volume fractions was found to improve agreement between the methods. GDT and EIT were then applied together to simultaneously measure the solid, liquid, and gas radial distributions within several vertical three-phase flows. For average solid volume fractions up to 0.30, the gas distribution for each gas flow rate was approximately independent of the amount of solids in the column. Measurements made with this EIT system demonstrate that EIT may be used successfully for noninvasive, quantitative measurements of dispersed multiphase flows.

  4. An electrode polarization impedance based flow sensor for low water flow measurement

    International Nuclear Information System (INIS)

    Yan, Tinghu; Sabic, Darko

    2013-01-01

    This note describes an electrode polarization impedance based flow sensor for low water flow measurement. It consists of two pairs of stainless steel electrodes set apart and inserted into a non-conductive flow tube with each pair of electrodes placed diametrically at the opposite sides. The flow sensor is modeled as a typical four-electrode system of which two electrodes are current-carrying and the other two serve as output pick ups. The polarization impedances of the two current carrying electrodes are affected by water flows resulting in changes of differential potential between the two pick-up electrodes which are separated by the same fluid. The interrogation of the two excitation electrodes with dc biased ac signals offers significantly higher sensor sensitivities to flow. The prototype flow sensor constructed for a 20 mm diameter pipeline was able to measure water flow rate as low as tested at 1.06 l h −1 and remained sensitive at a flow rate of 25.18 l h −1 when it was driven with a sinusoidal voltage at 1000 Hz with a peak ac amplitude of 2 V and a dc offset of +8 V. The nonlinear characteristics of the sensor response indicate that the sensor is more sensitive at low flows and will not be able to measure at very high flows. Additional experiments are needed to evaluate the influences of impurities, chemical species, ions constituents, conductivity and temperature over a practical range of residential water conditions, the effects of fluctuating ground signals, measurement uncertainty, power consumption, compensation of effects and practical operations. The flow sensor (principle) presented may be used as (in) a secondary sensor in combination with an existing electronic water meter to extend the low end of measurement range in residential water metering. (technical design note)

  5. Structural power flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Falter, K.J.; Keltie, R.F.

    1988-12-01

    Previous investigations of structural power flow through beam-like structures resulted in some unexplained anomalies in the calculated data. In order to develop structural power flow measurement as a viable technique for machine tool design, the causes of these anomalies needed to be found. Once found, techniques for eliminating the errors could be developed. Error sources were found in the experimental apparatus itself as well as in the instrumentation. Although flexural waves are the carriers of power in the experimental apparatus, at some frequencies longitudinal waves were excited which were picked up by the accelerometers and altered power measurements. Errors were found in the phase and gain response of the sensors and amplifiers used for measurement. A transfer function correction technique was employed to compensate for these instrumentation errors.

  6. Information flow in the DAMA Project beyond database managers: Information flow managers

    Energy Technology Data Exchange (ETDEWEB)

    Russell, L. [Argonne National Lab., IL (United States); Wolfson, O.; Yu, C. [Illinois Univ., Chicago, IL (United States)

    1996-03-01

    To meet the demands of commercial data traffic on the information highway, a new look at managing data is necessary. One projected activity, sharing of point-of-sale information, is being considered in the Demand Activated Manufacturing Project of the American Textile Partnership project. A scenario is examined in which 100,000 retail outlets communicate over a period of days. They provide the latest estimate of demand for sewn products across a chain of 26,000 suppliers through the use of bill-of-materials explosions at four levels of detail. A new paradign the information flow manager, is developed to handle this situation, including the case where members of the supply chain fail to communicate and go out of business. Techniques for approximation are introduced to keep estimates of demand as current as possible.

  7. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  8. Quantifying measurement uncertainties in ADCP measurements in non-steady, inhomogeneous flow

    Science.gov (United States)

    Schäfer, Stefan

    2017-04-01

    The author presents a laboratory study of fixed-platform four-beam ADCP and three-beam ADV measurements in the tailrace of a micro hydro power setup with a 35kW Kaplan-turbine and 2.5m head. The datasets discussed quantify measurement uncertainties of the ADCP measurement technique coming from non-steady, inhomogeneous flow. For constant discharge of 1.5m3/s, two different flow scenarios were investigated: one being the regular tailrace flow downstream the draft tube and the second being a straightened, less inhomogeneous flow, which was generated by the use of a flow straightening device: A rack of diameter 40mm pipe sections was mounted right behind the draft tube. ADCP measurements (sampling rate 1.35Hz) were conducted in three distances behind the draft tube and compared bin-wise to measurements of three simultaneously measuring ADV probes (sampling rate 64Hz). The ADV probes were aligned horizontally and the ADV bins were placed in the centers of two facing ADCP bins and in the vertical under the ADCP probe of the corresponding depth. Rotating the ADV probes by 90° allowed for measurements of the other two facing ADCP bins. For reasons of mutual probe interaction, ADCP and ADV measurements were not conducted at the same time. The datasets were evaluated by using mean and fluctuation velocities. Turbulence parameters were calculated and compared as far as applicable. Uncertainties coming from non-steady flow were estimated with the normalized mean square error und evaluated by comparing long-term measurements of 60 minutes to shorter measurement intervals. Uncertainties coming from inhomogeneous flow were evaluated by comparison of ADCP with ADV data along the ADCP beams where ADCP data were effectively measured and in the vertical under the ADCP probe where velocities of the ADCP measurements were displayed. Errors coming from non-steady flow could be compensated through sufficiently long measurement intervals with high enough sampling rates depending on the

  9. The measurement of low air flow velocities

    NARCIS (Netherlands)

    Aghaei, A.; Mao, X.G.; Zanden, van der A.J.J.; Schaik, W.H.J.; Hendriks, N.A.

    2005-01-01

    Air flow velocity is measured with an acoustic sensor, which can be used especially for measuring low air flow velocities as well as the temperature of the air simultaneously. Two opposite transducers send a sound pulse towards each other. From the difference of the transit times, the air flow

  10. Our experience of blood flow measurements using radioactive tracers

    International Nuclear Information System (INIS)

    Danet, Bernard.

    1974-01-01

    A critical study of blood flow measuring methods is proposed. After a review of the various diffusible and non-diffusible radioactive tracers and the corresponding detector systems, the principles which allow to measure blood flow from the data so obtained, are studied. There is a different principle of flow measurement for each type of tracer. The theory of flow measurement using non-diffusible tracers (human serum albumin labelled with 131 I or sup(99m)Tc, 113 In-labelled siderophiline) and its application to cardiac flow measurement are described first. Then the theory of flow measurement using diffusible tracers ( 133 Xe, 85 Kr) and its application to measurement of blood flow through tissues (muscles and kidney particularly) are described. A personal experience of this various flow measurements is reported. The results obtained, the difficulties encountered and the improvments proposed are developed [fr

  11. Temperature measurement in the flowing medium

    Directory of Open Access Journals (Sweden)

    Sedlák Kamil

    2018-01-01

    Full Text Available The article deals with a brief description of methods of temperature measurements in a flowing water steam. Attention is paid to the measurement of pseudo static temperature by a single sealed thermocouple entering the flowing liquid through the flown-by wall. Then three types of probes for stagnation temperature measurement are shown, whose properties were tested using CFD calculations. The aim was to design a probe of stagnation parameters of described properties which can be used for measuring flow parameters in a real steam turbine. An important factor influencing the construction is not only the safe manipulation of the probe when inserting and removing it from the machine in operation, but also the possibility to traverse the probe along the blade length.

  12. Hydroelectric plant turbine, stream and spillway flow measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lampa, J.; Lemon, D.; Buermans, J. [ASL AQ Flow Inc., Sidney, BC (Canada)

    2004-07-01

    This presentation provided schematics of the turbine flow measurements and typical bulb installations at the Kootenay Canal and Wells hydroelectric power facilities in British Columbia. A typical arrangement for measuring stream flow using acoustic scintillation was also illustrated. Acoustic scintillation is portable, non-intrusive, suitable for short intakes, requires minimal maintenance and is cost effective and accurate. A comparison between current meters and acoustic scintillation was also presented. Stream flow measurement is valuable in evaluating downstream areas that are environmentally important for fish habitat. Stream flow measurement makes it possible to define circulation. The effects of any changes can be assessed by combining field measurements and numerical modelling. The presentation also demonstrated that computational fluid dynamics modelling appears promising in determining stream flow and turbulent flow at spillways. tabs., figs.

  13. Instrument for measuring flow velocities

    International Nuclear Information System (INIS)

    Griffo, J.

    1977-01-01

    The design described here means to produce a 'more satisfying instrument with less cost' than comparable instruments known up to now. Instead of one single turbine rotor, two similar ones but with opposite blade inclination and sense of rotation are to be used. A cylindrical measuring body is carrying in its axis two bearing blocks whose shape is offering little flow resistance. On the shaft, supported by them, the two rotors run in opposite direction a relatively small axial distance apart. The speed of each rotor is picked up as pulse recurrence frequency by a transmitter and fed to an electronic measuring unit. Measuring errors as they are caused for single rotors by turbulent flow, profile distortion of the velocity, or viscous flow are to be eliminated by means of the contrarotating turbines and the subsequently added electronic unit, because in these cases the adulterating increase of the angular velocity of one rotor is compensated by a corresponding deceleration of the other rotor. The mean value then indicated by the electronic unit has high accurancy of measurement. (RW) [de

  14. A flow meter for ultrasonically measuring the flow velocity of fluids

    DEFF Research Database (Denmark)

    2015-01-01

    The invention regards a flow meter for ultrasonically measuring the flow velocity of fluids comprising a duct having a flow channel with an internal cross section comprising variation configured to generate at least one acoustic resonance within the flow channel for a specific ultrasonic frequency......, and at least two transducers for generating and sensing ultrasonic pulses, configured to transmit ultrasonic pulses at least at said specific ultrasonic frequency into the flow channel such that the ultrasonic pulses propagate through a fluid flowing in the flow channel, wherein the flow meter is configured...

  15. Method and device for measuring fluid flow

    International Nuclear Information System (INIS)

    Atherton, R.; Marinkovich, P.S.; Spadaro, P.R.; Stout, J.W.

    1976-01-01

    The invention is a fluid flow measuring device for determining the coolant flow at the entrance to a specific nuclear reactor fuel region. The device comprises a plurality of venturis having the upstream inlet and throat pressure of each respectively manifolded together to provide one static pressure signal for each region monitored. The device provides accurate flow measurement with low pressure losses and uniform entrance and discharge flow distribution. 1 claim, 7 figures

  16. Dual-plane ultrasound flow measurements in liquid metals

    International Nuclear Information System (INIS)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Czarske, Jürgen; Räbiger, Dirk; Franke, Sven; Eckert, Sven

    2013-01-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies. (paper)

  17. Dual-plane ultrasound flow measurements in liquid metals

    Science.gov (United States)

    Büttner, Lars; Nauber, Richard; Burger, Markus; Räbiger, Dirk; Franke, Sven; Eckert, Sven; Czarske, Jürgen

    2013-05-01

    An ultrasound measurement system for dual-plane, two-component flow velocity measurements especially in opaque liquids is presented. Present-day techniques for measuring local flow structures in opaque liquids disclose considerable drawbacks concerning line-wise measurement of single ultrasound probes. For studying time-varying flow patterns, conventional ultrasound techniques are either limited by time-consuming mechanical traversing or by the sequential operation of single probes. The measurement system presented within this paper employs four transducer arrays with a total of 100 single elements which allows for flow mapping without mechanical traversing. A high frame rate of several 10 Hz has been achieved due to an efficient parallelization scheme using time-division multiplexing realized by a microcontroller-based electronic switching matrix. The functionality and capability of the measurement system are demonstrated on a liquid metal flow at room temperature inside a cube driven by a rotating magnetic field (RMF). For the first time, the primary and the secondary flow have been studied in detail and simultaneously using a configuration with two crossed measurement planes. The experimental data confirm predictions made by numeric simulation. After a sudden switching on of the RMF, inertial oscillations of the secondary flow were observed by means of a time-resolved measurement with a frame rate of 3.4 Hz. The experiments demonstrate that the presented measurement system is able to investigate complex and transient flow structures in opaque liquids. Due to its ability to study the temporal evolution of local flow structures, the measurement system could provide considerable progress for fluid dynamics research, in particular for applications in the food industry or liquid metal technologies.

  18. Ultrasonic flow measurements for irrigation process monitoring

    Science.gov (United States)

    Ziani, Elmostafa; Bennouna, Mustapha; Boissier, Raymond

    2004-02-01

    This paper presents the state of the art of the general principle of liquid flow measurements by ultrasonic method, and problems of flow measurements. We present an ultrasonic flowmeter designed according to smart sensors concept, for the measurement of irrigation water flowing through pipelines or open channels, using the ultrasonic transit time approach. The new flowmeter works on the principle of measuring time delay differences between sound pulses transmitted upstream and downstream in the flowing liquid. The speed of sound in the flowing medium is eliminated as a variable because the flowrate calculations are based on the reciprocals of the transmission times. The transit time difference is digitally measured by means of a suitable, microprocessor controlled logic. This type of ultrasonic flowmeter will be widely used in industry and water management, it is well studied in this work, followed by some experimental results. For pressurized channels, we use one pair of ultrasonic transducer arranged in proper positions and directions of the pipe, in this case, to determine the liquid velocity, a real time on-line analysis taking account the geometries of the hydraulic system, is applied to the obtained ultrasonic data. In the open channels, we use a single or two pairs of ultrasonic emitter-receiver according to the desired performances. Finally, the goals of this work consist in integrating the smart sensor into irrigation systems monitoring in order to evaluate potential advantages and demonstrate their performance, on the other hand, to understand and use ultrasonic approach for determining flow characteristics and improving flow measurements by reducing errors caused by disturbances of the flow profiles.

  19. Measurement technique developments for LBE flows

    Energy Technology Data Exchange (ETDEWEB)

    Buchenau, D., E-mail: d.buchenau@fzd.de [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Eckert, S.; Gerbeth, G. [Forschungszentrum Dresden-Rossendorf (FZD), 01314 Dresden (Germany); Stieglitz, R. [Karlsruhe Institute of Technology (KIT), 76344 Eggenstein-Leopoldshafen (Germany); Dierckx, M. [SCK-CEN, Belgian Nuclear Research Centre, 2400 Mol (Belgium)

    2011-08-31

    We report on the development of measurement techniques for flows in lead-bismuth eutectic alloys (LBE). This paper covers the test results of newly developed contactless flow rate sensors as well as the development and test of the LIDAR technique for operational free surface level detection. The flow rate sensors are based on the flow-induced disturbance of an externally applied AC magnetic field which manifests itself by a modified amplitude or a modified phase of the AC field. Another concept of a force-free contactless flow meter uses a single cylindrical permanent magnet. The electromagnetic torque on the magnet caused by the liquid metal flow sets the magnet into rotation. The operation of those sensors has been demonstrated at liquid metal test loops for which comparative flow rate measurements are available, as well as at the LBE loops THESYS at KIT and WEBEXPIR at SCK-CEN. For the level detection a commercial LIDAR system was successfully tested at the WEBEXPIR facility in Mol and the THEADES loop in Karlsruhe.

  20. Apparatus for measuring fluid flow

    Science.gov (United States)

    Smith, J.E.; Thomas, D.G.

    Flow measuring apparatus includes a support loop having strain gages mounted thereon and a drag means which is attached to one end of the support loop and which bends the sides of the support loop and induces strains in the strain gages when a flow stream impacts thereon.

  1. 40 CFR 91.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Procedures § 91.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the air flow over the engine...

  2. A transit-time flow meter for measuring milliliter per minute liquid flow

    DEFF Research Database (Denmark)

    Yang, Canqian; Kymmel, Mogens; Søeberg, Henrik

    1988-01-01

    A transit-time flow meter, using periodic temperature fluctuations as tracers, has been developed for measuring liquid flow as small as 0.1 ml/min in microchannels. By injecting square waves of heat into the liquid flow upstream with a tiny resistance wire heater, periodic temperature fluctuation....... This flow meter will be used to measure and control the small liquid flow in microchannels in flow injection analysis. Review of Scientific Instruments is copyrighted by The American Institute of Physics....... are generated downstream. The fundamental frequency phase shift of the temperature signal with respect to the square wave is found to be a linear function of the reciprocal mean velocity of the fluid. The transit-time principle enables the flow meter to have high accuracy, better than 0.2%, and good linearity...

  3. Difference flow measurements in borehole KOV01 at Oskarshamn

    International Nuclear Information System (INIS)

    Poellaenen, J.; Rouhiainen, P.

    2001-09-01

    Posiva Flow Log/Difference Flow method can be used for relatively fast determination of hydraulic conductivity and hydraulic head in fractures or fractured zones in cored boreholes. This report presents the principles of the method as well as the results of the measurements carried out in borehole KOV01 at Oskarshamn in February and March 2001. The aim of the measurements presented in this report was to determine the depth and flow rate of flowing fractures in borehole KOV01 prior to groundwater sampling. The measurements in borehole KOV01 were carried out between 100-1000 m depth using the so called detailed flow logging mode; the flow rate into a 5 m long test section was measured. Detailed flow logging was repeated at the location of the detected flow anomalies using 0.5 m section length and 0.1 m point intervals. The borehole was pumped during these measurements. The occurrence of saline water in the borehole was studied by electric conductivity measurements. The flow guide encloses also an electrode for measuring of single point resistance of the bedrock. It was measured with 0.01 m point intervals during the detailed flow logging. Depth calibration was made on the basis of the known depth marks in the borehole. The depth marks were detected by caliper measurements and by single point resistance measurements

  4. Cine-CT measurement of cortical renal blood flow

    International Nuclear Information System (INIS)

    Jaschke, W.R.; Gould, R.G.; Cogan, M.G.; Sievers, R.; Lipton, M.J.

    1987-01-01

    A modified indicator-dilution technique using radiographic contrast material and a cine-CT scanner was used to measure blood flow in the renal cortex of dogs. To validate this technique, CT measurements were correlated with simultaneous measurements of flow determined by radioactive microspheres. Measurements were taken during euvolemic conditions and after hemorrhage. Thirty-nine measurements were compared, covering a flow range from 1 to 7 ml min-1 g-1, and a good correlation was found between the cine-CT and microsphere results (r = 0.93; p less than 0.001). Additionally, cine-CT measurements were made of the mean transit time (MTT) of contrast material through the renal cortex, and the reciprocal of these MTT values was also well correlated to microsphere determined flow (r = 0.94; p less than 0.001). Thus, cine-CT appears to be a promising new technique for measuring renal blood flow

  5. A novel concept of measuring mass flow rates using flow induced ...

    Indian Academy of Sciences (India)

    Measurement of mass flow rate is important for automatic control of the mass flow rate in .... mass flow rate. The details are as follows. ... Assuming a symmetry plane passing through the thickness of the plate, at the symmetry plane δu∗n,B = 0.

  6. Modelling of project cash flow on construction projects in Malang city

    Science.gov (United States)

    Djatmiko, Bambang

    2017-09-01

    Contractors usually prepare a project cash flow (PCF) on construction projects. The flow of cash in and cash out within a construction project may vary depending on the owner, contract documents, and construction service providers who have their own authority. Other factors affecting the PCF are down payment, termyn, progress schedule, material schedule, equipment schedule, manpower schedules, and wages of workers and subcontractors. This study aims to describe the cash inflow and cash outflow based on the empirical data obtained from contractors, develop a PCF model based on Halpen & Woodhead's PCF model, and investigate whether or not there is a significant difference between the Halpen & Woodhead's PCF model and the empirical PCF model. Based on the researcher's observation, the PCF management has never been implemented by the contractors in Malang in serving their clients (owners). The research setting is in Malang City because physical development in all field and there are many new construction service providers. The findings in this current study are summarised as follows: 1) Cash in included current assets (20%), owner's down payment (20%), termyin I (5%-25%), termyin II (20%), termyin III (25%), termyin IV (25%) and retention (5%). Cash out included direct cost (65%), indirect cost (20%), and profit + informal cost(15%), 2)the construction work involving the empirical PCF model in this study was started with the funds obtained from DP or current assets and 3) The two models bear several similarities in the upward trends of direct cost, indirect cost, Pro Ic, progress billing, and S-curve. The difference between the two models is the occurrence of overdraft in the Halpen and Woodhead's PCF model only.

  7. Microparticle tracking velocimetry as a tool for microfluidic flow measurements

    Science.gov (United States)

    Salipante, Paul; Hudson, Steven D.; Schmidt, James W.; Wright, John D.

    2017-07-01

    The accurate measurement of flows in microfluidic channels is important for commercial and research applications. We compare the accuracy of flow measurement techniques over a wide range flows. Flow measurements made using holographic microparticle tracking velocimetry (µPTV) and a gravimetric flow standard over the range of 0.5-100 nL/s agree within 0.25%, well within the uncertainty of the two flow systems. Two commercial thermal flow sensors were used as the intermediaries (transfer standards) between the two flow measurement systems. The gravimetric flow standard was used to calibrate the thermal flow sensors by measuring the rate of change of the mass of liquid in a beaker on a micro-balance as it fills. The holographic µPTV flow measurements were made in a rectangular channel and the flow was seeded with 1 µm diameter polystyrene spheres. The volumetric flow was calculated using the Hagen-Pouiseille solution for a rectangular channel. The uncertainty of both flow measurement systems is given. For the gravimetric standard, relative uncertainty increased for decreasing flows due to surface tension forces between the pipette carrying the flow and the free surface of the liquid in the beaker. The uncertainty of the holographic µPTV measurements did not vary significantly over the measured flow range, and thus comparatively are especially useful at low flow velocities.

  8. Measurement of LBE flow velocity profile by UDVP

    International Nuclear Information System (INIS)

    Kikuchi, Kenji; Takeda, Yasushi; Obayashi, Hiroo; Tezuka, Masao; Sato, Hiroshi

    2006-01-01

    Measurements of liquid metal lead-bismuth eutectic (LBE), flow velocity profile were realized in the spallation neutron source target model by the ultrasonic Doppler velocity profiler (UVDP) technique. So far, it has not been done well, because both of poor wetting property of LBE with stainless steels and poor performance of supersonic probes at high temperatures. The measurement was made for a return flow in the target model, which has coaxially arranged annular and tube channels, in the JAEA Lead Bismuth Loop-2 (JLBL-2). The surface treatment of LBE container was examined. It was found that the solder coating was effective to enhance an intensity of reflected ultrasonic wave. This treatment has been applied to the LBE loop, which was operated up to 150 deg. C. The electro magnetic pump generates LBE flow and the flow rate was measured by the electro magnetic flow meter. By changing the flow rate of LBE, velocity profiles in the target were measured. It was confirmed that the maximum velocity in the time-averaged velocity distribution on the target axis was proportional to the flow rate measured by the electro magnetic flow meter

  9. South Asia river-flow projections and their implications for water resources

    Science.gov (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-12-01

    South Asia is a region with a large and rising population, a high dependence on water intense industries, such as agriculture and a highly variable climate. In recent years, fears over the changing Asian summer monsoon (ASM) and rapidly retreating glaciers together with increasing demands for water resources have caused concern over the reliability of water resources and the potential impact on intensely irrigated crops in this region. Despite these concerns, there is a lack of climate simulations with a high enough resolution to capture the complex orography, and water resource analysis is limited by a lack of observations of the water cycle for the region. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. Two global climate models (GCMs), which represent the ASM reasonably well are downscaled (1960-2100) using a regional climate model (RCM). In the absence of robust observations, ERA-Interim reanalysis is also downscaled providing a constrained estimate of the water balance for the region for comparison against the GCMs (1990-2006). The RCM river flow is routed using a river-routing model to allow analysis of present-day and future river flows through comparison with available river gauge observations. We examine how useful these simulations are for understanding potential changes in water resources for the South Asia region. In general the downscaled GCMs capture the seasonality of the river flows but overestimate the maximum river flows compared to the observations probably due to a positive rainfall bias and a lack of abstraction in the model. The simulations suggest an increasing trend in annual mean river flows for some of the river gauges in this analysis, in some cases almost doubling by the end of the century. The future maximum river-flow rates still occur during the ASM period, with a magnitude in some cases, greater than the present-day natural variability. Increases in river flow

  10. Measurement of the single and two phase flow using newly developed average bidirectional flow tube

    International Nuclear Information System (INIS)

    Yun, Byong Jo; Euh, Dong Jin; Kang, Kyung Ho; Song, Chul Hwa; Baek, Won Pil

    2005-01-01

    A new instrument, an average BDFT (Birectional Flow Tube), was proposed to measure the flow rate in single and two phase flows. Its working principle is similar to that of the pitot tube, wherein the dynamic pressure is measured. In an average BDFT, the pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than the static pressure of the flow field due to the suction effect downstream. The proposed instrument was tested in air/water vertical and horizontal test sections with an inner diameter of 0.08m. The tests were performed primarily in single phase water and air flow conditions to obtain the amplification factor(k) of the flow tube in the vertical and horizontal test sections. Tests were also performed in air/water vertical two phase flow conditions in which the flow regimes were bubbly, slug, and churn turbulent flows. In order to calculate the phasic mass flow rates from the measured differential pressure, the Chexal dirft-flux correlation and a momentum exchange factor between the two phases were introduced. The test results show that the proposed instrument with a combination of the measured void fraction, Chexal drift-flux correlation, and Bosio and Malnes' momentum exchange model could predict the phasic mass flow rates within a 15% error. A new momentum exchange model was also proposed from the present data and its implementation provides a 5% improvement to the measured mass flow rate when compared to that with the Bosio and Malnes' model

  11. Energy Demodulation Algorithm for Flow Velocity Measurement of Oil-Gas-Water Three-Phase Flow

    Directory of Open Access Journals (Sweden)

    Yingwei Li

    2014-01-01

    Full Text Available Flow velocity measurement was an important research of oil-gas-water three-phase flow parameter measurements. In order to satisfy the increasing demands for flow detection technology, the paper presented a gas-liquid phase flow velocity measurement method which was based on energy demodulation algorithm combing with time delay estimation technology. First, a gas-liquid phase separation method of oil-gas-water three-phase flow based on energy demodulation algorithm and blind signal separation technology was proposed. The separation of oil-gas-water three-phase signals which were sampled by conductance sensor performed well, so the gas-phase signal and the liquid-phase signal were obtained. Second, we used the time delay estimation technology to get the delay time of gas-phase signals and liquid-phase signals, respectively, and the gas-phase velocity and the liquid-phase velocity were derived. At last, the experiment was performed at oil-gas-water three-phase flow loop, and the results indicated that the measurement errors met the need of velocity measurement. So it provided a feasible method for gas-liquid phase velocity measurement of the oil-gas-water three-phase flow.

  12. Flow measurement in two-phase (gas-liquid) systems

    International Nuclear Information System (INIS)

    Hewitt, G.F.; Whalley, P.B.

    1980-01-01

    The main methods of measuring mass flow and quality in gas-liquid flows in industrial situations are reviewed. These include gamma densitometry coupled with differential pressure devices such as crifice plates, turbine flow meters and drag screens. For each method the principle of operation, and the advantages and disadvantages, are given. Some further techniques which are currently being investigated and developed for routine use are also described briefly. Finally the detailed flow measurements possible on a particular flow pattern - annular flow - is examined. (author)

  13. Learning to succeed in European joint projects: the role of the modern project manager--the flow-keeper.

    Science.gov (United States)

    Masiello, Italo

    2009-09-01

    The constellation of an EU-funded project-consortium is often of very disparate culture, languages, level of knowledge and technology, social competences, experiences, ideals and ambitions that may clash with one another. Hence, coordinating and managing successful European joint projects is not an easy task. This paper addresses the learning experience of managing international research projects and, through the author's own experience and literature review, attempts to exemplify the role of the flow-keeper--a modern project manager whose particular skills are to ensure the success of EU joint projects of considerable complexity. Propositions for developing the management of international joint projects are also provided.

  14. Measurement uncertainty budget of an interferometric flow velocity sensor

    Science.gov (United States)

    Bermuske, Mike; Büttner, Lars; Czarske, Jürgen

    2017-06-01

    Flow rate measurements are a common topic for process monitoring in chemical engineering and food industry. To achieve the requested low uncertainties of 0:1% for flow rate measurements, a precise measurement of the shear layers of such flows is necessary. The Laser Doppler Velocimeter (LDV) is an established method for measuring local flow velocities. For exact estimation of the flow rate, the flow profile in the shear layer is of importance. For standard LDV the axial resolution and therefore the number of measurement points in the shear layer is defined by the length of the measurement volume. A decrease of this length is accompanied by a larger fringe distance variation along the measurement axis which results in a rise of the measurement uncertainty for the flow velocity (uncertainty relation between spatial resolution and velocity uncertainty). As a unique advantage, the laser Doppler profile sensor (LDV-PS) overcomes this problem by using two fan-like fringe systems to obtain the position of the measured particles along the measurement axis and therefore achieve a high spatial resolution while it still offers a low velocity uncertainty. With this technique, the flow rate can be estimated with one order of magnitude lower uncertainty, down to 0:05% statistical uncertainty.1 And flow profiles especially in film flows can be measured more accurately. The problem for this technique is, in contrast to laboratory setups where the system is quite stable, that for industrial applications the sensor needs a reliable and robust traceability to the SI units, meter and second. Small deviations in the calibration can, because of the highly position depending calibration function, cause large systematic errors in the measurement result. Therefore, a simple, stable and accurate tool is needed, that can easily be used in industrial surroundings to check or recalibrate the sensor. In this work, different calibration methods are presented and their influences to the

  15. Quantitative Measurements using Ultrasound Vector Flow Imaging

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    2016-01-01

    scanner for pulsating flow mimicking the femoral artery from a CompuFlow 1000 pump (Shelley Medical). Data were used in four estimators based on directional transverse oscillation for velocity, flow angle, volume flow, and turbulence estimation and their respective precisions. An adaptive lag scheme gave...... the ability to estimate a large velocity range, or alternatively measure at two sites to find e.g. stenosis degree in a vessel. The mean angle at the vessel center was estimated to 90.9◦±8.2◦ indicating a laminar flow from a turbulence index being close to zero (0.1 ±0.1). Volume flow was 1.29 ±0.26 mL/stroke...... (true: 1.15 mL/stroke, bias: 12.2%). Measurements down to 160 mm were obtained with a relative standard deviation and bias of less than 10% for the lateral component for stationary, parabolic flow. The method can, thus, find quantitative velocities, angles, and volume flows at sites currently...

  16. Information flow in the DAMA project beyond database managers: information flow managers

    Science.gov (United States)

    Russell, Lucian; Wolfson, Ouri; Yu, Clement

    1996-12-01

    To meet the demands of commercial data traffic on the information highway, a new look at managing data is necessary. One projected activity, sharing of point of sale information, is being considered in the Demand Activated Manufacturing Project (DAMA) of the American Textile Partnership (AMTEX) project. A scenario is examined in which 100 000 retail outlets communicate over a period of days. They provide the latest estimate of demand for sewn products across a chain of 26 000 suppliers through the use of bill of materials explosions at four levels of detail. Enabling this communication requires an approach that shares common features with both workflows and database management. A new paradigm, the information flow manager, is developed to handle this situation, including the case where members of the supply chain fail to communicate and go out of business. Techniques for approximation are introduced so as to keep estimates of demand as current as possible.

  17. Differences in displayed pump flow compared to measured flow under varying conditions during simulated cardiopulmonary bypass.

    LENUS (Irish Health Repository)

    Hargrove, M

    2008-07-01

    Errors in blood flow delivery due to shunting have been reported to reduce flow by, potentially, up to 40-83% during cardiopulmonary bypass. The standard roller-pump measures revolutions per minute and a calibration factor for different tubing sizes calculates and displays flow accordingly. We compared displayed roller-pump flow with ultrasonically measured flow to ascertain if measured flow correlated with the heart-lung pump flow reading. Comparison of flows was measured under varying conditions of pump run duration, temperature, viscosity, varying arterial\\/venous loops, occlusiveness, outlet pressure, use of silicone or polyvinyl chloride (PVC) in the roller race, different tubing diameters, and use of a venous vacuum-drainage device.

  18. The in situ permeable flow sensor: A device for measuring groundwater flow velocity

    International Nuclear Information System (INIS)

    Ballard, S.; Barker, G.T.; Nichols, R.L.

    1994-03-01

    A new technology called the In Situ Permeable Flow Sensor has been developed at Sandia National Laboratories. These sensors use a thermal perturbation technique to directly measure the direction and magnitude of the full three dimensional groundwater flow velocity vector in unconsolidated, saturated, porous media. The velocity measured is an average value characteristic of an approximately 1 cubic meter volume of the subsurface. During a test at the Savannah River Site in South Carolina, two flow sensors were deployed in a confined aquifer in close proximity to a well which was screened over the entire vertical extent of the aquifer and the well was pumped at four different pumping rates. In this situation horizontal flow which is radially directed toward the pumping well is expected. The flow sensors measured horizontal flow which was directed toward the pumping well, within the uncertainty in the measurements. The observed magnitude of the horizontal component of the flow velocity increased linearly with pumping rate, as predicted by theoretical considerations. The measured horizontal component of the flow velocity differed from the predicted flow velocity, which was calculated with the assumptions that the hydraulic properties of the aquifer were radially homogeneous and isotropic, by less than a factor of two. Drawdown data obtained from other wells near the pumping well during the pump test indicate that the hydraulic properties of the aquifer are probably not radially homogeneous but the effect of the inhomogeneity on the flow velocity field around the pumping well was not modeled because the degree and distribution of the inhomogeneity are unknown. Grain size analysis of core samples from wells in the area were used to estimate the vertical distribution of hydraulic conductivity

  19. Cryogenic flow rate measurement with a laser Doppler velocimetry standard

    Science.gov (United States)

    Maury, R.; Strzelecki, A.; Auclercq, C.; Lehot, Y.; Loubat, S.; Chevalier, J.; Ben Rayana, F.

    2018-03-01

    A very promising alternative to the state-of-the-art static volume measurements for liquefied natural gas (LNG) custody transfer processes is the dynamic principle of flow metering. As the Designated Institute (DI) of the LNE (‘Laboratoire National de métrologie et d’Essais’, being the French National Metrology Institute) for high-pressure gas flow metering, Cesame-Exadebit is involved in various research and development programs. Within the framework of the first (2010-2013) and second (2014-2017) EURAMET Joint Research Project (JRP), named ‘Metrological support for LNG custody transfer and transport fuel applications’, Cesame-Exadebit explored a novel cryogenic flow metering technology using laser Doppler velocimetry (LDV) as an alternative to ultrasonic and Coriolis flow metering. Cesame-Exadebit is trying to develop this technique as a primary standard for cryogenic flow meters. Currently, cryogenic flow meters are calibrated at ambient temperatures with water. Results are then extrapolated to be in the Reynolds number range of real applications. The LDV standard offers a unique capability to perform online calibration of cryogenic flow meters in real conditions (temperature, pressure, piping and real flow disturbances). The primary reference has been tested on an industrial process in a LNG terminal during truck refuelling. The reference can calibrate Coriolis flow meters being used daily with all the real environmental constraints, and its utilisation is transparent for LNG terminal operators. The standard is traceable to Standard International units and the combined extended uncertainties have been determined and estimated to be lower than 0.6% (an ongoing improvement to reducing the correlation function uncertainty, which has a major impact in the uncertainty estimation).

  20. 40 CFR 90.416 - Intake air flow measurement specifications.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Intake air flow measurement... Gaseous Exhaust Test Procedures § 90.416 Intake air flow measurement specifications. (a) If used, the engine intake air flow measurement method used must have a range large enough to accurately measure the...

  1. High-resolution flow structure measurements in a rod bundle

    Energy Technology Data Exchange (ETDEWEB)

    Ylönen, A. T.

    2013-07-01

    Flow behaviour inside a rod bundle has been an active research topic since the early days of the nuclear power industry. Of particular interest in previous studies have been topics such as flow mixing, two-phase flow structure and mapping of two-phase flow transitions. The optimisation of fuel element design can only be achieved by truly understanding the nature of flow. The ultimate goal in this research is to enhance the heat transfer and increase the critical heat flux, which would improve the fuel economy. A better understanding of the flow would also improve nuclear safety as departure from nucleate boiling (DNB) can be predicted more accurately. The motivation for the current project (SUBFLOW) was to increase knowledge of the complex flow phenomena inside a rod bundle. A dedicated sub-channel flow test facility was designed and constructed at the Paul Scherrer Institut (PSI), Villigen, Switzerland. An adiabatic test loop has an up-scaled (1:2.6) vertical fuel rod bundle model with a 4 × 4 geometry. For the very first time, the wire-mesh sensor measurement technique was implemented in a rod bundle as two 64×64 conductivity wire-mesh sensors were installed in the upper part of the test section. The measurement technique enables one to study single- and two-phase flow behaviour with high spatial and temporal resolution. The research topics addressed in this thesis cover a wide range of flow conditions with and without a spacer grid in a rod bundle. The experimental campaign was started by studying natural mixing of a passive scalar to characterise the development of turbulent diffusion in an injection sub-channel and, later on, cross-mixing between adjacent sub-channels. The results were also used in comparison with the in-house CFD code PSI-Boil that is being developed at PSI. The code could estimate the mixing inside the sub-channel and the transition to cross-mixing with a good accuracy. As a natural transition, the SUBFLOW experiments were continued by

  2. High-resolution flow structure measurements in a rod bundle

    International Nuclear Information System (INIS)

    Ylönen, A. T.

    2013-01-01

    Flow behaviour inside a rod bundle has been an active research topic since the early days of the nuclear power industry. Of particular interest in previous studies have been topics such as flow mixing, two-phase flow structure and mapping of two-phase flow transitions. The optimisation of fuel element design can only be achieved by truly understanding the nature of flow. The ultimate goal in this research is to enhance the heat transfer and increase the critical heat flux, which would improve the fuel economy. A better understanding of the flow would also improve nuclear safety as departure from nucleate boiling (DNB) can be predicted more accurately. The motivation for the current project (SUBFLOW) was to increase knowledge of the complex flow phenomena inside a rod bundle. A dedicated sub-channel flow test facility was designed and constructed at the Paul Scherrer Institut (PSI), Villigen, Switzerland. An adiabatic test loop has an up-scaled (1:2.6) vertical fuel rod bundle model with a 4 × 4 geometry. For the very first time, the wire-mesh sensor measurement technique was implemented in a rod bundle as two 64×64 conductivity wire-mesh sensors were installed in the upper part of the test section. The measurement technique enables one to study single- and two-phase flow behaviour with high spatial and temporal resolution. The research topics addressed in this thesis cover a wide range of flow conditions with and without a spacer grid in a rod bundle. The experimental campaign was started by studying natural mixing of a passive scalar to characterise the development of turbulent diffusion in an injection sub-channel and, later on, cross-mixing between adjacent sub-channels. The results were also used in comparison with the in-house CFD code PSI-Boil that is being developed at PSI. The code could estimate the mixing inside the sub-channel and the transition to cross-mixing with a good accuracy. As a natural transition, the SUBFLOW experiments were continued by

  3. NMRI Measurements of Flow of Granular Mixtures

    Science.gov (United States)

    Nakagawa, Masami; Waggoner, R. Allen; Fukushima, Eiichi

    1996-01-01

    We investigate complex 3D behavior of granular mixtures in shaking and shearing devices. NMRI can non-invasively measure concentration, velocity, and velocity fluctuations of flows of suitable particles. We investigate origins of wall-shear induced convection flow of single component particles by measuring the flow and fluctuating motion of particles near rough boundaries. We also investigate if a mixture of different size particles segregate into their own species under the influence of external shaking and shearing disturbances. These non-invasive measurements will reveal true nature of convecting flow properties and wall disturbance. For experiments in a reduced gravity environment, we will design a light weight NMR imager. The proof of principle development will prepare for the construction of a complete spaceborne system to perform experiments in space.

  4. Measurements of local two-phase flow parameters in a boiling flow channel

    International Nuclear Information System (INIS)

    Yun, Byong Jo; Park, Goon-CherI; Chung, Moon Ki; Song, Chul Hwa

    1998-01-01

    Local two-phase flow parameters were measured lo investigate the internal flow structures of steam-water boiling flow in an annulus channel. Two kinds of measuring methods for local two-phase flow parameters were investigated. These are a two-conductivity probe for local vapor parameters and a Pitot cube for local liquid parameters. Using these probes, the local distribution of phasic velocities, interfacial area concentration (IAC) and void fraction is measured. In this study, the maximum local void fraction in subcooled boiling condition is observed around the heating rod and the local void fraction is smoothly decreased from the surface of a heating rod to the channel center without any wall void peaking, which was observed in air-water experiments. The distributions of local IAC and bubble frequency coincide with those of local void fraction for a given area-averaged void fraction. (author)

  5. Regional cerebral blood flow measurement using a scintillation camera

    International Nuclear Information System (INIS)

    Heiss, W.D.

    1979-01-01

    A scintillation camera connected to auxillary equipment with off-line data processing or connected to an on-line dedicated computer system permits measurement of hemispheric and regional cerebral blood flow. Reliable flow values are obtained from regions limited in size by spatial resolution and the count rates achieved. Flow measurements obtained with the camera are able to resolve inhomogeneities of cerebral circulation in normal subjects. In a variety of clinical conditions, the localization, severity and extent of flow alterations are shown. Results of flow measurements in individual cases elucidate the pathogenesis of neurologic deficits, quantify the damage to the brain, indicate therapeutic measures of potential value and permit an estimation of the further clinical course. With restricted spatial resolution, flow measurements after intravenous 133 Xe injection are also feasible

  6. Measurement of multi-dimensional flow structure for flow boiling in a tube

    International Nuclear Information System (INIS)

    Adachi, Yu; Ito, Daisuke; Saito, Yasushi

    2014-01-01

    With an aim of the measurement of multi-dimensional flow structure of in-tube boiling two-phase flow, the authors built their own wire mesh measurement system based on electrical conductivity measurement, and examined the relationship between the electrical conductivity obtained by the wire mesh sensor and the void fraction. In addition, the authors measured the void fraction using neutron radiography, and compared the result with the measured value using the wire mesh sensor. From the comparison with neutron radiography, it was found that the new method underestimated the void fraction in the flow in the vicinity of the void fraction of 0.2-0.5, similarly to the conventional result. In addition, since the wire mesh sensor cannot measure dispersed droplets, it tends to overestimate the void fraction in the high void fraction region, such as churn flow accompanied by droplet generation. In the electrical conductivity wire-mesh sensor method, it is necessary to correctly take into account the effect of liquid film or droplets. The authors also built a measurement system based on the capacitance wire mesh sensor method using the difference in dielectric constant, performed the confirmation of transmission and reception signals using deionized water as a medium, and showed the validity of the system. As for the dispersed droplets, the capacitance method has a potential to be able to measure them. (A.O.)

  7. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2009-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6 - 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  8. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  9. Software Project Management and Measurement on the World-Wide-Web (WWW)

    Science.gov (United States)

    Callahan, John; Ramakrishnan, Sudhaka

    1996-01-01

    We briefly describe a system for forms-based, work-flow management that helps members of a software development team overcome geographical barriers to collaboration. Our system, called the Web Integrated Software Environment (WISE), is implemented as a World-Wide-Web service that allows for management and measurement of software development projects based on dynamic analysis of change activity in the workflow. WISE tracks issues in a software development process, provides informal communication between the users with different roles, supports to-do lists, and helps in software process improvement. WISE minimizes the time devoted to metrics collection and analysis by providing implicit delivery of messages between users based on the content of project documents. The use of a database in WISE is hidden from the users who view WISE as maintaining a personal 'to-do list' of tasks related to the many projects on which they may play different roles.

  10. Internal flow measurement in transonic compressor by PIV technique

    Science.gov (United States)

    Wang, Tongqing; Wu, Huaiyu; Liu, Yin

    2001-11-01

    The paper presents some research works conducted in National Key Laboratory of Aircraft Engine of China on the shock containing supersonic flow measurement as well as the internal flow measurement of transoijc compressor by PIC technique. A kind of oil particles in diameter about 0.3 micrometers containing in the flow was discovered to be a very good seed for the PIV measurement of supersonic jet flow. The PIV measurement in over-expanded supersonic free jet and in the flow over wages show a very clear shock wave structure. In the PIV internal flow measurement of transonic compressor a kind of liquid particle of glycol was successful to be used as the seed. An illumination periscope with sheet forming optics was designed and manufactured, it leaded the laser shot generated from an integrate dual- cavity Nd:YAG laser of TSI PIV results of internal flow of an advanced low aspect ratio transonic compressor were shown and discussed briefly.

  11. Bulk temperature measurement in thermally striped pipe flows

    International Nuclear Information System (INIS)

    Lemure, N.; Olvera, J.R.; Ruggles, A.E.

    1995-12-01

    The hot leg flows in some Pressurized Water Reactor (PWR) designs have a temperature distribution across the pipe cross-section. This condition is often referred to as a thermally striped flow. Here, the bulk temperature measurement of pipe flows with thermal striping is explored. An experiment is conducted to examine the feasibility of using temperature measurements on the external surface of the pipe to estimate the bulk temperature of the flow. Simple mixing models are used to characterize the development of the temperature profile in the flow. Simple averaging techniques and Backward Propagating Neural Net are used to predict bulk temperature from the external temperature measurements. Accurate bulk temperatures can be predicted. However, some temperature distributions in the flow effectively mask the bulk temperature from the wall and cause significant error in the bulk temperature predicted using this technique

  12. Surface flow measurements from drones

    Science.gov (United States)

    Tauro, Flavia; Porfiri, Maurizio; Grimaldi, Salvatore

    2016-09-01

    Drones are transforming the way we sense and interact with the environment. However, despite their increased capabilities, the use of drones in geophysical sciences usually focuses on image acquisition for generating high-resolution maps. Motivated by the increasing demand for innovative and high performance geophysical observational methodologies, we posit the integration of drone technology and optical sensing toward a quantitative characterization of surface flow phenomena. We demonstrate that a recreational drone can be used to yield accurate surface flow maps of sub-meter water bodies. Specifically, drone's vibrations do not hinder surface flow observations, and velocity measurements are in agreement with traditional techniques. This first instance of quantitative water flow sensing from a flying drone paves the way to novel observations of the environment.

  13. Multiparticle imaging velocimetry measurements in two-phase flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.

    1998-01-01

    The experimental flow visualization tool, Particle Image Velocimetry (PIV), is being extended to determine the velocity fields in two and three-dimensional, two-phase fluid flows. In the past few years, the technique has attracted quite a lot of interest. PIV enables fluid velocities across a region of a flow to be measured at a single instant in time in global domain. This instantaneous velocity profile of a given flow field is determined by digitally recording particle (microspheres or bubbles) images within the flow over multiple successive video frames and then conducting flow pattern identification and analysis of the data. This paper presents instantaneous velocity measurements in various two and three- dimensional, two-phase flow situations. (author)

  14. High Reynolds Number Liquid Flow Measurements

    Science.gov (United States)

    1988-08-01

    25. .n Fig. 25, the dotted line represents data taken from Eckelmann’s study in the thick viscous sublaver of an oil channel. Scatter in the...measurements of the fundamental physical quantities are not only an essencial part in an understanding of multiphase flows but also in the measurement process...technique. One of the most yloei’ used techniques, however, is some form of flow visualization. This includes the use o: tufts, oil paint films

  15. Two-phase flow measurement by pulsed neutron activation techniques

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    The Pulsed Neutron Activation (PNA) technique for measuring the mass flow velocity and the average density of two-phase mixtures is described. PNA equipment can be easily installed at different loops, and PNA techniques are non-intrusive and independent of flow regimes. These features of the PNA technique make it suitable for in-situ measurement of two-phase flows, and for calibration of more conventional two-phase flow measurement devices. Analytic relations governing the various PNA methods are derived. The equipment and procedures used in the first air-water flow measurement by PNA techniques are discussed, and recommendations are made for improvement of future tests. In the present test, the mass flow velocity was determined with an accuracy of 2 percent, and average densities were measured down to 0.08 g/cm 3 with an accuracy of 0.04 g/cm 3 . Both the accuracy of the mass flow velocity measurement and the lower limit of the density measurement are functions of the injected activity and of the total number of counts. By using a stronger neutron source and a larger number of detectors, the measurable density can be decreased by a factor of 12 to .007 g/cm 3 for 12.5 cm pipes, and to even lower ranges for larger pipes

  16. Methodology for interpretation of fissile mass flow measurements

    International Nuclear Information System (INIS)

    March-Leuba, J.; Mattingly, J.K.; Mullens, J.A.

    1997-01-01

    This paper describes a non-intrusive measurement technique to monitor the mass flow rate of fissile material in gaseous or liquid streams. This fissile mass flow monitoring system determines the fissile mass flow rate by relying on two independent measurements: (1) a time delay along a given length of pipe, which is inversely proportional to the fissile material flow velocity, and (2) an amplitude measurement, which is proportional to the fissile concentration (e.g., grams of 235 U per length of pipe). The development of this flow monitor was first funded by DOE/NE in September 95, and initial experimental demonstration by ORNL was described in the 37th INMM meeting held in July 1996. This methodology was chosen by DOE/NE for implementation in November 1996; it has been implemented in hardware/software and is ready for installation. This paper describes the methodology used to interpret the data measured by the fissile mass flow monitoring system and the models used to simulate the transport of fission fragments from the source location to the detectors

  17. Helium-flow measurement using ultrasonic technique

    International Nuclear Information System (INIS)

    Sondericker, J.H.

    1983-01-01

    While designing cryogenic instrumentation for the Colliding Beam Accelerator (CBA) helium-distribution system it became clear that accurate measurement of mass flow of helium which varied in temperature from room to sub-cooled conditions would be difficult. Conventional venturi flow meters full scale differential pressure signal would decrease by more than an order of magnitude during cooldown causing unacceptable error at operating temperature. At sub-cooled temperatures, helium would be pumped around cooling loops by an efficient, low head pressure circulating compressor. Additional pressure drop meant more pump work was necessary to compress the fluid resulting in a higher outlet temperature. The ideal mass flowmeter for this application was one which did not add pressure drop to the system, functioned over the entire temperature range, has high resolution and delivers accurate mass flow measurement data. Ultrasonic flow measurement techniques used successfully by the process industry, seemed to meet all the necessary requirements. An extensive search for a supplier of such a device found that none of the commercial stock flowmeters were adaptable to cryogenic service so the development of the instrument was undertaken by the CBA Cryogenic Control and Instrumentation Engineering Group at BNL

  18. Liquid metal Flow Meter - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, C.; Hoogendoom, S.; Hudson, B.; Prince, J.; Teichert, K.; Wood, J.; Chase, K.

    2007-01-30

    Measuring the flow of liquid metal presents serious challenges. Current commercially-available flow meters use ultrasonic, electromagnetic, and other technologies to measure flow, but are inadequate for liquid metal flow measurement because of the high temperatures required by most liquid metals. As a result of the reactivity and high temperatures of most liquid metals, corrosion and leakage become very serious safety concerns. The purpose of this project is to develop a flow meter for Lockheed Martin that measures the flow rate of molten metal in a conduit.

  19. Thomson scattering measurements from asymmetric interpenetrating plasma flows

    Energy Technology Data Exchange (ETDEWEB)

    Ross, J. S., E-mail: ross36@llnl.gov; Moody, J. D.; Fiuza, F.; Ryutov, D.; Divol, L.; Huntington, C. M.; Park, H.-S. [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94551 (United States)

    2014-11-15

    Imaging Thomson scattering measurements of collective ion-acoustic fluctuations have been utilized to determine ion temperature and density from laser produced counter-streaming asymmetric flows. Two foils are heated with 8 laser beams each, 500 J per beam, at the Omega Laser facility. Measurements are made 4 mm from the foil surface using a 60 J 2ω probe laser with a 200 ps pulse length. Measuring the electron density and temperature from the electron-plasma fluctuations constrains the fit of the multi-ion species, asymmetric flows theoretical form factor for the ion feature such that the ion temperatures, ion densities, and flow velocities for each plasma flow are determined.

  20. Reactor core flow measurements during plant start-up using non-intrusive flow meter CROSSFLOW

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, V.; Sharp, B.; Gurevich, A., E-mail: vkanda@amag-inc.com, E-mail: bsharp@amag-inc.com, E-mail: agurevich@amag-inc.com [Advanced Measurement & Analysis Group Inc., Ontario (Canada); Gurevich, Y., E-mail: yuri.gurevich@daystartech.ca [Daystar Technologies Inc., Ontario (Canada); Selvaratnarajah, S.; Lopez, A., E-mail: sselvaratnarajah@amag-inc.com, E-mail: alopez@amag-inc.com [Advanced Measurement & Analysis Group Inc., Ontario (Canada)

    2013-07-01

    For the first time, direct measurements of the total reactor coolant flow and the flow distribution between the inner reactor zone and the outer zone were conducted using the non-intrusive clamp on ultrasonic cross-correlation flow meter, CROSSFLOW, developed and manufactured by Advanced Measurement & Analysis Group Inc. (AMAG). The measurements were performed at Bruce Power A Unit 1 on the Pump Discharge piping of the Primary Heat Transport (PHT) system during start-up. This paper describes installation processes, hydraulic testing, uncertainty analysis and traceability of the measurements to certified standards. (author)

  1. LDV measurement, flow visualization and numerical analysis of flow distribution in a close-coupled catalytic converter

    International Nuclear Information System (INIS)

    Kim, Duk Sang; Cho, Yong Seok

    2004-01-01

    Results from an experimental study of flow distribution in a Close-coupled Catalytic Converter (CCC) are presented. The experiments were carried out with a flow measurement system specially designed for this study under steady and transient flow conditions. A pitot tube was a tool for measuring flow distribution at the exit of the first monolith. The flow distribution of the CCC was also measured by LDV system and flow visualization. Results from numerical analysis are also presented. Experimental results showed that the flow uniformity index decreases as flow Reynolds number increases. In steady flow conditions, the flow through each exhaust pipe made some flow concentrations on a specific region of the CCC inlet. The transient test results showed that the flow through each exhaust pipe in the engine firing order, interacted with each other to ensure that the flow distribution was uniform. The results of numerical analysis were qualitatively accepted with experimental results. They supported and helped explain the flow in the entry region of CCC

  2. Suggestion of an average bidirectional flow tube for the measurement of single and two phase flow rate

    International Nuclear Information System (INIS)

    Yun, B.J.; Kang, K.H.; Euh, D.J.; Song, C.H.; Baek, W.P.

    2005-01-01

    Full text of publication follows: A new type instrumentation, average bidirectional flow tube, was suggested to apply to the single and two phase flow condition. Its working principle is similar to that of the Pitot tube. The pressure measured at the front of the flow tube is equal to the total pressure, while that measured at the rear tube is slightly less than static pressure of flow field due to the suction effect at the downstream. It gives an amplification effect of measured pressure difference at the flow tube. The proposed instrumentation has the characteristics that it could be applicable to low flow condition and measure bidirectional flow. It was tested in the air-water vertical and horizontal test sections which have 0.08 m inner diameter. The pressure difference across the average bidirectional flow tube, system pressure, average void fraction and injection phasic mass flow rates were measured on the measuring plane. Test was performed primarily in the single phase water and air flow condition to get the amplification factor k of the flow tube. The test was also performed in the air-water two phase flow condition and the covered flow regimes were bubbly, slug, churn turbulent flow in the vertical pipe and stratified flow in the horizontal pipe. In order to calculate the phasic and total mass flow rates from the measured differential pressure, Chexal drift-flux correlation and momentum exchange factor between the two phases were introduced. The test result shows that the suggested instrumentation with the measured void fraction, Chexal drift-flux correlation and Bosio and Malnes' momentum exchange model can predict the phasic mass flow rates within 15% error compared to the true values. A new momentum exchange model was also suggested and it gives up to 5% improvement of the measured mass flow rate compared to combination of Bosio and Malnes' momentum exchange model. (authors)

  3. The flow measurement plan for the primary system of SMART

    International Nuclear Information System (INIS)

    Lee, Jun; Seo, J. K.; Park, C. T.; Yoon, J. H.; Cho, B. H.; Lee, D. J.

    2001-08-01

    It is the common features of the integrated reactor that the main components of the primary system are installed within the reactor vessel, and so there are no any flow pipes connecting the reactor coolant pumps or steam generators. Due to no any flow pipes, it is impossible to measure the differential pressure at the primary system of the integrated reactor, and it also makes impossible measure the primary coolant flow rate. SMART is also a integrated reactor type, and have a problem as same as the above case. The objective of the study is to draw up the flow measurement plan for the primary system of SMART. In this study, firstly we reviewed the flow measurement methods at the primary system for the existing commercial nuclear power reactors. As a result of the review, we selected preliminarily the 3 methods which is a good possibility of application to SMART. The 3 methods are as follows. Flow measurement method by MCP rotation speed, flow measurement method by HBM, flow measurement method by pump motor power. For the above methods, we have evaluated whether they actually can be applied to SMART, and also have set up the concrete methodology. Finally we have made a selection of the above methods as the flow measurement plan for the primary system of SMART. Peculiarly, we did not found out a precedent which the direct pump motor power-flow rate curve is used as the flow measurement method in the existing commercial nuclear power reactors. Therefore, to use this method for SMART, it is needed to bear the follow-up measures in mind. The follow-up measures is included in this report

  4. Two-phase flow pattern measurements with a wire mesh sensor in a direct steam generating solar thermal collector

    Science.gov (United States)

    Berger, Michael; Mokhtar, Marwan; Zahler, Christian; Willert, Daniel; Neuhäuser, Anton; Schleicher, Eckhard

    2017-06-01

    At Industrial Solar's test facility in Freiburg (Germany), two phase flow patterns have been measured by using a wire mesh sensor from Helmholtz Zentrum Dresden-Rossendorf (HZDR). Main purpose of the measurements was to compare observed two-phase flow patterns with expected flow patterns from models. The two-phase flow pattern is important for the design of direct steam generating solar collectors. Vibrations should be avoided in the peripheral piping, and local dry-outs or large circumferential temperature gradients should be prevented in the absorber tubes. Therefore, the choice of design for operation conditions like mass flow and steam quality are an important step in the engineering process of such a project. Results of a measurement with the wire mesh sensor are the flow pattern and the plug or slug frequency at the given operating conditions. Under the assumption of the collector power, which can be assumed from previous measurements at the same collector and adaption with sun position and incidence angle modifier, also the slip can be evaluated for a wire mesh sensor measurement. Measurements have been performed at different mass flows and pressure levels. Transient behavior has been tested for flashing, change of mass flow, and sudden changes of irradiation (cloud simulation). This paper describes the measurements and the method of evaluation. Results are shown as extruded profiles in top view and in side view. Measurement and model are compared. The tests have been performed at low steam quality, because of the limits of the test facility. Conclusions and implications for possible future measurements at larger collectors are also presented in this paper.

  5. Ultrasonic downcomer flow measurements for recirculating steam generators

    Energy Technology Data Exchange (ETDEWEB)

    Janzen, Victor, E-mail: Victor.Janzen@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON, Canada K0 J 1J0 (Canada); Luloff, Brian [Canadian Nuclear Laboratories, Chalk River, ON, Canada K0 J 1J0 (Canada); Sedman, Ken [Nuclear Safety Analysis & Support Department, Bruce Power, Toronto, ON, Canada M5G 1X6 (Canada)

    2015-08-15

    Highlights: • Measuring recirculating flow in nuclear steam generators provides useful information. • Flow measurements shed light on component performance and degradation mechanisms. • Commonly used ultrasonic technology and application methods are described. • Results of measurements at several power reactors are summarized. • Potential improvements in reliability and flexibility of application are suggested. - Abstract: Measurements of downcomer flow in nuclear steam generators can provide unique fitness for service and performance indicators related to overall thermalhydraulic performance, safety related secondary-side setpoints and certain forms of degradation. This paper reviews the benefits of downcomer-flow measurements to nuclear power–plant operators, and describes methods that are commonly used. It summarizes the history and state-of-the-art of the most widely used technology, non-intrusive ultrasonic systems, including field applications at several nuclear power plants. It also describes the technical challenges that remain, and summarizes recent technical developments and future improvements.

  6. AUTOMATED TECHNIQUE FOR FLOW MEASUREMENTS FROM MARIOTTE RESERVOIRS.

    Science.gov (United States)

    Constantz, Jim; Murphy, Fred

    1987-01-01

    The mariotte reservoir supplies water at a constant hydraulic pressure by self-regulation of its internal gas pressure. Automated outflow measurements from mariotte reservoirs are generally difficult because of the reservoir's self-regulation mechanism. This paper describes an automated flow meter specifically designed for use with mariotte reservoirs. The flow meter monitors changes in the mariotte reservoir's gas pressure during outflow to determine changes in the reservoir's water level. The flow measurement is performed by attaching a pressure transducer to the top of a mariotte reservoir and monitoring gas pressure changes during outflow with a programmable data logger. The advantages of the new automated flow measurement techniques include: (i) the ability to rapidly record a large range of fluxes without restricting outflow, and (ii) the ability to accurately average the pulsing flow, which commonly occurs during outflow from the mariotte reservoir.

  7. Liquid ultrasonic flow meters for crude oil measurement

    Energy Technology Data Exchange (ETDEWEB)

    Kalivoda, Raymond J.; Lunde, Per

    2005-07-01

    Liquid ultrasonic flow meters (LUFMs) are gaining popularity for the accurate measurement of petroleum products. In North America the first edition of the API standard ''Measurement of liquid hydrocarbons by ultrasonic flow meters using transit time technology'' was issued in February 2005. It addresses both refined petroleum products and crude oil applications. Its field of application is mainly custody transfer applications but it does provide general guidelines for the installation and operation of LUFM's other applications such as allocation, check meters and leak detection. As with all new technologies performance claims are at times exaggerated or misunderstood and application knowledge is limited. Since ultrasonic meters have no moving parts they appear to have fewer limitations than other liquid flow meters. Liquids ultrasonic flow meters, like turbine meters, are sensitive to fluid properties. It is increasingly more difficult to apply on high viscosity products then on lighter hydrocarbon products. Therefore application data or experience on the measurement of refined or light crude oil may not necessarily be transferred to measuring medium to heavy crude oils. Before better and more quantitative knowledge is available on how LUFMs react on different fluids, the arguments advocating reduced need for in-situ proving and increased dependency on laboratory flow calibration (e.g. using water instead of hydrocarbons) may be questionable. The present paper explores the accurate measurement of crude oil with liquid ultrasonic meters. It defines the unique characteristics of the different API grades of crude oils and how they can affect the accuracy of the liquid ultrasonic measurement. Flow testing results using a new LUFM design are discussed. The paper is intended to provide increased insight into the potentials and limitations of crude oil measurement using ultrasonic flow meters. (author) (tk)

  8. Measurement of bone blood flow in sheep

    International Nuclear Information System (INIS)

    Rosenthal, M.S.; Lehner, C.E.; Pearson, D.W.; Kanikula, T.; Adler, G.; Venci, R.; Lanphier, E.H.; DeLuca, P.M. Jr.

    1984-01-01

    Bone blood flow in sheep tibia has been estimated via the measurement of the perfusion limited clearance of 41 Ar from the bone mineral matrix following fast neutron activation of 44 Ca. Tibia blood flows were estimated for the intact sheep, and after the installation of an intramedullary pressure tap to elevate bone marrow pressure by saline infusion. The results indicate that normal blood flow in the tibia is in the range of 1.1 to 3.7 ml/100ml-min in the intact animal and at normal marrow pressure. With an elevated intramedullary pressure of approximately 100 mmHg, the bone blood flow measured varied around 0.5 to 1.1 ml/100ml-min. 12 refs., 5 figs., 1 tab

  9. Natural stream flow-rates measurements by tracer techniques

    International Nuclear Information System (INIS)

    Cuellar Mansilla, J.

    1982-01-01

    This paper presents the study of the precision obtained measuring the natural stream flow rates by tracer techniques, especially when the system presents a great slope and a bed constituted by large and extended particle size. The experiences were realized in laboratory pilot channels with flow-rates between 15 and 130 [1/s]; and in natural streams with flow-rates from 1 to 25 m 3 /s. Tracer used were In-133m and Br-82 for laboratory and field measurements respectively. In both cases the tracer was injected as a pulse and its dilution measured collecting samples in the measured section, at constant flow-rates, of 5[1] in laboratory experiences and 60[1] of water in field experiences. Precisions obtained at a 95% confidence level were about 2% for laboratory and 3% for field. (I.V.)

  10. Internationalization Measures in Large Scale Research Projects

    Science.gov (United States)

    Soeding, Emanuel; Smith, Nancy

    2017-04-01

    Internationalization measures in Large Scale Research Projects Large scale research projects (LSRP) often serve as flagships used by universities or research institutions to demonstrate their performance and capability to stakeholders and other interested parties. As the global competition among universities for the recruitment of the brightest brains has increased, effective internationalization measures have become hot topics for universities and LSRP alike. Nevertheless, most projects and universities are challenged with little experience on how to conduct these measures and make internationalization an cost efficient and useful activity. Furthermore, those undertakings permanently have to be justified with the Project PIs as important, valuable tools to improve the capacity of the project and the research location. There are a variety of measures, suited to support universities in international recruitment. These include e.g. institutional partnerships, research marketing, a welcome culture, support for science mobility and an effective alumni strategy. These activities, although often conducted by different university entities, are interlocked and can be very powerful measures if interfaced in an effective way. On this poster we display a number of internationalization measures for various target groups, identify interfaces between project management, university administration, researchers and international partners to work together, exchange information and improve processes in order to be able to recruit, support and keep the brightest heads to your project.

  11. Experimental and Numerical Modeling of Fluid Flow Processes in Continuous Casting: Results from the LIMMCAST-Project

    Science.gov (United States)

    Timmel, K.; Kratzsch, C.; Asad, A.; Schurmann, D.; Schwarze, R.; Eckert, S.

    2017-07-01

    The present paper reports about numerical simulations and model experiments concerned with the fluid flow in the continuous casting process of steel. This work was carried out in the LIMMCAST project in the framework of the Helmholtz alliance LIMTECH. A brief description of the LIMMCAST facilities used for the experimental modeling at HZDR is given here. Ultrasonic and inductive techniques and the X-ray radioscopy were employed for flow measurements or visualizations of two-phase flow regimes occurring in the submerged entry nozzle and the mold. Corresponding numerical simulations were performed at TUBAF taking into account the dimensions and properties of the model experiments. Numerical models were successfully validated using the experimental data base. The reasonable and in many cases excellent agreement of numerical with experimental data allows to extrapolate the models to real casting configurations. Exemplary results will be presented here showing the effect of electromagnetic brakes or electromagnetic stirrers on the flow in the mold or illustrating the properties of two-phase flows resulting from an Ar injection through the stopper rod.

  12. Experimental investigations of two-phase flow measurement using ultrasonic sensors

    OpenAIRE

    Abbagoni, Baba Musa

    2016-01-01

    This thesis presents the investigations conducted in the use of ultrasonic technology to measure two-phase flow in both horizontal and vertical pipe flows which is important for the petroleum industry. However, there are still key challenges to measure parameters of the multiphase flow accurately. Four methods of ultrasonic technologies were explored. The Hilbert-Huang transform (HHT) was first applied to the ultrasound signals of air-water flow on horizontal flow for measur...

  13. Trial on MR portal blood flow measurement with phase contrast technique

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Togami, Izumi

    1991-01-01

    Portal blood flow measurement is considered to be important for the analysis of hemodynamics in various liver diseases. The Doppler ultrasound method has been used extensively during the past several years for measuring portal blood flow, as a non-invasive method. However, the Doppler ultrasound technique do not allow the portal blood flow to be measured in cases of obesity, with much intestinal gas, and so on. In this study, we attempted to measure the blood flow in the main trunk of portal vein as an application of MR phase contrast technique to the abdominal region. In the flow phantom study, the flow volumes and the velocities measured by phase contrast technique showed a close correlation with those measured by electromagnetic flowmeter. In the clinical study with 10 healthy volunteers, various values of portal blood flow were obtained. Mean portal blood flow could be measured within the measuring time (about 8 minutes) under natural breathing conditions. Phase contrast technique is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  14. Evaluation of the Wind Flow Variability Using Scanning Doppler Lidar Measurements

    Science.gov (United States)

    Sand, S. C.; Pichugina, Y. L.; Brewer, A.

    2016-12-01

    Better understanding of the wind flow variability at the heights of the modern turbines is essential to accurately assess of generated wind power and efficient turbine operations. Nowadays the wind energy industry often utilizes scanning Doppler lidar to measure wind-speed profiles at high spatial and temporal resolution.The study presents wind flow features captured by scanning Doppler lidars during the second Wind Forecast and Improvement Project (WFIP 2) sponsored by the Department of Energy (DOE) and National Oceanic and Atmospheric Administration (NOAA). This 18-month long experiment in the Columbia River Basin aims to improve model wind forecasts complicated by mountain terrain, coastal effects, and numerous wind farms.To provide a comprehensive dataset to use for characterizing and predicting meteorological phenomena important to Wind Energy, NOAA deployed scanning, pulsed Doppler lidars to two sites in Oregon, one at Wasco, located upstream of all wind farms relative to the predominant westerly flow in the region, and one at Arlington, located in the middle of several wind farms.In this presentation we will describe lidar scanning patterns capable of providing data in conical, or vertical-slice modes. These individual scans were processed to obtain 15-min averaged profiles of wind speed and direction in real time. Visualization of these profiles as time-height cross sections allows us to analyze variability of these parameters with height, time and location, and reveal periods of rapid changes (ramp events). Examples of wind flow variability between two sites of lidar measurements along with examples of reduced wind velocity downwind of operating turbines (wakes) will be presented.

  15. Flow measurement in bubbly and slug flow regimes using the electromagnetic flowmeter developed

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Ahn, Yeh Chan; Seo, Kyung Woo; Kim, Moo Hwan

    2002-01-01

    In order to investigate the characteristics of electromagnetic flowmeter in two-phase flow, an AC electromagnetic flowmeter was designed and manufactured. In various flow conditions, the signals and noises from the flowmeter were obtained and analyzed by comparison with the observed flow patterns with a high speed CCD camera. The experiment with the void simulators in which rod shaped non-conducting material was used was carried out to investigate the effect of the bubble position and the void fraction on the flowmeter. Based on the results from the void simulator, two-phase flow experiments encompassed from bubbly to slug flow regime were conducted. The simple relation ΔU TP = ΔU SP /(1-α) was verified with measurements of the potential difference and the void fraction. Due to the lack of homogeneity in a real two-phase flow, the discrepancy between the relation and the present measurement was slightly increased with void fraction and also liquid volumetric flux j f . Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single-phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of a slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes

  16. Hydrostatic and Flow Measurements on Wrinkled Membrane Walls

    Science.gov (United States)

    Ozsun, Ozgur; Ekinci, Kamil

    2013-03-01

    In this study, we investigate structural properties of wrinkled silicon nitride (SiN) membranes, under both hydrostatic perturbations and flow conditions, through surface profile measurements. Rectangular SiN membranes with linear dimensions of 15 mm × 1 . 5 mm × 1 μ m are fabricated on a 500 - μ m-thick silicon substrate using standard lithography techniques. These thin, initially flat, tension-dominated membranes are wrinkled by bending the silicon substrate. The wrinkled membranes are subsequently incorporated as walls into rectangular micro-channels, which allow both hydrostatic and flow measurements. The structural response of the wrinkles to hydrostatic pressure provides a measure of the various energy scales in the problem. Flow experiments show that the elastic properties and the structural undulations on a compliant membrane completely dominate the flow, possibly providing drag reduction. These measurements pave the way for building and using compliant walls for drag reduction in micro-channels.

  17. Factors affecting the different results in terms of acceptance and refusal of free cash flow to equity and free cash flow to firm in investment decisions on a project

    Directory of Open Access Journals (Sweden)

    Hasan Bal

    2010-03-01

    Full Text Available Decisions on whether investment projects will be invested are based on such methods as net present value and internal rate of return. These methods focus on net cash flows that will be provided throughout the economic life from the investment. In determining the cash flows there are the methods of free cash flow to firm and free cash flow to equity. In the evaluation of an investment project, each method finds the net present value with a different result. It is such that concerning some projects, while one method finds a positive net present value; the other method can find a negative net present value. This study sets out to examine the factors affecting the conflicting points of the each method, free cash flow to equity and free cash flow to firm, in the acceptance of an investment project.

  18. Financial flow of Grant-oriented Projects

    Directory of Open Access Journals (Sweden)

    Nătăliţa-Mihaela Frumuşanu

    2012-06-01

    Full Text Available The present paper presents a survey of the legal stipulations and of the applicant’s guide regarding the methodology of the financial flow performance of the grant-financed projects (structural funds within a newly founded company. The opportunity and the importance of the paper is obvious, due to the fact that the grants represent an important source for the newly founded companies, especially for the coverage of the expenses afferent to the investment of equipments (assets, generally. Furthermore, the paper is very practical, marking out a case study that can constitute an example for the companies that want to access theses types of funds in order to finance certain investments.

  19. Flowing dusty plasma experiments: generation of flow and measurement techniques

    Science.gov (United States)

    Jaiswal, S.; Bandyopadhyay, P.; Sen, A.

    2016-12-01

    A variety of experimental techniques for the generation of subsonic/supersonic dust fluid flows and means of measuring such flow velocities are presented. The experiments have been carried out in a \\Pi -shaped dusty plasma experimental device with micron size kaolin/melamine formaldehyde particles embedded in a background of argon plasma created by a direct current glow discharge. A stationary dust cloud is formed over the cathode region by precisely balancing the pumping speed and gas flow rate. A flow of dust particles/fluid is generated by additional gas injection from a single or dual locations or by altering the dust confining potential. The flow velocity is then estimated by three different techniques, namely, by super particle identification code, particle image velocimetry analysis and the excitation of dust acoustic waves. The results obtained from these three different techniques along with their merits and demerits are discussed. An estimation of the neutral drag force responsible for the generation as well as the attenuation of the dust fluid flow is made. These techniques can be usefully employed in laboratory devices to investigate linear and non-linear collective excitations in a flowing dusty plasma.

  20. Flow measurements in boreholes PHO1 and PHO2 in ONKALO

    International Nuclear Information System (INIS)

    Rouhiainen, P.; Pollanen, J.

    2005-10-01

    Posiva Flow Log/Difference Flow method can be used for relatively fast determination of hydraulic properties of fractures or fractured zones in boreholes. The flow sensor for flow along a borehole and a special flow guide are used for this measurement. This report presents the principles of the method as well as the results of the measurements carried out in the underground facilities of the ONKALO. Pilot boreholes PH01 and PH02 were measured. Borehole PH01 was measured on February 2004 and borehole PH02 on December 2004. Borehole PH01 was measured using 2 m section when it was in natural sate (without pumping it) and when water was pumped out from it. The upper part of the borehole was also measured when water was injected into the borehole. In addition to this, a detailed flow log was performed with 0.1 m point intervals using 0.5 m section length when water was pumped out from the borehole. Borehole PH02 was measured only with 0.5 m section length. The borehole was open during measurements and there was a natural outflow from the borehole during measurements. The flow guide encloses an electrode for single point resistance measurement, which was also carried out with 0.01 m point intervals during the flow measurements. Flow measurement and single point resistance measurement were used to locate flowing fractures and to evaluate their transmissivity. Electric conductivity (EC) and temperature of water was registered during flow logging. The conductivity values are temperature corrected to 25 deg C. (orig.)

  1. Guide to Flow Measurement for Electric Propulsion Systems

    Science.gov (United States)

    Frieman, Jason D.; Walker, Mitchell L. R.; Snyder, Steve

    2013-01-01

    In electric propulsion (EP) systems, accurate measurement of the propellant mass flow rate of gas or liquid to the thruster and external cathode is a key input in the calculation of thruster efficiency and specific impulse. Although such measurements are often achieved with commercial mass flow controllers and meters integrated into propellant feed systems, the variability in potential propellant options and flow requirements amongst the spectrum of EP power regimes and devices complicates meter selection, integration, and operation. At the direction of the Committee on Standards for Electric Propulsion Testing, a guide was jointly developed by members of the electric propulsion community to establish a unified document that contains the working principles, methods of implementation and analysis, and calibration techniques and recommendations on the use of mass flow meters in laboratory and spacecraft electric propulsion systems. The guide is applicable to EP devices of all types and power levels ranging from microthrusters to high-power ion engines and Hall effect thrusters. The establishment of a community standard on mass flow metering will help ensure the selection of the proper meter for each application. It will also improve the quality of system performance estimates by providing comprehensive information on the physical phenomena and systematic errors that must be accounted for during the analysis of flow measurement data. This paper will outline the standard methods and recommended practices described in the guide titled "Flow Measurement for Electric Propulsion Systems."

  2. 21 CFR 876.1800 - Urine flow or volume measuring system.

    Science.gov (United States)

    2010-04-01

    ... volume measuring system. (a) Identification. A urine flow or volume measuring system is a device that measures directly or indirectly the volume or flow of urine from a patient, either during the course of... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Urine flow or volume measuring system. 876.1800...

  3. Fish habitat mitigation measures for hydrotechnical projects

    International Nuclear Information System (INIS)

    McPhail, G.D.; MacMillan, D.B.; Katopodis, C.

    1992-01-01

    In recent years, the identification and mitigation of environmental impacts of hydrotechnical projects, particularly on fish and fish habitats, have become a major component of project planning and design. Potential impacts to fish and fish habitat may include increased fish mortality, decreased species diversity, and loss or decreases in fish production due to loss of habitat or alteration of its suitability. These impacts arise from flooding of riverine habitat, alteration of flow quantity and distribution, changes in morphology, and alteration of water quality, including suspended sediments, temperature, dissolved oxygen, and mercury. The results of a study for the Canadian Federal Department of Fisheries and Oceans Central and Arctic Region, examining fish habitat mitigation techniques for their applicability to hydrotechnical projects in Canada are summarized. The requirements for achievement and verification of the no net loss policy for a project are discussed. 10 refs., 2 tabs

  4. Accuracy of portable devices in measuring peak cough flow

    International Nuclear Information System (INIS)

    Kulnik, Stefan Tino; Kalra, Lalit; MacBean, Victoria; Birring, Surinder Singh; Moxham, John; Rafferty, Gerrard Francis

    2015-01-01

    Peak cough flow (PCF) measurements can be used as indicators of cough effectiveness. Portable peak flow meters and spirometers have been used to measure PCF, but little is known about their accuracy compared to pneumotachograph systems. The aim of this study was to compare the accuracy of four portable devices (Mini–Wright and Assess peak flow meters, SpiroUSB and Microlab spirometers) in measuring PCF with a calibrated laboratory based pneumotachograph system. Twenty healthy volunteers (mean (SD) age 45 (16) years) coughed through a pneumotachograph connected in series with each portable device in turn, and the differences in PCF readings were analysed. In addition, mechanically generated flow waves of constant peak flow were delivered through each device both independently and when connected in series with the pneumotachograph. Agreement between PCF readings obtained with the pneumotachograph and the portable devices was poor. Peak flow readings were on average lower by approximately 50 L min −1 when measured using the portable devices; 95% limits of agreement spanned approximately 150 L min −1 . The findings highlight the potential for inaccuracy when using portable devices for the measurement of PCF. Depending on the measurement instrument used, absolute values of PCF reported in the literature may not be directly comparable. (paper)

  5. Young and full-grown spruce tree soil-plant-atmosphere systems studied by sap flow measurement methods

    Czech Academy of Sciences Publication Activity Database

    Dohnal, M.; Vogel, T.; Tesař, Miroslav; Votrubová, J.; Šanda, M.

    2011-01-01

    Roč. 13, - (2011), s. 5342 ISSN 1607-7962. [European Geosciences Union General Assembly 2011. 03.04.2011-08.04.2011, Vienna] R&D Projects: GA ČR GA205/08/1174 Institutional research plan: CEZ:AV0Z20600510 Keywords : forest * transpiration * sap flow measurement * numerical modeling * Sumava Mts. * Jizera Mts. Subject RIV: DA - Hydrology ; Limnology

  6. Migration Flows: Measurement, Analysis and Modeling

    NARCIS (Netherlands)

    Willekens, F.J.; White, Michael J.

    2016-01-01

    This chapter is an introduction to the study of migration flows. It starts with a review of major definition and measurement issues. Comparative studies of migration are particularly difficult because different countries define migration differently and measurement methods are not harmonized.

  7. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    International Nuclear Information System (INIS)

    Manera, A.; Ozar, B.; Paranjape, S.; Ishii, M.; Prasser, H.-M.

    2009-01-01

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  8. Comparison between wire-mesh sensors and conductive needle-probes for measurements of two-phase flow parameters

    Energy Technology Data Exchange (ETDEWEB)

    Manera, A. [Paul Scherrer Institute, 5232 Villigen (Switzerland); Research Center Dresden Rossendorf, Dresden (Germany)], E-mail: annalisa.manera@psi.ch; Ozar, B.; Paranjape, S.; Ishii, M. [Purdue University, West Lafayette (United States); Prasser, H.-M. [Research Center Dresden Rossendorf, Dresden (Germany); ETH Zuerich, Sonneggstrasse 3, 8092 Zuerich (Switzerland)

    2009-09-15

    Measurements of two-phase flow parameters such as void-fraction, bubble velocities, and interfacial area density have been performed in an upwards air-water flow at atmospheric pressure by means of a four-tip needle-probe and a wire-mesh sensor. For the first time, a direct comparison between the two measuring techniques has been carried out. Both techniques are based on the measurement of the fluid conductivity. For void-fraction and velocity measurements, similarity exists between the two methodologies for signal analysis. A significantly different approach is followed, instead, for the estimation of the interfacial area concentration: while the evaluation based on the needle-probe signal is carried out by using projections of the gas-liquid interface velocity, the evaluation based on the wire-mesh signals consist in a full reconstruction of the bubbles interfaces. The comparison between the two techniques shows a good agreement.

  9. In vivo evaluation of femoral blood flow measured with magnetic resonance

    International Nuclear Information System (INIS)

    Henriksen, O.; Staahlberg, F.; Thomsen, C.; Moegelvang, J.; Persson, B.; Lund Univ.

    1989-01-01

    Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve, corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory arrest. The mean T2 of non-flowing blood was found to be 105±31 ms. The femoral blood flow ranged between 0 and 643 ml/min measured with MRI and between 280 and 531 ml/min measured by the indicator dilution technique. There was thus poor agreement between the two methods. The results indicate that in vivo blood flow measurements made with MRI based on wash-out effects, commonly used in multiple spin echo imaging, do not give reliable absolute values for blood flow in the femoral artery or vein. (orig.)

  10. Health System Measurement Project

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Health System Measurement Project tracks government data on critical U.S. health system indicators. The website presents national trend data as well as detailed...

  11. Inter-comparison of statistical downscaling methods for projection of extreme flow indices across Europe

    DEFF Research Database (Denmark)

    Hundecha, Yeshewatesfa; Sunyer Pinya, Maria Antonia; Lawrence, Deborah

    2016-01-01

    The effect of methods of statistical downscaling of daily precipitation on changes in extreme flow indices under a plausible future climate change scenario was investigated in 11 catchments selected from 9 countries in different parts of Europe. The catchments vary from 67 to 6171km2 in size...... catchments to simulate daily runoff. A set of flood indices were derived from daily flows and their changes have been evaluated by comparing their values derived from simulations corresponding to the current and future climate. Most of the implemented downscaling methods project an increase in the extreme...... flow indices in most of the catchments. The catchments where the extremes are expected to increase have a rainfall-dominated flood regime. In these catchments, the downscaling methods also project an increase in the extreme precipitation in the seasons when the extreme flows occur. In catchments where...

  12. Measurement of blowdown flow rates using load cells

    International Nuclear Information System (INIS)

    Dolas, P.K.; Venkat Raj, V.; Ghosh, A.K.; Murty, L.G.K.; Muralidhar Rao, S.

    1980-01-01

    To establish a reliable method for measuring two-phase flow, experiments were planned for measurement of transient single phase flow rates from vessels using load cells. Suitability of lead-zirconate-titanate piezoelectric ceramic discs was examined. Discharge time constant of the disc used was low, leading to large measurement errors. Subsequently, experiments were carried out using strain gauge load cells and these were found satisfactory. The unsteady flow equation has been derived for the system under investigation. The equation has been solved numerically using the fourth order Runge-Kutta method and also by integrating it analytically. The experimental results are compared with the theoretical results and presented in this report. (auth.)

  13. On the K(a)hler-Ricci Flow on Projective Manifolds of General Type

    Institute of Scientific and Technical Information of China (English)

    Gang TIAN; Zhou ZHANG

    2006-01-01

    This note concerns the global existence and convergence of the solution for K(a)hler-Ricci flow equation when the canonical class, Kx, is numerically effective and big.We clarify some known results regarding this flow on projective manifolds of general type and also show some new observations and refined results.

  14. Producing High-Performance, Stable, Sheared-Flow Z-Pinches in the FuZE project

    Science.gov (United States)

    Golingo, R. P.; Shumlak, U.,; Nelson, B. A.; Claveau, E. L.; Forbes, E. G.; Stepanov, A. D.; Weber, T. R.; Zhang, Y.; McLean, H. S.; Tummel, K. K.; Higginson, D. P.; Schmidt, A. E.; University of Washington (UW) Collaboration; Lawrence Livermore National Laboratory (LLNL) Collaboration

    2017-10-01

    The Fusion Z-Pinch Experiment (FuZE) has made significant strides towards generating high-performance, stable Z-pinch plasmas with goals of ne = 1018 cm-3 and T =1 keV. The Z-pinch plasmas are stabilized with a sheared axial flow that is driven by a coaxial accelerator. The new FuZE device has been constructed and reproduces the major scientific achievements the ZaP project at the University of Washington; ne = 1016 cm-3,T = 100 eV, r20 μs. These parameters are measured with an array of magnetic field probes, spectroscopy, and fast framing cameras. The plasma parameters are achieved using a small fraction of the maximum energy storage and gas injection capability of the FuZE device. Higher density, ne = 5×1017 cm-3, and temperature, T = 500 eV, Z-pinch plasmas are formed by increasing the pinch current. At the higher voltages and currents, the ionization rates in the accelerator increase. By modifying the neutral gas profile in the accelerator, the plasma flow from the accelerator is maintained, driving the flow shear. Formation and sustainment of the sheared-flow Z-pinch plasma will be discussed. Experimental data demonstrating high performance plasmas in a stable Z-pinches will be shown. This work is supported by an award from US ARPA-E.

  15. Development of an aerodynamic measurement system for hypersonic rarefied flows.

    Science.gov (United States)

    Ozawa, T; Fujita, K; Suzuki, T

    2015-01-01

    A hypersonic rarefied wind tunnel (HRWT) has lately been developed at Japan Aerospace Exploration Agency in order to improve the prediction of rarefied aerodynamics. Flow characteristics of hypersonic rarefied flows have been investigated experimentally and numerically. By conducting dynamic pressure measurements with pendulous models and pitot pressure measurements, we have probed flow characteristics in the test section. We have also improved understandings of hypersonic rarefied flows by integrating a numerical approach with the HRWT measurement. The development of the integration scheme between HRWT and numerical approach enables us to estimate the hypersonic rarefied flow characteristics as well as the direct measurement of rarefied aerodynamics. Consequently, this wind tunnel is capable of generating 25 mm-core flows with the free stream Mach number greater than 10 and Knudsen number greater than 0.1.

  16. Validation of ANSYS CFX for gas and liquid metal flows with conjugate heat transfer within the European project THINS

    Energy Technology Data Exchange (ETDEWEB)

    Papukchiev, A., E-mail: angel.papukchiev@grs.de; Buchholz, S.

    2017-02-15

    Highlights: • ANSYS CFX is validated for gas and liquid metal flows. • L-STAR and TALL-3D experiments are simulated. • Complex flow and heat transfer phenomena are modelled. • Conjugate heat transfer has to be considered in CFD analyses. - Abstract: Within the FP7 European project THINS (Thermal Hydraulics of Innovative Nuclear Systems), numerical tools for the simulation of the thermal-hydraulics of next generation rector systems were developed, applied and validated for innovative coolants. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH participated in THINS with activities related to the development and validation of computational fluid dynamics (CFD) and coupled System Thermal Hydraulics (STH) – CFD codes. High quality measurements from the L-STAR and TALL-3D experiments were used to assess the numerical results. Two-equation eddy viscosity and scale resolving turbulence models were used in the validation process of ANSYS CFX for gas and liquid metal flows with conjugate heat transfer. This paper provides a brief overview on the main results achieved at GRS within the project.

  17. In vivo evaluation of femoral blood flow measured with magnetic resonance

    DEFF Research Database (Denmark)

    Henriksen, O; Ståhlberg, F; Thomsen, C

    1989-01-01

    , corrected for the T2 decay of non-flowing blood was used to calculate the blood flow. As a reference, the blood flow in the femoral artery was measured simultaneously with an invasive indicator dilution technique. T2 of non-flowing blood was measured in vivo in popliteal veins during regional circulatory...... arrest. The mean T2 of non-flowing blood was found to be 105 +/- 31 ms. The femoral blood flow ranged between 0 and 643 ml/min measured with MRI and between 280 and 531 ml/min measured by the indicator dilution technique. There was thus poor agreement between the two methods. The results indicate......Quantitative measurements of blood flow based on magnetic resonance imaging (MRI) using conventional multiple spin echo sequences were evaluated in vivo in healthy young volunteers. Blood flow was measured using MRI in the femoral vein. The initial slope of the multiple spin echo decay curve...

  18. AC power flow importance measures considering multi-element failures

    International Nuclear Information System (INIS)

    Li, Jian; Dueñas-Osorio, Leonardo; Chen, Changkun; Shi, Congling

    2017-01-01

    Quantifying the criticality of individual components of power systems is essential for overall reliability and management. This paper proposes an AC-based power flow element importance measure, while considering multi-element failures. The measure relies on a proposed AC-based cascading failure model, which captures branch overflow, bus load shedding, and branch failures, via AC power flow and optimal power flow analyses. Taking the IEEE 30, 57 and 118-bus power systems as case studies, we find that N-3 analyses are sufficient to measure the importance of a bus or branch. It is observed that for a substation bus, its importance is statistically proportional to its power demand, but this trend is not observed for power plant buses. While comparing with other reliability, functionality, and topology-based importance measures popular today, we find that a DC power flow model, although better correlated with the benchmark AC model as a whole, still fails to locate some critical elements. This is due to the focus of DC-based models on real power that ignores reactive power. The proposed importance measure is aimed to inform decision makers about key components in complex systems, while improving cascading failure prevention, system backup setting, and overall resilience. - Highlights: • We propose a novel importance measure based on joint failures and AC power flow. • A cascading failure model considers both AC power flow and optimal power flow. • We find that N-3 analyses are sufficient to measure the importance of an element. • Power demand impacts the importance of substations but less so that of generators. • DC models fail to identify some key elements, despite correlating with AC models.

  19. Constraints on the design of flow measuring structures over a large dynamic flow range

    International Nuclear Information System (INIS)

    Hickey, M.J.; Holmes, R.M.

    1979-01-01

    Topographical restraints for design storm flow are described as sharp-crested weirs for low flows in series with broad-crested weirs for the high flows. These design selections are considered to be most economical while providing the specified flow measuring capabilities for movement of radionuclides from the solid waste disposal areas into the surface streams around ORNL

  20. The flow measurement methods for the primary system of integral reactors

    International Nuclear Information System (INIS)

    Lee, J.; Seo, J. K.; Lee, D. J.

    2001-01-01

    It is the common features of the integral reactors that the main components of the primary system are installed within the reactor vessel, and so there are no any flow pipes connecting the reactor coolant pumps or steam generators. Due to no any flow pipes, it is impossible to measure the differential pressure at the primary system of the integral reactors, and it also makes impossible measure the primary coolant flow rate. The objective of the study is to draw up the flow measurement methods for the primary system of integral reactors. As a result of the review, we have made a selection of the flow measurement method by pump speed, bt HBM, and by pump motor power as the flow measurement methods for the primary system of integral reactors. Peculiarly, we did not found out a precedent which the direct pump motor power-flow rate curve is used as the flow measurement method in the existing commercial nuclear power reactors. Therefore, to use this method for integral reactors, it is needed to bear the follow-up measures in mind. The follow-up measures is included in this report

  1. Notes on nonlocal projective measurements in relativistic systems

    International Nuclear Information System (INIS)

    Lin, Shih-Yuin

    2014-01-01

    In quantum mechanical bipartite systems, naive extensions of von Neumann’s projective measurement to nonlocal variables can produce superluminal signals and thus violate causality. We analyze the projective quantum nondemolition state-verification in a two-spin system and see how the projection introduces nonlocality without entanglement. For the ideal measurements of “R-nonlocal” variables, we argue that causality violation can be resolved by introducing further restrictions on the post-measurement states, which makes the measurement “Q-nonlocal”. After we generalize these ideas to quantum mechanical harmonic oscillators, we look into the projective measurements of the particle number of a single mode or a wave-packet of a relativistic quantum field in Minkowski space. It turns out that the causality-violating terms in the expectation values of the local operators, generated either by the ideal measurement of the “R-nonlocal” variable or the quantum nondemolition verification of a Fock state, are all suppressed by the IR and UV cutoffs of the theory. Thus relativistic quantum field theories with such projective measurements are effectively causal

  2. Industrial flow measurement, with particular emphasis on new methods. 2. rev. ed.

    International Nuclear Information System (INIS)

    Bonfig, K.W.

    1987-01-01

    The book reviews in detail the various methods of flow measurement, their basic principles and characteristic features, fields of application, and error sources. An account is given of the state of the art of the different flow measuring techniques currently available, as e.g.: Volumetric flow measurement, pressure-dependent measuring techniques, tracer methods, techniques using the pressure drop, difference in height, magnetic induction, or temperature fluctuations; ultrasonic flow, mass flow, vortex shedding and swirlmeters, oscillatory flow measurement, corona anemometers, velocity measurement using laser beams, or nuclear resonance. (DG) [de

  3. NMR Measurements of Granular Flow and Compaction

    Science.gov (United States)

    Fukushima, Eiichi

    1998-03-01

    Nuclear magnetic resonance (NMR) can be used to measure statistical distributions of granular flow velocity and fluctuations of velocity, as well as spatial distributions of particulate concentration, flow velocity, its fluctuations, and other parameters that may be derived from these. All measurements have been of protons in liquid-containing particles such as mustard seeds or pharmaceutical pills. Our favorite geometry has been the slowly rotating partially filled rotating drum with granular flow taking place along the free surface of the particles. All the above-mentioned parameters have been studied as well as a spatial distribution of particulate diffusion coefficients, energy dissipation due to collisions, as well as segregation of non-uniform mixtures of granular material. Finally, we describe some motions of granular material under periodic vibrations.

  4. Design and construction of a novel Coriolis mass flow rate meter

    NARCIS (Netherlands)

    Mehendale, A.; Zwikker, Rini; Jouwsma, Wybren

    2009-01-01

    The Coriolis principle for measuring flow rates has great advantages compared to other flow measurement principles, the most important being that mass flow is measured directly. Up to now the measurement of low flow rates posed a great challenge. In a joint research project, the University of Twente

  5. Entropy feature extraction on flow pattern of gas/liquid two-phase flow based on cross-section measurement

    International Nuclear Information System (INIS)

    Han, J; Dong, F; Xu, Y Y

    2009-01-01

    This paper introduces the fundamental of cross-section measurement system based on Electrical Resistance Tomography (ERT). The measured data of four flow regimes of the gas/liquid two-phase flow in horizontal pipe flow are obtained by an ERT system. For the measured data, five entropies are extracted to analyze the experimental data according to the different flow regimes, and the analysis method is examined and compared in three different perspectives. The results indicate that three different perspectives of entropy-based feature extraction are sensitive to the flow pattern transition in gas/liquid two-phase flow. By analyzing the results of three different perspectives with the changes of gas/liquid two-phase flow parameters, the dynamic structures of gas/liquid two-phase flow is obtained, and they also provide an efficient supplementary to reveal the flow pattern transition mechanism of gas/liquid two-phase flow. Comparison of the three different methods of feature extraction shows that the appropriate entropy should be used for the identification and prediction of flow regimes.

  6. Performance assessment of mass flow rate measurement capability in a large scale transient two-phase flow test system

    International Nuclear Information System (INIS)

    Nalezny, C.L.; Chapman, R.L.; Martinell, J.S.; Riordon, R.P.; Solbrig, C.W.

    1979-01-01

    Mass flow is an important measured variable in the Loss-of-Fluid Test (LOFT) Program. Large uncertainties in mass flow measurements in the LOFT piping during LOFT coolant experiments requires instrument testing in a transient two-phase flow loop that simulates the geometry of the LOFT piping. To satisfy this need, a transient two-phase flow loop has been designed and built. The load cell weighing system, which provides reference mass flow measurements, has been analyzed to assess its capability to provide the measurements. The analysis consisted of first performing a thermal-hydraulic analysis using RELAP4 to compute mass inventory and pressure fluctuations in the system and mass flow rate at the instrument location. RELAP4 output was used as input to a structural analysis code SAPIV which is used to determine load cell response. The computed load cell response was then smoothed and differentiated to compute mass flow rate from the system. Comparison between computed mass flow rate at the instrument location and mass flow rate from the system computed from the load cell output was used to evaluate mass flow measurement capability of the load cell weighing system. Results of the analysis indicate that the load cell weighing system will provide reference mass flows more accurately than the instruments now in LOFT

  7. Numerical Study of Heat Transfer during Artificial Ground Freezing Combined with Groundwater Flow based on in-situ Measurement

    Science.gov (United States)

    Hu, R.; Liu, Q.

    2016-12-01

    For civil engineering projects, especially in the subsurface with groundwater, the artificial ground freezing (AGF) method has been widely used. Commonly, a refrigerant is circulated through a pre-buried pipe network to form a freezing wall to support the construction. In many cases, the temperature change is merely considered as a result of simple heat conduction. However, the influence of the water-ice phase change on the flow properties should not be neglected, if large amount of groundwater with high flow velocities is present. In this work, we perform a 2D modelling (software: Comsol Multiphysics) of an AFG project of a metro tunnel in Southern China, taking groundwater flow into account. The model is validated based on in-situ measurement of groundwater flow and temperature. We choose a cross section of this horizontal AGF project and set up a model with horizontal groundwater flow normal to the axial of the tunnel. The Darcy velocity is a coupling variable and related to the temperature field. During the phase change of the pore water and the decrement of permeability in freezing zone, we introduce a variable of effective hydraulic conductivity which is described by a function of temperature change. The energy conservation problem is solved by apparent heat capacity method and the related parameter change is described by a step function (McKenzie, et. al. 2007). The results of temperature contour maps combined with groundwater flow velocity at different times indicate that the freezing wall appears in an asymmetrical shape along the groundwater flow direction. It forms slowly and on the upstream side the thickness of the freezing wall is thinner than that on the downstream side. The closure time of the freezing wall increases at the middle of the both up and downstream sides. The average thickness of the freezing wall on the upstream side is mostly affected by the groundwater flow velocity. With the successful validation of this model, this numerical

  8. A study of pipe flow rate measurement using air-coupled ultrasound

    International Nuclear Information System (INIS)

    Tsukada, Keisuke; Tsuzuki, Nobuyoshi; Kikura, Hiroshige

    2013-01-01

    A non-contact flow meter employing air-coupled ultrasound is developed in this research. Ultrasonic flow meter is applied to the higher accuracy flow rate measurement, compared with pressure difference flow meter. However, ultrasonic flow meter has difficulty to measure in severe conditions such as in the condition of high temperature, high pressure condition, and radioactive materials in fluid. Especially, in high temperature condition, piezoelectric device in ultrasonic sensors lose the piezoelectricity, and it becomes difficult to transmit or detect ultrasound. Thus, in this research, ultrasonic sensors are fixed in the air. Ultrasonic sensors transmit and detect ultrasound through air, and measure the flow rate in the pipe. However, most of ultrasound is refracted and reflected at the boundaries between air and the pipe. And detected signals are weak. To increase the signal level, we developed focusing ultrasonic sensors that was optimized for the pipe flow measurement. And employing these focusing sensors the flow rate measurement has been done in order to evaluate the air-coupled ultrasonic flow meter by the ultrasonic beam focusing technique. (author)

  9. Development of microcontroller based water flow measurement

    Science.gov (United States)

    Munir, Muhammad Miftahul; Surachman, Arif; Fathonah, Indra Wahyudin; Billah, Muhammad Aziz; Khairurrijal, Mahfudz, Hernawan; Rimawan, Ririn; Lestari, Slamet

    2015-04-01

    A digital instrument for measuring water flow was developed using an AT89S52 microcontroller, DS1302 real time clock (RTC), and EEPROM for an external memory. The sensor used for probing the current was a propeller that will rotate if immersed in a water flow. After rotating one rotation, the sensor sends one pulse and the number of pulses are counted for a certain time of counting. The measurement data, i.e. the number of pulses per unit time, are converted into water flow velocity (m/s) through a mathematical formula. The microcontroller counts the pulse sent by the sensor and the number of counted pulses are stored into the EEPROM memory. The time interval for counting is provided by the RTC and can be set by the operator. The instrument was tested under various time intervals ranging from 10 to 40 seconds and several standard propellers owned by Experimental Station for Hydraulic Structure and Geotechnics (BHGK), Research Institute for Water Resources (Pusair). Using the same propellers and water flows, it was shown that water flow velocities obtained from the developed digital instrument and those found by the provided analog one are almost similar.

  10. Investigating summer flow paths in a Dutch agricultural field using high frequency direct measurements

    Science.gov (United States)

    Delsman, J. R.; Waterloo, M. J.; Groen, M. M. A.; Groen, J.; Stuyfzand, P. J.

    2014-11-01

    The search for management strategies to cope with projected water scarcity and water quality deterioration calls for a better understanding of the complex interaction between groundwater and surface water in agricultural catchments. We separately measured flow routes to tile drains and an agricultural ditch in a deep polder in the coastal region of the Netherlands, characterized by exfiltration of brackish regional groundwater flow and intake of diverted river water for irrigation and water quality improvement purposes. We simultaneously measured discharge, electrical conductivity and temperature of these separate flow routes at hourly frequencies, disclosing the complex and time-varying patterns and origins of tile drain and ditch exfiltration. Tile drainage could be characterized as a shallow flow system, showing a non-linear response to groundwater level changes. Tile drainage was fed primarily by meteoric water, but still transported the majority (80%) of groundwater-derived salt to surface water. In contrast, deep brackish groundwater exfiltrating directly in the ditch responded linearly to groundwater level variations and is part of a regional groundwater flow system. We could explain the observed salinity of exfiltrating drain and ditch water from the interaction between the fast-responding pressure distribution in the subsurface that determined groundwater flow paths (wave celerity), and the slow-responding groundwater salinity distribution (water velocity). We found water demand for maintaining water levels and diluting salinity through flushing to greatly exceed the actual sprinkling demand. Counterintuitively, flushing demand was found to be largest during precipitation events, suggesting the possibility of water savings by operational flushing control.

  11. Measurement and control systems for an imaging electromagnetic flow metre.

    Science.gov (United States)

    Zhao, Y Y; Lucas, G; Leeungculsatien, T

    2014-03-01

    Electromagnetic flow metres based on the principles of Faraday's laws of induction have been used successfully in many industries. The conventional electromagnetic flow metre can measure the mean liquid velocity in axisymmetric single phase flows. However, in order to achieve velocity profile measurements in single phase flows with non-uniform velocity profiles, a novel imaging electromagnetic flow metre (IEF) has been developed which is described in this paper. The novel electromagnetic flow metre which is based on the 'weight value' theory to reconstruct velocity profiles is interfaced with a 'Microrobotics VM1' microcontroller as a stand-alone unit. The work undertaken in the paper demonstrates that an imaging electromagnetic flow metre for liquid velocity profile measurement is an instrument that is highly suited for control via a microcontroller. © 2013 ISA Published by ISA All rights reserved.

  12. Flow field calculation around the measuring part of a circulated flow tank for measurement; Keisokuyo kairyu suiso sokuteibu no ryujo keisan ni tsuite

    Energy Technology Data Exchange (ETDEWEB)

    Nishimoto, H; Ogura, R; Yamazaki, R [West Japan Fluid Engineering Co. Ltd., Nagasaki (Japan)

    1996-04-10

    In order to increase a fluid dynamic understanding of the flow field around the measuring part as for the leveling of free surface of the circulated flow tank for measurement, the velocity and free surface profile at the measuring part have been calculated by applying the numerical fluid dynamics. The results were compared with actual phenomena. For the average velocity at the measuring part, inclining angle of surpressing plate, and quantity of water in the tank, the flow field simulation by the numerical fluid dynamics has provided a qualitative agreement with actual phenomena. Especially, it was clarified from the viewpoint of numerical fluid dynamics that the fine adjustment of the inclining angle of surpressing plate and quantity of water in the tank greatly affect the creation of horizontal free surface at the measuring part. Furthermore, effects of the length of measuring part and the ceiling tilt angle of pipe conduit in the downstream of measuring part, which were hard to be analyzed experimentally from the viewpoint of facility and cost, were investigated. Consequently, it was clarified that there are critical length of the measuring part and optimum ceiling tilt angle in the leveling of horizontal free surface. Thus, an instruction for designing was obtained. The present flow field simulation was useful for the fluid dynamic understanding of the flow field at the measuring part, as for the leveling of horizontal free surface. 1 ref., 8 figs.

  13. Interfacial area measurements in two-phase flow

    International Nuclear Information System (INIS)

    Veteau, J.-M.

    1979-08-01

    A thorough understanding of two-phase flow requires the accurate measurement of the time-averaged interfacial area per unit volume (also called the time-averaged integral specific area). The so-called 'specific area' can be estimated by several techniques described in the literature. These different methods are reviewed and the flow conditions which lead to a rigourous determination of the time-averaged integral specific area are clearly established. The probe technique, involving local measurements seems very attractive because of its large range of application [fr

  14. Information Flow Through Stages of Complex Engineering Design Projects: A Dynamic Network Analysis Approach

    DEFF Research Database (Denmark)

    Parraguez, Pedro; Eppinger, Steven D.; Maier, Anja

    2015-01-01

    The pattern of information flow through the network of interdependent design activities is thought to be an important determinant of engineering design process results. A previously unexplored aspect of such patterns relates to the temporal dynamics of information transfer between activities...... design process and thus support theory-building toward the evolution of information flows through systems engineering stages. Implications include guidance on how to analyze and predict information flows as well as better planning of information flows in engineering design projects according...

  15. A new method for the measurement of two-phase mass flow rate using average bi-directional flow tube

    International Nuclear Information System (INIS)

    Yoon, B. J.; Uh, D. J.; Kang, K. H.; Song, C. H.; Paek, W. P.

    2004-01-01

    Average bi-directional flow tube was suggested to apply in the air/steam-water flow condition. Its working principle is similar with Pitot tube, however, it makes it possible to eliminate the cooling system which is normally needed to prevent from flashing in the pressure impulse line of pitot tube when it is used in the depressurization condition. The suggested flow tube was tested in the air-water vertical test section which has 80mm inner diameter and 10m length. The flow tube was installed at 120 of L/D from inlet of test section. In the test, the pressure drop across the average bi-directional flow tube, system pressure and average void fraction were measured on the measuring plane. In the test, fluid temperature and injected mass flow rates of air and water phases were also measured by a RTD and two coriolis flow meters, respectively. To calculate the phasic mass flow rates : from the measured differential pressure and void fraction, Chexal drift-flux correlation was used. In the test a new correlation of momentum exchange factor was suggested. The test result shows that the suggested instrumentation using the measured void fraction and Chexal drift-flux correlation can predict the mass flow rates within 10% error of measured data

  16. Local measurements in turbulent bubbly flows

    International Nuclear Information System (INIS)

    Suzanne, C.; Ellingsen, K.; Risso, F.; Roig, V.

    1998-01-01

    Local measurements methods in bubbly flows are discussed. Concerning liquid velocity measurement, problems linked to HFA and LDA are first analysed. Then simultaneously recorded velocity signals obtained by both anemometers are compared. New signal processing are developed for the two techniques. Bubble sizes and velocities measurements methods using intrusive double optical sensor probe are presented. Plane bubbly mixing layer has been investigated. Local measurements using the described methods are presented as examples. (author)

  17. Real-Time Aerodynamic Parameter Estimation without Air Flow Angle Measurements

    Science.gov (United States)

    Morelli, Eugene A.

    2010-01-01

    A technique for estimating aerodynamic parameters in real time from flight data without air flow angle measurements is described and demonstrated. The method is applied to simulated F-16 data, and to flight data from a subscale jet transport aircraft. Modeling results obtained with the new approach using flight data without air flow angle measurements were compared to modeling results computed conventionally using flight data that included air flow angle measurements. Comparisons demonstrated that the new technique can provide accurate aerodynamic modeling results without air flow angle measurements, which are often difficult and expensive to obtain. Implications for efficient flight testing and flight safety are discussed.

  18. Device for measurement of gas mass flow. Einrichtung zur Gasmassenstrommessung

    Energy Technology Data Exchange (ETDEWEB)

    Sass, W

    1989-09-28

    The invention is concerned with a device for the measurement of gas mass flow, particularly measuring air mass flow for vehicles with internal combustion engines, with a measurement bridge, in one branch of which a gas flow resistance, particularly a hot film sensor, with gas flowing round it, is connected in series with a measurement resistance and in another branch of which a compensation resistance measuring the gas temperature is connected in series with a fixed resistor, where the bridge differential voltage is measured in the zero branch of the measuring bridge and a control parameter is produced from this, in order to control a transistor valve situated in the bridge supply path of a DC voltage source via its control electrode until the bridge is balanced, and where the voltage at the measurement resistance after the bridge is balanced is used as a measure of the gas mass flow. In order to obtain exact results of measurement in spite of relatively high interference noise from the cables, it is proposed that an increased supply DC voltage appreciably decreasing the occurring interference noise from the cables should be produced from a small DC voltage and that the output of the DC/DC voltage converter should be connected to the control electrode of the transistor valve, so that the control parameter for the control electrode is derived from the raised DC supply voltage through reducers depending on the gas flow.

  19. Non-intrusive accurate and traceable flow measurements in nuclear power plant systems

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, A.; Kanda, V.; Sharp, B.; Lopez, A. [Advanced Measurement and Analysis Group Inc., ON (Canada); Gurevich, Y. [Daystar Technologies Inc., ON (Canada)

    2014-07-01

    Ultrasonic cross correlation flow meters, are a non-intrusive flow measurement technology based on measurement of the transport velocity of turbulent structures, and have many advantages over other ultrasonic flow measurement methods. The cross correlation flow meter CROSSFLOW, produced and operated by the Canadian company Advanced Measurement and Analysis Group Inc., is used in nuclear power plants around the world, for various application. This paper describes the operating principals of the ultrasonic cross correlation flow meter, its advantages over other ultrasonic flow measurement methods, its application around the world. (author)

  20. THE MEASUREMENT AND EVALUATION OF THE INTERNAL COMMUNICATION PROCESS IN PROJECT MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Pop Alexandra Mihaela

    2013-07-01

    The model is a useful tool for improving the internal communication process of a project and help the project raise its efficiency. It has been created based on the characteristics of the information flow within a project. Also the Internal Communication Analysis Model – ICAM – helps improve the projects‘ deliverables by making sure that everyone in the project understood their roles correctly.

  1. Semiempirical method of determining flow coefficients for pitot rake mass flow rate measurements

    Science.gov (United States)

    Trefny, C. J.

    1985-01-01

    Flow coefficients applicable to area-weighted pitot rake mass flow rate measurements are presented for fully developed, turbulent flow in an annulus. A turbulent velocity profile is generated semiempirically for a given annulus hub-to-tip radius ratio and integrated numerically to determine the ideal mass flow rate. The calculated velocities at each probe location are then summed, and the flow rate as indicated by the rake is obtained. The flow coefficient to be used with the particular rake geometry is subsequently obtained by dividing the ideal flow rate by the rake-indicated flow rate. Flow coefficients ranged from 0.903 for one probe placed at a radius dividing two equal areas to 0.984 for a 10-probe area-weighted rake. Flow coefficients were not a strong function of annulus hub-to-tip radius ratio for rakes with three or more probes. The semiempirical method used to generate the turbulent velocity profiles is described in detail.

  2. Quantitative measurement of portal blood flow by magnetic resonance phase contrast. Comparative study of flow phantom and Doppler ultrasound in vivo

    International Nuclear Information System (INIS)

    Tsunoda, Masatoshi; Kimoto, Shin; Hamazaki, Keisuke; Takeda, Yoshihiro; Hiraki, Yoshio.

    1994-01-01

    A non-invasive method for measuring portal blood flow by magnetic resonance (MR) phase contrast was evaluated in a flow phantom and 20 healthy volunteers. In a flow phantom study, the flow volumes and mean flow velocities measured by MR phase contrast showed close correlations with those measured by electromagnetic flow-metry. In 20 healthy volunteers, the cross-sectional areas, flow volumes and mean flow velocities measured by MR phase contrast correlated well with those measured by the Doppler ultrasound method. Portal blood flow averaged during the imaging time could be measured under natural breathing conditions by using a large number of acquisitions without the limitations imposed on the Doppler ultrasound method. MR phase contrast is considered to be useful for the non-invasive measurement of portal blood flow. (author)

  3. Fluid Flow Technology that Measures Up

    Science.gov (United States)

    2004-01-01

    From 1994 to 1996, NASA s Marshall Space Flight Center conducted a Center Director's Discretionary Fund research effort to apply artificial intelligence technologies to the health management of plant equipment and space propulsion systems. Through this effort, NASA established a business relationship with Quality Monitoring and Control (QMC), of Kingwood, Texas, to provide hardware modeling and artificial intelligence tools. Very detailed and accurate Space Shuttle Main Engine (SSME) analysis and algorithms were jointly created, which identified several missing, critical instrumentation needs for adequately evaluating the engine health status. One of the missing instruments was a liquid oxygen (LOX) flow measurement. This instrument was missing since the original SSME included a LOX turbine flow meter that failed during a ground test, resulting in considerable damage for NASA. New balanced flow meter technology addresses this need with robust, safe, and accurate flow metering hardware.

  4. Evaluation of the flow-accelerated corrosion downstream of an orifice. 1. Measurements and numerical analysis of flow field

    International Nuclear Information System (INIS)

    Utanohara, Yoichi; Nagaya, Yukinori; Nakamura, Akira; Murase, Michio

    2008-01-01

    In this study, in order to evaluate the effects of flow field on corrosion rate due to flow accelerated corrosion (FAC), an orifice flow was measured and calculated. The diameter of pipe is 50 mm and that of the orifice is 24.3 mm, and flow velocity in a water loop was set at 2.41 m/s. Flow field was measured by laser Doppler velocimetry (LDV) and particle image velocimetry (PIV), and compared with a calculation for the same flow conditions. Measurements of wall shear stress downstream of the orifice was also planed. The calculated velocity distribution of standard k-□ agreed qualitatively with PIV data and quantitatively with LDV data. Instantaneous flow field measured by PIV showed vortices around the jet from the orifice and some of them reached near the pipe wall. (author)

  5. Novel annular flow electromagnetic measurement system for drilling engineering.

    OpenAIRE

    Ge, L.; Wei, G. H.; Wang, Q.; Hu, Z.; Li, J. L.

    2017-01-01

    Downhole micro-flux control drilling technology can effectively solve drilling accidents, such as kick and loss in narrow density window drilling scenarios. Using a downhole annular flow measurement system to obtain real-time information of downhole annular flow is the core and foundation of downhole micro-flux control drilling technology. The research work of electromagnetic flowmeters in recent years creates a challenge for downhole annular flow measurement. This paper proposes a new method...

  6. A Comprehensive Statistically-Based Method to Interpret Real-Time Flowing Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Keita Yoshioka; Pinan Dawkrajai; Analis A. Romero; Ding Zhu; A. D. Hill; Larry W. Lake

    2007-01-15

    With the recent development of temperature measurement systems, continuous temperature profiles can be obtained with high precision. Small temperature changes can be detected by modern temperature measuring instruments such as fiber optic distributed temperature sensor (DTS) in intelligent completions and will potentially aid the diagnosis of downhole flow conditions. In vertical wells, since elevational geothermal changes make the wellbore temperature sensitive to the amount and the type of fluids produced, temperature logs can be used successfully to diagnose the downhole flow conditions. However, geothermal temperature changes along the wellbore being small for horizontal wells, interpretations of a temperature log become difficult. The primary temperature differences for each phase (oil, water, and gas) are caused by frictional effects. Therefore, in developing a thermal model for horizontal wellbore, subtle temperature changes must be accounted for. In this project, we have rigorously derived governing equations for a producing horizontal wellbore and developed a prediction model of the temperature and pressure by coupling the wellbore and reservoir equations. Also, we applied Ramey's model (1962) to the build section and used an energy balance to infer the temperature profile at the junction. The multilateral wellbore temperature model was applied to a wide range of cases at varying fluid thermal properties, absolute values of temperature and pressure, geothermal gradients, flow rates from each lateral, and the trajectories of each build section. With the prediction models developed, we present inversion studies of synthetic and field examples. These results are essential to identify water or gas entry, to guide flow control devices in intelligent completions, and to decide if reservoir stimulation is needed in particular horizontal sections. This study will complete and validate these inversion studies.

  7. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan [Tsinghua National Laboratory for Information Science and Technology, Department of Automation, Tsinghua University, Beijing, 100084 (China); Yan Yong, E-mail: lihuipeng@tsinghua.edu.c [University of Kent, Canterbury, Kent CT2 7NT (United Kingdom)

    2009-02-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  8. Digital image processing based mass flow rate measurement of gas/solid two-phase flow

    International Nuclear Information System (INIS)

    Song Ding; Peng Lihui; Lu Geng; Yang Shiyuan; Yan Yong

    2009-01-01

    With the rapid growth of the process industry, pneumatic conveying as a tool for the transportation of a wide variety of pulverized and granular materials has become widespread. In order to improve plant control and operational efficiency, it is essential to know the parameters of the particle flow. This paper presents a digital imaging based method which is capable of measuring multiple flow parameters, including volumetric concentration, velocity and mass flow rate of particles in the gas/solid two phase flow. The measurement system consists of a solid state laser for illumination, a low-cost CCD camera for particle image acquisition and a microcomputer with bespoke software for particle image processing. The measurements of particle velocity and volumetric concentration share the same sensing hardware but use different exposure time and different image processing methods. By controlling the exposure time of the camera a clear image and a motion blurred image are obtained respectively. The clear image is thresholded by OTSU method to identify the particles from the dark background so that the volumetric concentration is determined by calculating the ratio between the particle area and the total area. Particle velocity is derived from the motion blur length, which is estimated from the motion blurred images by using the travelling wave equation method. The mass flow rate of particles is calculated by combining the particle velocity and volumetric concentration. Simulation and experiment results indicate that the proposed method is promising for the measurement of multiple parameters of gas/solid two-phase flow.

  9. The use of gamma radiation in fluid flow measurements

    International Nuclear Information System (INIS)

    Tjugum, S.A.; Johansen, G.A.

    2000-01-01

    The use of gamma radiation in densitometry measurements is a well known principle. These measurements are often used in the oil industry where there is a need for finding the gas fraction of an oil/water/gas flow. The traditional gamma densitometer has a simple construction, where the measured parameter is the attenuation of a single gamma beam. High reliability, robustness and the clamp-on possibility are advantages that this type of instruments offer. More information can be found by studying how radiation is scattered and absorbed by matter. This information is needed in new multiphase flow meters. Problems to be solved in these instruments are how to find volume fractions of more than two components, how to handle different flow regimes in non-homogeneous flow, and how to do measurements independent of the salinity of the water. The new technology involves multi-energy, multi-mode and multi-sensor systems. At the University of Bergen the focus has been on how to do flow regime and salinity independent measurements by using multi-sensor and multi-mode systems. This paper gives an overview of the different techniques, and presents the latest results within this field of research at the University of Bergen. (author)

  10. Air flow measurement techniques applied to noise reduction of a centrifugal blower

    Science.gov (United States)

    Laage, John W.; Armstrong, Ashli J.; Eilers, Daniel J.; Olsen, Michael G.; Mann, J. Adin

    2005-09-01

    The air flow in a centrifugal blower was studied using a variety of flow and sound measurement techniques. The flow measurement techniques employed included Particle Image Velocimetry (PIV), pitot tubes, and a five hole spherical probe. PIV was used to measure instantaneous and ensemble-averaged velocity fields over large area of the outlet duct as a function of fan position, allowing for the visualization of the flow as it leave the fan blades and progressed downstream. The results from the flow measurements were reviewed along side the results of the sound measurements with the goal of identifying sources of noise and inefficiencies in flow performance. The radiated sound power was divided into broadband and tone noise and measures of the flow. The changes in the tone and broadband sound were compared to changes in flow quantities such as the turbulent kinetic energy and Reynolds stress. Results for each method will be presented to demonstrate the strengths of each flow measurement technique as well as their limitations. Finally, the role that each played in identifying noise sources is described.

  11. Pressure pulsation measurements in pipe and cluster flows

    International Nuclear Information System (INIS)

    Benemann, A.; Voj, P.

    1976-01-01

    Measuring and evaluation techniques of pressure pulsations in pipe and cluster flows are described. The measurements were made on a 1 m long SNR rod-cluster and its feed and drain pipes. At Reynolds numbers in the cluster of 8.9 x 10 4 flow velocities of 14 m/sec were achieved. With the aid of a block diagram recording of the measured values by piezoelectric crystal and piezo-resistive strain gange as well as data processing are explained. For the analytical treatment of the pressure pulsation signals characterizing the turbulence field computer codes of a digital computer and a fast-fourier analyzer (Hewlett-Packard 5450 A) were used. The results show good agreement with theoretical curves on the behaviour of turbulent boundary layers of cluster and pipe flows at high Reynolds numbers. (TK) [de

  12. A Test of the Validity of Projective and Quasi-Projective Measures of Interpersonal Distance.

    Science.gov (United States)

    Jones, Stanley E.; Aiello, John R.

    1979-01-01

    Discusses research supporting the conclusion that projective and quasi-projective measures of interpersonal distance do not measure the same phenomena as interactional measures. It is possible that they are more indicative of psychological rather than physical distance. (JMF)

  13. Bathyphotometer bioluminescence potential measurements: A framework for characterizing flow agitators and predicting flow-stimulated bioluminescence intensity

    Science.gov (United States)

    Latz, Michael I.; Rohr, Jim

    2013-07-01

    Bathyphotometer measurements of bioluminescence are used as a proxy for the abundance of luminescent organisms for studying population dynamics; the interaction of luminescent organisms with physical, chemical, and biological oceanographic processes; and spatial complexity especially in coastal areas. However, the usefulness of bioluminescence measurements has been limited by the inability to compare results from different bathyphotometer designs, or even the same bathyphotometer operating at different volume flow rates. The primary objective of this study was to compare measurements of stimulated bioluminescence of four species of cultured dinoflagellates, the most common source of bioluminescence in coastal waters, using two different bathyphotometer flow agitators as a function of bathyphotometer volume flow rate and dinoflagellate concentration. For both the NOSC and BIOLITE flow agitators and each species of dinoflagellate tested, there was a critical volume flow rate, above which average bioluminescence intensity, designated as bathyphotometer bioluminescence potential (BBP), remained relatively constant and scaled directly with dinoflagellate cell concentration. At supra-critical volume flow rates, the ratio of BIOLITE to NOSC BBP was nearly constant for the same species studied, but varied between species. The spatial pattern and residence time of flash trajectories within the NOSC flow agitator indicated the presence of dominant secondary recirculating flows, where most of the bioluminescence was detected. A secondary objective (appearing in the Appendix) was to study the feasibility of using NOSC BBP to scale flow-stimulated bioluminescence intensity across similar flow fields, where the contributing composition of luminescent species remained the same. Fully developed turbulent pipe flow was chosen because it is hydrodynamically well characterized. Average bioluminescence intensity in a 2.54-cm i.d. pipe was highly correlated with wall shear stress and

  14. Mesoscale meteorological measurements characterizing complex flows

    International Nuclear Information System (INIS)

    Hubbe, J.M.; Allwine, K.J.

    1993-09-01

    Meteorological measurements are an integral and essential component of any emergency response system for addressing accidental releases from nuclear facilities. An important element of the US Department of Energy's (DOE's) Atmospheric Studies in Complex Terrain (ASCOT) program is the refinement and use of state-of-the-art meteorological instrumentation. ASCOT is currently making use of ground-based remote wind sensing instruments such as doppler acoustic sounders (sodars). These instruments are capable of continuously and reliably measuring winds up to several hundred meters above the ground, unattended. Two sodars are currently measuring the winds, as part of ASCOT's Front Range Study, in the vicinity of DOE's Rocky Flats Plant (RFP) near Boulder, Colorado. A brief description of ASCOT's ongoing Front Range Study is given followed by a case study analysis that demonstrates the utility of the meteorological measurement equipment and the complexity of flow phenomena that are experienced near RFP. These complex flow phenomena can significantly influence the transport of the released material and consequently need to be identified for accurate assessments of the consequences of a release

  15. Velocity Profile measurements in two-phase flow using multi-wave sensors

    Science.gov (United States)

    Biddinika, M. K.; Ito, D.; Takahashi, H.; Kikura, H.; Aritomi, M.

    2009-02-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  16. Velocity Profile measurements in two-phase flow using multi-wave sensors

    International Nuclear Information System (INIS)

    Biddinika, M K; Ito, D; Takahashi, H; Kikura, H; Aritomi, M

    2009-01-01

    Two-phase flow has been recognized as one of the most important phenomena in fluid dynamics. In addition, gas-liquid two-phase flow appears in various industrial fields such as chemical industries and power generations. In order to clarify the flow structure, some flow parameters have been measured by using many effective measurement techniques. The velocity profile as one of the important flow parameter, has been measured by using ultrasonic velocity profile (UVP) technique. This technique can measure velocity distributions along a measuring line, which is a beam formed by pulse ultrasounds. Furthermore, a multi-wave sensor can measure the velocity profiles of both gas and liquid phase using UVP method. In this study, two types of multi-wave sensors are used. A sensor has cylindrical shape, and another one has square shape. The piezoelectric elements of each sensor have basic frequencies of 8 MHz for liquid phase and 2 MHz for gas phase, separately. The velocity profiles of air-water bubbly flow in a vertical rectangular channel were measured by using these multi-wave sensors, and the validation of the measuring accuracy was performed by the comparison between the velocity profiles measured by two multi-wave sensors.

  17. A review on measuring methods of gas-liquid flow rates

    International Nuclear Information System (INIS)

    Minemura, Kiyoshi; Yamashita, Masato

    2000-01-01

    This paper presents a review on the state of current measuring techniques for gas-liquid multiphase flow rates. After briefly discussing the basic idea on measuring methods for single-phase and two-phase flows, existing methods for the two-phase flow rates are classified into several types, that is, with or without a homogenizing device, single or combined method of several techniques, with intrusive or non-intrusive sensors, and physical or software method. Each methods are comparatively reviewed in view of measuring accuracy and manageability. Its scope also contains the techniques developed for petroleum-gas-water flow rates. (author)

  18. Effects of equipment and technique on peak flow measurements

    Directory of Open Access Journals (Sweden)

    O'Driscoll B Ronan

    2006-06-01

    Full Text Available Abstract Background Different lung function equipment and different respiratory manoeuvres may produce different Peak Expiratory Flow (PEF results. Although the PEF is the most common lung function test, there have been few studies of these effects and no previous study has evaluated both factors in a single group of patients. Methods We studied 36 subjects (PEF range 80–570 l/min. All patients recorded PEF measurements using a short rapid expiration following maximal inspiration (PEF technique or a forced maximal expiration to residual volume (FVC technique. Measurements were made using a Wright's peak flow meter, a turbine spirometer and a Fleisch pneumotachograph spirometer. Results The mean PEF was 8.7% higher when the PEF technique was used (compared with FVC technique, p Conclusion Peak flow measurements are affected by the instruction given and by the device and Peak Flow scale used. Patient management decisions should not be based on PEF measurement made on different instruments.

  19. Evaluating groundwater flow using passive electrical measurements

    Science.gov (United States)

    Voytek, E.; Revil, A.; Singha, K.

    2016-12-01

    Accurate quantification of groundwater flow patterns, both in magnitude and direction, is a necessary component of evaluating any hydrologic system. Groundwater flow patterns are often determined using a dense network of wells or piezometers, which can be limited due to logistical or regulatory constraints. The self-potential (SP) method, a passive geophysical technique that relies on currents generated by water movement through porous materials, is a re-emerging alternative or addition to traditional piezometer networks. Naturally generated currents can be measured as voltage differences at the ground surface using only two electrodes, or a more complex electrode array. While the association between SP measurements and groundwater flow was observed as early as 1890s, the method has seen resurgence in hydrology since the governing equations were refined in the 1980s. The method can be used to analyze hydrologic processes at various temporal and spatial scales. Here we present the results of multiple SP surveys collected a multiple scales (1 to 10s of meters). Here single SP grid surveys are used to evaluate flow patterns through artic hillslopes at a discrete point in time. Additionally, a coupled groundwater and electrical model is used to analyze multiple SP data sets to evaluate seasonal changes in groundwater flow through an alpine meadow.

  20. 40 CFR 86.313-79 - Air flow measurement specifications; diesel engines.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air flow measurement specifications... Procedures § 86.313-79 Air flow measurement specifications; diesel engines. (a) The air flow measurement... (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES...

  1. Void fraction in horizontal bulk flow boiling at high flow qualities

    International Nuclear Information System (INIS)

    Collado, Fancisco J.; Monne, Carlos; Pascau, Antonio

    2008-01-01

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities (≤0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality (≤0.2)

  2. Cerebral blood flow measurement in cerebrovascular occlusive diseases

    International Nuclear Information System (INIS)

    Yanagihara, T.; Wahner, H.W.

    1984-01-01

    In order to evaluate cerebral blood flow (CBF) patterns among individual patients with increased statistical confidence, CBF measurements were carried out using the 133Xe-inhalation method and external head detectors. F1 values representing gray matter flow from 3 to 6 head detectors were averaged to form 16 different regions for each cerebral hemisphere. Normative values were obtained from 46 healthy volunteers, and data from individual regions were analyzed for absolute blood flow rates (ml/100g/min), for concordance between right and left hemispheres and as percent of mean hemispheric flow. CBF measurements were then carried out among 37 patients with cerebrovascular occlusive diseases, and results were compared with normative values. A high incidence of abnormal flows were detected among symptomatic patients with intracranial arterial stenosis or occlusion and those with extracranial internal carotid artery occlusion. By using the above method for data analysis, it was possible to delineate hypoperfused areas among these patients. Even though the 133Xe-inhalation method has inherent limitations, this is a practical and safe method for measurement of CBF which can provide reliable information useful for management of patients with cerebrovascular occlusive diseases, particularly when the results are presented with statistical confidence

  3. Interim Columbia and Snake rivers flow improvement measures for salmon: Final Supplemental Environmental Impact Statement (SEIS)

    Energy Technology Data Exchange (ETDEWEB)

    1993-03-01

    Public comments are sought on this final SEIS, which supplements the 1992 Columbia River Salmon Flow Measures Options Analysis (OA)/Environmental Impact Statement (EIS). The Corps of Engineers, in cooperation with the Bonneville Power Administration and the Bureau of Reclamation proposes five alternatives to improve flows of water in the lower Columbia-Snake rivers in 1993 and future years to assist the migration of juvenile and adult anadromous fish past eight hydropower dams. These are: (1) Without Project (no action) Alternative, (2) the 1992 Operation, (3) the 1992 Operation with Libby/Hungry Horse Sensitivity, (4) a Modified 1992 Operation with Improvements to Salmon Flows from Dworshak, and (5) a Modified 1992 Operation with Upper Snake Sensitivity. Alternative 4, Modified 1992 Operations, has been identified as the preferred alternative.

  4. Three-Dimensional Flow Field Measurements in a Transonic Turbine Cascade

    Science.gov (United States)

    Giel, P. W.; Thurman, D. R.; Lopez, I.; Boyle, R. J.; VanFossen, G. J.; Jett, T. A.; Camperchioli, W. P.; La, H.

    1996-01-01

    Three-dimensional flow field measurements are presented for a large scale transonic turbine blade cascade. Flow field total pressures and pitch and yaw flow angles were measured at an inlet Reynolds number of 1.0 x 10(exp 6) and at an isentropic exit Mach number of 1.3 in a low turbulence environment. Flow field data was obtained on five pitchwise/spanwise measurement planes, two upstream and three downstream of the cascade, each covering three blade pitches. Three-hole boundary layer probes and five-hole pitch/yaw probes were used to obtain data at over 1200 locations in each of the measurement planes. Blade and endwall static pressures were also measured at an inlet Reynolds number of 0.5 x 10(exp 6) and at an isentropic exit Mach number of 1.0. Tests were conducted in a linear cascade at the NASA Lewis Transonic Turbine Blade Cascade Facility. The test article was a turbine rotor with 136 deg of turning and an axial chord of 12.7 cm. The flow field in the cascade is highly three-dimensional as a result of thick boundary layers at the test section inlet and because of the high degree of flow turning. The large scale allowed for very detailed measurements of both flow field and surface phenomena. The intent of the work is to provide benchmark quality data for CFD code and model verification.

  5. Correlation measurements of sodium flow rate with magnetic sensors

    International Nuclear Information System (INIS)

    Kebadze, B.V.; Krasnoyarov, N.V.; Adamovskij, L.A.; Golushko, V.V.; Sroelov, V.S.

    1978-01-01

    The results of bench-mark experiments and those carried out at the BOR-60 reactor to measure the sodium coolant flow rate by a correlation method are presented. The method is based on detecting the eddy type flow hydraulic nonuniformities using magnetic flowmeters. The measurements were fulfilled in a broad range of flow rates (G=10-10 4 m 3 /h, Re=2x10 5 -2x10 7 ). The measured and calculated mutual correlation functions are presented with parallel and perpendicular orientations of the flowmeters magnetic fields. A good accord is stated. Prerequirements to the arrangement of the measuring systems are formulated. As an important advantage of the correlation method a possibility of the flowmeter calibration in situ is hydhlighted

  6. Pitot tube and drag body measurements in transient steam--water flows

    International Nuclear Information System (INIS)

    Fincke, J.R.; Deason, V.A.; Dacus, M.W.

    1979-01-01

    The use of full-flow drag devices and rakes of water-cooled Pitot tubes to measure the transient two-phase mass flow during loss-of-coolant experiments in pressurized water reactor (PWR) environments has been developed. Mass flow rate measurements have been obtained in high temperature and pressure environments, similar to PWRs, under transient conditions. Comparisons of the measured time integrated value of mass flow to the known system mass before depressurization are made

  7. Sodium flow measurement in large pipelines of sodium cooled fast breeder reactors with bypass type flow meters

    International Nuclear Information System (INIS)

    Rajan, K.K.; Jayakumar, T.; Aggarwal, P.K.; Vinod, V.

    2016-01-01

    Highlights: • Bypass type permanent magnet flow meters are more suitable for sodium flow measurement. • A higher sodium velocity through the PMFM sensor will increase its sensitivity and resolution. • By modifying the geometry of bypass line, higher sodium velocity through sensor is achieved. • With optimized geometry the sensitivity of bypass flow meter system was increased by 70%. - Abstract: Liquid sodium flow through the pipelines of sodium cooled fast breeder reactor circuits are measured using electromagnetic flow meters. Bypass type flow meter with a permanent magnet flow meter as sensor in the bypass line is selected for the flow measurement in the 800 NB main secondary pipe line of 500 MWe Prototype Fast Breeder Reactor (PFBR), which is at the advanced stage of construction at Kalpakkam. For increasing the sensitivity of bypass flow meters in future SFRs, alternative bypass geometry was considered. The performance enhancement of the proposed geometry was evaluated by experimental and numerical methods using scaled down models. From the studies it is observed that the new configuration increases the sensitivity of bypass flow meter system by around 70%. Using experimentally validated numerical tools the volumetric flow ratio for the bypass configurations is established for the operating range of Reynolds numbers.

  8. Velocity measurements and identification of the flow pattern of vertical air-water flows with light-beam detectors

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Leoni, B.

    1980-07-01

    A new detector for measuring fluid velocities in two-phase flows by means of Noise-Analysis (especially Transient-Cross-Correlation-technique) has been developed. The detector utilizes a light-beam which is modulated by changes in the transparency of the two-phase flow. The results of nine measurements for different flow-regimes of vertical air/water-flows are shown. A main topic of these investigations was to answer the question if it is possible to identify the flow-pattern by looking at the shape of different 'Noise-Analytical-functions' (like APSD, CPSD, CCF etc.). The results prove that light-beam sensors are good detectors for fluid-velocity measurements in different flow regimes and in a wide range of fluid velocities starting with values of about 0.08 m/s up to values of 40 m/s. With respect to flow-pattern identification only the time-signals and the shape of the cross-power-density-function (CPSD) seem to be useful. (Auth.)

  9. Measurement of regional hepatic blood flow by scintiphotosplenoportography

    Energy Technology Data Exchange (ETDEWEB)

    Kashiwagi, T; Kimura, K; Kamada, T; Abe, H [Osaka Univ. (Japan). Dept. of Radiology and Nuclear Medicine

    1978-08-01

    A new technique for estimating regional hepatic blood flow using the inert gas washout technique and scintillation camera following injection of /sup 133/Xe into the spleen is presented. This technique is easily, rapidly and repeatedly performed and permits the measurement of nutrient hepatic tissue blood flow. Measurement of regional hepatic blood flow in right and/or left lobes was performed in 28 patients. In all but one patient the right lobar flow value was equal to or greater than the left one. The right lobar flow was 86.20 +- 12.83 ml/100 gm/min in 3 patients without liver disease, 75.12 +- 14.54 ml/100 gm/min in 12 with chronic hepatitis and 51.24 +- 17.13 ml/100 gm/min in 11 with liver cirrhosis. This result suggests that hepatic tissue blood flow is significantly decreased in patients with liver cirrhosis. Scintillation camera images of initial xenon distribution in combination with monitor of washout curves over the liver also provide more information on the presence of extra- and intrahepatic shunts. Therefore, this technique appears to be clinically useful in evaluation of hemodynamic phenomena associated with liver diseases.

  10. Flow field measurements in the cell culture unit

    Science.gov (United States)

    Walker, Stephen; Wilder, Mike; Dimanlig, Arsenio; Jagger, Justin; Searby, Nancy

    2002-01-01

    The cell culture unit (CCU) is being designed to support cell growth for long-duration life science experiments on the International Space Station (ISS). The CCU is a perfused loop system that provides a fluid environment for controlled cell growth experiments within cell specimen chambers (CSCs), and is intended to accommodate diverse cell specimen types. Many of the functional requirements depend on the fluid flow field within the CSC (e.g., feeding and gas management). A design goal of the CCU is to match, within experimental limits, all environmental conditions, other than the effects of gravity on the cells, whether the hardware is in microgravity ( micro g), normal Earth gravity, or up to 2g on the ISS centrifuge. In order to achieve this goal, two steps are being taken. The first step is to characterize the environmental conditions of current 1g cell biology experiments being performed in laboratories using ground-based hardware. The second step is to ensure that the design of the CCU allows the fluid flow conditions found in 1g to be replicated from microgravity up to 2g. The techniques that are being used to take these steps include flow visualization, particle image velocimetry (PIV), and computational fluid dynamics (CFD). Flow visualization using the injection of dye has been used to gain a global perspective of the characteristics of the CSC flow field. To characterize laboratory cell culture conditions, PIV is being used to determine the flow field parameters of cell suspension cultures grown in Erlenmeyer flasks on orbital shakers. These measured parameters will be compared to PIV measurements in the CSCs to ensure that the flow field that cells encounter in CSCs is within the bounds determined for typical laboratory experiments. Using CFD, a detailed simulation is being developed to predict the flow field within the CSC for a wide variety of flow conditions, including microgravity environments. Results from all these measurements and analyses of the

  11. Developing measures for the evaluation of information flow efficiency in supply chains

    Directory of Open Access Journals (Sweden)

    Johanna A. Badenhorst

    2013-05-01

    Full Text Available Member organisations in a supply chain are dependent on each other to provide material, services and information to perform optimally in the supply chain. Efficient, unrestricted information flow is needed in supply chains to function properly. Information flow is thus an element of supply chain management that needs to be managed. Yet, no indication could be found in supply chain management literature of the measurement of information flow efficiency. Hence, the aim of this article is to explore the measurement of information flow efficiency in supply chain management (SCM and exploratively develop possible measures (indicators and associated metrics to measure the efficiency of information flow.In this research the theory of information and related concepts, the basic notions of information systems and the models of business performance measurement were explored. Based on information flow theory and information flow characteristics a research instrument was developed. It was used in a survey to seek inputs from supply chain managers as to the usefulness of characteristics as indicators and metrics for the measurement of information flow efficiency in a supply chain. The main contribution of the study is the development of a conceptual framework of indicators and metrics that may be used to evaluate the efficiency of information flows in supply chains. The results of this study can be used as a basis for further studies to validate the instrument for measuring information flow efficiency and to develop scales to actually measure information flow efficiency.

  12. Projective measurements in quantum and classical optical systems

    CSIR Research Space (South Africa)

    Roux, FS

    2014-09-01

    Full Text Available equally well to both classical and quantum optical systems. A projective measurement, in the context of quantum mechanics, is understood to be the process where a projection operator operates on some input state. Often this projection operator is composed...) Projective measurements in quantum and classical optical systems Filippus S. Roux* and Yingwen Zhang CSIR National Laser Centre, P.O. Box 395, Pretoria 0001, South Africa (Received 3 July 2014; published 22 September 2014) Experimental setups for the optical...

  13. Measurements of granular flow dynamics with high speed digital images

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jingeol [Univ. of Florida, Gainesville, FL (United States)

    1994-01-01

    The flow of granular materials is common to many industrial processes. This dissertation suggests and validates image processing algorithms applied to high speed digital images to measure the dynamics (velocity, temperature and volume fraction) of dry granular solids flowing down an inclined chute under the action of gravity. Glass and acrylic particles have been used as granular solids in the experiment. One technique utilizes block matching for spatially averaged velocity measurements of the glass particles. This technique is compared with the velocity measurement using an optic probe which is a conventional granular flow velocity measurement device. The other technique for measuring the velocities of individual acrylic particles is developed with correspondence using a Hopfield network. This technique first locates the positions of particles with pattern recognition techniques, followed by a clustering technique, which produces point patterns. Also, several techniques are compared for particle recognition: synthetic discriminant function (SDF), minimum average correlation energy (MACE) filter, modified minimum average correlation energy (MMACE) filter and variance normalized correlation. The author proposes an MMACE filter which improves generalization of the MACE filter by adjusting the amount of averaged spectrum of training images in the spectrum whitening stages of the MACE filter. Variance normalized correlation is applied to measure the velocity and temperature of flowing glass particles down the inclined chute. The measurements are taken for the steady and wavy flow and qualitatively compared with a theoretical model of granular flow.

  14. Pulsed neutron measurement of single and two-phase liquid flow

    International Nuclear Information System (INIS)

    Kehler, P.

    1978-01-01

    Use of radioactive tracers for flow velocity measurements is well developed and documented. Measurement techniques involving pulsed sources of fast (14 MeV) neutrons for in-situ production of tracers can be considered as extensions of the old methods. Improvements offered by these Pulsed Neutron Activation (PNA) techniques over conventional radioisotope techniques are (1) non-intrusion into the system, (2) easier introduction and better mixing of the tracer, and (3) no requirement to handle large amounts of relatively long lived radioactive materials. Just as in conventional tracer techniques, flow velocity measurements by PNA methods can be based on the transit-time or the total-count method. A very significant difference of the PNA technique from conventional methods is that the induced activity is proportional to the density of the fluid, and that PNA techniques can be used for density measurements (of two-phase flows) in addition to flow velocity measurement. Original equations were derived that relate experimental data to the mass flow velocity and the average density. The accuracy of these equations is not effected by the flow regime. Experimental results are presented for tests performed on liquid sodium loops, on air--water loops, on the EBR-II reactor and on the LOFT reactor. Current instrumentation development programs (detectors, pulsed neutron sources) are discussed

  15. Status of the ground water flow model for the UMTRA Project, Shiprock, New Mexico, site

    International Nuclear Information System (INIS)

    1995-01-01

    A two-dimensional numerical model was constructed for the alluvial aquifer in the area of the Uranium Mill Tailings Remedial Action (UMTRA) Project Shiprock, New Mexico, site. This model was used to investigate the effects of various hydrologic parameters on the evolution of the ground water flow field. Results of the model are useful for defining uncertainties in the site conceptual model and suggesting data collection efforts to reduce these uncertainties. The computer code MODFLOW was used to simulate the two-dimensional flow of ground water in the alluvium. The escarpment was represented as a no-flow boundary. The San Juan River was represented with the MODFLOW river package. A uniform hydraulic conductivity distribution with the value estimated by the UMTRA Project Technical Assistance Contractor (TAC) and a uniform recharge distribution was used. Infiltration from the flowing artesian well was represented using the well package. The ground water flow model was calibrated to ground water levels observed in April 1993. Inspection of hydrographs shows that these levels are representative of typical conditions at the site

  16. Measurement of flow in supercritical flow regime using cutthroat flumes

    Indian Academy of Sciences (India)

    flumes are used to measure flow rates in irrigation chan- nels and water treatment ... and ha can be expressed in unit system, the values of C and N in Eq. (1) will ... presented in a design chart for determining discharge in throat-less flume ...

  17. Instrumentation for localized measurements in two-phase flow conditions

    International Nuclear Information System (INIS)

    Neff, G.G.; Averill, R.H.; Shurts, S.W.

    1979-01-01

    Three types of instrumentation that have been developed by EG and G Idaho, Inc., and its predecessor, Aerojet Nuclear company, at the Idaho National Engineering Laboratory to investigate two-phase flow phenomenon in a nuclear reactor at the Loss-of-Fluid Test (LOFT) facility are discussed: (a) a combination drag disc-turbine transducer (DTT), (b) a multibeam nuclear hardened gamma densitometer system, and (c) a conductivity sensitive liquid level transducer (LLT). The DTT obtains data on the complex problem of two-phase flow conditions in the LOFT primary coolant system during a loss-os-coolant experiment (LOCE). The discussion of the DTT describes how a turbine, measuring coolant velocity, and a drag disc, measuring coolant momentum flux, can provide valuable mass flow data. The nuclear hardened gamma densitometer is used to obtain density and flow regime information for two-phase flow in the LOFT primary coolant system during a LOCE. The LLT is used to measure water and steam conditions within the LOFT reactor core during a LOCE. The LLT design and the type of data obtained are described

  18. Water flow measurements with the pulsed neutron activation method

    International Nuclear Information System (INIS)

    Linden, P.

    1997-05-01

    The objective of this work was to develop and study the feasibility of a flow-meter, based on the pulsed neutron activation method. It is a non-invasive method with good potential regarding accuracy. However, the ultimate accuracy has not been fully investigated before. Two series of flow rate measurements have been performed and analysed. The first series was done under moderately accurate flow calibration conditions to get sufficient confidence in the method and to get indication of the obtainable accuracy. The results were encouraging and further measurements with high accuracy flow calibration were planned. A dedicated loop was designed and built, and it was used with satisfactory performance. Two models have been used for analysis of recorded data; time weighting method and a fit to Taylor diffusion theory. The results show that the accuracy in mean flow velocity obtained from the used analysis models is in the range of 2-4% for Reynolds numbers greater than 10,000. Data recorded from high calibration measurements will also be used for validation of future calculations. 19 refs, 4 figs

  19. Measurements of the near-surface flow over a hill

    Science.gov (United States)

    Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.

    2002-10-01

    The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL 0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL 0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.

  20. Measuring method of liquid flow behavior using visualization

    International Nuclear Information System (INIS)

    Serizawa, Akimi; Kamei, Takashi; Takahashi, Osamu; Kawara, Zensaku

    1994-01-01

    It is important for the safety of nuclear reactor to understand the behavior of gas-liquid two-phase flow. For that analysis, we have to understand its time and spatial dependence. But most of the measuring methods applied to two-phase flow experiments are not enough for this purpose, because they consider the time averaged value, and they are put on the local position in test sections. Standing on such a point of view, we have been developing a measuring method using fluorescence. And from those pictures gotten by video camera, after processed by computer, we measure liquid film thickness. (author)

  1. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    International Nuclear Information System (INIS)

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn; Wei, Lihui

    2015-01-01

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision

  2. Reduced dose measurement of absolute myocardial blood flow using dynamic SPECT imaging in a porcine model

    Energy Technology Data Exchange (ETDEWEB)

    Timmins, Rachel; Klein, Ran; Petryk, Julia; Marvin, Brian; Kemp, Robert A. de; Ruddy, Terrence D.; Wells, R. Glenn, E-mail: gwells@ottawaheart.ca [Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario K1Y4W7 (Canada); Wei, Lihui [Nordion, Inc., Ottawa, Ontario K2K 1X8 (Canada)

    2015-09-15

    Purpose: Absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements provide important additional information over traditional relative perfusion imaging. Recent advances in camera technology have made this possible with single-photon emission tomography (SPECT). Low dose protocols are desirable to reduce the patient radiation risk; however, increased noise may reduce the accuracy of MBF measurements. The authors studied the effect of reducing dose on the accuracy of dynamic SPECT MBF measurements. Methods: Nineteen 30–40 kg pigs were injected with 370 + 1110 MBq of Tc-99m sestamibi or tetrofosmin or 37 + 111 MBq of Tl-201 at rest + stress. Microspheres were injected simultaneously to measure MBF. The pigs were imaged in list-mode for 11 min starting at the time of injection using a Discovery NM 530c camera (GE Healthcare). Each list file was modified so that 3/4, 1/2, 1/4, 1/8, 1/16, and 1/32 of the original counts were included in the projections. Modified projections were reconstructed with CT-based attenuation correction and an energy window-based scatter correction and analyzed with FlowQuant kinetic modeling software using a 1-compartment model. A modified Renkin-Crone extraction function was used to convert the tracer uptake rate K1 to MBF values. The SPECT results were compared to those from microspheres. Results: Correlation between SPECT and microsphere MBF values for the full injected activity was r ≥ 0.75 for all 3 tracers and did not significantly degrade over all count levels. The mean MBF and MFR and the standard errors in the estimates were not significantly worse than the full-count data at 1/4-counts (Tc99m-tracers) and 1/2-counts (Tl-201). Conclusions: Dynamic SPECT measurement of MBF and MFR in pigs can be performed with 1/4 (Tc99m-tracers) or 1/2 (Tl-201) of the standard injected activity without significantly reducing accuracy and precision.

  3. Simple technique for measuring relative renal blood flow

    International Nuclear Information System (INIS)

    Shames, D.M.; Korobkin, M.

    1976-01-01

    To determine whether externally monitored early renal uptake of 131 I-hippurate is proportional to renal blood flow, the renal uptake of 131 -hippurate at 1 to 2 min after injection was compared with the renal accumulation of radioactive carbonized microspheres in dogs. A renal artery catheter equipped with a balloon was used to decrease renal blood flow unilaterally. One minute after the intravenous injection of 100 μCi of 131 I-hippurate, about 1 μCi of either 85 Sr- or 95 Nb-labeled carbon microspheres was injected into the left ventricle. Radioactivity was measured over both kidneys. The total radioactivity within each kidney region of interest was corrected for background and integrated over the 1 to 2 min interval after injection. Thirteen measurements of relative renal blood flow were made for seven dogs. The dogs were then killed and both kidneys were excised and counted for the radioactivity of the microspheres. The 1 to 2-min relative renal uptake of 131 I-hippurate correlated well with relative microsphere uptake, suggesting that relative renal blood flow can be simply determined from the external measurements of renal uptake of 131 I-hippurate

  4. Ultrasonic Tomography Imaging for Liquid-Gas Flow Measurement

    Directory of Open Access Journals (Sweden)

    Muhammad Jaysuman PUSPPANATHAN

    2013-01-01

    Full Text Available This research was carried out to measure two-phase liquid – gas flow regime by using a dual functionality ultrasonic transducer. Comparing to the common separated transmitter–receiver ultrasonic pairs transducer, the dual functionality ultrasonic transceiver is capable to produce the same measurable results hence further improvises and contributes to the hardware design improvement and system accuracy. Due to the disadvantages and the limitations of the separated ultrasonic transmitter–receiver pair, this paper presents a non-invasive ultrasonic tomography system using ultrasonic transceivers as an alternative approach. Implementation of ultrasonic transceivers, electronic measurement circuits, data acquisition system and suitable image reconstruction algorithms, the measurement of a liquid/gas flow was realized.

  5. Improvement of Measurement Accuracy of Coolant Flow in a Test Loop

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Jintae; Kim, Jong-Bum; Joung, Chang-Young; Ahn, Sung-Ho; Heo, Sung-Ho; Jang, Seoyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    In this study, to improve the measurement accuracy of coolant flow in a coolant flow simulator, elimination of external noise are enhanced by adding ground pattern in the control panel and earth around signal cables. In addition, a heating unit is added to strengthen the fluctuation signal by heating the coolant because the source of signals are heat energy. Experimental results using the improved system shows good agreement with the reference flow rate. The measurement error is reduced dramatically compared with the previous measurement accuracy and it will help to analyze the performance of nuclear fuels. For further works, out of pile test will be carried out by fabricating a test rig mockup and inspect the feasibility of the developed system. To verify the performance of a newly developed nuclear fuel, irradiation test needs to be carried out in the research reactor and measure the irradiation behavior such as fuel temperature, fission gas release, neutron dose, coolant temperature, and coolant flow rate. In particular, the heat generation rate of nuclear fuels can be measured indirectly by measuring temperature variation of coolant which passes by the fuel rod and its flow rate. However, it is very difficult to measure the flow rate of coolant at the fuel rod owing to the narrow gap between components of the test rig. In nuclear fields, noise analysis using thermocouples in the test rig has been applied to measure the flow velocity of coolant which circulates through the test loop.

  6. Quantitative angle-insensitive flow measurement using relative standard deviation OCT.

    Science.gov (United States)

    Zhu, Jiang; Zhang, Buyun; Qi, Li; Wang, Ling; Yang, Qiang; Zhu, Zhuqing; Huo, Tiancheng; Chen, Zhongping

    2017-10-30

    Incorporating different data processing methods, optical coherence tomography (OCT) has the ability for high-resolution angiography and quantitative flow velocity measurements. However, OCT angiography cannot provide quantitative information of flow velocities, and the velocity measurement based on Doppler OCT requires the determination of Doppler angles, which is a challenge in a complex vascular network. In this study, we report on a relative standard deviation OCT (RSD-OCT) method which provides both vascular network mapping and quantitative information for flow velocities within a wide range of Doppler angles. The RSD values are angle-insensitive within a wide range of angles, and a nearly linear relationship was found between the RSD values and the flow velocities. The RSD-OCT measurement in a rat cortex shows that it can quantify the blood flow velocities as well as map the vascular network in vivo .

  7. Model based flow measurement using venturi flumes for return flow during drilling

    Directory of Open Access Journals (Sweden)

    Ivan Pirir

    2017-07-01

    Full Text Available In an oil well drilling operation, a proper knowledge of the return fluid flowrate is necessary both for the stabilization of the bottom hole pressure of the well and also as a primary indication of a kick or loss. In practice, the drill fluid flowing through the return line is usually measured with Coriolis meters. However this method is both expensive and has some downsides. For instance there is a risk of blockage due to drill cuttings while measuring the discharge. The presence of gas and cuttings in the drilling fluid will also have a negative effect in the measurement i.e. for multi-phase fluid, the readings from Coriolis meters may not be accurate. A cheaper alternative would be to use an open channel for the measurement of the discharge from the return flowline. In this paper, a venturi rig is used as the open channel and modeled by the Saint Venant equations. Experimental verification of the simulation results show a promising behavior of the model based measurement of the return fluid flow.

  8. Inductive flow meter for measuring the speed of flow and gas volume contained in a flow of liquid metal

    International Nuclear Information System (INIS)

    Mueller, S.

    1980-01-01

    The speed of flow of the sodium is measured in two closely adjacent flow crossections using pairs of electrodes in the field of two disc-shaped permanent magnets made of AlNiCo 450, by means of measurements of running time of speed fluctuations. The result of the measurement is independent of the temperature of the sensor and the temperature of the sodium. The same arrangement makes it possible to determine the proportion by volume of the fission gas in sodium with a limiting freequency of several kHz. (DG) [de

  9. Three dimensional turbulence structure measurements in air/water two phase flow

    International Nuclear Information System (INIS)

    Wang, S.K.L.

    1986-01-01

    The phenomena of turbulent air/water two phase upward and downward flows in a circular test section were investigated. Important flow quantities such as void fraction, liquid velocity, and Reynolds stresses were measured by using both single sensor and three sensor hot film probes. A digital data processing technique based on combined derivative and level thresholding was developed to determine the local void fraction from hot-film anemometer signals. The measured local void fraction was integrated and the result was compared with the chordal averaged void fraction measured by a gamma ray densitometer. It was found that the local measurement underestimated local void fraction due to surface tension effects and bubble deflection by the probe. A correlation based on local parameters characterizing probe/bubble interaction was developed, and it corrected the measured void fraction successfully. The measured void fraction profiles in upward flow and downward flow showed two distinct patterns. In upward flow, bubbles tend to migrate toward the wall and the void fraction profile shows a sharp peak near the wall. In downward flow, as the liquid velocity increases, the wall peaking phenomenon fades out and bubbles tend to migrate toward the center of the pipe

  10. Adding Shareholder Value through Project Performance Measurement, Monitoring & Control

    NARCIS (Netherlands)

    M.M. Akalu; J.R. Turner (Rodney)

    2002-01-01

    textabstractWe present the various views and methods of measuring and controlling project performance, and factors affecting a project. The review indicates that there is a shift in the type and understanding of factors of project success or failure. However, the presence of various measurement

  11. Field measurement of basal forces generated by erosive debris flows

    Science.gov (United States)

    McCoy, S.W.; Tucker, G.E.; Kean, J.W.; Coe, J.A.

    2013-01-01

    It has been proposed that debris flows cut bedrock valleys in steeplands worldwide, but field measurements needed to constrain mechanistic models of this process remain sparse due to the difficulty of instrumenting natural flows. Here we present and analyze measurements made using an automated sensor network, erosion bolts, and a 15.24 cm by 15.24 cm force plate installed in the bedrock channel floor of a steep catchment. These measurements allow us to quantify the distribution of basal forces from natural debris‒flow events that incised bedrock. Over the 4 year monitoring period, 11 debris‒flow events scoured the bedrock channel floor. No clear water flows were observed. Measurements of erosion bolts at the beginning and end of the study indicated that the bedrock channel floor was lowered by 36 to 64 mm. The basal force during these erosive debris‒flow events had a large‒magnitude (up to 21 kN, which was approximately 50 times larger than the concurrent time‒averaged mean force), high‒frequency (greater than 1 Hz) fluctuating component. We interpret these fluctuations as flow particles impacting the bed. The resulting variability in force magnitude increased linearly with the time‒averaged mean basal force. Probability density functions of basal normal forces were consistent with a generalized Pareto distribution, rather than the exponential distribution that is commonly found in experimental and simulated monodispersed granular flows and which has a lower probability of large forces. When the bed sediment thickness covering the force plate was greater than ~ 20 times the median bed sediment grain size, no significant fluctuations about the time‒averaged mean force were measured, indicating that a thin layer of sediment (~ 5 cm in the monitored cases) can effectively shield the subjacent bed from erosive impacts. Coarse‒grained granular surges and water‒rich, intersurge flow had very similar basal force distributions despite

  12. Calibration of the Dodewaard downcomer thermocouple cross-correlation flow-rate measurements

    Energy Technology Data Exchange (ETDEWEB)

    Stekelenburg, A J.C. [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Hagen, T.H.J.J. van der [Technische Univ. Delft (Netherlands). Interfacultair Reactor Inst.; Akker, H.E.A. van den [Technische Univ. Delft (Netherlands). Lab. voor Fysische Technologie

    1992-12-01

    The cross-correlation flow measurement technique, applied for measuring the coolant flow rate in a nuclear reactor, was calibrated with the use of numerical simulations of turbulent flow. The three-dimensional domain was collapsed into two dimensions. With a two-dimensional calculation of steady-state flow with transient thermal characteristics the response of thermocouples to a temperature variation was calculated. By cross-correlating the calculated thermocouple responses, the link between total flow rate and measured transit times was made. Three calibration points were taken in the range of 579 kg/s to 1477 kg/s. In this range, the product of the calculated transit time and the mass flow-rate is constant up to +3.5% and -2.4%. The reliability of the calibration was estimated at {+-}4.6%. The influence of the inlet boundary conditions, and the modelling of the flow in the upper part of the downcomer channel on the calibration result is shown to be small. A measured velocity profile effect was successfully predicted. (orig.).

  13. MR flow velocity measurement using 2D phase contrast, assessment of imaging parameters

    International Nuclear Information System (INIS)

    Akata, Soichi; Fukushima, Akihiro; Abe, Kimihiko; Darkanzanli, A.; Gmitro, A.F.; Unger, E.C.; Capp, M.P.

    1999-01-01

    The two-dimensional (2D) phase contrast technique using balanced gradient pulses is utilized to measure flow velocities of cerebrospinal fluid and blood. Various imaging parameters affect the accuracy of flow velocity measurements to varying degrees. Assessment of the errors introduced by changing the imaging parameters are presented and discussed in this paper. A constant flow phantom consisting of a pump, a polyethylene tube and a flow meter was assembled. A clinical 1.5 Tesla MR imager was used to perform flow velocity measurements. The phase contrast technique was used to estimate the flow velocity of saline through the phantom. The effects of changes in matrix size, flip angle, flow compensation, and velocity encoding (VENC) value were tested in the pulse sequence. Gd-DTPA doped saline was used to study the effect of changing T1 on the accuracy of flow velocity measurement. Matrix size (within practical values), flip angle, and flow compensation had minimum impact on flow velocity measurements. T1 of the solution also had no effect on the accuracy of measuring the flow velocity. On the other hand, it was concluded that errors as high as 20% can be expected in the flow velocity measurements if the VENC value is not properly chosen. (author)

  14. MR flow velocity measurement using 2D phase contrast, assessment of imaging parameters

    Energy Technology Data Exchange (ETDEWEB)

    Akata, Soichi; Fukushima, Akihiro; Abe, Kimihiko [Tokyo Medical Coll. (Japan); Darkanzanli, A.; Gmitro, A.F.; Unger, E.C.; Capp, M.P.

    1999-11-01

    The two-dimensional (2D) phase contrast technique using balanced gradient pulses is utilized to measure flow velocities of cerebrospinal fluid and blood. Various imaging parameters affect the accuracy of flow velocity measurements to varying degrees. Assessment of the errors introduced by changing the imaging parameters are presented and discussed in this paper. A constant flow phantom consisting of a pump, a polyethylene tube and a flow meter was assembled. A clinical 1.5 Tesla MR imager was used to perform flow velocity measurements. The phase contrast technique was used to estimate the flow velocity of saline through the phantom. The effects of changes in matrix size, flip angle, flow compensation, and velocity encoding (VENC) value were tested in the pulse sequence. Gd-DTPA doped saline was used to study the effect of changing T1 on the accuracy of flow velocity measurement. Matrix size (within practical values), flip angle, and flow compensation had minimum impact on flow velocity measurements. T1 of the solution also had no effect on the accuracy of measuring the flow velocity. On the other hand, it was concluded that errors as high as 20% can be expected in the flow velocity measurements if the VENC value is not properly chosen. (author)

  15. The influence of knowledge flow on sustainable innovation in a project-based industry : From demonstration to limited adoption of eco-innovations

    NARCIS (Netherlands)

    Bossink, Bart

    2018-01-01

    The effect of the flow of knowledge on sustainable innovation in project-based firms in project-based industries is the subject of in-depth research in this paper. It studies the simultaneous functioning and effects of knowledge flow mechanisms on sustainable innovation in project-based firms in

  16. Measurement of flows around modern commercial ship models

    Science.gov (United States)

    Kim, W. J.; Van, S. H.; Kim, D. H.

    To document the details of flow characteristics around modern commercial ships, global force, wave pattern, and local mean velocity components were measured in the towing tank. Three modern commercial hull models of a container ship (KRISO container ship = KCS) and of two very large crude-oil carriers (VLCCs) with the same forebody and slightly different afterbody (KVLCC and KVLCC2) having bow and stern bulbs were selected for the test. Uncertainty analysis was performed for the measured data using the procedure recommended by the ITTC. Obtained experimental data will provide a good opportunity to explore integrated flow phenomena around practical hull forms of today. Those can be also used as the validation data for the computational fluid dynamics (CFD) code of both inviscid and viscous flow calculations.

  17. X-ray PIV measurements of blood flows without tracer particles

    International Nuclear Information System (INIS)

    Kim, Guk Bae; Lee, Sang Joon

    2006-01-01

    We analyzed the non-Newtonian flow characteristics of blood moving in a circular tube flow using an X-ray PIV method and compared the experimental results with hemodynamic models. The X-ray PIV method was improved for measuring quantitative velocity fields of blood flows using a coherent synchrotron X-ray. Without using any contrast media, this method can visualize flow pattern of blood by enhancing the phase-contrast and interference characteristics of blood cells. The enhanced X-ray images were achieved by optimizing the sample-to-scintillator distance, the sample thickness, and hematocrit in detail. The quantitative velocity fields of blood flows inside opaque conduits were obtained by applying a two-frame PIV algorithm to the X-ray images of the blood flows. The measured velocity data show typical features of blood flow such as the yield stress and shear-thinning effects. (orig.)

  18. Noninvasive measurement of blood flow and extraction fraction

    Energy Technology Data Exchange (ETDEWEB)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-10-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen.

  19. Challenges in the flow measurement engineering study phases

    Energy Technology Data Exchange (ETDEWEB)

    Henne, Liv Marit; Monnet, Jean

    2005-07-01

    Offshore development of marginal Oil and Gas fields can often be economically profitable if they can be tied in to existing platforms. This usually requires execution of comprehensive feasibility studies, which can often be a long and costly process. Close cooperation in a multi discipline engineering team is necessary to assure that all possibilities and aspects of the design task have been evaluated. Integration of a new flow measurement module on an existing installation is often the simplest solution, yielding low total cost as the module can be assembled and fully tested on shore. However on many installations one is required to integrate the new equipment in existing modules. Flow measurement is a crucial element in the development of marginal fields which has to be evaluated, taking into consideration all critical aspects such as: available space, weight, location accessibility, maintenance and integration to existing metering systems. In particular, special attention should be given to the possible use of new flow measurement technologies and principles. (author) (tk)

  20. Noninvasive measurement of blood flow and extraction fraction

    International Nuclear Information System (INIS)

    Peters, A.M.; Gunasekera, R.D.; Henderson, B.L.; Brown, J.; Lavender, J.P.; De Souza, M.; Ash, J.M.; Gilday, D.L.

    1987-01-01

    We describe the theory of a technique for the noninvasive measurement of organ blood flow which is based on the principle of fractionation of cardiac output and is applicable with any recirculating gamma emitting tracer. The technique effectively determines the count rate that would be recorded over the organ if the tracer behaved like radiolabelled microspheres and was completely trapped in the organ's vascular bed on first pass. After correction for organ depth, the estimated first pass activity plateau, expressed as a fraction of the injected dose is equal to the organ's fraction of the cardiac output (CO). By extending the theory, organ extraction fraction of extractable tracers or mean transit time of nonextractable tracers can be measured. The technique was applied to the measurement of renal blood flow in the native and transplanted kidney, splenic blood flow, the extraction fraction of DTPA by the kidney and of sulphur colloid by the spleen. (author)

  1. Placental blood flow measurements with radioisotopes in the pregnant guinea pig

    International Nuclear Information System (INIS)

    Schmitt, R.; Giese, W.; Kurz, C.S.; Kuenzel, W.

    1976-01-01

    In 15 pregnant guinea pigs near term the blood flow (BF) of the myometrium and the placenta as well as the cardiac output were measured with 99 Tcsup(m)-labelled microspheres. In front of one placenta the clearance of 133 Xe was estimated in the same animal. For the 133 Xe measurement a theoretical concept is presented. The mean placental BF is 105ml/(minx100g)(SD:84) for 99 Tcsup(m) and 244(SD:80)ml/(minx100g) for 133 Xe. The difference in both flow values is assumed to be related to foetal placental BF. The placental blood flow is also related to the location of the placenta in the uterine horn. The ratio of myometrial blood flow to placental blood flow decreased with an increase in the mean arterial blood pressure. The measurements are a preliminary report of an attempt to compare two different methods in measuring placental blood flow. (author)

  2. Multiphase flow measurement in the slug regime using ultrasonic measurement techniques and slug closure model

    OpenAIRE

    Al-lababidi , Salem

    2006-01-01

    Multiphase flow in the oil and gas industry covers a wide range of flows. Thus, over the last decade, the investigation, development and use of multiphase flow metering system have been a major focus for the industry worldwide. However, these meters do not perform well in slug flow conditions. The present work involves experimental investigations of multiphase flow measurement under slug flow conditions. A two-phase gas/liquid facility was designed and constructed at Cranfie...

  3. Sodium flow rate measurement method of annular linear induction pump

    International Nuclear Information System (INIS)

    Araseki, Hideo

    2011-01-01

    This report describes a method for measuring sodium flow rate of annular linear induction pumps arranged in parallel and its verification result obtained through an experiment and a numerical analysis. In the method, the leaked magnetic field is measured with measuring coils at the stator end on the outlet side and is correlated with the sodium flow rate. The experimental data and the numerical result indicate that the leaked magnetic field at the stator edge keeps almost constant when the sodium flow rate changes and that the leaked magnetic field change arising from the flow rate change is small compared with the overall leaked magnetic field. It is shown that the correlation between the leaked magnetic field and the sodium flow rate is almost linear due to this feature of the leaked magnetic field, which indicates the applicability of the method to small-scale annular linear induction pumps. (author)

  4. The calibration of a cylindrical pressure probe for recirculating flow measurements

    International Nuclear Information System (INIS)

    Lawn, C.J.

    1975-06-01

    The use of the pressure distribution around a cylinder in cross-flow to indicate the magnitude and direction of the velocity vector is discussed in the context of making measurements in highly turbulent recirculating flows. The intended application is the measurement of the flow between the ribs on the large-scale model of the AGR fuel-pin surface. Results from a number of calibration experiments in boundary layers are used to provide a correlation for the positions at which local static pressure is measured on the cylinder surface. After appropriate corrections, the dynamic pressure is deduced from the pressure at the stagnation point. Corrections are also necessary in deducing the direction of flow from the bisector of the static pressure positions, when the cylinder is in a shear flow or near a wall, and these too are evaluated from the results of the calibration experiments. Measurements in two recirculating flows are then presented as an illustration both of the validity and limitations of the technique. In the first case, comparison is made with the measurements of a pulsed-wire anemometer behind a surface-mounted cube and, in the second, the continuity is used to provide an overall check on measurements behind a transverse plate. It is concluded that useful results can be obtained in many turbulent flow situations. (author)

  5. Design and Optimization of Annular Flow Electromagnetic Measurement System for Drilling Engineering

    Directory of Open Access Journals (Sweden)

    Liang Ge

    2018-01-01

    Full Text Available Using the downhole annular flow measurement system to get real-time information of downhole annular flow is the core and foundation of downhole microflux control drilling technology. The research work of electromagnetic flowmeter in recent years creates a challenge to the design of downhole annular flow measurement. This paper proposes a design and optimization of annular flow electromagnetic measurement system for drilling engineering based on the finite element method. Firstly, the annular flow measuring and optimization principle are described. Secondly, a simulation model of an annular flow electromagnetic measurement system with two pairs of coil is built based on the fundamental equation of electromagnetic flowmeter by COMSOL. Thirdly, simulations of the structure of excitation system of the measurement system are carried out, and simulations of the size of the electrode’s radius are also carried out based on the optimized structure, and then all the simulation results are analyzed to evaluate the optimization effect based on the evaluation indexes. The simulation results show that optimized shapes of the excitation system and electrode size can yield a better performance in the annular flow measurement.

  6. Average void fraction measurement in a two-phase vertical flow

    International Nuclear Information System (INIS)

    Mello, R.E.F. de; Behar, M.R.; Martines, E.W.

    1975-01-01

    The utilization of the radioactive tracer technique to measure the void fraction in a two phase flow air-water is presented. The radioactive tracer used was a salt of Br-82. The water flow rate varied between 0,4 and 2,0 m 3 /h, and the air flow rate between 0,2 and 1,0 m 3 /h. The resulting measured void fraction were between 0,05 and 0,32. These void fraction values were compared with those ones calculated with the measured flow rates and by use of empirical formulas, using different methods. After a convenient choice of the radioactive isotope, the measurements didn't present any special problem. The results have shown a good accordance with the values calculated by the formulas of R. Roumy, but was not possible yet to conclude, about the convenience of application and the grade of confidence of this method

  7. Generalized flow and determinism in measurement-based quantum computation

    Energy Technology Data Exchange (ETDEWEB)

    Browne, Daniel E [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PU (United Kingdom); Kashefi, Elham [Computing Laboratory and Christ Church College, University of Oxford, Parks Road, Oxford OX1 3QD (United Kingdom); Mhalla, Mehdi [Laboratoire d' Informatique de Grenoble, CNRS - Centre national de la recherche scientifique, Universite de Grenoble (France); Perdrix, Simon [Preuves, Programmes et Systemes (PPS), Universite Paris Diderot, Paris (France)

    2007-08-15

    We extend the notion of quantum information flow defined by Danos and Kashefi (2006 Phys. Rev. A 74 052310) for the one-way model (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 910) and present a necessary and sufficient condition for the stepwise uniformly deterministic computation in this model. The generalized flow also applied in the extended model with measurements in the (X, Y), (X, Z) and (Y, Z) planes. We apply both measurement calculus and the stabiliser formalism to derive our main theorem which for the first time gives a full characterization of the stepwise uniformly deterministic computation in the one-way model. We present several examples to show how our result improves over the traditional notion of flow, such as geometries (entanglement graph with input and output) with no flow but having generalized flow and we discuss how they lead to an optimal implementation of the unitaries. More importantly one can also obtain a better quantum computation depth with the generalized flow rather than with flow. We believe our characterization result is particularly valuable for the study of the algorithms and complexity in the one-way model.

  8. Generalized flow and determinism in measurement-based quantum computation

    International Nuclear Information System (INIS)

    Browne, Daniel E; Kashefi, Elham; Mhalla, Mehdi; Perdrix, Simon

    2007-01-01

    We extend the notion of quantum information flow defined by Danos and Kashefi (2006 Phys. Rev. A 74 052310) for the one-way model (Raussendorf and Briegel 2001 Phys. Rev. Lett. 86 910) and present a necessary and sufficient condition for the stepwise uniformly deterministic computation in this model. The generalized flow also applied in the extended model with measurements in the (X, Y), (X, Z) and (Y, Z) planes. We apply both measurement calculus and the stabiliser formalism to derive our main theorem which for the first time gives a full characterization of the stepwise uniformly deterministic computation in the one-way model. We present several examples to show how our result improves over the traditional notion of flow, such as geometries (entanglement graph with input and output) with no flow but having generalized flow and we discuss how they lead to an optimal implementation of the unitaries. More importantly one can also obtain a better quantum computation depth with the generalized flow rather than with flow. We believe our characterization result is particularly valuable for the study of the algorithms and complexity in the one-way model

  9. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2007-01-01

    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...

  10. Two-phase flow measurement based on oblique laser scattering

    Science.gov (United States)

    Vendruscolo, Tiago P.; Fischer, Robert; Martelli, Cícero; Rodrigues, Rômulo L. P.; Morales, Rigoberto E. M.; da Silva, Marco J.

    2015-07-01

    Multiphase flow measurements play a crucial role in monitoring productions processes in many industries. To guarantee the safety of processes involving multiphase flows, it is important to detect changes in the flow conditions before they can cause damage, often in fractions of seconds. Here we demonstrate how the scattering pattern of a laser beam passing a two-phase flow under an oblique angle to the flow direction can be used to detect derivations from the desired flow conditions in microseconds. Applying machine-learning techniques to signals obtained from three photo-detectors we achieve a compact, versatile, low-cost sensor design for safety applications.

  11. Rotating permanent magnet excitation for blood flow measurement.

    Science.gov (United States)

    Nair, Sarath S; Vinodkumar, V; Sreedevi, V; Nagesh, D S

    2015-11-01

    A compact, portable and improved blood flow measurement system for an extracorporeal circuit having a rotating permanent magnetic excitation scheme is described in this paper. The system consists of a set of permanent magnets rotating near blood or any conductive fluid to create high-intensity alternating magnetic field in it and inducing a sinusoidal varying voltage across the column of fluid. The induced voltage signal is acquired, conditioned and processed to determine its flow rate. Performance analysis shows that a sensitivity of more than 250 mV/lpm can be obtained, which is more than five times higher than conventional flow measurement systems. Choice of rotating permanent magnet instead of an electromagnetic core generates alternate magnetic field of smooth sinusoidal nature which in turn reduces switching and interference noises. These results in reduction in complex electronic circuitry required for processing the signal to a great extent and enable the flow measuring device to be much less costlier, portable and light weight. The signal remains steady even with changes in environmental conditions and has an accuracy of greater than 95%. This paper also describes the construction details of the prototype, the factors affecting sensitivity and detailed performance analysis at various operating conditions.

  12. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  13. Automated structure and flow measurement - a promising tool in nailfold capillaroscopy.

    Science.gov (United States)

    Berks, Michael; Dinsdale, Graham; Murray, Andrea; Moore, Tonia; Manning, Joanne; Taylor, Chris; Herrick, Ariane L

    2018-07-01

    Despite increasing interest in nailfold capillaroscopy, objective measures of capillary structure and blood flow have been little studied. We aimed to test the hypothesis that structural measurements, capillary flow, and a combined measure have the predictive power to separate patients with systemic sclerosis (SSc) from those with primary Raynaud's phenomenon (PRP) and healthy controls (HC). 50 patients with SSc, 12 with PRP, and 50 HC were imaged using a novel capillaroscopy system that generates high-quality nailfold images and provides fully-automated measurements of capillary structure and blood flow (capillary density, mean width, maximum width, shape score, derangement and mean flow velocity). Population statistics summarise the differences between the three groups. Areas under ROC curves (A Z ) were used to measure classification accuracy when assigning individuals to SSc and HC/PRP groups. Statistically significant differences in group means were found between patients with SSc and both HC and patients with PRP, for all measurements, e.g. mean width (μm) ± SE: 15.0 ± 0.71, 12.7 ± 0.74 and 11.8 ± 0.23 for SSc, PRP and HC respectively. Combining the five structural measurements gave better classification (A Z  = 0.919 ± 0.026) than the best single measurement (mean width, A Z  = 0.874 ± 0.043), whilst adding flow further improved classification (A Z  = 0.930 ± 0.024). Structural and blood flow measurements are both able to distinguish patients with SSc from those with PRP/HC. Importantly, these hold promise as clinical trial outcome measures for treatments aimed at improving finger blood flow or microvascular remodelling. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.

  14. A framework to improve performance measurement in engineering projects

    OpenAIRE

    Zheng , Li; Baron , Claude; Esteban , Philippe; Xue , Rui; Zhang , Qiang

    2017-01-01

    International audience; A wide range of methods and good practices have been developed for the measurement of projects performance. They help project managers to effectively monitor the project progress and evaluate results. However, from a literature review, we noticed several remaining critical issues in measuring projects performance, such as an unbalanced development of Key Performance Indicators types between lagging and leading indicators. On the other hand, systems engineering measurem...

  15. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  16. Rock stress measurements. Preparatory stage of the equipment development project

    International Nuclear Information System (INIS)

    Mononen, S.; Hakala, M.; Mikkola, P.

    2002-01-01

    In recent years the rock stress measurement methods used in Finland have been overcoring and hydraulic fracturing. There have been mainly two companies involved in these measurements, namely Suomen Malmi Oy (Smoy) and SwedPower AB. Smoy has done measurements for mines and for rock engineering projects, whereas SwedPower AB has mainly been involved in nuclear waste disposal investigations and conducted hydraulic fracturing measurements in deep boreholes. Smoy together with its partners started in February 2001 a project named JTM, which was a preliminary stage for a future project, which aims to develop a device most suitable for rock stress measurements in Finland. The partners in the project were HUT Rock Engineering, Posiva Oy, Saanio and Riekkola Oy, Gridpoint Finland Oy and Geopros Oy. Tekes, the National Technology Agency, provided almost half of the project funding. In the management group of the project were Pekka Mikkola (chairman) and Tero Laurila from Smoy, Pekka Saerkkae and Sakari Mononen (full-time researcher) from HUT, Aimo Hautojaervi (Posiva Oy), Erik Johansson (Saanio and Riekkola Oy), Matti Hakala (Gridpoint Finland Oy) and Heikki Haemaelaeinen (Geopros Oy). The aim of the JTM-project was to find out the needs for the development of a device most suitable for rock stress measurements in Finnish mines and rock engineering projects. During the project work was done to find out the range of rock stress measurement devices available, to find out the needs for measurements, and to get acquainted to the measurements done in Scandinavia. Also a report of the most suitable methods for Finnish rock conditions was done based on literature and on interviews of rock stress experts. Based on all the information collected during the project a clear picture of the needs for rock stress measurements in Finland could be formed and a preliminary plan of a future project was done. The aim of the suggested project is to build a device based on hydraulic fracturing

  17. Measurement of flows around modern commercial ship models

    Energy Technology Data Exchange (ETDEWEB)

    Kim, W J; Van, S H; Kim, D H [Korea Research Inst. of Ships and Ocean Engineering, KORDI, Taejon (Korea)

    2001-11-01

    To document the details of flow characteristics around modern commercial ships, global force, wave pattern, and local mean velocity components were measured in the towing tank. Three modern commercial hull models of a container ship (KRISO container ship = KCS) and of two very large crude-oil carriers (VLCCs) with the same forebody and slightly different afterbody (KVLCC and KVLCC2) having bow and stern bulbs were selected for the test. Uncertainty analysis was performed for the measured data using the procedure recommended by the ITTC. Obtained experimental data will provide a good opportunity to explore integrated flow phenomena around practical hull forms of today. Those can be also used as the validation data for the computational fluid dynamics (CFD) code of both inviscid and viscous flow calculations. (orig.)

  18. Viscosity measurement in the capillary tube viscometer under unsteady flow

    International Nuclear Information System (INIS)

    Park, Heung Jun; Yoo, Sang Sin; Suh, Sang Ho

    2000-01-01

    The objective of the present study is to develop a new device that the viscous characteristics of fluids are determined by applying the unsteady flow concept to the traditional capillary tube viscometer. The capillary tube viscometer consists of a small cylindrical reservoir, capillary tube, a load cell system that measures the mass flow rate, interfaces, and computer. Due to the small size of the reservoir the height of liquid in the reservoir decreases as soon as the liquid in the reservoir drains out through the capillary and the mass flow rate in the capillary decreases as the hydrostatic pressure in the reservoir decreases resulting in a decrease of the shear rate in the capillary tube. The instantaneous shear rate and driving force in the capillary tube are determined by measuring the mass flow rate through the capillary, and the fluid viscosity is determined from the measured flow rate and the driving force

  19. Heat transfer measurements of the 1983 kilauea lava flow.

    Science.gov (United States)

    Hardee, H C

    1983-10-07

    Convective heat flow measurements of a basaltic lava flow were made during the 1983 eruption of Kilauea volcano in Hawaii. Eight field measurements of induced natural convection were made, giving heat flux values that ranged from 1.78 to 8.09 kilowatts per square meter at lava temperatures of 1088 and 1128 degrees Celsius, respectively. These field measurements of convective heat flux at subliquidus temperatures agree with previous laboratory measurements in furnace-melted samples of molten lava, and are useful for predicting heat transfer in magma bodies and for estimating heat extraction rates for magma energy.

  20. Measurement of transitional flow in pipes using ultrasonic flowmeters

    Energy Technology Data Exchange (ETDEWEB)

    Zheng-Gang, Liu; Guang-Sheng, Du; Zhu-Feng, Shao; Qian-Ran, He; Chun-Li, Zhou, E-mail: lzhenggang@sdu.edu.cn [School of Energy and Power Engineering, Qian-Fo-shan campus, Shandong University, Jinan City 250061, Shandong Province (China)

    2014-10-01

    The accuracy of an ultrasonic flowmeter depends on the ratio k of average profile velocity of pipe and average velocity of an ultrasonic propagation path. But there is no appropriate method of calculating k for transition flow. In this paper, the velocity field of the transition flow in a pipe is measured by particle image velocimetry. On this basis, the k of U-shaped and V-shaped ultrasonic flowmeter is obtained when Reynolds number is between 2000 and 20 000. It is shown that the k is constant when the Reynolds number is in the range of 2000–2400 and 5400–20 000, and the k decreases with the increasing of Re when the Reynolds number is 2400–5400. The results of study can be used to improve the measurement accuracy of ultrasonic flowmeters when flow is transition flow and can provide help for the study of pipe flow. (paper)

  1. Calibration measurements using the ORNL fissile mass flow monitor

    International Nuclear Information System (INIS)

    March-Leuba, J.; Uckan, T.; Sumner, J.; Mattingly, J.; Mihalczo, J.

    1998-01-01

    This paper presents a demonstration of fissile-mass-flow measurements using the Oak Ridge National Laboratory (ORNL) Fissile Mass Flow Monitor in the Paducah Gaseous Diffusion Plant (PGDP). This Flow Monitor is part of a Blend Down Monitoring System (BDMS) that will be installed in at least two Russian Federation (R.F.) blending facilities. The key objectives of the demonstration of the ORNL Flow Monitor are two: (a) demonstrate that the ORNL Flow Monitor equipment is capable of reliably monitoring the mass flow rate of 235 UF 6 gas, and (b) provide a demonstration of ORNL Flow Monitor system in operation with UF 6 flow for a visiting R.F. delegation. These two objectives have been met by the PGDP demonstration, as presented in this paper

  2. Void fraction in horizontal bulk flow boiling at high flow qualities

    Energy Technology Data Exchange (ETDEWEB)

    Collado, Fancisco J.; Monne, Carlos [Dpto. de Ingenieria Mecanica, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain); Pascau, Antonio [Dpto. de Ciencia de los Materiales y Fluidos, Universidad de Zaragoza-CPS, Maria de Luna 3, 50018-Zaragoza (Spain)

    2008-04-15

    In this work, a new thermodynamic prediction of the vapor void fraction in bulk flow boiling, which is the core process of many energy conversion systems, is analyzed. The current heat balance is based on the flow quality, which is closely related to the measured void fraction, although some correlation for the vapor-liquid velocity ratio is needed. So here, it is suggested to work with the 'static' or thermodynamic quality, which is directly connected to the void fraction through the densities of the phases. Thus, the relation between heat and the mixture enthalpy (here based on the thermodynamic quality instead of the flow one) should be analyzed in depth. The careful void fraction data taken by Thom during the 'Cambridge project' for horizontal saturated flow boiling with high flow qualities ({<=}0.8) have been used for this analysis. As main results, first, we have found that the applied heat and the increment of the proposed thermodynamic enthalpy mixture throughout the heated duct do not agree, and for closure, a parameter is needed. Second, it has been checked that this parameter is practically equal to the classic velocity ratio or 'slip' ratio, suggesting that it should be included in a true thermodynamic heat balance. Furthermore, it has been clearly possible to improve the 'Cambridge project' correlations for the 'slip' ratio, here based on inlet pressure and water velocity, and heat flux. The calculated void fractions compare quite well with the measured ones. Finally, the equivalence of the suggested new heat balance with the current one through the 'slip' ratio is addressed. Highlighted is the same new energetic relation for saturated flow boiling that has been recently confirmed by the authors for Knights data, also taken during the 'Cambridge project', which include not only horizontal but also vertical upwards flows with moderate outlet flow quality ({<=}0.2). (author)

  3. Flow-based vulnerability measures for network component importance: Experimentation with preparedness planning

    International Nuclear Information System (INIS)

    Nicholson, Charles D.; Barker, Kash; Ramirez-Marquez, Jose E.

    2016-01-01

    This work develops and compares several flow-based vulnerability measures to prioritize important network edges for the implementation of preparedness options. These network vulnerability measures quantify different characteristics and perspectives on enabling maximum flow, creating bottlenecks, and partitioning into cutsets, among others. The efficacy of these vulnerability measures to motivate preparedness options against experimental geographically located disruption simulations is measured. Results suggest that a weighted flow capacity rate, which accounts for both (i) the contribution of an edge to maximum network flow and (ii) the extent to which the edge is a bottleneck in the network, shows most promise across four instances of varying network sizes and densities. - Highlights: • We develop new flow-based measures of network vulnerability. • We apply these measures to determine the importance of edges after disruptions. • Networks of varying size and density are explored.

  4. Instrument validation project

    International Nuclear Information System (INIS)

    Reynolds, B.A.; Daymo, E.A.; Geeting, J.G.H.; Zhang, J.

    1996-06-01

    Westinghouse Hanford Company Project W-211 is responsible for providing the system capabilities to remove radioactive waste from ten double-shell tanks used to store radioactive wastes on the Hanford Site in Richland, Washington. The project is also responsible for measuring tank waste slurry properties prior to injection into pipeline systems, including the Replacement of Cross-Site Transfer System. This report summarizes studies of the appropriateness of the instrumentation specified for use in Project W-211. The instruments were evaluated in a test loop with simulated slurries that covered the range of properties specified in the functional design criteria. The results of the study indicate that the compact nature of the baseline Project W-211 loop does not result in reduced instrumental accuracy resulting from poor flow profile development. Of the baseline instrumentation, the Micromotion densimeter, the Moore Industries thermocouple, the Fischer and Porter magnetic flow meter, and the Red Valve Pressure transducer meet the desired instrumental accuracy. An alternate magnetic flow meter (Yokagawa) gave nearly identical results as the baseline fischer and Porter. The Micromotion flow meter did not meet the desired instrument accuracy but could potentially be calibrated so that it would meet the criteria. The Nametre on-line viscometer did not meet the desired instrumental accuracy and is not recommended as a quantitative instrument although it does provide qualitative information. The recommended minimum set of instrumentation necessary to ensure the slurry meets the Project W-058 acceptance criteria is the Micromotion mass flow meter and delta pressure cells

  5. Regional cerebral blood flow measurement in brain tumors

    International Nuclear Information System (INIS)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-01-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of 133 Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors. (author)

  6. Regional cerebral blood flow measurement in brain tumors

    Energy Technology Data Exchange (ETDEWEB)

    Izunaga, Hiroshi; Hirota, Yoshihisa; Takahashi, Mutsumasa; Fuwa, Isao; Kodama, Takafumi; Matsukado, Yasuhiko

    1986-10-01

    The regional cerebral blood flow (CBF) was determined on seventeen patients with brain tumors. Ring type single photon emission CT (SPECT) was used following intravenous injection of /sup 133/Xe. Case materials included eleven meningiomas and six malignant gliomas. Evaluation was performed with emphasis on the following points; 1. Correlation of the flow data within tumors to the angiographic tumor stains, 2. Influence of tumors on the cerebral blood flow of the normal brain tissue, 3. Correlation between degree of peripheral edema and the flow data of the affected hemispheres. There was significant correlation between flow data within tumors and angiographic tumor stains in meningiomas. Influence of tumors on cerebral blood flow of the normal tissue was greater in meningiomas than in gliomas. There was negative correlation between the degree of peripheral edema and the flow data of the affected hemisphere. It has been concluded that the measurement of CBF in brain tumors is a valuable method in evaluation of brain tumors.

  7. Measurement of cerebral blood flow in normal subjects by phase contrast MR imaging

    International Nuclear Information System (INIS)

    Kashimada, Akio; Machida, Kikuo; Honda, Norinari; Mamiya, Toshio; Takahashi, Taku; Kamano, Tsuyoshi; Inoue, Yusuke; Osada, Hisato

    1994-01-01

    Global cerebral blood flow (CBF) was quantitatively measured with a two-dimensional phase contrast cine magnetic resonance (MR) imaging technique in 24 normal subjects (mean age, 38.6 years; range, 12-70 years). Cine transverse images of the upper cervical region (32 phases/cardiac cycle) were acquired with a 1.5 Tesla MR imaging unit. In five subjects, measurement of CBF was performed before and after intravenous administration of acetazolamide (DIAMOX, 15 mg/kg). Inter- and intra-observer variations in flow volume measurement were small (r=0.970, standard error of the estimate (SEE)=2.9 ml/min, n=8; r=0.963, SEE=4.6 ml/min, n=40, respectively). In measuring flow velocity, they were inferior to those of flow volume measurement. On a visually determined setting of region of interest (ROI), reproducibility of the measurement of flow velocity was not satisfactory in this study. Thus only the results of flow volume measurement are presented. Mean summed vertebral flow volume (171 ml/min, SD=40.6) was significantly less than mean summed internal carotid flow volume (523 ml/min, SD=111). Total blood flow volume showed a significant decline with age (r=-0.45, p<0.05). The mean proportions of carotid and vertebral flow volume to total flow volume were 75.3% and 24.7%, respectively, and showed no significant change with age. The left-to-right ratio of vertebral flow volume (1.39) was significantly higher than that of internal carotid flow volume (0.99, r=0.05). After DIAMOX i.v., the mean rate of increase in total flow volume was 157%. Mean rates of increase in carotid and vertebral flow volume were 154% and 166%, respectively, which were not significantly different. In conclusion, this method is useful for estimating carotid and vertebral flow volume. (author)

  8. Measurements of drag and flow over biofilm

    Science.gov (United States)

    Hartenberger, Joel; Gose, James W.; Perlin, Marc; Ceccio, Steven L.

    2017-11-01

    Microbial `slime' biofilms detrimentally affect the performance of every day systems from medical devices to large ocean-going vessels. In flow applications, the presence of biofilm typically results in a drag increase and may alter the turbulence in the adjacent boundary layer. Recent studies emphasize the severity of the drag penalty associated with soft biofouling and suggest potential mechanisms underlying the increase; yet, fundamental questions remain-such as the role played by compliance and the contribution of form drag to the overall resistance experienced by a fouled system. Experiments conducted on live biofilm and 3D printed rigid replicas in the Skin-Friction Flow Facility at the University of Michigan seek to examine these factors. The hydrodynamic performance of the biofilms grown on test panels was evaluated through pressure drop measurements as well as conventional and microscale PIV. High-resolution, 3D rigid replicas of select cases were generated via additive manufacturing using surface profiles obtained from a laser scanning system. Drag and flow measurements will be presented along with details of the growth process and the surface profile characterization method.

  9. Measuring correlations in non-separable vector beams using projective measurements

    Science.gov (United States)

    Subramanian, Keerthan; Viswanathan, Nirmal K.

    2017-09-01

    Doubts regarding the completeness of quantum mechanics as raised by Einstein, Podolsky and Rosen(EPR) have predominantly been resolved by resorting to a measurement of correlations between entangled photons which clearly demonstrate violation of Bell's inequality. This article is an attempt to reconcile incompatibility of hidden variable theories with reality by demonstrating experimentally a violation of Bell's inequality in locally correlated systems whose two degrees of freedom, the spin and orbital angular momentum, are maximally correlated. To this end we propose and demonstrate a linear, achromatic modified Sagnac interferometer to project orbital angular momentum states which we combine with spin projections to measure correlations.

  10. Plasma flow velocity measurements using a modulated Michelson interferometer

    International Nuclear Information System (INIS)

    Howard, J.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (orig.)

  11. An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.

    2001-01-01

    An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.

  12. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.

    Science.gov (United States)

    Pennell, Thomas; Yi, Juneyoung L; Kaufman, Bruce A; Krishnamurthy, Satish

    2016-03-01

    OBJECT Mechanical failure-which is the primary cause of CSF shunt malfunction-is not readily diagnosed, and the specific reasons for mechanical failure are not easily discerned. Prior attempts to measure CSF flow noninvasively have lacked the ability to either quantitatively or qualitatively obtain data. To address these needs, this preliminary study evaluates an ultrasonic transit time flow sensor in pediatric and adult patients with external ventricular drains (EVDs). One goal was to confirm the stated accuracy of the sensor in a clinical setting. A second goal was to observe the sensor's capability to record real-time continuous CSF flow. The final goal was to observe recordings during instances of flow blockage or lack of flow in order to determine the sensor's ability to identify these changes. METHODS A total of 5 pediatric and 11 adult patients who had received EVDs for the treatment of hydrocephalus were studied in a hospital setting. The primary EVD was connected to a secondary study EVD that contained a fluid-filled pressure transducer and an in-line transit time flow sensor. Comparisons were made between the weight of the drainage bag and the flow measured via the sensor in order to confirm its accuracy. Data from the pressure transducer and the flow sensor were recorded continuously at 100 Hz for a period of 24 hours by a data acquisition system, while the hourly CSF flow into the drip chamber was recorded manually. Changes in the patient's neurological status and their time points were noted. RESULTS The flow sensor demonstrated a proven accuracy of ± 15% or ± 2 ml/hr. The flow sensor allowed real-time continuous flow waveform data recordings. Dynamic analysis of CSF flow waveforms allowed the calculation of the pressure-volume index. Lastly, the sensor was able to diagnose a blocked catheter and distinguish between the blockage and lack of flow. CONCLUSIONS The Transonic flow sensor accurately measures CSF output within ± 15% or ± 2 ml

  13. Effect of Doppler flow meter position on discharge measurement in surcharged manholes.

    Science.gov (United States)

    Yang, Haoming; Zhu, David Z; Liu, Yanchen

    2018-02-01

    Determining the proper installation location of flow meters is important for accurate measurement of discharge in sewer systems. In this study, flow field and flow regimes in two types of manholes under surcharged flow were investigated using a commercial computational fluid dynamics (CFD) code. The error in measuring the flow discharge using a Doppler flow meter (based on the velocity in a Doppler beam) was then estimated. The values of the corrective coefficient were obtained for the Doppler flow meter at different locations under various conditions. Suggestions for selecting installation positions are provided.

  14. The ZaP Flow Z-Pinch Project

    International Nuclear Information System (INIS)

    Shumlak, U.; Nelson, B. A.

    2005-01-01

    The results from the ZaP experiment are consistent with the theoretical predictions of sheared flow stabilization. Z pinches with a sheared flow are generated in the ZaP experiment using a coaxial accelerator coupled to an assembly region. The current sheet in the accelerator initially acts as a snowplow. As the Z pinch forms, plasma formation in the accelerator transits to a deflagration process. The plasma exits the accelerator and maintains the flow in the Z pinch. During the quiescent period in the magnetic mode activity at z=0 cm, a stable Z pinch is seen on the axis of the assembly region. The evolution of the axial velocity profile shows a large velocity shear is measured at the edge of the Z pinch during the quiescent period. The velocity shear is above the theoretical threshold. As the velocity shear decreases towards 0.1kV A , the predicted stability threshold, the quiescent period ends. The present understanding of the ZaP experiment shows that it may be possible for the Z pinch to operate in a steady state if the deflagration process can be maintained by constantly supplying neutral gas or plasma to the accelerator

  15. Plasma flow switch characterization for the Los Alamos Foil Implosion Project

    International Nuclear Information System (INIS)

    Bowers, R.L.; Brownell, J.H.; Greene, A.E.; Peterson, D.L.

    1990-01-01

    The next system design under consideration for the Los Alamos Foil Implosion Project is projected to deliver tens of mega-amperes of electrical current produced by high-explosive driven flux compression generators on a time scale of about one microsecond to a load foil. The use of such generators, with time scales of order several tenths of a millisecond, leads to considerable pulse shaping problems. Previously it was noted that a commutating switch might serve as an efficient alternative to a closing switch in transferring current from a coaxial transmission line to a cylindrically imploding load. Research at the Air Force Weapons Laboratory (AFWL) has met with considerable success in efficiently transferring currents of order 10 MA to an imploding liner using the plasma flow switch concept (PFS). Besides efficiently transferring current, the plasma flow switch protects the load region from high voltages generated by an opening switch until the current is present to provide magnetic insulation. For these reasons, a PFS is being investigated as the final pulse shaping step in the design. A series of capacitor bank experiments is also being fielded to help investigate physics issues and to benchmark the codes

  16. Strategies for measuring flows of reactive nitrogen at the landscape scale

    DEFF Research Database (Denmark)

    Theobald, M.R.; Akkal, N.; Bienkowski, J.

    2011-01-01

    Within a rural landscape there are flows of reactive nitrogen (Nr) through and between the soil, vegetation, atmosphere and hydrological systems as well as transfer as a result of agricultural activities. Measurements of these flows and transfers have generally been limited to individual media (e.......g., hydrological flows) or the interface between two media (e.g., exchange between the soil and the atmosphere). However, the study of flows of Nr at the landscape scale requires a more integrated approach that combines measurement techniques to quantify the flows from one medium to the next. This paper discusses...

  17. Two-phase flow void fraction measurement using gamma ray attenuation technique

    International Nuclear Information System (INIS)

    Silva, R.D. da.

    1985-01-01

    The present work deals with experimental void fraction measurements in two-phase water-nitrogen flow, by using a gamma ray attenuation technique. Several upward two-phase flow regimes in a vertical tube were simulated. The water flow was varied from 0.13 to 0.44 m 3 /h while the nitrogen flow was varied between 0.01 and 0.1 m 3 /h. The mean volumetric void fraction was determined based on the measured linear void fraction for each flow condition. The results were compared with other authors data and showed a good agreement. (author) [pt

  18. A new method to measure flow in professional tasks – A FLOW-W questionnaire (FLOW at Work

    Directory of Open Access Journals (Sweden)

    Wolfigiel Beata

    2017-06-01

    Full Text Available The aim of the article is to present a new Polish tool for measuring the flow experience in professional tasks - a FLOW-W Questionnaire. The questionnaire was inspired by Csikszentmihalyi’s (1990 flow theory and flow in Bakker’s work (2008. On its basis a set of positions was established, on which subsequently an exploratory (study 1, N = 101 and confirmatory (study 2, N = 275 factor analysis was conducted. The analysis showed the possibility of a uni- or bifactorial solution. After checking the theoretical and empirical validity of both solutions, the unifactorial solution was adopted. The validity of the questionnaire was examined, i.a. by correlations with theoretically related variables: work engagement with the UWES questionnaire (Szabowska-Walaszczyk, Zawadzka, Wojtaś, 2011 and affect at work (Zalewska, 2002. The studies showed a significant positive correlation between flow at work and work engagement (0.84 and between flow and positive affect (0.74. The reliability of the questionnaire is very high; α = 0.96. The tool has very good psychometric properties.

  19. Measuring the quality of clinical audit projects.

    Science.gov (United States)

    Millard, A D

    2000-11-01

    The aim of the study was to develop and pilot a scale measuring the quality of audit projects through audit project reports. Statements about clinical audit projects were selected from existing instruments assessing the quality of clinical audit projects to form a Likert scale. Audit facilitators based in Scottish health boards and trusts piloted the scale. The participants were known to have over 2 years of experience of supporting clinical audit. The response at first test was 11 of 14 and at the second test 27 of 46. Audit facilitators tested the draft scale by expressing their strength of agreement or disagreement with each statement for three reports. Validity and reliability were assessed by test - re-test, item - total, and total - global indicator correlation. Of the 20 statements, 15 had satisfactory correlation with scale totals. Scale totals had good correlation with global indicators. Test re-test correlation was modest. The wide range of responses means further research is needed to measure the consistency of audit facilitators' interpretations, perhaps comparing a trained group with an untrained group. There may be a need for a separate scale for reaudits. Educational impact is distinct from project impact generally. It may be more meaningful to treat the selection of projects and aims, methodology and impact separately as subscales and take a project profiling approach rather than attempting to produce a global quality index.

  20. A compact low energy multibeam gamma-ray densitometer for pipe-flow measurements

    International Nuclear Information System (INIS)

    Tjugum, Stein-Arild; Frieling, Joop; Johansen, Geir Anton

    2002-01-01

    A compact low-energy multibeam gamma-ray densitometer for oil/water/gas pipe-flow measurement has been built at the University of Bergen. The instrument consists of one Am-241 source and three detectors, all collimated and embedded in the pipe wall. Only the 59.5 keV radiation energy of the source is utilized. Two of the detectors measure transmitted radiation across the pipe flow, and one measure scattered radiation at a 90 degree sign angle. The purpose of the multibeam measurement geometry is to acquire flow regime information and to reduce the flow regime dependency of the gas volume fraction (GVF) measurements. The measurement of scattered radiation enables the dual modality densitometry (DMD) measurement principle to be exploited. Its basic principle is to combine the measurement of scattered and transmitted radiation in order to obtain salinity independent GVF measurements. The salinity dependency is otherwise strongly significant when using low-energy radiation. It is also possible to measure the salinity by using this principle. The instrument is a laboratory prototype, and it has been used for characterising the measurement principle and to test different detector alternatives. The testing of the instrument includes static tests on plastic phantoms, tests on simulated water/gas flow and three phase flow loop tests. Both the multibeam measurement principle and the DMD principle have been verified to provide valuable information. This paper presents the physics behind, experimental results and an evaluation of the system

  1. Stopped-flow technique for transit time measurement in a gas jet

    International Nuclear Information System (INIS)

    Rengan, K.; Lin, J.; Lim, T.; Meyer, R.A.; Harrell, J.

    1985-01-01

    A 'stopped-flow' technique for the measurement of transit time of reaction products in a gas jet is described. The method involved establishing the gas flow through the jet system when the reactor is operating steadily and allowing the pressure to reach equilibrium values. The gas flow is stopped by means of electrically operated valves. The transit-time measurement is achieved by opening the valves and initiating the multiscanning of total activity simultaneously. The value obtained agrees well with the transit time measured by pulsing the reactor. The 'stopped-flow' technique allows on-line measurement of transit time in any gas jet system where the physical transportation time is the major component of the transit time. This technique is especially useful for systems installed in reactors which do not have pulsing capability. (orig.)

  2. Sodium flow rate measurement method of annular linear induction pumps

    International Nuclear Information System (INIS)

    Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.

    2012-01-01

    Highlights: ► We found a new method of flow rate monitoring of electromagnetic pump. ► The method is very simple and does not require a large space. ► The method was verified with an experiment and a numerical analysis. ► The experimental data and the numerical results are in good agreement. - Abstract: The present paper proposes a method for measuring sodium flow rate of annular linear induction pumps. The feature of the method lies in measuring the leaked magnetic field with measuring coils near the stator end on the outlet side and in correlating it with the sodium flow rate. This method is verified through an experiment and a numerical analysis. The data obtained in the experiment reveals that the correlation between the leaked magnetic field and the sodium flow rate is almost linear. The result of the numerical analysis agrees with the experimental data. The present method will be particularly effective to sodium flow rate monitoring of each one of plural annular linear induction pumps arranged in parallel in a vessel which forms a large-scale pump unit.

  3. Combined measurements on stationary flow of helium II

    International Nuclear Information System (INIS)

    Ijsselstein, R.R.

    1979-01-01

    Transport phenomena in helium II can in principle be described by a two fluid model. One of the fluids, the superfluid component, carries no entropy and has no viscosity while its velocity field is curl free. The other, the normal component, behaves like an ordinary fluid and carries the entropy of the whole liquid. In measuring flow two different methods are required because of the two independent velocity fields. This thesis describes an experiment where both techniques are applied to flow through a capillary of 0.62 mm, enabling direct comparison. The apparatus is described, and details of the measuring techniques are reported. An extended treatment of second-sound phenomena in a Helmholtz resonator is given. The results of the measurements are reported and discussed. (Auth.)

  4. A database of aerothermal measurements in hypersonic flow for CFD validation

    Science.gov (United States)

    Holden, M. S.; Moselle, J. R.

    1992-01-01

    This paper presents an experimental database selected and compiled from aerothermal measurements obtained on basic model configurations on which fundamental flow phenomena could be most easily examined. The experimental studies were conducted in hypersonic flows in 48-inch, 96-inch, and 6-foot shock tunnels. A special computer program was constructed to provide easy access to the measurements in the database as well as the means to plot the measurements and compare them with imported data. The database contains tabulations of model configurations, freestream conditions, and measurements of heat transfer, pressure, and skin friction for each of the studies selected for inclusion. The first segment contains measurements in laminar flow emphasizing shock-wave boundary-layer interaction. In the second segment, measurements in transitional flows over flat plates and cones are given. The third segment comprises measurements in regions of shock-wave/turbulent-boundary-layer interactions. Studies of the effects of surface roughness of nosetips and conical afterbodies are presented in the fourth segment of the database. Detailed measurements in regions of shock/shock boundary layer interaction are contained in the fifth segment. Measurements in regions of wall jet and transpiration cooling are presented in the final two segments.

  5. Sensitivity Analysis of Unsteady Flow Fields and Impact of Measurement Strategy

    Directory of Open Access Journals (Sweden)

    Takashi Misaka

    2014-01-01

    Full Text Available Difficulty of data assimilation arises from a large difference between the sizes of a state vector to be determined, that is, the number of spatiotemporal mesh points of a discretized numerical model and a measurement vector, that is, the amount of measurement data. Flow variables on a large number of mesh points are hardly defined by spatiotemporally limited measurements, which poses an underdetermined problem. In this study we conduct the sensitivity analysis of two- and three-dimensional vortical flow fields within a framework of data assimilation. The impact of measurement strategy, which is evaluated by the sensitivity of the 4D-Var cost function with respect to measurements, is investigated to effectively determine a flow field by limited measurements. The assimilation experiment shows that the error defined by the difference between the reference and assimilated flow fields is reduced by using the sensitivity information to locate the limited number of measurement points. To conduct data assimilation for a long time period, the 4D-Var data assimilation and the sensitivity analysis are repeated with a short assimilation window.

  6. Improvements in Low-cost Ultrasonic Measurements of Blood Flow in "by-passes" Using Narrow & Broad Band Transit-time Procedures

    Science.gov (United States)

    Ramos, A.; Calas, H.; Diez, L.; Moreno, E.; Prohías, J.; Villar, A.; Carrillo, E.; Jiménez, A.; Pereira, W. C. A.; Von Krüger, M. A.

    The cardio-pathology by ischemia is an important cause of death, but the re-vascularization of coronary arteries (by-pass operation) is an useful solution to reduce associated morbidity improving quality of life in patients. During these surgeries, the flow in coronary vessels must be measured, using non-invasive ultrasonic methods, known as transit time flow measurements (TTFM), which are the most accurate option nowadays. TTFM is a common intra-operative tool, in conjunction with classic Doppler velocimetry, to check the quality of these surgery processes for implanting grafts in parallel with the coronary arteries. This work shows important improvements achieved in flow-metering, obtained in our research laboratories (CSIC, ICIMAF, COPPE) and tested under real surgical conditions in Cardiocentro-HHA, for both narrowband NB and broadband BB regimes, by applying results of a CYTED multinational project (Ultrasonic & computational systems for cardiovascular diagnostics). mathematical models and phantoms were created to evaluate accurately flow measurements, in laboratory conditions, before our new electronic designs and low-cost implementations, improving previous ttfm systems, which include analogic detection, acquisition & post-processing, and a portable PC. Both regimes (NB and BB), with complementary performances for different conditions, were considered. Finally, specific software was developed to offer facilities to surgeons in their interventions.

  7. A compact x-ray system for two-phase flow measurement

    Science.gov (United States)

    Song, Kyle; Liu, Yang

    2018-02-01

    In this paper, a compact x-ray densitometry system consisting of a 50 kV, 1 mA x-ray tube and several linear detector arrays is developed for two-phase flow measurement. The system is capable of measuring void fraction and velocity distributions with a spatial resolution of 0.4 mm per pixel and a frequency of 1000 Hz. A novel measurement model has been established for the system which takes account of the energy spectrum of x-ray photons and the beam hardening effect. An improved measurement accuracy has been achieved with this model compared with the conventional log model that has been widely used in the literature. Using this system, void fraction and velocity distributions are measured for a bubbly and a slug flow in a 25.4 mm I.D. air-water two-phase flow test loop. The measured superficial gas velocities show an error within  ±4% when compared with the gas flowmeter for both conditions.

  8. Flow rate measurement of buoyancy-driven exchange flow by laser Doppler velocimeter

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1993-01-01

    An experimental investigation was carried out for the buoyancy-driven exchange flow in a narrow vented cylinder concerning the air ingress process during a standing pipe rupture in a high-temperature gas-cooled reactor. In the present study, the evaluation method of exchange flow was developed by measuring the velocity distribution in the cylinder using a laser Doppler velocimeter. The experiments were performed under atmospheric pressure with nitrogen as a working fluid. Rayleigh numbers ranged from 2.0x10 4 to 2.1x10 5 . The exchange flow fluctuated irregularly with time and space in the cylinder. It was found that the exchange velocity distribution along the horizontal axis changed from one-hump to two-hump distribution with increasing Rayleigh number. In the case that the hemisphere wall was cooler than the heated disk, the volumetric exchange flow rate was smaller than that in the case where the hemisphere wall and the heated disk were at the same temperature. (author)

  9. Discounted Cash Flow and Modern Asset Pricing Methods - Project Selection and Policy Implications

    Energy Technology Data Exchange (ETDEWEB)

    Emhjellen, Magne; Alaouze, Chris M

    2002-07-01

    We examine the differences in the net present values (NPV's) of North Sea oil projects obtained using the Weighted Average Cost of Capital (WACC) and a Modern Asset Pricing (MAP) method which involves the separate discounting of project cash flow components. NPV differences of more than $1 Om were found for some oil projects. Thus, the choice of valuation method will affect the development decisions of oil companies. The results of the MAP method are very sensitive to the choice of parameter values for the stochastic process used to model oil prices. Further research is recommended before the MAP method is used as the sole valuation model. (author)

  10. Discounted Cash Flow and Modern Asset Pricing Methods - Project Selection and Policy Implications

    Energy Technology Data Exchange (ETDEWEB)

    Emhjellen, Magne; Alaouze, Chris M.

    2002-07-01

    We examine the differences in the net present values (NPV's) of North Sea oil projects obtained using the Weighted Average Cost of Capital (WACC) and a Modern Asset Pricing (MAP) method which involves the separate discounting of project cash flow components. NPV differences of more than $1 Om were found for some oil projects. Thus, the choice of valuation method will affect the development decisions of oil companies. The results of the MAP method are very sensitive to the choice of parameter values for the stochastic process used to model oil prices. Further research is recommended before the MAP method is used as the sole valuation model. (author)

  11. Discounted Cash Flow and Modern Asset Pricing Methods - Project Selection and Policy Implications

    International Nuclear Information System (INIS)

    Emhjellen, Magne; Alaouze, Chris M.

    2002-01-01

    We examine the differences in the net present values (NPV's) of North Sea oil projects obtained using the Weighted Average Cost of Capital (WACC) and a Modern Asset Pricing (MAP) method which involves the separate discounting of project cash flow components. NPV differences of more than $1 Om were found for some oil projects. Thus, the choice of valuation method will affect the development decisions of oil companies. The results of the MAP method are very sensitive to the choice of parameter values for the stochastic process used to model oil prices. Further research is recommended before the MAP method is used as the sole valuation model. (author)

  12. A Priority Rule-Based Heuristic for Resource Investment Project Scheduling Problem with Discounted Cash Flows and Tardiness Penalties

    Directory of Open Access Journals (Sweden)

    Amir Abbas Najafi

    2009-01-01

    Full Text Available Resource investment problem with discounted cash flows (RIPDCFs is a class of project scheduling problem. In RIPDCF, the availability levels of the resources are considered decision variables, and the goal is to find a schedule such that the net present value of the project cash flows optimizes. In this paper, we consider a new RIPDCF in which tardiness of project is permitted with defined penalty. We mathematically formulated the problem and developed a heuristic method to solve it. The results of the performance analysis of the proposed method show an effective solution approach to the problem.

  13. Plasma flow velocity measurements using a modulated Michelson interferometer

    NARCIS (Netherlands)

    Howard, J.; Meijer, F. G.

    1997-01-01

    This paper discusses the possibility of flow velocity reconstruction using passive spectroscopic techniques. We report some preliminary measurements of the toroidal flow velocity of hydrogen atoms in the RTP tokamak using a phase modulated Michelson interferometer. (C) 1997 Elsevier Science S.A.

  14. Flow cytometry measurements of human chromosome kinetochore labeling

    International Nuclear Information System (INIS)

    Fantes, J.A.; Green, D.K.; Malloy, P.; Sumner, A.T.

    1989-01-01

    A method for the preparation and measurement of immunofluorescent human chromosome centromeres in suspension is described using CREST antibodies, which bind to the centromeric region of chromosomes. Fluorescein isothiocyanate (FITC)-conjugated antihuman antibodies provide the fluorescent label. Labeled chromosomes are examined on microscope slides and by flow cytometry. In both cases a dye which binds to DNA is added to provide identification of the chromosome groups. Sera from different CREST patients vary in their ability to bind to chromosome arms in addition to the centromeric region. Flow cytometry and microfluorimetry measurements have shown that with a given CREST serum the differences in kinetochore fluorescence between chromosomes are only minor. Flow cytometry experiments to relate the number of dicentric chromosomes, induced by in vitro radiation of peripheral blood cells to the slightly increased number of chromosomes with above-average kinetochore fluorescence did not produce decisive radiation dosimetry results

  15. Evaluating probability measures related to subsurface flow and transport

    International Nuclear Information System (INIS)

    Cawlfield, J.D.

    1991-01-01

    Probabilistic modeling approaches are being used increasingly in order to carry out quantified risk analysis and to evaluate the uncertainty existing in subsurface flow and transport analyses. The work presented in this paper addresses three issues: comparison of common probabilistic modeling techniques, recent results regarding the sensitivity of probability measures to likely changes in the uncertain variables for transport in porous media, and a discussion of some questions regarding fundamental modeling philosophy within a probabilistic framework. Recent results indicate that uncertainty regarding average flow velocity controls the probabilistic outcome, while uncertainty in the dispersivity and diffusion coefficient does not seem very important. Uncertainty of reaction terms is important only at early times in the transport process. Questions are posed regarding (1) the inclusion of macrodispersion in a probabilistic analysis, (2) statistics of flow velocity and (3) the notion of an ultimate probability measure for subsurface flow analyses

  16. Measurement of Two-Phase Flow Characteristics Under Microgravity Conditions

    Science.gov (United States)

    Keshock, E. G.; Lin, C. S.; Edwards, L. G.; Knapp, J.; Harrison, M. E.; Xhang, X.

    1999-01-01

    This paper describes the technical approach and initial results of a test program for studying two-phase annular flow under the simulated microgravity conditions of KC-135 aircraft flights. A helical coil flow channel orientation was utilized in order to circumvent the restrictions normally associated with drop tower or aircraft flight tests with respect to two-phase flow, namely spatial restrictions preventing channel lengths of sufficient size to accurately measure pressure drops. Additionally, the helical coil geometry is of interest in itself, considering that operating in a microgravity environment vastly simplifies the two-phase flows occurring in coiled flow channels under 1-g conditions for virtually any orientation. Pressure drop measurements were made across four stainless steel coil test sections, having a range of inside tube diameters (0.95 to 1.9 cm), coil diameters (25 - 50 cm), and length-to-diameter ratios (380 - 720). High-speed video photographic flow observations were made in the transparent straight sections immediately preceding and following the coil test sections. A transparent coil of tygon tubing of 1.9 cm inside diameter was also used to obtain flow visualization information within the coil itself. Initial test data has been obtained from one set of KC-135 flight tests, along with benchmark ground tests. Preliminary results appear to indicate that accurate pressure drop data is obtainable using a helical coil geometry that may be related to straight channel flow behavior. Also, video photographic results appear to indicate that the observed slug-annular flow regime transitions agree quite reasonably with the Dukler microgravity map.

  17. Experimental measurements of the cavitating flow after horizontal water entry

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Thang Tat; Thai, Nguyen Quang; Phuong, Truong Thi [Institute of Mechanics (IMECH), Vietnam Academy of Science and Technology (VAST), 264—Doi Can, Ba Dinh, Hanoi (Viet Nam); Hai, Duong Ngoc, E-mail: ntthang@imech.vast.vn, E-mail: dnhai@vast.vn, E-mail: nqthai@imech.vast.vn, E-mail: ttphuong@imech.vast.vn [Graduate University of Science and Technology (GUST), VAST, 18—Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam)

    2017-10-15

    Water-entry cavitating flow is of considerable importance in underwater high-speed applications. That is because of the drag-reduction effect that concerns the presence of a cavity around moving objects. Though the study of the flow has long been carried out, little data are documented in literature so far. Besides, currently, in the case of unsteady flow, experimental measurements of some flow parameters such as the cavity pressure still encounter difficulties. Hence continuing research efforts are of important significance. The objective of this study is to investigate experimentally the unsteady cavitating flow after the horizontal water entry of projectiles. An experimental apparatus has been developed. Qualitative and quantitative optical visualizations of the flow have been carried out by using high-speed videography. Digital image processing has been applied to analyzing the recorded flow images. Based on the known correlations between the ellipsoidal super-cavity’s size and the corresponding cavitation number, the cavity pressure has been measured by utilizing the data of image processing. A comparison between the partial- and super-cavitating flow regimes is reported. The received results can be useful for the design of high-speed underwater projectiles. (paper)

  18. Laser-Doppler measurements of laminar and turbulent flow in a pipe bend

    Energy Technology Data Exchange (ETDEWEB)

    Enayet, M.M.; Gibson, M.M.; Taylor, A.M.K.P.; Yianneskis, M.

    1982-12-01

    Laser-Doppler measurements are reported for laminar and turbulent flow through a 90/sup 0/ bend of circular cross-section with mean radius of curvature equal to 2.8 times the diameter. The measurements were made in cross-stream planes 0.58 diameters upstream of the bend inlet plane, in 30, 60, and 75/sup 0/ planes in the bend and in planes one and six diameters downstream of the exit plane. Three sets of data were obtained: for laminar flow at Reynolds numbers of 500 and 1093 and for turbulent flow at the maximum obtainable Reynolds number of 43 000. The results show the development of strong pressure-driven secondary flows in the form of a pair of counter-rotating vortices in the streamwise direction. The strength and character of the secondary flows were found to depend on the thickness and nature of the inlet boundary layerd, conditions which could not be varied independently of Reynolds number. The quantitative anemometer measurements are supported by flow visualization studies. Refractive index matching at the fluid-wall interface was not used; the measurements consist, therefore, of streamwise components of mean and fluctuating velocities only, supplemented by wall pressure measurements for the turbulent flow. This displacement of the laser measurement volume due to refraction is allowed for in simple geometrical calculations. The results are intended for use as benchmark data for calibrating flow calculation methods.

  19. Measurement Of Multiphase Flow Water Fraction And Water-cut

    Science.gov (United States)

    Xie, Cheng-gang

    2007-06-01

    This paper describes a microwave transmission multiphase flow water-cut meter that measures the amplitude attenuation and phase shift across a pipe diameter at multiple frequencies using cavity-backed antennas. The multiphase flow mixture permittivity and conductivity are derived from a unified microwave transmission model for both water- and oil-continuous flows over a wide water-conductivity range; this is far beyond the capability of microwave-resonance-based sensors currently on the market. The water fraction and water cut are derived from a three-component gas-oil-water mixing model using the mixture permittivity or the mixture conductivity and an independently measured mixture density. Water salinity variations caused, for example, by changing formation water or formation/injection water breakthrough can be detected and corrected using an online water-conductivity tracking technique based on the interpretation of the mixture permittivity and conductivity, simultaneously measured by a single-modality microwave sensor.

  20. Measurement of flow rate in the third loop of PWR

    International Nuclear Information System (INIS)

    Gao Shufan.

    1986-01-01

    The range of flow rate was 14000-50000 m 3 /h. The diameter of main tube was 2.6 m. A special made pitot set was placed on the main tube in order to accurately measure the flow rate. A cross slideway and a guide devicc were used to prevent the pitot vibration. Method of equal annular area was used in the measurement. The error was less than 4.2%. A pitot cylinder flowmeter was set also on the main tube to supervise the total flow rate of the third loop

  1. Viscosity estimation utilizing flow velocity field measurements in a rotating magnetized plasma

    International Nuclear Information System (INIS)

    Yoshimura, Shinji; Tanaka, Masayoshi Y.

    2008-01-01

    The importance of viscosity in determining plasma flow structures has been widely recognized. In laboratory plasmas, however, viscosity measurements have been seldom performed so far. In this paper we present and discuss an estimation method of effective plasma kinematic viscosity utilizing flow velocity field measurements. Imposing steady and axisymmetric conditions, we derive the expression for radial flow velocity from the azimuthal component of the ion fluid equation. The expression contains kinematic viscosity, vorticity of azimuthal rotation and its derivative, collision frequency, azimuthal flow velocity and ion cyclotron frequency. Therefore all quantities except the viscosity are given provided that the flow field can be measured. We applied this method to a rotating magnetized argon plasma produced by the Hyper-I device. The flow velocity field measurements were carried out using a directional Langmuir probe installed in a tilting motor drive unit. The inward ion flow in radial direction, which is not driven in collisionless inviscid plasmas, was clearly observed. As a result, we found the anomalous viscosity, the value of which is two orders of magnitude larger than the classical one. (author)

  2. Noninvasive measurement of an index of renal blood flow

    International Nuclear Information System (INIS)

    Powers, T.A.; Rees, R.S.; Bowen, R.D.

    1983-01-01

    A new technique for the noninvasive measurement of an index of renal blood flow is described. The method utilizes ultrasound determined renal volume and radionuclide assessment of the mean transit time of a pertechnetate bolus through the kidneys. From this information a value for flow is calculated according to compartmental analysis principles. There is good correlation between renal blood flow estimated by this technique and that determined by microsphere injection

  3. UF6 Density and Mass Flow Measurements for Enrichment Plants using Acoustic Techniques

    Energy Technology Data Exchange (ETDEWEB)

    Good, Morris S.; Smith, Leon E.; Warren, Glen A.; Jones, Anthony M.; Ramuhalli, Pradeep; Roy, Surajit; Moran, Traci L.; Denslow, Kayte M.; Longoni, Gianluca

    2017-09-01

    A key enabling capability for enrichment plant safeguards being considered by the International Atomic Energy Agency (IAEA) is high-accuracy, noninvasive, unattended measurement of UF6 gas density and mass flow rate. Acoustic techniques are currently used to noninvasively monitor gas flow in industrial applications; however, the operating pressures at gaseous centrifuge enrichment plants (GCEPs) are roughly two orders magnitude below the capabilities of commercial instrumentation. Pacific Northwest National Laboratory is refining acoustic techniques for estimating density and mass flow rate of UF6 gas in scenarios typical of GCEPs, with the goal of achieving 1% measurement accuracy. Proof-of-concept laboratory measurements using a surrogate gas for UF6 have demonstrated signatures sensitive to gas density at low operating pressures such as 10–50 Torr, which were observed over the background acoustic interference. Current efforts involve developing a test bed for conducting acoustic measurements on flowing SF6 gas at representative flow rates and pressures to ascertain the viability of conducting gas flow measurements under these conditions. Density and flow measurements will be conducted to support the evaluation. If successful, the approach could enable an unattended, noninvasive approach to measure mass flow in unit header pipes of GCEPs.

  4. Experimental study on two-dimensional film flow with local measurement methods

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Jin-Hwa, E-mail: evo03@snu.ac.kr [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Cho, Hyoung-Kyu [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of); Kim, Seok [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Euh, Dong-Jin, E-mail: djeuh@kaeri.re.kr [Korea Atomic Energy Research Institute, 989-111, Daedeok-daero, Yuseong-gu, Daejeon 305-600 (Korea, Republic of); Park, Goon-Cherl [Nuclear Thermal-Hydraulic Engineering Laboratory, Seoul National University, Gwanak 599, Gwanak-ro, Gwanak-gu, Seoul 151-742 (Korea, Republic of)

    2015-12-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  5. Experimental study on two-dimensional film flow with local measurement methods

    International Nuclear Information System (INIS)

    Yang, Jin-Hwa; Cho, Hyoung-Kyu; Kim, Seok; Euh, Dong-Jin; Park, Goon-Cherl

    2015-01-01

    Highlights: • An experimental study on the two-dimensional film flow with lateral air injection was performed. • The ultrasonic thickness gauge was used to measure the local liquid film thickness. • The depth-averaged PIV (Particle Image Velocimetry) method was applied to measure the local liquid film velocity. • The uncertainty of the depth-averaged PIV was quantified with a validation experiment. • Characteristics of two-dimensional film flow were classified following the four different flow patterns. - Abstract: In an accident condition of a nuclear reactor, multidimensional two-phase flows may occur in the reactor vessel downcomer and reactor core. Therefore, those have been regarded as important issues for an advanced thermal-hydraulic safety analysis. In particular, the multi-dimensional two-phase flow in the upper downcomer during the reflood phase of large break loss of coolant accident appears with an interaction between a downward liquid and a transverse gas flow, which determines the bypass flow rate of the emergency core coolant and subsequently, the reflood coolant flow rate. At present, some thermal-hydraulic analysis codes incorporate multidimensional modules for the nuclear reactor safety analysis. However, their prediction capability for the two-phase cross flow in the upper downcomer has not been validated sufficiently against experimental data based on local measurements. For this reason, an experimental study was carried out for the two-phase cross flow to clarify the hydraulic phenomenon and provide local measurement data for the validation of the computational tools. The experiment was performed in a 1/10 scale unfolded downcomer of Advanced Power Reactor 1400 (APR1400). Pitot tubes, a depth-averaged PIV method and ultrasonic thickness gauge were applied for local measurement of the air velocity, the liquid film velocity and the liquid film thickness, respectively. The uncertainty of the depth-averaged PIV method for the averaged

  6. Systematic heat flow measurements across the Wagner Basin, northern Gulf of California

    Science.gov (United States)

    Neumann, Florian; Negrete-Aranda, Raquel; Harris, Robert N.; Contreras, Juan; Sclater, John G.; González-Fernández, Antonio

    2017-12-01

    A primary control on the geodynamics of rifting is the thermal regime. To better understand the geodynamics of rifting in the northern Gulf of California we systematically measured heat-flow across the Wagner Basin, a tectonically active basin that lies near the southern terminus of the Cerro Prieto fault. The heat flow profile is 40 km long, has a nominal measurement spacing of ∼1 km, and is collocated with a seismic reflection profile. Heat flow measurements were made with a 6.5-m violin-bow probe. Although heat flow data were collected in shallow water, where there are significant temporal variations in bottom water temperature, we use CTD data collected over many years to correct our measurements to yield accurate values of heat flow. After correction for bottom water temperature, the mean and standard deviation of heat flow across the western, central, and eastern parts of the basin are 220 ± 60, 99 ± 14, 889 ± 419 mW m-2, respectively. Corrections for sedimentation would increase measured heat flow across the central part of basin by 40 to 60%. We interpret the relatively high heat flow and large variability on the western and eastern flanks in terms of upward fluid flow at depth below the seafloor, whereas the lower and more consistent values across the central part of the basin are suggestive of conductive heat transfer. Moreover, heat flow across the central basin is consistent with gabbroic underplating at a depth of 15 km and suggests that continental rupture here has not gone to completion.

  7. Improved flow velocity estimates from moving-boat ADCP measurements

    NARCIS (Netherlands)

    Vermeulen, B.; Hoitink, A.J.F.; Sassi, M.G.

    2014-01-01

    Acoustic Doppler current profilers (ADCPs) are the current standard for flow measurements in large-scale open water systems. Existing techniques to process vessel-mounted ADCP data assume homogeneous or linearly changing flow between the acoustic beams. This assumption is likely to fail but is

  8. Improved flow velocity estmates from oving-boat ADCO measurements

    NARCIS (Netherlands)

    Vermeulen, B.; Sassi, M.G.; Hoitink, A.J.F.

    2014-01-01

    Acoustic Doppler current profilers (ADCPs) are the current standard for flow measurements in large-scale open water systems. Existing techniques to process vessel-mounted ADCP data assume homogeneous or linearly changing flow between the acoustic beams. This assumption is likely to fail but is

  9. Future Flows Climate: an ensemble of 1-km climate change projections for hydrological application in Great Britain

    Directory of Open Access Journals (Sweden)

    C. Prudhomme

    2012-11-01

    Full Text Available The dataset Future Flows Climate was developed as part of the project ''Future Flows and Groundwater Levels'' to provide a consistent set of climate change projections for the whole of Great Britain at both space and time resolutions appropriate for hydrological applications, and to enable climate change uncertainty and climate variability to be accounted for in the assessment of their possible impacts on the environment.

    Future Flows Climate is derived from the Hadley Centre's ensemble projection HadRM3-PPE that is part of the basis of UKCP09 and includes projections in available precipitation (water available to hydrological processes after snow and ice storages have been accounted for and potential evapotranspiration. It corresponds to an 11-member ensemble of transient projections from January 1950 to December 2098, each a single realisation from a different variant of HadRM3. Data are provided on a 1-km grid over the HadRM3 land areas at a daily (available precipitation and monthly (PE time step as netCDF files.

    Because systematic biases in temperature and precipitation were found between HadRM3-PPE and gridded temperature and precipitation observations for the 1962–1991 period, a monthly bias correction procedure was undertaken, based on a linear correction for temperature and a quantile-mapping correction (using the gamma distribution for precipitation followed by a spatial downscaling. Available precipitation was derived from the bias-corrected precipitation and temperature time series using a simple elevation-dependant snow-melt model. Potential evapotranspiration time series were calculated for each month using the FAO-56 Penman-Monteith equations and bias-corrected temperature, cloud cover, relative humidity and wind speed from HadRM3-PPE along with latitude of the grid and the day of the year.

    Future Flows Climate is freely available for non-commercial use under certain licensing conditions. It is the

  10. Flow visualizations, velocity measurements, and surface convection measurements in simulated 20.8-cm Nova box amplifier cavities

    International Nuclear Information System (INIS)

    Julien, J.L.; Molishever, E.L.

    1983-01-01

    Reported are fluid mechanics experiments performed in models of the 20.8-cm Nova amplifier lamp and disk cavities. Lamp cavity nitrogen flows are shown, by both flow visualization and velocity measurements, to be acceptably uniform and parallel to the flashlamps. In contrast, the nitrogen flows in the disk cavity are shown to be disordered. Even though disk cavity flows are disordered, the simplest of three proposed nitrogen introduction systems for the disk cavity was found to be acceptable based on convection measurements made at the surfaces of simulated laser disks

  11. Measurement of Finger Blood Flow in Raynauds Phenomenon by Radionuclide Angiography

    International Nuclear Information System (INIS)

    Lim, Sang Moo; Chung, June Key; Lee, Myung Chul; Kim, Sang Joon; Choi, Sung Jae; Koh, Chang Soon

    1987-01-01

    In Raynauds phenomenon, the authors measured finger blood flow after ice water exposure by analyzing the time activity curve of radionuclide angiography on both hands. The results were as follows: 1) The digital blood flow did not decrease after ice water exposure in normal subjects. 2) In the patients with Raynauds phenomenon, there were two groups: the one had decreased digital blood flow after cold exposure, and the other had paradoxically increased digital blood flow after cold exposure. 3) There was no difference in the digital blood flow of hand in room temperature between the normal and the patients with reduced digital blood flow after cold exposure, but the digital blood flow of the hand in room temperature was markedly reduced in the patients with paradoxically increased flow after cold exposure. 4) In the static image the difference was not significant in comparison with the dynamic study, because it represents pooling of the blood in the vein rather than flow. 5) After the treatment with nifedipine, the digital blood flow increased. In conclusion, the radionuclide angiography was useful in measuring the digital blood flow in Raynauds phenomenon, and further studies with various drugs is expected.

  12. Measurement of water flow rate in unsaturated soil by thermistor type sensor

    International Nuclear Information System (INIS)

    Takebe, Shinichi; Yamamoto, Tadatoshi; Wadachi, Yoshiki

    1981-09-01

    As a part of radiological safety studies for ground disposal of radioactive wastes, a measuring apparatus of water flow rate with thermistor type sensor was made as preliminary one and the measurement of water flow rate in the soil was carried out, in order to evalute by comparison of the migration rate of water with that of radionuclide in an unsaturated soil. The water flow rate can be determined by measuring the change of the thermal conductivity (temperature) of soil around the several thermistor type sensors set in a soil. Particularly at the region of low water content in the soil, the water flow rate was able to measure successfully by this apparatus. (author)

  13. Ocular Blood Flow Measured Noninvasively in Zero Gravity

    Science.gov (United States)

    Ansari, Rafat R.; Manuel, Francis K.; Geiser, Martial; Moret, Fabrice; Messer, Russell K.; King, James F.; Suh, Kwang I.

    2003-01-01

    In spaceflight or a reduced-gravity environment, bodily fluids shift to the upper extremities of the body. The pressure inside the eye, or intraocular pressure, changes significantly. A significant number of astronauts report changes in visual acuity during orbital flight. To date this remains of unknown etiology. Could choroidal engorgement be the primary mechanism and a change in the curvature or shape of the cornea or lens be the secondary mechanism for this change in visual acuity? Perfused blood flow in the dense meshwork of capillaries of the choroidal tissue (see the preceding illustration) provides necessary nutrients to the outer layers of the retina (photoreceptors) to keep it healthy and maintain good vision. Unlike the vascular system, the choroid has no baroreceptors to autoregulate fluid shifts, so it can remain engorged, pushing the macula forward and causing a hyperopic (farsighted) shift of the eye. Experiments by researchers at the NASA Glenn Research Center could help answer this question and facilitate planning for long-duration missions. We are investigating the effects of zero gravity on the choroidal blood flow of volunteer subjects. This pilot project plans to determine if choroidal blood flow is autoregulated in a reduced-gravity environment.

  14. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    Energy Technology Data Exchange (ETDEWEB)

    Varmora, P., E-mail: pvamora@ipr.res.in; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-11-15

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  15. Design of mass flow rate measurement system for SST-1 superconducting magnet system

    International Nuclear Information System (INIS)

    Varmora, P.; Sharma, A.N.; Khristi, Y.; Prasad, U.; Patel, D.; Doshi, K.; Pradhan, S.

    2016-01-01

    Highlights: • Design of Venturi meter for SST-1 magnet system. • Details of Helium mass flow measurement system used in SST-1. • Instruments and measurement techniques for flow measurement. • VME based data acquisition system details and flow calculation and results from SST-1 campaigns. - Abstract: Superconducting Magnet System (SCMS) of Steady State Superconducting Tokamak – 1 (SST-1) is forced-flow cooled by a closed cycle 1.3 kW (at 4.5 K) class Helium Refrigerator cum Liquefier (HRL) system. An accurate measurement of helium mass flow rate in different coils is required to ensure the uniform cooling of the cold mass in the entire range of operating temperature (300 K to 4.5 K) and pressure (0.9–0.4 MPa). To meet this requirement, indigenously designed and fabricated venturi meters are installed on 27 different coils of SST-1 SCMS. A VME based Data Acquisition System (DAS) has been developed and used to acquire the flow measurement data from different flowmeters. The details of the design of venturi meter, its different measurement and signal conditioning components, the data acquisition system and the mass flow rate calculation method are described in this paper. The mass flow rate measurement data from cryogenic acceptance and SST-1 magnet commissioning experiments are also presented and discussed in this paper.

  16. Measurement of flow separation in a human vocal folds model

    Czech Academy of Sciences Publication Activity Database

    Šidlof, Petr; Doaré, O.; Cadot, O.; Chaigne, A.

    2011-01-01

    Roč. 51, č. 1 (2011), s. 123-136 ISSN 0723-4864 R&D Projects: GA AV ČR KJB200760801 Institutional research plan: CEZ:AV0Z20760514 Keywords : vocal folds * flow separation * physical model Subject RIV: BI - Acoustics Impact factor: 1.735, year: 2011 http://www.springerlink.com/content/t81114611760jp23/

  17. Assessment of Smolt Condition for Travel Time Analysis Project, 1987-1997 Project Review.

    Energy Technology Data Exchange (ETDEWEB)

    Schrock, Robin M.; Hans, Karen M.; Beeman, John W. [US Geological Survey, Western Fisheries Research Center, Columbia River Research Laboratory, Cook, WA

    1997-12-01

    The assessment of Smolt Condition for Travel Time Analysis Project (Bonneville Power Administration Project 87-401) monitored attributes of salmonid smolt physiology in the Columbia and Snake River basins from 1987 to 1997, under the Northwest Power Planning Council Fish and Wildlife Program, in cooperation with the Smolt Monitoring Program of the Fish Passage Center. The primary goal of the project was to investigate the physiological development of juvenile salmonids related to migration rates. The assumption was made that the level of smolt development, interacting with environmental factos such as flow, would be reflected in travel times. The Fish Passage Center applied the physiological measurements of smolt condition to Water Budget management, to regulate flows so as to decrease travel time and increase survival.

  18. Fast optical measurements and imaging of flow mixing: Fast optical measurements and imaging of temperature in combined fossil fuel and biomass/waste systems

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, Soennik; Fateev, A.; Lindorff Nielsen, K.; Evseev, V.

    2012-02-15

    Project is focused on fast time-resolved infrared measurements of gas temperature and fast IR-imagining of flames in various combustion environments. The infrared spectrometer system was developed in the project for fast infrared spectral measurements on industrial scale using IR-fibre- optics. Fast time-and spectral-resolved measurements in 1.5-5.1 mu spectral range give information about flame characteristics like gas and particle temperatures, eddies and turbulent gas mixing. Time-resolved gas composition in that spectral range (H{sub 2}O, CH{sub 4}, CO{sub 2}, CO) which is one of the key parameters in combustion enhancement can be also obtained. The infrared camera was also used together with special endoscope optics for fast thermal imaging of a coal-straw flame in an industrial boiler. Obtained time-resolved infrared images provided useful information for the diagnostics of the flame and fuel distribustion. The applicability of the system for gas leak detection is also demonstrated. The infrared spectrometer system with minor developments was applied for fast time-resolved exhaust gas temperature measurements performed simultaneously at the three optical ports of the exhaust duct of a marine Diesel engine and visualisation of gas flow behaviour in cylinder. (Author)

  19. Liquid metal flow measurement by neutron radiography

    International Nuclear Information System (INIS)

    Takenaka, N.; Ono, A.; Matsubayashi, M.; Tsuruno, A.

    1996-01-01

    Visualization of a liquid metal flow and image processing methods to measure the vector field are carried out by real-time neutron radiography. The JRR-3M real-time thermal neutron radiography facility in the Japan Atomic Energy Research Institute was used. Lead-bismuth eutectic was used as a working fluid. Particles made from a gold-cadmium intermetallic compound (AuCd 3 ) were used as the tracer for the visualization. The flow vector field was obtained by image processing methods. It was shown that the liquid metal flow vector field was obtainable by real-time neutron radiography when the attenuation of neutron rays due to the liquid metal was less than l/e and the particle size of the tracer was larger than one image element size digitized for the image processing. (orig.)

  20. Gage for gas flow measurement especially in gas-suction pipes

    International Nuclear Information System (INIS)

    Renner, K.; Stegmanns, W.

    1978-01-01

    The gage utilizes the differential pressure given by a differential pressure producer to generate, in a bypass, a partial gas flow measured by means of a direct-reading anemometer of windmill type. The partial gas flow is generated between pressure pick-up openings in the gas-suction pipe in front of a venturi insert and pressure pick-up openings at the bottleneck of the venturi insert. The reading of the anemometer is proportional to the main gas flow and independent of the variables of state and the properties of the gases to be measured. (RW) [de

  1. Field-scale measurements for separation of catchment discharge into flow route contributions

    NARCIS (Netherlands)

    Velde, Y. van der; Rozemeijer, J.C.; Rooij, G.H. de; Geer, F.C. van; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  2. Field-Scale Measurements for Separation of Catchment Discharge into Flow Route Contributions

    NARCIS (Netherlands)

    Velde, van der Y.; Rozemeijer, J.; Rooij, de G.H.; Geer, van F.C.; Broers, H.P.

    2010-01-01

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  3. Field-scale measurements for separation of catchment discharge into flow route contributions

    NARCIS (Netherlands)

    van der Velde, Ype; Rozemeijer, Joachim C.; de Rooij, Gerrit H.; van Geer, Frans C.; Broers, Hans Peter

    Agricultural pollutants in catchments are transported toward the discharging stream through various flow routes such as tube drain flow, groundwater flow, interflow, and overland flow. Direct measurements of flow route contributions are difficult and often impossible. We developed a field-scale

  4. Flow measurements in a model centrifugal pump by 3-D PIV

    International Nuclear Information System (INIS)

    Yang, H; Xu, H R; Liu, C

    2012-01-01

    PIV (Particle Image Velocimetry), as an non-intrusive flow measurements technology, is widely used to investigate the flow fields in many areas. 3-D (three Dimensional) PIV has seldom been used to measure flow field in rotational impeller of centrifugal pump due to the difficulty of calibration in samll space. In this article, a specially manufactured water tank was used to perform the calibration for 3-D PIV measurement. The instantaneous absolute velocity in one impeller passage was obtained by merging of three sub zones and the relative velocity was acquired by velocity decomposition. The result shows that, when the pump runs at the condition of design flow rate, the radial component velocity W r appears a concave distribution except the condition of R=45 mm. With the increase of radius, the circumference location of the minimum radial component velocity W r moves from the pressure side to the suction side. At the same time, the tangential component velocity W θ on the suction side decreases gradually with the increase of radius, while the component on the pressure side increases gradually. The secondary flow in different radius section has also been shown. At last, the error of PIV measurements was analyzed, which shows that the test results are accurate and the measured data is reliable.

  5. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels

    Directory of Open Access Journals (Sweden)

    Huajun Li

    2016-01-01

    Full Text Available Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA. Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers’ works.

  6. A New Void Fraction Measurement Method for Gas-Liquid Two-Phase Flow in Small Channels.

    Science.gov (United States)

    Li, Huajun; Ji, Haifeng; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing; Wu, Guohua

    2016-01-27

    Based on a laser diode, a 12 × 6 photodiode array sensor, and machine learning techniques, a new void fraction measurement method for gas-liquid two-phase flow in small channels is proposed. To overcome the influence of flow pattern on the void fraction measurement, the flow pattern of the two-phase flow is firstly identified by Fisher Discriminant Analysis (FDA). Then, according to the identification result, a relevant void fraction measurement model which is developed by Support Vector Machine (SVM) is selected to implement the void fraction measurement. A void fraction measurement system for the two-phase flow is developed and experiments are carried out in four different small channels. Four typical flow patterns (including bubble flow, slug flow, stratified flow and annular flow) are investigated. The experimental results show that the development of the measurement system is successful. The proposed void fraction measurement method is effective and the void fraction measurement accuracy is satisfactory. Compared with the conventional laser measurement systems using standard laser sources, the developed measurement system has the advantages of low cost and simple structure. Compared with the conventional void fraction measurement methods, the proposed method overcomes the influence of flow pattern on the void fraction measurement. This work also provides a good example of using low-cost laser diode as a competent replacement of the expensive standard laser source and hence implementing the parameter measurement of gas-liquid two-phase flow. The research results can be a useful reference for other researchers' works.

  7. Methods of measurement signal acquisition from the rotational flow meter for frequency analysis

    Directory of Open Access Journals (Sweden)

    Świsulski Dariusz

    2017-01-01

    Full Text Available One of the simplest and commonly used instruments for measuring the flow of homogeneous substances is the rotational flow meter. The main part of such a device is a rotor (vane or screw rotating at a speed which is the function of the fluid or gas flow rate. A pulse signal with a frequency proportional to the speed of the rotor is obtained at the sensor output. For measurements in dynamic conditions, a variable interval between pulses prohibits the analysis of the measuring signal. Therefore, the authors of the article developed a method involving the determination of measured values on the basis of the last inter-pulse interval preceding the moment designated by the timing generator. For larger changes of the measured value at a predetermined time, the value can be determined by means of extrapolation of the two adjacent interpulse ranges, assuming a linear change in the flow. The proposed methods allow analysis which requires constant spacing between measurements, allowing for an analysis of the dynamics of changes in the test flow, eg. using a Fourier transform. To present the advantages of these methods simulations of flow measurement were carried out with a DRH-1140 rotor flow meter from the company Kobold.

  8. Aortic blood flow subtraction: an alternative method for measuring total renal blood flow in conscious dogs

    DEFF Research Database (Denmark)

    Sandgaard, N C F; Andersen, J L; Holstein-Rathlou, N-H

    2002-01-01

    We have measured total renal blood flow (TRBF) as the difference between signals from ultrasound flow probes implanted around the aorta above and below the renal arteries. The repeatability of the method was investigated by repeated, continuous infusions of angiotensin II and endothelin-1 seven...... arterial blood pressure by 49% and decreased TRBF by 12%, providing an increase in renal vascular resistance of 69%. Dynamic analysis showed autoregulation of renal blood flow in the frequency range ... of TRBF by aortic blood flow subtraction is a practical and reliable method that allows direct comparison of excretory function and renal blood flow from two kidneys. The method also allows direct comparison between TRBF and flow in the caudal aorta....

  9. Pulmonary branch arterial flow can be measured with cine MR velocity mapping

    International Nuclear Information System (INIS)

    Caputo, G.R.; Kondo, C.; Masui, T.; Foster, E.; Geraci, S.J.; O'Sullivan, M.; Higgins, C.B.

    1990-01-01

    This paper assesses the capability of cine MR phase velocity mapping (CVM) to measure main, right-sided, and left-sided pulmonary arterial (PA) blood flow. The authors examined a constant-flow phantom and nine healthy volunteers with use of 1.5-T MR imaging system (GE Signa) with phase velocity cine sequences. CVM correctly measured constant-flow phantom velocities (range, 20-190 cm/sec; r = .998, SEE = 4.2 cm/sec), and velocity with use of angulated planes to section the phantom tube perpendicularly. CVM peak systolic main PA velocity (79 cm/sec ± 10) correlated well with Doppler US measurements (80 cm/sec ± 7). CVM main PA flow correlated well with conventional cine MR LV stroke volume measurements (r = .98, SEE = 4.8 mL). Left and right PA flow on the angulated planes were 29 mL ± 7 and 34 mL ± 10, respectively

  10. An angiographic technique for coronary fractional flow reserve measurement: in vivo validation.

    Science.gov (United States)

    Takarada, Shigeho; Zhang, Zhang; Molloi, Sabee

    2013-03-01

    Fractional flow reserve (FFR) is an important prognostic determinant in a clinical setting. However, its measurement currently requires the use of invasive pressure wire, while an angiographic technique based on first-pass distribution analysis and scaling laws can be used to measure FFR using only image data. Eight anesthetized swine were instrumented with flow probe on the proximal segment of the left anterior descending (LAD) coronary arteries. Volumetric blood flow from the flow probe (Qp), coronary pressure (Pa) and right atrium pressure (Pv) were continuously recorded. Flow probe-based FFR (FFRq) was measured from the ratio of flow with and without stenosis. To determine the angiography-based FFR (FFRa), the ratio of blood flow in the presence of a stenosis (QS) to theoretically normal blood flow (QN) was calculated. A region of interest in the LAD arterial bed was drawn to generate time-density curves using angiographic images. QS was measured using a time-density curve and the assumption that blood was momentarily replaced with contrast agent during the injection. QN was estimated from the total coronary arterial volume using scaling laws. Pressure-wire measurements of FFR (FFRp), which was calculated from the ratio of distal coronary pressure (Pd) divided by proximal pressure (Pa), were continuously obtained during the study. A total of 54 measurements of FFRa, FFRp, and FFRq were taken. FFRa showed a good correlation with FFRq (FFRa = 0.97 FFRq +0.06, r(2) = 0.80, p < 0.001), although FFRp overestimated the FFRq (FFRp = 0.657 FFRq + 0.313, r(2) = 0.710, p < 0.0001). Additionally, the Bland-Altman analysis showed a close agreement between FFRa and FFRq. This angiographic technique to measure FFR can potentially be used to evaluate both anatomical and physiological assessments of a coronary stenosis during routine diagnostic cardiac catheterization that requires no pressure wires.

  11. Determination of corrective factors for an ultrasonic flow measuring method in pipes accounting for perturbations

    International Nuclear Information System (INIS)

    Etter, S.

    1982-01-01

    By current ultrasonic flow measuring equipment (UFME) the mean velocity is measured for one or two measuring paths. This mean velocity is not equal to the velocity averaged over the flow cross-section, by means of which the flow rate is calculated. This difference will be found already for axially symmetrical, fully developed velocity profiles and, to a larger extent, for disturbed profiles varying in flow direction and for nonsteady flow. Corrective factors are defined for steady and nonsteady flows. These factors can be derived from the flow profiles within the UFME. By mathematical simulation of the entrainment effect the influence of cross and swirl flows on various ultrasonic measuring methods is studied. The applied UFME with crossed measuring paths is shown to be largely independent of cross and swirl flows. For evaluation in a computer of velocity network measurements in circular cross-sections the equations for interpolation and integration are derived. Results of the mathematical method are the isotach profile, the flow rate and, for fully developed flow, directly the corrective factor. In the experimental part corrective factors are determined in nonsteady flow in a measuring plane before and in form measuring planes behind a perturbation. (orig./RW) [de

  12. South Asia river flow projections and their implications for water resources

    Science.gov (United States)

    Mathison, C.; Wiltshire, A. J.; Falloon, P.; Challinor, A. J.

    2015-06-01

    South Asia is a region with a large and rising population and a high dependance on industries sensitive to water resource such as agriculture. The climate is hugely variable with the region relying on both the Asian Summer Monsoon (ASM) and glaciers for its supply of fresh water. In recent years, changes in the ASM, fears over the rapid retreat of glaciers and the increasing demand for water resources for domestic and industrial use, have caused concern over the reliability of water resources both in the present day and future for this region. The climate of South Asia means it is one of the most irrigated agricultural regions in the world, therefore pressures on water resource affecting the availability of water for irrigation could adversely affect crop yields and therefore food production. In this paper we present the first 25 km resolution regional climate projections of river flow for the South Asia region. ERA-Interim, together with two global climate models (GCMs), which represent the present day processes, particularly the monsoon, reasonably well are downscaled using a regional climate model (RCM) for the periods; 1990-2006 for ERA-Interim and 1960-2100 for the two GCMs. The RCM river flow is routed using a river-routing model to allow analysis of present day and future river flows through comparison with river gauge observations, where available. In this analysis we compare the river flow rate for 12 gauges selected to represent the largest river basins for this region; Ganges, Indus and Brahmaputra basins and characterize the changing conditions from east to west across the Himalayan arc. Observations of precipitation and runoff in this region have large or unknown uncertainties, are short in length or are outside the simulation period, hindering model development and validation designed to improve understanding of the water cycle for this region. In the absence of robust observations for South Asia, a downscaled ERA-Interim RCM simulation provides a

  13. Flow rate measurement in a volume

    Energy Technology Data Exchange (ETDEWEB)

    Galvez, Cristhian

    2018-04-17

    A system for measuring flow rate within a volume includes one or more transmission devices that transmit one or more signals through fluid contained within the volume. The volume may be bounded, at least in part, by an outer structure and by an object at least partially contained within the outer structure. A transmission device located at a first location of the outer structure transmits a first signal to a second location of the outer structure. A second signal is transmitted through the fluid from the second location to a third location of the outer structure. The flow rate of the fluid within the volume may be determined based, at least in part, on the time of flight of both the first signal and the second signal.

  14. Scales and structures in bubbly flows. Experimental analysis of the flow in bubble columns and in bubbling fluidized beds

    NARCIS (Netherlands)

    Groen, J.S.

    2004-01-01

    In this project a detailed experimental analysis was performed of the dynamic flow field in bubbly flows, with the purpose of determining local hydrodynamics and scale effects. Measurements were done in gas-liquid systems (air-water bubble columns) and in gas-solid systems (air-sand bubbing

  15. Fluid flow measurements by means of vibration monitoring

    International Nuclear Information System (INIS)

    Campagna, Mauro M; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-01-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology. (paper)

  16. Fluid flow measurements by means of vibration monitoring

    Science.gov (United States)

    Campagna, Mauro M.; Dinardo, Giuseppe; Fabbiano, Laura; Vacca, Gaetano

    2015-11-01

    The achievement of accurate fluid flow measurements is fundamental whenever the control and the monitoring of certain physical quantities governing an industrial process are required. In that case, non-intrusive devices are preferable, but these are often more sophisticated and expensive than those which are more common (such as nozzles, diaphrams, Coriolis flowmeters and so on). In this paper, a novel, non-intrusive, simple and inexpensive methodology is presented to measure the fluid flow rate (in a turbulent regime) whose physical principle is based on the acquisition of transversal vibrational signals induced by the fluid itself onto the pipe walls it is flowing through. Such a principle of operation would permit the use of micro-accelerometers capable of acquiring and transmitting the signals, even by means of wireless technology, to a control room for the monitoring of the process under control. A possible application (whose feasibility will be investigated by the authors in a further study) of this introduced technology is related to the employment of a net of micro-accelerometers to be installed on pipeline networks of aqueducts. This apparatus could lead to the faster and easier detection and location of possible leaks of fluid affecting the pipeline network with more affordable costs. The authors, who have previously proven the linear dependency of the acceleration harmonics amplitude on the flow rate, here discuss an experimental analysis of this functional relation with the variation in the physical properties of the pipe in terms of its diameter and constituent material, to find the eventual limits to the practical application of the measurement methodology.

  17. Heat flow measurements in the vicinity of Great Meteor East, Madeira Abyssal Plain, during Darwin Cruise CD9B

    International Nuclear Information System (INIS)

    Noel, M.; Hounslow, M.W.

    1986-12-01

    This report describes 37 new measurements of heat flow in the Madeira Abyssal Plain. These have comprised 22 values in the Great Meteor East Study Area and 15 measurements in the newly defined ''10 km Box'' to the southeast of this region. The aim of the project has been to examine in more detail than hitherto the thermal and fluid processes operating in the oceanic crust. For this purpose, a new thermistor string, with 1/2 m sensor spacing was used. Also, the heat flux data have been compared to the output from a finite element model for heat conduction. No non-linear sediment temperature profiles were discovered indicating that vertical advection of water through the sediment is absent or slow. The results of numerical modelling imply that the variability of measured heat flow cannot be explained entirely on the basis of basement topography. It is necessary to invoke either vertical basement intrusions of differing conductivity or basement hydrothermal circulation. (author)

  18. Development and calibration of instruments for measurements in transient two-phase flow

    International Nuclear Information System (INIS)

    Banerjee, S.; Heidrick, T.R.

    1981-01-01

    For validation and development of theoretical models for transient two-phase flow, it is necessary to measure local and cross-sectionally averaged thermalhydraulic parameters. Of these parameters, void fraction and mass velocity are the most difficult to measure. In this paper, we present our recent work on various techniques for determining these quantities. The possibility of determining flow regime by using fast neutron transmission is discussed. The development of a miniaturized electrical resistivity probe for measuring local void fraction is described, together with calibrations obtained by integrating the void fraction profile and comparing the cross-sectionally averaged void fraction with direct measurements using two quick closing valves. Results on the calibration of combinations of full-flow turbine meters, Pitot tube rakes and gamma densitometers for measuring cross-sectionally averaged mass velocity in steady steam-water flow are presented. The results are interpreted with a simple model using single-phase calibration factors for the Pitot tube rakes and turbine meters. Calibration experiments were also done in transient steam-water flows and interpretation of the results with the steady state models is also discussed

  19. Environmental Assessment of the Hawaii Geothermal Project Well Flow Test Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1976-11-01

    The Hawaii Geothermal Project, a coordinated research effort of the University of Hawaii, funded by the County and State of Hawaii, and ERDA, was initiated in 1973 in an effort to identify, generate, and use geothermal energy on the Big Island of Hawaii. A number of stages are involved in developing geothermal power resources: exploration, test drilling, production testing, field development, power plant and powerline construction, and full-scale production. Phase I of the Project, which began in the summer of 1973, involved conducting exploratory surveys, developing analytical models for interpretation of geophysical results, conducting studies on energy recovery from hot brine, and examining the legal and economic implications of developing geothermal resources in the state. Phase II of the Project, initiated in the summer of 1975, centers on drilling an exploratory research well on the Island of Hawaii, but also continues operational support for the geophysical, engineering, and socioeconomic activities delineated above. The project to date is between the test drilling and production testing phase. The purpose of this assessment is to describe the activities and potential impacts associated with extensive well flow testing to be completed during Phase II.

  20. Lessons from wet gas flow metering systems using differential measurements devices: Testing and flow modelling results

    Energy Technology Data Exchange (ETDEWEB)

    Cazin, J.; Couput, J.P.; Dudezert, C. et al

    2005-07-01

    A significant number of wet gas meters used for high GVF and very high GVF are based on differential pressure measurements. Recent high pressure tests performed on a variety of different DP devices on different flow loops are presented. Application of existing correlations is discussed for several DP devices including Venturi meters. For Venturi meters, deviations vary from 9% when using the Murdock correlation to less than 3 % with physical based models. The use of DP system in a large domain of conditions (Water Liquid Ratio) especially for liquid estimation will require information on the WLR This obviously raises the question of the gas and liquid flow metering accuracy in wet gas meters and highlight needs to understand AP systems behaviour in wet gas flows (annular / mist / annular mist). As an example, experimental results obtained on the influence of liquid film characteristics on a Venturi meter are presented. Visualizations of the film upstream and inside the Venturi meter are shown. They are completed by film characterization. The AP measurements indicate that for a same Lockhart Martinelli parameter, the characteristics of the two phase flow have a major influence on the correlation coefficient. A 1D model is defined and the results are compared with the experiments. These results indicate that the flow regime influences the AP measurements and that a better modelling of the flow phenomena is needed even for allocation purposes. Based on that, lessons and way forward in wet gas metering systems improvement for allocation and well metering are discussed and proposed. (author) (tk)

  1. 1992 Columbia River salmon flow measures Options Analysis/EIS

    International Nuclear Information System (INIS)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described

  2. 1992 Columbia River Salmon Flow Measures Options Analysis/EIS.

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    This Options Analysis/Environmental Impact Statement (OA/EIS) identifies, presents effects of, and evaluates the potential options for changing instream flow levels in efforts to increase salmon populations in the lower Columbia and Snake rivers. The potential actions would be implemented during 1992 to benefit juvenile and adult salmon during migration through eight run-of-river reservoirs. The Corps of Engineers (Corps) prepared this document in cooperation with the Bonneville Power Administration and the Bureau of Reclamation. The US Fish and Wildlife Service (FSWS) is a participating agency. The text and appendices of the document describe the characteristics of 10 Federal projects and one private water development project in the Columbia River drainage basin. Present and potential operation of these projects and their effects on the salmon that spawn and rear in the Columbia and Snake River System are presented. The life history, status, and response of Pacific salmon to current environmental conditions are described.

  3. Projected effects of Climate-change-induced flow alterations on stream macroinvertebrate abundances.

    Science.gov (United States)

    Kakouei, Karan; Kiesel, Jens; Domisch, Sami; Irving, Katie S; Jähnig, Sonja C; Kail, Jochem

    2018-03-01

    Global change has the potential to affect river flow conditions which are fundamental determinants of physical habitats. Predictions of the effects of flow alterations on aquatic biota have mostly been assessed based on species ecological traits (e.g., current preferences), which are difficult to link to quantitative discharge data. Alternatively, we used empirically derived predictive relationships for species' response to flow to assess the effect of flow alterations due to climate change in two contrasting central European river catchments. Predictive relationships were set up for 294 individual species based on (1) abundance data from 223 sampling sites in the Kinzig lower-mountainous catchment and 67 sites in the Treene lowland catchment, and (2) flow conditions at these sites described by five flow metrics quantifying the duration, frequency, magnitude, timing and rate of flow events using present-day gauging data. Species' abundances were predicted for three periods: (1) baseline (1998-2017), (2) horizon 2050 (2046-2065) and (3) horizon 2090 (2080-2099) based on these empirical relationships and using high-resolution modeled discharge data for the present and future climate conditions. We compared the differences in predicted abundances among periods for individual species at each site, where the percent change served as a proxy to assess the potential species responses to flow alterations. Climate change was predicted to most strongly affect the low-flow conditions, leading to decreased abundances of species up to -42%. Finally combining the response of all species over all metrics indicated increasing overall species assemblage responses in 98% of the studied river reaches in both projected horizons and were significantly larger in the lower-mountainous Kinzig compared to the lowland Treene catchment. Such quantitative analyses of freshwater taxa responses to flow alterations provide valuable tools for predicting potential climate-change impacts on species

  4. Process Measurement Deviation Analysis for Flow Rate due to Miscalibration

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Eunsuk; Kim, Byung Rae; Jeong, Seog Hwan; Choi, Ji Hye; Shin, Yong Chul; Yun, Jae Hee [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)

    2016-10-15

    An analysis was initiated to identify the root cause, and the exemption of high static line pressure correction to differential pressure (DP) transmitters was one of the major deviation factors. Also the miscalibrated DP transmitter range was identified as another major deviation factor. This paper presents considerations to be incorporated in the process flow measurement instrumentation calibration and the analysis results identified that the DP flow transmitter electrical output decreased by 3%. Thereafter, flow rate indication decreased by 1.9% resulting from the high static line pressure correction exemption and measurement range miscalibration. After re-calibration, the flow rate indication increased by 1.9%, which is consistent with the analysis result. This paper presents the brief calibration procedures for Rosemount DP flow transmitter, and analyzes possible three cases of measurement deviation including error and cause. Generally, the DP transmitter is required to be calibrated with precise process input range according to the calibration procedure provided for specific DP transmitter. Especially, in case of the DP transmitter installed in high static line pressure, it is important to correct the high static line pressure effect to avoid the inherent systematic error for Rosemount DP transmitter. Otherwise, failure to notice the correction may lead to indicating deviation from actual value.

  5. Phase-measuring laser holographic interferometer for use in high speed flows

    Science.gov (United States)

    Yanta, William J.; Spring, W. Charles, III; Gross, Kimberly Uhrich; McArthur, J. Craig

    Phase-measurement techniques have been applied to a dual-plate laser holographic interferometer (LHI). This interferometer has been used to determine the flowfield densities in a variety of two-dimensional and axisymmetric flows. In particular, LHI has been applied in three different experiments: flowfield measurements inside a two-dimensional scramjet inlet, flow over a blunt cone, and flow over an indented nose shape. Comparisons of experimentally determined densities with computational results indicate that, when phase-measurement techniques are used in conjunction with state-of-the-art image-processing instrumentation, holographic interferometry can be a diagnostic tool with high resolution, high accuracy, and rapid data retrieval.

  6. Design and development of drag-disc flow meter for measurement of transient two-phase flow

    International Nuclear Information System (INIS)

    Sreenivas Rao, G.; Kukreja, V.; Dolas, P.K.; Venkat Raj, V.

    1989-01-01

    Experiments have been carried out to test the suitability of drag-disc flowmeter for measuring two-phase flow. Calibration tests carried out under single-phase and two-phase flow conditions have confirmed the suitability of the drag-disc flowmeter. The experimental work and the results obtained are presented and discussed in the paper. (author). 6 figs

  7. Velocity and phase distribution measurements in vertical air-water annular flows

    International Nuclear Information System (INIS)

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film

  8. Device accurately measures and records low gas-flow rates

    Science.gov (United States)

    Branum, L. W.

    1966-01-01

    Free-floating piston in a vertical column accurately measures and records low gas-flow rates. The system may be calibrated, using an adjustable flow-rate gas supply, a low pressure gage, and a sequence recorder. From the calibration rates, a nomograph may be made for easy reduction. Temperature correction may be added for further accuracy.

  9. Results from preliminary FlowAct measurements during June 1995

    International Nuclear Information System (INIS)

    Linden, P.

    1997-02-01

    Flow measurements based on the pulsed neutron activation (PNA) method have been done and analysed. The results show that the accuracy of the PNA based FlowAct method is, under certain conditions, in the same range as the reference flow meter used. Also, the behaviour of the time distributions obtained is discussed, though the influence of velocity profile, radial mixing or other hydrodynamical questions is not taken into account. However, the objective of this work was to gain sufficient confidence in the method, and sufficient experience to be able to design and build a dedicated loop with stable flow and high-accuracy calibration. 4 refs, 12 figs

  10. Mass flow rate measurements in two-phase mixtrues with stagnation probes

    International Nuclear Information System (INIS)

    Fincke, J.R.; Deason, V.A.

    1979-01-01

    Applications of stagnation probes to the measurement of mass flow rate in two-phase flows are discussed. Descriptions of several stagnation devices, which have been evaluated at the Idaho National Engineering Laboratory, are presented along with modeling techniques and two-phase flow data

  11. Hydrogen clearance: Assessment of technique for measurement of skin-flap blood flow in pigs

    International Nuclear Information System (INIS)

    Thomson, J.G.; Kerrigan, C.L.

    1991-01-01

    The hydrogen clearance technique has been used for many years by investigators to determine brain blood flow and has been partially validated in this setting using other methods of blood flow measurement. The method has been modified to allow blood flow measurements in skin, but the accuracy of H2 clearance for measuring skin blood flow has not been determined. Multiple blood flow measurements were performed using H2 clearance and radioactive microspheres on skin flaps and control skin in pigs. On 12 pigs, a total of 117 flap and 42 control skin measurements were available for analysis. There was no significant difference between the two techniques in measuring mean control skin blood flow. In skin flaps, H2 clearance was significantly correlated to microsphere-measured blood flow, but it consistently gave an overestimate. Sources of error may include injury to the tissues by insertion of electrodes, consumption of H2 by the electrodes, or diffusion of H2 from the relatively ischemic flap to its well-vascularized bed. Further studies are necessary to determine the cause of this error and to measure the technique's accuracy in skeletal muscle and other flaps

  12. Objective measurement of inhaler inhalation flow profile using acoustic methods

    Energy Technology Data Exchange (ETDEWEB)

    Lacalle, H.; Taylor, T.E.; Marco, S.; Reilly, R.B.

    2016-07-01

    Patients with asthma and chronic obstructive pulmonary diseases (COPD) are mostly treated with inhalers that deliver medication directly to their airways. Drug delivery from dry powder inhalers (DPIs) is very much reliant on the inhalation manoeuvre, specifically the peak inspiratory flow rate (PIFR), inspiratory capacity (IC) and inhalation rise time (IRT) of the inhalation. It has been widely reported that patients may not follow correct inhalation technique while using their inhaler. In this study, a novel acoustic method is proposed to accurately estimate inhalation flow profile using only one inhalation recording for calibration. An Ellipta DPI was placed inside an airtight container with a spirometer connected in order to measure inhalation flow parameters. An acoustic recording device (Inhaler Compliance Assessment (INCA)) was also attached to the DPI. Inhalation audio and flow signals were recorded simultaneously. The data were collected from 20 healthy subjects while performing inhaler inhalations at a range of inspiratory flow rates. A power law regression model was computed to obtain the relationship between the acoustic envelope of the inhalation and flow profile of each recording. Each model was tested on the remaining audio signals to estimate flow profile. The average estimation error was found to be 10.5±0.3% for estimating flow profile from audio signals. Inhalation flow profile parameters (PIFR, IC and IRT) could then be measured from the estimated flow profile with high accuracy giving information on user inhalation technique. This method may assist in improving patient inhaler adherence and overall disease control. (Author)

  13. Review of mitigation methods for fish passage, instream flows, and water quality

    International Nuclear Information System (INIS)

    Railsback, S.F.

    1991-01-01

    This paper reports on current environmental mitigation practices at nonfederal hydropower projects. Information was obtained from project operators on dissolved oxygen (DO) mitigation, instream flows, upstream fish passage facilities, and downstream fish passage facilities. The most common method for DO mitigation is the use of spill flows, which are costly because of lost power generation. DO concentrations are commonly monitored, but biological effects of DO mitigation are not. At many projects, instream flow requirements have been set without reference to formalized methods. About half of the projects with instream flow requirements monitor flow rates, but few monitor fish populations to verify that instream flows are effective. Angled bar racks are the most commonly used downstream fish passage devices and fish ladders are the most commonly used upstream fish passage devices. Fish passage rates or populations have been monitored to verify the effectiveness of passage mitigation at few projects. This analysis is the first phase of an evaluation of the costs, benefits, and effectiveness of mitigation measures

  14. National policy measures. Right approach to foreign direct investment flows

    Directory of Open Access Journals (Sweden)

    Cătălin-Emilian HUIDUMAC-PETRESCU

    2013-02-01

    Full Text Available 2011 was a difficult year for all the countries, developed and emerging ones. For overcoming the negative effects of the financial crisis, many economies have established as purpose to adopt new economic policies regarding the foreign direct investment flows (FDI, even to stimulate the flows or to reduce it (protectionism measures. So, there can be identified two categories of national policies: measures for the FDI flows stimulation and measures whose aim was the weighting of FDI developing, through restriction and regulation. In the first category we could include the liberalization measures and promotional and faciletation policies. In this study we evidenced that the fundament of the second category of policies is the belief that the FDI outward lead to job exports, to a raise of unemployment and a weakness of the industrial base.Many reports on FDI flows, here we talk about those made by UNCTAD, show that the regulation and restriction policies are seen as a possible protectionism, especially in the agricultural and extractive industries, where there have been required nationalization processes and divestments. Even more, the economies which adopted this kind of policies have been less interested in investing abroad, the outward of FDI being affected and globally the total outward decreased.

  15. Real-time measurement of gas and liquid flow rates in two-phase slug flow by an advanced electromagnetic flowmeter and conductance probes

    International Nuclear Information System (INIS)

    Kim Jongrok; Ahn Yeh-Chan; Oh Byung Do; Kang Deok-Hong; Kim Moo Hwan

    2005-01-01

    Full text of publication follows: In order to measure the liquid mean velocity (cross-sectional average) in two-phase flow with an electromagnetic flowmeter, each flow pattern must be considered separately because of their different flow characteristics. Since bubbly flow can be approximated as a homogeneous mixture of gas and liquid at the same velocity, there are no additional measurement difficulties compared to single-phase flow. Cha et al. (2002) and Knoll (1991) reported that this approximation gives rise to no more than a 5% error in the liquid flow rate when the void fraction is less than 0.25. Annular flow measurements are also similar to those of single-phase flow if the film is assumed to be uniform and smooth, and the gas core is located at the center of the flow tube. Slug flow, however, is the most complicated, since the liquid axial velocity over a slug unit experiences considerable acceleration or deceleration. Therefore an electromagnetic flowmeter with high temporal resolution is needed. In slug flow, film velocity measurements are also difficult to perform because the liquid film is very thin and can be easily disturbed, thus altering the flow field. Only two experimental results for liquid film velocity measurement could be found. They were performed using photo-chromic dye method (DeJesus, 1997) and PIV technique (Polonsky et al., 1999). In this study, an advanced electromagnetic flow-metry was developed to measure liquid mean velocity with high transients. In addition, two ring-type conductance meters were manufactured to measure void fraction and its propagation speed in slug flow. The signal of conductance meter with two rings depends on liquid temperature. Therefore a conductance meter with three rings designed by Coney (1973), which is independent of liquid temperature, was used and experimentally proved. The manufactured conductance meters showed a good repeatability and agreement with the analytical solution by Coney (1973). From the

  16. The Methodology of Doppler-Derived Central Blood Flow Measurements in Newborn Infants

    Directory of Open Access Journals (Sweden)

    Koert A. de Waal

    2012-01-01

    Full Text Available Central blood flow (CBF measurements are measurements in and around the heart. It incorporates cardiac output, but also measurements of cardiac input and assessment of intra- and extracardiac shunts. CBF can be measured in the central circulation as right or left ventricular output (RVO or LVO and/or as cardiac input measured at the superior vena cava (SVC flow. Assessment of shunts incorporates evaluation of the ductus arteriosus and the foramen ovale. This paper describes the methodology of CBF measurements in newborn infants. It provides a brief overview of the evolution of Doppler ultrasound blood flow measurements, basic principles of Doppler ultrasound, and an overview of all used methodology in the literature. A general guide for interpretation and normal values with suggested cutoffs of CBFs are provided for clinical use.

  17. Attenuated Vector Tomography -- An Approach to Image Flow Vector Fields with Doppler Ultrasonic Imaging

    International Nuclear Information System (INIS)

    Huang, Qiu; Peng, Qiyu; Huang, Bin; Cheryauka, Arvi; Gullberg, Grant T.

    2008-01-01

    The measurement of flow obtained using continuous wave Doppler ultrasound is formulated as a directional projection of a flow vector field. When a continuous ultrasound wave bounces against a flowing particle, a signal is backscattered. This signal obtains a Doppler frequency shift proportional to the speed of the particle along the ultrasound beam. This occurs for each particle along the beam, giving rise to a Doppler velocity spectrum. The first moment of the spectrum provides the directional projection of the flow along the ultrasound beam. Signals reflected from points further away from the detector will have lower amplitude than signals reflected from points closer to the detector. The effect is very much akin to that modeled by the attenuated Radon transform in emission computed tomography.A least-squares method was adopted to reconstruct a 2D vector field from directional projection measurements. Attenuated projections of only the longitudinal projections of the vector field were simulated. The components of the vector field were reconstructed using the gradient algorithm to minimize a least-squares criterion. This result was compared with the reconstruction of longitudinal projections of the vector field without attenuation. If attenuation is known, the algorithm was able to accurately reconstruct both components of the full vector field from only one set of directional projection measurements. A better reconstruction was obtained with attenuation than without attenuation implying that attenuation provides important information for the reconstruction of flow vector fields.This confirms previous work where we showed that knowledge of the attenuation distribution helps in the reconstruction of MRI diffusion tensor fields from fewer than the required measurements. In the application of ultrasound the attenuation distribution is obtained with pulse wave transmission computed tomography and flow information is obtained with continuous wave Doppler

  18. Preliminary methodological proposal for estimating environmental flows in projects approved by the ministry of environment and sustainable development (MADS), Colombia

    International Nuclear Information System (INIS)

    Pinilla Agudelo, Gabriel A; Rodriguez Sandoval, Erasmo A; Camacho Botero, Luis A

    2014-01-01

    A methodological proposal for estimating environmental flows in large projects approved by Agencia Nacional de Licencias Ambientales (ANLA) in Colombian rivers was developed. The project is the result of an agreement between the MADS and the Universidad Nacional de Colombia, Bogota (UNC). The proposed method begins with an evaluation of hydrological criteria, continues with a hydraulic and water quality validation, and follows with the determination of habitat integrity. This is an iterative process that compares conditions before and after the project construction and allows to obtain the magnitude of a monthly flow that, besides preserving the ecological functions of the river, guarantees the water uses downstream. Regarding to the biotic component, the proposal includes the establishment and monitoring of biotic integrity indices for four aquatic communities (periphyton, macro invertebrates, riparian vegetation, and fish). The effects that flow reduction may produce in the medium and long term can be assessed by these indices. We present the results of applying the methodology to several projects licensed by the MADS.

  19. Instrumentation for two-phase flow measurements in code verification experiments

    International Nuclear Information System (INIS)

    Fincke, J.R.; Anderson, J.L.; Arave, A.E.; Deason, V.A.; Lassahn, G.D.; Goodrich, L.D.; Colson, J.B.; Fickas, E.T.

    1981-01-01

    The development of instrumentation and techniques for the measurement of mass flow rate in two-phase flows conducted at the Idaho National Engineering Laboratory during the past year is briefly described. Instruments discussed are the modular drag-disc turbine transducer, the gamma densitometers, the ultrasonic densitometer, Pitot tubes, and full-flow drag screens. Steady state air-water and transient steam-water data are presented

  20. Measurement of Air Flow Characteristics Using Seven-Hole Cone Probes

    Science.gov (United States)

    Takahashi, Timothy T.

    1997-01-01

    The motivation for this work has been the development of a wake survey system. A seven-hole probe can measure the distribution of static pressure, total pressure, and flow angularity in a wind tunnel environment. The author describes the development of a simple, very efficient algorithm to compute flow properties from probe tip pressures. Its accuracy and applicability to unsteady, turbulent flow are discussed.

  1. Turbulent slurry flow measurement using ultrasonic Doppler method in rectangular pipe

    Science.gov (United States)

    Bareš, V.; Krupička, J.; Picek, T.; Brabec, J.; Matoušek, V.

    2014-03-01

    Distribution of velocity and Reynolds stress was measured using ultrasonic velocimetry in flows of water and Newtonian water-ballotini slurries in a pressurized Plexiglas pipe. Profiles of the measured parameters were sensed in the vertical plane at the centreline of a rectangular cross section of the pipe. Reference measurements in clear water produced expected symmetrical velocity profiles the shape of which was affected by secondary currents developed in the rectangular pipe. Slurry-flow experiments provided information on an effect of the concentration of solid grains on the internal structure of the flow. Strong attenuation of velocity fluctuations caused by a presence of grains was identified. The attenuation increased with the increasing local concentration of the grains.

  2. Blowdown mass flow measurements during the Power Burst Facility LOC-11C test

    International Nuclear Information System (INIS)

    Broughton, J.M.; MacDonald, P.E.

    1979-01-01

    An interpretation and evaluation of the two-phase coolant mass flow measurements obtained during Test LOC-11C performed in the Power Burst Facility (PBF) at the Idaho National Engineering Laboratory (INEL) are presented. Although a density gradient existed within the pipe between 1 and 6 s, the homogeneous flow model used to calculate the coolant mass flow from the measured mixture density, momentum flux, and volumetric flow was found to be generally satisfactory. A cross-sectional average density was determined by fitting a linear density gradient through the upper and lower chordal densities obtained from a three-beam gamma densitometer and then combining the result with the middle beam density. The integrated measured coolant mass flow was subsequently found to be within 5% if the initial mass inventory of the PBF loss-of-coolant accident (LOCA) system. The posttest calculations using the RELAP4/MOD6 computer code to determine coolant mass flow for Test LOC-11C also agreed well with the measured data

  3. Pulmonary blood flow distribution measured by radionuclide computed tomography

    International Nuclear Information System (INIS)

    Maeda, H.; Itoh, H.; Ishii, Y.

    1982-01-01

    Distributions of pulmonary blood flow per unit lung volume were measured in sitting patients with a radionuclide computed tomography (RCT) by intravenously administered Tc-99m macroaggregates of human serum albumin (MAA). Four different types of distribution were distinguished, among which a group referred as type 2 had a three zonal blood flow distribution as previously reported (West and co-workers, 1964). The pulmonary arterial pressure (Pa) and the venous pressure (Pv) were determined in this group of distribution. These values showed satifactory agreements with the pulmonary artery pressure (Par) and the capillary wedged pressure (Pcw) measured by Swan-Ganz catheter in eighteen supine patients. Those good correlations enable to establish a noninvasive methodology for measurement of pulmonary vascular pressures

  4. Measurement of gas-liquid two-phase flow in micro-pipes by a capacitance sensor.

    Science.gov (United States)

    Ji, Haifeng; Li, Huajun; Huang, Zhiyao; Wang, Baoliang; Li, Haiqing

    2014-11-26

    A capacitance measurement system is developed for the measurement of gas-liquid two-phase flow in glass micro-pipes with inner diameters of 3.96, 2.65 and 1.56 mm, respectively. As a typical flow regime in a micro-pipe two-phase flow system, slug flow is chosen for this investigation. A capacitance sensor is designed and a high-resolution and high-speed capacitance measurement circuit is used to measure the small capacitance signals based on the differential sampling method. The performance and feasibility of the capacitance method are investigated and discussed. The capacitance signal is analyzed, which can reflect the voidage variation of two-phase flow. The gas slug velocity is determined through a cross-correlation technique using two identical capacitance sensors. The simulation and experimental results show that the presented capacitance measurement system is successful. Research work also verifies that the capacitance sensor is an effective method for the measurement of gas liquid two-phase flow parameters in micro-pipes.

  5. Calf blood flow at rest evaluated by thermal measurement with tissue temperature and heat flow and 133Xe clearance

    International Nuclear Information System (INIS)

    Tamura, Toshiyo; Togawa, Tatsuo; Fukuoka, Masakazu; Kawakami, Kenji.

    1982-01-01

    The regional blood flow in the calf was determined simultaneously by thermal measurement and by 133 Xe clearance technique. Calf blood flow (Ft) by thermal measurement was accounted for by the equation of the form Ft=(CdT*d+Ho-Mb)/rho sub(b)c su b(D) (Ta-Td), where Cd is thermal capacitance of the calf compartment, T*d is the change of calf tissue temperature, Ta is arterila blood temperature, Td is calf tissue temperature, Ho is the heat dissipation from the compartment to the environment, Mb is estimated metabolism of the calf tissue and rho sub(b)c sub(b) is the product of density and specific heat of blood. The healthy men were chosen for the experiments. Total calf blood flow was 2.53+-1.31ml/(min-100ml calf), and muscle blood flow was 2.63+-1.69ml/(min- 100ml muscle) and skin blood flow 7.19+-3.83ml/(min-100ml skin) measured by 133 Xe clearance. On the basis of the results, an estimate has been made of the proportions of the calf volume which can be ascribed to skin and muscle respectively. Estimated muscle and skin blood flow were correlated with total calf blood flow(r=0.98). (author)

  6. Three-dimensional flow measurements induced from serpentine plasma actuators in quiescent air

    International Nuclear Information System (INIS)

    Durscher, R J; Roy, S

    2012-01-01

    This paper presents three-dimensional flow measurements performed on a dielectric barrier discharge (DBD) actuator with the electrodes in a serpentine design. Such a configuration induces a local pinching and a local spreading of the fluid as one follows along the span of the actuator. In this work two different variations on the serpentine configuration are evaluated: one constructed from patterned circular arcs and one from patterned rectangles. The influence of applied voltage is studied for the former case. To quantify these effects stereo particle image velocimetry (PIV) is used to generate time averaged, spatially resolved measurements of the detailed flow structure. The three components of the velocity vector are measured along spanwise and streamwise cuts. These slices are then reconstructed to provide a three-dimensional view of the induced flow field. The results for the induced flow fields are also compared with stereo-PIV measurements made on a standard linear DBD actuator. A truly three-dimensional induced flow field was observed as a result of the serpentine configuration. These designs could be beneficial for rapid mixing of the local fluid. (paper)

  7. Flathead River Instream Flow Investigation Project : Final Report 1996-2003.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, William J. (Miller Ecological Consultants., Fort Collins, CO); Ptacek, Jonathan A. (Miller Ecological Consultants, Inc., Fort Collins, CO)

    2003-09-01

    A modified Instream Flow Incremental Methodology (IFIM) approach was used on the mainstem Flathead River from the South Fork Flathead River downstream to Flathead Lake. The objective of this study was to quantify changes in habitat for the target fish species, bull trout (Salvelinus confluentus) and west slope cutthroat trout (Oncorhynchus clarki lewisi), as a function of discharge in the river. This approach used a combination of georeferenced field data for each study site combined with a two-dimensional hydraulic simulation of river hydraulic characteristics. The hydraulic simulations were combined with habitat suitability criteria in a GIS analysis format to determine habitat area as a function of discharge. Results of the analysis showed that habitat area is more available at lower discharges than higher discharges and that in comparison of the pre-dam hydrology with post-dam hydrology, the stable pre-dam baseflows provided more stable habitat than the highly variable flow regime during both summer and winter baseflow post-dam periods. The variability week to week and day to day under post-dam conditions waters and dewaters stream margins. This forces sub-adult fish, in particular bull trout, to use less productive habitat during the night. There is a distinct difference between daytime and nighttime habitat use for bull trout sub-adults. The marginal areas that are constantly wet and then dried provide little in productivity for lower trophic levels and consequently become unproductive for higher trophic levels, especially bull trout sub-adults that use those areas as flows increase. A stable flow regime would be more productive than flow regimes with high variability week to week. The highly variable flows likely put stress on a bull trout subadult and west slope cutthroat trout, due to the additional movement required to find suitable habitat. The GIS approach presented here provides both a visual characterization of habitat as well as Arcview project data

  8. New terrestrial heat flow measurements on the Nazca Plate

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R N [Columbia Univ., Palisades, NY; Langseth, M G; Vacquier, V; Francheteau, J

    1976-03-01

    Sixty-seven new heat flow measurements on the Nazca Plate are reported, and the thermal regimes of three specific areas on the plate are examined. The Nazca Ridge is an aseismic ridge which may have been generated as an ''island trail'' from the Easter Island ''hot spot'' and/or may be a fossil transform fault. The Nazca Ridge has lower heat flow than the surrounding sea floor implying that the ridge might have low ''effective'' thermal conductivity causing heat to preferentially flow or refract to surrounding ocean crust which has higher conductivity, or, the low heat flow values may be caused by hydrothermal circulation on the ridge. The Carnegie Plateau is an elevated region south of the Carnegie Ridge on the northeastern Nazca Plate with high heat flow and shallow topography consistent with an age of less than 20 m.y. B.P. The central Nazca Plate is an area of highly variable heat flow which is possibly related to thin sediment and to rough regional topography.

  9. Review of the groundwater flow modelling of the Swiss Project Gewaehr

    International Nuclear Information System (INIS)

    Robinson, P.C.; Jackson, C.P.; Herbert, A.W.; Atkinson, R.

    1986-02-01

    The authors review the hydrogeological modelling work undertaken by NAGRA (National Co-operative for the Storage of Radioactive Waste) for Project Gewahr (Guarantee). The FEM301 computer code that was used by NAGRA, their general approach to flow simulation and the specific finite-element models employed are all discussed; and the results of a verification are presented using the authors' own computer code NAMMU. Recommendations for improvements in the NAGRA modelling and for areas of future work are made. (author)

  10. Measuring of the profile vibration on the flutter critic flow velocity

    Czech Academy of Sciences Publication Activity Database

    Zolotarev, Igor; Vlček, Václav; Kozánek, Jan

    2015-01-01

    Roč. 4, č. 2 (2015), s. 45-45 ISSN 2168-9792. [International Conference and Exhibition on MECHANICAL & AEROSPACE ENGINEERING /3./. 05.10.2015-07.10.2015, San Francisco] R&D Projects: GA ČR GA13-10527S Institutional support: RVO:61388998 Keywords : aeroelasticity * flutter * subsonic flow Subject RIV: BI - Acoustics

  11. Spatiotemporal image correlation spectroscopy measurements of flow demonstrated in microfluidic channels

    Science.gov (United States)

    Rossow, Molly; Mantulin, William W.; Gratton, Enrico

    2009-03-01

    Accurate blood flow measurements during surgery can improve an operation's chance of success. We developed near-infrared spatio-temporal image spectroscopy (NIR-STICS), which has the potential to make blood flow measurements that are difficult to accomplish with existing methods. Specifically, we propose the technique and we show feasibility on phantom measurements. NIR-STICS has the potential of measuring the fluid velocity in small blood vessels (less than 1 mm in diameter) and of creating a map of blood flow rates over an area of approximately 1 cm2. NIR-STICS employs near-infrared spectroscopy to probe inside blood vessel walls and spatiotemporal image correlation spectroscopy to directly-without the use of a model-extract fluid velocity from the fluctuations within an image. We present computer simulations and experiments on a phantom system that demonstrate the effectiveness of NIR-STICS.

  12. Measurement of the resistivity of porous materials with an alternating air-flow method.

    Science.gov (United States)

    Dragonetti, Raffaele; Ianniello, Carmine; Romano, Rosario A

    2011-02-01

    Air-flow resistivity is a main parameter governing the acoustic behavior of porous materials for sound absorption. The international standard ISO 9053 specifies two different methods to measure the air-flow resistivity, namely a steady-state air-flow method and an alternating air-flow method. The latter is realized by the measurement of the sound pressure at 2 Hz in a small rigid volume closed partially by the test sample. This cavity is excited with a known volume-velocity sound source implemented often with a motor-driven piston oscillating with prescribed area and displacement magnitude. Measurements at 2 Hz require special instrumentation and care. The authors suggest an alternating air-flow method based on the ratio of sound pressures measured at frequencies higher than 2 Hz inside two cavities coupled through a conventional loudspeaker. The basic method showed that the imaginary part of the sound pressure ratio is useful for the evaluation of the air-flow resistance. Criteria are discussed about the choice of a frequency range suitable to perform simplified calculations with respect to the basic method. These criteria depend on the sample thickness, its nonacoustic parameters, and the measurement apparatus as well. The proposed measurement method was tested successfully with various types of acoustic materials.

  13. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu; Yoshioka, Yuzuru.

    1996-01-01

    The authors have been developing a measurement system for bubbly flow in order to clarify its multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system combining an ultrasonic velocity profile monitor with a video data processing unit is proposed, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. Furthermore, the proposed measurement system is applied to measure flow characteristics of a bubbly countercurrent flow in a vertical rectangular channel to verify its capability. (author)

  14. Flow measurements using noise signals of axially displaced thermocouples

    Energy Technology Data Exchange (ETDEWEB)

    Kozma, R.; Hoogenboom, J.E. (Interuniversitair Reactor Inst., Delft (Netherlands))

    1990-01-01

    Determination of the flow rate of the coolant in the cooling channels of nuclear reactors is an important aspect of core monitoring. It is usually impossible to measure the flow by flowmeters in the individual channels due to the lack of space and safety reasons. An alternative method is based on the analysis of noise signals of the available in-core detectors. In such a noise method, a transit time which characterises the propagation of thermohydraulic fluctuations (density or temperature fluctuations) in the coolant is determined from the correlation between the noise signals of axially displaced detectors. In this paper, the results of flow measurements using axially displaced thermocouples in the channel wall will be presented. The experiments have been performed in a simulated MRT-type fuel assembly located in the research reactor HOR of the Interfaculty Reactor Institute, Delft. It was found that the velocities obtained via temperature noise correlation methods are significantly larger than the area-averaged velocity in the single-phase coolant flow. Model calculations show that the observed phenomenon can be explained by effects due to the radial velocity distribution in the channel. (author).

  15. A physics-enabled flow restoration algorithm for sparse PIV and PTV measurements

    Science.gov (United States)

    Vlasenko, Andrey; Steele, Edward C. C.; Nimmo-Smith, W. Alex M.

    2015-06-01

    The gaps and noise present in particle image velocimetry (PIV) and particle tracking velocimetry (PTV) measurements affect the accuracy of the data collected. Existing algorithms developed for the restoration of such data are only applicable to experimental measurements collected under well-prepared laboratory conditions (i.e. where the pattern of the velocity flow field is known), and the distribution, size and type of gaps and noise may be controlled by the laboratory set-up. However, in many cases, such as PIV and PTV measurements of arbitrarily turbid coastal waters, the arrangement of such conditions is not possible. When the size of gaps or the level of noise in these experimental measurements become too large, their successful restoration with existing algorithms becomes questionable. Here, we outline a new physics-enabled flow restoration algorithm (PEFRA), specially designed for the restoration of such velocity data. Implemented as a ‘black box’ algorithm, where no user-background in fluid dynamics is necessary, the physical structure of the flow in gappy or noisy data is able to be restored in accordance with its hydrodynamical basis. The use of this is not dependent on types of flow, types of gaps or noise in measurements. The algorithm will operate on any data time-series containing a sequence of velocity flow fields recorded by PIV or PTV. Tests with numerical flow fields established that this method is able to successfully restore corrupted PIV and PTV measurements with different levels of sparsity and noise. This assessment of the algorithm performance is extended with an example application to in situ submersible 3D-PTV measurements collected in the bottom boundary layer of the coastal ocean, where the naturally-occurring plankton and suspended sediments used as tracers causes an increase in the noise level that, without such denoising, will contaminate the measurements.

  16. A physics-enabled flow restoration algorithm for sparse PIV and PTV measurements

    International Nuclear Information System (INIS)

    Vlasenko, Andrey; Steele, Edward C C; Nimmo-Smith, W Alex M

    2015-01-01

    The gaps and noise present in particle image velocimetry (PIV) and particle tracking velocimetry (PTV) measurements affect the accuracy of the data collected. Existing algorithms developed for the restoration of such data are only applicable to experimental measurements collected under well-prepared laboratory conditions (i.e. where the pattern of the velocity flow field is known), and the distribution, size and type of gaps and noise may be controlled by the laboratory set-up. However, in many cases, such as PIV and PTV measurements of arbitrarily turbid coastal waters, the arrangement of such conditions is not possible. When the size of gaps or the level of noise in these experimental measurements become too large, their successful restoration with existing algorithms becomes questionable. Here, we outline a new physics-enabled flow restoration algorithm (PEFRA), specially designed for the restoration of such velocity data. Implemented as a ‘black box’ algorithm, where no user-background in fluid dynamics is necessary, the physical structure of the flow in gappy or noisy data is able to be restored in accordance with its hydrodynamical basis. The use of this is not dependent on types of flow, types of gaps or noise in measurements. The algorithm will operate on any data time-series containing a sequence of velocity flow fields recorded by PIV or PTV. Tests with numerical flow fields established that this method is able to successfully restore corrupted PIV and PTV measurements with different levels of sparsity and noise. This assessment of the algorithm performance is extended with an example application to in situ submersible 3D-PTV measurements collected in the bottom boundary layer of the coastal ocean, where the naturally-occurring plankton and suspended sediments used as tracers causes an increase in the noise level that, without such denoising, will contaminate the measurements. (paper)

  17. Microreactortechnology: Real-Time Flow Measurements in Organic Synthesis

    Directory of Open Access Journals (Sweden)

    Pieter J. Nieuwland

    2012-03-01

    Full Text Available With the commercial availability of integrated microreactor systems, the numbers of chemical processes that are performed nowadays in a continuous flow is growing rapidly. The control over mixing efficiency and homogeneous heating in these reactors allows industrial scale production that was often hampered by the use of large amounts of hazardous chemicals. Accurate actuation and in line measurements of the flows, to have a better control over the chemical reaction, is of added value for increasing reproducibility and a safe production.

  18. Task Listings Resulting from the Vocational Competency Measures Project. Memorandum Report.

    Science.gov (United States)

    American Institutes for Research in the Behavioral Sciences, Palo Alto, CA.

    This memorandum report consists of 14 task listings resulting from the Vocational Competency Measures Project. (The Vocational Competency Measures Project was a test development project that involved the writing and verification of task listings for 14 vocational occupational areas through over 225 interviews conducted in 27 states.) Provided in…

  19. Inflow measurements from blade-mounted flow sensors: Flow analysis, application and aeroelastic response

    DEFF Research Database (Denmark)

    Pedersen, Mads Mølgaard

    -mounted flow sensor, BMFS, e.g. a five-hole pitot tube, which has been used in several research experiments over the last 30 years. The BMFS measured flow velocity is, however, located inside the induction zone and thereby influenced by the aerodynamic properties, the control strategy and the operational......The power and load performance of wind turbines are both crucial for the development and expansion of wind energy. The power and loads are highly dependent on the inflow conditions, which can be measured using different types of sensors mounted on nearby met masts, on the nacelle, at the spinner...... or at the blade. Each combination of sensor type and mounting position has advantages and shortcomings. To characterise the inflow that results in high and low fatigue loads, information about the temporal and spatial variations within the rotor area is required. This information can be obtained from a blade...

  20. Adaptive pixel-to-pixel projection intensity adjustment for measuring a shiny surface using orthogonal color fringe pattern projection

    Science.gov (United States)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-05-01

    Three-dimensional (3D) shape measurement based on fringe pattern projection techniques has been commonly used in various fields. One of the remaining challenges in fringe pattern projection is that camera sensor saturation may occur if there is a large range of reflectivity variation across the surface that causes measurement errors. To overcome this problem, a novel fringe pattern projection method is proposed to avoid image saturation and maintain high-intensity modulation for measuring shiny surfaces by adaptively adjusting the pixel-to-pixel projection intensity according to the surface reflectivity. First, three sets of orthogonal color fringe patterns and a sequence of uniform gray-level patterns with different gray levels are projected onto a measured surface by a projector. The patterns are deformed with respect to the object surface and captured by a camera from a different viewpoint. Subsequently, the optimal projection intensity at each pixel is determined by fusing different gray levels and transforming the camera pixel coordinate system into the projector pixel coordinate system. Finally, the adapted fringe patterns are created and used for 3D shape measurement. Experimental results on a flat checkerboard and shiny objects demonstrate that the proposed method can measure shiny surfaces with high accuracy.

  1. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  2. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  3. Measurement system of bubbly flow using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit. 3. Comparison of flow characteristics between bubbly cocurrent and countercurrent flows

    International Nuclear Information System (INIS)

    Zhou, Shirong; Suzuki, Yumiko; Aritomi, Masanori; Matsuzaki, Mitsuo; Takeda, Yasushi; Mori, Michitsugu

    1998-01-01

    The authors have developed a new measurement system which consisted of an Ultrasonic Velocity Profile Monitor (UVP) and a Video Data Processing Unit (VDP) in order to clarify the two-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for two-dimensional two-phase flow. In the present paper, the proposed measurement system is applied to fully developed bubbly cocurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. In addition, the two-phase multiplier profile of turbulence intensity, which was defined as a ratio of the standard deviation of velocity fluctuation in a bubbly flow to that in a water single phase flow, were examined. Next, these flow characteristics were compared with those in bubbly countercurrent flows reported in our previous paper. Finally, concerning the drift flux model, the distribution parameter and drift velocity were obtained directly from both bubble and water velocity profiles and void fraction profiles, and their results were compared with those in bubbly countercurrent flows. (author)

  4. Investigation of flow mechanism of a robotic fish swimming by using flow visualization synchronized with hydrodynamic force measurement

    Science.gov (United States)

    Tan, Guang-Kun; Shen, Gong-Xin; Huang, Shuo-Qiao; Su, Wen-Han; Ke, Yu

    When swimming in water by flapping its tail, a fish can overcome the drag from uniform flow and propel its body. The involved flow mechanism concerns 3-D and unsteady effects. This paper presents the investigation of the flow mechanism on the basis of a 3-D robotic fish model which has the typical geometry of body and tail with periodic flapping 2-freedom kinematical motion testing in the case of St = 0.78, Re = 6,600 and phase delay mode (φ = - 75°), in which may have a greater or maximum propulsion (without consideration of the optimal efficiency). Using a special technique of dye visualization which can clearly show vortex sheet and vortices in detail and using the inner 3-component force balance and cable supporting system with the phase-lock technique, the 3-D flow structure visualized in the wake of fish and the hydrodynamic force measurement were synchronized and obtained. Under the mentioned flapping parameters, we found the key flow structure and its evolution, a pair of complex 3-D chain-shape vortex (S-H vortex-rings, S1 - H1 and S2 - H2, and their legs L1 and L2) flow structures, which attach the leading edge and the trailing edge, then shed, move downstream and outwards and distribute two antisymmetric staggering arrays along with the wake of the fish model in different phase stages during the flapping period. It is different with in the case of St = 0.25-0.35. Its typical flow structure and evolution are described and the results prove that they are different from the viewpoints based on the investigation of 2-D cases. For precision of the dynamic force measurement, in this paper it was provided with the method and techniques by subtracting the inertial forces and the forces induced by buoyancy and gravity effect in water, etc. from original data measured. The evolution of the synchronized measuring forces directly matching with the flow structure was also described in this paper.

  5. Time-series of turbulent flow in a pipe measured with PIV

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Westerweel, Jerry

    1999-01-01

    Measurements with particle image velocimetry of the fully developed flow of water in a pipe with a Reynolds number of 5370 are presented. The measurements are taken with a frame rate high enough to capture the same flow structure on 2 or 3 frames. This makes it possible to estimate advection...... velocities of the flow structures and distances between the structures. Ejection andsweep structures are identified and it is found that average advection velocity for the structures corresponds the local mean velocity at a distance of 0.15 diameter from the wall. It is also noted that ejections tend...

  6. Time resolved mass flow measurements for a fast gas delivery system

    International Nuclear Information System (INIS)

    Ruden, E.L.; Degnan, J.H.; Hussey, T.W.; Scott, M.C.; Graham, J.D.; Coffey, S.K.

    1992-01-01

    A technique is demonstrated whereby the delivered mass and flow rate vs. time of a short rise time gas delivery system may be accurately determined. The gas mass M which flows past a point in a gas delivery system by an arbitrary time t may be accurately measured if that point is sealed off within a time interval short compared to the mass flow time scale. If the ejected mass is allowed to equilibrate in a known volume after being cut off from its source, a conventional static pressure measurement before and after injection, and application of the ideal gas law suffices. Assuming reproducibility, a time history M(t) may be generated, allowing the flow rate vs. time dM(t)/dt to be determined. Mass flow measurements are presented for a fast delivery system in which the flow of argon through a 3.2 mm I.D., 0.76 mm thick copper tube is cut off by imploding (θ pinching) the tube using a single turn tungsten magnetic field coil. Pinch discharge parameters are 44 μf, 20 kV, 47 nH, 3.5 mΩ, 584 kA, and 8.63 ps current period. Optical measurements of the tube's internal area vs. time indicate that the tube is sealed 2 ps from the time the tube is still 90% open (7 μs from the start of pinch current). The pinch delay is varied from 500--1,500 ps from the valve trigger (0--1,000 ps from the start of gas flow). The mass injected into the test volume is ∼ 100 μg during this interval. The leak rate of the sealed tube results in a mass increase of only ∼ 0.1 μg by the time the pressure gauge stabilizes (6 s). Results are correlated with piezoelectric probe measurements of the gas flow and 2-D axisymmetric numerical simulations of the θ pinch process. Simulations of a θ pinch suitable for characterizing an annular supersonic nozzle typical of those used in gas puff z pinches are discussed

  7. Online Projective Integral with Proper Orthogonal Decomposition for Incompressible Flows Past NACA0012 Airfoil

    Directory of Open Access Journals (Sweden)

    Sirod Sirisup

    2012-01-01

    the individual function of each POD mode used in the projective integration method. It is found that the first POD mode can capture basic flow behaviors but the overall dynamic is rather inaccurate. The second and the third POD modes assist the first mode by correcting magnitudes and phases of vorticity fields. However, adding the fifth POD mode in the model leads to some incorrect results in phase-shift forms for both drag and lift coefficients. This suggests the optimal number of POD modes to use in the projective integration method.

  8. A novel acoustic method for gas flow measurement using correlation techniques

    Energy Technology Data Exchange (ETDEWEB)

    Knuuttila, M. [VTT Chemical Technology, Espoo (Finland). Industrial Physics

    1997-12-31

    The study demonstrates a new kind of acoustic method for gas flow measurement. The method uses upstream and downstream propagating low frequency plane wave and correlation techniques for volume flow rate determination. The theory of propagating low frequency plane waves in the pipe is introduced and is proved empirically to be applicable for flow measurement. The flow profile dependence of the method is verified and found to be negligible at least in the region of moderate perturbations. The physical principles of the method were applied in practice in the form of a flowmeter with new design concepts. The developed prototype meters were verified against the reference standard of NMI (Nederlands Meetinstituut), which showed that a wide dynamic range of 1:80 is achievable with total expanded uncertainty below 0.3 %. Also the requirements used for turbine meters of linearity, weighted mean error and stability were shown to be well fulfilled. A brief comparison with other flowmeter types shows the new flowmeter to be competitive. The advantages it offers are a small pressure drop over the meter, no blockage of flow in possible malfunction, no pulsation to flow, essentially no moving parts, and the possibility for bidirectional measurements. The introduced flowmeter is also capable of using the telephone network or a radio-modem to read the consumption of gas and report its operation to the user. (orig.) 51 refs.

  9. Measurement of regional cerebral blood flow by intravenous administation of 133 xenon

    International Nuclear Information System (INIS)

    Ryding, E.

    1986-01-01

    Reviewing the background and the theory for rCFB measurements the following conditions are established for the use of flow measurement with 133-Xenon as a reliable indicator for indirect measurements of cerebral functional activity. 1. There is a strict coupling between rCBF and regional metabolism. This condition can only be considered to be fulfilled in the normal non-anoxic bran tissue. 2. There is a close correlation between the tissue and the venous concentration of 133-Xenin which can be reliably approximated by the blood-brain partition coefficient. This condition can be considered to be fullfilled in the normal flow range, but not in pathological conditions such as cerebrovascular occlusions. 3. Intercompartment diffusion of 133-Xenon has no significant effect upon the measurement of rCBF values. This condition appear to share its limitations for fulfilement with condition 2. 4. There is no significant contamination by the extracerebral flow components at IH or IV rCBF measurements. 5. There is a negligible 'look through' effect from surrounding areas to region with focal high or low blood flow. (U.W.)

  10. Final report of the TRUE Block Scale project. 4. Synthesis of flow, transport and retention in the block scale

    International Nuclear Information System (INIS)

    Winberg, Anders; Andersson, Peter; Byegaard, Johan

    2003-03-01

    The TRUE Block Scale project was performed at the Aespoe Hard Rock laboratory as an international partnership funded by ANDRA, ENRESA, JNC, Nirex, Posiva and SKB. The project, initiated mid 1996, was divided in a series of defined stages; Scoping Stage, Preliminary Characterisation Stage, Detailed Characterisation Stage, Tracer Test Stage and the Evaluation and Reporting Stage. The specific objectives were to: 1) increase understanding of tracer transport in a fracture network and improve predictive capabilities, 2) assess the importance of tracer retention mechanisms (diffusion and sorption) in a fracture network, and 3) assess the link between flow and transport data as a means for predicting transport phenomena. Characterisation in included drilling, core logging, borehole imaging, borehole radar, 3D seismic surveys, hydraulic tests (flow logging, single hole tests, cross-hole interference tests), tracer dilution tests, hydrogeochemical analyses of groundwater samples and various types of mineralogical, geochemical and petrophysical measurements on drill core samples. Drilling and characterisation of each new borehole was followed by analysis and decision with regards to need and geometry of a subsequent borehole. The main set of tools for determining the conductive geometry and the hydro-structural model was a combination of borehole television (BIPS), high resolution flow logging and pressure responses from drilling and cross-hole interference tests. The constructed hydro-structural model was made up of a set of deterministic sub-vertical structures mainly oriented northwest. Hydraulic features not part of the deterministic set were included in a stochastic background fracture population. Material properties and boundary conditions were also assigned to the developed model. Characteristics and properties measured in the laboratory were integrated in generalised microstructural models. Hypotheses formulated in relation to defined basic questions were addressed

  11. Final report of the TRUE Block Scale project. 4. Synthesis of flow, transport and retention in the block scale

    Energy Technology Data Exchange (ETDEWEB)

    Winberg, Anders [Conterra AB (Sweden); Andersson, Peter; Byegaard, Johan [Geosigma AB (Sweden)] [and others

    2003-03-01

    The TRUE Block Scale project was performed at the Aespoe Hard Rock laboratory as an international partnership funded by ANDRA, ENRESA, JNC, Nirex, Posiva and SKB. The project, initiated mid 1996, was divided in a series of defined stages; Scoping Stage, Preliminary Characterisation Stage, Detailed Characterisation Stage, Tracer Test Stage and the Evaluation and Reporting Stage. The specific objectives were to: 1) increase understanding of tracer transport in a fracture network and improve predictive capabilities, 2) assess the importance of tracer retention mechanisms (diffusion and sorption) in a fracture network, and 3) assess the link between flow and transport data as a means for predicting transport phenomena. Characterisation in included drilling, core logging, borehole imaging, borehole radar, 3D seismic surveys, hydraulic tests (flow logging, single hole tests, cross-hole interference tests), tracer dilution tests, hydrogeochemical analyses of groundwater samples and various types of mineralogical, geochemical and petrophysical measurements on drill core samples. Drilling and characterisation of each new borehole was followed by analysis and decision with regards to need and geometry of a subsequent borehole. The main set of tools for determining the conductive geometry and the hydro-structural model was a combination of borehole television (BIPS), high resolution flow logging and pressure responses from drilling and cross-hole interference tests. The constructed hydro-structural model was made up of a set of deterministic sub-vertical structures mainly oriented northwest. Hydraulic features not part of the deterministic set were included in a stochastic background fracture population. Material properties and boundary conditions were also assigned to the developed model. Characteristics and properties measured in the laboratory were integrated in generalised microstructural models. Hypotheses formulated in relation to defined basic questions were addressed

  12. Quantum theory of successive projective measurements

    International Nuclear Information System (INIS)

    Johansen, Lars M.

    2007-01-01

    We show that a quantum state may be represented as the sum of a joint probability and a complex quantum modification term. The joint probability and the modification term can both be observed in successive projective measurements. The complex modification term is a measure of measurement disturbance. A selective phase rotation is needed to obtain the imaginary part. This leads to a complex quasiprobability: The Kirkwood distribution. We show that the Kirkwood distribution contains full information about the state if the two observables are maximal and complementary. The Kirkwood distribution gives another picture of state reduction. In a nonselective measurement, the modification term vanishes. A selective measurement leads to a quantum state as a non-negative conditional probability. We demonstrate the special significance of the Schwinger basis

  13. Long-term pumping test in borehole KR24 flow measurements

    Energy Technology Data Exchange (ETDEWEB)

    Rouhiainen, P.; Poellaenen, J. [PRG-Tec Oy, Espoo (Finland)

    2005-09-15

    The Difference Flow method can be used for the relatively fast determination of transmissivity and hydraulic head in fractures or fractured zones in cored boreholes. In this study, the Difference Flow method was used for hydraulic crosshole interference tests. The tests were performed in boreholes KR24 (pumped borehole) KR4, KR7, KR8, KRlO, KR14, KR22, KR22B, KR26, KR27, KR27B, KR28 and KR28B at Olkiluoto during the first and second quarters of 2004. The distance between the boreholes varies from approximately tens of meters to hundreds of meters. All the measurements were carried out in open boreholes, i.e. no packers were used. For interpretation, a normal single hole test was first performed in each borehole. Flow rates and drawdown were first measured both without pumping and with pumping the borehole under test. For practical reasons, the data set is neither complete nor similar in all tested boreholes. Connected flow to borehole KR24 was detected in all these boreholes. These flow responses were concentrated on a few zones. (orig.)

  14. Relationship among visual field, blood flow, and neural structure measurements in glaucoma.

    Science.gov (United States)

    Hwang, John C; Konduru, Ranjith; Zhang, Xinbo; Tan, Ou; Francis, Brian A; Varma, Rohit; Sehi, Mitra; Greenfield, David S; Sadda, Srinivas R; Huang, David

    2012-05-17

    To determine the relationship among visual field, neural structural, and blood flow measurements in glaucoma. Case-control study. Forty-seven eyes of 42 patients with perimetric glaucoma were age-matched with 27 normal eyes of 27 patients. All patients underwent Doppler Fourier-domain optical coherence tomography to measure retinal blood flow and standard glaucoma evaluation with visual field testing and quantitative structural imaging. Linear regression analysis was performed to analyze the relationship among visual field, blood flow, and structure, after all variables were converted to logarithmic decibel scale. Retinal blood flow was reduced in glaucoma eyes compared to normal eyes (P flow and structural loss of rim area and retinal nerve fiber layer (RNFL). There was no correlation or paradoxical correlation between blood flow and structure. Multivariate regression analysis revealed that reduced blood flow and structural loss are independent predictors of visual field loss. Each dB decrease in blood flow was associated with at least 1.62 dB loss in mean deviation (P ≤ 0.001), whereas each dB decrease in rim area and RNFL was associated with 1.15 dB and 2.56 dB loss in mean deviation, respectively (P ≤ 0.03). There is a close link between reduced retinal blood flow and visual field loss in glaucoma that is largely independent of structural loss. Further studies are needed to elucidate the causes of the vascular dysfunction and potential avenues for therapeutic intervention. Blood flow measurement may be useful as an independent assessment of glaucoma severity.

  15. SDN Project

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Rhett [Schweitzer Engineering Laboratories Inc, Pullman, WA (United States)

    2016-12-23

    technology and operational technology engineers, to be the ones centrally administering the technology and responding to events; Simplifies network configuration, improving deterministic Ethernet transport times, and providing instant visualization on where the communication circuits are and how all circuits are impacted when changes (e.g., configuration changes, failures or intrusions) happen, allowing operators to minimize downtime; and Improves the ability to identify deviations in network behavior resulting in detection and analysis of potential cyber intrusions and faster response times Results: This project has forever changed the way critical infrastructure networks are designed, secured, deployed and maintained. The cybersecurity and performance advantages achieved are significant, simply put traditional networking has been obsoleted while the team maintained Ethernet interoperability avoiding any legacy concerns. The team commercially released technology that accomplished all the cybersecurity goals outlined in the SOPO and completed it by executing the project management plan approved in the initial contract. The resulting Energy sector SDN flow controller model number is SEL-5056 and can be freely downloaded from the www.SELinc.com website. This technology not only improves the cybersecurity of control systems but has measured results that it improves the performance and reliability of the control system as well. This means the system owners can confidently apply it to their systems knowing that it will, “first do no harm” but actually improve the system as well. Success of the project is best measured by the sales and deployment of the technology. System owners in industrial, electric, defense, and oil and gas only months after commercial release have approved plans for deployment.

  16. Measuring Gravity in International Trade Flows

    Directory of Open Access Journals (Sweden)

    E. Young Song

    2004-12-01

    Full Text Available The purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of income levels of countries, and in trade of most manThe purpose of this paper is two-fold. One is to clarify the concept of gravity in international trade flows. The other is to measure the strength of gravity in international trade flows in a way that is consistent with a well-defined concept of gravity. This paper shows that the widely accepted belief that specialization is the source of gravity is not well grounded on theory. We propose to define gravity in international trade as the force that makes the market shares of an exporting country constant in all importing countries, regardless of their sizes. In a stochastic context, we should interpret it as implying that the strength of gravity increases i as the correlation between market shares and market sizes gets weaker and ii as the variance of market shares gets smaller. We estimate an empirical gravity equation thoroughly based on this definition of gravity. We find that a strong degree of gravity exists in most bilateral trade, regardless of

  17. Channel flow structure measurements using particle image velocimetry

    International Nuclear Information System (INIS)

    Norazizi Mohamed; Noraeini Mokhtar; Aziz Ibrahim; Ramli Abu Hassan

    1996-01-01

    Two different flow structures in a laboratory channel were examined using a flow visualization technique, known as Particle Image Velocimetry (PIV). The first channel flow structure was that of a steady flow over a horizontal channel bottom. Photographs of particle displacements were taken in the boundary layer in a plane parallel to the flow. These photographs were analyzed to give simultaneous measurements of two components of the velocity at hundreds of points in the plane. Averaging these photographs gave the velocity profile a few millimeters from the bottom of the channel to the water surface. The results gave good agreement with the known boundary layer theory. This technique is extended to the study of the structure under a progressive wave in the channel. A wavelength of the propagating wave is divided into sections by photographing it continously for a number of frames. Each frame is analyzed and a velocity field under this wave at various phase points were produced with their respective directions. The results show that velocity vectors in a plane under the wave could be achieved instantaneously and in good agreement with the small amplitude wave theory

  18. Development of cold moderator vessel for the spallation neutron source. Flow field measurements and thermal hydraulic analyses in cold moderator vessel

    International Nuclear Information System (INIS)

    Aso, Tomokazu; Kaminaga, Masanori; Terada, Atsuhiko; Hino, Ryutaro

    2001-01-01

    The Japan Atomic Energy Research Institute is developing a several MW-scale spallation target system under the High-Intensity Accelerator Project. A cold moderator using supercritical hydrogen is one of the key components in the target system, which directly affects the neutronic performance both in intensity and resolution. Since a hydrogen temperature rise in the moderator vessel affects the neutronic performance, it is necessary to suppress the recirculation and stagnant flows which cause hot spots. In order to develop the conceptual design of the moderator structure in progress, the flow field was measured using a PIV (Particle Image Velocimetry) system under water flow conditions using a flat model that simulated a moderator vessel. From these results, the flow field such as recirculation flows, stagnant flows etc. was clarified. The hydraulic analytical results using the standard k-ε model agreed well with experimental results. Thermal-hydraulic analyses in the moderator vessel were carried out under liquid hydrogen conditions. Based on these results, we clarified the possibility of suppressing the local temperature rise within 3 K under 2 MW operating condition. (author)

  19. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages.

    Science.gov (United States)

    Razouk, R; Beaumont, O; Failleau, G; Hay, B; Plumeri, S

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m 3 ) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  20. Development of an air flow calorimeter prototype for the measurement of thermal power released by large radioactive waste packages

    Science.gov (United States)

    Razouk, R.; Beaumont, O.; Failleau, G.; Hay, B.; Plumeri, S.

    2018-03-01

    The estimation and control of the thermal power released by the radioactive waste packages are a key parameter in the management of radioactive waste geological repository sites. In the framework of the European project "Metrology for decommissioning nuclear facilities," the French National Agency of Radioactive Waste Management (ANDRA) collaborates with Laboratoire National de Métrologie et D'essais in order to measure the thermal power up to 500 W of typical real size radioactive waste packages (of at least 0.175 m3) with an uncertainty better than 5% by using a measurement method traceable to the international system of units. One of the selected metrological approaches is based on the principles of air flow calorimetry. This paper describes in detail the development of the air flow calorimeter prototype as well as the design of a radioactive waste package simulator used for its calibration. Results obtained from the calibration of the calorimeter and from the determination of thermal powers are presented here with an investigation of the measurement uncertainties.

  1. Methodology, Measurement and Analysis of Flow Table Update Characteristics in Hardware OpenFlow Switches

    KAUST Repository

    Kuźniar, Maciej

    2018-02-15

    Software-Defined Networking (SDN) and OpenFlow are actively being standardized and deployed. These deployments rely on switches that come from various vendors and differ in terms of performance and available features. Understanding these differences and performance characteristics is essential for ensuring successful and safe deployments.We propose a systematic methodology for SDN switch performance analysis and devise a series of experiments based on this methodology. The methodology relies on sending a stream of rule updates, while relying on both observing the control plane view as reported by the switch and probing the data plane state to determine switch characteristics by comparing these views. We measure, report and explain the performance characteristics of flow table updates in six hardware OpenFlow switches. Our results describing rule update rates can help SDN designers make their controllers efficient. Further, we also highlight differences between the OpenFlow specification and its implementations, that if ignored, pose a serious threat to network security and correctness.

  2. Measurement of absolute bone blood flow by positron emission tomography

    Energy Technology Data Exchange (ETDEWEB)

    Nahmias, C.; Cockshott, W.P.; Garnett, E.S.; Belbeck, L.W.

    1986-03-01

    A method of measuring bone blood flow has been developed using /sup 18/F sodium fluoride and positron emission tomography. The blood flow levels are in line with those obtained experimentally from microsphere embolisation. This investigative method could be applied to elucidate a number of clinical questions involving bone perfusion.

  3. Local measurement of interfacial area, interfacial velocity and liquid turbulence in two-phase flow

    International Nuclear Information System (INIS)

    Hibiki, T.; Hogsett, S.; Ishii, M.

    1998-01-01

    Double sensor probe and hotfilm anemometry methods were developed for measuring local flow characteristics in bubbly flow. The formulation for the interfacial area concentration measurement was obtained by improving the formulation derived by Kataoka and Ishii. The assumptions used in the derivation of the equation were verified experimentally. The interfacial area concentration measured by the double sensor probe agreed well with one by the photographic method. The filter to validate the hotfilm anemometry for measuring the liquid velocity and turbulent intensity in bubbly flow was developed based on removing the signal due to the passing bubbles. The local void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter, liquid velocity, and turbulent intensity of vertical upward air-water flow in a round tube with inner diameter of 50.8 mm were measured by using these methods. A total of 54 data sets were acquired consisting of three superficial gas flow rates, 0.039, 0.067, and 0.147 m/s, and three superficial liquid flow rates, 0.60, 1.00, and 1.30 m/s. The measurements were performed at the three locations: L/D=2, 32, and 62. This data is expected to be used for the development of reliable constitutive relations which reflect the true transfer mechanisms in two-phase flow. (author)

  4. A double parameters measurement of steam-water two-phase flow with single orifice

    International Nuclear Information System (INIS)

    Zhong Shuoping; Tong Yunxian; Yu Meiying

    1992-08-01

    A double parameters measurement of steam-water two-phase flow with single orifice is described. An on-line measurement device based on micro-computer has been developed. The measured r.m.s error of steam quality is less than 6.5% and the measured relative r.m.s. error of mass flow rate is less than 9%

  5. Observations and Measurements on Unsteady Cloud Cavitation Flow Structures

    International Nuclear Information System (INIS)

    Gu, L X; Yan, G J; Huang, B

    2015-01-01

    The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases. (paper)

  6. Observations and Measurements on Unsteady Cloud Cavitation Flow Structures

    Science.gov (United States)

    Gu, L. X.; Yan, G. J.; Huang, B.

    2015-12-01

    The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases.

  7. Preparation and Interpretation of Heat Flow Map of Turkey

    International Nuclear Information System (INIS)

    Ozturk, S.; Karli, R.; Destur, M.

    2007-01-01

    There exist a lot of data indicating our country takes place on an impotrant Kown heat flow anomaly. The preparation of a detailed 'Heat Flow Map' as a result of rational studies and depending upon this the determination of the distribution of heat in litosphere, except from the scientific benefits; shall enlighten subjects such as oil basen analysis, prospection of hydrothermal ores and earthquakes and further shall increase the feasibility of planning geothermal energy research.In between years 1995- 2005; as a part of project of the Geophysical Department of MTA with the purpose of preperation of Heat Flow Maps of Turkey, the heat flow measurments had been carried on at the convenient cold water wells. Using the Thermic and Gamma-Ray measurments and calculated conductivity coefficients of the representative rock samples of formation, heat flow map had been prepared. A distance of 10-30 km had been kept carefully betwen the wells of interest a total of 80204 m Thermic and Gamma-Ray logs and 420 rock samples from 695 wells, had been used in the study. Then according to the Lambert Projection, using the Surfer 8.02 and Grapher4 programmes The Heat Flow Maps of Turkey of scale 1:1000000 had been obtained.Some regional researches indicate that Turkey takes place in a part of Europe of high heat flux. Unfortunately there exist no detailed heat flow map of our country up to now. This shows the importance of present project

  8. Measuring the effects of using ICT/BIM in construction projects

    DEFF Research Database (Denmark)

    Lambrecht, Jan Fuglsig; Vestergaard, Flemming; Karlshøj, Jan

    2016-01-01

    This paper focuses on presenting part of the findings from a research project completed in the period of 2009-2013.The research project was funded by the Danish Building & Property Agency with the primary aim to identify and measure the economic effects of using ICT/BIM in construction projects....... Firstly, this paper presents a conceptual evaluation method developed in order to define and describe how case studies focusing on use of ICT/BIM in construction projects could be completed in order to measure (both quantitatively and qualitatively) the effects achieved from using ICT/BIM in construction...... projects. In this context effects are defined both as tangible and intangible effects (both economically and non-economically) directly and/or indirectly as a consequence of using ICT/BIM in a construction project. Secondly, the paper presents and analyses findings achieved from completing four case...

  9. Flow-rate measurements in closed-conduits by tracer techniques

    International Nuclear Information System (INIS)

    Lund Plantat, C.

    1982-01-01

    This paper presents the study of the precision obtained measuring flow-rates in closed-conduits by tracer techniques. The flow-rates analyzed were in the range of 10 to 20 l/s and Reynolds numbers from 10 5 to 2 x 10 5 . Tracer used were fluoresceine and In-113 m; and the measurements were performed with the dilution method (punctual and continuous injection) and the Allen method. Precisions for the method of punctual and continuous injections were 6.25% and 9.45% for fluoresceine and 9.3% and 3% for In-113, respectively. For Allen method with In-113 m a precision of 5% was obtained; probably this value was affected by the short distance between detectors. In all cases the error corresponds with the expected value except in one measurement at a 68.3% confidence level. (I.V.)

  10. The feasibility of measuring renal blood flow using transesophageal echocardiography in patients undergoing cardiac surgery.

    Science.gov (United States)

    Yang, Ping-Liang; Wong, David T; Dai, Shuang-Bo; Song, Hai-Bo; Ye, Ling; Liu, Jin; Liu, Bin

    2009-05-01

    There is no reliable method to monitor renal blood flow intraoperatively. In this study, we evaluated the feasibility and reproducibility of left renal blood flow measurements using transesophageal echocardiography during cardiac surgery. In this prospective noninterventional study, left renal blood flow was measured with transesophageal echocardiography during three time points (pre-, intra-, and postcardiopulmonary bypass) in 60 patients undergoing cardiac surgery. Sonograms from 6 subjects were interpreted by 2 blinded independent assessors at the time of acquisition and 6 mo later. Interobserver and intraobserver reproducibility were quantified by calculating variability and intraclass correlation coefficients. Patients with Doppler angles of >30 degrees (20 of 60 subjects) were eliminated from renal blood flow measurements. Left renal blood flow was successfully measured and analyzed in 36 of 60 (60%) subjects. Both interobserver and intraobserver variability were renal blood flow measurements were good to excellent (intraclass correlation coefficients 0.604-0.999). Left renal arterial luminal diameter for the pre, intra, and postcardiopulmonary bypass phases, ranged from 3.8 to 4.1 mm, renal arterial velocity from 25 to 35 cm/s, and left renal blood flow from 192 to 299 mL/min. In patients undergoing cardiac surgery, it was feasible in 60% of the subjects to measure left renal blood flow using intraoperative transesophageal echocardiography. The interobserver and intraobserver reproducibility of renal blood flow measurements was good to excellent.

  11. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full...... by the thermal simulation program, BSim, based on measured weather boundary conditions are compared to the measured air temperature, temperature gradient and mass flow rate in the DSF cavity. The results show that it is possible to predict the temperature distribution and airflow in the DSF although some......-scale outdoor test facility with a naturally ventilated double skin façade. Although both methods are difficult to use under such dynamic air flow conditions, they show reasonable agreement and can be used for experimental validation of numerical models of natural ventilation air flow in DSF. Simulations...

  12. Investigation of Unsteady Flow Behavior in Transonic Compressor Rotors with LES and PIV Measurements

    Science.gov (United States)

    Hah, Chunill; Voges, Melanie; Mueller, Martin; Schiffer, Heinz-Peter

    2009-01-01

    In the present study, unsteady flow behavior in a modern transonic axial compressor rotor is studied in detail with large eddy simulation (LES) and particle image velocimetry (PIV). The main purpose of the study is to advance the current understanding of the flow field near the blade tip in an axial transonic compressor rotor near the stall and peak-efficiency conditions. Flow interaction between the tip leakage vortex and the passage shock is inherently unsteady in a transonic compressor. Casing-mounted unsteady pressure transducers have been widely applied to investigate steady and unsteady flow behavior near the casing. Although many aspects of flow have been revealed, flow structures below the casing cannot be studied with casing-mounted pressure transducers. In the present study, unsteady velocity fields are measured with a PIV system and the measured unsteady flow fields are compared with LES simulations. The currently applied PIV measurements indicate that the flow near the tip region is not steady even at the design condition. This self-induced unsteadiness increases significantly as the compressor rotor operates near the stall condition. Measured data from PIV show that the tip clearance vortex oscillates substantially near stall. The calculated unsteady characteristics of the flow from LES agree well with the PIV measurements. Calculated unsteady flow fields show that the formation of the tip clearance vortex is intermittent and the concept of vortex breakdown from steady flow analysis does not seem to apply in the current flow field. Fluid with low momentum near the pressure side of the blade close to the leading edge periodically spills over into the adjacent blade passage. The present study indicates that stall inception is heavily dependent on unsteady behavior of the flow field near the leading edge of the blade tip section for the present transonic compressor rotor.

  13. Novel monorail infusion catheter for volumetric coronary blood flow measurement in humans: in vitro validation.

    Science.gov (United States)

    van 't Veer, Marcel; Adjedj, Julien; Wijnbergen, Inge; Tóth, Gabor G; Rutten, Marcel C M; Barbato, Emanuele; van Nunen, Lokien X; Pijls, Nico H J; De Bruyne, Bernard

    2016-08-20

    The aim of this study is to validate a novel monorail infusion catheter for thermodilution-based quantitative coronary flow measurements. Based on the principles of thermodilution, volumetric coronary flow can be determined from the flow rate of a continuous saline infusion, the temperature of saline when it enters the coronary artery, and the temperature of the blood mixed with the saline in the distal part of the coronary artery. In an in vitro set-up of the systemic and coronary circulation at body temperature, coronary flow values were varied from 50-300 ml/min in steps of 50 ml/min. At each coronary flow value, thermodilution-based measurements were performed at infusion rates of 15, 20, and 30 ml/min. Temperatures and pressures were simultaneously measured with a pressure/temperature sensor-tipped guidewire. Agreement of the calculated flow and the measured flow as well as repeatability were assessed. A total of five catheters were tested, with a total of 180 measurements. A strong correlation (ρ=0.976, p<0.0001) and a difference of -6.5±15.5 ml/min were found between measured and calculated flow. The difference between two repeated measures was 0.2%±8.0%. This novel infusion catheter used in combination with a pressure/temperature sensor-tipped guidewire allows accurate and repeatable absolute coronary flow measurements. This opens a window to a better understanding of the coronary microcirculation.

  14. Problems of unsteady temperature measurements in a pulsating flow of gas

    International Nuclear Information System (INIS)

    Olczyk, A

    2008-01-01

    Unsteady flow temperature is one of the most difficult and complex flow parameters to measure. Main problems concern insufficient dynamic properties of applied sensors and an interpretation of recorded signals, composed of static and dynamic temperatures. An attempt is made to solve these two problems in the case of measurements conducted in a pulsating flow of gas in the 0–200 Hz range of frequencies, which corresponds to real conditions found in exhaust pipes of modern diesel engines. As far as sensor dynamics is concerned, an analysis of requirements related to the thermometer was made, showing that there was no possibility of assuring such a high frequency band within existing solutions. Therefore, a method of double-channel correction of sensor dynamics was proposed and experimentally tested. The results correspond well with the calculations made by means of the proposed model of sensor dynamics. In the case of interpretation of the measured temperature signal, a method for distinguishing its two components was proposed. This decomposition considerably helps with a correct interpretation of unsteady flow phenomena in pipes

  15. In vitro validation of a Pitot-based flow meter for the measurement of respiratory volume and flow in large animal anaesthesia.

    Science.gov (United States)

    Moens, Yves P S; Gootjes, Peter; Ionita, Jean-Claude; Heinonen, Erkki; Schatzmann, Urs

    2009-05-01

    To remodel and validate commercially available monitors and their Pitot tube-based flow sensors for use in large animals, using in vitro techniques. Prospective, in vitro experiment. Both the original and the remodelled sensor were studied with a reference flow generator. Measurements were taken of the static flow-pressure relationship and linearity of the flow signal. Sensor airway resistance was calculated. Following recalibration of the host monitor, volumes ranging from 1 to 7 L were generated by a calibration syringe, and bias and precision of spirometric volume was determined. Where manual recalibration was not available, a conversion factor for volume measurement was determined. The influence of gas composition mixture and peak flow on the conversion factor was studied. Both the original and the remodelled sensor showed similar static flow-pressure relationships and linearity of the flow signal. Mean bias (%) of displayed values compared with the reference volume of 3, 5 and 7 L varied between -0.4% and +2.4%, and this was significantly smaller than that for 1 L (4.8% to +5.0%). Conversion factors for 3, 5 and 7 L were very similar (mean 6.00 +/- 0.2, range 5.91-6.06) and were not significantly influenced by the gas mixture used. Increasing peak flow caused a small decrease in the conversion factor. Volume measurement error and conversion factors for inspiration and expiration were close to identity. The combination of the host monitor with the remodelled flow sensor allowed accurate in vitro measurement of flows and volumes in a range expected during large animal anaesthesia. This combination has potential as a reliable spirometric monitor for use during large animal anaesthesia.

  16. Measurement of flow in the scrape-off layer of TdeV

    International Nuclear Information System (INIS)

    MacLatchy, C.S.; Gunn, J.P.; Boucher, C.; Poirier, D.A.; Stansfield, B.L.; Zuzak, W.W.

    1992-01-01

    Two techniques are used to monitor the flow in the scrape-off layer of Tokamak de Varennes (TdeV); one is based on a new multipin Langmuir/Mach probe called Gundestrup while the other depends on the measurement of the upstream/downstream asymmetry of the power absorbed by a test limiter inserted into the plasma edge. Gundestrup has been used to measure the components of velocity parallel and perpendicular to the magnetic field as a function of the radial electric field. Both components vary linearly with the radial field and inversely as the magnetic field (U parallel ∝E r /B θ and U perpendicular to ∝E r /B). The pattern of power deposition on the test limiter implies that the flow is in the same direction as that measured by Gundestrup and the e-folding length for the power deposition is in agreement with Gundestrup measurements of temperature and density. The test limiter observations indicate that the flow reverses just inside the separatrix. (orig.)

  17. REPNET: project scheduling and workflow optimization for Construction Projects

    Directory of Open Access Journals (Sweden)

    Marco Alvise Bragadin

    2013-10-01

    Full Text Available Project planning and control are core processes for construction management. In practice project planning is achieved by network - based techniques like Precedence Diagramming Method (PDM.Indeed many researchers and practitioners claims that networking techniques as such do not provide a suitable model for construction projects. Construction process modeling should incorporate for specific features of resource flows through project activities. So an improved resource scheduling method for construction is developed, called REPNET, based on a precedence network plotted on a resource–space chart and presented with a flow-line chart. The heuristics of REPNET are used to carry out resource timing while optimizing processes flows and resource usage. The method has been tested on a sample project.

  18. [Evaluation and Optimization of Microvascular Arterial Anastomoses by Transit Time Flow Measurement].

    Science.gov (United States)

    Herberhold, S; Röttker, J; Bartmann, D; Solbach, A; Keiner, S; Welz, A; Bootz, F; Laffers, W

    2016-03-01

    INDRODUCTION: The regular application of transit time flow measurement in microvascular anastomoses during heart surgery has lead to improvements of the outcome of coronary artery bypass grafts. Our study was meant to discover whether this measurement method was also applicable for evaluation and optimization of microvascular arterial anastomoses of radial forearm flaps. In this prospective examination a combining ultrasound imaging and transit time flow measurement device (VeriQ, MediStim) was used during surgery to assess anastomotic quality of 15 radial forearm flaps. Pulsatility index (PI) and mean blood flow were measured immediately after opening the arterial anastomosis as well as 15 min afterwards. Furthermore, application time and description of handling were recorded seperately for every assessment. Mean blood flow immediately after opening the anastomosis and 15 min later were 3.9 and 3.4 ml/min resepectively showing no statistically significant difference (p=0.96). There was no significance in the increase of pulsatility index from 22.1 to 27.2 (p=0.09) during the same time range, either. Due to measurement results showing atypical pulse curves in 2 cases decision for surgical revision of the anastomoses was made. All forearm flaps showed good vascularisation during follow-up. Time for device set up, probe placement and measurements was about 20 min. Handling was described to be uncomplicated without exception. There were no noteworthy problems. Transit time flow measurement contributes to the improvement of anastomotic quality and therefore to the overall outcome of radial forearm flaps. The examined measurement method provides objective results and is useful for documentation purposes. © Georg Thieme Verlag KG Stuttgart · New York.

  19. Measurement of two phase flow properties using the nuclear reactor instruments

    International Nuclear Information System (INIS)

    Albrecht, R.W.; Washington Univ., Seattle; Crowe, R.D.; Dailey, D.J.; Kosaly, G.; Damborg, M.J.

    1982-01-01

    A procedure is introduced for characterizing one dimensional, two phase flow in terms of three properties; propagation, structure, and dynamics. It is shown that all of these properties can be measured by analyzing the response of the reactor neutron field to a two phase flow perturbation. Therefore, a nuclear reactor can be regarded as a two phase flow instrument. (author)

  20. Breast EIT using a new projected image reconstruction method with multi-frequency measurements.

    Science.gov (United States)

    Lee, Eunjung; Ts, Munkh-Erdene; Seo, Jin Keun; Woo, Eung Je

    2012-05-01

    We propose a new method to produce admittivity images of the breast for the diagnosis of breast cancer using electrical impedance tomography(EIT). Considering the anatomical structure of the breast, we designed an electrode configuration where current-injection and voltage-sensing electrodes are separated in such a way that internal current pathways are approximately along the tangential direction of an array of voltage-sensing electrodes. Unlike conventional EIT imaging methods where the number of injected currents is maximized to increase the total amount of measured data, current is injected only twice between two pairs of current-injection electrodes attached along the circumferential side of the breast. For each current injection, the induced voltages are measured from the front surface of the breast using as many voltage-sensing electrodes as possible. Although this electrode configurational lows us to measure induced voltages only on the front surface of the breast,they are more sensitive to an anomaly inside the breast since such an injected current tends to produce a more uniform internal current density distribution. Furthermore, the sensitivity of a measured boundary voltage between two equipotential lines on the front surface of the breast is improved since those equipotential lines are perpendicular to the primary direction of internal current streamlines. One should note that this novel data collection method is different from those of other frontal plane techniques such as the x-ray projection and T-scan imaging methods because we do not get any data on the plane that is perpendicular to the current flow. To reconstruct admittivity images using two measured voltage data sets, a new projected image reconstruction algorithm is developed. Numerical simulations demonstrate the frequency-difference EIT imaging of the breast. The results show that the new method is promising to accurately detect and localize small anomalies inside the breast.

  1. Breast EIT using a new projected image reconstruction method with multi-frequency measurements

    International Nuclear Information System (INIS)

    Lee, Eunjung; Ts, Munkh-Erdene; Seo, Jin Keun; Woo, Eung Je

    2012-01-01

    We propose a new method to produce admittivity images of the breast for the diagnosis of breast cancer using electrical impedance tomography (EIT). Considering the anatomical structure of the breast, we designed an electrode configuration where current-injection and voltage-sensing electrodes are separated in such a way that internal current pathways are approximately along the tangential direction of an array of voltage-sensing electrodes. Unlike conventional EIT imaging methods where the number of injected currents is maximized to increase the total amount of measured data, current is injected only twice between two pairs of current-injection electrodes attached along the circumferential side of the breast. For each current injection, the induced voltages are measured from the front surface of the breast using as many voltage-sensing electrodes as possible. Although this electrode configuration allows us to measure induced voltages only on the front surface of the breast, they are more sensitive to an anomaly inside the breast since such an injected current tends to produce a more uniform internal current density distribution. Furthermore, the sensitivity of a measured boundary voltage between two equipotential lines on the front surface of the breast is improved since those equipotential lines are perpendicular to the primary direction of internal current streamlines. One should note that this novel data collection method is different from those of other frontal plane techniques such as the x-ray projection and T-scan imaging methods because we do not get any data on the plane that is perpendicular to the current flow. To reconstruct admittivity images using two measured voltage data sets, a new projected image reconstruction algorithm is developed. Numerical simulations demonstrate the frequency-difference EIT imaging of the breast. The results show that the new method is promising to accurately detect and localize small anomalies inside the breast. (paper)

  2. Optical measurement of blood flow in exercising skeletal muscle: a pilot study

    Science.gov (United States)

    Wang, Detian; Baker, Wesley B.; Parthasarathy, Ashwin B.; Zhu, Liguo; Li, Zeren; Yodh, Arjun G.

    2017-07-01

    Blood flow monitoring during rhythm exercising is very important for sports medicine and muscle dieases. Diffuse correlation spectroscopy(DCS) is a relative new invasive way to monitor blood flow but suffering from muscle fiber motion. In this study we focus on how to remove exercise driven artifacts and obtain accurate estimates of the increase in blood flow from exercise. Using a novel fast software correlator, we measured blood flow in forearm flexor muscles of N=2 healthy adults during handgrip exercise, at a sampling rate of 20 Hz. Combining the blood flow and acceleration data, we resolved the motion artifact in the DCS signal induced by muscle fiber motion, and isolated the blood flow component of the signal from the motion artifact. The results show that muscle fiber motion strongly affects the DCS signal, and if not accounted for, will result in an overestimate of blood flow more than 1000%. Our measurements indicate rapid dilation of arterioles following exercise onset, which enabled blood flow to increase to a plateau of 200% in 10s. The blood flow also rapidly recovered to baseline following exercise in 10s. Finally, preliminary results on the dependence of blood flow from exercise intensity changes will be discussed.

  3. MR measurement of coronary arterial blood flow velocity. Evaluation of age, stenosis and drugs as factors affecting coronary blood flow

    International Nuclear Information System (INIS)

    Taoka, Yoshiaki; Harada, Masafumi; Nishitani, Hiromu; Yukinaka, Michiko; Nomura, Masahiro

    1998-01-01

    Coronary arterial blood flow velocity was measured using MRI. Two types of phase contrast methods were used for the measurements, one of which exhibited good resolving power whereas the other provided more distinct images acquired while the subject patients held their breath. Before measuring coronary arterial blood flow velocity, accuracy of the two phase contrast methods was evaluated using a phantom. The results obtained with both methods largely agreed with the values obtained using the phantom. Using both methods, the patterns of coronary arterial blood flow over one cardiac cycle were essentially identical. A peak was noted in late systole or in early diastole in the right coronary artery, whereas in the left coronary artery, a peak was noted somewhat later in diastole. In healthy volunteers, no significant difference in the maximal flow velocity in the coronary arteries was found from one age group to another. Among patients with coronary arterial stenosis, coronary arterial blood flow velocity central to the area of stenosis was lower than that observed in the healthy volunteers. Coronary arterial blood flow velocity was observed to decrease after administration of isosorbide dinitrate and increased following administration of nifedipine. (author)

  4. Flow characteristics of helium gas going through a 90°elbow for flow measurement

    International Nuclear Information System (INIS)

    Feng Beibei; Wang Shiming; Yang Xingtuan; Jiang Shengyao

    2014-01-01

    Numerical simulation is performed to investigate the pressure distribution of He-gas under high pressure and high temperature for 10MW High Temperature Gas-cooled Reactor (HTGR-10). Experimental measurements of wall pressure through a self-built test system are carried out to validate the credibility of the computational approach. We present a study for complex flow structure of He-gas using the case of an structurally 90°elbow that is reconstructed from the steam generator of HTGR-10. Pressure measurement of inner wall and outer wall is used to compare with the numerical results. Distribution of wall pressure of He-gas flowing through 90° elbow based on the numerical and experimental approaches show good agreement. Wall pressure distribution of eight cross sections of the elbow is given in detail to represent the entire region of elbow. (author)

  5. Fabrication and evaluation of a graphene oxide-based cantilever-type flow-meter for subsonic gas flow rate measurement

    Science.gov (United States)

    Hamdollahi, Hassan; Rahbar-Shahrouzi, Javad

    2018-05-01

    In this paper, a cantilever-type flow meter was fabricated to measure the rate of air flow in turbulent subsonic regimes such as purged gases. In the fabrication process, a piezoresistive material was coated on an interdigitated electric board as a substrate. The piezoresistive layer was a blend of latex as the polymeric matrix and graphene oxide as the sensing nanomaterial agent, which was reduced by solvothermal reduction method. The piezoresistive blend was dip-coated on a substrate with dotted pattern and was then reduced at 240 °C for 1 h in every coating step. When an air flow passed over the surface of the cantilever beam, the beam was bent in the downward direction, resulting in small variations in the resistance of the piezoresistive layer and a change in the bending angle of the cantilever which were measured simultaneously. The air flow rate was acquired via calibrating electrical resistance changes by Arduino and Wheatstone bridge circuit. The blending angle of the substrate caused by the interaction between the airflow and the cantilever and recorded by the camera and image processing was ultimately compared with the simulation results. The flow meter accuracy as a percentage of full scale (% FS) was calculated to be  ±5.8%, and mean deviation was equal to 2.1 (% FS) with the appropriate response time of 0.70 s at the air flow range of 100‑240 m s‑1. Highlights • A cantilever-type flow meter was fabricated to measure the high-speed air flow rate. • The sensitive piezoresistive material was composed of GO and latex. • The dip-coating method was used to deposit the piezoresistive layer on the fiberglass substrate. • The impact of effective parameters on the performance of the flow meter was investigated. • A simulation study was performed and the results were compared with the experimental data.

  6. Two phase flow measurement and visualization using Wire Mesh Sensors (WMS)

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Robin, Roshini; Rama Rao, A.

    2016-01-01

    Two phase flow behavior studies have gained importance in nuclear power plants to enhance fuel performance and safety. In this paper, taking into consideration low cost, high space-time resolution and instantaneous mapping, electrical sensors such as wire mesh sensors (WMS) is proposed for measurement of void distribution and its visualization. The sensor works on the conductivity principle and by measuring the variations in conductivity values of the two phases, the flow distributions can be identified. This paper describes the conceptual design of the WMS for two phase void measurements, Mathematical modeling of the sensor for data evaluation, modeling of the sensor geometry and FEM simulation studies for optimizing sensor geometry and excitation parameters, CFD two phase flows simulations, development of suitable algorithm and programming for two phase visualization and void distribution studies, prototype sensor fabrication and testing

  7. Measurement of vascular flow in the brain with the xenon/CT method

    International Nuclear Information System (INIS)

    Wist, A.O.; Cothran, A.; Fatouros, P.P.; Kishore, P.R.S.

    1988-01-01

    The authors are proposing a modification of the xenon/CT method that allows measurement of the flow in the different brain vessels. Based on an improved stable xenon/CT method, they developed several additional algorithms to differentiate the vessel flow from tissue flow and from artifacts and noise, which are based on the height, steepness, and other parameters of the detected flow values. The vessel flow maps, together with the tissue flow maps and new composite flow maps of recent patients, demonstrate that the stable xenon/CT technique can be extended to quantify vascular flow in the brain. The diagnostic capability of this method can be further improved by removing the vessel flow from the flow maps

  8. Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography

    Energy Technology Data Exchange (ETDEWEB)

    Lin Mingde; Marshall, Craig T.; Qi, Yi; Johnston, Samuel M.; Badea, Cristian T.; Piantadosi, Claude A.; Johnson, G. Allan [Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Division of Pulmonary and Critical Care Medicine and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Box 3823, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States); Division of Pulmonary and Critical Care Medicine and Center for Hyperbaric Medicine and Environmental Physiology, Duke University Medical Center, Box 3823, Durham, North Carolina 27710 (United States); Department of Radiology, Center for In Vivo Microscopy and Department of Biomedical Engineering, Duke University Medical Center, Box 3302, Durham, North Carolina 27710 (United States)

    2009-11-15

    Purpose: The use of preclinical rodent models of disease continues to grow because these models help elucidate pathogenic mechanisms and provide robust test beds for drug development. Among the major anatomic and physiologic indicators of disease progression and genetic or drug modification of responses are measurements of blood vessel caliber and flow. Moreover, cardiopulmonary blood flow is a critical indicator of gas exchange. Current methods of measuring cardiopulmonary blood flow suffer from some or all of the following limitations--they produce relative values, are limited to global measurements, do not provide vasculature visualization, are not able to measure acute changes, are invasive, or require euthanasia. Methods: In this study, high-spatial and high-temporal resolution x-ray digital subtraction angiography (DSA) was used to obtain vasculature visualization, quantitative blood flow in absolute metrics (ml/min instead of arbitrary units or velocity), and relative blood volume dynamics from discrete regions of interest on a pixel-by-pixel basis (100x100 {mu}m{sup 2}). Results: A series of calibrations linked the DSA flow measurements to standard physiological measurement using thermodilution and Fick's method for cardiac output (CO), which in eight anesthetized Fischer-344 rats was found to be 37.0{+-}5.1 ml/min. Phantom experiments were conducted to calibrate the radiographic density to vessel thickness, allowing a link of DSA cardiac output measurements to cardiopulmonary blood flow measurements in discrete regions of interest. The scaling factor linking relative DSA cardiac output measurements to the Fick's absolute measurements was found to be 18.90xCO{sub DSA}=CO{sub Fick}. Conclusions: This calibrated DSA approach allows repeated simultaneous visualization of vasculature and measurement of blood flow dynamics on a regional level in the living rat.

  9. Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography

    International Nuclear Information System (INIS)

    Lin Mingde; Marshall, Craig T.; Qi, Yi; Johnston, Samuel M.; Badea, Cristian T.; Piantadosi, Claude A.; Johnson, G. Allan

    2009-01-01

    Purpose: The use of preclinical rodent models of disease continues to grow because these models help elucidate pathogenic mechanisms and provide robust test beds for drug development. Among the major anatomic and physiologic indicators of disease progression and genetic or drug modification of responses are measurements of blood vessel caliber and flow. Moreover, cardiopulmonary blood flow is a critical indicator of gas exchange. Current methods of measuring cardiopulmonary blood flow suffer from some or all of the following limitations--they produce relative values, are limited to global measurements, do not provide vasculature visualization, are not able to measure acute changes, are invasive, or require euthanasia. Methods: In this study, high-spatial and high-temporal resolution x-ray digital subtraction angiography (DSA) was used to obtain vasculature visualization, quantitative blood flow in absolute metrics (ml/min instead of arbitrary units or velocity), and relative blood volume dynamics from discrete regions of interest on a pixel-by-pixel basis (100x100 μm 2 ). Results: A series of calibrations linked the DSA flow measurements to standard physiological measurement using thermodilution and Fick's method for cardiac output (CO), which in eight anesthetized Fischer-344 rats was found to be 37.0±5.1 ml/min. Phantom experiments were conducted to calibrate the radiographic density to vessel thickness, allowing a link of DSA cardiac output measurements to cardiopulmonary blood flow measurements in discrete regions of interest. The scaling factor linking relative DSA cardiac output measurements to the Fick's absolute measurements was found to be 18.90xCO DSA =CO Fick . Conclusions: This calibrated DSA approach allows repeated simultaneous visualization of vasculature and measurement of blood flow dynamics on a regional level in the living rat.

  10. Void fraction measurement in two-phase flow processes via symbolic dynamic filtering of ultrasonic signals

    International Nuclear Information System (INIS)

    Chakraborty, Subhadeep; Keller, Eric; Talley, Justin; Srivastav, Abhishek; Ray, Asok; Kim, Seungjin

    2009-01-01

    This communication introduces a non-intrusive method for void fraction measurement and identification of two-phase flow regimes, based on ultrasonic sensing. The underlying algorithm is built upon the recently reported theory of a statistical pattern recognition method called symbolic dynamic filtering (SDF). The results of experimental validation, generated on a laboratory test apparatus, show a one-to-one correspondence between the flow measure derived from SDF and the void fraction measured by a conductivity probe. A sharp change in the slope of flow measure is found to be in agreement with a transition from fully bubbly flow to cap-bubbly flow. (rapid communication)

  11. Measurement of free-surface of liquid metal lithium jet for IFMIF target

    International Nuclear Information System (INIS)

    Hiroo Kondo; Nobuo Yamaoka; Takuji Kanemura; Seiji Miyamoto; Hiroshi Horiike; Mizuho Ida; Hiroo Nakamura; Izuru Matsushita; Takeo Muroga

    2006-01-01

    This reports an experimental study on flow characteristics of a lithium target flow of International Fusion Materials Irradiation Facility (IFMIF). Surface shapes of the target were tried to measure by pattern projection method that is a three dimensional image measurement method. Irregularity of the surface shape caused by surface wakes was successfully measured by the method. IFMIF liquid lithium target is formed a flat plane jet of 25 mm in depth and 260 mm in width, and flows in a flow velocity range of 10 to 20 m/s. Aim of this study is to develop measurement techniques for monitoring of the target when IFMIF is in operation. The lithium target flow is high speed jet and the temperature high is more than 500 K. Also, light is not transmitted into liquid metal lithium. Therefore, almost of all flow measurement techniques developed for water are not used for lithium flow. In this study, pattern projection method was employed to measure the surface irregularity of the target. In the method, stripe patterns are projected onto the flow surface. The projected patterns are deformed according the surface shape. Three-dimensional surface shape is measured by analyzing the deformed patterns recorded using a CCD camera. The method uses the property that lithium dose not transmit visible lights. The experiments were carried out using a lithium loop at Osaka University. In this facility, lithium plane jet of 10 mm in depth and 70 mm width is obtained in the velocity range of less than 15 m/s using a two contractions nozzle. The pattern projection method was used to measure the amplitude of surface irregularity caused by surface wakes. The surface wakes were generated from small damaged at the nozzle edge caused by erosion, and those were successfully measured by the method. The measurement results showed the amplitude of the surface wakes were approximately equal to a size of damage of a nozzle. The amplitude was decreasing with distance to down stream and with decreasing

  12. Validation of Patient-Specific Cerebral Blood Flow Simulation Using Transcranial Doppler Measurements

    Directory of Open Access Journals (Sweden)

    Derek Groen

    2018-06-01

    Full Text Available We present a validation study comparing results from a patient-specific lattice-Boltzmann simulation to transcranial Doppler (TCD velocity measurements in four different planes of the middle cerebral artery (MCA. As part of the study, we compared simulations using a Newtonian and a Carreau-Yasuda rheology model. We also investigated the viability of using downscaled velocities to reduce the required resolution. Simulations with unscaled velocities predict the maximum flow velocity with an error of less than 9%, independent of the rheology model chosen. The accuracy of the simulation predictions worsens considerably when simulations are run at reduced velocity, as is for example the case when inflow velocities from healthy individuals are used on a vascular model of a stroke patient. Our results demonstrate the importance of using directly measured and patient-specific inflow velocities when simulating blood flow in MCAs. We conclude that localized TCD measurements together with predictive simulations can be used to obtain flow estimates with high fidelity over a larger region, and reduce the need for more invasive flow measurement procedures.

  13. 40 CFR 92.117 - Gas meter or flow instrumentation calibration, particulate measurement.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Gas meter or flow instrumentation... ENGINES Test Procedures § 92.117 Gas meter or flow instrumentation calibration, particulate measurement. (a) Sampling for particulate emissions requires the use of gas meters or flow instrumentation to...

  14. Optical measurement of a micro coriolis mass flow sensor

    NARCIS (Netherlands)

    Kristiansen, L.; Mehendale, A.; Brouwer, Dannis Michel; Zwikker, J.M.; Klein, M.E.

    2009-01-01

    Haneveld [1,2] demonstrated a micro Coriolis mass flow sensor, operating in the measurement range of 0 to 1 g/hr achieving a resolution in the order of 10 mg/hr using a laser vibrometer. Equipped with an integrated capacitive [3] readout the measurement uncertainty amounted to 2% of the full scale

  15. Development of a multi-path ultrasonic flow meter for the application to feedwater flow measurement in nuclear power plants

    International Nuclear Information System (INIS)

    Jong, J. C.; Ha, J. H.; Kim, Y. H.; Jang, W. H.; Park, K. S.; Park, M. S.; Park, M. H.

    2002-01-01

    In this work, we propose a method to measure the feedwater flow using multi-path ultrasonic flow meter (UFM). Since the UFM measures a path velocity at which the ultrasonic wave is propagated, the flow profile may be important to convey the path velocity to the velocity averaged over the entire cross section of the flowing medium. The conventional UFM has used the smooth-wall circular pipe model presented by Nikurades. However, this model covers a lower range which is less than 3.2 million while the Reynolds number of the feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we feedwater flow in operating nuclear power plants (NPPs) is about 20 million. Therefore, we proposed the non-linear correlation model that combines the ratio between the DP output and proposed the non-linear correlation model that combines the ratio between the DP output and UFM output. Experiments were performed using both computer simulation and newly constructed NPPs' test data. The uncertainty analysis result shows that the proposed method has reasonably lower uncertainty than conventional UFM

  16. Measurement of turbulent flows in a square sectioned 270 .deg. bend

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Sok Hyu; Lee, Gun Hyee [Wonkwang Univ., Iksan (Korea, Republic of); Chun, Kun Ho [Korea Univ., Seoul (Korea, Republic of)

    2000-07-01

    Most of the past experimental or analytical studies were performed for the curved bend with a square cross-section. Velocity profiles and Reynolds stresses of the turbulence flow in the 270 degree bend with circular cross-section were measured by a hot-wire anemometer. The mean velocity of primary flowing direction effected by the downstream of bend in the entry region of the bend. The flow in the inner part of the bend slowed the distribution velocity relatively large and unsymmetric phenomenon. In the strong secondary flow occurred when the flow passed in the region of 45 degree to 90 degree. The secondary flow appeared very large value in the neighbor region inner wall.

  17. Measurement of turbulent flows in a square sectioned 270 .deg. bend

    International Nuclear Information System (INIS)

    Cho, Sok Hyu; Lee, Gun Hyee; Chun, Kun Ho

    2000-01-01

    Most of the past experimental or analytical studies were performed for the curved bend with a square cross-section. Velocity profiles and Reynolds stresses of the turbulence flow in the 270 degree bend with circular cross-section were measured by a hot-wire anemometer. The mean velocity of primary flowing direction effected by the downstream of bend in the entry region of the bend. The flow in the inner part of the bend slowed the distribution velocity relatively large and unsymmetric phenomenon. In the strong secondary flow occurred when the flow passed in the region of 45 degree to 90 degree. The secondary flow appeared very large value in the neighbor region inner wall

  18. Impact of Pitot tube calibration on the uncertainty of water flow rate measurement

    Science.gov (United States)

    de Oliveira Buscarini, Icaro; Costa Barsaglini, Andre; Saiz Jabardo, Paulo Jose; Massami Taira, Nilson; Nader, Gilder

    2015-10-01

    Water utility companies often use Cole type Pitot tubes to map velocity profiles and thus measure flow rate. Frequent monitoring and measurement of flow rate is an important step in identifying leaks and other types of losses. In Brazil losses as high as 42% are common and in some places even higher values are found. When using Cole type Pitot tubes to measure the flow rate, the uncertainty of the calibration coefficient (Cd) is a major component of the overall flow rate measurement uncertainty. A common practice is to employ the usual value Cd = 0.869, in use since Cole proposed his Pitot tube in 1896. Analysis of 414 calibrations of Cole type Pitot tubes show that Cd varies considerably and values as high 0.020 for the expanded uncertainty are common. Combined with other uncertainty sources, the overall velocity measurement uncertainty is 0.02, increasing flowrate measurement uncertainty by 1.5% which, for the Sao Paulo metropolitan area (Brazil) corresponds to 3.5 × 107 m3/year.

  19. Visual Observations of Bubbly Flow in a Subchannel by using Optical Measurement Methods

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Choo, Yeon Jun; Kim, B. D.; Song, Chul Hwa

    2008-01-01

    PIV (Particle Image Velocimetry) measurement technique is widely used in the experimental study on the fluid flow in many industrial fields. In the study of the subchannel mixing in a nuclear reactor, there have been many works by using optical measurement techniques and almost of these were limited to the single phase flow. But many occasions of safety issues in a nuclear power plant are in a condition of two phase flow. In an application of two phase flow in subchannels, intrusive probes i.e., a conductivity sensor or an optical sensor were generally used. But these probes cause breaks or distortions of bubbles when contact. PIV technique is one of the non-intrusive measurement methods which can avoid the problem of intrusive probes. This study presents an applicability of the PIV technique on an experimental study of a bubbly flow in the subchannel geometry. The bubble peaking in a subchannel according to the bubble sizes was demonstrated. The HSC (high speed camera) was also used to confirm the PIV measurement results

  20. Thermocouple Rakes for Measuring Boundary Layer Flows Extremely Close to Surface

    Science.gov (United States)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Blaha, Charles A.

    2001-01-01

    Of vital interest to aerodynamic researchers is precise knowledge of the flow velocity profile next to the surface. This information is needed for turbulence model development and the calculation of viscous shear force. Though many instruments can determine the flow velocity profile near the surface, none of them can make measurements closer than approximately 0.01 in. from the surface. The thermocouple boundary-layer rake can measure much closer to the surface than conventional instruments can, such as a total pressure boundary layer rake, hot wire, or hot film. By embedding the sensors (thermocouples) in the region where the velocity is equivalent to the velocity ahead of a constant thickness strut, the boundary-layer flow profile can be obtained. The present device fabricated at the NASA Glenn Research Center microsystem clean room has a heater made of platinum and thermocouples made of platinum and gold. Equal numbers of thermocouples are placed both upstream and downstream of the heater, so that the voltage generated by each pair at the same distance from the surface is indicative of the difference in temperature between the upstream and downstream thermocouple locations. This voltage differential is a function of the flow velocity, and like the conventional total pressure rake, it can provide the velocity profile. In order to measure flow extremely close to the surface, the strut is made of fused quartz with extremely low heat conductivity. A large size thermocouple boundary layer rake is shown in the following photo. The latest medium size sensors already provide smooth velocity profiles well into the boundary layer, as close as 0.0025 in. from the surface. This is about 4 times closer to the surface than the previously used total pressure rakes. This device also has the advantage of providing the flow profile of separated flow and also it is possible to measure simultaneous turbulence levels within the boundary layer.

  1. Development Of An Experiment For Measuring Flow Phenomena Occurring In A Lower Plenum For VHTR CFD Assessment

    Energy Technology Data Exchange (ETDEWEB)

    D. M. McEligot; K.G. Condie; G. E. Mc Creery; H. M. Mc Ilroy

    2005-09-01

    The objective of the present report is to document the design of our first experiment to measure generic flow phenomena expected to occur in the lower plenum of a typical prismatic VHTR (Very High Temperature Reactor) concept. In the process, fabrication sketches are provided for the use of CFD (computational fluid dynamics) analysts wishing to employ the data for assessment of their proposed codes. The general approach of the project is to develop new benchmark experiments for assessment in parallel with CFD and coupled CFD/systems code calculations for the same geometry. One aspect of the complex flow in a prismatic VHTR is being addressed: flow and thermal mixing in the lower plenum ("hot streaking" issue). Current prismatic VHTR concepts were examined to identify their proposed flow conditions and geometries over the range from normal operation to decay heat removal in a pressurized cooldown. Approximate analyses were applied to determine key non-dimensional parameters and their magnitudes over this operating range. The flow in the lower plenum can locally be considered to be a situation of multiple jets into a confined crossflow -- with obstructions. Flow is expected to be turbulent with momentum-dominated turbulent jets entering; buoyancy influences are estimated to be negligible in normal full power operation. Experiments are needed for the combined features of the lower plenum flows. Missing from the typical jet experiments available are interactions with nearby circular posts and with vertical posts in the vicinity of vertical walls - with near stagnant surroundings at one extreme and significant crossflow at the other.

  2. Measures to improve nuclear power project management

    International Nuclear Information System (INIS)

    Ma Xinchao

    2012-01-01

    Focusing on correct application of ability level principle in setting organizational structure, the effective management system has been established, and 8 practical management regimes have been developed. Personnel training and management work shall be well done and enhanced. Experience feedback in construction management shall be well done for all systems. Exchange of construction and management techniques shall be actively carried out. All staff shall participate in safety management. KPI system is adopted for assessing stakeholders' project management method, and PDCA cycle is adopted for continued improved. Management level upgrading measures are proposed to ensure the smooth construction of nuclear power project. Setting forth and popularizing management theory can provide reference for and promote the smooth progress of various nuclear power projects. (author)

  3. Method of measuring blood flow by radiation

    International Nuclear Information System (INIS)

    Gildenberg, P.L.

    1977-01-01

    A method of measuring relative blood flow through at least a part of the body using penetrating radiation comprises transmitting a plurality of rays at an initial angle or initial mean angle through a planar slice of the body to define a first set of rays, transmitting a plurality of further sets of rays at angles or mean angles different from each other and from the initial angle or initial mean angle through the same planar slice of the body to define by the intersection of all such rays a two-dimensional matrix of elements of the body in the slice, measuring for each ray emerging from the body a number of over the period of time at least equal to a pulse interval representing the momentary sum of the transmissions or absorptions of the element of the body intersected by the ray, determining from the momentary signals momentary signals a difference signal representing the maximum difference between the momentary signals for each ray over the period of time, deriving sets of discrete difference signals corresponding to the sets of rays, the difference signals being indicative of the transmission or absorption of blood flowing through each element of the body in the matrix, and calculating from the difference signals resultant signals representing the transmissions or absorptions due to blood flow in the elements of the matrix. These resultant signals may be visually depicted on a cathode ray tube display, as a digital print-out, or as a photograph. 30 claims, 8 figures

  4. Meridional flow in the solar convection zone. I. Measurements from gong data

    Energy Technology Data Exchange (ETDEWEB)

    Kholikov, S. [National Solar Observatories, Tucson, AZ 85719 (United States); Serebryanskiy, A. [Ulugh Beg Astronomical Institute, Uzbek Academy of Science, Tashkent 100052 (Uzbekistan); Jackiewicz, J., E-mail: kholikov@noao.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States)

    2014-04-01

    Large-scale plasma flows in the Sun's convection zone likely play a major role in solar dynamics on decadal timescales. In particular, quantifying meridional motions is a critical ingredient for understanding the solar cycle and the transport of magnetic flux. Because the signal of such features can be quite small in deep solar layers and be buried in systematics or noise, the true meridional velocity profile has remained elusive. We perform time-distance helioseismology measurements on several years worth of Global Oscillation Network Group Doppler data. A spherical harmonic decomposition technique is applied to a subset of acoustic modes to measure travel-time differences to try to obtain signatures of meridional flows throughout the solar convection zone. Center-to-limb systematics are taken into account in an intuitive yet ad hoc manner. Travel-time differences near the surface that are consistent with a poleward flow in each hemisphere and are similar to previous work are measured. Additionally, measurements in deep layers near the base of the convection zone suggest a possible equatorward flow, as well as partial evidence of a sign change in the travel-time differences at mid-convection zone depths. This analysis on an independent data set using different measurement techniques strengthens recent conclusions that the convection zone may have multiple 'cells' of meridional flow. The results may challenge the common understanding of one large conveyor belt operating in the solar convection zone. Further work with helioseismic inversions and a careful study of systematic effects are needed before firm conclusions of these large-scale flow structures can be made.

  5. An advanced ultrasonic technique for slow and void fraction measurements of two-phase flow

    International Nuclear Information System (INIS)

    Faccini, J.L.H.; Su, J.; Harvel, G.D.; Chang, J.S.

    2004-01-01

    In this paper, we present a hybrid type counterpropagating transmission ultrasonic technique (CPTU) for flow and time averaging ultrasonic transmission intensity void fraction measurements (TATIU) of air-water two-phase flow, which is tested in the new two-phase flow test section mounted recently onto an existing single phase flow rig. The circular pipe test section is made of 51.2 mm stainless steel, followed by a transparent extruded acrylic pipe aimed at flow visualization. The two-phase flow rig operates in several flow regimes: bubbly, smooth stratified, wavy stratified and slug flow. The observed flow patterns are compared with previous experimental and numerical flow regime map for horizontal two phase flows. These flow patterns will be identified by time averaging transmission intensity ultrasonic techniques which have been developed to meet this particular application. A counterpropagating transmission ultrasonic flowmeter is used to measure the flow rate of liquid phase. A pulse-echo TATIU ultrasonic technique used to measure the void fraction of the horizontal test section is presented. We can draw the following conclusions: 1) the ultrasonic system was able to characterize the 2 flow patterns simulated (stratified and plug flow); 2) the results obtained for water volumetric fraction require more experimental work to determine exactly the technique uncertainties but, a priori, they are consistent with earlier work; and 3) the experimental uncertainties can be reduced by improving the data acquisition system, changing the acquisition time interval from seconds to milliseconds

  6. Study on flow rate measurement and visualization of helium-air exchange flow through a small opening

    International Nuclear Information System (INIS)

    Fumizawa, Motoo

    1992-01-01

    This paper deals with an experimental investigation on buoyancy-driven exchange flows through horizontal and inclined openings. The method of the mass increment was developed to measure the flow rate in helium-air system and a displacement fringe technique was adopted in Mach-Zehnder interferometer to visualize the flow. As the result, the followings were obtained: Flow visualization results indicate that the upward and downward plumes of helium and air break through the opening intermittently, and they swing in the lateral direction through the horizontal opening. It is clearly visualized that the exchange flows through the inclined openings take place smoothly and stably in the separated passages. The inclination angle for the maximum Froude number decreases with increasing length-to-diameter ratio in the helium-air system, on the contrary to Mercer's experimental results in the water-brine system indicating that the angle remains almost constant. (author)

  7. Development of gas-liquid two-phase flow measurement technique in narrow channel. Application of micro wire-mesh sensor to the flow between parallel plates

    International Nuclear Information System (INIS)

    Ito, Daisuke; Kikura, Hiroshige; Aritomi, Masanori

    2009-01-01

    A novel two-phase flow measuring technique based on local electrical conductivity measurement was developed for clarifications of three-dimensional flow structure in gas-liquid two-phase flow in a narrow channel. The measuring method applies the principle of conventional wire-mesh tomography, which can measure the instantaneous void fraction distributions in a cross-section of a flow channel. In this technique, the electrodes are fixed on the inside of the walls facing each other, and the local void fractions were obtained by the electrical conductivity measurement between electrodes arranged on each wall. Therefore, the flow structure and the bubble behavior can be investigated by three-dimensional void fraction distributions in the channel with narrow gap. In this paper, a micro Wire-Mesh Sensor (μWMS) which has the gap of 3 mm was developed, and the instantaneous void fraction distributions were measured. From the measured distributions, three-dimensional bubble distributions were reconstructed, and bubble volumes and bubble velocities were estimated. (author)

  8. Calibration of nozzle for air mass flow measurement

    Science.gov (United States)

    Uher, Jan; Kanta, Lukáš

    2017-09-01

    The effort to make calibration measurement of mass flow through a nozzle was not satisfying. Traversing across the pipe radius with Pitot probe was done. The presence of overshoot behind the bend in the pipe was found. The overshoot led to an asymmetric velocity profile.

  9. Optical Flow-Field Techniques Used for Measurements in High-Speed Centrifugal Compressors

    Science.gov (United States)

    Skoch, Gary J.

    1999-01-01

    The overall performance of a centrifugal compressor depends on the performance of the impeller and diffuser as well as on the interactions occurring between these components. Accurate measurements of the flow fields in each component are needed to develop computational models that can be used in compressor design codes. These measurements must be made simultaneously over an area that covers both components so that researchers can understand the interactions occurring between the two components. Optical measurement techniques are being used at the NASA Lewis Research Center to measure the velocity fields present in both the impeller and diffuser of a 4:1 pressure ratio centrifugal compressor operating at several conditions ranging from design flow to surge. Laser Doppler Velocimetry (LDV) was used to measure the intrablade flows present in the impeller, and the results were compared with analyses obtained from two three-dimensional viscous codes. The development of a region of low throughflow velocity fluid within this high-speed impeller was examined and compared with a similar region first observed in a large low-speed centrifugal impeller at Lewis. Particle Image Velocimetry (PIV) is a relatively new technique that has been applied to measuring the diffuser flow fields. PIV can collect data rapidly in the diffuser while avoiding the light-reflection problems that are often encountered when LDV is used. The Particle Image Velocimeter employs a sheet of pulsed laser light that is introduced into the diffuser in a quasi-radial direction through an optical probe inserted near the diffuser discharge. The light sheet is positioned such that its centerline is parallel to the hub and shroud surfaces and such that it is parallel to the diffuser vane, thereby avoiding reflections from the solid surfaces. Seed particles small enough to follow the diffuser flow are introduced into the compressor at an upstream location. A high-speed charge-coupled discharge (CCD) camera is

  10. Improving flow in the OR.

    Science.gov (United States)

    Blouin-Delisle, Charles Hubert; Drolet, Renee; Gagnon, Serge; Turcotte, Stephane; Boutet, Sylvie; Coulombe, Martin; Daneau, Eric

    2018-03-12

    Purpose The purpose of this paper is to increase efficiency in ORs without affecting quality of care by improving the workflow processes. Administrative processes independent of the surgical act can be challenging and may lead to clinical impacts such as increasing delays. The authors hypothesized that a Lean project could improve efficiency of surgical processes by reducing the length of stays in the recovery ward. Design/methodology/approach Two similar Lean projects were performed in the surgery departments of two hospitals of the Centre Hospitalier Universitaire de Québec: Hôtel Dieu de Quebec (HDQ) and Hôpital de l'Enfant Jesus (HEJ). The HDQ project designed around a Define, Measure, Analyse, Improve and Control process revision and a Kaizen workshop focused on patients who were hospitalized in a specific care unit after surgery and the HEJ project targeted patients in a post-operative ambulatory context. The recovery ward output delay was measured retrospectively before and after project. Findings For the HDQ Lean project, wasted time in the recovery ward was reduced by 62 minutes (68 percent reduction) between the two groups. The authors also observed an increase of about 25 percent of all admissions made in the daytime after the project compared to the time period before the project. For the HEJ Lean project, time passed in the recovery ward was reduced by 6 min (29 percent reduction). Originality/value These projects produced an improvement in the flow of the OR without targeting clinical practices in the OR itself. They demonstrated that change in administrative processes can have a great impact on the flow of clinical pathways and highlight the need for comprehensive and precise monitoring of every step of the elective surgery patient trajectory.

  11. Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements

    International Nuclear Information System (INIS)

    Toloui, Mostafa; Mallery, Kevin; Hong, Jiarong

    2017-01-01

    Three-dimensional (3D) particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provide the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. In this study, we present our latest developments on minimizing these challenges, which enables high-fidelity DIH-PTV implementation to larger sampling volumes with significantly higher particle seeding densities suitable for wall-bounded turbulent flow measurements. The improvements include: (1) adjustable window thresholding; (2) multi-pass 3D tracking; (3) automatic wall localization; and (4) continuity-based out-of-plane velocity component computation. The accuracy of the proposed DIH-PTV method is validated with conventional 2D PIV and double-view holographic PTV measurements in smooth-wall turbulent channel flow experiments. The capability of the technique in characterization of wall-bounded turbulence is further demonstrated through its application to flow measurements for smooth- and rough-wall turbulent channel flows. In these experiments, 3D velocity fields are measured within sampling volumes of 14.7  ×  50.0  ×  14.4 mm 3 (covering the entire depth of the channel) with a velocity resolution of  <1.1 mm/vector. Overall, the presented DIH-PTV method and

  12. Pattern recognition techniques for horizontal and vertically upward multiphase flow measurement

    Science.gov (United States)

    Arubi, Tesi I. M.; Yeung, Hoi

    2012-03-01

    The oil and gas industry need for high performing and low cost multiphase meters is ever more justified given the rapid depletion of conventional oil reserves that has led oil companies to develop smaller and marginal fields and reservoirs in remote locations and deep offshore, thereby placing great demands for compact and more cost effective solutions of on-line continuous multiphase flow measurement for well testing, production monitoring, production optimisation, process control and automation. The pattern recognition approach for clamp-on multiphase measurement employed in this study provides one means for meeting this need. High speed caesium-137 radioisotope-based densitometers were installed vertically at the top of a 50.8mm and 101.6mm riser as well as horizontally at the riser base in the Cranfield University multiphase flow test facility. A comprehensive experimental campaign comprising flow conditions typical of operating conditions found in the Petroleum Industry was conducted. The application of a single gamma densitometer unit, in conjunction with pattern recognition techniques to determine both the phase volume fractions and velocities to yield the individual phase flow rates of horizontal and vertically upward multiphase flows was investigated. The pattern recognition systems were trained to map the temporal fluctuations in the multiphase mixture density with the individual phase flow rates using statistical features extracted from the gamma counts signals as their inputs. Initial results yielded individual phase flow rate predictions to within ±5% relative error for the two phase airwater flows and ±10% for three phase air-oil-water flows data.

  13. Toward Understanding Tip Leakage Flows in Small Compressor Cores Including Stator Leakage Flow

    Science.gov (United States)

    Berdanier, Reid A.; Key, Nicole L.

    2017-01-01

    The focus of this work was to provide additional data to supplement the work reported in NASA/CR-2015-218868 (Berdanier and Key, 2015b). The aim of that project was to characterize the fundamental flow physics and the overall performance effects due to increased rotor tip clearance heights in axial compressors. Data have been collected in the three-stage axial research compressor at Purdue University with a specific focus on analyzing the multistage effects resulting from the tip leakage flow. Three separate rotor tip clearances were studied with nominal tip clearance gaps of 1.5 percent, 3.0 percent, and 4.0 percent based on a constant annulus height. Overall compressor performance was previously investigated at four corrected speedlines (100 percent, 90 percent, 80 percent, and 68 percent) for each of the three tip clearance configurations. This study extends the previously published results to include detailed steady and time-resolved pressure data at two loading conditions, nominal loading (NL) and high loading (HL), on the 100 percent corrected speedline for the intermediate clearance level (3.0 percent). Steady detailed radial traverses of total pressure at the exit of each stator row are supported by flow visualization techniques to identify regions of flow recirculation and separation. Furthermore, detailed radial traverses of time-resolved total pressures at the exit of each rotor row have been measured with a fast-response pressure probe. These data were combined with existing three-component velocity measurements to identify a novel technique for calculating blockage in a multistage compressor. Time-resolved static pressure measurements have been collected over the rotor tips for all rotors with each of the three tip clearance configurations for up to five loading conditions along the 100 percent corrected speedline using fast-response piezoresistive pressure sensors. These time-resolved static pressure measurements reveal new knowledge about the

  14. Adaptive projection intensity adjustment for avoiding saturation in three-dimensional shape measurement

    Science.gov (United States)

    Chen, Chao; Gao, Nan; Wang, Xiangjun; Zhang, Zonghua

    2018-03-01

    Phase-based fringe projection methods have been commonly used for three-dimensional (3D) measurements. However, image saturation results in incorrect intensities in captured fringe pattern images, leading to phase and measurement errors. Existing solutions are complex. This paper proposes an adaptive projection intensity adjustment method to avoid image saturation and maintain good fringe modulation in measuring objects with a high range of surface reflectivities. The adapted fringe patterns are created using only one prior step of fringe-pattern projection and image capture. First, a set of phase-shifted fringe patterns with maximum projection intensity value of 255 and a uniform gray level pattern are projected onto the surface of an object. The patterns are reflected from and deformed by the object surface and captured by a digital camera. The best projection intensities corresponding to each saturated-pixel clusters are determined by fitting a polynomial function to transform captured intensities to projected intensities. Subsequently, the adapted fringe patterns are constructed using the best projection intensities at projector pixel coordinate. Finally, the adapted fringe patterns are projected for phase recovery and 3D shape calculation. The experimental results demonstrate that the proposed method achieves high measurement accuracy even for objects with a high range of surface reflectivities.

  15. Measurements of two-phase flow patterns in a 4 x 4 rod bundle

    International Nuclear Information System (INIS)

    Akio tomiyama; Akira Sou; Shigeo Hosokawa; Masato Mitsuhashi; Kohei Noda; Yasushi Tsubo; Kaichiro Mishima; Yoshiro Kudo

    2005-01-01

    Air-water two-phase flow patterns in a 4 x 4 square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12 mm in diameter were measured by utilizing FEP (fluorinated ethylene propylene) tubes for the rods. The FEP possesses the same refractive index with water, and therefore, whole flow patterns in the bundle and local flow patterns in subchannels were visualized with little optical distortion. In addition to the visualization, transmission rates of laser beam from one rod to its opponent rod and two-point correlation coefficients of phase indicator functions were measured to examine the feasibility of objective identification of flow patterns in subchannels. The ranges of liquid and gas volume fluxes, JL and JG, were 0.1 < JL < 2.0 m/s and 0.04 < JG < 8.85 m/s, respectively. As a result, the following conclusions were obtained: (1) slug flow pattern does not appear in the rod bundle and bubbly flow would directly transit to churn flow, (2) the measured boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows given by Mishima and Ishii's flow pattern transition model, (3) critical void fraction causing bubbly to churn flow transition depends on a subchannel, i.e., about 0.3 for inner subchannels, about 0.2 for side subchannels and about 0.1 for corner subchannels, and (4) the two-point correlation coefficient of phase indicator functions for two inner subchannels shows a steep increase at the bubbly to churn flow transition, which, in turn, means that the two-point correlation is an appropriate indicator for detecting this transition. (authors)

  16. Effects of flow changes on radiotracer binding: Simultaneous measurement of neuroreceptor binding and cerebral blood flow modulation.

    Science.gov (United States)

    Sander, Christin Y; Mandeville, Joseph B; Wey, Hsiao-Ying; Catana, Ciprian; Hooker, Jacob M; Rosen, Bruce R

    2017-01-01

    The potential effects of changes in blood flow on the delivery and washout of radiotracers has been an ongoing question in PET bolus injection studies. This study provides practical insight into this topic by experimentally measuring cerebral blood flow (CBF) and neuroreceptor binding using simultaneous PET/MRI. Hypercapnic challenges (7% CO 2 ) were administered to non-human primates in order to induce controlled increases in CBF, measured with pseudo-continuous arterial spin labeling. Simultaneously, dopamine D 2 /D 3 receptor binding of [ 11 C]raclopride or [ 18 F]fallypride was monitored with dynamic PET. Experiments showed that neither time activity curves nor quantification of binding through binding potentials ( BP ND ) were measurably affected by CBF increases, which were larger than two-fold. Simulations of experimental procedures showed that even large changes in CBF should have little effect on the time activity curves of radiotracers, given a set of realistic assumptions. The proposed method can be applied to experimentally assess the flow sensitivity of other radiotracers. Results demonstrate that CBF changes, which often occur due to behavioral tasks or pharmacological challenges, do not affect PET [ 11 C]raclopride or [ 18 F]fallypride binding studies and their quantification. The results from this study suggest flow effects may have limited impact on many PET neuroreceptor tracers with similar properties.

  17. Characterization of bio-inspired hair flow sensors for oscillatory airflows: techniques to measure the response for both flow and pressure

    NARCIS (Netherlands)

    Droogendijk, H.; Dagamseh, A.M.K.; Sanders, Remco G.P.; Yntema, Doekle Reinder; Krijnen, Gijsbertus J.M.

    2014-01-01

    Hair sensors for oscillatory airflow, operating in the regime of bulk flow, particle velocity or both, can be characterized by several methods. In this work, we discuss harmonic measurements on MEMS hair flow sensors. To characterize this type of flow sensor the use of three different types of

  18. A Comparative Study of Simulated and Measured Gear-Flap Flow Interaction

    Science.gov (United States)

    Khorrami, Mehdi R.; Mineck, Raymond E.; Yao, Chungsheng; Jenkins, Luther N.; Fares, Ehab

    2015-01-01

    The ability of two CFD solvers to accurately characterize the transient, complex, interacting flowfield asso-ciated with a realistic gear-flap configuration is assessed via comparison of simulated flow with experimental measurements. The simulated results, obtained with NASA's FUN3D and Exa's PowerFLOW® for a high-fidelity, 18% scale semi-span model of a Gulfstream aircraft in landing configuration (39 deg flap deflection, main landing gear on and off) are compared to two-dimensional and stereo particle image velocimetry measurements taken within the gear-flap flow interaction region during wind tunnel tests of the model. As part of the bench-marking process, direct comparisons of the mean and fluctuating velocity fields are presented in the form of planar contour plots and extracted line profiles at measurement planes in various orientations stationed in the main gear wake. The measurement planes in the vicinity of the flap side edge and downstream of the flap trailing edge are used to highlight the effects of gear presence on tip vortex development and the ability of the computational tools to accurately capture such effects. The present study indicates that both computed datasets contain enough detail to construct a relatively accurate depiction of gear-flap flow interaction. Such a finding increases confidence in using the simulated volumetric flow solutions to examine the behavior of pertinent aer-odynamic mechanisms within the gear-flap interaction zone.

  19. Tritium inventory measurements by 'in-bed' gas flowing calorimetry

    International Nuclear Information System (INIS)

    Hayashi, T.; Suzuki, T.; Yamada, M.; Okuno, K.

    1996-01-01

    In order to establish the 'in-bed' tritium accounting technology for the ITER scale tritium storage system, a gas flowing calorimetry has been studied using a scaled ZrCo bed (25 g tritium capacity). The basic calorimetric characteristics, steady state temperature raise of He gas stream flowing through a secondary coil line fixed in the ZrCo tritide, was measured and correlated with the stored tritium inventory. The results shows that about 4 degrees raise of He stream temperature can be detected for each gram of tritium storage. The sensitivity of this calorimetry is about 0.05 g of tritium, calculated by 0.2 degrees of temperature sensor error. The accuracy is better than 0.25 g of tritium on 25 g storage, evaluated by 2 times of standard deviation from the repeat measurements. This accuracy of < 1% on full storage capacity is satisfied the target accountability to measure ± 1 gram of tritium on 100 g storage for ITER. 13 refs., 7 figs

  20. Experiment for water-flow measurement by pulsed-neutron activation

    International Nuclear Information System (INIS)

    Drozdowicz, K.

    1994-08-01

    An experiment is presented which constitutes a feasibility study for applying the neutron activation method for measurement of the water mass transport in pipings, e.g. in nuclear power stations. The fast neutron generator has been used as a pulsed-neutron activation source for oxygen in water which circulated in a closed system. The γ radiation of the nitrogen product isotope has been measured by the scintillation detectors placed in two positions at the piping. The two time distributions of the pulses have been recorded by a multiscaler (a software design based on CAMAC). The water flow velocity has been estimated from the peak-to-peak time distance. The tests have been performed under different experimental conditions (the neutron pulse duration, the time channel width, the water flow velocity) to define the stability, reproducibility and reliability of the measurement. The detailed results are presented in tables and in time distribution plots. The method has been found useful for the application considered. 4 refs, 17 figs, 5 tabs

  1. Measurement of void fraction and bubble size distribution in two-phase flow system

    International Nuclear Information System (INIS)

    Huahun, G.

    1987-01-01

    The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before

  2. Laser Doppler measurements in two-phase flows

    International Nuclear Information System (INIS)

    Durst, F.; Zare, M.

    1976-01-01

    Basic theory for laser-Doppler velocity measurements of large reflecting or refracting surfaces is provided. It is shown that the Doppler-signals contain information of the velocity and size of the large bodies, and relationships for transforming velocity and radius of curvature of moving spheres are presented. Preliminary experiments verified the analytical findings and demonstrated the applicability of the method to some two-phase flows

  3. Flow characteristics of guide vane of diffuser pump by PIV measurement

    International Nuclear Information System (INIS)

    Kim, J. H.; Lee, Young Ho; Choi, J. W.; Kim, M. Y.; Lee, H.

    2000-01-01

    The present experimental study is focused on the application of multi-point simultaneous measurement by PIV(Particle Image Velocimetry) to guide vane region within a diffuser pump. Various different kinds of clearance were selected as experimental conditions. Optimized cross correlation identification to obtain velocity vectors was implemented with direct calculation of correlation coefficients. Fine optical setup important in PIV performance is arranged for the accurate PIV measurement of high-speed complex flow. Various flow patterns are represented quantitatively at the stator passages

  4. A simple technique to measure regional cerebral blood flow during intravascular ballon clamping

    International Nuclear Information System (INIS)

    Furuhata, Shigeru; Kubo, Atsushi; Kawase, Takeshi; Ibata, Yukio; Toya, Shigeo

    1988-01-01

    A case of giant internal carotid ophthalmic aneurysm was presented. In order to clarify whether the patient could tolerate carotid occlusion, a ballon clamping test was performed before surgery. The cerebral blood flow was measured using early imaging by single photon emission computed tomography (SPECT) with N-isopropyl-(iodine-123)-p-iodoamphetamine ( 123 I-IMP). When the ballon clamping test was performed the tracer was injected, and scanning was performed 35 minutes after removing the catheter. This tracer enabled a 'memory of blood flow' during temporary ischemia to determine the character of quick diffusion and slow wash out, that could not be performed by other methods of cerebral blood flow measurement. SPECT with 123 I-IMP can simplify the measurement of cerebral blood flow during the balloon clamping test. (author)

  5. Measurement of Two Phase Flow

    Directory of Open Access Journals (Sweden)

    J. Novotný

    2005-01-01

    Full Text Available This paper presents the results of experiments with moist wet steam. The aim of the experiment was to measure the velocity of the growth of a condensing nucleus in wet steam dependent on the velocity of condensation. For the experiments in wet steam an experimental setup was designed and constructed, which generated superheated steam at lowered pressure and a temperature of 50 °C. Low pressure and temperature of the hot vapour was chosen in order to minimize the risk of accidental disruption of the wall. The size of the condensing nucleus was measured by the method of Interferometric Particle Imaging (IPI. The IPI method is a technique for determining the particle size of transparent and spherical particles based on calculating the fringes captured on a CCD array. The number of fringes depends on the particle size and on the optical configuration. The experimental setup used is identical with the setup for measuring flow by the stereo PIV method. The only difference is the use of a special camera mount comprising a transparent mirror and enabling both cameras to be focused to one point. We present the results of the development of the growth of a condensing nucleus and histograms of the sizes of all measured particles depending on position and condensation velocity. 

  6. A flow cytometric assay for simultaneously measuring the ...

    African Journals Online (AJOL)

    This research objective was to exploit a novel method for measuring the proliferation, cytotoxicity of cytokine-induced killer (CIK) cells using carboxyfluorescein succinimidyl ester/proliferation index (CFSE/PI) and flow cytometric assay. As cells divide, CFSE is apportioned equally between the two daughter cells, leading to a ...

  7. 3D Groundwater flow model at the Upper Rhine Graben scale to delineate preferential target areas for geothermal projects

    Science.gov (United States)

    Armandine Les Landes, Antoine; Guillon, Théophile; Peter-Borie, Mariane; Rachez, Xavier

    2017-04-01

    Any deep unconventional geothermal project remains risky because of the uncertainty regarding the presence of the geothermal resource at depth and the drilling costs increasing accordingly. That's why this resource must be located as precisely as possible to increase the chances of successful projects and their economic viability. To minimize the risk, as much information as possible should be gathered prior to any drilling. Usually, the position of the exploration wells of geothermal energy systems is chosen based on structural geology observations, geophysics measurements and geochemical analyses. Confronting these observations to results from additional disciplines should bring more objectivity in locating the region to explore and where to implant the geothermal system. The Upper Rhine Graben (URG) is a tectonically active rift system that corresponds to one branch of the European Cenozoic Rift System where the basin hosts a significant potential for geothermal energy. The large fault network inherited from a complex tectonic history and settled under the sedimentary deposits hosts fluid circulation patterns. Geothermal anomalies are strongly influenced by fluid circulations within permeable structures such as fault zones. In order to better predict the location of the geothermal resource, it is necessary to understand how it is influenced by heat transport mechanisms such as groundwater flow. The understanding of fluid circulation in hot fractured media at large scale can help in the identification of preferential zones at a finer scale where additional exploration can be carried out. Numerical simulations is a useful tool to deal with the issue of fluid circulations through large fault networks that enable the uplift of deep and hot fluids. Therefore, we build a numerical model to study groundwater flow at the URG scale (150 x 130km), which aims to delineate preferential zones. The numerical model is based on a hybrid method using a Discrete Fracture Network

  8. Portal blood flow volume measurement in schistosomal patients: evaluation of Doppler ultrasonography reproducibility

    International Nuclear Information System (INIS)

    Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; Shigueoka, David Carlos; D'Ippolito, Giuseppe; Colleoni, Ramiro

    2008-01-01

    Objective: To evaluate the reproducibility of Doppler ultrasonography in the measurement of portal blood flow volume in schistosomal patients. Materials and methods: Prospective, transversal, observational and self-paired study evaluating 21 patients with hepatosplenic schistosomiasis submitted to Doppler ultrasonography performed by three independent observers for measurement of portal blood flow. Pairwise interobserver agreement was calculated by means of the intraclass correlation coefficient, paired t-test and Pearson's correlation coefficient. Results: Interobserver agreement was excellent. Intraclass correlation ranged from 80.6% to 93.0% (IC at 95% [65.3% ; 95.8%]), with the Pearson's correlation coefficient ranging between 81.6% and 92.7% with no statistically significant interobserver difference regarding the mean portal blood flow volume measured by Doppler ultrasonography (p = 0.954 / 0.758 / 0.749). Conclusion: Doppler ultrasonography has demonstrated to be a reliable method for measuring the portal blood flow volume in patients with portal hypertension secondary to schistosomiasis, with a good interobserver agreement. (author)

  9. Portal blood flow volume measurement in schistosomal patients: evaluation of Doppler ultrasonography reproducibility

    Energy Technology Data Exchange (ETDEWEB)

    Leao, Alberto Ribeiro de Souza; Santos, Jose Eduardo Mourao; Moulin, Danilo Sales; Shigueoka, David Carlos; D' Ippolito, Giuseppe [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Escola Paulista de Medicina. Dept. de Diagnostico por Imagem]. E-mail: ar.leao@uol.com.br; Colleoni, Ramiro [Universidade Federal de Sao Paulo (UNIFESP/EPM), SP (Brazil). Escola Paulista de Medicina. Dept. de Gastroenterologia

    2008-09-15

    Objective: To evaluate the reproducibility of Doppler ultrasonography in the measurement of portal blood flow volume in schistosomal patients. Materials and methods: Prospective, transversal, observational and self-paired study evaluating 21 patients with hepatosplenic schistosomiasis submitted to Doppler ultrasonography performed by three independent observers for measurement of portal blood flow. Pairwise interobserver agreement was calculated by means of the intraclass correlation coefficient, paired t-test and Pearson's correlation coefficient. Results: Interobserver agreement was excellent. Intraclass correlation ranged from 80.6% to 93.0% (IC at 95% [65.3% ; 95.8%]), with the Pearson's correlation coefficient ranging between 81.6% and 92.7% with no statistically significant interobserver difference regarding the mean portal blood flow volume measured by Doppler ultrasonography (p = 0.954 / 0.758 / 0.749). Conclusion: Doppler ultrasonography has demonstrated to be a reliable method for measuring the portal blood flow volume in patients with portal hypertension secondary to schistosomiasis, with a good interobserver agreement. (author)

  10. Beneficial aspects of real time flow measurements for the management of acute right ventricular heart failure following continuous flow ventricular assist device implantation

    Directory of Open Access Journals (Sweden)

    Spiliopoulos Sotirios

    2012-11-01

    Full Text Available Abstract Background Optimal management of acute right heart failure following the implantation of a left ventricular assist device requires a reliable estimation of left ventricular preload and contractility. This is possible by real-time pump blood flow measurements. Clinical case We performed implantation of a continuous flow left ventricular assist device in a 66 years old female patient with an end-stage heart failure on the grounds of a dilated cardiomyopathy. Real-time pump blood flow was directly measured by an ultrasonic flow probe placed around the outflow graft. Diagnosis The progressive decline of real time flow and the loss of pulsatility were associated with an increase of central venous pressure, inotropic therapy and progressive renal failure suggesting the presence of an acute right heart failure. Diagnosis was validated by echocardiography and thermodilution measurements. Treatment Temporary mechanical circulatory support of the right ventricle was successfully performed. Real time flow measurement proved to be a useful tool for the diagnosis and ultimately for the management of right heart failure including the weaning from extracorporeal membrane oxygenation.

  11. Ultrasonic computerized tomography (CT) for temperature measurements with limited projection data based on extrapolated filtered back projection (FBP) method

    International Nuclear Information System (INIS)

    Zhu Ning; Jiang Yong; Kato, Seizo

    2005-01-01

    This study uses ultrasound in combination with tomography to obtain three-dimensional temperature measurements using projection data obtained from limited projection angle. The main feature of the new computerized tomography (CT) reconstruction algorithm is to employ extrapolation scheme to make up for the incomplete projection data, it is based on the conventional filtered back projection (FBP) method while on top of that taking into account the correlation between the projection data and Fourier transform-based extrapolation. Computer simulation is conducted to verify the above algorithm. An experimental 3D temperature distribution measurement is also carried out to validate the proposed algorithm. The simulation and experimental results demonstrate that the extrapolated FBP CT algorithm is highly effective in dealing with projection data from limited projection angle

  12. Spatio-Temporal Image Correlation Spectroscopy Measurements of Flow Demonstrated in Microfluidic Channels

    Science.gov (United States)

    Rossow, Molly; Mantulin, William W.; Gratton, Enrico

    2009-01-01

    Accurate blood flow measurements during surgery can improve the operations chance of success. We developed Near-infrared Spatio-Temporal Image Spectroscopy (NIR-STICS), which has the potential to make blood flow measurements that are difficult to accomplish with existing methods. Specifically, we propose the technique and we show feasibility on phantom measurements. NIR-STICS has the potential of measuring the fluid velocity in small blood vessels (less than 1mm in diameter) and of creating a map of blood flow rates over an area of approximately 1cm2. NIR-STICS employs near-infrared spectroscopy to probe inside blood vessel walls and spatio-temporal image correlation spectroscopy to directly—without the use of a model—extract fluid velocity from the fluctuations within an image. Here we present computer simulations and experiments on a phantom system that demonstrate the effectiveness of NIR-STICS. PMID:19405744

  13. The Palmottu analogue project

    International Nuclear Information System (INIS)

    Ahonen, L.; Blomqvist, R.; Suksi, J.

    1993-01-01

    The report gives a summary of the results of investigations carried out in 1992 at the Palmottu natural analogue study site, which is a small U-Th mineralization in Nummi-Pusula, southwestern Finland. Additionally, the report includes several separate articles dealing with various aspects of the Palmottu Analogue Project: (1) deep groundwater flow, (2) interpretation of hydraulic connections, (3) characterization of groundwater colloids, (4) uranium mineral-groundwater equilibrium, (5) water-rock interaction and (6) modelling of in situ matrix diffusion. The Palmottu Analogue Project aims at a more profound understanding of radionuclide transport processes in fractured crystalline bedrock. The essential factors controlling transport are groundwater flow and interaction between water and rock. Accordingly, the study includes (1) structural interpretations partly based on geophysical measurements, (2) hydrological studies including hydraulic drill-hole measurements, (3) flow modelling, (4) hydrogeochemical characterization of groundwater, uranium chemistry and colloid chemistry, (5) mineralogical studies, (6) geochemical interpretation and modelling, (7) studies of radionuclide mobilization and retardation including matrix diffusion, and (8) modelling of uranium series data. Palaeohydrogeological aspects, due to the anticipated future glaciation of the Fennoscandian Shield, are of special interest. Quaternary sediments are studied to gain information on post-glacial migration in the overburden. (orig.)

  14. Uteroplacental blood flow measured by placental scintigraphy during epidural anaesthesia for caesarean section

    Energy Technology Data Exchange (ETDEWEB)

    Skjoeldebrand, A.; Eklund, J.; Johansson, H.; Lunell, N.-O.; Nylund, L.; Sarby, B.; Thornstroem, S. (Departments of Anaesthesiology, Obstetrics and Gynaecology and Medical Physics, Karolinska Institute at Huddinge University Hospital, Stockholm (Sweden))

    1990-01-01

    The uteroplacental blood flow was measured before and during epidural anaesthesia for caesarean section in 11 woman. The blood flow was measured with dynamic placental scintigraphy. After an i.v. injection of indium-113m chloride, the gamma radiation over the placenta was recorded with a computer-linked scintillation camera. The uteroplacental blood flow could be calculated from the isotope accumulation curve. The anaesthesia was performed with bupivacaine plain 0.5%, 18-22 ml and a preload of a balanced electrolyte solution 10 ml/kg b.w. was given. The placental blood flow decreased in eight patients and increased in three with a median change of -21%, not being statistically significant. No correlation between maternal blood pressure and placental blood flow was found. (author).

  15. Uteroplacental blood flow measured by placental scintigraphy during epidural anaesthesia for caesarean section

    International Nuclear Information System (INIS)

    Skjoeldebrand, A.; Eklund, J.; Johansson, H.; Lunell, N.-O.; Nylund, L.; Sarby, B.; Thornstroem, S.

    1990-01-01

    The uteroplacental blood flow was measured before and during epidural anaesthesia for caesarean section in 11 woman. The blood flow was measured with dynamic placental scintigraphy. After an i.v. injection of indium-113m chloride, the gamma radiation over the placenta was recorded with a computer-linked scintillation camera. The uteroplacental blood flow could be calculated from the isotope accumulation curve. The anaesthesia was performed with bupivacaine plain 0.5%, 18-22 ml and a preload of a balanced electrolyte solution 10 ml/kg b.w. was given. The placental blood flow decreased in eight patients and increased in three with a median change of -21%, not being statistically significant. No correlation between maternal blood pressure and placental blood flow was found. (author)

  16. Comparative study of methods for blood flow measurement within transverse sinuses by using MR

    International Nuclear Information System (INIS)

    Gao Gejun; Feng Xiaoyuan; Yang Bojie; Geng Daoying

    2003-01-01

    Objective: To assess the accuracy of two-dimensional phase contrast (2D-PC) MR method for blood flow measurement within transverse sinuses by comparing this method with cine phase contrast (cine-PC) MR and Doppler in volunteers and patients. Methods: (1) A total of 12 transverse sinuses were examined in 8 healthy volunteers. 2D-PC MR and cine-PC MR were used respectively to measure the transverse area of flow, the flow velocities, and the volumetric flow rates in the same position in every transverse sinus. Paired t-test was used for comparison between the results determined by 2D-PC MR and that determined by cine-PC MR. (2) A total of 6 transverse sinuses were examined in 5 patients who needed operation. 2D-PC MR was used to determine the blood flow velocity of transverse sinus before operation, and Doppler was used to determine the blood flow velocity of the same transverse sinus during operation. The linear regression analysis was used for statistical analysis. Results: (1) Statistical analysis indicated that there were no significant difference among the transverse area of flow (t = -1.106, P = 0.293), the flow velocities (t = 0.262, P = 0.798), and the volumetric flow rates (t = 0.439, P = 0.669) measured by using 2D-PC MR and cine PC MR, respectively. (2) The correlation between flow velocities determined by 2D-PC MR imaging before operation and that determined by Doppler during operation was in excellent agreement (Y-circumflex = 1.303 x + 0.62, r 2 = 0.88). Conclusion: 2D-PC MR may be a practical convenient method for blood flow measurement within transverse sinuses system

  17. Estimating reservoir permeability from gravity current modeling of CO2 flow at Sleipner storage project, North Sea

    Science.gov (United States)

    Cowton, L. R.; Neufeld, J. A.; Bickle, M.; White, N.; White, J.; Chadwick, A.

    2017-12-01

    Vertically-integrated gravity current models enable computationally efficient simulations of CO2 flow in sub-surface reservoirs. These simulations can be used to investigate the properties of reservoirs by minimizing differences between observed and modeled CO2 distributions. At the Sleipner project, about 1 Mt yr-1 of supercritical CO2 is injected at a depth of 1 km into a pristine saline aquifer with a thick shale caprock. Analysis of time-lapse seismic reflection surveys shows that CO2 is distributed within 9 discrete layers. The trapping mechanism comprises a stacked series of 1 m thick, impermeable shale horizons that are spaced at 30 m intervals through the reservoir. Within the stratigraphically highest reservoir layer, Layer 9, a submarine channel deposit has been mapped on the pre-injection seismic survey. Detailed measurements of the three-dimensional CO2 distribution within Layer 9 have been made using seven time-lapse surveys, providing a useful benchmark against which numerical flow simulations can be tested. Previous simulations have, in general, been largely unsuccessful in matching the migration rate of CO2 in this layer. Here, CO2 flow within Layer 9 is modeled as a vertically-integrated gravity current that spreads beneath a structurally complex caprock using a two-dimensional grid, considerably increasing computational efficiency compared to conventional three-dimensional simulators. This flow model is inverted to find the optimal reservoir permeability in Layer 9 by minimizing the difference between observed and predicted distributions of CO2 as a function of space and time. A three parameter inverse model, comprising reservoir permeability, channel permeability and channel width, is investigated by grid search. The best-fitting reservoir permeability is 3 Darcys, which is consistent with measurements made on core material from the reservoir. Best-fitting channel permeability is 26 Darcys. Finally, the ability of this simplified numerical model

  18. Application of PNA-technique for the measurement of multi-phase flow

    International Nuclear Information System (INIS)

    Loevhoeiden, G.; Andersen, E.; Garder, K.; Rambaek, J.P.

    1986-09-01

    The pulsed neutron activation (PNA) technique is proposed for multi-phase flow monitoring of hydrocarbons. The reactions 12 C(n,p) 12 B and 12 C(n,n') 12 C both yeld 4.4 MeV in the form of gamma radiation as a measure of carbon content. Intensity measurement of the 4.4 MeV gamma line gives a measure of the carbon content in the irradiation zone. By use of a pulsed neutron source, an estimation of the carbon content time variation is possible. In the presence of sulphur in petroleum, the reaction 34 S(n,p) 34 P offers a better possibility for flow rate determination

  19. Assessment of salivary flow rate: biologic variation and measure error.

    NARCIS (Netherlands)

    Jongerius, P.H.; Limbeek, J. van; Rotteveel, J.J.

    2004-01-01

    OBJECTIVE: To investigate the applicability of the swab method in the measurement of salivary flow rate in multiple-handicap drooling children. To quantify the measurement error of the procedure and the biologic variation in the population. STUDY DESIGN: Cohort study. METHODS: In a repeated

  20. Flow measurement by Laser Doppler Anemometry in a nuclear fuel assembly

    International Nuclear Information System (INIS)

    Kehoe, A.

    1984-12-01

    Development of a Laser Doppler Anemometer measurement system and its operation are examined in this research. The system is designed for flow measurement in laboratory models of nuclear fuel assemblies. Use of the system is demonstrated by measuring turbulent velocity profiles in the laboratory model at full scale reactor flow rates. The reactors at the Savanah River Plant (SRP) are heavy water moderated and operate at low temperatures and pressures. Reactor power is currently limited by the temperature of the water in the nuclear fuel assembly. These temperature limits are conservatively calculated without allowing for any turbulent mixing. This research incorporates the design, fabriction and operation of a plexiglas model fuel assembly for the purpose of making turbulent velocity measurement via a Laser Doppler Anemometer System

  1. Summary of 1988 WIPP [Waste Isolation Pilot Plant] Facility horizon gas flow measurements

    International Nuclear Information System (INIS)

    Stormont, J.C.

    1990-11-01

    Numerous gas flow measurements have been made at the Waste Isolation Pilot Plant (WIPP) Facility horizon during 1988. All tests have been pressure decay or constant pressure tests from single boreholes drilled from the underground excavations. The test fluid has been nitrogen. The data have been interpreted as permeabilities and porosities by means of a transient numerical solution method. A closed-form steady-state approximation provides a reasonable order-of-magnitude permeability estimate. The effective resolution of the measurement system is less than 10 -20 m 2 . Results indicate that beyond 1 to 5 m from an excavation, the gas flow is very small and the corresponding permeability is below the system resolution. Within the first meter of an excavation, the interpreted permeabilities can be 5 orders of magnitude greater than the undisturbed or far-field permeability. The interpreted permeabilities in the region between the undisturbed region and the first meter from an excavation are in the range of 10 -16 to 10 -20 m 2 . Measurable gas flow occurs to a greater depth into the roof above WIPP excavations of different sizes and ages than into the ribs and floor. The gas flows into the formation surrounding the smallest excavation tested are consistently lower than those at similar locations surrounding larger excavations of comparable age. Gas flow measured in the interbed layers near the WIPP excavations is highly variable. Generally, immediately above and below excavations, relatively large gas flow is measured in the interbed layers. These results are consistent with previous measurements and indicate a limited disturbed zone surrounding WIPP excavations. 31 refs., 99 figs., 5 tabs

  2. Void Fraction Measurement in Subcooled-Boiling Flow Using High-Frame-Rate Neutron Radiography

    International Nuclear Information System (INIS)

    Kureta, Masatoshi; Akimoto, Hajime; Hibiki, Takashi; Mishima, Kaichiro

    2001-01-01

    A high-frame-rate neutron radiography (NR) technique was applied to measure the void fraction distribution in forced-convective subcooled-boiling flow. The focus was experimental technique and error estimation of the high-frame-rate NR. The results of void fraction measurement in the boiling flow were described. Measurement errors on instantaneous and time-averaged void fractions were evaluated experimentally and analytically. Measurement errors were within 18 and 2% for instantaneous void fraction (measurement time is 0.89 ms), and time-averaged void fraction, respectively. The void fraction distribution of subcooled boiling was measured using atmospheric-pressure water in rectangular channels with channel width 30 mm, heated length 100 mm, channel gap 3 and 5 mm, inlet water subcooling from 10 to 30 K, and mass velocity ranging from 240 to 2000 kg/(m 2 .s). One side of the channel was heated homogeneously. Instantaneous void fraction and time-averaged void fraction distribution were measured parametrically. The effects of flow parameters on void fraction were investigated

  3. Device for accurately measuring mass flow of gases

    Science.gov (United States)

    Hylton, James O.; Remenyik, Carl J.

    1994-01-01

    A device for measuring mass flow of gases which utilizes a substantially buoyant pressure vessel suspended within a fluid/liquid in an enclosure. The pressure vessel is connected to a weighing device for continuously determining weight change of the vessel as a function of the amount of gas within the pressure vessel. In the preferred embodiment, this pressure vessel is formed from inner and outer right circular cylindrical hulls, with a volume between the hulls being vented to the atmosphere external the enclosure. The fluid/liquid, normally in the form of water typically with an added detergent, is contained within an enclosure with the fluid/liquid being at a level such that the pressure vessel is suspended beneath this level but above a bottom of the enclosure. The buoyant pressure vessel can be interconnected with selected valves to an auxiliary pressure vessel so that initial flow can be established to or from the auxiliary pressure vessel prior to flow to or from the buoyant pressure vessel.

  4. Measurement of Vertical Oil-in-water Two-phase Flow Using Dual-modality ERT-EMF System

    OpenAIRE

    Faraj, Yousef; Wang, Mi; Jia, Jiabin; Wang, Qiang; Xie, Cheng-gang; Oddie, Gary; Primrose , Ken; Qiu, Changhua

    2015-01-01

    Oil-in-water two-phase flows are often encountered in the upstream petroleum industry. The measurement of phase flow rates is of particular importance for managing oil production and water disposal and/or water reinjection. The complexity of oil-in-water flow structures creates a challenge to flow measurement. This paper proposes a new method of two-phase flow metering, which is based on the use of dual-modality system and multidimensional data fusion. The Electrical Resistance Tomography sys...

  5. Measurements of liquid-phase turbulence in gas–liquid two-phase flows using particle image velocimetry

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Doup, Benjamin; Sun, Xiaodong

    2013-01-01

    Liquid-phase turbulence measurements were performed in an air–water two-phase flow loop with a circular test section of 50 mm inner diameter using a particle image velocimetry (PIV) system. An optical phase separation method-–planar laser-induced fluorescence (PLIF) technique—which uses fluorescent particles and an optical filtration technique, was employed to separate the signals of the fluorescent seeding particles from those due to bubbles and other noises. An image pre-processing scheme was applied to the raw PIV images to remove the noise residuals that are not removed by the PLIF technique. In addition, four-sensor conductivity probes were adopted to measure the radial distribution of the void fraction. Two benchmark tests were performed: the first was a comparison of the PIV measurement results with those of similar flow conditions using thermal anemometry from previous studies; the second quantitatively compared the superficial liquid velocities calculated from the local liquid velocity and void fraction measurements with the global liquid flow rate measurements. The differences of the superficial liquid velocity obtained from the two measurements were bounded within ±7% for single-phase flows and two-phase bubbly flows with the area-average void fraction up to 18%. Furthermore, a preliminary uncertainty analysis was conducted to investigate the accuracy of the two-phase PIV measurements. The systematic uncertainties due to the circular pipe curvature effects, bubble surface reflection effects and other potential uncertainty sources of the PIV measurements were discussed. The purpose of this work is to facilitate the development of a measurement technique (PIV-PLIF) combined with image pre-processing for the liquid-phase turbulence in gas–liquid two-phase flows of relatively high void fractions. The high-resolution data set can be used to more thoroughly understand two-phase flow behavior, develop liquid-phase turbulence models, and assess high

  6. Data Flow in Relation to Life-Cycle Costing of Construction Projects in the Czech Republic

    Science.gov (United States)

    Biolek, Vojtěch; Hanák, Tomáš; Marović, Ivan

    2017-10-01

    Life-cycle costing is an important part of every construction project, as it makes it possible to take into consideration future costs relating to the operation and demolition phase of a built structure. In this way, investors can optimize the project design to minimize the total project costs. Even though there have already been some attempts to implement BIM software in the Czech Republic, the current state of affairs does not support automated data flow between the bill of costs and applications that support building facility management. The main aim of this study is to critically evaluate the current situation and outline a future framework that should allow for the use of the data contained in the bill of costs to manage building operating costs.

  7. Simulating The Impact Of The Material Flow In The Jordanian Construction Supply Chain And Its Impact On Project Performance

    Directory of Open Access Journals (Sweden)

    Dr. Ghaith Al-Werikat

    2017-03-01

    Full Text Available With the new developments and challenges within the construction industry improving the construction supply chain is becoming a major concern to both governments and industries. Improving the construction supply chain helps in improving the quality of construction projects reducing cost wastes delays and other disruptions. This paper discusses the analysis of material flow in the construction supply chain. The methodology consisted of preliminary investigations survey and simulation development to analyse the extent of impact that material flow has on construction projects in Jordan. Both the main survey and the investigations revealed that material flow delays are caused mainly by 3 types of delays late delivery wrong specification and material damaged on site. The highest impact regarding late deliveries was scaffolding with a 16 probability of occurrence a 2-day delay on the activitys duration. Concrete ranked highest regarding wrong specification with a 19 probability of occurrence an 8-day delay the activitys duration. Regarding materials damaged on site bricks ranked highest with a 9 probability of occurrence a 3-day delay on the duration. The simulation results exhibited a delay of 50 on the projects duration and a probability of a delay occurring is 9.2.

  8. Comparative Measurement of Stream Flow in the Ethiope River for ...

    African Journals Online (AJOL)

    This study investigates comparative measurement of stream flow in the Ethiope River for small hydropower development. Two methods – the Float and Current Meter or Bridge Broom Methods were investigated and values compared to determine best method for optimal power generation. Depth and width measurements ...

  9. Handbook to guide the measurement and monitoring of project effectiveness and impact

    Energy Technology Data Exchange (ETDEWEB)

    1986-09-15

    This handbook demonstrates the application of a tool for measuring and monitoring the impact of a development project in the Department of Quezaltenango, Guatemala. That project itself presently is a demonstration. It explores the technical feasibility and the commercial possibilities of direct geothermal heat applications to the processing of agricultural produce - with the eventual purpose of expanding agricultural exports from Guatemala. The handbook focuses on an early stage of the geothermal initiative and guides preparations for future impact measurement and monitoring of geothermal projects. Primarily, guidance is for projects in agricultural applications of geothermal heat - and basically in Quezaltenango. But the exercise and the handbook are relevant in broad outline to other, industrial applications projects as well which may be based in other departments and have immediate impact across the whole country. This handbook attempts to prepare geothermal energy planners in Guatemala for that juncture when geothermal projects can be managed by objectives. It promotes and facilitates thinking about defining specific objectives for projects that result from the demonstration at Zunil (in Quezaltenango Department); and it prompts preparations for obtaining baseline measurements and for making rational projections on the achievements of future projects.

  10. A fast response miniature probe for wet steam flow field measurements

    International Nuclear Information System (INIS)

    Bosdas, Ilias; Mansour, Michel; Abhari, Reza S; Kalfas, Anestis I

    2016-01-01

    Modern steam turbines require operational flexibility due to renewable energies’ increasing share of the electrical grid. Additionally, the continuous increase in energy demand necessitates efficient design of the steam turbines as well as power output augmentation. The long turbine rotor blades at the machines’ last stages are prone to mechanical vibrations and as a consequence time-resolved experimental data under wet steam conditions are essential for the development of large-scale low-pressure steam turbines. This paper presents a novel fast response miniature heated probe for unsteady wet steam flow field measurements. The probe has a tip diameter of 2.5 mm, and a miniature heater cartridge ensures uncontaminated pressure taps from condensed water. The probe is capable of providing the unsteady flow angles, total and static pressure as well as the flow Mach number. The operating principle and calibration procedure are described in the current work and a detailed uncertainty analysis demonstrates the capability of the new probe to perform accurate flow field measurements under wet steam conditions. In order to exclude any data possibly corrupted by droplets’ impact or evaporation from the heating process, a filtering algorithm was developed and implemented in the post-processing phase of the measured data. In the last part of this paper the probe is used in an experimental steam turbine test facility and measurements are conducted at the inlet and exit of the last stage with an average wetness mass fraction of 8.0%. (paper)

  11. DEVELOPMENT OF MOLECULAR MONITORING TECHNOLOGIES TO MEASURE TRANSGENE FLOW AND INTROGRESSION IN CROP AND NON-CROP PLANT SPECIES

    Science.gov (United States)

    The Gene Flow Project at the US Environmental Protection Agency, Western Ecology Division is developing methodologies for ecological risk assessments of transgene flow using Agrostis and Brassica engineered with CP4 EPSPS genes that confer resistance to glyphosate herbicide. In ...

  12. Qualifying Elbow Meters for High Pressure Flow Measurements in an Operating Nuclear Power Plant

    International Nuclear Information System (INIS)

    Chan, A.M.; Maynard, K.J.; Ramundi, J.; Wiklung, E.

    2006-01-01

    To support the installation and use of elbow meters to measure the high pressure emergency coolant injection flow in an operating nuclear station, a test program was performed to qualify: (i) the 'hot' tapping procedure for field application and (ii) the use of elbow meters for accurate flow measurements over the full range of station ECI flow conditions. This paper describes the design conditions and major components of a flow loop used for the elbow meter calibrations. Typical test results are presented and discussed. (authors)

  13. Magnetic particle imaging for in vivo blood flow velocity measurements in mice

    Science.gov (United States)

    Kaul, Michael G.; Salamon, Johannes; Knopp, Tobias; Ittrich, Harald; Adam, Gerhard; Weller, Horst; Jung, Caroline

    2018-03-01

    Magnetic particle imaging (MPI) is a new imaging technology. It is a potential candidate to be used for angiographic purposes, to study perfusion and cell migration. The aim of this work was to measure velocities of the flowing blood in the inferior vena cava of mice, using MPI, and to evaluate it in comparison with magnetic resonance imaging (MRI). A phantom mimicking the flow within the inferior vena cava with velocities of up to 21 cm s‑1 was used for the evaluation of the applied analysis techniques. Time–density and distance–density analyses for bolus tracking were performed to calculate flow velocities. These findings were compared with the calibrated velocities set by a flow pump, and it can be concluded that velocities of up to 21 cm s‑1 can be measured by MPI. A time–density analysis using an arrival time estimation algorithm showed the best agreement with the preset velocities. In vivo measurements were performed in healthy FVB mice (n  =  10). MRI experiments were performed using phase contrast (PC) for velocity mapping. For MPI measurements, a standardized injection of a superparamagnetic iron oxide tracer was applied. In vivo MPI data were evaluated by a time–density analysis and compared to PC MRI. A Bland–Altman analysis revealed good agreement between the in vivo velocities acquired by MRI of 4.0  ±  1.5 cm s‑1 and those measured by MPI of 4.8  ±  1.1 cm s‑1. Magnetic particle imaging is a new tool with which to measure and quantify flow velocities. It is fast, radiation-free, and produces 3D images. It therefore offers the potential for vascular imaging.

  14. Meridional-Flow Measurements from 15 Years of GONG Spherical-Harmonic Time Series

    International Nuclear Information System (INIS)

    Kholikov, S; Hernandez, I Gonzalez; Hill, F; Leibacher, J

    2011-01-01

    We present results of meridional-flow measurements for 1995-2009, using travel-time differences from velocity images reconstructed using GONG spherical harmonic (SH) coefficients after applying phase-velocity and low-m filters. This filtering technique increases the signal-to-noise ratio and thus extends travel-time measurements to relatively high latitudes and deep into the convection zone. Preliminary analyses shows a strong one-year periodicity presumably due to solar pole misalignment and B 0 -angle artifacts, which makes it difficult to see underlying temporal variations. Removing a simple one-year-period sine wave fit reveals long-term temporal variations of the flow on top of this yearly periodicity. High-latitude measurements are affected more stronger by foreshortening and B 0 -angle artifacts. We analyze different B 0 -angle intervals separately, so in each hemisphere better high-latitude visibility comes six months apart. This approach suggests why at high latitudes travel-time measurements of meridional flow shows a tendency to change sign instead of continuing towards the poles.

  15. Primary flow and temperature measurements in PWRS using non-invasive techniques

    International Nuclear Information System (INIS)

    Favennec, J.M.; Jossinet, G.; Thomas, P.

    1995-08-01

    PWR primary flow and temperature measurements are classically done with either indirect or invasive techniques. EDF has developed and installed non-invasive innovative techniques on an industrial nuclear power plant (Chooz N1 type PWR). Primary flow-rate is determined by measurement of velocity of primary water in the hot leg: the time fluctuation of γ-ray activity from Nitrogen-16 (produced by neutron activation of 016) is measured outside of the pipe by two specially-designed detectors. The signals from both detectors are then cross-correlated to determine the transit time of primary water between the two detectors; primary flow-rate is then deduced Primary temperature is determined by measurement of sound velocity in hot and cold leg: two pairs of ultrasonic transducers, installed on pipe outer wall, emit pulses periodically, for which the time of flight along the two pipes diameters are determined. The sound velocity thus computed (diameter over time of flight) is then converted into temperature, by use of a calibration formula relating sound velocity to temperature and pressure. This paper addresses metrological and technical aspects of the methods. Experience feedback on industrial PWRs is also presented. (author). 4 refs., 13 figs

  16. Measurement of flow characteristics of solid particles mixed with gas in pipelines

    Energy Technology Data Exchange (ETDEWEB)

    Siberev, S P; Nazarov, S I; Soldatkin, G I

    1983-01-01

    A mathematical model of the interaction of solid particles in a gas stream flowing through a pipeline comprises equations for the energy and material balances in the system and for force and energy interactions between the solid particles and transducers located within the pipeline. Soviet researchers confirmed that the average value of stress recorded by a transducer is proportional to the average kinetic energy of the particles; for a constant particle speed, the stress is proportional to the mass flow of the particles. The analysis and flow transducer measurements are valuable in measuring and controlling flowline sand and soil in natural gas transport from gas wells and undergound storage facilities.

  17. Three-dimensional displacement measurement by fringe projection and speckle photography

    International Nuclear Information System (INIS)

    Barrientos, B.; Garcia-Marquez, J.; Cerca, M.; Hernandez-Bernal, C.

    2008-01-01

    3D displacement fields are measured by the combination of two optical methods, fringe projection and speckle photography. The use of only one camera recording the necessary information implies that no calibration procedures are necessary as is the case in techniques based on stereoscopy. The out-of-plane displacement is measured by fringe projection whereas speckle photography yields the 2-D in-plane component. To show the feasibility of the technique, we analyze a detailed morphological spatio-temporal evolution of a model of the Earth's crust while subjected to compression forces. The results show that the combination of fringe projection and speckle photography is well suited for this type of studies

  18. Measurement plans for process flow improvement in services and health care

    NARCIS (Netherlands)

    Kemper, B.; de Mast, J.

    2013-01-01

    The discussion of performance measurement is often on a conceptual, not operational, level; advice on the operational and practical matters of obtaining data for process flow improvement is scarce. We define a measurement plan and study four measurement study designs and corresponding methods and

  19. Measurement of regional cerebral blood flow by positron emission tomography

    International Nuclear Information System (INIS)

    Herscovitch, P.; Powers, W.J.

    1987-01-01

    The principal advantage of positron emission tomography over other methods for measuring cerebral blood flow stems from the accurate, quantitative three-dimensional measurements of regional brain radioactivity that are possible with this technique. As a result, accurate quantitative measurements of regional cerebral blood flow can be obtained for both superficial and deep cerebral structures. The value of PET for investigating central nervous system physiology and pathology extends far beyond this, however. Through the use of different radiotracers and appropriate mathematical models, PET can be applied to the measurement of a wide variety of physiologic variables. Measurements of rCBF tell only part of the story. Experience with PET and with a variety of other techniques has taught us that rCBF is at times a poor indicator of the metabolic, functional, and biochemical status of cerebral tissue. It is only by understanding the interaction of all of these factors that our understanding of neurologic disease can advance. It is in the investigation of these complex relationships that the real value of PET resides

  20. SAPFLUXNET: towards a global database of sap flow measurements.

    Science.gov (United States)

    Poyatos, Rafael; Granda, Víctor; Molowny-Horas, Roberto; Mencuccini, Maurizio; Steppe, Kathy; Martínez-Vilalta, Jordi

    2016-12-01

    Plant transpiration is the main evaporative flux from terrestrial ecosystems; it controls land surface energy balance, determines catchment hydrological responses and influences regional and global climate. Transpiration regulation by plants is a key (and still not completely understood) process that underlies vegetation drought responses and land evaporative fluxes under global change scenarios. Thermometric methods of sap flow measurement have now been widely used to quantify whole-plant and stand transpiration in forests, shrublands and orchards around the world. A large body of research has applied sap flow methods to analyse seasonal and diurnal patterns of transpiration and to quantify their responses to hydroclimatic variability, but syntheses of sap flow data at regional to global scales are extremely rare. Here we present the SAPFLUXNET initiative, aimed at building the first global database of plant-level sap flow measurements. A preliminary metadata survey launched in December 2015 showed an encouraging response by the sap flow community, with sap flow data sets from field studies representing >160 species and >120 globally distributed sites. The main goal of SAPFLUXNET is to analyse the ecological factors driving plant- and stand-level transpiration. SAPFLUXNET will open promising research avenues at an unprecedented global scope, namely: (i) exploring the spatio-temporal variability of plant transpiration and its relationship with plant and stand attributes, (ii) summarizing physiological regulation of transpiration by means of few water-use traits, usable for land surface models, (iii) improving our understanding of the coordination between gas exchange and plant-level traits (e.g., hydraulics) and (iv) analysing the ecological factors controlling stand transpiration and evapotranspiration partitioning. Finally, SAPFLUXNET can provide a benchmark to test models of physiological controls of transpiration, contributing to improve the accuracy of