WorldWideScience

Sample records for progranulin gene family

  1. The zebrafish progranulin gene family and antisense transcripts

    Directory of Open Access Journals (Sweden)

    Baranowski David

    2005-11-01

    Full Text Available Abstract Background Progranulin is an epithelial tissue growth factor (also known as proepithelin, acrogranin and PC-cell-derived growth factor that has been implicated in development, wound healing and in the progression of many cancers. The single mammalian progranulin gene encodes a glycoprotein precursor consisting of seven and one half tandemly repeated non-identical copies of the cystine-rich granulin motif. A genome-wide duplication event hypothesized to have occurred at the base of the teleost radiation predicts that mammalian progranulin may be represented by two co-orthologues in zebrafish. Results The cDNAs encoding two zebrafish granulin precursors, progranulins-A and -B, were characterized and found to contain 10 and 9 copies of the granulin motif respectively. The cDNAs and genes encoding the two forms of granulin, progranulins-1 and -2, were also cloned and sequenced. Both latter peptides were found to be encoded by precursors with a simplified architecture consisting of one and one half copies of the granulin motif. A cDNA encoding a chimeric progranulin which likely arises through the mechanism of trans-splicing between grn1 and grn2 was also characterized. A non-coding RNA gene with antisense complementarity to both grn1 and grn2 was identified which may have functional implications with respect to gene dosage, as well as in restricting the formation of the chimeric form of progranulin. Chromosomal localization of the four progranulin (grn genes reveals syntenic conservation for grna only, suggesting that it is the true orthologue of mammalian grn. RT-PCR and whole-mount in situ hybridization analysis of zebrafish grns during development reveals that combined expression of grna and grnb, but not grn1 and grn2, recapitulate many of the expression patterns observed for the murine counterpart. This includes maternal deposition, widespread central nervous system distribution and specific localization within the epithelial

  2. Missense mutation in GRN gene affecting RNA splicing and plasma progranulin level in a family affected by frontotemporal lobar degeneration.

    Science.gov (United States)

    Luzzi, Simona; Colleoni, Lara; Corbetta, Paola; Baldinelli, Sara; Fiori, Chiara; Girelli, Francesca; Silvestrini, Mauro; Caroppo, Paola; Giaccone, Giorgio; Tagliavini, Fabrizio; Rossi, Giacomina

    2017-06-01

    Gene coding for progranulin, GRN, is a major gene linked to frontotemporal lobar degeneration. While most of pathogenic GRN mutations are null mutations leading to haploinsufficiency, GRN missense mutations do not have an obvious pathogenicity, and only a few have been revealed to act through different pathogenetic mechanisms, such as cytoplasmic missorting, protein degradation, and abnormal cleavage by elastase. The aim of this study was to disclose the pathogenetic mechanisms of the GRN A199V missense mutation, which was previously reported not to alter physiological progranulin features but was associated with a reduced plasma progranulin level. After investigating the family pedigree, we performed genetic and biochemical analysis on its members and performed RNA expression studies. We found that the mutation segregates with the disease and discovered that its pathogenic feature is the alteration of GRN mRNA splicing, actually leading to haploinsufficiency. Thus, when facing with a missense GRN mutation, its pathogenetic effects should be investigated, especially if associated with low plasma progranulin levels, to determine its nature of either benign polymorphism or pathogenic mutation. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Portuguese family with the co-occurrence of frontotemporal lobar degeneration and neuronal ceroid lipofuscinosis phenotypes due to progranulin gene mutation.

    Science.gov (United States)

    Almeida, Maria R; Macário, Maria C; Ramos, Lina; Baldeiras, Inês; Ribeiro, Maria H; Santana, Isabel

    2016-05-01

    We and others have reported heterozygous progranulin mutations as an important cause of frontotemporal lobar degeneration (FTLD). It has been identified a complete progranulin deficiency because of a homozygous mutation in a sibling pair with neuronal ceroid lipofuscinosis (NCL). Here, we describe the first case of NCL caused by a homozygous progranulin mutation segregating in a family with neuropathological confirmed FTLD. In this FTLD-NCL family, we detail the clinical phenotype, neuropsychological evaluation and imaging data of our proband harboring a homozygous mutation, c.900_901dupGT, with serum progranulin level (progranulin levels in suspected recessive adult-onset NCL cases. Overall, a more holistic neurologic intervention is needed to guarantee a proper genetic counseling in cases like the present family where two distinct phenotypes are generated according to the individuals' mutation state. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Progranulin gene variation affects serum progranulin levels differently in Danish bipolar individuals compared with healthy controls.

    Science.gov (United States)

    Buttenschøn, Henriette N; Nielsen, Marit N; Thotakura, Gangadaar; Lee, Chris W; Nykjær, Anders; Mors, Ole; Glerup, Simon

    2017-06-01

    The identification of peripheral biomarkers for bipolar disorder is of great importance and has the potential to improve diagnosis, treatment and prognosis. Recent studies have reported lower plasma progranulin levels in bipolar individuals compared with controls and association with single nucleotide polymorphisms (SNPs) within the progranulin gene (GRN). In the present study, we investigated the effect of GRN and sortilin (SORT1) gene variation on serum progranulin levels in bipolar individuals and controls. In a Danish cohort of individuals with bipolar disorder and controls, we analysed the serum progranulin level (nbipolar=80, ncontrols=76) and five SNPs located within GRN and two SNPs near the SORT1 gene encoding sortilin, a progranulin scavenger receptor known to affect circulating progranulin levels (nbipolar=166, ncontrols=186). We observed no significant difference in the serum progranulin level between cases and controls and none of the analysed SNPs located within GRN or close to SORT1 were associated with bipolar disorder. Crude and adjusted (adjusted for case-control status, sex and age) linear regression analyses showed no effect of any SNPs on the serum progranulin level. However, we observed that the mean serum progranulin level in cases and controls is affected differently depending on the genotypes of two SNPs within GRN (rs2879096 and rs4792938). The sample size is relatively small and detailed information on medication and polarity of the disorder is not available. No correction for multiple testing was performed. Our study suggests that the potential of progranulin as a biomarker for bipolar disorder is genotype dependent.

  5. Progranulin in neurodegenerative disease.

    Science.gov (United States)

    Petkau, Terri L; Leavitt, Blair R

    2014-07-01

    Loss-of-function mutations in the progranulin gene are a common cause of familial frontotemporal dementia (FTD). The purpose of this review is to summarize the role of progranulin in health and disease, because the field is now poised to begin examining therapeutics that alter endogenous progranulin levels. We first review the clinical and neuropathological phenotype of FTD patients carrying mutations in the progranulin gene, which suggests that progranulin-mediated neurodegeneration is multifactorial and influenced by other genetic and/or environmental factors. We then examine evidence for the role of progranulin in the brain with a focus on mouse model systems. A better understanding of the complexity of progranulin biology in the brain will help guide the development of progranulin-modulating therapies for neurodegenerative disease. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Progranulin mutation causes frontotemporal dementia in the Swedish Karolinska family.

    Science.gov (United States)

    Chiang, Huei-Hsin; Rosvall, Lina; Brohede, Jesper; Axelman, Karin; Björk, Behnosh F; Nennesmo, Inger; Robins, Tiina; Graff, Caroline

    2008-11-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease characterized by cognitive impairment, language dysfunction, and/or changes in personality. Recently it has been shown that progranulin (GRN) mutations can cause FTD as well as other neurodegenerative phenotypes. DNA from 30 family members, of whom seven were diagnosed with FTD, in the Karolinska family was available for GRN sequencing. Fibroblast cell mRNA from one affected family member and six control individuals was available for relative quantitative real-time polymerase chain reaction to investigate the effect of the mutation. Furthermore, the cDNA of an affected individual was sequenced. Clinical and neuropathologic findings of a previously undescribed family branch are presented. A frameshift mutation in GRN (g.102delC) was detected in all affected family members and absent in four unaffected family members older than 70 years. Real-time polymerase chain reaction data showed an approximately 50% reduction of GRN fibroblast mRNA in an affected individual. The mutated mRNA transcripts were undetectable by cDNA sequencing. Segregation and RNA analyses showed that the g.102delC mutation, previously reported, causes FTD in the Karolinska family. Our findings add further support to the significance of GRN in FTD etiology and the presence of modifying genes, which emphasize the need for further studies into the mechanisms of clinical heterogeneity. However, the results already call for attention to the complexity of predictive genetic testing of GRN mutations.

  7. Progranulin, a glycoprotein deficient in frontotemporal dementia, is a novel substrate of several protein disulfide isomerase family proteins.

    Directory of Open Access Journals (Sweden)

    Sandra Almeida

    Full Text Available The reduced production or activity of the cysteine-rich glycoprotein progranulin is responsible for about 20% of cases of familial frontotemporal dementia. However, little is known about the molecular mechanisms that govern the level and secretion of progranulin. Here we show that progranulin is expressed in mouse cortical neurons and more prominently in mouse microglia in culture and is abundant in the endoplasmic reticulum (ER and Golgi. Using chemical crosslinking, immunoprecipitation, and mass spectrometry, we found that progranulin is bound to a network of ER Ca(2+-binding chaperones including BiP, calreticulin, GRP94, and four members of the protein disulfide isomerase (PDI family. Loss of ERp57 inhibits progranulin secretion. Thus, progranulin is a novel substrate of several PDI family proteins and modulation of the ER chaperone network may be a therapeutic target for controlling progranulin secretion.

  8. Progranulin, a Glycoprotein Deficient in Frontotemporal Dementia, Is a Novel Substrate of Several Protein Disulfide Isomerase Family Proteins

    OpenAIRE

    Almeida, Sandra; Zhou, Lijuan; Gao, Fen-Biao

    2011-01-01

    The reduced production or activity of the cysteine-rich glycoprotein progranulin is responsible for about 20% of cases of familial frontotemporal dementia. However, little is known about the molecular mechanisms that govern the level and secretion of progranulin. Here we show that progranulin is expressed in mouse cortical neurons and more prominently in mouse microglia in culture and is abundant in the endoplasmic reticulum (ER) and Golgi. Using chemical crosslinking, immunoprecipitation, an...

  9. Progranulin Gene Therapy Improves Lysosomal Dysfunction and Microglial Pathology Associated with Frontotemporal Dementia and Neuronal Ceroid Lipofuscinosis.

    Science.gov (United States)

    Arrant, Andrew E; Onyilo, Vincent C; Unger, Daniel E; Roberson, Erik D

    2018-02-28

    Loss-of-function mutations in progranulin, a lysosomal glycoprotein, cause neurodegenerative disease. Progranulin haploinsufficiency causes frontotemporal dementia (FTD) and complete progranulin deficiency causes CLN11 neuronal ceroid lipofuscinosis (NCL). Progranulin replacement is a rational therapeutic strategy for these disorders, but there are critical unresolved mechanistic questions about a progranulin gene therapy approach, including its potential to reverse existing pathology. Here, we address these issues using an AAV vector (AAV- Grn ) to deliver progranulin in Grn -/- mice (both male and female), which model aspects of NCL and FTD pathology, developing lysosomal dysfunction, lipofuscinosis, and microgliosis. We first tested whether AAV- Grn could improve preexisting pathology. Even with treatment after onset of pathology, AAV- Grn reduced lipofuscinosis in several brain regions of Grn -/- mice. AAV- Grn also reduced microgliosis in brain regions distant from the injection site. AAV-expressed progranulin was only detected in neurons, not in microglia, indicating that the microglial activation in progranulin deficiency can be improved by targeting neurons and thus may be driven at least in part by neuronal dysfunction. Even areas with sparse transduction and almost undetectable progranulin showed improvement, indicating that low-level replacement may be sufficiently effective. The beneficial effects of AAV- Grn did not require progranulin binding to sortilin. Finally, we tested whether AAV- Grn improved lysosomal function. AAV-derived progranulin was delivered to the lysosome, ameliorated the accumulation of LAMP-1 in Grn -/- mice, and corrected abnormal cathepsin D activity. These data shed light on progranulin biology and support progranulin-boosting therapies for NCL and FTD due to GRN mutations. SIGNIFICANCE STATEMENT Heterozygous loss-of-function progranulin ( GRN ) mutations cause frontotemporal dementia (FTD) and homozygous mutations cause neuronal

  10. The Evolution of the Secreted Regulatory Protein Progranulin.

    Directory of Open Access Journals (Sweden)

    Roger G E Palfree

    Full Text Available Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i: the origins of metazoan progranulins (ii: the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii: the evolution of granulin module architectures of vertebrate progranulins (iv: the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl

  11. The Evolution of the Secreted Regulatory Protein Progranulin.

    Science.gov (United States)

    Palfree, Roger G E; Bennett, Hugh P J; Bateman, Andrew

    2015-01-01

    Progranulin is a secreted growth factor that is active in tumorigenesis, wound repair, and inflammation. Haploinsufficiency of the human progranulin gene, GRN, causes frontotemporal dementia. Progranulins are composed of chains of cysteine-rich granulin modules. Modules may be released from progranulin by proteolysis as 6kDa granulin polypeptides. Both intact progranulin and some of the granulin polypeptides are biologically active. The granulin module occurs in certain plant proteases and progranulins are present in early diverging metazoan clades such as the sponges, indicating their ancient evolutionary origin. There is only one Grn gene in mammalian genomes. More gene-rich Grn families occur in teleost fish with between 3 and 6 members per species including short-form Grns that have no tetrapod counterparts. Our goals are to elucidate progranulin and granulin module evolution by investigating (i): the origins of metazoan progranulins (ii): the evolutionary relationships between the single Grn of tetrapods and the multiple Grn genes of fish (iii): the evolution of granulin module architectures of vertebrate progranulins (iv): the conservation of mammalian granulin polypeptide sequences and how the conserved granulin amino acid sequences map to the known three dimensional structures of granulin modules. We report that progranulin-like proteins are present in unicellular eukaryotes that are closely related to metazoa suggesting that progranulin is among the earliest extracellular regulatory proteins still employed by multicellular animals. From the genomes of the elephant shark and coelacanth we identified contemporary representatives of a precursor for short-from Grn genes of ray-finned fish that is lost in tetrapods. In vertebrate Grns pathways of exon duplication resulted in a conserved module architecture at the amino-terminus that is frequently accompanied by an unusual pattern of tandem nearly identical module repeats near the carboxyl-terminus. Polypeptide

  12. Human genetics as a tool to identify progranulin regulators.

    Science.gov (United States)

    Nicholson, Alexandra M; Finch, NiCole A; Rademakers, Rosa

    2011-11-01

    Frontotemporal lobar degeneration (FTLD) is a common neurodegenerative disorder that predominantly affects individuals under the age of 65. It is known that the most common pathological subtype is FTLD with TAR DNA-binding protein 43 inclusions (FTLD-TDP). FTLD has a strong genetic component with about 50% of cases having a positive family history. Mutations identified in the progranulin gene (GRN) have been shown to cause FTLD-TDP as a result of progranulin haploinsufficiency. These findings suggest a progranulin-dependent mechanism in this pathological FTLD subtype. Thus, identifying regulators of progranulin levels is essential for new therapies and treatments for FTLD and related disorders. In this review, we discuss the role of genetic studies in identifying progranulin regulators, beginning with the discovery of pathogenic GRN mutations and additional GRN risk variants. We also cover more recent genetic advances, including the detection of variants in the transmembrane protein 106 B gene that increase FTLD-TDP risk presumably by modulating progranulin levels and the identification of a potential progranulin receptor, sortilin. This review highlights the importance of genetic studies in the context of FTLD and further emphasizes the need for future genetic and cell biology research to continue the effort in finding a cure for progranulin-related diseases.

  13. Progranulin gene variability influences the risk for bipolar I disorder, but not bipolar II disorder.

    Science.gov (United States)

    Galimberti, Daniela; Prunas, Cecilia; Paoli, Riccardo A; Dell'Osso, Bernardo; Fenoglio, Chiara; Villa, Chiara; Palazzo, Carlotta; Cigliobianco, Michela; Camuri, Giulia; Serpente, Maria; Scarpini, Elio; Altamura, A Carlo

    2014-11-01

    Recent data have shown that genetic variability in the progranulin (GRN) gene may contribute to the susceptibility to developing bipolar disorder (BD). However, in regard to patients with BD, no information is available on the role of genetic variability and plasma progranulin levels in different types of this disorder. In this study, we performed an association analysis of GRN in an Italian population consisting of 134 patients with BD and 232 controls to evaluate progranulin plasma levels. The presence of the polymorphic variant of the rs5848 single nucleotide polymorphism is protective for the development of bipolar I disorder (BD-I) (odds ratio = 0.55, 95% confidence interval: 0.33-0.93; p = 0.024) but not bipolar II disorder (BD-II) (p > 0.05). In addition, plasma progranulin levels are significantly decreased in BD [mean ± standard deviation (SD) 112 ± 35 versus 183 ± 93 ng/mL in controls; p < 0.001]. Regarding the influence of GRN variability on BD susceptibility, the predisposing genetic background differs between BD-I and BD-II, possibly implying that pathogenic mechanisms differ between the two subtypes of BD. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Progranulin gene variability and plasma levels in bipolar disorder and schizophrenia.

    Directory of Open Access Journals (Sweden)

    Daniela Galimberti

    Full Text Available Basing on the assumption that frontotemporal lobar degeneration (FTLD, schizophrenia and bipolar disorder (BPD might share common aetiological mechanisms, we analyzed genetic variation in the FTLD risk gene progranulin (GRN in a German population of patients with schizophrenia (n = 271 or BPD (n = 237 as compared with 574 age-, gender- and ethnicity-matched controls. Furthermore, we measured plasma progranulin levels in 26 German BPD patients as well as in 61 Italian BPD patients and 29 matched controls.A significantly decreased allelic frequency of the minor versus the wild-type allele was observed for rs2879096 (23.2 versus 34.2%, P<0.001, OR:0.63, 95%CI:0.49-0.80, rs4792938 (30.7 versus 39.7%, P = 0.005, OR: 0.70, 95%CI: 0.55-0.89 and rs5848 (30.3 versus 36.8, P = 0.007, OR: 0.71, 95%CI: 0.56-0.91. Mean±SEM progranulin plasma levels were significantly decreased in BPD patients, either Germans or Italians, as compared with controls (89.69±3.97 and 116.14±5.80 ng/ml, respectively, versus 180.81±18.39 ng/ml P<0.001 and were not correlated with age.In conclusion, GRN variability decreases the risk to develop BPD and schizophrenia, and progranulin plasma levels are significantly lower in BPD patients than in controls. Nevertheless, a larger replication analysis would be needed to confirm these preliminary results.

  15. Core neuropathological abnormalities in progranulin-deficient mice are penetrant on multiple genetic backgrounds.

    Science.gov (United States)

    Petkau, T L; Hill, A; Leavitt, B R

    2016-02-19

    Loss-of-function mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal lobar degeneration (FTLD). A high degree of heterogeneity in the age-of-onset, duration of disease, and clinical presentation of FTLD, even among families carrying the same GRN mutation, suggests that additional modifying genes may be important to pathogenesis. Progranulin-knockout mice display subtle behavioral abnormalities and progressive neuropathological changes, as well as altered dendritic morphology and synaptic deficits in the hippocampus. In this study we evaluated multiple neuropathological endpoints in aged progranulin knockout mice and their wild-type littermates on two different genetic backgrounds: C57Bl/6 and 129/SvImJ. We find that in most brain regions, both strains are susceptible to progranulin-mediated neuropathological phenotypes, including astrogliosis, microgliosis, and highly accelerated deposition of the aging pigment lipofuscin. Neuroinflammation due to progranulin deficiency is exaggerated in the B6 strain and present, but less pronounced, in the 129 strain. Differences between the strains in hippocampal neuron counts and neuronal morphology suggest a complex role for progranulin in the hippocampus. We conclude that core progranulin-mediated neurodegenerative phenotypes are penetrant on multiple inbred mouse strains, but that genetic background modulates progranulin's role in neuroinflammation and hippocampal biology. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  16. Selective depletion of microglial progranulin in mice is not sufficient to cause neuronal ceroid lipofuscinosis or neuroinflammation.

    Science.gov (United States)

    Petkau, Terri L; Kosior, Natalia; de Asis, Kathleen; Connolly, Colúm; Leavitt, Blair R

    2017-11-17

    Progranulin deficiency due to heterozygous null mutations in the GRN gene are a common cause of familial frontotemporal lobar degeneration (FTLD), while homozygous loss-of-function GRN mutations are thought to be a rare cause of neuronal ceroid lipofuscinosis (NCL). Aged progranulin-knockout (Grn-null) mice display highly exaggerated lipofuscinosis, microgliosis, and astrogliosis, as well as mild cell loss in specific brain regions. In the brain, progranulin is predominantly expressed in neurons and microglia, and previously, we demonstrated that neuronal-specific depletion of progranulin does not recapitulate the neuropathological phenotype of Grn-null mice. In this study, we evaluated whether selective depletion of progranulin expression in myeloid-lineage cells, including microglia, causes NCL-like neuropathology or neuroinflammation in mice. We generated mice with progranulin depleted in myeloid-lineage cells by crossing mice homozygous for a floxed progranulin allele to mice expressing Cre recombinase under control of the LyzM promotor (Lyz-cKO). Progranulin expression was reduced by approximately 50-70% in isolated microglia compared to WT levels. Lyz-cKO mice aged to 12 months did not display any increase in lipofuscin deposition, microgliosis, or astrogliosis in the four brain regions examined, though increases were observed for many of these measures in Grn-null animals. To evaluate the functional effect of reduced progranulin expression in isolated microglia, primary cultures were stimulated with controlled standard endotoxin and cytokine release was measured. While Grn-null microglia display a hyper-inflammatory phenotype, Lyz-cKO and WT microglia secreted similar levels of inflammatory cytokines. We conclude that progranulin expression from either microglia or neurons is sufficient to prevent the development of NCL-like neuropathology in mice. Furthermore, microglia that are deficient for progranulin expression but isolated from a progranulin

  17. Late onset bipolar disorder and frontotemporal dementia with mutation in progranulin gene: a case report.

    Science.gov (United States)

    Rubino, Elisa; Vacca, Alessandro; Gallone, Salvatore; Govone, Flora; Zucca, Milena; Gai, Annalisa; Ferrero, Patrizia; Fenoglio, Pierpaola; Giordana, Maria Teresa; Rainero, Innocenzo

    2017-11-01

    Bipolar disorder is a chronic psychiatric illness characterised by fluctuation in mood state, with a relapsing and remitting course. Frontotemporal dementia (FTD) is a clinically and genetically heterogeneous syndrome, with the most frequent phenotype being behavioural variant frontotemporal dementia (bvFTD). Here, we report the case of an Italian male presenting with late-onset bipolar disorder that developed into bvFTD over time, carrying a mutation in the GRN gene. Interestingly, the patient carried the c.1639 C > T variant in the GRN gene, resulting in a R547C substitution. Our case report further corroborates the notion that, in addition to FTD, progranulin may be involved in the neurobiology of bipolar disorder type 1, and suggests to screen patients with late-onset bipolar disorder for GRN mutations.

  18. Plasma Screening for Progranulin Mutations in Patients with Progressive Supranuclear Palsy and Corticobasal Syndromes.

    Science.gov (United States)

    Galimberti, Daniela; Bertram, Kelly; Formica, Alessandra; Fenoglio, Chiara; Cioffi, Sara M G; Arighi, Andrea; Scarpini, Elio; Colosimo, Carlo

    2016-05-04

    Progranulin gene (GRN) mutations are characterized by heterogeneous presentations. Corticobasal syndrome (CBS) is often associated with GRN mutations, whereas association with progressive supranuclear palsy syndrome (PSPS) is rare. Plasma progranulin levels were evaluated in 34 patients, including 19 with PSPS, 12 with CBS, and 3 with mixed signs, with the purpose to screen for the presence of causal mutations, associated with low levels. We found undetectable levels in a patient with CBS. Sequencing confirmed the presence of the Thr272fs deletion. Progranulin mutation screening is suggested in cases of CBS, even in the absence of positive family history for dementia and/or movement disorders.

  19. Conditional loss of progranulin in neurons is not sufficient to cause neuronal ceroid lipofuscinosis-like neuropathology in mice.

    Science.gov (United States)

    Petkau, Terri L; Blanco, Jake; Leavitt, Blair R

    2017-10-01

    Progranulin deficiency due to heterozygous null mutations in the GRN gene is a common cause of familial frontotemporal lobar degeneration (FTLD), while homozygous loss-of-function GRN mutations cause neuronal ceroid lipofuscinosis (NCL). Aged progranulin-knockout mice display highly exaggerated lipofuscinosis, microgliosis, and astrogliosis, as well as mild cell loss in specific brain regions. Progranulin is a secreted glycoprotein expressed in both neurons and microglia, but not astrocytes, in the brain. We generated conditional progranulin-knockout mice that lack progranulin in nestin-expressing cells (Nes-cKO mice), which include most neurons as well as astrocytes. We confirmed near complete knockout of progranulin in neurons in Nes-cKO mice, while microglial progranulin levels remained similar to that of wild-type animals. Overall brain progranulin levels were reduced by about 50% in Nes-cKO, and no Grn was detected in primary Nes-cKO neurons. Nes-cKO mice aged to 12months did not display any increase in lipofuscin deposition, microgliosis, or astrogliosis in the four brain regions examined, though increases were observed for most of these measures in Grn-null animals. We conclude that neuron-specific loss of progranulin is not sufficient to cause similar neuropathological changes to those seen in constitutive Grn-null animals. Our results suggest that increased lipofuscinosis and gliosis in Grn-null animals are not caused by intrinsic progranulin deficiency in neurons, and that microglia-derived progranulin may be sufficient to maintain neuronal health and homeostasis in the brain. Copyright © 2017 Elsevier Inc. All rights reserved.

  20. Progranulin gene delivery protects dopaminergic neurons in a mouse model of Parkinson's disease.

    Directory of Open Access Journals (Sweden)

    Jackalina M Van Kampen

    Full Text Available Parkinson's disease (PD is a progressive neurodegenerative disorder characterized by tremor, rigidity and akinesia/bradykinesia resulting from the progressive loss of nigrostriatal dopaminergic neurons. To date, only symptomatic treatment is available for PD patients, with no effective means of slowing or stopping the progression of the disease. Progranulin (PGRN is a 593 amino acid multifunction protein that is widely distributed throughout the CNS, localized primarily in neurons and microglia. PGRN has been demonstrated to be a potent regulator of neuroinflammation and also acts as an autocrine neurotrophic factor, important for long-term neuronal survival. Thus, enhancing PGRN expression may strengthen the cells resistance to disease. In the present study, we have used the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP model of PD to investigate the possible use of PGRN gene delivery as a therapy for the prevention or treatment of PD. Viral vector delivery of the PGRN gene was an effective means of elevating PGRN expression in nigrostriatal neurons. When PGRN expression was elevated in the SNC, nigrostriatal neurons were protected from MPTP toxicity in mice, along with a preservation of striatal dopamine content and turnover. Further, protection of nigrostriatal neurons by PGRN gene therapy was accompanied by reductions in markers of MPTP-induced inflammation and apoptosis as well as a complete preservation of locomotor function. We conclude that PGRN gene therapy may have beneficial effects in the treatment of PD.

  1. Progranulin is neurotrophic in vivo and protects against a mutant TDP-43 induced axonopathy.

    Directory of Open Access Journals (Sweden)

    Angela S Laird

    Full Text Available Mislocalization, aberrant processing and aggregation of TAR DNA-binding protein 43 (TDP-43 is found in the neurons affected by two related diseases, amyotrophic lateral sclerosis (ALS and frontotemporal lobe dementia (FTLD. These TDP-43 abnormalities are seen when TDP-43 is mutated, such as in familial ALS, but also in FTLD, caused by null mutations in the progranulin gene. They are also found in many patients with sporadic ALS and FTLD, conditions in which only wild type TDP-43 is present. The common pathological hallmarks and symptomatic cross over between the two diseases suggest that TDP-43 and progranulin may be mechanistically linked. In this study we aimed to address this link by establishing whether overexpression of mutant TDP-43 or knock-down of progranulin in zebrafish embryos results in motor neuron phenotypes and whether human progranulin is neuroprotective against such phenotypes. Mutant TDP-43 (A315T mutation induced a motor axonopathy characterized by short axonal outgrowth and aberrant branching, similar, but more severe, than that induced by mutant SOD1. Knockdown of the two zebrafish progranulin genes, grna and grnb, produced a substantial decrease in axonal length, with knockdown of grna alone producing a greater decrease in axonal length than grnb. Progranulin overexpression rescued the axonopathy induced by progranulin knockdown. Interestingly, progranulin also rescued the mutant TDP-43 induced axonopathy, whilst it failed to affect the mutant SOD1-induced phenotype. TDP-43 was found to be nuclear in all conditions described. The findings described here demonstrate that progranulin is neuroprotective in vivo and may have therapeutic potential for at least some forms of motor neuron degeneration.

  2. TMEM106B, the risk gene for frontotemporal dementia, is regulated by the miRNA-132/212 cluster and affects progranulin pathways

    Science.gov (United States)

    Chen-Plotkin, Alice S.; Unger, Travis L.; Gallagher, Michael D.; Bill, Emily; Kwong, Linda K.; Volpicelli-Daley, Laura; Busch, Johanna I.; Akle, Sebastian; Grossman, Murray; Van Deerlin, Vivianna; Trojanowski, John Q.; Lee, Virginia M.-Y.

    2012-01-01

    Frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) is a fatal neurodegenerative disease with no available treatments. Mutations in the progranulin gene (GRN) causing impaired production or secretion of progranulin are a common Mendelian cause of FTLD-TDP; additionally, common variants at chromosome 7p21 in the uncharacterized gene TMEM106B were recently linked by genome-wide association to FTLD-TDP with and without GRN mutations. Here we show that TMEM106B is neuronally expressed in postmortem human brain tissue, and that expression levels are increased in FTLD-TDP brain. Furthermore, using an unbiased, microarray-based screen of over 800 microRNAs, we identify microRNA-132 as the top microRNA differentiating FTLD-TDP and control brains, with progranulin in late endo-lysosomes, and TMEM106B over-expression increases intracellular levels of progranulin. Thus, TMEM106B is an FTLD-TDP risk gene, with microRNA-132/212 depression as an event which can lead to aberrant over-expression of TMEM106B, which in turn alters progranulin pathways. Evidence for this pathogenic cascade includes the striking convergence of two independent, genomic-scale screens on a microRNA:mRNA regulatory pair. Our findings open novel directions for elucidating miRNA-based therapies in FTLD-TDP. PMID:22895706

  3. Progranulin, lysosomal regulation and neurodegenerative disease.

    Science.gov (United States)

    Kao, Aimee W; McKay, Andrew; Singh, Param Priya; Brunet, Anne; Huang, Eric J

    2017-06-01

    The discovery that heterozygous and homozygous mutations in the gene encoding progranulin are causally linked to frontotemporal dementia and lysosomal storage disease, respectively, reveals previously unrecognized roles of the progranulin protein in regulating lysosome biogenesis and function. Given the importance of lysosomes in cellular homeostasis, it is not surprising that progranulin deficiency has pleiotropic effects on neural circuit development and maintenance, stress response, innate immunity and ageing. This Progress article reviews recent advances in progranulin biology emphasizing its roles in lysosomal function and brain innate immunity, and outlines future avenues of investigation that may lead to new therapeutic approaches for neurodegeneration.

  4. Progranulin gene delivery reduces plaque burden and synaptic atrophy in a mouse model of Alzheimer's disease.

    Directory of Open Access Journals (Sweden)

    Jackalina M Van Kampen

    Full Text Available Progranulin (PGRN is a multifunctional protein that is widely expressed throughout the brain, where it has been shown to act as a critical regulator of CNS inflammation and also functions as an autocrine neuronal growth factor, important for long-term neuronal survival. PGRN has been shown to activate cell signaling pathways regulating excitoxicity, oxidative stress, and synaptogenesis, as well as amyloidogenesis. Together, these critical roles in the CNS suggest that PGRN has the potential to be an important therapeutic target for the treatment of various neurodegenerative disorders, particularly Alzheimer's disease (AD. AD is the leading cause of dementia and is marked by the appearance of extracellular plaques consisting of aggregates of amyloid-β (Aβ, as well as neuroinflammation, oxidative stress, neuronal loss and synaptic atrophy. The ability of PGRN to target multiple key features of AD pathophysiology suggests that enhancing its expression may benefit this disease. Here, we describe the application of PGRN gene transfer using in vivo delivery of lentiviral expression vectors in a transgenic mouse model of AD. Viral vector delivery of the PGRN gene effectively enhanced PGRN expression in the hippocampus of Tg2576 mice. This elevated PGRN expression significantly reduced amyloid plaque burden in these mice, accompanied by reductions in markers of inflammation and synaptic atrophy. The overexpression of PGRN was also found to increase activity of neprilysin, a key amyloid beta degrading enzyme. PGRN regulation of neprilysin activity could play a major role in the observed alterations in plaque burden. Thus, PGRN may be an effective therapeutic target for the treatment of AD.

  5. Progranulin: at the interface of neurodegenerative and metabolic diseases.

    Science.gov (United States)

    Nguyen, Andrew D; Nguyen, Thi A; Martens, Lauren Herl; Mitic, Laura L; Farese, Robert V

    2013-12-01

    Progranulin is a widely expressed, cysteine-rich, secreted glycoprotein originally discovered for its growth factor-like properties. Its subsequent identification as a causative gene for frontotemporal dementia (FTD), a devastating early-onset neurodegenerative disease, has catalyzed a surge of new discoveries about progranulin function in the brain. More recently, progranulin was recognized as an adipokine involved in diet-induced obesity and insulin resistance, revealing its metabolic function. We review here progranulin biology in both neurodegenerative and metabolic diseases. In particular, we highlight the growth factor-like, trophic, and anti-inflammatory properties of progranulin as potential unifying themes in these seemingly divergent conditions. We also discuss potential therapeutic options for raising progranulin levels to treat progranulin-deficient FTD, as well as the possible consequences of such treatment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Progranulin functions as a neurotrophic factor to regulate neurite outgrowth and enhance neuronal survival

    NARCIS (Netherlands)

    P. van Damme (Damme); A. van Hoecke (Annelies); D. Lambrechts (Diether); P. Vanacker (Peter); E. Bogaert (Elke); J.C. van Swieten (John); P. Carmeliet (Peter); L. van den Bosch (Ludo); W. Robberecht (Wim)

    2008-01-01

    textabstractRecently, mutations in the progranulin (PGRN) gene were found to cause familial and apparently sporadic frontotemporal lobe dementia (FTLD). Moreover, missense changes in PGRN were identified in patients with motor neuron degeneration, a condition that is related to FTLD. Most mutations

  7. Circulating progranulin as a biomarker for neurodegenerative diseases.

    Science.gov (United States)

    Ghidoni, Roberta; Paterlini, Anna; Benussi, Luisa

    2012-01-01

    Progranulin is a growth factor involved in the regulation of multiple processes including tumorigenesis, wound repair, development, and inflammation. The recent discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD), and other neurodegenerative diseases leading to dementia, has brought renewed interest in progranulin and its functions in the central nervous system. GRN null mutations cause protein haploinsufficiency, leading to a significant decrease in progranulin levels that can be detected in plasma, serum and cerebrospinal fluid (CSF) of mutation carriers. The dosage of circulating progranulin sped up the identification of GRN mutations thus favoring genotype-phenotype correlation studies. Researchers demonstrated that, in GRN null mutation carriers, the shortage of progranulin invariably precedes clinical symptoms and thus mutation carriers are "captured" regardless of their disease status. GRN is a particularly appealing gene for drug targeting, in the way that boosting its expression may be beneficial for mutation carriers, preventing or delaying the onset of GRN-related neurodegenerative diseases. Physiological regulation of progranulin expression level is only partially known. Progranulin expression reflects mutation status and, intriguingly, its levels can be modulated by some additional factor (i.e. genetic background; drugs). Thus, factors increasing the production and secretion of progranulin from the normal gene are promising potential therapeutic avenues. In conclusion, peripheral progranulin is a nonintrusive highly accurate biomarker for early identification of mutation carriers and for monitoring future treatments that might boost the level of this protein.

  8. Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: results from the GENFI study.

    Science.gov (United States)

    Galimberti, Daniela; Fumagalli, Giorgio G; Fenoglio, Chiara; Cioffi, Sara M G; Arighi, Andrea; Serpente, Maria; Borroni, Barbara; Padovani, Alessandro; Tagliavini, Fabrizio; Masellis, Mario; Tartaglia, Maria Carmela; van Swieten, John; Meeter, Lieke; Graff, Caroline; de Mendonça, Alexandre; Bocchetta, Martina; Rohrer, Jonathan D; Scarpini, Elio

    2018-02-01

    We investigated whether progranulin plasma levels are predictors of the presence of progranulin gene (GRN) null mutations or of the development of symptoms in asymptomatic at risk members participating in the Genetic Frontotemporal Dementia Initiative, including 19 patients, 64 asymptomatic carriers, and 77 noncarriers. In addition, we evaluated a possible role of TMEM106B rs1990622 as a genetic modifier and correlated progranulin plasma levels and gray-matter atrophy. Plasma progranulin mean ± SD plasma levels in patients and asymptomatic carriers were significantly decreased compared with noncarriers (30.5 ± 13.0 and 27.7 ± 7.5 versus 99.6 ± 24.8 ng/mL, p 61.55 ng/mL, the test had a sensitivity of 98.8% and a specificity of 97.5% in predicting the presence of a mutation, independent of symptoms. No correlations were found between progranulin plasma levels and age, years from average age at onset in each family, or TMEM106B rs1990622 genotype (p > 0.05). Plasma progranulin levels did not correlate with brain atrophy. Plasma progranulin levels predict the presence of GRN null mutations independent of proximity to symptoms and brain atrophy. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  9. Progranulin Is a Chemoattractant for Microglia and Stimulates Their Endocytic Activity

    OpenAIRE

    Pickford, Fiona; Marcus, Jacob; Camargo, Luiz Miguel; Xiao, Qiurong; Graham, Danielle; Mo, Jan-Rung; Burkhardt, Matthew; Kulkarni, Vinayak; Crispino, Jamie; Hering, Heike; Hutton, Michael

    2011-01-01

    Mutations resulting in progranulin haploinsufficiency cause disease in patients with a subset of frontotemporal lobar degeneration; however, the biological functions of progranulin in the brain remain unknown. To address this subject, the present study initially assessed changes in gene expression and cytokine secretion in rat primary cortical neurons treated with progranulin. Molecular pathways enriched in the progranulin gene set included cell adhesion and cell motility pathways and pathway...

  10. Cerebrospinal Fluid Progranulin, but Not Serum Progranulin, Is Reduced in GRN-Negative Frontotemporal Dementia.

    Science.gov (United States)

    Wilke, Carlo; Gillardon, Frank; Deuschle, Christian; Hobert, Markus A; Jansen, Iris E; Metzger, Florian G; Heutink, Peter; Gasser, Thomas; Maetzler, Walter; Blauwendraat, Cornelis; Synofzik, Matthis

    2017-01-01

    Reduced progranulin levels are a hallmark of frontotemporal dementia (FTD) caused by loss-of-function (LoF) mutations in the progranulin gene (GRN). However, alterations of central nervous progranulin expression also occur in neurodegenerative disorders unrelated to GRN mutations, such as Alzheimer's disease. We hypothesised that central nervous progranulin levels are also reduced in GRN-negative FTD. Progranulin levels were determined in both cerebrospinal fluid (CSF) and serum in 75 subjects (37 FTD patients and 38 controls). All FTD patients were assessed by whole-exome sequencing for GRN mutations, yielding a target cohort of 34 patients without pathogenic mutations in GRN (GRN-negative cohort) and 3 GRN mutation carriers (2 LoF variants and 1 novel missense variant). Not only the GRN mutation carriers but also the GRN-negative patients showed decreased CSF levels of progranulin (serum levels in GRN-negative patients were normal). The decreased CSF progranulin levels were unrelated to patients' increased CSF levels of total tau, possibly indicating different destructive neuronal processes within FTD neurodegeneration. The patient with the novel GRN missense variant (c.1117C>T, p.P373S) showed substantially decreased CSF levels of progranulin, comparable to the 2 patients with GRN LoF mutations, suggesting a pathogenic effect of this missense variant. Our results indicate that central nervous progranulin reduction is not restricted to the relatively rare cases of FTD caused by GRN LoF mutations, but also contributes to the more common GRN-negative forms of FTD. Central nervous progranulin reduction might reflect a partially distinct pathogenic mechanism underlying FTD neurodegeneration and is not directly linked to tau alterations. © 2016 S. Karger AG, Basel.

  11. Progranulin as a therapeutic target for dementia.

    Science.gov (United States)

    Galimberti, Daniela; Fenoglio, Chiara; Scarpini, Elio

    2018-06-22

    Progranulin (PGRN) is an acrosomal glycoprotein that is synthesized during spermatogenesis. It is overexpressed in tumors and has anti-inflammatory properties. The protein may be cleaved into granulins which display pro-inflammatory properties. In 2006, mutations in progranulin gene (GRN) that cause haploinsufficiency were found in familial cases of frontotemporal dementia (FTD). Patients with null mutations in GRN display very low-plasma PGRN levels; this analysis is useful for identifying mutation carriers, independent of the clinical presentation, and in those before the appearance of symptoms. Areas covered: Here, we review the current knowledge of PGRN physiological functions and GRN mutations associated with FTD; we also summarize state of the art clinical trials and those compounds able to replace PGRN loss in preclinical models. Expert opinion: PGRN represents a promising therapeutic target for FTD. Cohorts suitable for treatment, ideally at the preclinical stage, where pathogenic mechanisms ongoing in the brain are targeted, are available. However, PGRN may have side effects, such as the risk of tumorigenesis, and the risk/benefit ratio of any intervention cannot be predicted. Furthermore, at present, the situation is complicated by the absence of adequate outcome measures.

  12. Optimal plasma progranulin cutoff value for predicting null progranulin mutations in neurodegenerative diseases: a multicenter Italian study.

    Science.gov (United States)

    Ghidoni, Roberta; Stoppani, Elena; Rossi, Giacomina; Piccoli, Elena; Albertini, Valentina; Paterlini, Anna; Glionna, Michela; Pegoiani, Eleonora; Agnati, Luigi F; Fenoglio, Chiara; Scarpini, Elio; Galimberti, Daniela; Morbin, Michela; Tagliavini, Fabrizio; Binetti, Giuliano; Benussi, Luisa

    2012-01-01

    Recently, attention was drawn to a role for progranulin in the central nervous system with the identification of mutations in the progranulin gene (GRN) as an important cause of frontotemporal lobar degeneration. GRN mutations are associated with a strong reduction of circulating progranulin and widely variable clinical phenotypes: thus, the dosage of plasma progranulin is a useful tool for a quick and inexpensive large-scale screening of carriers of GRN mutations. To establish the best cutoff threshold for normal versus abnormal levels of plasma progranulin. 309 cognitively healthy controls (25-87 years of age), 72 affected and unaffected GRN+ null mutation carriers (24-86 years of age), 3 affected GRN missense mutation carriers, 342 patients with neurodegenerative diseases and 293 subjects with mild cognitive impairment were enrolled at the Memory Clinic, IRCCS S. Giovanni di Dio-Fatebenefratelli, Brescia, Italy, and at the Alzheimer Unit, Ospedale Maggiore Policlinico and IRCCS Istituto Neurologico C. Besta, Milan, Italy. Plasma progranulin levels were measured using an ELISA kit (AdipoGen Inc., Seoul, Korea). Plasma progranulin did not correlate with age, gender or body mass index. We established a new plasma progranulin protein cutoff level of 61.55 ng/ml that identifies, with a specificity of 99.6% and a sensitivity of 95.8%, null mutation carriers among subjects attending to a memory clinic. Affected and unaffected GRN null mutation carriers did not differ in terms of circulating progranulin protein (p = 0.686). A significant disease anticipation was observed in GRN+ subjects with the lowest progranulin levels. We propose a new plasma progranulin protein cutoff level useful for clinical practice. Copyright © 2011 S. Karger AG, Basel.

  13. EphA2 is a functional receptor for the growth factor progranulin.

    Science.gov (United States)

    Neill, Thomas; Buraschi, Simone; Goyal, Atul; Sharpe, Catherine; Natkanski, Elizabeth; Schaefer, Liliana; Morrione, Andrea; Iozzo, Renato V

    2016-12-05

    Although the growth factor progranulin was discovered more than two decades ago, the functional receptor remains elusive. Here, we discovered that EphA2, a member of the large family of Ephrin receptor tyrosine kinases, is a functional signaling receptor for progranulin. Recombinant progranulin bound with high affinity to EphA2 in both solid phase and solution. Interaction of progranulin with EphA2 caused prolonged activation of the receptor, downstream stimulation of mitogen-activated protein kinase and Akt, and promotion of capillary morphogenesis. Furthermore, we found an autoregulatory mechanism of progranulin whereby a feed-forward loop occurred in an EphA2-dependent manner that was independent of the endocytic receptor sortilin. The discovery of a functional signaling receptor for progranulin offers a new avenue for understanding the underlying mode of action of progranulin in cancer progression, tumor angiogenesis, and perhaps neurodegenerative diseases. © 2016 Neill et al.

  14. Secretory leukocyte protease inhibitor protein regulates the penetrance of frontotemporal lobar degeneration in progranulin mutation carriers.

    Science.gov (United States)

    Ghidoni, Roberta; Flocco, Rosa; Paterlini, Anna; Glionna, Michela; Caruana, Loredana; Tonoli, Elisa; Binetti, Giuliano; Benussi, Luisa

    2014-01-01

    The discovery that mutations in the gene encoding for progranulin (GRN) cause frontotemporal lobar degeneration (FTLD) and other neurodegenerative diseases leading to dementia has brought renewed interest in progranulin and its functions in the central nervous system. Full length progranulin is preserved from cleavage by secretory leukocyte protease inhibitor (SLPI), one of the smallest serine protease inhibitor circulating in plasma. Herein, we investigated the relationship between circulating SLPI and progranulin in affected and unaffected subjects belonging to 26 Italian pedigrees carrying GRN null mutations. In GRN null mutation carriers, we demonstrated: i) an increase of circulating SLPI levels in affected subjects; ii) an age-related upregulation of the serine-protease inhibitor in response to lifetime progranulin shortage; and iii) a delay in the age of onset in subjects with the highest SLPI protein levels. The study of SLPI and its relation to progranulin suggests the existence of unexpected molecular players in progranulin-associated neurodegeneration.

  15. Secreted Progranulin Is a Homodimer and Is Not a Component of High Density Lipoproteins (HDL)*

    Science.gov (United States)

    Nguyen, Andrew D.; Nguyen, Thi A.; Cenik, Basar; Yu, Gang; Herz, Joachim; Walther, Tobias C.; Davidson, W. Sean; Farese, Robert V.

    2013-01-01

    Progranulin is a secreted glycoprotein, and the GRN gene is mutated in some cases of frontotemporal dementia. Progranulin has also been implicated in cell growth, wound healing, inflammation, and cancer. We investigated the molecular nature of secreted progranulin and provide evidence that progranulin exists as a homodimer. Although recombinant progranulin has a molecular mass of ∼85 kDa by SDS-PAGE, it elutes in fractions corresponding to ∼170–180 kDa by gel-filtration chromatography. Additionally, recombinant progranulin can be intermolecularly cross-linked, yielding a complex corresponding to a dimer (∼180 kDa), and progranulins containing different epitope tags physically interact. In plasma, progranulin similarly forms complexes of ∼180–190 kDa. Although progranulin partially co-fractionated with high density lipoproteins (HDL) by gel-filtration chromatography, we found no evidence that progranulin in mouse or human plasma is a component of HDL either by ultracentrifugation or by lipid binding assays. We conclude that circulating progranulin exists as a dimer and is not likely a component of HDL. PMID:23364791

  16. Secreted progranulin is a homodimer and is not a component of high density lipoproteins (HDL).

    Science.gov (United States)

    Nguyen, Andrew D; Nguyen, Thi A; Cenik, Basar; Yu, Gang; Herz, Joachim; Walther, Tobias C; Davidson, W Sean; Farese, Robert V

    2013-03-22

    Progranulin is a secreted glycoprotein, and the GRN gene is mutated in some cases of frontotemporal dementia. Progranulin has also been implicated in cell growth, wound healing, inflammation, and cancer. We investigated the molecular nature of secreted progranulin and provide evidence that progranulin exists as a homodimer. Although recombinant progranulin has a molecular mass of ∼85 kDa by SDS-PAGE, it elutes in fractions corresponding to ∼170-180 kDa by gel-filtration chromatography. Additionally, recombinant progranulin can be intermolecularly cross-linked, yielding a complex corresponding to a dimer (∼180 kDa), and progranulins containing different epitope tags physically interact. In plasma, progranulin similarly forms complexes of ∼180-190 kDa. Although progranulin partially co-fractionated with high density lipoproteins (HDL) by gel-filtration chromatography, we found no evidence that progranulin in mouse or human plasma is a component of HDL either by ultracentrifugation or by lipid binding assays. We conclude that circulating progranulin exists as a dimer and is not likely a component of HDL.

  17. TDP-43 pathology in familial frontotemporal dementia and motor neuron disease without Progranulin mutations.

    NARCIS (Netherlands)

    Seelaar, H.; Schelhaas, H.J.; Azmani, A.; Kusters, B.; Rosso, S.; Majoor-Krakauer, D.F.; Rijik, M.C. de; Rizzu, P.; Brummelhuis, M. Ten; Doorn, P.A. van; Kamphorst, W.; Willemsen, R.; Swieten, J. van

    2007-01-01

    Frontotemporal dementia is accompanied by motor neuron disease (FTD + MND) in approximately 10% of cases. There is accumulating evidence for a clinicopathological overlap between FTD and MND based on observations of familial aggregation and neuropathological findings of ubiquitin-positive neuronal

  18. TDP-43 pathology in familial frontotemporal dementia and motor neuron disease without Progranulin mutations

    NARCIS (Netherlands)

    H. Seelaar (Harro); H. Jurgen Schelhaas; A. Azmani (Asma); B. Küsters (Benno); S.M. Rosso (Sonia); D.F. Majoor-Krakauer (Danielle); M.C. de Rijik (Maarten); P. Rizzu (Patrizia); M. ten Brummelhuis (Ming); P.A. van Doorn (Pieter); W. Kamphorst (Wouter); R. Willemsen (Rob); J.C. van Swieten (John)

    2007-01-01

    textabstractFrontotemporal dementia is accompanied by motor neuron disease (FTD + MND) in ∼10% of cases. There is accumulating evidence for a clinicopathological overlap between FTD and MND based on observations of familial aggregation and neuropathological findings of ubiquitin-positive neuronal

  19. The perlecan-interacting growth factor progranulin regulates ubiquitination, sorting, and lysosomal degradation of sortilin.

    Science.gov (United States)

    Tanimoto, Ryuta; Palladino, Chiara; Xu, Shi-Qiong; Buraschi, Simone; Neill, Thomas; Gomella, Leonard G; Peiper, Stephen C; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2017-12-01

    Despite extensive clinical and experimental studies over the past decades, the pathogenesis and progression to the castration-resistant stage of prostate cancer remains largely unknown. Progranulin, a secreted growth factor, strongly binds the heparin-sulfate proteoglycan perlecan, and counteracts its biological activity. We established that progranulin acts as an autocrine growth factor and promotes prostate cancer cell motility, invasion, and anchorage-independent growth. Progranulin was overexpressed in prostate cancer tissues vis-à-vis non-neoplastic tissues supporting the hypothesis that progranulin may play a key role in prostate cancer progression. However, progranulin's mode of action is not well understood and proteins regulating progranulin signaling have not been identified. Sortilin, a single-pass type I transmembrane protein of the Vps10 family, binds progranulin in neurons and targets progranulin for lysosomal degradation. Significantly, in DU145 and PC3 cells, we detected very low levels of sortilin associated with high levels of progranulin production and enhanced motility. Restoring sortilin expression decreased progranulin levels, inhibited motility and anchorage-independent growth and destabilized Akt. These results demonstrated a critical role for sortilin in regulating progranulin and suggest that sortilin loss may contribute to prostate cancer progression. Here, we provide the novel observation that progranulin downregulated sortilin protein levels independent of transcription. Progranulin induced sortilin ubiquitination, internalization via clathrin-dependent endocytosis and sorting into early endosomes for lysosomal degradation. Collectively, these results constitute a regulatory feed-back mechanism whereby sortilin downregulation ensures sustained progranulin-mediated oncogenesis. Copyright © 2017. Published by Elsevier B.V.

  20. Multiple therapeutic effects of progranulin on experimental acute ischaemic stroke.

    Science.gov (United States)

    Kanazawa, Masato; Kawamura, Kunio; Takahashi, Tetsuya; Miura, Minami; Tanaka, Yoshinori; Koyama, Misaki; Toriyabe, Masafumi; Igarashi, Hironaka; Nakada, Tsutomu; Nishihara, Masugi; Nishizawa, Masatoyo; Shimohata, Takayoshi

    2015-07-01

    In the central nervous system, progranulin, a glycoprotein growth factor, plays a crucial role in maintaining physiological functions, and progranulin gene mutations cause TAR DNA-binding protein-43-positive frontotemporal lobar degeneration. Although several studies have reported that progranulin plays a protective role against ischaemic brain injury, little is known about temporal changes in the expression level, cellular localization, and glycosylation status of progranulin after acute focal cerebral ischaemia. In addition, the precise mechanisms by which progranulin exerts protective effects on ischaemic brain injury remains unknown. Furthermore, the therapeutic potential of progranulin against acute focal cerebral ischaemia, including combination treatment with tissue plasminogen activator, remains to be elucidated. In the present study, we aimed to determine temporal changes in the expression and localization of progranulin after ischaemia as well as the therapeutic effects of progranulin on ischaemic brain injury using in vitro and in vivo models. First, we demonstrated a dynamic change in progranulin expression in ischaemic Sprague-Dawley rats, including increased levels of progranulin expression in microglia within the ischaemic core, and increased levels of progranulin expression in viable neurons as well as induction of progranulin expression in endothelial cells within the ischaemic penumbra. We also demonstrated that the fully glycosylated mature secretory isoform of progranulin (∼88 kDa) decreased, whereas the glycosylated immature isoform of progranulin (58-68 kDa) markedly increased at 24 h and 72 h after reperfusion. In vitro experiments using primary cells from C57BL/6 mice revealed that the glycosylated immature isoform was secreted only from the microglia. Second, we demonstrated that progranulin could protect against acute focal cerebral ischaemia by a variety of mechanisms including attenuation of blood-brain barrier disruption

  1. Progranulin Is a Chemoattractant for Microglia and Stimulates Their Endocytic Activity

    Science.gov (United States)

    Pickford, Fiona; Marcus, Jacob; Camargo, Luiz Miguel; Xiao, Qiurong; Graham, Danielle; Mo, Jan-Rung; Burkhardt, Matthew; Kulkarni, Vinayak; Crispino, Jamie; Hering, Heike; Hutton, Michael

    2011-01-01

    Mutations resulting in progranulin haploinsufficiency cause disease in patients with a subset of frontotemporal lobar degeneration; however, the biological functions of progranulin in the brain remain unknown. To address this subject, the present study initially assessed changes in gene expression and cytokine secretion in rat primary cortical neurons treated with progranulin. Molecular pathways enriched in the progranulin gene set included cell adhesion and cell motility pathways and pathways involved in growth and development. Secretion of cytokines and several chemokines linked to chemoattraction but not inflammation were also increased from progranulin-treated primary neurons. Therefore, whether progranulin is involved in recruitment of immune cells in the brain was investigated. Localized lentiviral expression of progranulin in C57BL/6 mice resulted in an increase of Iba1-positive microglia around the injection site. Moreover, progranulin alone was sufficient to promote migration of primary mouse microglia in vitro. Primary microglia and C4B8 cells demonstrated more endocytosis of amyloid β1-42 when treated with progranulin. These data demonstrate that progranulin acts as a chemoattractant in the brain to recruit or activate microglia and can increase endocytosis of extracellular peptides such as amyloid β. PMID:21224065

  2. Progranulin mutations as risk factors for Alzheimer disease.

    Science.gov (United States)

    Perry, David C; Lehmann, Manja; Yokoyama, Jennifer S; Karydas, Anna; Lee, Jason Jiyong; Coppola, Giovanni; Grinberg, Lea T; Geschwind, Dan; Seeley, William W; Miller, Bruce L; Rosen, Howard; Rabinovici, Gil

    2013-06-01

    Mutations in the progranulin gene are known to cause diverse clinical syndromes, all attributed to frontotemporal lobar degeneration. We describe 2 patients with progranulin gene mutations and evidence of Alzheimer disease (AD) pathology. We also conducted a literature review. This study focused on case reports of 2 unrelated patients with progranulin mutations at the University of California, San Francisco, Memory and Aging Center. One patient presented at age 65 years with a clinical syndrome suggestive of AD and showed evidence of amyloid aggregation on positron emission tomography. Another patient presented at age 54 years with logopenic progressive aphasia and, at autopsy, showed both frontotemporal lobar degeneration with TDP-43 inclusions and AD. In addition to autosomal-dominant frontotemporal lobar degeneration, mutations in the progranulin gene may be a risk factor for AD clinical phenotypes and neuropathology.

  3. Association Between Progranulin and Gaucher Disease

    OpenAIRE

    Jian, Jinlong; Zhao, Shuai; Tian, Qing-Yun; Liu, Helen; Zhao, Yunpeng; Chen, Wen-Chi; Grunig, Gabriele; Torres, Paola A.; Wang, Betty C.; Zeng, Bai; Pastores, Gregory; Tang, Wei; Sun, Ying; Grabowski, Gregory A.; Kong, Max Xiangtian

    2016-01-01

    Background: Gaucher disease (GD) is a genetic disease caused by mutations in the GBA1 gene which result in reduced enzymatic activity of β-glucocerebrosidase (GCase). This study identified the progranulin (PGRN) gene (GRN) as another gene associated with GD. Methods: Serum levels of PGRN were measured from 115 GD patients and 99 healthy controls, whole GRN gene from 40 GD patients was sequenced, and the genotyping of 4 SNPs identified in GD patients was performed in 161 GD and 142 healthy ...

  4. Losing protein in the brain: the case of progranulin.

    Science.gov (United States)

    Ghidoni, Roberta; Paterlini, Anna; Albertini, Valentina; Binetti, Giuliano; Benussi, Luisa

    2012-10-02

    It is well known that progranulin protein is involved in wound repair, inflammation, and tumor formation. The wedding between progranulin and brain was celebrated in 2006 with the involvement of progranulin gene (GRN) in Frontotemporal lobar degeneration (FTLD), the most common form of early-onset dementia: up to date, 75 mutations have been detected in FTLD patients as well as in patients with widely variable clinical phenotypes. All pathogenic GRN mutations identified thus far cause the disease through a uniform mechanism, i.e. loss of functional progranulin or haploinsufficiency. Studies on GRN knockout mice suggest that progranulin-related neurodegenerative diseases may result from lifetime depletion of neurotrophic support together with cumulative damage in association with dysregulated inflammation, thus highlighting possible new molecular targets for GRN-related FTLD treatment. Recently, the dosage of plasma progranulin has been proposed as a useful tool for a quick and inexpensive large-scale screening of affected and unaffected carriers of GRN mutations. Before it is systematically translated into clinical practice and, more importantly, included into diagnostic criteria for dementias, further standardization of plasma progranulin test and harmonization of its use are required. Once a specific treatment becomes available for these pathologies, this test - being applicable on large scale - will represent an important step towards personalized healthcare. This article is part of a Special Issue entitled: Brain Integration. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Sortilin regulates progranulin action in castration-resistant prostate cancer cells.

    Science.gov (United States)

    Tanimoto, Ryuta; Morcavallo, Alaide; Terracciano, Mario; Xu, Shi-Qiong; Stefanello, Manuela; Buraschi, Simone; Lu, Kuojung G; Bagley, Demetrius H; Gomella, Leonard G; Scotlandi, Katia; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2015-01-01

    The growth factor progranulin is as an important regulator of transformation in several cellular systems. We have previously demonstrated that progranulin acts as an autocrine growth factor and stimulates motility, proliferation, and anchorage-independent growth of castration-resistant prostate cancer cells, supporting the hypothesis that progranulin may play a critical role in prostate cancer progression. However, the mechanisms regulating progranulin action in castration-resistant prostate cancer cells have not been characterized. Sortilin, a single-pass type I transmembrane protein of the vacuolar protein sorting 10 family, binds progranulin in neurons and negatively regulates progranulin signaling by mediating progranulin targeting for lysosomal degradation. However, whether sortilin is expressed in prostate cancer cells and plays any role in regulating progranulin action has not been established. Here, we show that sortilin is expressed at very low levels in castration-resistant PC3 and DU145 cells. Significantly, enhancing sortilin expression in PC3 and DU145 cells severely diminishes progranulin levels and inhibits motility, invasion, proliferation, and anchorage-independent growth. In addition, sortilin overexpression negatively modulates Akt (protein kinase B, PKB) stability. These results are recapitulated by depleting endogenous progranulin in PC3 and DU145 cells. On the contrary, targeting sortilin by short hairpin RNA approaches enhances progranulin levels and promotes motility, invasion, and anchorage-independent growth. We dissected the mechanisms of sortilin action and demonstrated that sortilin promotes progranulin endocytosis through a clathrin-dependent pathway, sorting into early endosomes and subsequent lysosomal degradation. Collectively, these results point out a critical role for sortilin in regulating progranulin action in castration-resistant prostate cancer cells, suggesting that sortilin loss may contribute to prostate cancer progression.

  6. Progranulin: At the interface of neurodegenerative and metabolic diseases

    OpenAIRE

    Nguyen, Andrew D.; Nguyen, Thi A.; Martens, Lauren Herl; Mitic, Laura L.; Farese, Robert V.

    2013-01-01

    Progranulin is a widely expressed, cysteine-rich, secreted glycoprotein originally discovered for its growth factor–like properties. Its subsequent identification as a causative gene for frontotemporal dementia (FTD), a devastating early-onset neurodegenerative disease, has catalyzed a surge of new discoveries about progranulin’s function in the brain. More recently, progranulin was recognized as an adipokine involved in diet-induced obesity and insulin resistance, revealing its metabolic fun...

  7. Progranulin is expressed within motor neurons and promotes neuronal cell survival

    Directory of Open Access Journals (Sweden)

    Kay Denis G

    2009-10-01

    Full Text Available Abstract Background Progranulin is a secreted high molecular weight growth factor bearing seven and one half copies of the cysteine-rich granulin-epithelin motif. While inappropriate over-expression of the progranulin gene has been associated with many cancers, haploinsufficiency leads to atrophy of the frontotemporal lobes and development of a form of dementia (frontotemporal lobar degeneration with ubiquitin positive inclusions, FTLD-U associated with the formation of ubiquitinated inclusions. Recent reports indicate that progranulin has neurotrophic effects, which, if confirmed would make progranulin the only neuroprotective growth factor that has been associated genetically with a neurological disease in humans. Preliminary studies indicated high progranulin gene expression in spinal cord motor neurons. However, it is uncertain what the role of Progranulin is in normal or diseased motor neuron function. We have investigated progranulin gene expression and subcellular localization in cultured mouse embryonic motor neurons and examined the effect of progranulin over-expression and knockdown in the NSC-34 immortalized motor neuron cell line upon proliferation and survival. Results In situ hybridisation and immunohistochemical techniques revealed that the progranulin gene is highly expressed by motor neurons within the mouse spinal cord and in primary cultures of dissociated mouse embryonic spinal cord-dorsal root ganglia. Confocal microscopy coupled to immunocytochemistry together with the use of a progranulin-green fluorescent protein fusion construct revealed progranulin to be located within compartments of the secretory pathway including the Golgi apparatus. Stable transfection of the human progranulin gene into the NSC-34 motor neuron cell line stimulates the appearance of dendritic structures and provides sufficient trophic stimulus to survive serum deprivation for long periods (up to two months. This is mediated at least in part through

  8. Dissociation of Frontotemporal Dementia–Related Deficits and Neuroinflammation in Progranulin Haploinsufficient Mice

    Science.gov (United States)

    Filiano, Anthony J.; Martens, Lauren Herl; Young, Allen H.; Warmus, Brian A.; Zhou, Ping; Diaz-Ramirez, Grisell; Jiao, Jian; Zhang, Zhijun; Huang, Eric J.; Gao, Fen-Biao; Farese, Robert V.; Roberson, Erik D.

    2013-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with hallmark deficits in social and emotional function. Heterozygous loss-of-function mutations in GRN, the progranulin gene, are a common genetic cause of the disorder, but the mechanisms by which progranulin haploinsufficiency causes neuronal dysfunction in FTD are unclear. Homozygous progranulin knockout (Grn−/−) mice have been studied as a model of this disorder and show behavioral deficits and a neuroinflammatory phenotype with robust microglial activation. However, homozygous GRN mutations causing complete progranulin deficiency were recently shown to cause a different neurological disorder, neuronal ceroid lipofuscinosis, suggesting that the total absence of progranulin may have effects distinct from those of haploinsufficiency. Here, we studied progranulin heterozygous (Grn+/−) mice, which model progranulin haploinsufficiency. We found that Grn+/− mice developed age-dependent social and emotional deficits potentially relevant to FTD. However, unlike Grn−/− mice, behavioral deficits in Grn+/− mice occurred in the absence of gliosis or increased expression of tumor necrosis factor–α. Instead, we found neuronal abnormalities in the amygdala, an area of selective vulnerability in FTD, in Grn+/− mice. Our findings indicate that FTD-related deficits due to progranulin haploinsufficiency can develop in the absence of detectable gliosis and neuroinflammation, thereby dissociating microglial activation from functional deficits and suggesting an important effect of progranulin deficiency on neurons. PMID:23516300

  9. Dissociation of frontotemporal dementia-related deficits and neuroinflammation in progranulin haploinsufficient mice.

    Science.gov (United States)

    Filiano, Anthony J; Martens, Lauren Herl; Young, Allen H; Warmus, Brian A; Zhou, Ping; Diaz-Ramirez, Grisell; Jiao, Jian; Zhang, Zhijun; Huang, Eric J; Gao, Fen-Biao; Farese, Robert V; Roberson, Erik D

    2013-03-20

    Frontotemporal dementia (FTD) is a neurodegenerative disease with hallmark deficits in social and emotional function. Heterozygous loss-of-function mutations in GRN, the progranulin gene, are a common genetic cause of the disorder, but the mechanisms by which progranulin haploinsufficiency causes neuronal dysfunction in FTD are unclear. Homozygous progranulin knock-out (Grn(-/-)) mice have been studied as a model of this disorder and show behavioral deficits and a neuroinflammatory phenotype with robust microglial activation. However, homozygous GRN mutations causing complete progranulin deficiency were recently shown to cause a different neurological disorder, neuronal ceroid lipofuscinosis, suggesting that the total absence of progranulin may have effects distinct from those of haploinsufficiency. Here, we studied progranulin heterozygous (Grn(+/-)) mice, which model progranulin haploinsufficiency. We found that Grn(+/-) mice developed age-dependent social and emotional deficits potentially relevant to FTD. However, unlike Grn(-/-) mice, behavioral deficits in Grn(+/-) mice occurred in the absence of gliosis or increased expression of tumor necrosis factor-α. Instead, we found neuronal abnormalities in the amygdala, an area of selective vulnerability in FTD, in Grn(+/-) mice. Our findings indicate that FTD-related deficits resulting from progranulin haploinsufficiency can develop in the absence of detectable gliosis and neuroinflammation, thereby dissociating microglial activation from functional deficits and suggesting an important effect of progranulin deficiency on neurons.

  10. Progranulin promotes peripheral nerve regeneration and reinnervation: role of notch signaling.

    Science.gov (United States)

    Altmann, Christine; Vasic, Verica; Hardt, Stefanie; Heidler, Juliana; Häussler, Annett; Wittig, Ilka; Schmidt, Mirko H H; Tegeder, Irmgard

    2016-10-22

    Peripheral nerve injury is a frequent cause of lasting motor deficits and chronic pain. Although peripheral nerves are capable of regrowth they often fail to re-innervate target tissues. Using newly generated transgenic mice with inducible neuronal progranulin overexpression we show that progranulin accelerates axonal regrowth, restoration of neuromuscular synapses and recovery of sensory and motor functions after injury of the sciatic nerve. Oppositely, progranulin deficient mice have long-lasting deficits in motor function tests after nerve injury due to enhanced losses of motor neurons and stronger microglia activation in the ventral horn of the spinal cord. Deep proteome and gene ontology (GO) enrichment analysis revealed that the proteins upregulated in progranulin overexpressing mice were involved in 'regulation of transcription' and 'response to insulin' (GO terms). Transcription factor prediction pointed to activation of Notch signaling and indeed, co-immunoprecipitation studies revealed that progranulin bound to the extracellular domain of Notch receptors, and this was functionally associated with higher expression of Notch target genes in the dorsal root ganglia of transgenic mice with neuronal progranulin overexpression. Functionally, these transgenic mice recovered normal gait and running, which was not achieved by controls and was stronger impaired in progranulin deficient mice. We infer that progranulin activates Notch signaling pathways, enhancing thereby the regenerative capacity of partially injured neurons, which leads to improved motor function recovery.

  11. Further evidence for plasma progranulin as a biomarker in bipolar disorder.

    Science.gov (United States)

    Kittel-Schneider, Sarah; Weigl, Johannes; Volkert, Julia; Geßner, Alexandra; Schmidt, Brigitte; Hempel, Susanne; Kiel, Tilman; Olmes, David G; Bartl, Jasmin; Weber, Heike; Kopf, Juliane; Reif, Andreas

    2014-03-01

    A recent study suggested that progranulin (encoded by the fronto-temporal dementia risk gene GRN) plasma levels are decreased in bipolar disorder (BD). Replication of this finding is however lacking. Progranulin plasma levels of bipolar patients (n=104) and healthy controls (n=80) were measured by enzyme-linked immunosorbent assay (ELISA). Participants were also genotyped for three single nucleotide polymorphisms (SNPs) in the GRN gene (rs2879096, rs4792938 and rs5848), and the effect of genetic variation on progranulin levels was examined. Plasma progranulin levels were decreased in BD (ANCOVA, p=0.001). Furthermore, age was significantly and positively correlated with plasma progranulin (Pearson׳s correlation, r=0.269, pprogranulin plasma levels (ANCOVA, p=0.007). Specifically in BD, the GRN SNP rs5848 was associated with progranulin plasma levels (Kruskal-Wallis test, pprogranulin as a biomarker for BD is limited due to the overlap between patients and controls. The findings strengthen the evidence for progranulin being involved in pathomechanisms of bipolar disorder, and suggest a genetic determinant of progranulin concentrations that is relevant specifically in bipolar patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. The Caenorhabditis chemoreceptor gene families

    Directory of Open Access Journals (Sweden)

    Robertson Hugh M

    2008-10-01

    Full Text Available Abstract Background Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Results Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Conclusion Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.

  13. The Caenorhabditis chemoreceptor gene families.

    Science.gov (United States)

    Thomas, James H; Robertson, Hugh M

    2008-10-06

    Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Based on manual curation and sequence comparisons among putative G-protein-coupled chemoreceptor genes in the nematode Caenorhabditis elegans, we identified approximately 1300 genes and 400 pseudogenes in the 19 largest gene families, most of which fall into larger superfamilies. In the related species C. briggsae and C. remanei, we identified most or all genes in each of the 19 families. For most families, C. elegans has the largest number of genes and C. briggsae the smallest number, suggesting changes in the importance of chemoperception among the species. Protein trees reveal family-specific and species-specific patterns of gene duplication and gene loss. The frequency of strict orthologs varies among the families, from just over 50% in two families to less than 5% in three families. Several families include large species-specific expansions, mostly in C. elegans and C. remanei. Chemoreceptor gene families in Caenorhabditis species are large and evolutionarily dynamic as a result of gene duplication and gene loss. These dynamics shape the chemoreceptor gene complements in Caenorhabditis species and define the receptor space available for chemosensory responses. To explain these patterns, we propose the gray pawn hypothesis: individual genes are of little significance, but the aggregate of a large number of diverse genes is required to cover a large phenotype space.

  14. Progranulin levels in blood in Alzheimer's disease and mild cognitive impairment.

    Science.gov (United States)

    Cooper, Yonatan A; Nachun, Daniel; Dokuru, Deepika; Yang, Zhongan; Karydas, Anna M; Serrero, Ginette; Yue, Binbin; Boxer, Adam L; Miller, Bruce L; Coppola, Giovanni

    2018-05-01

    Changes in progranulin ( GRN ) expression have been hypothesized to alter risk for Alzheimer's disease (AD). We investigated the relationship between GRN expression in peripheral blood and clinical diagnosis of AD and mild cognitive impairment (MCI). Peripheral blood progranulin gene expression was measured, using microarrays from Alzheimer's ( n = 186), MCI ( n = 118), and control ( n = 204) subjects from the University of California San Francisco Memory and Aging Center (UCSF-MAC) and two independent published series (AddNeuroMed and ADNI). GRN gene expression was correlated with clinical, demographic, and genetic data, including APOE haplotype and the GRN rs5848 single-nucleotide polymorphism. Finally, we assessed progranulin protein levels, using enzyme-linked immunosorbent assay, and methylation status using methylation microarrays. We observed an increase in blood progranulin gene expression and a decrease in GRN promoter methylation in males ( P = 0.007). Progranulin expression was 13% higher in AD and MCI patients compared with controls in the UCSF-MAC cohort ( F 2,505 = 10.41, P = 3.72*10 -5 ). This finding was replicated in the AddNeuroMed ( F 2,271 = 17.9, P = 4.83*10 -8 ) but not the ADNI series. The rs5848 SNP (T-allele) predicted decreased blood progranulin gene expression ( P = 0.03). The APOE4 haplotype was positively associated with progranulin expression independent of diagnosis ( P = 0.04). Finally, we did not identify differences in plasma progranulin protein levels or gene methylation between diagnostic categories. Progranulin mRNA is elevated in peripheral blood of patients with AD and MCI and its expression is associated with numerous genetic and demographic factors. These data suggest a role in the pathogenesis of neurodegenerative dementias besides frontotemporal dementia.

  15. Loss of function mutations in the progranulin gene are related to pro-inflammatory cytokine dysregulation in frontotemporal lobar degeneration patients

    Directory of Open Access Journals (Sweden)

    Spalletta Gianfranco

    2011-06-01

    Full Text Available Abstract The progranulin gene (PGRN encodes a pleiotropic molecule with anti-inflammatory actions and neuronal protective effects. Accordingly, PGRN-deficient mice have been demonstrated to develop enhanced inflammation and progressive neurodegeneration. Loss of function mutations of the PGRN gene have been also reported to cause frontotemporal lobar degeneration (FTLD, a neurodegenerative disease leading to dementia generally in the presenium. Since neurodegeneration might be negatively impacted by chronic inflammation, the possible influence of PGRN defects on inflammatory pathways appears to be of great relevance for the understanding of neurodegeneration pathogenic processes in those patients. However, no data about the inflammatory profile of PGRN-defective subjects have been so far provided. In this study, we analyzed serum levels of the pro-inflammatory mediators IL-6, TNF-α and IL-18 in FTLD patients with or without PGRN mutations, at both pre-symptomatic and symptomatic stages. We provide evidence that circulating IL-6 is increased in PGRN-mutated FTLD patients, as compared to both PGRN non-mutated FTLD patients and controls. In contrast, levels of IL-6 were not altered in asymptomatic subjects carrying the PGRN mutations. Finally, TNF-α and IL-18 serum levels did not differ among all groups of included subjects. We conclude that the profile of circulating pro-inflammatory cytokines is altered in PGRN-related symptomatic FTLD. Thus, our findings point to IL-6 as a possible specific mediator and a potential therapeutic target in this monogenic disease, suggesting that an enhanced inflammatory response might be indeed involved in its progression.

  16. Microglial upregulation of progranulin as a marker of motor neuron degeneration.

    NARCIS (Netherlands)

    Philips, T.; Muynck, L. De; Thu, H.N.; Weynants, B.; Vanacker, P.; Dhondt, J.; Sleegers, K.; Schelhaas, H.J.; Verbeek, M.M.; Vandenberghe, R.; Sciot, R.; Broeckhoven, C. van; Lambrechts, D.; Leuven, F. Van; Bosch, L.; Robberecht, W.; Damme, P. van

    2010-01-01

    Frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are overlapping neurodegenerative disorders. Mutations in the growth factor progranulin (PGRN) gene cause FTLD, sometimes in conjunction with ALS; such mutations are also observed in some ALS patients. Most PGRN

  17. Gene cluster statistics with gene families.

    Science.gov (United States)

    Raghupathy, Narayanan; Durand, Dannie

    2009-05-01

    Identifying genomic regions that descended from a common ancestor is important for understanding the function and evolution of genomes. In distantly related genomes, clusters of homologous gene pairs are evidence of candidate homologous regions. Demonstrating the statistical significance of such "gene clusters" is an essential component of comparative genomic analyses. However, currently there are no practical statistical tests for gene clusters that model the influence of the number of homologs in each gene family on cluster significance. In this work, we demonstrate empirically that failure to incorporate gene family size in gene cluster statistics results in overestimation of significance, leading to incorrect conclusions. We further present novel analytical methods for estimating gene cluster significance that take gene family size into account. Our methods do not require complete genome data and are suitable for testing individual clusters found in local regions, such as contigs in an unfinished assembly. We consider pairs of regions drawn from the same genome (paralogous clusters), as well as regions drawn from two different genomes (orthologous clusters). Determining cluster significance under general models of gene family size is computationally intractable. By assuming that all gene families are of equal size, we obtain analytical expressions that allow fast approximation of cluster probabilities. We evaluate the accuracy of this approximation by comparing the resulting gene cluster probabilities with cluster probabilities obtained by simulating a realistic, power-law distributed model of gene family size, with parameters inferred from genomic data. Surprisingly, despite the simplicity of the underlying assumption, our method accurately approximates the true cluster probabilities. It slightly overestimates these probabilities, yielding a conservative test. We present additional simulation results indicating the best choice of parameter values for data

  18. Progranulin-Associated Primary Progressive Aphasia: A Distinct Phenotype?

    Science.gov (United States)

    Rohrer, Jonathan D.; Crutch, Sebastian J.; Warrington, Elizabeth K.; Warren, Jason D.

    2010-01-01

    The neuropsychological features of the primary progressive aphasia (PPA) syndromes continue to be defined. Here we describe a detailed neuropsychological case study of a patient with a mutation in the progranulin ("GRN") gene who presented with progressive word-finding difficulty. Key neuropsychological features in this case included gravely…

  19. Progranulin antibodies in autoimmune diseases.

    Science.gov (United States)

    Thurner, Lorenz; Preuss, Klaus-Dieter; Fadle, Natalie; Regitz, Evi; Klemm, Philipp; Zaks, Marina; Kemele, Maria; Hasenfus, Andrea; Csernok, Elena; Gross, Wolfgang L; Pasquali, Jean-Louis; Martin, Thierry; Bohle, Rainer Maria; Pfreundschuh, Michael

    2013-05-01

    Systemic vasculitides constitute a heterogeneous group of diseases. Autoimmunity mediated by B lymphocytes and their humoral effector mechanisms play a major role in ANCA-associated vasculitis (AAV) as well as in non-ANCA associated primary systemic vasculitides and in the different types of autoimmune connective tissue disorders and rheumatoid arthritis. In order to detect autoantibodies in systemic vasculitides, we screened protein macroarrays of human cDNA expression libraries with sera from patients with ANCA-associated and ANCA-negative primary systemic vasculitides. This approach led to the identification of antibodies against progranulin, a 88 kDA secreted glycoprotein with strong anti-inflammatory activity in the course of disease of giant-cell arteritis/polymyalgia rheumatica (14/65), Takayasu's arteritis (4/13), classical panarteritis nodosa (4/10), Behcet's disease (2/6) and in the course of disease in granulomatosis with polyangiitis (31/75), Churg-Strauss syndrome (7/23) and in microscopic polyangiitis (7/19). In extended screenings the progranulin antibodies were also detected in other autoimmune diseases such as systemic lupus erythematosus (39/91) and rheumatoid arthritis (16/44). Progranulin antibodies were detected only in 1 of 97 healthy controls. Anti-progranulin positive patients with systemic vasculitides, systemic lupus erythematosus or rheumatoid arthritis had significant lower progranulin plasma levels, indicating a neutralizing effect. In light of the anti-inflammatory effects of progranulin, progranulin antibodies might exert pro-inflammatory effects thus contributing to the pathogenesis of the respective autoimmune diseases and might serve as a marker for disease activity. This hypothesis is supported by the fact that a positive progranulin antibody status was associated with active disease in granulomatosis with polyangiitis. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Progranulin Overproduction Due to Fli-1 Deficiency Contributes to the Resistance of Dermal Fibroblasts to Tumor Necrosis Factor in Systemic Sclerosis.

    Science.gov (United States)

    Ichimura, Yohei; Asano, Yoshihide; Akamata, Kaname; Noda, Shinji; Taniguchi, Takashi; Takahashi, Takehiro; Toyama, Tetsuo; Tada, Yayoi; Sugaya, Makoto; Sato, Shinichi; Kadono, Takafumi

    2015-12-01

    Progranulin is a growth factor that is active in wound repair and is an antagonist of tumor necrosis factor (TNF) receptors, regulating fibroblast activation, angiogenesis, and inflammation. Because long-standing activation of gene programs related to wound healing is a hallmark of systemic sclerosis (SSc), we sought to investigate the role of progranulin in SSc. Progranulin expression levels in human and murine skin samples were determined by immunohistochemical analysis and quantitative reverse transcription-polymerase chain reaction. The role of progranulin in fibroblast activation was examined using a gene-silencing technique. Progranulin levels in serum obtained from 60 patients with SSc and 16 healthy control subjects were determined by enzyme-linked immunosorbent assay. Progranulin expression was increased in SSc dermal fibroblasts compared with normal dermal fibroblasts, both in vivo and in vitro. Transcription factor Fli-1, a deficiency of which is involved in the activation of SSc dermal fibroblasts, served as a potent repressor of the progranulin gene, and Fli-1(+/-) mice and bleomycin-treated wild-type mice exhibited up-regulated expression of progranulin in dermal fibroblasts. SSc dermal fibroblasts were resistant to the antifibrotic effect of TNF, but this resistance was reversed by gene silencing of progranulin. Serum progranulin levels were elevated in patients with early diffuse cutaneous SSc (dcSSc), especially in those with inflammatory skin symptoms, and were positively correlated with the C-reactive protein level. Progranulin overproduction due to Fli-1 deficiency may contribute to the constitutive activation of SSc dermal fibroblasts by antagonizing the antifibrotic effect of TNF. Progranulin may also be involved in the inflammatory process associated with progressive skin sclerosis in early dcSSc. © 2015, American College of Rheumatology.

  1. Elevated progranulin contributes to synaptic and learning deficit due to loss of fragile X mental retardation protein.

    Science.gov (United States)

    Zhang, Kun; Li, Yu-Jiao; Guo, Yanyan; Zheng, Kai-Yin; Yang, Qi; Yang, Le; Wang, Xin-Shang; Song, Qian; Chen, Tao; Zhuo, Min; Zhao, Ming-Gao

    2017-12-01

    Fragile X syndrome is an inheritable form of intellectual disability caused by loss of fragile X mental retardation protein (FMRP, encoded by the FMR1 gene). Absence of FMRP caused overexpression of progranulin (PGRN, encoded by GRN), a putative tumour necrosis factor receptor ligand. In the present study, we found that progranulin mRNA and protein were upregulated in the medial prefrontal cortex of Fmr1 knock-out mice. In Fmr1 knock-out mice, elevated progranulin caused insufficient dendritic spine pruning and late-phase long-term potentiation in the medial prefrontal cortex of Fmr1 knock-out mice. Partial progranulin knock-down restored spine morphology and reversed behavioural deficits, including impaired fear memory, hyperactivity, and motor inflexibility in Fmr1 knock-out mice. Progranulin increased levels of phosphorylated glutamate ionotropic receptor GluA1 and nuclear factor kappa B in cultured wild-type neurons. Tumour necrosis factor receptor 2 antibody perfusion blocked the effects of progranulin on GluA1 phosphorylation; this result indicates that tumour necrosis factor receptor 2 is required for progranulin-mediated GluA1 phosphorylation and late-phase long-term potentiation expression. However, high basal level of progranulin in Fmr1 knock-out mice prevented further facilitation of synaptic plasticity by exogenous progranulin. Partial downregulation of progranulin or tumour necrosis factor receptor 2/nuclear factor kappa B signalling restored synaptic plasticity and memory deficits in Fmr1 knock-out mice. These findings suggest that elevated PGRN is linked to cognitive deficits of fragile X syndrome, and the progranulin/tumour necrosis factor receptor 2 signalling pathway may be a putative therapeutic target for improving cognitive deficits in fragile X syndrome. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Serum progranulin concentrations are not responsive during oral lipid tolerance test and oral glucose tolerance test.

    Science.gov (United States)

    Schmid, A; Leszczak, S; Ober, I; Schäffler, A; Karrasch, T

    2015-07-01

    The postprandial regulation of progranulin by oral uptake of lipids and carbohydrates in healthy individuals has not yet been investigated. The regulation of progranulin in 2 large cohorts of healthy volunteers during oral lipid tolerance test (OLTT; n=100) and oral glucose tolerance test (OGTT; n=100) was analyzed. One hundred healthy volunteers underwent OLTT and OGTT in an outpatient setting. Venous blood was drawn at 0 hours (h) (fasting) and at 2, 4, and 6 h in OLTT or 1 and 2 h in OGTT. A novel OLTT solution completely free of carbohydrates and protein was applied. Subjects were characterized by anthropometric and laboratory parameters. Serum concentrations of progranulin were measured by enzyme-linked immunosorbent assay (ELISA). Circulating progranulin levels remained unchanged during OLTT and OGTT. Fasting progranulin levels ranged between 31.3±8.7 and 40.6±7.7 ng/ml and were not different in subgroups addressing BMI, gender, family history, smoking habits, and hormonal contraception. There was a reciprocal correlation of progranulin with HDL (negative) and LDL cholesterol levels (positive). In healthy adults, fasting and postprandial circulating progranulin levels are not different in BMI subgroups. Oral uptake of carbohydrates and lipids does not influence circulating progranulin levels in a short-term manner. A postprandial and short-term regulation of this adipokine is absent, at least in healthy subjects. There is a negative correlation of progranulin with HDL cholesterol, but a positive correlation with LDL cholesterol. This reciprocal association might be of physiological importance for an individual's atherosclerotic risk. © Georg Thieme Verlag KG Stuttgart · New York.

  3. C-terminus of progranulin interacts with the beta-propeller region of sortilin to regulate progranulin trafficking.

    Directory of Open Access Journals (Sweden)

    Yanqiu Zheng

    Full Text Available Progranulin haplo-insufficiency is a main cause of frontotemporal lobar degeneration (FTLD with TDP-43 aggregates. Previous studies have shown that sortilin regulates progranulin trafficking and is a main determinant of progranulin level in the brain. In this study, we mapped the binding site between progranulin and sortilin. Progranulin binds to the beta-propeller region of sortilin through its C-terminal tail. The C-terminal progranulin fragment is fully sufficient for sortilin binding and progranulin C-terminal peptide displaces progranulin binding to sortilin. Deletion of the last 3 residues of progranulin (QLL abolishes its binding to sortilin and also sortilin dependent regulation of progranulin trafficking. Since progranulin haplo-insufficiency results in FTLD, these results may provide important insights into future studies of progranulin trafficking and signaling and progranulin based therapy for FTLD.

  4. C-Terminus of Progranulin Interacts with the Beta-Propeller Region of Sortilin to Regulate Progranulin Trafficking

    Science.gov (United States)

    Meng, Peter S.; Mao, Yuxin; Hu, Fenghua

    2011-01-01

    Progranulin haplo-insufficiency is a main cause of frontotemporal lobar degeneration (FTLD) with TDP-43 aggregates. Previous studies have shown that sortilin regulates progranulin trafficking and is a main determinant of progranulin level in the brain. In this study, we mapped the binding site between progranulin and sortilin. Progranulin binds to the beta-propeller region of sortilin through its C-terminal tail. The C-terminal progranulin fragment is fully sufficient for sortilin binding and progranulin C-terminal peptide displaces progranulin binding to sortilin. Deletion of the last 3 residues of progranulin (QLL) abolishes its binding to sortilin and also sortilin dependent regulation of progranulin trafficking. Since progranulin haplo-insufficiency results in FTLD, these results may provide important insights into future studies of progranulin trafficking and signaling and progranulin based therapy for FTLD. PMID:21698296

  5. Sensitivity to neurotoxic stress is not increased in progranulin-deficient mice.

    Science.gov (United States)

    Petkau, Terri L; Zhu, Shanshan; Lu, Ge; Fernando, Sarah; Cynader, Max; Leavitt, Blair R

    2013-11-01

    Loss-of-function mutations in the progranulin (GRN) gene are a common cause of autosomal dominant frontotemporal lobar degeneration, a fatal and progressive neurodegenerative disorder common in people less than 65 years of age. In the brain, progranulin is expressed in multiple regions at varying levels, and has been hypothesized to play a neuroprotective or neurotrophic role. Four neurotoxic agents were injected in vivo into constitutive progranulin knockout (Grn(-/-)) mice and their wild-type (Grn(+/+)) counterparts to assess neuronal sensitivity to toxic stress. Administration of 3-nitropropionic acid, quinolinic acid, kainic acid, and pilocarpine induced robust and measurable neuronal cell death in affected brain regions, but no differential cell death was observed between Grn(+/+) and Grn(-/-) mice. Thus, constitutive progranulin knockout mice do not have increased sensitivity to neuronal cell death induced by the acute chemical models of neuronal injury used in this study. Copyright © 2013. Published by Elsevier Inc.

  6. The Progranulin Cleavage Products, Granulins, Exacerbate TDP-43 Toxicity and Increase TDP-43 Levels.

    Science.gov (United States)

    Salazar, Dominique A; Butler, Victoria J; Argouarch, Andrea R; Hsu, Tsung-Yuan; Mason, Amanda; Nakamura, Ayumi; McCurdy, Helen; Cox, David; Ng, Rachel; Pan, Gloria; Seeley, William W; Miller, Bruce L; Kao, Aimee W

    2015-06-24

    Mutations in the human progranulin gene resulting in protein haploinsufficiency cause frontotemporal lobar degeneration with TDP-43 inclusions. Although progress has been made in understanding the normal functions of progranulin and TDP-43, the molecular interactions between these proteins remain unclear. Progranulin is proteolytically processed into granulins, but the role of granulins in the pathogenesis of neurodegenerative disease is unknown. We used a Caenorhabditis elegans model of neuronal TDP-43 proteinopathy to specifically interrogate the contribution of granulins to the neurodegenerative process. Complete loss of the progranulin gene did not worsen TDP-43 toxicity, whereas progranulin heterozygosity did. Interestingly, expression of individual granulins alone had little effect on behavior. In contrast, when granulins were coexpressed with TDP-43, they exacerbated its toxicity in a variety of behaviors including motor coordination. These same granulins increased TDP-43 levels via a post-translational mechanism. We further found that in human neurodegenerative disease subjects, granulin fragments accumulated specifically in diseased regions of brain. To our knowledge, this is the first demonstration of a toxic role for granulin fragments in a neurodegenerative disease model. These studies suggest that presence of cleaved granulins, rather than or in addition to loss of full-length progranulin, may contribute to disease in TDP-43 proteinopathies. Copyright © 2015 the authors 0270-6474/15/359315-14$15.00/0.

  7. C-Terminus of Progranulin Interacts with the Beta-Propeller Region of Sortilin to Regulate Progranulin Trafficking

    OpenAIRE

    Zheng, Yanqiu; Brady, Owen A.; Meng, Peter S.; Mao, Yuxin; Hu, Fenghua

    2011-01-01

    Progranulin haplo-insufficiency is a main cause of frontotemporal lobar degeneration (FTLD) with TDP-43 aggregates. Previous studies have shown that sortilin regulates progranulin trafficking and is a main determinant of progranulin level in the brain. In this study, we mapped the binding site between progranulin and sortilin. Progranulin binds to the beta-propeller region of sortilin through its C-terminal tail. The C-terminal progranulin fragment is fully sufficient for sortilin binding and...

  8. The Caenorhabditis chemoreceptor gene families

    OpenAIRE

    Robertson Hugh M; Thomas James H

    2008-01-01

    Abstract Background Chemoreceptor proteins mediate the first step in the transduction of environmental chemical stimuli, defining the breadth of detection and conferring stimulus specificity. Animal genomes contain families of genes encoding chemoreceptors that mediate taste, olfaction, and pheromone responses. The size and diversity of these families reflect the biology of chemoperception in specific species. Results Based on manual curation and sequence comparisons among putative G-protein-...

  9. Progranulin plasma levels predict the presence of GRN mutations in asymptomatic subjects and do not correlate with brain atrophy: Results from the GENFI study

    NARCIS (Netherlands)

    D. Galimberti (Daniela); Fumagalli, G.G. (Giorgio G.); C. Fenoglio (Chiara); Cioffi, S.M.G. (Sara M.G.); A. Arighi (Andrea); M. Serpente (Maria); B. Borroni (Barbara); A. Padovani (Alessandro); F. Tagliavini (Fabrizio); M. Masellis (Mario); M.C. Tartaglia (Maria Carmela); J.C. van Swieten (John); L.H.H. Meeter (Lieke H.H.); C. Graff (Caroline); A. De Mendonça (Alexandre); M. Bocchetta (Martina); J.D. Rohrer (Jonathan Daniel); Scarpini, E. (Elio)

    2017-01-01

    textabstractWe investigated whether progranulin plasma levels are predictors of the presence of progranulin gene (GRN) null mutations or of the development of symptoms in asymptomatic at risk members participating in the Genetic Frontotemporal Dementia Initiative, including 19 patients, 64

  10. Wild-type bone marrow transplant partially reverses neuroinflammation in progranulin-deficient mice.

    Science.gov (United States)

    Yang, Yue; Aloi, Macarena S; Cudaback, Eiron; Josephsen, Samuel R; Rice, Samantha J; Jorstad, Nikolas L; Keene, C Dirk; Montine, Thomas J

    2014-11-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow (BM)-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes BM-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn(+/+) (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin-deficient (Grn(-/-)) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn(-/-) mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn(-/-) mice that was partially to fully reversed 5 months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases.

  11. Wild Type Bone Marrow Transplant Partially Reverses Neuroinflammation in Progranulin-Deficient Mice

    Science.gov (United States)

    Yang, Yue; Aloi, Macarena S.; Cudaback, Eiron; Josephsen, Samuel R.; Rice, Samantha J.; Jorstad, Nikolas L.; Keene, C. Dirk; Montine, Thomas J.

    2014-01-01

    Frontotemporal dementia (FTD) is a neurodegenerative disease with devastating changes in behavioral performance and social function. Mutations in the progranulin gene (GRN) are one of the most common causes of inherited FTD due to reduced progranulin expression or activity, including in brain where it is expressed primarily by neurons and microglia. Thus, efforts aimed at enhancing progranulin levels might be a promising therapeutic strategy. Bone marrow-derived cells are able to engraft in the brain and adopt a microglial phenotype under myeloablative irradiation conditioning. This ability makes bone marrow (BM)-derived cells a potential cellular vehicle for transferring therapeutic molecules to the central nervous system. Here, we utilized BM cells from Grn+/+ (wild type or wt) mice labeled with green fluorescence protein for delivery of progranulin to progranulin deficient (Grn−/−) mice. Our results showed that wt bone marrow transplantation (BMT) partially reconstituted progranulin in the periphery and in cerebral cortex of Grn−/− mice. We demonstrated a pro-inflammatory effect in vivo and in ex vivo preparations of cerebral cortex of Grn−/− mice that was partially to fully reversed five months after BMT. Our findings suggest that BMT can be administered as a stem cell-based approach to prevent or to treat neurodegenerative diseases. PMID:25199051

  12. Genome-Wide Comparative Gene Family Classification

    Science.gov (United States)

    Frech, Christian; Chen, Nansheng

    2010-01-01

    Correct classification of genes into gene families is important for understanding gene function and evolution. Although gene families of many species have been resolved both computationally and experimentally with high accuracy, gene family classification in most newly sequenced genomes has not been done with the same high standard. This project has been designed to develop a strategy to effectively and accurately classify gene families across genomes. We first examine and compare the performance of computer programs developed for automated gene family classification. We demonstrate that some programs, including the hierarchical average-linkage clustering algorithm MC-UPGMA and the popular Markov clustering algorithm TRIBE-MCL, can reconstruct manual curation of gene families accurately. However, their performance is highly sensitive to parameter setting, i.e. different gene families require different program parameters for correct resolution. To circumvent the problem of parameterization, we have developed a comparative strategy for gene family classification. This strategy takes advantage of existing curated gene families of reference species to find suitable parameters for classifying genes in related genomes. To demonstrate the effectiveness of this novel strategy, we use TRIBE-MCL to classify chemosensory and ABC transporter gene families in C. elegans and its four sister species. We conclude that fully automated programs can establish biologically accurate gene families if parameterized accordingly. Comparative gene family classification finds optimal parameters automatically, thus allowing rapid insights into gene families of newly sequenced species. PMID:20976221

  13. Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice.

    Science.gov (United States)

    Arrant, Andrew E; Patel, Aashka R; Roberson, Erik D

    2015-01-01

    Loss-of-function mutations in progranulin ( GRN ) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from the intact allele is therefore a potential approach for treating individuals with GRN mutations. Based on the well-known effects of physical exercise on other neurotrophic factors, we hypothesized that exercise might increase brain progranulin levels. We tested this hypothesis in progranulin heterozygous ( Grn + / - ) mice, which model progranulin haploinsufficiency. We housed wild-type and progranulin-insufficient mice in standard cages or cages with exercise wheels for 4 or 7.5 weeks, and then measured brain and plasma progranulin levels. Although exercise modestly increased progranulin in very young (2-month-old) wild-type mice, this effect was limited to the hippocampus. Exercise did not increase brain progranulin mRNA or protein in multiple regions, nor did it increase plasma progranulin, in 4- to 8-month-old wild-type or Grn + / - mice, across multiple experiments and under conditions that increased hippocampal BDNF and neurogenesis. Grn - / - mice were included in the study to test for progranulin-independent benefits of exercise on gliosis. Exercise attenuated cortical microgliosis in 8-month-old Grn - / - mice, consistent with a progranulin-independent, anti-inflammatory effect of exercise. These results suggest that exercise may have some modest, nonspecific benefits for FTD patients with progranulin mutations, but do not support exercise as a strategy to raise progranulin levels.

  14. Data file of a deep proteome analysis of the prefrontal cortex in aged mice with progranulin deficiency or neuronal overexpression of progranulin.

    Science.gov (United States)

    Heidler, Juliana; Hardt, Stefanie; Wittig, Ilka; Tegeder, Irmgard

    2016-12-01

    Progranulin deficiency is associated with neurodegeneration in humans and in mice. The mechanisms likely involve progranulin-promoted removal of protein waste via autophagy. We performed a deep proteomic screen of the pre-frontal cortex in aged (13-15 months) female progranulin-deficient mice (GRN -/- ) and mice with inducible neuron-specific overexpression of progranulin (SLICK-GRN-OE) versus the respective control mice. Proteins were extracted and analyzed per liquid chromatography/mass spectrometry (LC/MS) on a Thermo Scientific™ Q Exactive Plus equipped with an ultra-high performance liquid chromatography unit and a Nanospray Flex Ion-Source. Full Scan MS-data were acquired using Xcalibur and raw files were analyzed using the proteomics software Max Quant. The mouse reference proteome set from uniprot (June 2015) was used to identify peptides and proteins. The DiB data file is a reduced MaxQuant output and includes peptide and protein identification, accession numbers, protein and gene names, sequence coverage and label free quantification (LFQ) values of each sample. Differences in protein expression in genotypes are presented in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016) [1].

  15. Data file of a deep proteome analysis of the prefrontal cortex in aged mice with progranulin deficiency or neuronal overexpression of progranulin

    Directory of Open Access Journals (Sweden)

    Juliana Heidler

    2016-12-01

    Full Text Available Progranulin deficiency is associated with neurodegeneration in humans and in mice. The mechanisms likely involve progranulin-promoted removal of protein waste via autophagy. We performed a deep proteomic screen of the pre-frontal cortex in aged (13–15 months female progranulin-deficient mice (GRN−/− and mice with inducible neuron-specific overexpression of progranulin (SLICK-GRN-OE versus the respective control mice. Proteins were extracted and analyzed per liquid chromatography/mass spectrometry (LC/MS on a Thermo Scientific™ Q Exactive Plus equipped with an ultra-high performance liquid chromatography unit and a Nanospray Flex Ion-Source. Full Scan MS-data were acquired using Xcalibur and raw files were analyzed using the proteomics software Max Quant. The mouse reference proteome set from uniprot (June 2015 was used to identify peptides and proteins. The DiB data file is a reduced MaxQuant output and includes peptide and protein identification, accession numbers, protein and gene names, sequence coverage and label free quantification (LFQ values of each sample. Differences in protein expression in genotypes are presented in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016 [1].

  16. Progranulin: a new avenue towards the understanding and treatment of neurodegenerative disease.

    Science.gov (United States)

    Chitramuthu, Babykumari P; Bennett, Hugh P J; Bateman, Andrew

    2017-12-01

    Progranulin, a secreted glycoprotein, is encoded in humans by the single GRN gene. Progranulin consists of seven and a half, tandemly repeated, non-identical copies of the 12 cysteine granulin motif. Many cellular processes and diseases are associated with this unique pleiotropic factor that include, but are not limited to, embryogenesis, tumorigenesis, inflammation, wound repair, neurodegeneration and lysosome function. Haploinsufficiency caused by autosomal dominant mutations within the GRN gene leads to frontotemporal lobar degeneration, a progressive neuronal atrophy that presents in patients as frontotemporal dementia. Frontotemporal dementia is an early onset form of dementia, distinct from Alzheimer's disease. The GRN-related form of frontotemporal lobar dementia is a proteinopathy characterized by the appearance of neuronal inclusions containing ubiquitinated and fragmented TDP-43 (encoded by TARDBP). The neurotrophic and neuro-immunomodulatory properties of progranulin have recently been reported but are still not well understood. Gene delivery of GRN in experimental models of Alzheimer's- and Parkinson's-like diseases inhibits phenotype progression. Here we review what is currently known concerning the molecular function and mechanism of action of progranulin in normal physiological and pathophysiological conditions in both in vitro and in vivo models. The potential therapeutic applications of progranulin in treating neurodegenerative diseases are highlighted. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  17. Genome-wide meta-analysis identifies novel determinants of circulating serum progranulin.

    Science.gov (United States)

    Tönjes, Anke; Scholz, Markus; Krüger, Jacqueline; Krause, Kerstin; Schleinitz, Dorit; Kirsten, Holger; Gebhardt, Claudia; Marzi, Carola; Grallert, Harald; Ladenvall, Claes; Heyne, Henrike; Laurila, Esa; Kriebel, Jennifer; Meisinger, Christa; Rathmann, Wolfgang; Gieger, Christian; Groop, Leif; Prokopenko, Inga; Isomaa, Bo; Beutner, Frank; Kratzsch, Jürgen; Fischer-Rosinsky, Antje; Pfeiffer, Andreas; Krohn, Knut; Spranger, Joachim; Thiery, Joachim; Blüher, Matthias; Stumvoll, Michael; Kovacs, Peter

    2018-02-01

    Progranulin is a secreted protein with important functions in processes including immune and inflammatory response, metabolism and embryonic development. The present study aimed at identification of genetic factors determining progranulin concentrations. We conducted a genome-wide association meta-analysis for serum progranulin in three independent cohorts from Europe: Sorbs (N = 848) and KORA (N = 1628) from Germany and PPP-Botnia (N = 335) from Finland (total N = 2811). Single nucleotide polymorphisms (SNPs) associated with progranulin levels were replicated in two additional German cohorts: LIFE-Heart Study (Leipzig; N = 967) and Metabolic Syndrome Berlin Potsdam (Berlin cohort; N = 833). We measured mRNA expression of genes in peripheral blood mononuclear cells (PBMC) by micro-arrays and performed mRNA expression quantitative trait and expression-progranulin association studies to functionally substantiate identified loci. Finally, we conducted siRNA silencing experiments in vitro to validate potential candidate genes within the associated loci. Heritability of circulating progranulin levels was estimated at 31.8% and 26.1% in the Sorbs and LIFE-Heart cohort, respectively. SNPs at three loci reached study-wide significance (rs660240 in CELSR2-PSRC1-MYBPHL-SORT1, rs4747197 in CDH23-PSAP and rs5848 in GRN) explaining 19.4%/15.0% of the variance and 61%/57% of total heritability in the Sorbs/LIFE-Heart Study. The strongest evidence for association was at rs660240 (P = 5.75 × 10-50), which was also associated with mRNA expression of PSRC1 in PBMC (P = 1.51 × 10-21). Psrc1 knockdown in murine preadipocytes led to a consecutive 30% reduction in progranulin secretion. In conclusion, the present meta-GWAS combined with mRNA expression identified three loci associated with progranulin and supports the role of PSRC1 in the regulation of progranulin secretion. © The Author(s) 2017. Published by Oxford University Press. All rights

  18. Yeast-2-Hybrid data file showing progranulin interactions in human fetal brain and bone marrow libraries

    Directory of Open Access Journals (Sweden)

    Irmgard Tegeder

    2016-12-01

    Full Text Available Progranulin deficiency in humans is associated with neurodegeneration. Its mechanisms are not yet fully understood. We performed a Yeast-2-Hybrid screen using human full-length progranulin as bait to assess the interactions of progranulin. Progranulin was screened against human fetal brain and human bone marrow libraries using the standard Matchmaker technology (Clontech. This article contains the full Y2H data table, including blast results and sequences, a sorted table according to selection criteria for likely positive, putatively positive, likely false and false preys, and tables showing the gene ontology terms associated with the likely and putative preys of the brain and bone marrow libraries. The interactions with autophagy proteins were confirmed and functionally analyzed in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016 [1].

  19. Yeast-2-Hybrid data file showing progranulin interactions in human fetal brain and bone marrow libraries.

    Science.gov (United States)

    Tegeder, Irmgard

    2016-12-01

    Progranulin deficiency in humans is associated with neurodegeneration. Its mechanisms are not yet fully understood. We performed a Yeast-2-Hybrid screen using human full-length progranulin as bait to assess the interactions of progranulin. Progranulin was screened against human fetal brain and human bone marrow libraries using the standard Matchmaker technology (Clontech). This article contains the full Y2H data table, including blast results and sequences, a sorted table according to selection criteria for likely positive, putatively positive, likely false and false preys, and tables showing the gene ontology terms associated with the likely and putative preys of the brain and bone marrow libraries. The interactions with autophagy proteins were confirmed and functionally analyzed in "Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy" (C. Altmann, S. Hardt, C. Fischer, J. Heidler, H.Y. Lim, A. Haussler, B. Albuquerque, B. Zimmer, C. Moser, C. Behrends, F. Koentgen, I. Wittig, M.H. Schmidt, A.M. Clement, T. Deller, I. Tegeder, 2016) [1].

  20. Progranulin Levels in Plasma and Cerebrospinal Fluid in Granulin Mutation Carriers

    NARCIS (Netherlands)

    L.H.H. Meeter (Lieke H.H.); Patzke, H. (Holger); Loewen, G. (Gordon); E.G.P. Dopper (Elise); Y. Pijnenburg (Yolande); A.S. Thornton (Andrew); J.C. van Swieten (John)

    2016-01-01

    textabstractBackground: Pathogenic mutations in the granulin gene (GRN) are causative in 5-10% of patients with frontotemporal dementia (FTD), mostly leading to reduced progranulin protein (PGRN) levels. Upcoming therapeutic trials focus on enhancing PGRN levels. Methods: Fluctuations in plasma PGRN

  1. Moxibustion upregulates hippocampal progranulin expression

    Directory of Open Access Journals (Sweden)

    Tao Yi

    2016-01-01

    Full Text Available In China, moxibustion is reported to be useful and has few side effects for chronic fatigue syndrome, but its mechanisms are largely unknown. More recently, the focus has been on the wealth of information supporting stress as a factor in chronic fatigue syndrome, and largely concerns dysregulation in the stress-related hypothalamic-pituitary-adrenal axis. In the present study, we aimed to determine the effect of moxibustion on behavioral symptoms in chronic fatigue syndrome rats and examine possible mechanisms. Rats were subjected to a combination of chronic restraint stress and forced swimming to induce chronic fatigue syndrome. The acupoints Guanyuan (CV4 and Zusanli (ST36, bilateral were simultaneously administered moxibustion. Untreated chronic fatigue syndrome rats and normal rats were used as controls. Results from the forced swimming test, open field test, tail suspension test, real-time PCR, enzyme-linked immunosorbent assay, and western blot assay showed that moxibustion treatment decreased mRNA expression of corticotropin-releasing hormone in the hypothalamus, and adrenocorticotropic hormone and corticosterone levels in plasma, and markedly increased progranulin mRNA and protein expression in the hippocampus. These findings suggest that moxibustion may relieve the behavioral symptoms of chronic fatigue syndrome, at least in part, by modulating the hypothalamic-pituitary-adrenal axis and upregulating hippocampal progranulin.

  2. Progranulin in frontotemporal lobar degeneration and neuroinflammation

    Directory of Open Access Journals (Sweden)

    Hutton Michael L

    2007-02-01

    Full Text Available Abstract Progranulin (PGRN is a pleiotropic protein that has gained the attention of the neuroscience community with recent discoveries of mutations in the gene for PGRN that cause frontotemporal lobar degeneration (FTLD. Pathogenic mutations in PGRN result in null alleles, and the disease is likely the result of haploinsufficiency. Little is known about the normal function of PGRN in the central nervous system apart from a role in brain development. It is expressed by microglia and neurons. In the periphery, PGRN is involved in wound repair and inflammation. High PGRN expression has been associated with more aggressive growth of various tumors. The properties of full length PGRN are distinct from those of proteolytically derived peptides, referred to as granulins (GRNs. While PGRN has trophic properties, GRNs are more akin to inflammatory mediators such as cytokines. Loss of the neurotrophic properties of PGRN may play a role in selective neuronal degeneration in FTLD, but neuroinflammation may also be important. Gene expression studies suggest that PGRN is up-regulated in a variety of neuroinflammatory conditions, and increased PGRN expression by microglia may play a pivotal role in the response to brain injury, neuroinflammation and neurodegeneration.

  3. Suberoylanilide hydroxamic acid increases progranulin production in iPSC-derived cortical neurons of frontotemporal dementia patients.

    Science.gov (United States)

    Almeida, Sandra; Gao, Fuying; Coppola, Giovanni; Gao, Fen-Biao

    2016-06-01

    Mutations in the granulin (GRN) gene cause frontotemporal dementia (FTD) due to progranulin haploinsufficiency. Compounds that can increase progranulin production and secretion may be considered as potential therapeutic drugs; however, very few of them have been directly tested on human cortical neurons. To this end, we differentiated 9 induced pluripotent stem cell lines derived from a control subject, a sporadic FTD case and an FTD patient with progranulin S116X mutation. Treatment with 1 μM suberoylanilide hydroxamic acid (SAHA), a histone deacetylase inhibitor, increased the production of progranulin in cortical neurons of all subjects at both the mRNA and protein levels without affecting their viability. Microarray analysis revealed that SAHA treatment not only reversed some gene expression changes caused by progranulin haploinsufficiency but also caused massive alterations in the overall transcriptome. Thus, histone deacetylase inhibitors may be considered as therapeutic drugs for GRN mutation carriers. However, this class of drugs also causes drastic changes in overall gene expression in human cortical neurons and their side effects and potential impacts on other pathways should be carefully evaluated. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Effects of Exercise on Progranulin Levels and Gliosis in Progranulin-Insufficient Mice1,2,3

    Science.gov (United States)

    Arrant, Andrew E.; Patel, Aashka R.

    2015-01-01

    Abstract Loss-of-function mutations in progranulin (GRN) are one of the most common genetic causes of frontotemporal dementia (FTD), a progressive, fatal neurodegenerative disorder with no available disease-modifying treatments. Through haploinsufficiency, these mutations reduce levels of progranulin, a protein that has neurotrophic and anti-inflammatory effects. Increasing progranulin expression from the intact allele is therefore a potential approach for treating individuals with GRN mutations. Based on the well-known effects of physical exercise on other neurotrophic factors, we hypothesized that exercise might increase brain progranulin levels. We tested this hypothesis in progranulin heterozygous (Grn+/−) mice, which model progranulin haploinsufficiency. We housed wild-type and progranulin-insufficient mice in standard cages or cages with exercise wheels for 4 or 7.5 weeks, and then measured brain and plasma progranulin levels. Although exercise modestly increased progranulin in very young (2-month-old) wild-type mice, this effect was limited to the hippocampus. Exercise did not increase brain progranulin mRNA or protein in multiple regions, nor did it increase plasma progranulin, in 4- to 8-month-old wild-type or Grn+/− mice, across multiple experiments and under conditions that increased hippocampal BDNF and neurogenesis. Grn−/−mice were included in the study to test for progranulin-independent benefits of exercise on gliosis. Exercise attenuated cortical microgliosis in 8-month-old Grn−/−mice, consistent with a progranulin-independent, anti-inflammatory effect of exercise. These results suggest that exercise may have some modest, nonspecific benefits for FTD patients with progranulin mutations, but do not support exercise as a strategy to raise progranulin levels. PMID:26361634

  5. Association Between Progranulin and Gaucher Disease.

    Science.gov (United States)

    Jian, Jinlong; Zhao, Shuai; Tian, Qing-Yun; Liu, Helen; Zhao, Yunpeng; Chen, Wen-Chi; Grunig, Gabriele; Torres, Paola A; Wang, Betty C; Zeng, Bai; Pastores, Gregory; Tang, Wei; Sun, Ying; Grabowski, Gregory A; Kong, Max Xiangtian; Wang, Guilin; Chen, Ying; Liang, Fengxia; Overkleeft, Herman S; Saunders-Pullman, Rachel; Chan, Gerald L; Liu, Chuan-Ju

    2016-09-01

    Gaucher disease (GD) is a genetic disease caused by mutations in the GBA1 gene which result in reduced enzymatic activity of β-glucocerebrosidase (GCase). This study identified the progranulin (PGRN) gene (GRN) as another gene associated with GD. Serum levels of PGRN were measured from 115 GD patients and 99 healthy controls, whole GRN gene from 40 GD patients was sequenced, and the genotyping of 4 SNPs identified in GD patients was performed in 161 GD and 142 healthy control samples. Development of GD in PGRN-deficient mice was characterized, and the therapeutic effect of rPGRN on GD analyzed. Serum PGRN levels were significantly lower in GD patients (96.65±53.45ng/ml) than those in healthy controls of the general population (164.99±43.16ng/ml, pGaucher-like cells in lung, spleen, and bone marrow. Moreover, lysosomes in PGRN KO mice exhibit a tubular-like appearance. PGRN is required for the lysosomal appearance of GCase and its deficiency leads to GCase accumulation in the cytoplasm. More importantly, recombinant PGRN is therapeutic in various animal models of GD and human fibroblasts from GD patients. Our data demonstrates an unknown association between PGRN and GD and identifies PGRN as an essential factor for GCase's lysosomal localization. These findings not only provide new insight into the pathogenesis of GD, but may also have implications for diagnosis and alternative targeted therapies for GD. Copyright © 2016 Forschungsgesellschaft für Arbeitsphysiologie und Arbeitschutz e.V. Published by Elsevier B.V. All rights reserved.

  6. Low plasma progranulin levels in children with autism

    Directory of Open Access Journals (Sweden)

    Mostafa Gehan A

    2011-09-01

    Full Text Available Abstract Background Autoimmunity to brain may play a pathogenic role in autism. In autoimmune disorders, the formation of antigen-antibody complexes triggers an inflammatory response by inducing the infiltration of neutrophils. Local administration of recombinant progranulin, which is an anti-inflammatory neurotrophic factor, potently inhibit neutrophilic inflammation in vivo, demonstrating that progranulin represents a crucial inflammation-suppressing mediator. We are the first to measure plasma progranulin levels in autism. Methods Plasma levels of progranulin were measured, by ELISA, in 40 autistic patients, aged between 3 and 12 years, and 40 healthy-matched children. Results Autistic children had significantly lower plasma progranulin levels, P = 0.001. Reduced plasma progranulin levels were found in 65% (26/40 of autistic children. On the other hand, there was a non significant difference between plasma progranulin levels of children with mild to moderate autism and patients with severe autism, P = 0.11. Conclusions Plasma progranulin levels were reduced in a subgroup of patients with autism. Progranulin insufficiency in some patients with autism may result in many years of reduced neutrotrophic support together with cumulative damage in association with dysregulated inflammation that may have a role in autism. However, these data should be treated with caution until further investigations are performed, with a larger subject population, to determine whether the decrease of plasma progranulin levels is a mere consequence of autism or has a pathogenic role in the disease. The role of progranulin therapy should also be studied in autism.

  7. Low plasma progranulin levels in children with autism.

    Science.gov (United States)

    Al-Ayadhi, Laila Y; Mostafa, Gehan A

    2011-09-05

    Autoimmunity to brain may play a pathogenic role in autism. In autoimmune disorders, the formation of antigen-antibody complexes triggers an inflammatory response by inducing the infiltration of neutrophils. Local administration of recombinant progranulin, which is an anti-inflammatory neurotrophic factor, potently inhibit neutrophilic inflammation in vivo, demonstrating that progranulin represents a crucial inflammation-suppressing mediator. We are the first to measure plasma progranulin levels in autism. Plasma levels of progranulin were measured, by ELISA, in 40 autistic patients, aged between 3 and 12 years, and 40 healthy-matched children. Autistic children had significantly lower plasma progranulin levels, P = 0.001. Reduced plasma progranulin levels were found in 65% (26/40) of autistic children.On the other hand, there was a non significant difference between plasma progranulin levels of children with mild to moderate autism and patients with severe autism, P = 0.11. Plasma progranulin levels were reduced in a subgroup of patients with autism. Progranulin insufficiency in some patients with autism may result in many years of reduced neutrotrophic support together with cumulative damage in association with dysregulated inflammation that may have a role in autism. However, these data should be treated with caution until further investigations are performed, with a larger subject population, to determine whether the decrease of plasma progranulin levels is a mere consequence of autism or has a pathogenic role in the disease. The role of progranulin therapy should also be studied in autism.

  8. Progranulin Is a Novel Independent Predictor of Disease Progression and Overall Survival in Chronic Lymphocytic Leukemia

    OpenAIRE

    G?bel, Maria; Eisele, Lewin; M?llmann, Michael; H?ttmann, Andreas; Johansson, Patricia; Scholtysik, Ren?; Bergmann, Manuela; Busch, Raymonde; D?hner, Hartmut; Hallek, Michael; Seiler, Till; Stilgenbauer, Stephan; Klein-Hitpass, Ludger; D?hrsen, Ulrich; D?rig, Jan

    2013-01-01

    Progranulin (Pgrn) is a 88 kDa secreted protein with pleiotropic functions including regulation of cell cycle progression, cell motility, wound repair and tumorigenesis. Using microarray based gene expression profiling we have recently demonstrated that the gene for Pgrn, granulin (GRN), is significantly higher expressed in aggressive CD38(+)ZAP-70(+) as compared to indolent CD38(-)ZAP-70(-) chronic lymphocytic leukemia (CLL) cases. Here, we measured Pgrn plasma concentrations by enzyme-linke...

  9. Another piece in the progranulin puzzle: special binding between progranulin and prosaposin creates additional lysosomal access: An Editorial Comment for 'The interaction between progranulin and prosaposin is mediated by granulins and the linker region between saposin B and C' on page 236.

    Science.gov (United States)

    Van Damme, Philip

    2017-10-01

    Loss-of-function mutations in the gene encoding the growth factor progranulin cause degeneration of the ageing brain in a dose-dependent manner. While heterozygous mutations result in adult onset frontotemporal dementia, the much rarer homozygous null mutations cause an early onset lysosomal storage disorder. A better understanding of the biology of progranulin in the central nervous system is needed to find solutions for these incurable diseases. This Editorial highlights a study by Zhou et al. in the current issue of the Journal of Neurochemistry, in which the authors provide data that are a step towards this goal. Progranulin is mainly expressed by neurons and microglia and, although it is a secreted protein, it also ends up in lysosomes. Recently, the trafficking of progranulin and the molecular players involved have become better understood. A special interaction between progranulin and its travelling companion, prosaposin, explains how both proteins can use each other's transport receptors to gain access to lysosomes. © 2017 The Authors. Journal of Neurochemistry published by John Wiley & Sons Ltd on behalf of International Society for Neurochemistry.

  10. Progranulin is increased in human and murine lipodystrophy.

    Science.gov (United States)

    Miehle, Konstanze; Ebert, Thomas; Kralisch, Susan; Hoffmann, Annett; Kratzsch, Jürgen; Schlögl, Haiko; Stumvoll, Michael; Fasshauer, Mathias

    2016-10-01

    Lipodystrophies (LD) are genetic or acquired disorders sharing the symptom of partial or complete adipose tissue deficiency and a dysregulation of adipokines including leptin and adiponectin. Progranulin, an adipokine with proinflammatory and insulin resistance-inducing characteristics, has not been investigated in LD so far. Circulating progranulin was determined in LD patients (N=37) and in age-, gender-, and body mass index-matched healthy control subjects (N=37). Additionally, we investigated progranulin expression in an LD mouse model as compared to wild-type mice. Moreover, we elucidated circulating progranulin before and during metreleptin supplementation in 10 patients with LD. Median [interquartile range] circulating progranulin was increased in patients with LD (82.9 [25.9] μg/l) as compared to controls (73.6 [22.8] μg/l) (p=0.005). C-reactive protein (CRP) remained an independent and positive predictor of progranulin in multivariate analysis. Progranulin mRNA was significantly upregulated in all adipose tissue depots, i.e. visceral, subcutaneous, and brown adipose tissue, and in muscle of LD animals versus wild-type mice. Progranulin levels did not significantly change during metreleptin supplementation. Progranulin serum concentration is increased in patients with LD, and shows an independent and positive correlation with CRP. Different adipose tissue depots and muscle might be potential origins of elevated progranulin. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  11. Clinicopathologic and prognostic implications of progranulin in breast carcinoma.

    Science.gov (United States)

    Li, Li-qin; Huang, Hui-lian; Ping, Jin-liang; Wang, Xiao-hong; Zhong, Jing; Dai, Li-cheng

    2011-07-05

    Progranulin is a newly discovered 88-kDa glycoprotein originally purified from the highly tumorigenic mouse teratoma-derived cell line PC. Its expression is closely correlated with the development and metastasis of several cancers. However, no immunohistochemical evidence currently exists to correlate progranulin expression with clinicopathologic features in breast carcinoma biopsies, and the role of progranulin as a new marker of metastatic risk and prognosis in breast cancer has not yet been studied. The aim of this study was to investigate the clinicopathologic and prognostic implications of progranulin expression in breast carcinoma and its correlation with tumor angiogenesis. Progranulin expression was determined immunohistochemically in 183 surgical specimens from patients with breast cancer and 20 tissue samples from breast fibroadenomas. The tumor angiogenesis-related biomarker, vascular endothelial growth factor was assayed and microvessel density was assessed by counting vascular endothelial cells in tumor tissues labeled with endoglin antibody. The relationship between progranulin expression and the clinicopathologic data were analyzed. Progranulin proteins were overexpressed in breast cancer. The level of progranulin expression was significantly correlated with tumor size (P = 0.004), lymph node metastasis (P progranulin expression was associated with higher tumor angiogenesis, reflected by increased vascular endothelial growth factor expression (P Progranulin may be a valuable marker for assessing the metastasis and prognosis of breast cancer, and could provide the basis for new combination regimens with antiangiogenic activity.

  12. The molecular basis for development of proinflammatory autoantibodies to progranulin.

    Science.gov (United States)

    Thurner, Lorenz; Fadle, Natalie; Regitz, Evi; Kemele, Maria; Klemm, Philipp; Zaks, Marina; Stöger, Elisabeth; Bette, Birgit; Carbon, Gabi; Zimmer, Vincent; Assmann, Gunter; Murawski, Niels; Kubuschok, Boris; Held, Gerhard; Preuss, Klaus-Dieter; Pfreundschuh, Michael

    2015-07-01

    Recently we identified in a wide spectrum of autoimmune diseases frequently occurring proinflammatory autoantibodies directed against progranulin, a direct inhibitor of TNFR1 & 2 and of DR3. In the present study we investigated the mechanisms for the breakdown of self-tolerance against progranulin. Isoelectric focusing identified a second, differentially electrically charged progranulin isoform exclusively present in progranulin-antibody-positive patients. Alkaline phosphatase treatment revealed this additional progranulin isoform to be hyperphosphorylated. Subsequently Ser81, which is located within the epitope region of progranulin-antibodies, was identified as hyperphosphorylated serine residue by site directed mutagenesis of candidate phosphorylation sites. Hyperphosphorylated progranulin was detected exclusively in progranulin-antibody-positive patients during the courses of their diseases. The occurrence of hyperphosphorylated progranulin preceded seroconversions of progranulin-antibodies, indicating adaptive immune response. Utilizing panels of kinase and phosphatase inhibitors, PKCβ1 was identified as the relevant kinase and PP1 as the relevant phosphatase for phosphorylation and dephosphorylation of Ser81. In contrast to normal progranulin, hyperphosphorylated progranulin interacted exclusively with inactivated (pThr320) PP1, suggesting inactivated PP1 to cause the detectable occurrence of phosphorylated Ser81 PGRN. Investigation of possible functional alterations of PGRN due to Ser81 phosphorylation revealed, that hyperphosphorylation prevents the interaction and thus direct inhibition of TNFR1, TNFR2 and DR3, representing an additional direct proinflammatory effect. Finally phosphorylation of Ser81 PGRN alters the conversion pattern of PGRN. In conclusion, inactivated PP1 induces hyperphosphorylation of progranulin in a wide spectrum of autoimmune diseases. This hyperphosphorylation prevents direct inhibition of TNFR1, TNFR2 and DR3 by PGRN, alters the

  13. Reducing inflammation and rescuing FTD-related behavioral deficits in progranulin-deficient mice with α7 nicotinic acetylcholine receptor agonists.

    Science.gov (United States)

    Minami, S Sakura; Shen, Vivian; Le, David; Krabbe, Grietje; Asgarov, Rustam; Perez-Celajes, Liberty; Lee, Chih-Hung; Li, Jinhe; Donnelly-Roberts, Diana; Gan, Li

    2015-10-15

    Mutations in the progranulin gene cause frontotemporal dementia (FTD), a debilitating neurodegenerative disease that involves atrophy of the frontal and temporal lobes and affects personality, behavior, and language. Progranulin-deficient mouse models of FTD exhibit deficits in compulsive and social behaviors reminiscent of patients with FTD, and develop excessive microgliosis and increased release of inflammatory cytokines. Activation of nicotinic acetylcholine receptors (nAChRs) by nicotine or specific α7 nAChR agonists reduces neuroinflammation. Here, we investigated whether activation of nAChRs by nicotine or α7 agonists improved the excessive inflammatory and behavioral phenotypes of a progranulin-deficient FTD mouse model. We found that treatment with selective α7 agonists, PHA-568487 or ABT-107, strongly suppressed the activation of NF-κB in progranulin-deficient cells. Treatment with ABT-107 also reduced microgliosis, decreased TNFα levels, and reduced compulsive behavior in progranulin-deficient mice. Collectively, these data suggest that targeting activation of the α7 nAChR pathway may be beneficial in decreasing neuroinflammation and reversing some of the behavioral deficits observed in progranulin-deficient FTD. Copyright © 2015. Published by Elsevier Inc.

  14. Cortical atrophy and language network reorganization associated with a novel progranulin mutation.

    Science.gov (United States)

    Cruchaga, Carlos; Fernández-Seara, Maria A; Seijo-Martínez, Manuel; Samaranch, Lluis; Lorenzo, Elena; Hinrichs, Anthony; Irigoyen, Jaione; Maestro, Cristina; Prieto, Elena; Martí-Climent, Josep M; Arbizu, Javier; Pastor, Maria A; Pastor, Pau

    2009-08-01

    Progressive nonfluent aphasia (PNFA) is an early stage of frontotemporal degeneration. We identified a novel Cys521Tyr progranulin gene variant in a PNFA family that potentially disrupts disulphide bridging causing protein misfolding. To identify early neurodegeneration changes, we performed neuropsychological and neuroimaging studies in 6 family members (MRI [magnetic resonance imaging], fMRI [functional MRI], and 18f-fluorodeoxygenlucose positron emission tomography, including 4 mutation carriers, and in 9 unrelated controls. Voxel-based morphometry (VBM) of the carriers compared with controls showed significant cortical atrophy in language areas. Grey matter loss was distributed mainly in frontal lobes, being more prominent on the left. Clusters were located in the superior frontal gyri, left inferior frontal gyrus, left middle frontal gyrus, left middle temporal gyri and left posterior parietal areas, concordant with (18)FDG-PET hypometabolic areas. fMRI during semantic and phonemic covert word generation (CWGTs) and word listening tasks (WLTs) showed recruitment of attentional and working memory networks in the carriers indicative of functional reorganization. During CWGTs, activation in left prefrontal cortex and bilateral anterior insulae was present whereas WLT recruited mesial prefrontal and anterior temporal cortex. These findings suggest that Cys521Tyr could be associated with early brain impairment not limited to language areas and compensated by recruitment of bilateral auxiliary cortical areas.

  15. Progranulin regulates neuronal outgrowth independent of Sortilin

    Directory of Open Access Journals (Sweden)

    Gass Jennifer

    2012-07-01

    Full Text Available Abstract Background Progranulin (PGRN, a widely secreted growth factor, is involved in multiple biological functions, and mutations located within the PGRN gene (GRN are a major cause of frontotemporal lobar degeneration with TDP-43-positive inclusions (FLTD-TDP. In light of recent reports suggesting PGRN functions as a protective neurotrophic factor and that sortilin (SORT1 is a neuronal receptor for PGRN, we used a Sort1-deficient (Sort1−/− murine primary hippocampal neuron model to investigate whether PGRN’s neurotrophic effects are dependent on SORT1. We sought to elucidate this relationship to determine what role SORT1, as a regulator of PGRN levels, plays in modulating PGRN’s neurotrophic effects. Results As the first group to evaluate the effect of PGRN loss in Grn knockout primary neuronal cultures, we show neurite outgrowth and branching are significantly decreased in Grn−/− neurons compared to wild-type (WT neurons. More importantly, we also demonstrate that PGRN overexpression can rescue this phenotype. However, the recovery in outgrowth is not observed following treatment with recombinant PGRN harboring missense mutations p.C139R, p.P248L or p.R432C, indicating that these mutations adversely affect the neurotrophic properties of PGRN. In addition, we also present evidence that cleavage of full-length PGRN into granulin peptides is required for increased neuronal outgrowth, suggesting that the neurotrophic functions of PGRN are contained within certain granulins. To further characterize the mechanism by which PGRN impacts neuronal morphology, we assessed the involvement of SORT1. We demonstrate that PGRN induced-outgrowth occurs in the absence of SORT1 in Sort1−/− cultures. Conclusion We demonstrate that loss of PGRN impairs proper neurite outgrowth and branching, and that exogenous PGRN alleviates this impairment. Furthermore, we determined that exogenous PGRN induces outgrowth independent of SORT1, suggesting another

  16. Progranulin as a biomarker and potential therapeutic agent.

    Science.gov (United States)

    Abella, Vanessa; Pino, Jesús; Scotece, Morena; Conde, Javier; Lago, Francisca; Gonzalez-Gay, Miguel Angel; Mera, Antonio; Gómez, Rodolfo; Mobasheri, Ali; Gualillo, Oreste

    2017-10-01

    Progranulin is a cysteine-rich secreted protein with diverse pleiotropic actions and participates in several processes, such as inflammation or tumorigenesis. Progranulin was first identified as a growth factor and, recently, it was characterised as an adipokine implicated in obesity, insulin resistance and rheumatic disease. At a central level, progranulin acts as a neurotropic and neuroprotective factor and protects from neural degeneration. In this review, we summarise the most recent research advances concerning the potential role of progranulin as a therapeutic target and biomarker in cancer, neurodegenerative and inflammatory diseases. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Mechanisms of Progranulin Action and Regulation in Genitourinary Cancers.

    Science.gov (United States)

    Tanimoto, Ryuta; Lu, Kuojung G; Xu, Shi-Qiong; Buraschi, Simone; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2016-01-01

    The growth factor progranulin has emerged in recent years as a critical regulator of transformation in several cancer models, including breast cancer, glioblastomas, leukemias, and hepatocellular carcinomas. Several laboratories, including ours, have also demonstrated an important role of progranulin in several genitourinary cancers, including ovarian, endometrial, cervical, prostate, and bladder tumors, where progranulin acts as an autocrine growth factor thereby modulating motility and invasion of transformed cells. In this review, we will focus on the mechanisms of action and regulation of progranulin signaling in genitourinary cancers with a special emphasis on prostate and bladder tumors.

  18. Mechanisms of Progranulin Action and Regulation in Genitourinary Cancers

    Directory of Open Access Journals (Sweden)

    Ryuta Tanimoto

    2016-07-01

    Full Text Available The growth factor progranulin has emerged in recent years as a critical regulator of transformation in several cancer models, including breast cancer, glioblastomas, leukemias and hepatocellular carcinomas. Several laboratories, including ours, have also demonstrated an important role of progranulin in several genitourinary cancers, including ovarian, endometrial, cervical, prostate and bladder tumors, where progranulin acts as an autocrine growth factor thereby modulating motility and invasion of transformed cells.In this review we will focus on the mechanisms of action and regulation of progranulin signaling in genitourinary cancers with a special emphasis on prostate and bladder tumors.

  19. The ACBP gene family in Rhodnius prolixus

    DEFF Research Database (Denmark)

    Majerowicz, David; Hannibal-Bach, Hans K; Castro, Rodolfo S C

    2016-01-01

    The acyl-CoA-binding proteins (ACBP) constitute a family of conserved proteins that bind acyl-CoA with high affinity and protect it from hydrolysis. Thus, ACBPs may have essential roles in basal cellular lipid metabolism. The genome of the insect Rhodnius prolixus encodes five ACBP genes similar...

  20. Serum Levels of Progranulin Do Not Reflect Cerebrospinal Fluid Levels in Neurodegenerative Disease.

    Science.gov (United States)

    Wilke, Carlo; Gillardon, Frank; Deuschle, Christian; Dubois, Evelyn; Hobert, Markus A; Müller vom Hagen, Jennifer; Krüger, Stefanie; Biskup, Saskia; Blauwendraat, Cornelis; Hruscha, Michael; Kaeser, Stephan A; Heutink, Peter; Maetzler, Walter; Synofzik, Matthis

    2016-01-01

    Altered progranulin levels play a major role in neurodegenerative diseases, like Alzheimer's dementia (AD), frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), even in the absence of GRN mutations. Increasing progranulin levels could hereby provide a novel treatment strategy. However, knowledge on progranulin regulation in neurodegenerative diseases remains limited. We here demonstrate that cerebrospinal fluid progranulin levels do not correlate with its serum levels in AD, FTD and ALS, indicating a differential regulation of its central and peripheral levels in neurodegeneration. Blood progranulin levels thus do not reliably predict central nervous progranulin levels and their response to future progranulin-increasing therapeutics.

  1. The Eucalyptus terpene synthase gene family.

    Science.gov (United States)

    Külheim, Carsten; Padovan, Amanda; Hefer, Charles; Krause, Sandra T; Köllner, Tobias G; Myburg, Alexander A; Degenhardt, Jörg; Foley, William J

    2015-06-11

    Terpenoids are abundant in the foliage of Eucalyptus, providing the characteristic smell as well as being valuable economically and influencing ecological interactions. Quantitative and qualitative inter- and intra- specific variation of terpenes is common in eucalypts. The genome sequences of Eucalyptus grandis and E. globulus were mined for terpene synthase genes (TPS) and compared to other plant species. We investigated the relative expression of TPS in seven plant tissues and functionally characterized five TPS genes from E. grandis. Compared to other sequenced plant genomes, Eucalyptus grandis has the largest number of putative functional TPS genes of any sequenced plant. We discovered 113 and 106 putative functional TPS genes in E. grandis and E. globulus, respectively. All but one TPS from E. grandis were expressed in at least one of seven plant tissues examined. Genomic clusters of up to 20 genes were identified. Many TPS are expressed in tissues other than leaves which invites a re-evaluation of the function of terpenes in Eucalyptus. Our data indicate that terpenes in Eucalyptus may play a wider role in biotic and abiotic interactions than previously thought. Tissue specific expression is common and the possibility of stress induction needs further investigation. Phylogenetic comparison of the two investigated Eucalyptus species gives insight about recent evolution of different clades within the TPS gene family. While the majority of TPS genes occur in orthologous pairs some clades show evidence of recent gene duplication, as well as loss of function.

  2. Progranulin expression in breast cancer with different intrinsic subtypes.

    Science.gov (United States)

    Li, Li Qin; Min, Li Shan; Jiang, Qun; Ping, Jin Liang; Li, Jing; Dai, Li Cheng

    2012-04-15

    Progranulin is a newly discovered 88-kDa glycoprotein originally purified from the highly tumorigenic mouse teratoma-derived cell line PC. We found that high progranulin expression was associated with higher breast carcinoma angiogenesis, reflected by increased vascular endothelial growth factor expression and higher microvessel density. However, no immunohistochemical evidence currently exists to correlate progranulin expression with clinicopathological features in different intrinsic subtypes of breast carcinoma biopsies. The aim of this study was to investigate the progranulin expression profiles in the intrinsic subtypes of breast carcinomas and their relevance to histopathological and clinicopathological features. Tissue blocks containing 264 cases of breast carcinomas from 2006 to 2009 were classified as different intrinsic subtypes. Tissues of four intrinsic subtypes were immunostained for progranulin, vascular endothelial growth factor and CD105. Their relevance to histopathological and clinicopathological features was also analyzed. Twenty tissue samples from breast fibroadenomas were included in this study. Progranulin expression showed no significant differences in different intrinsic subtypes, although an increasing tendency could be found in the triple-negative breast cancer (TNBC) subgroup (χ(2)=5.00, df=3, p=0.17). However, differences were significant when pathologically node metastasis-positive (pN(+)) TNBC were excluded (χ(2)=17.84, df=3, pprogranulin in pathologically node metastasis-negative (pN(-)) TNBC. It was noted that the EGFR expression level of the pN(-) TNBC subtype was significantly higher in cases with strong progranulin expression than in cases with weak progranulin expression (χ(2)=11.26, df=1, pprogranulin in pN(-) TNBC suggests that progranulin is a promising new target for pN(-) TNBC treatment. Strong expression of progranulin correlates with positive EGFR expression in the pN(-) TNBC subtype. The close relationship between

  3. The human protein disulfide isomerase gene family

    Directory of Open Access Journals (Sweden)

    Galligan James J

    2012-07-01

    Full Text Available Abstract Enzyme-mediated disulfide bond formation is a highly conserved process affecting over one-third of all eukaryotic proteins. The enzymes primarily responsible for facilitating thiol-disulfide exchange are members of an expanding family of proteins known as protein disulfide isomerases (PDIs. These proteins are part of a larger superfamily of proteins known as the thioredoxin protein family (TRX. As members of the PDI family of proteins, all proteins contain a TRX-like structural domain and are predominantly expressed in the endoplasmic reticulum. Subcellular localization and the presence of a TRX domain, however, comprise the short list of distinguishing features required for gene family classification. To date, the PDI gene family contains 21 members, varying in domain composition, molecular weight, tissue expression, and cellular processing. Given their vital role in protein-folding, loss of PDI activity has been associated with the pathogenesis of numerous disease states, most commonly related to the unfolded protein response (UPR. Over the past decade, UPR has become a very attractive therapeutic target for multiple pathologies including Alzheimer disease, Parkinson disease, alcoholic and non-alcoholic liver disease, and type-2 diabetes. Understanding the mechanisms of protein-folding, specifically thiol-disulfide exchange, may lead to development of a novel class of therapeutics that would help alleviate a wide range of diseases by targeting the UPR.

  4. Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin

    OpenAIRE

    Buraschi, Simone; Xu, Shi-Qiong; Stefanello, Manuela; Moskalev, Igor; Morcavallo, Alaide; Genua, Marco; Tanimoto, Ryuta; Birbe, Ruth; Peiper, Stephen C.; Gomella, Leonard G.; Belfiore, Antonino; Black, Peter C.; Iozzo, Renato V.; Morrione, Andrea

    2016-01-01

    We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play...

  5. Progranulin and its biological effects in cancer.

    Science.gov (United States)

    Arechavaleta-Velasco, Fabian; Perez-Juarez, Carlos Eduardo; Gerton, George L; Diaz-Cueto, Laura

    2017-11-07

    Cancer cells have defects in regulatory mechanisms that usually control cell proliferation and homeostasis. Different cancer cells share crucial alterations in cell physiology, which lead to malignant growth. Tumorigenesis or tumor growth requires a series of events that include constant cell proliferation, promotion of metastasis and invasion, stimulation of angiogenesis, evasion of tumor suppressor factors, and avoidance of cell death pathways. All these events in tumor progression may be regulated by growth factors produced by normal or malignant cells. The growth factor progranulin has significant biological effects in different types of cancer. This protein is a regulator of tumorigenesis because it stimulates cell proliferation, migration, invasion, angiogenesis, malignant transformation, resistance to anticancer drugs, and immune evasion. This review focuses on the biological effects of progranulin in several cancer models and provides evidence that this growth factor should be considered as a potential biomarker and target in cancer treatment.

  6. Dlx homeobox gene family expression in osteoclasts.

    Science.gov (United States)

    Lézot, F; Thomas, B L; Blin-Wakkach, C; Castaneda, B; Bolanos, A; Hotton, D; Sharpe, P T; Heymann, D; Carles, G F; Grigoriadis, A E; Berdal, A

    2010-06-01

    Skeletal growth and homeostasis require the finely orchestrated secretion of mineralized tissue matrices by highly specialized cells, balanced with their degradation by osteoclasts. Time- and site-specific expression of Dlx and Msx homeobox genes in the cells secreting these matrices have been identified as important elements in the regulation of skeletal morphology. Such specific expression patterns have also been reported in osteoclasts for Msx genes. The aim of the present study was to establish the expression patterns of Dlx genes in osteoclasts and identify their function in regulating skeletal morphology. The expression patterns of all Dlx genes were examined during the whole osteoclastogenesis using different in vitro models. The results revealed that Dlx1 and Dlx2 are the only Dlx family members with a possible function in osteoclastogenesis as well as in mature osteoclasts. Dlx5 and Dlx6 were detected in the cultures but appear to be markers of monocytes and their derivatives. In vivo, Dlx2 expression in osteoclasts was examined using a Dlx2/LacZ transgenic mouse. Dlx2 is expressed in a subpopulation of osteoclasts in association with tooth, brain, nerve, and bone marrow volumetric growths. Altogether the present data suggest a role for Dlx2 in regulation of skeletal morphogenesis via functions within osteoclasts. (c) 2010 Wiley-Liss, Inc.

  7. Comparative genome analysis of PHB gene family reveals deep evolutionary origins and diverse gene function.

    Science.gov (United States)

    Di, Chao; Xu, Wenying; Su, Zhen; Yuan, Joshua S

    2010-10-07

    PHB (Prohibitin) gene family is involved in a variety of functions important for different biological processes. PHB genes are ubiquitously present in divergent species from prokaryotes to eukaryotes. Human PHB genes have been found to be associated with various diseases. Recent studies by our group and others have shown diverse function of PHB genes in plants for development, senescence, defence, and others. Despite the importance of the PHB gene family, no comprehensive gene family analysis has been carried to evaluate the relatedness of PHB genes across different species. In order to better guide the gene function analysis and understand the evolution of the PHB gene family, we therefore carried out the comparative genome analysis of the PHB genes across different kingdoms. The relatedness, motif distribution, and intron/exon distribution all indicated that PHB genes is a relatively conserved gene family. The PHB genes can be classified into 5 classes and each class have a very deep evolutionary origin. The PHB genes within the class maintained the same motif patterns during the evolution. With Arabidopsis as the model species, we found that PHB gene intron/exon structure and domains are also conserved during the evolution. Despite being a conserved gene family, various gene duplication events led to the expansion of the PHB genes. Both segmental and tandem gene duplication were involved in Arabidopsis PHB gene family expansion. However, segmental duplication is predominant in Arabidopsis. Moreover, most of the duplicated genes experienced neofunctionalization. The results highlighted that PHB genes might be involved in important functions so that the duplicated genes are under the evolutionary pressure to derive new function. PHB gene family is a conserved gene family and accounts for diverse but important biological functions based on the similar molecular mechanisms. The highly diverse biological function indicated that more research needs to be carried out

  8. The role of retrotransposons in gene family expansions: insights from the mouse Abp gene family.

    Science.gov (United States)

    Janoušek, Václav; Karn, Robert C; Laukaitis, Christina M

    2013-05-29

    Retrotransposons have been suggested to provide a substrate for non-allelic homologous recombination (NAHR) and thereby promote gene family expansion. Their precise role, however, is controversial. Here we ask whether retrotransposons contributed to the recent expansions of the Androgen-binding protein (Abp) gene families that occurred independently in the mouse and rat genomes. Using dot plot analysis, we found that the most recent duplication in the Abp region of the mouse genome is flanked by L1Md_T elements. Analysis of the sequence of these elements revealed breakpoints that are the relicts of the recombination that caused the duplication, confirming that the duplication arose as a result of NAHR using L1 elements as substrates. L1 and ERVII retrotransposons are considerably denser in the Abp regions than in one Mb flanking regions, while other repeat types are depleted in the Abp regions compared to flanking regions. L1 retrotransposons preferentially accumulated in the Abp gene regions after lineage separation and roughly followed the pattern of Abp gene expansion. By contrast, the proportion of shared vs. lineage-specific ERVII repeats in the Abp region resembles the rest of the genome. We confirmed the role of L1 repeats in Abp gene duplication with the identification of recombinant L1Md_T elements at the edges of the most recent mouse Abp gene duplication. High densities of L1 and ERVII repeats were found in the Abp gene region with abrupt transitions at the region boundaries, suggesting that their higher densities are tightly associated with Abp gene duplication. We observed that the major accumulation of L1 elements occurred after the split of the mouse and rat lineages and that there is a striking overlap between the timing of L1 accumulation and expansion of the Abp gene family in the mouse genome. Establishing a link between the accumulation of L1 elements and the expansion of the Abp gene family and identification of an NAHR-related breakpoint in

  9. Low plasma progranulin levels in children with autism

    OpenAIRE

    AL-Ayadhi, Laila Y; Mostafa, Gehan A

    2011-01-01

    Abstract Background Autoimmunity to brain may play a pathogenic role in autism. In autoimmune disorders, the formation of antigen-antibody complexes triggers an inflammatory response by inducing the infiltration of neutrophils. Local administration of recombinant progranulin, which is an anti-inflammatory neurotrophic factor, potently inhibit neutrophilic inflammation in vivo, demonstrating that progranulin represents a crucial inflammation-suppressing mediator. We are the first to measure pl...

  10. Progranulin increases phagocytosis by retinal pigment epithelial cells in culture.

    Science.gov (United States)

    Murase, Hiromi; Tsuruma, Kazuhiro; Kuse, Yoshiki; Shimazawa, Masamitsu; Hara, Hideaki

    2017-12-01

    Retinal pigment epithelium (RPE) cells take part in retinal preservation, such as phagocytizing the shed photoreceptor outer segments (POS), every day. The incomplete phagocytic function accelerates RPE degeneration and formation of the toxic by-product lipofuscin. Excessive lipofuscin accumulation is characteristic of various blinding diseases in the human eye. Progranulin is a cysteine-rich protein that has multiple biological activities, and it has a high presence in the retina. Progranulin has been recognized to be involved in macrophage phagocytosis in the brain. The purpose of this study is to determine whether progranulin influences phagocytosis by RPE cells. All experiments were performed on primary human RPE (hRPE) cells in culture. pHrodo was used to label the isolated porcine POS, and quantification of pHrodo fluorescence was used to determine the degree of phagocytosis. Western blotting and immunohistochemistry of key proteins involved in phagocytosis were used to clarify the mechanism of progranulin. Progranulin increased RPE phagocytosis in hydrogen peroxide-treated and nontreated RPE cells. The phosphorylated form of Mer tyrosine kinase, which is important for POS internalization, was significantly increased in the progranulin-exposed cells. This increase was attenuated by SU11274, an inhibitor of hepatic growth factor receptor. Under the oxidative stress condition, exposure to progranulin led to an approximately twofold increase in integrin alpha-v, which is associated with the first step in recognition of POS by RPE cells. These results suggest that progranulin could be an effective stimulator for RPE phagocytosis and could repair RPE function. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  11. Restoring neuronal progranulin reverses deficits in a mouse model of frontotemporal dementia.

    Science.gov (United States)

    Arrant, Andrew E; Filiano, Anthony J; Unger, Daniel E; Young, Allen H; Roberson, Erik D

    2017-05-01

    Loss-of-function mutations in progranulin (GRN), a secreted glycoprotein expressed by neurons and microglia, are a common autosomal dominant cause of frontotemporal dementia, a neurodegenerative disease commonly characterized by disrupted social and emotional behaviour. GRN mutations are thought to cause frontotemporal dementia through progranulin haploinsufficiency, therefore, boosting progranulin expression from the intact allele is a rational treatment strategy. However, this approach has not been tested in an animal model of frontotemporal dementia and it is unclear if boosting progranulin could correct pre-existing deficits. Here, we show that adeno-associated virus-driven expression of progranulin in the medial prefrontal cortex reverses social dominance deficits in Grn+/- mice, an animal model of frontotemporal dementia due to GRN mutations. Adeno-associated virus-progranulin also corrected lysosomal abnormalities in Grn+/- mice. The adeno-associated virus-progranulin vector only transduced neurons, suggesting that restoring neuronal progranulin is sufficient to correct deficits in Grn+/- mice. To further test the role of neuronal progranulin in the development of frontotemporal dementia-related deficits, we generated two neuronal progranulin-deficient mouse lines using CaMKII-Cre and Nestin-Cre. Measuring progranulin levels in these lines indicated that most brain progranulin is derived from neurons. Both neuronal progranulin-deficient lines developed social dominance deficits similar to those in global Grn+/- mice, showing that neuronal progranulin deficiency is sufficient to disrupt social behaviour. These data support the concept of progranulin-boosting therapies for frontotemporal dementia and highlight an important role for neuron-derived progranulin in maintaining normal social function. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  12. Serum Levels of the Adipokine Progranulin Depend on Renal Function

    Science.gov (United States)

    Richter, Judit; Focke, Denise; Ebert, Thomas; Kovacs, Peter; Bachmann, Anette; Lössner, Ulrike; Kralisch, Susan; Kratzsch, Jürgen; Beige, Joachim; Anders, Matthias; Bast, Ingolf; Blüher, Matthias; Stumvoll, Michael; Fasshauer, Mathias

    2013-01-01

    OBJECTIVE Progranulin has recently been introduced as a novel adipokine inducing insulin resistance and obesity. In the current study, we investigated renal elimination, as well as association of the adipokine with markers of the metabolic syndrome. RESEARCH DESIGN AND METHODS Progranulin serum levels were quantified by enzyme-linked immunosorbent assay and correlated to anthropometric and biochemical parameters of renal function and glucose and lipid metabolism, as well as inflammation, in 532 patients with stages 1–5 of chronic kidney disease (CKD). RESULTS Median serum progranulin levels adjusted for age, sex, and BMI were significantly different between CKD stages with highest values detectable in stage 5 (stage 1, 58.3 µg/L; stage 2, 63.0 µg/L; stage 3, 65.4 µg/L; stage 4, 68.8 µg/L; and stage 5, 90.6 µg/L). Furthermore, CKD stage was the strongest independent predictor of circulating progranulin in our cohort. In addition, high-sensitivity interleukin-6 and adiponectin remained significantly and independently correlated with the adipokine. CONCLUSIONS We demonstrate that progranulin serum levels increase with deteriorating renal function. These findings are in accordance with the hypothesis that renal clearance is a major elimination route for circulating progranulin. Furthermore, the adipokine is positively and independently associated with markers of inflammation and adiponectin. PMID:23033238

  13. Progranulin inhibits platelet aggregation and prolongs bleeding time in rats.

    Science.gov (United States)

    Al-Yahya, A M; Al-Masri, A A; El Eter, E A; Hersi, A; Lateef, R; Mawlana, O

    2018-05-01

    Several adipokines secreted by adipose tissue have an anti-thrombotic and anti-atherosclerotic function. Recently identified adipokine progranulin was found to play a protective role in atherosclerosis. Bearing in mind the central role of platelets in inflammation and atherosclerosis, we aimed, in this study, to examine the effect of progranulin on platelet function and coagulation profile in rats. Healthy male albino Wistar rats weighing (250-300 g) were divided into 4 groups. Three groups were given increasing doses of progranulin (0.001 µg, 0.01 µg, and 0.1 µg) intraperitoneally, while the control group received phosphate-buffered saline (PBS). Bleeding time, prothrombin time, activated partial thromboplastin time and platelet aggregation responses to adenosine diphosphate and arachidonic acid were assessed. Administration of progranulin resulted in a significant inhibition of platelet aggregation in response to both adenosine diphosphate, and arachidonic acid. Bleeding time, prothrombin time and activated partial thromboplastin time were significantly prolonged in all groups that received progranulin, in particular, the 0.1 µg dose, in comparison to the control group. This preliminary data is first suggesting that the antiplatelet and anticoagulant action of progranulin could have a physiological protective function against thrombotic disorders associated with obesity and atherosclerosis. However, these results merit further exploration.

  14. The SPINK gene family and celiac disease susceptibility

    NARCIS (Netherlands)

    Wapenaar, M.C.; Monsuur, A.J.; Poell, J.; Slot, R. van 't; Meijer, J.W.R.; Meijer, G.A.; Mulder, C.J.; Mearin, M.L.; Wijmenga, C.

    2007-01-01

    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was

  15. The SPINK gene family and celiac disease susceptibility

    NARCIS (Netherlands)

    Wapenaar, Martin C.; Monsuur, Alienke J.; Poell, Jos; Slot, Ruben Van 't; Meijer, Jos W. R.; Meijer, Gerrit A.; Mulder, Chris J.; Mearin, Maria Luisa; Wijmenga, Cisca

    The gene family of serine protease inhibitors of the Kazal type (SPINK) are functional and positional candidate genes for celiac disease (CD). Our aim was to assess the gut mucosal gene expression and genetic association of SPINK1, -2, -4, and -5 in the Dutch CD population. Gene expression was

  16. Suppression of progranulin expression inhibits bladder cancer growth and sensitizes cancer cells to cisplatin.

    Science.gov (United States)

    Buraschi, Simone; Xu, Shi-Qiong; Stefanello, Manuela; Moskalev, Igor; Morcavallo, Alaide; Genua, Marco; Tanimoto, Ryuta; Birbe, Ruth; Peiper, Stephen C; Gomella, Leonard G; Belfiore, Antonino; Black, Peter C; Iozzo, Renato V; Morrione, Andrea

    2016-06-28

    We have recently demonstrated a critical role for progranulin in bladder cancer. Progranulin contributes, as an autocrine growth factor, to the transformed phenotype by modulating Akt-and MAPK-driven motility, invasion and anchorage-independent growth. Progranulin also induces F-actin remodeling by interacting with the F-actin binding protein drebrin. In addition, progranulin is overexpressed in invasive bladder cancer compared to normal tissue controls, suggesting that progranulin might play a key role in driving the transition to the invasive phenotype of urothelial cancer. However, it is not established whether targeting progranulin could have therapeutic effects on bladder cancer. In this study, we stably depleted urothelial cancer cells of endogenous progranulin by shRNA approaches and determined that progranulin depletion severely inhibited the ability of tumorigenic urothelial cancer cells to migrate, invade and grow in anchorage-independency. We further demonstrate that progranulin expression is critical for tumor growth in vivo, in both xenograft and orthotopic tumor models. Notably, progranulin levels correlated with response to cisplatin treatment and were upregulated in bladder tumors. Our data indicate that progranulin may constitute a novel target for therapeutic intervention in bladder tumors. In addition, progranulin may serve as a novel biomarker for bladder cancer.

  17. Progranulin, a New Adipokine at the Crossroads of Metabolic Syndrome, Diabetes, Dyslipidemia and Hypertension.

    Science.gov (United States)

    Korolczuk, Agnieszka; Bełtowski, Jerzy

    2017-01-01

    Progranulin is a multifunctional regulatory protein with growth-promoting, neuroprotective and antiinflammatory activities. Recent studies indicate that progranulin is one of the adipose tissue hormones (adipokines). Progranulin expression in visceral adipose tissue and circulating progranulin concentration are increased in obesity and hyperprogranulinemia is involved in the pathogenesis of obesity-associated insulin resistance. Progranulin impairs insulin signaling and reduces insulin-induced glucose uptake both in vitro and in vivo whereas progranulin deficiency protects from high fat diet-induced insulin resistance. Several studies, including some prospective ones, have demonstrated the association between high progranulin and type 2 diabetes and its complications such as nephro- and retinopathy as well as non-alcoholic fatty liver disease. It is quite well established that progranulin contributes to insulin resistance and resulting deterioration of carbohydrate metabolism. In addition, progranulin may be associated with the development of diabetic microangiopathy, fatty liver disease and possibly with the increased risk of cancer in subjects with the metabolic syndrome. On the other hand, progranulin augments vasorelaxation, inhibits inflammatory reaction, is neuroprotective and reduces ischemiareperfusion injury. Progranulin has both detrimental and beneficial effects. More clinical studies including prospective ones are needed to clarify the role of progranulin in obesity-associated pathologies such as diabetes, hyperlipidemia, hypertension and atherosclerosis. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Loss of synaptic zinc transport in progranulin deficient mice may contribute to progranulin-associated psychopathology and chronic pain.

    Science.gov (United States)

    Hardt, Stefanie; Heidler, Juliana; Albuquerque, Boris; Valek, Lucie; Altmann, Christine; Wilken-Schmitz, Annett; Schäfer, Michael K E; Wittig, Ilka; Tegeder, Irmgard

    2017-11-01

    Affective and cognitive processing of nociception contributes to the development of chronic pain and vice versa, pain may precipitate psychopathologic symptoms. We hypothesized a higher risk for the latter with immanent neurologic diseases and studied this potential interrelationship in progranulin-deficient mice, which are a model for frontotemporal dementia, a disease dominated by behavioral abnormalities in humans. Young naïve progranulin deficient mice behaved normal in tests of short-term memory, anxiety, depression and nociception, but after peripheral nerve injury, they showed attention-deficit and depression-like behavior, over-activity, loss of shelter-seeking, reduced impulse control and compulsive feeding behavior, which did not occur in equally injured controls. Hence, only the interaction of 'pain x progranulin deficiency' resulted in the complex phenotype at young age, but neither pain nor progranulin deficiency alone. A deep proteome analysis of the prefrontal cortex and olfactory bulb revealed progranulin-dependent alterations of proteins involved in synaptic transport, including neurotransmitter transporters of the solute carrier superfamily. In particular, progranulin deficiency was associated with a deficiency of nuclear and synaptic zinc transporters (ZnT9/Slc30a9; ZnT3/Slc30a3) with low plasma zinc. Dietary zinc supplementation partly normalized the attention deficit of progranulin-deficient mice, which was in part reminiscent of autism-like and compulsive behavior of synaptic zinc transporter Znt3-knockout mice. Hence, the molecular studies point to defective zinc transport possibly contributing to progranulin-deficiency-associated psychopathology. Translated to humans, our data suggest that neuropathic pain may precipitate cognitive and psychopathological symptoms of an inherent, still silent neurodegenerative disease. Copyright © 2017. Published by Elsevier B.V.

  19. Progranulin regulates lysosomal function and biogenesis through acidification of lysosomes.

    Science.gov (United States)

    Tanaka, Yoshinori; Suzuki, Genjiro; Matsuwaki, Takashi; Hosokawa, Masato; Serrano, Geidy; Beach, Thomas G; Yamanouchi, Keitaro; Hasegawa, Masato; Nishihara, Masugi

    2017-03-01

    Progranulin (PGRN) haploinsufficiency resulting from loss-of-function mutations in the PGRN gene causes frontotemporal lobar degeneration accompanied by TDP-43 accumulation, and patients with homozygous mutations in the PGRN gene present with neuronal ceroid lipofuscinosis. Although it remains unknown why PGRN deficiency causes neurodegenerative diseases, there is increasing evidence that PGRN is implicated in lysosomal functions. Here, we show PGRN is a secretory lysosomal protein that regulates lysosomal function and biogenesis by controlling the acidification of lysosomes. PGRN gene expression and protein levels increased concomitantly with the increase of lysosomal biogenesis induced by lysosome alkalizers or serum starvation. Down-regulation or insufficiency of PGRN led to the increased lysosomal gene expression and protein levels, while PGRN overexpression led to the decreased lysosomal gene expression and protein levels. In particular, the level of mature cathepsin D (CTSDmat) dramatically changed depending upon PGRN levels. The acidification of lysosomes was facilitated in cells transfected with PGRN. Then, this caused degradation of CTSDmat by cathepsin B. Secreted PGRN is incorporated into cells via sortilin or cation-independent mannose 6-phosphate receptor, and facilitated the acidification of lysosomes and degradation of CTSDmat. Moreover, the change of PGRN levels led to a cell-type-specific increase of insoluble TDP-43. In the brain tissue of FTLD-TDP patients with PGRN deficiency, CTSD and phosphorylated TDP-43 accumulated in neurons. Our study provides new insights into the physiological function of PGRN and the role of PGRN insufficiency in the pathogenesis of neurodegenerative diseases. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  20. Msx homeobox gene family and craniofacial development.

    Science.gov (United States)

    Alappat, Sylvia; Zhang, Zun Yi; Chen, Yi Ping

    2003-12-01

    Vertebrate Msx genes are unlinked, homeobox-containing genes that bear homology to the Drosophila muscle segment homeobox gene. These genes are expressed at multiple sites of tissue-tissue interactions during vertebrate embryonic development. Inductive interactions mediated by the Msx genes are essential for normal craniofacial, limb and ectodermal organ morphogenesis, and are also essential to survival in mice, as manifested by the phenotypic abnormalities shown in knockout mice and in humans. This review summarizes studies on the expression, regulation, and functional analysis of Msx genes that bear relevance to craniofacial development in humans and mice. Key words: Msx genes, craniofacial, tooth, cleft palate, suture, development, transcription factor, signaling molecule.

  1. Lipidomic and Transcriptomic Basis of Lysosomal Dysfunction in Progranulin Deficiency

    Directory of Open Access Journals (Sweden)

    Bret M. Evers

    2017-09-01

    Full Text Available Defective lysosomal function defines many neurodegenerative diseases, such as neuronal ceroid lipofuscinoses (NCL and Niemann-Pick type C (NPC, and is implicated in Alzheimer’s disease (AD and frontotemporal lobar degeneration (FTLD-TDP with progranulin (PGRN deficiency. Here, we show that PGRN is involved in lysosomal homeostasis and lipid metabolism. PGRN deficiency alters lysosome abundance and morphology in mouse neurons. Using an unbiased lipidomic approach, we found that brain lipid composition in humans and mice with PGRN deficiency shows disease-specific differences that distinguish them from normal and other pathologic groups. PGRN loss leads to an accumulation of polyunsaturated triacylglycerides, as well as a reduction of diacylglycerides and phosphatidylserines in fibroblast and enriched lysosome lipidomes. Transcriptomic analysis of PGRN-deficient mouse brains revealed distinct expression patterns of lysosomal, immune-related, and lipid metabolic genes. These findings have implications for the pathogenesis of FTLD-TDP due to PGRN deficiency and suggest lysosomal dysfunction as an underlying mechanism.

  2. Recurrent APC gene mutations in Polish FAP families

    Directory of Open Access Journals (Sweden)

    Pławski Andrzej

    2007-12-01

    Full Text Available Abstract The molecular diagnostics of genetically conditioned disorders is based on the identification of the mutations in the predisposing genes. Hereditary cancer disorders of the gastrointestinal tracts are caused by mutations of the tumour suppressor genes or the DNA repair genes. Occurrence of recurrent mutation allows improvement of molecular diagnostics. The mutation spectrum in the genes causing hereditary forms of colorectal cancers in the Polish population was previously described. In the present work an estimation of the frequency of the recurrent mutations of the APC gene was performed. Eight types of mutations occurred in 19.4% of our FAP families and these constitute 43% of all Polish diagnosed families.

  3. NG2/CSPG4 and progranulin in the posttraumatic glial scar.

    Science.gov (United States)

    Schäfer, Michael K E; Tegeder, Irmgard

    2018-08-01

    Traumatic injury of the central nervous system is one of the leading causes of death and disability in young adults. Failure of regeneration is caused by autonomous neuronal obstacles and by formation of the glial scar, which is essential to seal the injury but also constitutes a barrier for regrowing axons. The scar center is highly inflammatory and populated by NG2+ glia, whereas astrocytes form the sealing border and trap regrowing axons, suggesting that the non-permissive environment of activated astrocytes and extracellular matrix components is one of the reasons for the regenerative failure. Particularly, secreted chondroitin-sulfate proteoglycans, CSPGs, of the lectican family hinder axonal regrowth. In contrast, the transmembrane CSPG, NG2/CSPG4, appears to be functionally closer related to axon growth permissive heparan sulfate proteoglycans, HSPGs, and synaptic adhesion molecules, which all regulate synaptic signaling and plasticity upon alpha-secretase mediated shedding. Consequently, knockout of NG2/CSPG4 aggravates tissue loss, inflammation and neurologic deficits after brain injury, a phenotype partly mimicked by deletion of HSPG-binding proteins such as the HSPG2/perlecan-interacting protein, progranulin that is also a functional ligand of Notch and Eph2a. Indeed, structural features or progranulin's targets and NG2 may point to direct reciprocal regulations that may act in concert to overcome injury-evoked inflammation and neuronal dystrophy. This review provides an overview of the pathophysiology of the glial scar after brain injury, with a specific focus on NG2/CSPG4, its functions before and after shedding and putative reciprocal influences with the glycoprotein progranulin. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Progranulin deficiency causes the retinal ganglion cell loss during development.

    Science.gov (United States)

    Kuse, Yoshiki; Tsuruma, Kazuhiro; Mizoguchi, Takahiro; Shimazawa, Masamitsu; Hara, Hideaki

    2017-05-10

    Astrocytes are glial cells that support and protect neurons in the central nervous systems including the retina. Retinal ganglion cells (RGCs) are in contact with the astrocytes and our earlier findings showed the reduction of the number of cells in the ganglion cell layer in adult progranulin deficient mice. In the present study, we focused on the time of activation of the astrocytes and the alterations in the number of RGCs in the retina and optic nerve in progranulin deficient mice. Our findings showed that the number of Brn3a-positive cells was reduced and the expression of glial fibrillary acidic protein (GFAP) was increased in progranulin deficient mice. The progranulin deficient mice had a high expression of GFAP on postnatal day 9 (P9) but not on postnatal day 1. These mice also had a decrease in the number of the Brn3a-positive cells on P9. Taken together, these findings indicate that the absence of progranulin can affect the survival of RGCs subsequent the activation of astrocytes during retinal development.

  5. Interferon induced IFIT family genes in host antiviral defense.

    Science.gov (United States)

    Zhou, Xiang; Michal, Jennifer J; Zhang, Lifan; Ding, Bo; Lunney, Joan K; Liu, Bang; Jiang, Zhihua

    2013-01-01

    Secretion of interferons (IFNs) from virus-infected cells is a hallmark of host antiviral immunity and in fact, IFNs exert their antiviral activities through the induction of antiviral proteins. The IFN-induced protein with tetratricopeptide repeats (IFITs) family is among hundreds of IFN-stimulated genes. This family contains a cluster of duplicated loci. Most mammals have IFIT1, IFIT2, IFIT3 and IFIT5; however, bird, marsupial, frog and fish have only IFIT5. Regardless of species, IFIT5 is always adjacent to SLC16A12. IFIT family genes are predominantly induced by type I and type III interferons and are regulated by the pattern recognition and the JAK-STAT signaling pathway. IFIT family proteins are involved in many processes in response to viral infection. However, some viruses can escape the antiviral functions of the IFIT family by suppressing IFIT family genes expression or methylation of 5' cap of viral molecules. In addition, the variants of IFIT family genes could significantly influence the outcome of hepatitis C virus (HCV) therapy. We believe that our current review provides a comprehensive picture for the community to understand the structure and function of IFIT family genes in response to pathogens in human, as well as in animals.

  6. The ALMT Gene Family Performs Multiple Functions in Plants

    Directory of Open Access Journals (Sweden)

    Jie Liu

    2018-02-01

    Full Text Available The aluminium activated malate transporter (ALMT gene family is named after the first member of the family identified in wheat (Triticum aestivum L.. The product of this gene controls resistance to aluminium (Al toxicity. ALMT genes encode transmembrane proteins that function as anion channels and perform multiple functions involving the transport of organic anions (e.g., carboxylates and inorganic anions in cells. They share a PF11744 domain and are classified in the Fusaric acid resistance protein-like superfamily, CL0307. The proteins typically have five to seven transmembrane regions in the N-terminal half and a long hydrophillic C-terminal tail but predictions of secondary structure vary. Although widely spread in plants, relatively little information is available on the roles performed by other members of this family. In this review, we summarized functions of ALMT gene families, including Al resistance, stomatal function, mineral nutrition, microbe interactions, fruit acidity, light response and seed development.

  7. Evaluation of Gene-Based Family-Based Methods to Detect Novel Genes Associated With Familial Late Onset Alzheimer Disease

    Directory of Open Access Journals (Sweden)

    Maria V. Fernández

    2018-04-01

    Full Text Available Gene-based tests to study the combined effect of rare variants on a particular phenotype have been widely developed for case-control studies, but their evolution and adaptation for family-based studies, especially studies of complex incomplete families, has been slower. In this study, we have performed a practical examination of all the latest gene-based methods available for family-based study designs using both simulated and real datasets. We examined the performance of several collapsing, variance-component, and transmission disequilibrium tests across eight different software packages and 22 models utilizing a cohort of 285 families (N = 1,235 with late-onset Alzheimer disease (LOAD. After a thorough examination of each of these tests, we propose a methodological approach to identify, with high confidence, genes associated with the tested phenotype and we provide recommendations to select the best software and model for family-based gene-based analyses. Additionally, in our dataset, we identified PTK2B, a GWAS candidate gene for sporadic AD, along with six novel genes (CHRD, CLCN2, HDLBP, CPAMD8, NLRP9, and MAS1L as candidate genes for familial LOAD.

  8. Soluble sortilin is present in excess and positively correlates with progranulin in CSF of aging individuals.

    Science.gov (United States)

    Molgaard, Simon; Demontis, Ditte; Nicholson, Alexandra M; Finch, Nicole A; Petersen, Ronald C; Petersen, Claus M; Rademakers, Rosa; Nykjaer, Anders; Glerup, Simon

    2016-11-01

    Mutations in progranulin are a major cause of frontotemporal lobe degeneration (FTLD). Hence, plasma progranulin is an attractive biomarker in FTLD but poorly reflects levels in cerebrospinal fluid (CSF), suggesting tissue-specific regulation of progranulin levels. Sortilin was recently identified as a progranulin scavenger receptor that destines it for lysosomal degradation. Proteolysis or alternative splicing generates soluble sortilin variants that retain progranulin binding and potentially functions as a decoy receptor. In the present study, we analyzed soluble sortilin and progranulin in plasma and CSF in 341 aging individuals. We found that soluble sortilin exists in CSF in ten-fold molar excess compared to progranulin and observed a highly significant positive correlation between soluble sortilin and progranulin levels in CSF but not in plasma. However, carriers of the minor allele of SNP rs646776 in SORT1 encoding sortilin displayed significantly increased soluble sortilin and reduced progranulin specifically in plasma but not in CSF. Taken together, our findings suggest that soluble sortilin may affect progranulin levels in both a tissue-specific and genotype-dependent manner. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Molecular evolution of the major chemosensory gene families in insects.

    Science.gov (United States)

    Sánchez-Gracia, A; Vieira, F G; Rozas, J

    2009-09-01

    Chemoreception is a crucial biological process that is essential for the survival of animals. In insects, olfaction allows the organism to recognise volatile cues that allow the detection of food, predators and mates, whereas the sense of taste commonly allows the discrimination of soluble stimulants that elicit feeding behaviours and can also initiate innate sexual and reproductive responses. The most important proteins involved in the recognition of chemical cues comprise moderately sized multigene families. These families include odorant-binding proteins (OBPs) and chemosensory proteins (CSPs), which are involved in peripheral olfactory processing, and the chemoreceptor superfamily formed by the olfactory receptor (OR) and gustatory receptor (GR) families. Here, we review some recent evolutionary genomic studies of chemosensory gene families using the data from fully sequenced insect genomes, especially from the 12 newly available Drosophila genomes. Overall, the results clearly support the birth-and-death model as the major mechanism of evolution in these gene families. Namely, new members arise by tandem gene duplication, progressively diverge in sequence and function, and can eventually be lost from the genome by a deletion or pseudogenisation event. Adaptive changes fostered by environmental shifts are also observed in the evolution of chemosensory families in insects and likely involve reproductive, ecological or behavioural traits. Consequently, the current size of these gene families is mainly a result of random gene gain and loss events. This dynamic process may represent a major source of genetic variation, providing opportunities for FUTURE specific adaptations.

  10. Manic behavior and asymmetric right frontotemporal dementia from a novel progranulin mutation

    Directory of Open Access Journals (Sweden)

    Mendez MF

    2018-02-01

    Full Text Available Mario F Mendez1–3 1Department of Neurology, 2Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, USA; 3Neurology Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, USA Abstract: Studies suggest a relationship of manic behavior and bipolar disorder (BD with behavioral variant frontotemporal dementia (bvFTD. The nature of this relationship is unclear. This report presents a patient with initial manic behavior as the main manifestation of familial bvFTD from a novel progranulin (GRN mutation. In contrast, there are other reports of a long background of BD preceding a diagnosis of bvFTD. A review of the literature and this patient suggest that manic symptoms result from damage to right frontotemporal neural structures from longstanding BD, as well as from bvFTD and other focal neurological disorders. In addition, there is a subgroup of patients with a probable genetic predisposition to both BD and bvFTD. Keywords: frontotemporal dementia, mania, bipolar disorder, progranulin mutation

  11. Serum and Urinary Progranulin in Diabetic Kidney Disease.

    Science.gov (United States)

    Nicoletto, Bruna Bellincanta; Krolikowski, Thaiana Cirino; Crispim, Daisy; Canani, Luis Henrique

    2016-01-01

    Progranulin has been recognized as an adipokine related to obesity, insulin resistance and type 2 diabetes mellitus (T2DM). There are scarce data regarding progranulin and kidney disease, but there are some data linking diabetic kidney disease (DKD) and increased progranulin levels. We aimed to better describe the relationship between serum and urinary progranulin levels and DKD in T2DM. This is a case-control study including four groups of subjects: 1) Advanced DKD cases: T2DM patients with estimated glomerular filtration rate (eGFR) Progranulin was determined by enzyme-linked immunosorbent assay. One hundred and fourteen patients were included (23 advanced DKD cases, 25 albuminuric DKD cases, 40 diabetic controls and 26 non-diabetic controls). Serum progranulin was increased in advanced DKD compared to other groups [70.84 (59.04-83.16) vs. albuminuric cases 57.16 (42.24-67.38), diabetic controls 57.28 (42.08-70.47) and non-diabetic controls 44.54 (41.44-53.32) ng/mL; pprogranulin was decreased in advanced DKD cases compared to albuminuric cases [10.62 (6.30-16.08) vs. 20.94 (12.35-30.22); diabetic controls 14.06 (9.88-20.82) and non-diabetic controls 13.51 (7.94-24.36) ng/mL; p = 0.017]. There was a positive correlation between serum progranulin and body mass index (r = 0.27; p = 0.004), waist circumference (r = 0.25; p = 0.007); body fat percentage (r = 0.20; p = 0.042), high-sensitive C reactive protein (r = 0.35; pprogranulin was positively associated with albuminuria (r = 0.25; p = 0.010). In conclusion, progranulin is affected by a decrease in eGFR, being at a higher concentration in serum and lower in urine of DKD patients with T2DM and eGFR <60 mL/min/1.73m2. It is also associated with markers of obesity and inflammation.

  12. Progranulin Plays a Central Role in Host Defense during Sepsis by Promoting Macrophage Recruitment.

    Science.gov (United States)

    Song, Zhixin; Zhang, Xuemei; Zhang, Liping; Xu, Fang; Tao, Xintong; Zhang, Hua; Lin, Xue; Kang, Lihua; Xiang, Yu; Lai, Xaiofei; Zhang, Qun; Huang, Kun; Dai, Yubing; Yin, Yibing; Cao, Ju

    2016-11-15

    Progranulin, a widely expressed protein, has multiple physiological functions. The functional role of progranulin in the host response to sepsis remains unknown. To assess the role of progranulin in the host response to sepsis. Effects of progranulin on host response to sepsis were determined. Progranulin concentrations were significantly elevated in adult (n = 74) and pediatric (n = 26) patients with sepsis relative to corresponding healthy adult (n = 36) and pediatric (n = 17) control subjects, respectively. By using a low-lethality model of nonsevere sepsis, we observed that progranulin deficiency not only increased mortality but also decreased bacterial clearance during sepsis. The decreased host defense to sepsis in progranulin-deficient mice was associated with reduced macrophage recruitment, with correspondingly impaired chemokine CC receptor ligand 2 (CCL2) production in peritoneal lavages during the early phase of sepsis. Progranulin derived from hematopoietic cells contributed to host defense in sepsis. Therapeutic administration of recombinant progranulin not only rescued impaired host defense in progranulin-deficient mice after nonsevere sepsis but also protected wild-type mice against a high-lethality model of severe sepsis. Progranulin-mediated protection against sepsis was closely linked to improved peritoneal macrophage recruitment. In addition, CCL2 treatment of progranulin-deficient mice improved survival and decreased peritoneal bacterial loads during sepsis, at least in part through promotion of peritoneal macrophage recruitment. This proof-of-concept study supports a central role of progranulin-dependent macrophage recruitment in host defense to sepsis, opening new opportunities to host-directed therapeutic strategy that manipulate host immune response in the treatment of sepsis.

  13. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Genetics; Volume 93; Issue 3. Genomewide ... Teosinte branched1/cycloidea/proliferating cell factor1 (TCP) proteins are a large family of transcriptional regulators in angiosperms. They are ... To the best of our knowledge, this is the first study of a genomewide analysis of apple TCP gene family.

  14. Identification of metalloprotease gene families in sugarcane

    Directory of Open Access Journals (Sweden)

    O.H.P. Ramos

    2001-12-01

    Full Text Available Metalloproteases play a key role in many physiological processes in mammals such as cell migration, tissue remodeling and processing of growth factors. They have also been identified as important factors in the patho-physiology of a number of human diseases, including cancer and hypertension. Many bacterial pathogens rely on proteases in order to infect the host. Several classes of metalloproteases have been described in humans, bacteria, snake venoms and insects. However, the presence and characterization of plant metalloproteases have rarely been described in the literature. In our research, we searched the sugarcane expressed sequence tag (SUCEST DNA library in order to identify, by homology with sequences deposited in other databases, metalloprotease gene families expressed under different conditions. Protein sequences from Arabidopsis thaliana and Glycine max were used to search the SUCEST data bank. Conserved regions corresponding to different metalloprotease domains and sequence motifs were identified in the reads to characterize each group of enzymes. At least four classes of sugarcane metalloproteases have been identified, i.e. matrix metalloproteases, zincins, inverzincins, and ATP-dependent metalloproteases. Each enzyme class was analyzed for its expression in different conditions and tissues.Metaloproteases exercem papéis importantes em muitos processos fisiológicos em mamíferos tais como migração celular, remodelamento tecidual e processamento de fatores de crescimento. Estas enzimas estão envolvidas também na pato-fisiologia de um grande número de doenças humanas como hipertensão e câncer. Muitas bactérias patogênicas dependem de proteases para infectar o hospedeiro. Diversas classes de metaloproteases foram descritas em seres humanos, bactérias, venenos de serpentes e insetos. No entanto, a presença e a caracterização de metaloproteases em plantas estão pouco descritas na literatura. Neste trabalho, foi

  15. Genome organization and expression of the rat ACBP gene family

    DEFF Research Database (Denmark)

    Mandrup, S; Andreasen, P H; Knudsen, J

    1993-01-01

    pool former. We have molecularly cloned and characterized the rat ACBP gene family which comprises one expressed and four processed pseudogenes. One of these was shown to exist in two allelic forms. A comprehensive computer-aided analysis of the promoter region of the expressed ACBP gene revealed...

  16. APC gene mutations and extraintestinal phenotype of familial adenomatous polyposis

    NARCIS (Netherlands)

    Giardiello, F. M.; Petersen, G. M.; Piantadosi, S.; Gruber, S. B.; Traboulsi, E. I.; Offerhaus, G. J.; Muro, K.; Krush, A. J.; Booker, S. V.; Luce, M. C.; Laken, S. J.; Kinzler, K. W.; Vogelstein, B.; Hamilton, S. R.

    1997-01-01

    Familial adenomatous polyposis (FAP) is caused by germline mutation of the adenomatous polyposis coli (APC) gene on chromosome 5q. This study assessed genotype-phenotype correlations for extraintestinal lesions in FAP. Mutations of the APC gene were compared with the occurrence of seven

  17. Progranulin expression in advanced human atherosclerotic plaque.

    Science.gov (United States)

    Kojima, Yoji; Ono, Koh; Inoue, Katsumi; Takagi, Yasushi; Kikuta, Ken-ichiro; Nishimura, Masaki; Yoshida, Yoshinori; Nakashima, Yasuhiro; Matsumae, Hironobu; Furukawa, Yutaka; Mikuni, Nobuhiro; Nobuyoshi, Masakiyo; Kimura, Takeshi; Kita, Toru; Tanaka, Makoto

    2009-09-01

    Progranulin (PGRN) is a unique growth factor that plays an important role in cutaneous wound healing. It has an anti-inflammatory effect and promotes cell proliferation. However, when it is degraded to granulin peptides (GRNs) by neutrophil proteases, a pro-inflammatory reaction occurs. Since injury, inflammation and repair are common features in the progression of atherosclerosis, it is conceivable that PGRN plays a role in atherogenesis. Immunohistochemical analysis of human carotid endoatherectomy specimens indicated that vascular smooth muscle cells (vSMCs) in the intima expressed PGRN. Some macrophages in the plaque also expressed PGRN. We assessed the effect of PGRN on a human monocytic leukemia cell line (THP-1) and human aortic smooth muscle cells (HASMCs). PGRN alone had no effect on HASMC or THP-1 proliferation or migration. However, when THP-1 cells were stimulated with MCP-1, the number of migrated cells decreased in a PGRN-dose-dependent manner. TNF-alpha-induced HASMC migration was enhanced only at 10nM of PGRN. Interleukin-8 (IL-8) secretion from HASMCs was reduced by forced expression of PGRN and increased by RNAi-mediated knockdown of PGRN. While exogenous treatment with recombinant PGRN decreased IL-8 secretion, degraded recombinant GRNs increased IL-8 secretion from HASMCs. The expression of PGRN mainly reduces inflammation and its degradation into GRNs enhances inflammation in atherosclerotic plaque and may contribute to the progression of atherosclerosis.

  18. The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana

    Directory of Open Access Journals (Sweden)

    Baumgarten Andrew

    2004-06-01

    Full Text Available Abstract Background Most genes in Arabidopsis thaliana are members of gene families. How do the members of gene families arise, and how are gene family copy numbers maintained? Some gene families may evolve primarily through tandem duplication and high rates of birth and death in clusters, and others through infrequent polyploidy or large-scale segmental duplications and subsequent losses. Results Our approach to understanding the mechanisms of gene family evolution was to construct phylogenies for 50 large gene families in Arabidopsis thaliana, identify large internal segmental duplications in Arabidopsis, map gene duplications onto the segmental duplications, and use this information to identify which nodes in each phylogeny arose due to segmental or tandem duplication. Examples of six gene families exemplifying characteristic modes are described. Distributions of gene family sizes and patterns of duplication by genomic distance are also described in order to characterize patterns of local duplication and copy number for large gene families. Both gene family size and duplication by distance closely follow power-law distributions. Conclusions Combining information about genomic segmental duplications, gene family phylogenies, and gene positions provides a method to evaluate contributions of tandem duplication and segmental genome duplication in the generation and maintenance of gene families. These differences appear to correspond meaningfully to differences in functional roles of the members of the gene families.

  19. Evolution of the YABBY gene family in seed plants.

    Science.gov (United States)

    Finet, Cédric; Floyd, Sandra K; Conway, Stephanie J; Zhong, Bojian; Scutt, Charles P; Bowman, John L

    2016-01-01

    Members of the YABBY gene family of transcription factors in angiosperms have been shown to be involved in the initiation of outgrowth of the lamina, the maintenance of polarity, and establishment of the leaf margin. Although most of the dorsal-ventral polarity genes in seed plants have homologs in non-spermatophyte lineages, the presence of YABBY genes is restricted to seed plants. To gain insight into the origin and diversification of this gene family, we reconstructed the evolutionary history of YABBY gene lineages in seed plants. Our findings suggest that either one or two YABBY genes were present in the last common ancestor of extant seed plants. We also examined the expression of YABBY genes in the gymnosperms Ephedra distachya (Gnetales), Ginkgo biloba (Ginkgoales), and Pseudotsuga menziesii (Coniferales). Our data indicate that some YABBY genes are expressed in a polar (abaxial) manner in leaves and female cones in gymnosperms. We propose that YABBY genes already acted as polarity genes in the last common ancestor of extant seed plants. © 2016 Wiley Periodicals, Inc.

  20. Molecular Evolution of the Glycosyltransferase 6 Gene Family in Primates

    Directory of Open Access Journals (Sweden)

    Eliane Evanovich

    2016-01-01

    Full Text Available Glycosyltransferase 6 gene family includes ABO, Ggta1, iGb3S, and GBGT1 genes and by three putative genes restricted to mammals, GT6m6, GTm6, and GT6m7, only the latter is found in primates. GT6 genes may encode functional and nonfunctional proteins. Ggta1 and GBGT1 genes, for instance, are pseudogenes in catarrhine primates, while iGb3S gene is only inactive in human, bonobo, and chimpanzee. Even inactivated, these genes tend to be conversed in primates. As some of the GT6 genes are related to the susceptibility or resistance to parasites, we investigated (i the selective pressure on the GT6 paralogs genes in primates; (ii the basis of the conservation of iGb3S in human, chimpanzee, and bonobo; and (iii the functional potential of the GBGT1 and GT6m7 in catarrhines. We observed that the purifying selection is prevalent and these genes have a low diversity, though ABO and Ggta1 genes have some sites under positive selection. GT6m7, a putative gene associated with aggressive periodontitis, may have regulatory function, but experimental studies are needed to assess its function. The evolutionary conservation of iGb3S in humans, chimpanzee, and bonobo seems to be the result of proximity to genes with important biological functions.

  1. Interleukin-6-driven progranulin expression increases cholangiocarcinoma growth by an Akt-dependent mechanism.

    Science.gov (United States)

    Frampton, Gabriel; Invernizzi, Pietro; Bernuzzi, Francesca; Pae, Hae Yong; Quinn, Matthew; Horvat, Darijana; Galindo, Cheryl; Huang, Li; McMillin, Matthew; Cooper, Brandon; Rimassa, Lorenza; DeMorrow, Sharon

    2012-02-01

    Cholangiocarcinoma is a devastating cancer of biliary origin with limited treatment options. The growth factor, progranulin, is overexpressed in a number of tumours. The study aims were to assess the expression of progranulin in cholangiocarcinoma and to determine its effects on tumour growth. The expression and secretion of progranulin were evaluated in multiple cholangiocarcinoma cell lines and in clinical samples from patients with cholangiocarcinoma. The role of interleukin 6 (IL-6)-mediated signalling in the expression of progranulin was assessed using a combination of specific inhibitors and shRNA knockdown techniques. The effect of progranulin on proliferation and Akt activation and subsequent effects of FOXO1 phosphorylation were assessed in vitro. Progranulin knockdown cell lines were established, and the effects on cholangiocarcinoma growth were determined. Progranulin expression and secretion were upregulated in cholangiocarcinoma cell lines and tissue, which were in part via IL-6-mediated activation of the ERK1/2/RSK1/C/EBPβ pathway. Blocking any of these signalling molecules, by either pharmacological inhibitors or shRNA, prevented the IL-6-dependent activation of progranulin expression. Treatment of cholangiocarcinoma cells with recombinant progranulin increased cell proliferation in vitro by a mechanism involving Akt phosphorylation leading to phosphorylation and nuclear extrusion of FOXO1. Knockdown of progranulin expression in cholangiocarcinoma cells decreased the expression of proliferating cellular nuclear antigen, a marker of proliferative capacity, and slowed tumour growth in vivo. Evidence is presented for a role for progranulin as a novel growth factor regulating cholangiocarcinoma growth. Specific targeting of progranulin may represent an alternative for the development of therapeutic strategies.

  2. A novel role for drebrin in regulating progranulin bioactivity in bladder cancer.

    Science.gov (United States)

    Xu, Shi-Qiong; Buraschi, Simone; Morcavallo, Alaide; Genua, Marco; Shirao, Tomoaki; Peiper, Stephen C; Gomella, Leonard G; Birbe, Ruth; Belfiore, Antonino; Iozzo, Renato V; Morrione, Andrea

    2015-05-10

    We recently established a critical role for the growth factor progranulin in bladder cancer insofar as progranulin promotes urothelial cancer cell motility and contributes, as an autocrine growth factor, to the transformed phenotype by modulating invasion and anchorage-independent growth. In addition, progranulin expression is upregulated in invasive bladder cancer tissues compared to normal controls. However, the molecular mechanisms of progranulin action in bladder cancer have not been fully elucidated. In this study, we searched for novel progranulin-interacting proteins using pull-down assays with recombinant progranulin and proteomics. We discovered that drebrin, an F-actin binding protein, bound progranulin in urothelial cancer cells. We characterized drebrin function in urothelial cancer cell lines and showed that drebrin is critical for progranulin-dependent activation of the Akt and MAPK pathways and modulates motility, invasion and anchorage-independent growth. In addition, drebrin regulates tumor formation in vivo and its expression is upregulated in bladder cancer tissues compared to normal tissue controls. Our data are translationally relevant as indicate that drebrin exerts an essential functional role in the regulation of progranulin action and may constitute a novel target for therapeutic intervention in bladder tumors. In addition, drebrin may serve as novel biomarker for bladder cancer.

  3. Progranulin serum levels in human kidney transplant recipients: A longitudinal study.

    Science.gov (United States)

    Nicoletto, Bruna Bellincanta; Pedrollo, Elis Forcellini; Carpes, Larissa Salomoni; Coloretti, Natália Gomes; Krolikowski, Thaiana Cirino; Souza, Gabriela Corrêa; Gonçalves, Luiz Felipe Santos; Manfro, Roberto Ceratti; Canani, Luis Henrique

    2018-01-01

    The adipokine progranulin has metabolic proprieties, playing a role in obesity and insulin resistance. Its levels seems to be dependent of renal function, since higher progranulin concentration is observed in patients with end-stage kidney disease. However, the effect of kidney transplantation on progranulin remains unknown. To assess the serum progranulin levels in kidney transplant recipients before and after kidney transplantation. Forty-six prospective kidney transplant recipients were included in this longitudinal study. They were evaluated before transplantation and at three and twelve months after transplantation. Clinical, anthropometric and laboratorial measurements were assessed. Progranulin was determined with enzyme-linked immunosorbent assays. Serum progranulin significantly decreased in the early period after transplantation (from 72.78 ± 2.86 ng/mL before transplantation to 40.65 ± 1.49 ng/mL at three months; pProgranulin was associated with waist circumference and fasting plasma glucose after adjusted for age, gender, study period, glomerular filtration rate, interleukin-6, high sensitivity C reactive protein and adiponectin. Progranulin serum levels are increased before transplantation and a reduction is observed in the early period after transplantation, possibly attributed to an improvement in renal function. At one year after transplantation, an increment in progranulin is observed, seems to be independent of glomerular filtration, and remained significantly lower than before transplantation.

  4. Serum progranulin levels in relation to insulin resistance in childhood obesity.

    Science.gov (United States)

    Alissa, Eman M; Sutaih, Rima H; Kamfar, Hayat Z; Alagha, Abdulmoeen E; Marzouki, Zuhair M

    2017-11-27

    Progranulin is an adipokine that is involved in the inflammatory response, glucose metabolism, insulin resistance, and may therefore be involved in chronic subclinical inflammation associated with the pathogenesis of childhood obesity. We aimed to investigate the association of circulating progranulin levels with metabolic parameters in children and to assess the importance of progranulin as a biomarker for metabolic diseases. A total of 150 children were consecutively recruited from the Pediatric Nutrition Clinics at King Abdulaziz University Hospital in Jeddah, Saudi Arabia. Children were classified into four groups based on quartile for serum progranulin. Anthropometric variables were measured in all study subjects. Fasting blood samples were collected for measurement of blood glucose, insulin and lipid profile. Children within the upper quartile for serum progranulin concentration were heavier, more insulin resistant and had higher concentrations of serum total cholesterol, triglycerides, insulin and high sensitivity C reactive protein compared to those in the lower quartile. On correlation analysis, serum progranulin concentrations were significantly related to general and central adiposity, metabolic parameters, markers of inflammation and insulin resistance. Stepwise multiple regression showed that 26.6% of the variability in serum progranulin could be explained by measures of adiposity. The increased serum progranulin concentrations were closely related to measures of adiposity, metabolic parameters, inflammatory marker and insulin resistance indices, suggesting that progranulin may be an excellent biomarker for obesity in childhood.

  5. Progranulin contributes to endogenous mechanisms of pain defense after nerve injury in mice.

    Science.gov (United States)

    Lim, Hee-Young; Albuquerque, Boris; Häussler, Annett; Myrczek, Thekla; Ding, Aihao; Tegeder, Irmgard

    2012-04-01

    Progranulin haploinsufficiency is associated with frontotemporal dementia in humans. Deficiency of progranulin led to exaggerated inflammation and premature aging in mice. The role of progranulin in adaptations to nerve injury and neuropathic pain are still unknown. Here we found that progranulin is up-regulated after injury of the sciatic nerve in the mouse ipsilateral dorsal root ganglia and spinal cord, most prominently in the microglia surrounding injured motor neurons. Progranulin knockdown by continuous intrathecal spinal delivery of small interfering RNA after sciatic nerve injury intensified neuropathic pain-like behaviour and delayed the recovery of motor functions. Compared to wild-type mice, progranulin-deficient mice developed more intense nociceptive hypersensitivity after nerve injury. The differences escalated with aging. Knockdown of progranulin reduced the survival of dissociated primary neurons and neurite outgrowth, whereas addition of recombinant progranulin rescued primary dorsal root ganglia neurons from cell death induced by nerve growth factor withdrawal. Thus, up-regulation of progranulin after neuronal injury may reduce neuropathic pain and help motor function recovery, at least in part, by promoting survival of injured neurons and supporting regrowth. A deficiency in this mechanism may increase the risk for injury-associated chronic pain. © 2011 The Authors Journal of Cellular and Molecular Medicine © 2011 Foundation for Cellular and Molecular Medicine/Blackwell Publishing Ltd.

  6. Serum progranulin as an indicator of neutrophilic airway inflammation and asthma severity.

    Science.gov (United States)

    Park, So Young; Hong, Gyong Hwa; Park, Sunjoo; Shin, Bomi; Yoon, Sun-Young; Kwon, Hyouk-Soo; Kim, Tae-Bum; Moon, Hee-Bom; Cho, You Sook

    2016-12-01

    Progranulin, a protein secreted from the airway epithelium, is known to attenuate the downstream cascade of neutrophilic inflammation in particular. We hypothesized that progranulin may have a role in inflammatory regulation in asthma. To investigate the association between serum progranulin levels and various clinical features in patients with asthma. Serum samples and clinical data of 475 patients with asthma and 35 healthy controls at a tertiary referral hospital and its affiliated health promotion center were collected. Serum progranulin levels were compared between patients with asthma and healthy controls and then were compared within the patients with asthma in terms of pulmonary function and measures of inflammatory status. Univariate and multivariate analyses were performed to identify factors associated with severity of asthma. Serum progranulin levels were significantly lower in the asthma group than in healthy group and were positively correlated with prebronchodilator forced expiratory volume in 1 second predicted within patients with asthma. We found a negative correlation between serum progranulin levels and blood neutrophil counts. Multivariate analysis revealed that higher serum progranulin levels were associated with a lower risk of severe asthma (odds ratio, 0.888; 95% confidence interval, 0.846-0.932; P progranulin remains unknown, we suggest that serum progranulin may be an indicator of severe asthma with airflow limitation. Future studies with comprehensive airway sampling strategies are warranted to clarify its role, particularly in neutrophilic asthma. Copyright © 2016 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  7. Progranulin: A Proteolytically Processed Protein at the Crossroads of Inflammation and Neurodegeneration*

    Science.gov (United States)

    Cenik, Basar; Sephton, Chantelle F.; Kutluk Cenik, Bercin; Herz, Joachim; Yu, Gang

    2012-01-01

    GRN mutations cause frontotemporal lobar degeneration with TDP-43-positive inclusions. The mechanism of pathogenesis is haploinsufficiency. Recently, homozygous GRN mutations were detected in two patients with neuronal ceroid lipofuscinosis, a lysosomal storage disease. It is unknown whether the pathogenesis of these two conditions is related. Progranulin is cleaved into smaller peptides called granulins. Progranulin and granulins are attributed with roles in cancer, inflammation, and neuronal physiology. Cell surface receptors for progranulin, but not granulin peptides, have been reported. Revealing the cell surface receptors and the intracellular functions of granulins and progranulin is crucial for understanding their contributions to neurodegeneration. PMID:22859297

  8. Regulation of progranulin expression in human microglia and proteolysis of progranulin by matrix metalloproteinase-12 (MMP-12.

    Directory of Open Access Journals (Sweden)

    Hyeon-Sook Suh

    Full Text Available The essential role of progranulin (PGRN as a neurotrophic factor has been demonstrated by the discovery that haploinsufficiency due to GRN gene mutations causes frontotemporal lobar dementia. In addition to neurons, microglia in vivo express PGRN, but little is known about the regulation of PGRN expression by microglia.In the current study, we examined the regulation of expression and function of PGRN, its proteolytic enzyme macrophage elastase (MMP-12, as well as the inhibitor of PGRN proteolysis, secretory leukocyte protease inhibitor (SLPI, in human CNS cells.Cultures of primary human microglia and astrocytes were stimulated with the TLR ligands (LPS or poly IC, Th1 cytokines (IL-1/IFNγ, or Th2 cytokines (IL-4, IL-13. Results were analyzed by Q-PCR, immunoblotting or ELISA. The roles of MMP-12 and SLPI in PGRN cleavage were also examined.Unstimulated microglia produced nanogram levels of PGRN, and PGRN release from microglia was suppressed by the TLR ligands or IL-1/IFNγ, but increased by IL-4 or IL-13. Unexpectedly, while astrocytes stimulated with proinflammatory factors released large amounts of SLPI, none were detected in microglial cultures. We also identified MMP-12 as a PGRN proteolytic enzyme, and SLPI as an inhibitor of MMP-12-induced PGRN proteolysis. Experiments employing PGRN siRNA demonstrated that microglial PGRN was involved in the cytokine and chemokine production following TLR3/4 activation, with its effect on TNFα being the most conspicuous.Our study is the first detailed examination of PGRN in human microglia. Our results establish microglia as a significant source of PGRN, and MMP-12 and SLPI as modulators of PGRN proteolysis. Negative and positive regulation of microglial PGRN release by the proinflammatory/Th1 and the Th2 stimuli, respectively, suggests a fundamentally different aspect of PGRN regulation compared to other known microglial activation products. Microglial PGRN appears to function as an endogenous

  9. Progranulin Reduced Neuronal Cell Death by Activation of Sortilin 1 Signaling Pathways After Subarachnoid Hemorrhage in Rats.

    Science.gov (United States)

    Li, Bo; He, Yue; Xu, Liang; Hu, Qin; Tang, Junjia; Chen, Yujie; Tang, Jiping; Feng, Hua; Zhang, John H

    2015-08-01

    Progranulin has been reported to have neuroprotective actions in cultured neurons. This study investigated the effect of recombinant rat progranulin on early brain injury after subarachnoid hemorrhage. Controlled in vivo laboratory study. Animal research laboratory. Two hundred thirty adult male Sprague-Dawley rats weighing 280-320 g. Subarachnoid hemorrhage was induced in rats by endovascular perforation. Rat recombinant progranulin (1 and 3 ng) was administrated intracerebroventricularly at 1.5 hours after subarachnoid hemorrhage. Progranulin small interfering RNA was administrated by intracerebroventricularly at 1 day before subarachnoid hemorrhage induction. Subarachnoid hemorrhage grade, neurologic score, and brain water content were measured at 24 and 72 hours after subarachnoid hemorrhage. Neural apoptosis was evaluated by double immunofluorescence staining using terminal deoxynucleotidyl transferase-mediated uridine 5'-triphosphate-biotin nick-end labeling and neuronal nuclei. For mechanistic study, the expression of progranulin, phosphorylated Akt, Akt, p-Erk, Erk, Bcl-2, and cleaved caspase-3 were analyzed by Western blot at 24 hours after subarachnoid hemorrhage. siRNA for sortilin 1 (a progranulin receptor) was used to intervene the downstream pathway. The expression of progranulin decreased and reached the lowest point at 24 hours after subarachnoid hemorrhage. Administration of rat recombinant progranulin decreased brain water content and improved neurologic functions at both 24 and 72 hours after subarachnoid hemorrhage, while knockdown of endogenous progranulin aggravated neurologic deficits after subarachnoid hemorrhage. Rat recombinant progranulin treatment reduced neuronal apoptosis, while progranulin deficiency promoted neuronal apoptosis at 24 hours after subarachnoid hemorrhage. Rat recombinant progranulin promoted Akt activation, increased Bcl-2 level, but reduced caspase-3 level. Knockdown of progranulin binding factor sortilin 1

  10. Serum Progranulin as an Independent Marker of Liver Fibrosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease

    OpenAIRE

    Yilmaz, Yusuf; Eren, Fatih; Yonal, Oya; Polat, Zulfikar; Bacha, Mohammad; Kurt, Ramazan; Ozturk, Oguzhan; Avsar, Erol

    2011-01-01

    Background: Elevated progranulin levels are associated with visceral obesity, elevated plasma glucose, and dyslipidemia. Progranulin has not been previously investigated as a biomarker of nonalcoholic fatty liver disease (NAFLD). We sought to determine whether serum progranulin levels are altered in patients with biopsy-proven NAFLD and if they are associated with their clinical, biochemical, and histological characteristics. Subjects and methods: We measured serum progranulin levels in 95 pa...

  11. msh/Msx gene family in neural development.

    Science.gov (United States)

    Ramos, Casto; Robert, Benoît

    2005-11-01

    The involvement of Msx homeobox genes in skull and tooth formation has received a great deal of attention. Recent studies also indicate a role for the msh/Msx gene family in development of the nervous system. In this article, we discuss the functions of these transcription factors in neural-tissue organogenesis. We will deal mainly with the interactions of the Drosophila muscle segment homeobox (msh) gene with other homeobox genes and the repressive cascade that leads to neuroectoderm patterning; the role of Msx genes in neural-crest induction, focusing especially on the differences between lower and higher vertebrates; their implication in patterning of the vertebrate neural tube, particularly in diencephalon midline formation. Finally, we will examine the distinct activities of Msx1, Msx2 and Msx3 genes during neurogenesis, taking into account their relationships with signalling molecules such as BMP.

  12. The sieve element occlusion gene family in dicotyledonous plants.

    Science.gov (United States)

    Ernst, Antonia M; Rüping, Boris; Jekat, Stephan B; Nordzieke, Steffen; Reineke, Anna R; Müller, Boje; Bornberg-Bauer, Erich; Prüfer, Dirk; Noll, Gundula A

    2011-01-01

    Sieve element occlusion (SEO) genes encoding forisome subunits have been identified in Medicago truncatula and other legumes. Forisomes are structural phloem proteins uniquely found in Fabaceae sieve elements. They undergo a reversible conformational change after wounding, from a condensed to a dispersed state, thereby blocking sieve tube translocation and preventing the loss of photoassimilates. Recently, we identified SEO genes in several non-Fabaceae plants (lacking forisomes) and concluded that they most probably encode conventional non-forisome P-proteins. Molecular and phylogenetic analysis of the SEO gene family has identified domains that are characteristic for SEO proteins. Here, we extended our phylogenetic analysis by including additional SEO genes from several diverse species based on recently published genomic data. Our results strengthen the original assumption that SEO genes seem to be widespread in dicotyledonous angiosperms, and further underline the divergent evolution of SEO genes within the Fabaceae.

  13. Serum Progranulin as an Independent Marker of Liver Fibrosis in Patients with Biopsy-Proven Nonalcoholic Fatty Liver Disease

    Directory of Open Access Journals (Sweden)

    Yusuf Yilmaz

    2011-01-01

    Full Text Available Background: Elevated progranulin levels are associated with visceral obesity, elevated plasma glucose, and dyslipidemia. Progranulin has not been previously investigated as a biomarker of nonalcoholic fatty liver disease (NAFLD. We sought to determine whether serum progranulin levels are altered in patients with biopsy-proven NAFLD and if they are associated with their clinical, biochemical, and histological characteristics.

  14. Evolution of the vertebrate insulin receptor substrate (Irs) gene family.

    Science.gov (United States)

    Al-Salam, Ahmad; Irwin, David M

    2017-06-23

    Insulin receptor substrate (Irs) proteins are essential for insulin signaling as they allow downstream effectors to dock with, and be activated by, the insulin receptor. A family of four Irs proteins have been identified in mice, however the gene for one of these, IRS3, has been pseudogenized in humans. While it is known that the Irs gene family originated in vertebrates, it is not known when it originated and which members are most closely related to each other. A better understanding of the evolution of Irs genes and proteins should provide insight into the regulation of metabolism by insulin. Multiple genes for Irs proteins were identified in a wide variety of vertebrate species. Phylogenetic and genomic neighborhood analyses indicate that this gene family originated very early in vertebrae evolution. Most Irs genes were duplicated and retained in fish after the fish-specific genome duplication. Irs genes have been lost of various lineages, including Irs3 in primates and birds and Irs1 in most fish. Irs3 and Irs4 experienced an episode of more rapid protein sequence evolution on the ancestral mammalian lineage. Comparisons of the conservation of the proteins sequences among Irs paralogs show that domains involved in binding to the plasma membrane and insulin receptors are most strongly conserved, while divergence has occurred in sequences involved in interacting with downstream effector proteins. The Irs gene family originated very early in vertebrate evolution, likely through genome duplications, and in parallel with duplications of other components of the insulin signaling pathway, including insulin and the insulin receptor. While the N-terminal sequences of these proteins are conserved among the paralogs, changes in the C-terminal sequences likely allowed changes in biological function.

  15. Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification

    International Nuclear Information System (INIS)

    Yanai, Itai; Camacho, Carlos J.; DeLisi, Charles

    2000-01-01

    A universal property of microbial genomes is the considerable fraction of genes that are homologous to other genes within the same genome. The process by which these homologues are generated is not well understood, but sequence analysis of 20 microbial genomes unveils a recurrent distribution of gene family sizes. We show that a simple evolutionary model based on random gene duplication and point mutations fully accounts for these distributions and permits predictions for the number of gene families in genomes not yet complete. Our findings are consistent with the notion that a genome evolves from a set of precursor genes to a mature size by gene duplications and increasing modifications. (c) 2000 The American Physical Society

  16. Predictions of Gene Family Distributions in Microbial Genomes: Evolution by Gene Duplication and Modification

    Energy Technology Data Exchange (ETDEWEB)

    Yanai, Itai; Camacho, Carlos J.; DeLisi, Charles

    2000-09-18

    A universal property of microbial genomes is the considerable fraction of genes that are homologous to other genes within the same genome. The process by which these homologues are generated is not well understood, but sequence analysis of 20 microbial genomes unveils a recurrent distribution of gene family sizes. We show that a simple evolutionary model based on random gene duplication and point mutations fully accounts for these distributions and permits predictions for the number of gene families in genomes not yet complete. Our findings are consistent with the notion that a genome evolves from a set of precursor genes to a mature size by gene duplications and increasing modifications. (c) 2000 The American Physical Society.

  17. Progranulin-derived Atsttrin directly binds to TNFRSF25 (DR3 and inhibits TNF-like ligand 1A (TL1A activity.

    Directory of Open Access Journals (Sweden)

    Cui Liu

    Full Text Available Atsttrin, a progranulin (PGRN-derived molecule composed of three TNFR-binding domains of PGRN, binds to TNF receptors (TNFR and is therapeutic against inflammatory arthritis. Here we screened the associations of Atsttrin and other members in TNFR subfamily, which led to the discovery of TNFRSF25 (DR3 as an additional Atsttrin-interacting member in TNFR family. Similar to TNFR1 and TNFR2, DR3 also directly bound to Atsttrin. The first three cysteine-rich domains (CRD in the extracellular portion of DR3 were required for this interaction. Atsttrin inhibited the interaction between DR3 and its TNF-Like Ligand 1A (TL1A. In addition, Atsttrin inhibited TL1A-stimulated target gene expressions and neutralized TL1A-enhanced osteoclastogenesis in vitro. Furthermore, Atsttrin ameliorated the pathology in dextran sulfate sodium induced colitis. Taken together, these findings not only provide the new insights into Atsttrin's therapeutic action in inflammatory arthritis, but may also present Atsttrin as a novel biological agent for treating various types of diseases associated with TL1A/DR3 pathway.

  18. Progranulin concentration in relation to bone mineral density among obese individuals.

    Science.gov (United States)

    Milajerdi, Alireza; Maghbooli, Zhila; Mohammadi, Farzad; Hosseini, Banafsheh; Mirzaei, Khadijeh

    2018-01-01

    Adipose tissue, particularly visceral adipose tissue, secretes a variety of cytokines, among which progranulin is a glycoprotein related to the immune system. Along with other secreted proteins, progranulin may be associated with bone mineral density. The aim of this study was to find out whether there are associations between the progranulin and bone mineral density among obese people. This cross-sectional study was conducted on 244 obese participants (aged 22-52). Serum progranulin, high sensitive C-reactive protein, oxidised-low dencity lipoprotein, tumor necrosis factor-α, parathormone, vitamin D, and interleukins of 1 β, 4, 6, 10, 13, and 17 concentrations were measured. Anthropometric measurements, body composition and bone mineral density were also assessed. Serum progranulin was directly associated with interleukin-6 and interleukin-1β, while it had a negative association with interleukin-17 and tumor necrosis factor-α. We also observed a statistically significant direct association between progranulin concentration and visceral fat, abdominal fat, waist, abdominal and hip circumferences, hip T-score, and Z-score and T-score for the lumbar region. A partial correlation test has also shown a significant positive correlation regarding serum progranulin and the hip Z-score. Moreover, progranulin level is inversely associated with ospteopenia (P = 0.04 and CI: 0.17,0.96). Our study revealed that central obesity may be related to increased progranulin concentration. In addition, progranulin concentration was directly related to bone formation parameters, which indicates the protective effects of progranulin on bone density. Further studies are needed to clarify the exact mechanisms underlying these associations.

  19. Human heavy-chain variable region gene family nonrandomly rearranged in familial chronic lymphocytic leukemia

    International Nuclear Information System (INIS)

    Shen, A.; Humphries, C.; Tucker, P.; Blattner, F.

    1987-01-01

    The authors have identified a family of human immunoglobulin heavy-chain variable-region (V/sub H/) genes, one member of which is rearranged in two affected members of a family in which the father and four of five siblings developed chronic lymphocytic leukemia. Cloning and sequencing of the rearranged V/sub H/ genes from leukemic lymphocytes of three affected siblings showed that two siblings had rearranged V/sub H/ genes (V/sub H/TS1 and V/sub H/WS1) that were 90% homologous. The corresponding germ-line gene, V/sub H/251, was found to part of a small (four gene) V/sub H/ gene family, which they term V/sub H/V. The DNA sequence homology to V/sub H/WS1 (95%) and V/sub H/TS1 (88%) and identical restriction sites on the 5' side of V/sub H/ confirm that rearrangement of V/sub H/251 followed by somatic mutation produced the identical V/sub H/ gene rearrangements in the two siblings. V/sub H/TS1 is not a functional V/sub H/ gene; a functional V/sub H/ rearrangement was found on the other chromosome of this patient. The other two siblings had different V/sub H/ gene rearrangements. All used different diversity genes. Mechanisms proposed for nonrandom selection of a single V/sub H/ gene include developmental regulation of this V/sub H/ gene rearrangement or selection of a subpopulation of B cells in which this V/sub H/ has been rearranged

  20. Small Mutations of the DMD Gene in Taiwanese Families

    Directory of Open Access Journals (Sweden)

    Hsiao-Lin Hwa

    2008-06-01

    Conclusion: Most identified mutations either led to a predictable premature stop codon or resulted in splicing defects, which caused defective function of dystrophin. Our findings extend the mutation spectrum of the DMD gene. Molecular characterization of the affected families is important for genetic counseling and prenatal diagnosis.

  1. Genetic diversity of bitter taste receptor gene family in Sichuan

    Indian Academy of Sciences (India)

    Genetic diversity of bitter taste receptor gene family in Sichuan domestic and Tibetan chicken populations. YUAN SU DIYAN LI UMA GAUR YAN WANG NAN WU BINLONG CHEN HONGXIAN XU HUADONG YIN YAODONG HU QING ZHU. RESEARCH ARTICLE Volume 95 Issue 3 September 2016 pp 675-681 ...

  2. Genomewide analysis of TCP transcription factor gene family in ...

    Indian Academy of Sciences (India)

    2014-12-09

    Dec 9, 2014 ... study of a genomewide analysis of apple TCP gene family. These results provide .... synthesize the first-strand cDNA using the PrimeScript First. Strand cDNA ..... only detected in the stem, leaf and fruit (figure 8). When.

  3. Identification of the trehalose-6-phosphate synthase gene family in ...

    Indian Academy of Sciences (India)

    2015-03-04

    Mar 4, 2015 ... stress, however, our study mainly analysed the TPS gene family under freezing conditions in winter wheat .... size the first-strand cDNA using the Fermentas RevertAid ..... In the stem of Dongnongdongmai 1, TaTPS1, 2, 3, 4, 8,.

  4. Gene family size conservation is a good indicator of evolutionary rates.

    Science.gov (United States)

    Chen, Feng-Chi; Chen, Chiuan-Jung; Li, Wen-Hsiung; Chuang, Trees-Juen

    2010-08-01

    The evolution of duplicate genes has been a topic of broad interest. Here, we propose that the conservation of gene family size is a good indicator of the rate of sequence evolution and some other biological properties. By comparing the human-chimpanzee-macaque orthologous gene families with and without family size conservation, we demonstrate that genes with family size conservation evolve more slowly than those without family size conservation. Our results further demonstrate that both family expansion and contraction events may accelerate gene evolution, resulting in elevated evolutionary rates in the genes without family size conservation. In addition, we show that the duplicate genes with family size conservation evolve significantly more slowly than those without family size conservation. Interestingly, the median evolutionary rate of singletons falls in between those of the above two types of duplicate gene families. Our results thus suggest that the controversy on whether duplicate genes evolve more slowly than singletons can be resolved when family size conservation is taken into consideration. Furthermore, we also observe that duplicate genes with family size conservation have the highest level of gene expression/expression breadth, the highest proportion of essential genes, and the lowest gene compactness, followed by singletons and then by duplicate genes without family size conservation. Such a trend accords well with our observations of evolutionary rates. Our results thus point to the importance of family size conservation in the evolution of duplicate genes.

  5. Alzheimer neuropathology without frontotemporal lobar degeneration hallmarks (TAR DNA-binding protein 43 inclusions) in missense progranulin mutation Cys139Arg.

    Science.gov (United States)

    Redaelli, Veronica; Rossi, Giacomina; Maderna, Emanuela; Kovacs, Gabor G; Piccoli, Elena; Caroppo, Paola; Cacciatore, Francesca; Spinello, Sonia; Grisoli, Marina; Sozzi, Giuliano; Salmaggi, Andrea; Tagliavini, Fabrizio; Giaccone, Giorgio

    2018-01-01

    Null mutations in progranulin gene (GRN) reduce the progranulin production resulting in haploinsufficiency and are tightly associated with tau-negative frontotemporal lobar degeneration with TAR DNA-binding protein 43-positive inclusions (FTLD-TDP). Missense mutations of GRN were also identified, but their effects are not completely clear, in particular unanswered is the question of what neuropathology they elicit, also considering that their occurrence has been reported in patients with typical clinical features of Alzheimer disease. They describe two fraternal twins carrying the missense GRN Cys139Arg mutation affected by late-onset dementia and we report the neuropathological study of one of them. Both patients were examined by neuroimaging, neuropsychological assessment and genetic analysis of GRN and other genes associated with dementia. The brain of one was obtained at autopsy and examined neuropathologically. One sister presented clinical and MRI features leading to the diagnosis of Alzheimer disease. The other underwent autopsy and the brain showed neuropathological hallmarks of Alzheimer disease with abundant Aβ-amyloid deposition and Braak stage V of neurofibrillary pathology, in the absence of the hallmark lesions of FTLD-TDP. Their findings may contribute to better clarify the role of progranulin in neurodegenerative diseases indicating that some GRN mutations, in particular missense ones, may act as strong risk factor for Alzheimer disease rather than induce FTLD-TDP. © 2016 International Society of Neuropathology.

  6. Evolution of the MAGUK protein gene family in premetazoan lineages

    Directory of Open Access Journals (Sweden)

    Ruiz-Trillo Iñaki

    2010-04-01

    Full Text Available Abstract Background Cell-to-cell communication is a key process in multicellular organisms. In multicellular animals, scaffolding proteins belonging to the family of membrane-associated guanylate kinases (MAGUK are involved in the regulation and formation of cell junctions. These MAGUK proteins were believed to be exclusive to Metazoa. However, a MAGUK gene was recently identified in an EST survey of Capsaspora owczarzaki, an unicellular organism that branches off near the metazoan clade. To further investigate the evolutionary history of MAGUK, we have undertook a broader search for this gene family using available genomic sequences of different opisthokont taxa. Results Our survey and phylogenetic analyses show that MAGUK proteins are present not only in Metazoa, but also in the choanoflagellate Monosiga brevicollis and in the protist Capsaspora owczarzaki. However, MAGUKs are absent from fungi, amoebozoans or any other eukaryote. The repertoire of MAGUKs in Placozoa and eumetazoan taxa (Cnidaria + Bilateria is quite similar, except for one class that is missing in Trichoplax, while Porifera have a simpler MAGUK repertoire. However, Vertebrata have undergone several independent duplications and exhibit two exclusive MAGUK classes. Three different MAGUK types are found in both M. brevicollis and C. owczarzaki: DLG, MPP and MAGI. Furthermore, M. brevicollis has suffered a lineage-specific diversification. Conclusions The diversification of the MAGUK protein gene family occurred, most probably, prior to the divergence between Metazoa+choanoflagellates and the Capsaspora+Ministeria clade. A MAGI-like, a DLG-like, and a MPP-like ancestral genes were already present in the unicellular ancestor of Metazoa, and new gene members have been incorporated through metazoan evolution within two major periods, one before the sponge-eumetazoan split and another within the vertebrate lineage. Moreover, choanoflagellates have suffered an independent MAGUK

  7. PlantTribes: a gene and gene family resource for comparative genomics in plants

    OpenAIRE

    Wall, P. Kerr; Leebens-Mack, Jim; Müller, Kai F.; Field, Dawn; Altman, Naomi S.; dePamphilis, Claude W.

    2007-01-01

    The PlantTribes database (http://fgp.huck.psu.edu/tribe.html) is a plant gene family database based on the inferred proteomes of five sequenced plant species: Arabidopsis thaliana, Carica papaya, Medicago truncatula, Oryza sativa and Populus trichocarpa. We used the graph-based clustering algorithm MCL [Van Dongen (Technical Report INS-R0010 2000) and Enright et al. (Nucleic Acids Res. 2002; 30: 1575–1584)] to classify all of these species’ protein-coding genes into putative gene families, ca...

  8. Progranulin overexpression in sensory neurons attenuates neuropathic pain in mice: Role of autophagy.

    Science.gov (United States)

    Altmann, Christine; Hardt, Stefanie; Fischer, Caroline; Heidler, Juliana; Lim, Hee-Young; Häussler, Annett; Albuquerque, Boris; Zimmer, Béla; Möser, Christine; Behrends, Christian; Koentgen, Frank; Wittig, Ilka; Schmidt, Mirko H H; Clement, Albrecht M; Deller, Thomas; Tegeder, Irmgard

    2016-12-01

    Peripheral or central nerve injury is a frequent cause of chronic pain and the mechanisms are not fully understood. Using newly generated transgenic mice we show that progranulin overexpression in sensory neurons attenuates neuropathic pain after sciatic nerve injury and accelerates nerve healing. A yeast-2-hybrid screen revealed putative interactions of progranulin with autophagy-related proteins, ATG12 and ATG4b. This was supported by colocalization and proteomic studies showing regulations of ATG13 and ATG4b and other members of the autophagy network, lysosomal proteins and proteins involved in endocytosis. The association of progranulin with the autophagic pathway was functionally confirmed in primary sensory neurons. Autophagy and survival were impaired in progranulin-deficient neurons and improved in progranulin overexpressing neurons. Nerve injury in vivo caused an accumulation of LC3b-EGFP positive bodies in neurons of the dorsal root ganglia and nerves suggesting an impairment of autophagic flux. Overexpression of progranulin in these neurons was associated with a reduction of the stress marker ATF3, fewer protein aggregates in the injured nerve and enhanced stump healing. At the behavioral level, further inhibition of the autophagic flux by hydroxychloroquine intensified cold and heat nociception after sciatic nerve injury and offset the pain protection provided by progranulin. We infer that progranulin may assist in removal of protein waste and thereby helps to resolve neuropathic pain after nerve injury. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Serum Progranulin Levels in Type 2 Diabetic Patients with Metabolic Syndrome

    Directory of Open Access Journals (Sweden)

    Shafaei Azam

    2016-12-01

    Full Text Available Introduction. The role of progranulin in individuals with metabolic syndrome is not exactly clear.We aimed to assess the serum level of progranulin in type 2 diabetic patients with and without metabolic syndrome and compare them with healthy controls.

  10. Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica.

    Science.gov (United States)

    Pessina, Stefano; Pavan, Stefano; Catalano, Domenico; Gallotta, Alessandra; Visser, Richard G F; Bai, Yuling; Malnoy, Mickael; Schouten, Henk J

    2014-07-22

    Powdery mildew (PM) is a major fungal disease of thousands of plant species, including many cultivated Rosaceae. PM pathogenesis is associated with up-regulation of MLO genes during early stages of infection, causing down-regulation of plant defense pathways. Specific members of the MLO gene family act as PM-susceptibility genes, as their loss-of-function mutations grant durable and broad-spectrum resistance. We carried out a genome-wide characterization of the MLO gene family in apple, peach and strawberry, and we isolated apricot MLO homologs through a PCR-approach. Evolutionary relationships between MLO homologs were studied and syntenic blocks constructed. Homologs that are candidates for being PM susceptibility genes were inferred by phylogenetic relationships with functionally characterized MLO genes and, in apple, by monitoring their expression following inoculation with the PM causal pathogen Podosphaera leucotricha. Genomic tools available for Rosaceae were exploited in order to characterize the MLO gene family. Candidate MLO susceptibility genes were identified. In follow-up studies it can be investigated whether silencing or a loss-of-function mutations in one or more of these candidate genes leads to PM resistance.

  11. Early evolution of the LIM homeobox gene family

    Energy Technology Data Exchange (ETDEWEB)

    Srivastava, Mansi; Larroux, Claire; Lu, Daniel R; Mohanty, Kareshma; Chapman, Jarrod; Degnan, Bernard M; Rokhsar, Daniel S

    2010-01-01

    LIM homeobox (Lhx) transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons) indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In Nematostella, Lhx gene expression is correlated with neural

  12. Early evolution of the LIM homeobox gene family

    Directory of Open Access Journals (Sweden)

    Degnan Bernard M

    2010-01-01

    Full Text Available Abstract Background LIM homeobox (Lhx transcription factors are unique to the animal lineage and have patterning roles during embryonic development in flies, nematodes and vertebrates, with a conserved role in specifying neuronal identity. Though genes of this family have been reported in a sponge and a cnidarian, the expression patterns and functions of the Lhx family during development in non-bilaterian phyla are not known. Results We identified Lhx genes in two cnidarians and a placozoan and report the expression of Lhx genes during embryonic development in Nematostella and the demosponge Amphimedon. Members of the six major LIM homeobox subfamilies are represented in the genomes of the starlet sea anemone, Nematostella vectensis, and the placozoan Trichoplax adhaerens. The hydrozoan cnidarian, Hydra magnipapillata, has retained four of the six Lhx subfamilies, but apparently lost two others. Only three subfamilies are represented in the haplosclerid demosponge Amphimedon queenslandica. A tandem cluster of three Lhx genes of different subfamilies and a gene containing two LIM domains in the genome of T. adhaerens (an animal without any neurons indicates that Lhx subfamilies were generated by tandem duplication. This tandem cluster in Trichoplax is likely a remnant of the original chromosomal context in which Lhx subfamilies first appeared. Three of the six Trichoplax Lhx genes are expressed in animals in laboratory culture, as are all Lhx genes in Hydra. Expression patterns of Nematostella Lhx genes correlate with neural territories in larval and juvenile polyp stages. In the aneural demosponge, A. queenslandica, the three Lhx genes are expressed widely during development, including in cells that are associated with the larval photosensory ring. Conclusions The Lhx family expanded and diversified early in animal evolution, with all six subfamilies already diverged prior to the cnidarian-placozoan-bilaterian last common ancestor. In

  13. Plant ion channels: gene families, physiology, and functional genomics analyses.

    Science.gov (United States)

    Ward, John M; Mäser, Pascal; Schroeder, Julian I

    2009-01-01

    Distinct potassium, anion, and calcium channels in the plasma membrane and vacuolar membrane of plant cells have been identified and characterized by patch clamping. Primarily owing to advances in Arabidopsis genetics and genomics, and yeast functional complementation, many of the corresponding genes have been identified. Recent advances in our understanding of ion channel genes that mediate signal transduction and ion transport are discussed here. Some plant ion channels, for example, ALMT and SLAC anion channel subunits, are unique. The majority of plant ion channel families exhibit homology to animal genes; such families include both hyperpolarization- and depolarization-activated Shaker-type potassium channels, CLC chloride transporters/channels, cyclic nucleotide-gated channels, and ionotropic glutamate receptor homologs. These plant ion channels offer unique opportunities to analyze the structural mechanisms and functions of ion channels. Here we review gene families of selected plant ion channel classes and discuss unique structure-function aspects and their physiological roles in plant cell signaling and transport.

  14. Chromosomal evolution of the PKD1 gene family in primates

    Directory of Open Access Journals (Sweden)

    Krawczak Michael

    2008-09-01

    Full Text Available Abstract Background The autosomal dominant polycystic kidney disease (ADPKD is mostly caused by mutations in the PKD1 (polycystic kidney disease 1 gene located in 16p13.3. Moreover, there are six pseudogenes of PKD1 that are located proximal to the master gene in 16p13.1. In contrast, no pseudogene could be detected in the mouse genome, only a single copy gene on chromosome 17. The question arises how the human situation originated phylogenetically. To address this question we applied comparative FISH-mapping of a human PKD1-containing genomic BAC clone and a PKD1-cDNA clone to chromosomes of a variety of primate species and the dog as a non-primate outgroup species. Results Comparative FISH with the PKD1-cDNA clone clearly shows that in all primate species studied distinct single signals map in subtelomeric chromosomal positions orthologous to the short arm of human chromosome 16 harbouring the master PKD1 gene. Only in human and African great apes, but not in orangutan, FISH with both BAC and cDNA clones reveals additional signal clusters located proximal of and clearly separated from the PKD1 master genes indicating the chromosomal position of PKD1 pseudogenes in 16p of these species, respectively. Indeed, this is in accordance with sequencing data in human, chimpanzee and orangutan. Apart from the master PKD1 gene, six pseudogenes are identified in both, human and chimpanzee, while only a single-copy gene is present in the whole-genome sequence of orangutan. The phylogenetic reconstruction of the PKD1-tree reveals that all human pseudogenes are closely related to the human PKD1 gene, and all chimpanzee pseudogenes are closely related to the chimpanzee PKD1 gene. However, our statistical analyses provide strong indication that gene conversion events may have occurred within the PKD1 family members of human and chimpanzee, respectively. Conclusion PKD1 must have undergone amplification very recently in hominid evolution. Duplicative

  15. The claudin gene family: expression in normal and neoplastic tissues

    International Nuclear Information System (INIS)

    Hewitt, Kyle J; Agarwal, Rachana; Morin, Patrice J

    2006-01-01

    The claudin (CLDN) genes encode a family of proteins important in tight junction formation and function. Recently, it has become apparent that CLDN gene expression is frequently altered in several human cancers. However, the exact patterns of CLDN expression in various cancers is unknown, as only a limited number of CLDN genes have been investigated in a few tumors. We identified all the human CLDN genes from Genbank and we used the large public SAGE database to ascertain the gene expression of all 21 CLDN in 266 normal and neoplastic tissues. Using real-time RT-PCR, we also surveyed a subset of 13 CLDN genes in 24 normal and 24 neoplastic tissues. We show that claudins represent a family of highly related proteins, with claudin-16, and -23 being the most different from the others. From in silico analysis and RT-PCR data, we find that most claudin genes appear decreased in cancer, while CLDN3, CLDN4, and CLDN7 are elevated in several malignancies such as those originating from the pancreas, bladder, thyroid, fallopian tubes, ovary, stomach, colon, breast, uterus, and the prostate. Interestingly, CLDN5 is highly expressed in vascular endothelial cells, providing a possible target for antiangiogenic therapy. CLDN18 might represent a biomarker for gastric cancer. Our study confirms previously known CLDN gene expression patterns and identifies new ones, which may have applications in the detection, prognosis and therapy of several human cancers. In particular we identify several malignancies that express CLDN3 and CLDN4. These cancers may represent ideal candidates for a novel therapy being developed based on CPE, a toxin that specifically binds claudin-3 and claudin-4

  16. A comprehensive family-based replication study of schizophrenia genes

    DEFF Research Database (Denmark)

    Aberg, Karolina A; Liu, Youfang; Bukszár, Jozsef

    2013-01-01

     768 control subjects from 6 databases and, after quality control 6298 individuals (including 3286 cases) from 1811 nuclear families. MAIN OUTCOMES AND MEASURES Case-control status for SCZ. RESULTS Replication results showed a highly significant enrichment of SNPs with small P values. Of the SNPs...... in an independent family-based replication study that, after quality control, consisted of 8107 SNPs. SETTING Linkage meta-analysis, brain transcriptome meta-analysis, candidate gene database, OMIM, relevant mouse studies, and expression quantitative trait locus databases. PATIENTS We included 11 185 cases and 10...

  17. Massive expansion of the calpain gene family in unicellular eukaryotes

    Directory of Open Access Journals (Sweden)

    Zhao Sen

    2012-09-01

    Full Text Available Abstract Background Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists. Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Results Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. Conclusions The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  18. Massive expansion of the calpain gene family in unicellular eukaryotes.

    Science.gov (United States)

    Zhao, Sen; Liang, Zhe; Demko, Viktor; Wilson, Robert; Johansen, Wenche; Olsen, Odd-Arne; Shalchian-Tabrizi, Kamran

    2012-09-29

    Calpains are Ca2+-dependent cysteine proteases that participate in a range of crucial cellular processes. Dysfunction of these enzymes may cause, for instance, life-threatening diseases in humans, the loss of sex determination in nematodes and embryo lethality in plants. Although the calpain family is well characterized in animal and plant model organisms, there is a great lack of knowledge about these genes in unicellular eukaryote species (i.e. protists). Here, we study the distribution and evolution of calpain genes in a wide range of eukaryote genomes from major branches in the tree of life. Our investigations reveal 24 types of protein domains that are combined with the calpain-specific catalytic domain CysPc. In total we identify 41 different calpain domain architectures, 28 of these domain combinations have not been previously described. Based on our phylogenetic inferences, we propose that at least four calpain variants were established in the early evolution of eukaryotes, most likely before the radiation of all the major supergroups of eukaryotes. Many domains associated with eukaryotic calpain genes can be found among eubacteria or archaebacteria but never in combination with the CysPc domain. The analyses presented here show that ancient modules present in prokaryotes, and a few de novo eukaryote domains, have been assembled into many novel domain combinations along the evolutionary history of eukaryotes. Some of the new calpain genes show a narrow distribution in a few branches in the tree of life, likely representing lineage-specific innovations. Hence, the functionally important classical calpain genes found among humans and vertebrates make up only a tiny fraction of the calpain family. In fact, a massive expansion of the calpain family occurred by domain shuffling among unicellular eukaryotes and contributed to a wealth of functionally different genes.

  19. NDP gene mutations in 14 French families with Norrie disease.

    Science.gov (United States)

    Royer, Ghislaine; Hanein, Sylvain; Raclin, Valérie; Gigarel, Nadine; Rozet, Jean-Michel; Munnich, Arnold; Steffann, Julie; Dufier, Jean-Louis; Kaplan, Josseline; Bonnefont, Jean-Paul

    2003-12-01

    Norrie disease is a rare X-inked recessive condition characterized by congenital blindness and occasionally deafness and mental retardation in males. This disease has been ascribed to mutations in the NDP gene on chromosome Xp11.1. Previous investigations of the NDP gene have identified largely sixty disease-causing sequence variants. Here, we report on ten different NDP gene allelic variants in fourteen of a series of 21 families fulfilling inclusion criteria. Two alterations were intragenic deletions and eight were nucleotide substitutions or splicing variants, six of them being hitherto unreported, namely c.112C>T (p.Arg38Cys), c.129C>G (p.His43Gln), c.133G>A (p.Val45Met), c.268C>T (p.Arg90Cys), c.382T>C (p.Cys128Arg), c.23479-1G>C (unknown). No NDP gene sequence variant was found in seven of the 21 families. This observation raises the issue of misdiagnosis, phenocopies, or existence of other X-linked or autosomal genes, the mutations of which would mimic the Norrie disease phenotype. Copyright 2003 Wiley-Liss, Inc.

  20. Leiomodins: larger members of the tropomodulin (Tmod) gene family

    Science.gov (United States)

    Conley, C. A.; Fritz-Six, K. L.; Almenar-Queralt, A.; Fowler, V. M.

    2001-01-01

    The 64-kDa autoantigen D1 or 1D, first identified as a potential autoantigen in Graves' disease, is similar to the tropomodulin (Tmod) family of actin filament pointed end-capping proteins. A novel gene with significant similarity to the 64-kDa human autoantigen D1 has been cloned from both humans and mice, and the genomic sequences of both genes have been identified. These genes form a subfamily closely related to the Tmods and are here named the Leiomodins (Lmods). Both Lmod genes display a conserved intron-exon structure, as do three Tmod genes, but the intron-exon structure of the Lmods and the Tmods is divergent. mRNA expression analysis indicates that the gene formerly known as the 64-kDa autoantigen D1 is most highly expressed in a variety of human tissues that contain smooth muscle, earning it the name smooth muscle Leiomodin (SM-Lmod; HGMW-approved symbol LMOD1). Transcripts encoding the novel Lmod gene are present exclusively in fetal and adult heart and adult skeletal muscle, and it is here named cardiac Leiomodin (C-Lmod; HGMW-approved symbol LMOD2). Human C-Lmod is located near the hypertrophic cardiomyopathy locus CMH6 on human chromosome 7q3, potentially implicating it in this disease. Our data demonstrate that the Lmods are evolutionarily related and display tissue-specific patterns of expression distinct from, but overlapping with, the expression of Tmod isoforms. Copyright 2001 Academic Press.

  1. Evolutionary history of chordate PAX genes: dynamics of change in a complex gene family.

    Directory of Open Access Journals (Sweden)

    Vanessa Rodrigues Paixão-Côrtes

    Full Text Available Paired box (PAX genes are transcription factors that play important roles in embryonic development. Although the PAX gene family occurs in animals only, it is widely distributed. Among the vertebrates, its 9 genes appear to be the product of complete duplication of an original set of 4 genes, followed by an additional partial duplication. Although some studies of PAX genes have been conducted, no comprehensive survey of these genes across the entire taxonomic unit has yet been attempted. In this study, we conducted a detailed comparison of PAX sequences from 188 chordates, which revealed restricted variation. The absence of PAX4 and PAX8 among some species of reptiles and birds was notable; however, all 9 genes were present in all 74 mammalian genomes investigated. A search for signatures of selection indicated that all genes are subject to purifying selection, with a possible constraint relaxation in PAX4, PAX7, and PAX8. This result indicates asymmetric evolution of PAX family genes, which can be associated with the emergence of adaptive novelties in the chordate evolutionary trajectory.

  2. The nitrate transporter (NRT gene family in poplar.

    Directory of Open Access Journals (Sweden)

    Hua Bai

    Full Text Available Nitrate is an important nutrient required for plant growth. It also acts as a signal regulating plant development. Nitrate is actively taken up and transported by nitrate transporters (NRT, which form a large family with many members and distinct functions. In contrast to Arabidopsis and rice there is little information about the NRT family in woody plants such as Populus. In this study, a comprehensive analysis of the Populus NRT family was performed. Sixty-eight PtNRT1/PTR, 6 PtNRT2, and 5 PtNRT3 genes were identified in the P. trichocarpa genome. Phylogenetic analysis confirmed that the genes of the NRT family are divided into three clades: NRT1/PTR with four subclades, NRT2, and NRT3. Topological analysis indicated that all members of PtNRT1/PTR and PtNRT2 have 8 to 12 trans-membrane domains, whereas the PtNRT3 proteins have no or up to two trans-membrane domains. Four PtNRT3 members were predicted as secreted proteins. Microarray analyses revealed tissue-specific expression patterns of PtNRT genes with distinct clusters of NRTs for roots, for the elongation zone of the apical stem segment and the developing xylem and a further cluster for leaves, bark and wood. A comparison of different poplar species (P. trichocarpa, P. tremula, P. euphratica, P. fremontii x P. angustifolia, and P. x canescens showed that the tissue-specific patterns of the NRT genes varied to some extent with species. Bioinformatic analysis of putative cis-regulatory elements in the promoter regions of PtNRT family retrieved motifs suggesting the regulation of the NRT genes by N metabolism, by energy and carbon metabolism, and by phytohormones and stress. Multivariate analysis suggested that the combination and abundance of motifs in distinct promoters may lead to tissue-specificity. Our genome wide analysis of the PtNRT genes provides a valuable basis for functional analysis towards understanding the role of nitrate transporters for tree growth.

  3. Diverse roles of ERECTA family genes in plant development.

    Science.gov (United States)

    Shpak, Elena D

    2013-12-01

    Multiple receptor-like kinases (RLKs) enable intercellular communication that coordinates growth and development of plant tissues. ERECTA family receptors (ERfs) are an ancient family of leucine-rich repeat RLKs that in Arabidopsis consists of three genes: ERECTA, ERL1, and ERL2. ERfs sense secreted cysteine-rich peptides from the EPF/EPFL family and transmit the signal through a MAP kinase cascade. This review discusses the functions of ERfs in stomata development, in regulation of longitudinal growth of aboveground organs, during reproductive development, and in the shoot apical meristem. In addition the role of ERECTA in plant responses to biotic and abiotic factors is examined. Elena D. Shpak (Corresponding author). © 2013 Institute of Botany, Chinese Academy of Sciences.

  4. Molecular study of the perforin gene in familial hematological malignancies

    Directory of Open Access Journals (Sweden)

    El Abed Rim

    2011-09-01

    Full Text Available Abstract Perforin gene (PRF1 mutations have been identified in some patients diagnosed with the familial form of hemophagocytic lymphohistiocytosis (HLH and in patients with lymphoma. The aim of the present study was to determine whether patients with a familial aggregation of hematological malignancies harbor germline perforin gene mutations. For this purpose, 81 unrelated families from Tunisia and France with aggregated hematological malignancies were investigated. The variants detected in the PRF1 coding region amounted to 3.7% (3/81. Two of the three variants identified were previously described: the p.Ala91Val pathogenic mutation and the p.Asn252Ser polymorphism. A new p.Ala 211Val missense substitution was identified in two related Tunisian patients. In order to assess the pathogenicity of this new variation, bioinformatic tools were used to predict its effects on the perforin protein structure and at the mRNA level. The segregation of the mutant allele was studied in the family of interest and a control population was screened. The fact that this variant was not found to occur in 200 control chromosomes suggests that it may be pathogenic. However, overexpression of mutated PRF1 in rat basophilic leukemia cells did not affect the lytic function of perforin differently from the wild type protein.

  5. Bioinformatics Analysis of MAPKKK Family Genes in Medicago truncatula

    Directory of Open Access Journals (Sweden)

    Wei Li

    2016-04-01

    Full Text Available Mitogen‐activated protein kinase kinase kinase (MAPKKK is a component of the MAPK cascade pathway that plays an important role in plant growth, development, and response to abiotic stress, the functions of which have been well characterized in several plant species, such as Arabidopsis, rice, and maize. In this study, we performed genome‐wide and systemic bioinformatics analysis of MAPKKK family genes in Medicago truncatula. In total, there were 73 MAPKKK family members identified by search of homologs, and they were classified into three subfamilies, MEKK, ZIK, and RAF. Based on the genomic duplication function, 72 MtMAPKKK genes were located throughout all chromosomes, but they cluster in different chromosomes. Using microarray data and high‐throughput sequencing‐data, we assessed their expression profiles in growth and development processes; these results provided evidence for exploring their important functions in developmental regulation, especially in the nodulation process. Furthermore, we investigated their expression in abiotic stresses by RNA‐seq, which confirmed their critical roles in signal transduction and regulation processes under stress. In summary, our genome‐wide, systemic characterization and expressional analysis of MtMAPKKK genes will provide insights that will be useful for characterizing the molecular functions of these genes in M. truncatula.

  6. Repair of DNA damage in the human metallothionein gene family

    International Nuclear Information System (INIS)

    Leadon, S.A.; Snowden, M.M.

    1987-01-01

    In order to distinguish enhanced repair of a sequence due to its transcriptional activity from enhanced repair due to chromatin alterations brought about by integration of a sequence into the genome, we have investigated the repair of damage both in endogenous genes and in cell lines that contain an integrated gene with an inducible promoter. The endogenous genes we are studying are the metallothioneins (MTs), a multigene family in man consisting of about 10-12 members. Cultured cells were exposed to 10-J/m 2 uv light and allowed to repair in the presence of bromodeoxyuridine. The DNA was then isolated, digested with Eco RI, and fully hybrid density DNA made by semiconservative synthesis was separated from unreplicated DNA by centrifugation in CsCl density gradients. Unreplicated, parental-density DNA was then reacted with a monoclonal antibody against bromouracil. 1 ref., 1 fig., 1 tab

  7. Progranulin levels in status epilepticus as a marker of neuronal recovery and neuroprotection.

    Science.gov (United States)

    Huchtemann, T; Körtvélyessy, P; Feistner, H; Heinze, H J; Bittner, D

    2015-08-01

    Recently, a mouse model showed that progranulin, a mediator in neuroinflammation and a neuronal growth factor, was elevated in the hippocampus after status epilepticus (SE). This elevated level might mirror compensating neuronal mechanisms after SE. Studies concerning neuronal recovery and neuroprotective mechanisms after SE in humans are scarce, so we tested for progranulinin the cerebrospinal fluid (CSF) after various types of SE. We performed a retrospective analysis of progranulin levels in CSF in patients (n = 24) who underwent lumbar puncture as part of diagnostic workup after having SE and in patients after having one single tonic-clonic seizure who comprised the control group (n = 8). In our group with SE, progranulin levels in CSF were not significantly elevated compared to our control group. Furthermore, there was no correlation between progranulin levels and the time interval between lumbar puncture and SE. Additionally, in cases of higher CSF progranulin levels, we found no impact on the clinical outcome after SE. Although our cohort is heterogeneous and not fully sufficient, we conclude that progranulin in CSF is not elevated after SE in our cohort. Therefore, our results do not suggest a change in cerebral progranulin metabolism as a possible neuroregenerative or neuroprotective mechanism in humans after SE in acute and subacute phases. A larger cohort study is needed to further strengthen this result. This article is part of a Special Issue entitled "Status Epilepticus". Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Serum Progranulin Levels in Type 2 Diabetic Patients with Metabolic Syndrome.

    Science.gov (United States)

    Shafaei, Azam; Marjani, Abdoljalal; Khoshnia, Masoud

    2016-12-01

    The role of progranulin in individuals with metabolic syndrome is not exactly clear.We aimed to assess the serum level of progranulin in type 2 diabetic patients with and without metabolic syndrome and compare them with healthy controls. The study included 60 patients with type 2 diabetes and 30 healthy individuals as control groups. Biochemical parameters and progranulin levels were determined. Subjects with metabolic syndrome showed significantly higher levels of triglyceride, waist circumference, BMI, systolic and diastolic blood pressure than subjects without metabolic syndrome and the control groups, while HDL-cholesterol level was significantly lower in subjects with metabolic syndrome. Fasting blood sugar was significantly higher in type 2 diabetic patients than in the control groups. Serum level of progranulin was slightly increased in subjects with metabolic syndrome. Serum progranulin level had no significant relationship with metabolic syndrome components. Serum progranulin was also not dependent on cardiometabolic risk factors for subjects with metabolic syndrome, but it could be considered for the management of type 2 diabetes mellitus. Further studies are recommended to explain the effect of progranulin on the pathogenesis of metabolic risk factors.

  9. Polymorphism in the interferon-{alpha} gene family

    Energy Technology Data Exchange (ETDEWEB)

    Golovleva, I.; Lundgren, E.; Beckman, L. [Univ. of Umea (Sweden); Kandefer-Szerszen, M. [Maria Curie-Sklodowska Univ., Lublin (Poland)

    1996-09-01

    A pronounced genetic polymorphism of the interferon type I gene family has been assumed on the basis of RFLP analysis of the genomic region as well as the large number of sequences published compared to the number of loci. However, IFNA2 is the only locus that has been carefully analyzed concerning gene frequency, and only naturally occurring rare alleles have been found. We have extended the studies on a variation of expressed sequences by studying the IFNA1, IFNA2, IFNA10, IFNA13, IFNA14, and IFNA17 genes. Genomic white-blood-cell DNA from a population sample of blood donors and from a family material were screened by single-nucleotide primer extension (allele-specific primer extension) of PCR fragments. Because of sequence similarities, in some cases {open_quotes}nested{close_quotes} PCR was used, and, when applicable, restriction analysis or control sequencing was performed. All individuals carried the interferon-{alpha} 1 and interferon-{alpha} 13 variants but not the LeIF D variant. At the IFNA2 and IFNA14 loci only one sequence variant was found, while in the IFNA10 and IFNA17 groups two alleles were detected in each group. The IFNA10 and IFNA17 alleles segregated in families and showed a close fit to the Hardy-Weinberg equilibrium. There was a significant linkage disequilibrium between IFNA10 and IFNA17 alleles. The fact that the extent of genetic polymorphism was lower than expected suggests that a majority of the previously described gene sequences represent nonpolymorphic rare mutants that may have arisen in tumor cell lines. 44 refs., 4 figs., 4 tabs.

  10. Progranulin serum levels in human kidney transplant recipients: A longitudinal study.

    Directory of Open Access Journals (Sweden)

    Bruna Bellincanta Nicoletto

    Full Text Available The adipokine progranulin has metabolic proprieties, playing a role in obesity and insulin resistance. Its levels seems to be dependent of renal function, since higher progranulin concentration is observed in patients with end-stage kidney disease. However, the effect of kidney transplantation on progranulin remains unknown.To assess the serum progranulin levels in kidney transplant recipients before and after kidney transplantation.Forty-six prospective kidney transplant recipients were included in this longitudinal study. They were evaluated before transplantation and at three and twelve months after transplantation. Clinical, anthropometric and laboratorial measurements were assessed. Progranulin was determined with enzyme-linked immunosorbent assays.Serum progranulin significantly decreased in the early period after transplantation (from 72.78 ± 2.86 ng/mL before transplantation to 40.65 ± 1.49 ng/mL at three months; p<0.01 and increased at one year (53.15 ± 2.55 ng/mL; p<0.01 vs. three months, remaining significantly lower than before transplantation (p<0.01 (pover time<0.01. At one year after transplantation, there was a significant increase in body mass index, trunk fat and waist circumference compared to immediate period after transplantation. Progranulin was associated with waist circumference and fasting plasma glucose after adjusted for age, gender, study period, glomerular filtration rate, interleukin-6, high sensitivity C reactive protein and adiponectin.Progranulin serum levels are increased before transplantation and a reduction is observed in the early period after transplantation, possibly attributed to an improvement in renal function. At one year after transplantation, an increment in progranulin is observed, seems to be independent of glomerular filtration, and remained significantly lower than before transplantation.

  11. Gene screening in a Chinese family with Marfan syndrome

    Directory of Open Access Journals (Sweden)

    Wen-Jiao Xia

    2016-05-01

    Full Text Available AIM:To analyze the causative gene mutation for Marfan syndrome(MFSwith autosomal dominant hereditary in a Chinese family in Liaoning Province,China. METHODS: Venous blood was collected and candidate gene was selected to design primers according to the clinical phenotype. With genomic polymerase chain reaction(PCRperformed, the coding exons and their flanking intron in sequences of candidate gene were sequenced,DNA fragments separated by agarose gel electrophoresis and direct sequencing method was used to determine the pathogenic gene.RESULTS:Phenotype of the proband was presented as ectopic lentis. Sequencing of the coding regions of FBN1 gene showed the presence of a heterozygous A→G transversion at nucleotide 640 in the 7 exon of FBN1 and the missense mutation made for Glycine into Serine(G214S. CONCLUSION:A heterozygous mutation of FBN1 c.A640G(p.G214Sis responsible for the Marfan syndrome in the four generation Chinese pedigree.

  12. Inactivation of CDK/pRb pathway normalizes survival pattern of lymphoblasts expressing the FTLD-progranulin mutation c.709-1G>A.

    Directory of Open Access Journals (Sweden)

    Carolina Alquezar

    Full Text Available BACKGROUND: Mutations in the progranulin (PGRN gene, leading to haploinsufficiency, cause familial frontotemporal lobar degeneration (FTLD-TDP, although the pathogenic mechanism of PGRN deficit is largely unknown. Allelic loss of PGRN was previously shown to increase the activity of cyclin-dependent kinase (CDK CDK6/pRb pathway in lymphoblasts expressing the c.709-1G>A PGRN mutation. Since members of the CDK family appear to play a role in neurodegenerative disorders and in apoptotic death of neurons subjected to various insults, we investigated the role of CDK6/pRb in cell survival/death mechanisms following serum deprivation. METHODOLOGY/PRINCIPAL FINDINGS: We performed a comparative study of cell viability after serum withdrawal of established lymphoblastoid cell lines from control and carriers of c.709-1G>A PGRN mutation, asymptomatic and FTLD-TDP diagnosed individuals. Our results suggest that the CDK6/pRb pathway is enhanced in the c.709-1G>A bearing lymphoblasts. Apparently, this feature allows PGRN-deficient cells to escape from serum withdrawal-induced apoptosis by decreasing the activity of executive caspases and lowering the dissipation of mitochondrial membrane potential and the release of cytochrome c from the mitochondria. Inhibitors of CDK6 expression levels like sodium butyrate or the CDK6 activity such as PD332991 were able to restore the vulnerability of lymphoblasts from FTLD-TDP patients to trophic factor withdrawal. CONCLUSION/SIGNIFICANCE: The use of PGRN-deficient lymphoblasts from FTLD-TDP patients may be a useful model to investigate cell biochemical aspects of this disease. It is suggested that CDK6 could be potentially a therapeutic target for the treatment of the FTLD-TDP.

  13. The Tomato Terpene Synthase Gene Family1[W][OA

    Science.gov (United States)

    Falara, Vasiliki; Akhtar, Tariq A.; Nguyen, Thuong T.H.; Spyropoulou, Eleni A.; Bleeker, Petra M.; Schauvinhold, Ines; Matsuba, Yuki; Bonini, Megan E.; Schilmiller, Anthony L.; Last, Robert L.; Schuurink, Robert C.; Pichersky, Eran

    2011-01-01

    Compounds of the terpenoid class play numerous roles in the interactions of plants with their environment, such as attracting pollinators and defending the plant against pests. We show here that the genome of cultivated tomato (Solanum lycopersicum) contains 44 terpene synthase (TPS) genes, including 29 that are functional or potentially functional. Of these 29 TPS genes, 26 were expressed in at least some organs or tissues of the plant. The enzymatic functions of eight of the TPS proteins were previously reported, and here we report the specific in vitro catalytic activity of 10 additional tomato terpene synthases. Many of the tomato TPS genes are found in clusters, notably on chromosomes 1, 2, 6, 8, and 10. All TPS family clades previously identified in angiosperms are also present in tomato. The largest clade of functional TPS genes found in tomato, with 12 members, is the TPS-a clade, and it appears to encode only sesquiterpene synthases, one of which is localized to the mitochondria, while the rest are likely cytosolic. A few additional sesquiterpene synthases are encoded by TPS-b clade genes. Some of the tomato sesquiterpene synthases use z,z-farnesyl diphosphate in vitro as well, or more efficiently than, the e,e-farnesyl diphosphate substrate. Genes encoding monoterpene synthases are also prevalent, and they fall into three clades: TPS-b, TPS-g, and TPS-e/f. With the exception of two enzymes involved in the synthesis of ent-kaurene, the precursor of gibberellins, no other tomato TPS genes could be demonstrated to encode diterpene synthases so far. PMID:21813655

  14. Amelogenesis Imperfecta: 1 Family, 2 Phenotypes, and 2 Mutated Genes.

    Science.gov (United States)

    Prasad, M K; Laouina, S; El Alloussi, M; Dollfus, H; Bloch-Zupan, A

    2016-12-01

    Amelogenesis imperfecta (AI) is a clinically and genetically heterogeneous group of diseases characterized by enamel defects. The authors have identified a large consanguineous Moroccan family segregating different clinical subtypes of hypoplastic and hypomineralized AI in different individuals within the family. Using targeted next-generation sequencing, the authors identified a novel heterozygous nonsense mutation in COL17A1 (c.1873C>T, p.R625*) segregating with hypoplastic AI and a novel homozygous 8-bp deletion in C4orf26 (c.39_46del, p.Cys14Glyfs*18) segregating with hypomineralized-hypoplastic AI in this family. This study highlights the phenotypic and genotypic heterogeneity of AI that can exist even within a single consanguineous family. Furthermore, the identification of novel mutations in COL17A1 and C4orf26 and their correlation with distinct AI phenotypes can contribute to a better understanding of the pathophysiology of AI and the contribution of these genes to amelogenesis. © International & American Associations for Dental Research 2016.

  15. Progranulin shows cytoprotective effects on trophoblast cells in vitro but does not antagonize TNF-α-induced apoptosis.

    Science.gov (United States)

    Stubert, Johannes; Waldmann, Kathrin; Dieterich, Max; Richter, Dagmar-Ulrike; Briese, Volker

    2014-11-01

    The glycoprotein progranulin directly binds to TNF-receptors and thereby can antagonize the inflammatory effects of TNF-α. Here we analyzed the impact of both cytokines on cytotoxicity and viability of trophoblast cells. Isolated villous first trimester human trophoblast cells and the human choriocarcinoma cell line BeWo were treated with recombinant human progranulin and TNF-α. Analyses were performed by LDH- and MTT-assay and measurement of caspase-8-activity. Progranulin treatment showed some cytoprotective effects on isolated trophoblast cells. However, TNF-α-induced apoptosis was not antagonized by addition of progranulin. Effects were similar, but more pronounced in BeWo cells. The cytoprotective activity of progranulin on trophoblast cells in vitro was only weak and of doubtful biologic relevance. It was not able to antagonize TNF-α. Future studies should focus on possible paracrine activities of progranulin.

  16. Differential expression pattern of UBX family genes in Caenorhabditis elegans

    International Nuclear Information System (INIS)

    Yamauchi, Seiji; Sasagawa, Yohei; Ogura, Teru; Yamanaka, Kunitoshi

    2007-01-01

    UBX (ubiquitin regulatory X)-containing proteins belong to an evolutionary conserved protein family and determine the specificity of p97/VCP/Cdc48p function by binding as its adaptors. Caenorhabditis elegans was found to possess six UBX-containing proteins, named UBXN-1 to -6. However, no general or specific function of them has been revealed. During the course of understanding not only their function but also specified function of p97, we investigated spatial and temporal expression patterns of six ubxn genes in this study. Transcript analyses showed that the expression pattern of each ubxn gene was different throughout worm's development and may show potential developmental dynamics in their function, especially ubxn-5 was expressed specifically in the spermatogenic germline, suggesting a crucial role in spermatogenesis. In addition, as ubxn-4 expression was induced by ER stress, it would function as an ERAD factor in C. elegans. In vivo expression analysis by using GFP translational fusion constructs revealed that six ubxn genes show distinct expression patterns. These results altogether demonstrate that the expression of all six ubxn genes of C. elegans is differently regulated

  17. The roles of gene duplication, gene conversion and positive selection in rodent Esp and Mup pheromone gene families with comparison to the Abp family.

    Science.gov (United States)

    Karn, Robert C; Laukaitis, Christina M

    2012-01-01

    Three proteinaceous pheromone families, the androgen-binding proteins (ABPs), the exocrine-gland secreting peptides (ESPs) and the major urinary proteins (MUPs) are encoded by large gene families in the genomes of Mus musculus and Rattus norvegicus. We studied the evolutionary histories of the Mup and Esp genes and compared them with what is known about the Abp genes. Apparently gene conversion has played little if any role in the expansion of the mouse Class A and Class B Mup genes and pseudogenes, and the rat Mups. By contrast, we found evidence of extensive gene conversion in many Esp genes although not in all of them. Our studies of selection identified at least two amino acid sites in β-sheets as having evolved under positive selection in the mouse Class A and Class B MUPs and in rat MUPs. We show that selection may have acted on the ESPs by determining K(a)/K(s) for Exon 3 sequences with and without the converted sequence segment. While it appears that purifying selection acted on the ESP signal peptides, the secreted portions of the ESPs probably have undergone much more rapid evolution. When the inner gene converted fragment sequences were removed, eleven Esp paralogs were present in two or more pairs with K(a)/K(s) >1.0 and thus we propose that positive selection is detectable by this means in at least some mouse Esp paralogs. We compare and contrast the evolutionary histories of all three mouse pheromone gene families in light of their proposed functions in mouse communication.

  18. Global Analysis of miRNA Gene Clusters and Gene Families Reveals Dynamic and Coordinated Expression

    Directory of Open Access Journals (Sweden)

    Li Guo

    2014-01-01

    Full Text Available To further understand the potential expression relationships of miRNAs in miRNA gene clusters and gene families, a global analysis was performed in 4 paired tumor (breast cancer and adjacent normal tissue samples using deep sequencing datasets. The compositions of miRNA gene clusters and families are not random, and clustered and homologous miRNAs may have close relationships with overlapped miRNA species. Members in the miRNA group always had various expression levels, and even some showed larger expression divergence. Despite the dynamic expression as well as individual difference, these miRNAs always indicated consistent or similar deregulation patterns. The consistent deregulation expression may contribute to dynamic and coordinated interaction between different miRNAs in regulatory network. Further, we found that those clustered or homologous miRNAs that were also identified as sense and antisense miRNAs showed larger expression divergence. miRNA gene clusters and families indicated important biological roles, and the specific distribution and expression further enrich and ensure the flexible and robust regulatory network.

  19. Genetic and Clinical Features of Progranulin-Associated Frontotemporal Lobar Degeneration

    NARCIS (Netherlands)

    Chen-Plotkin, A.S.; Martinez-Lage, M.; Sleiman, P.M.A.; Hu, W.; Greene, R.; Wood, E.M.; Bing, S.X.; Grossman, M.; Schellenberg, G.D.; Hatanpaa, K.J.; Weiner, M.F.; White, C.L.; Brooks, W.S.; Halliday, G.M.; Kril, J.J.; Gearing, M.; Beach, T.G.; Graff-Radford, N.R.; Dickson, D.W.; Rademakers, R.; Boeve, B.F.; Pickering-Brown, S.M.; Snowden, J.; van Swieten, J.C.; Heutink, P.; Seelaar, H.; Murrell, J.R.; Ghetti, B.; Spina, S.; Grafman, J.; Kaye, J.A.; Woltjer, R.L.; Mesulam, M.; Bigio, E.; Llado, A.; Miller, B.L.; Alzualde, A.; Moreno, F.; Rohrer, J.D.; Mackenzie, I.R.A.; Feldman, H.H.; Hamilton, R.L.; Cruts, M.; Engelborghs, S.; de Deyn, P.P.; Van Broeckhoven, C.; Bird, T.D.; Cairns, N.J.; Goate, A.; Frosch, M.P.; Riederer, P.F.; Bogdanovic, N.; Lee, V.M.Y.; Trojanowski, J.Q.; Van Deerlin, V.M.

    2011-01-01

    Objective: To assess the relative frequency of unique mutations and their associated characteristics in 97 individuals with mutations in progranulin (GRN), an important cause of frontotemporal lobar degeneration (FTLD). Participants and Design: A 46-site International Frontotemporal Lobar

  20. Differential roles of TGIF family genes in mammalian reproduction

    Directory of Open Access Journals (Sweden)

    Renfree Marilyn B

    2011-09-01

    Full Text Available Abstract Background TG-interacting factors (TGIFs belong to a family of TALE-homeodomain proteins including TGIF1, TGIF2 and TGIFLX/Y in human. Both TGIF1 and TGIF2 act as transcription factors repressing TGF-β signalling. Human TGIFLX and its orthologue, Tex1 in the mouse, are X-linked genes that are only expressed in the adult testis. TGIF2 arose from TGIF1 by duplication, whereas TGIFLX arose by retrotransposition to the X-chromosome. These genes have not been characterised in any non-eutherian mammals. We therefore studied the TGIF family in the tammar wallaby (a marsupial mammal to investigate their roles in reproduction and how and when these genes may have evolved their functions and chromosomal locations. Results Both TGIF1 and TGIF2 were present in the tammar genome on autosomes but TGIFLX was absent. Tammar TGIF1 shared a similar expression pattern during embryogenesis, sexual differentiation and in adult tissues to that of TGIF1 in eutherian mammals, suggesting it has been functionally conserved. Tammar TGIF2 was ubiquitously expressed throughout early development as in the human and mouse, but in the adult, it was expressed only in the gonads and spleen, more like the expression pattern of human TGIFLX and mouse Tex1. Tammar TGIF2 mRNA was specifically detected in round and elongated spermatids. There was no mRNA detected in mature spermatozoa. TGIF2 protein was specifically located in the cytoplasm of spermatids, and in the residual body and the mid-piece of the mature sperm tail. These data suggest that tammar TGIF2 may participate in spermiogenesis, like TGIFLX does in eutherians. TGIF2 was detected for the first time in the ovary with mRNA produced in the granulosa and theca cells, suggesting it may also play a role in folliculogenesis. Conclusions The restricted and very similar expression of tammar TGIF2 to X-linked paralogues in eutherians suggests that the evolution of TGIF1, TGIF2 and TGIFLX in eutherians was accompanied by

  1. Analysis of the WUSCHEL-RELATED HOMEOBOX gene family in Pinus pinaster: New insights into the gene family evolution.

    Science.gov (United States)

    Alvarez, José M; Bueno, Natalia; Cañas, Rafael A; Avila, Concepción; Cánovas, Francisco M; Ordás, Ricardo J

    2018-02-01

    WUSCHEL-RELATED HOMEOBOX (WOX) genes are key players controlling stem cells in plants and can be divided into three clades according to the time of their appearance during plant evolution. Our knowledge of stem cell function in vascular plants other than angiosperms is limited, they separated from gymnosperms ca 300 million years ago and their patterning during embryogenesis differs significantly. For this reason, we have used the model gymnosperm Pinus pinaster to identify WOX genes and perform a thorough analysis of their gene expression patterns. Using transcriptomic data from a comprehensive range of tissues and stages of development we have shown three major outcomes: that the P. pinaster genome encodes at least fourteen members of the WOX family spanning all the major clades, that the genome of gymnosperms contains a WOX gene with no homologues in angiosperms representing a transitional stage between intermediate- and WUS-clade proteins, and that we can detect discrete WUS and WOX5 transcripts for the first time in a gymnosperm. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Mucosal Progranulin expression is induced by H. pylori, but independent of Secretory Leukocyte Protease Inhibitor (SLPI expression

    Directory of Open Access Journals (Sweden)

    Treiber Gerhard

    2011-05-01

    Full Text Available Abstract Background Mucosal levels of Secretory Leukocyte Protease Inhibitor (SLPI are specifically reduced in relation to H. pylori-induced gastritis. Progranulin is an epithelial growth factor that is proteolytically degraded into fragments by elastase (the main target of SLPI. Considering the role of SLPI for regulating the activity of elastase, we studied whether the H. pylori-induced reduction of SLPI and the resulting increase of elastase-derived activity would reduce the Progranulin protein levels both ex vivo and in vitro. Methods The expression of Progranulin was studied in biopsies of H. pylori-positive, -negative and -eradicated subjects as well as in the gastric tumor cell line AGS by ELISA, immunohistochemistry and real-time RT-PCR. Results H. pylori-infected subjects had about 2-fold increased antral Progranulin expression compared to H. pylori-negative and -eradicated subjects (P H. pylori infection; both epithelial and infiltrating immune cells contributed to the higher Progranulin expression levels. The H. pylori-induced upregulation of Progranulin was verified in AGS cells infected by H. pylori. The down-regulation of endogenous SLPI expression in AGS cells by siRNA methodology did not affect the Progranulin expression independent of the infection by H. pylori. Conclusions Taken together, Progranulin was identified as novel molecule that is upregulated in context to H. pylori infection. In contrast to other diseases, SLPI seems not to have a regulatory role for Progranulin in H. pylori-mediated gastritis.

  3. Progranulin causes adipose insulin resistance via increased autophagy resulting from activated oxidative stress and endoplasmic reticulum stress.

    Science.gov (United States)

    Guo, Qinyue; Xu, Lin; Li, Huixia; Sun, Hongzhi; Liu, Jiali; Wu, Shufang; Zhou, Bo

    2017-01-31

    Progranulin (PGRN) has recently emerged as an important regulator for insulin resistance. However, the direct effect of progranulin in adipose insulin resistance associated with the autophagy mechanism is not fully understood. In the present study, progranulin was administered to 3T3-L1 adipocytes and C57BL/6 J mice with/without specific inhibitors of oxidative stress and endoplasmic reticulum stress, and metabolic parameters, oxidative stress, endoplasmic reticulum stress and autophagy markers were assessed. Progranulin treatment increased iNOS expression, NO synthesis and ROS generation, and elevated protein expressions of CHOP, GRP78 and the phosphorylation of PERK, and caused a significant increase in Atg7 and LC3-II protein expression and a decreased p62 expression, and decreased insulin-stimulated tyrosine phosphorylation of IRS-1 and glucose uptake, demonstrating that progranulin activated oxidative stress and ER stress, elevated autophagy and induced insulin insensitivity in adipocytes and adipose tissue of mice. Interestingly, inhibition of iNOS and ER stress both reversed progranulin-induced stress response and increased autophagy, protecting against insulin resistance in adipocytes. Furthermore, the administration of the ER stress inhibitor 4-phenyl butyric acid reversed the negative effect of progranulin in vivo. Our findings showed the clinical potential of the novel adipokine progranulin in the regulation of insulin resistance, suggesting that progranulin might mediate adipose insulin resistance, at least in part, by inducing autophagy via activated oxidative stress and ER stress.

  4. Identification of ALK as the Major Familial Neuroblastoma Predisposition Gene

    Science.gov (United States)

    Mossë, Yalë P; Laudenslager, Marci; Longo, Luca; Cole, Kristina A; Wood, Andrew; Attiyeh, Edward F; Laquaglia, Michael J; Sennett, Rachel; Lynch, Jill E; Perri, Patrizia; Laureys, Geneviève; Speleman, Frank; Hakonarson, Hakon; Torkamani, Ali; Schork, Nicholas J; Brodeur, Garrett M; Tonini, Gian Paolo; Rappaport, Eric; Devoto, Marcella; Maris, John M

    2009-01-01

    SUMMARY Survival rates for the childhood cancer neuroblastoma have not substantively improved despite dramatic escalation in chemotherapy intensity. Like most human cancers, this embryonal malignancy can be inherited, but the genetic etiology of familial and sporadically occurring neuroblastoma was largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase gene (ALK) explain the majority of hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at the short arm of chromosome 2 (maximum nonparametric LOD=4.23 at rs1344063) using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate missense mutations in the tyrosine kinase domain of ALK (G1128A, R1192P and R1275Q) that segregated with the disease in eight separate families. Examination of 491 sporadically occurring human neuroblastoma samples showed that the ALK locus was gained in 22.8%, and highly amplified in an additional 3.3%, and that these aberrations were highly associated with death from disease (P=0.0003). Resequencing of 194 high-risk neuroblastoma samples showed somatically acquired mutations within the tyrosine kinase domain in 12.4%. Nine of the ten mutations map to critical regions of the kinase domain and were predicted to be oncogenic drivers with high probability. Mutations resulted in constitutive phosphorylation consistent with activation, and targeted knockdown of ALK mRNA resulted in profound growth inhibition of 4 of 4 cell lines harboring mutant or amplified ALK, as well as 2 of 6 wild type for ALK. Our results demonstrate that heritable mutations of ALK are the major cause of familial neuroblastoma, and that germline or acquired activation of this cell surface kinase is a tractable therapeutic target for this lethal pediatric malignancy. PMID:18724359

  5. Progranulin and the receptor tyrosine kinase EphA2, partners in crime?

    Science.gov (United States)

    Chitramuthu, Babykumari; Bateman, Andrew

    2016-01-01

    Progranulin is a secreted protein with roles in tumorigenesis, inflammation, and neurobiology, but its signaling receptors have remained unclear. In this issue, Neill et al. (2016. J. Cell Biol. https://doi.org/10.1083/jcb.201603079) identify the tyrosine kinase EphA2 as a strong candidate for such a receptor, providing insight into progranulin and EphA2 signaling. PMID:27903608

  6. Progranulin regulates neurogenesis in the developing vertebrate retina.

    Science.gov (United States)

    Walsh, Caroline E; Hitchcock, Peter F

    2017-09-01

    We evaluated the expression and function of the microglia-specific growth factor, Progranulin-a (Pgrn-a) during developmental neurogenesis in the embryonic retina of zebrafish. At 24 hpf pgrn-a is expressed throughout the forebrain, but by 48 hpf pgrn-a is exclusively expressed by microglia and/or microglial precursors within the brain and retina. Knockdown of Pgrn-a does not alter the onset of neurogenic programs or increase cell death, however, in its absence, neurogenesis is significantly delayed-retinal progenitors fail to exit the cell cycle at the appropriate developmental time and postmitotic cells do not acquire markers of terminal differentiation, and microglial precursors do not colonize the retina. Given the link between Progranulin and cell cycle regulation in peripheral tissues and transformed cells, we analyzed cell cycle kinetics among retinal progenitors following Pgrn-a knockdown. Depleting Pgrn-a results in a significant lengthening of the cell cycle. These data suggest that Pgrn-a plays a dual role during nervous system development by governing the rate at which progenitors progress through the cell cycle and attracting microglial progenitors into the embryonic brain and retina. Collectively, these data show that Pgrn-a governs neurogenesis by regulating cell cycle kinetics and the transition from proliferation to cell cycle exit and differentiation. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc. Develop Neurobiol 77: 1114-1129, 2017. © 2017 The Authors. Developmental Neurobiology Published by Wiley Periodicals, Inc.

  7. Trophoblastic progranulin expression is upregulated in cases of fetal growth restriction and preeclampsia.

    Science.gov (United States)

    Stubert, Johannes; Schattenberg, Florian; Richter, Dagmar-Ulrike; Dieterich, Max; Briese, Volker

    2012-05-13

    The expression of the anti-inflammatory glycoprotein progranulin and the hypoxia-induced transcription factor 1α (HIF-1α) in the villous trophoblast was compared between placentae from patients with preeclampsia (PE), fetal growth restriction (FGR), and normal controls. Matched pairs analysis of third trimester placentae specimens (mean gestational age 36+2) was performed by semiquantitative measurements of the immunohistochemical staining intensities for progranulin and HIF-1α expression (PE n=13, FGR n=9 and controls n=11). Further, placental progranulin mRNA expression was analyzed by qRT-PCR on term placentae (n=3 for each group). Compared to controls, villous trophoblast revealed a significantly higher expression of progranulin in cases of PE (Pprogranulin protein was not accompanied by an increase of the progranulin mRNA in term placentae. Increased expression of progranulin protein in villous trophoblast cells in cases of PE and FGR may result from disturbed placental development and, therefore, may be of pathogenetic importance. The increase was correlated to HIF-1α expression. Further evaluation of this potential mechanism of regulation is required.

  8. Serum progranulin irrelated with Breg cell levels, but elevated in RA patients, reflecting high disease activity.

    Science.gov (United States)

    Chen, Jiaxi; Li, Shuang; Shi, Jianfeng; Zhang, Lili; Li, Jun; Chen, Shiyong; Wu, Chunlong; Shen, Bo

    2016-03-01

    Soluble progranulin (PGRN) is known to directly regulate regulatory T cells; however, whether PGRN levels are elevated in patients with rheumatoid arthritis and affect the regulatory subsets of B cells remain unknown. In this study, a total of 80 RA patients and 60 healthy controls were studied. Serum progranulin levels were determined using enzyme-linked immune-sorbent assay. A receiver operating characteristic (ROC) curve was used to evaluate the feasibility of serum PGRN as a biomarker for distinguishing patients with RA. CD19(+)CD5(+)GrB(+) B cells were analyzed by flow cytometry in peripheral blood mononuclear cells (PBMCs). Serum progranulin levels in RA patients (median, 59.4 ng/mL) and in RA patients DAS28 > 5.1 (median, 71.98 ng/mL) were much higher than those in normal controls (median, 46.3 ng/mL; P progranulin levels was 0.705 for RA versus normal controls and the area under the ROC curve for progranulin levels in RA patients DAS28 > 5.1 was 0.977 versus normal controls (P progranulin and DAS28, CRP, ESR were all positively correlated in RA patients (P 0.05). Our findings indicated that induction of PGRN expression may play a role in RA immune reaction and PGRN levels could be a useful biomarker in RA inflammatory response, but irrelated with Breg cell levels.

  9. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection.

    Science.gov (United States)

    Körtvelyessy, Peter; Huchtemann, Tessa; Heinze, Hans-Jochen; Bittner, Daniel M

    2017-02-24

    The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF) and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.

  10. Progranulin and Its Related MicroRNAs after Status Epilepticus: Possible Mechanisms of Neuroprotection

    Directory of Open Access Journals (Sweden)

    Peter Körtvelyessy

    2017-02-01

    Full Text Available The current knowledge about neuroprotective mechanisms in humans after status epilepticus is scarce. One reason is the difficulty to measure possible mediators of these neuroprotective mechanisms. The dawn of microRNA detection in the cerebrospinal fluid (CSF and the recent advancements in measuring proteins in the CSF such as progranulin, which is, e.g., responsible for neurite outgrowth and limiting exceeding neuroinflammatory responses, have given us new insights into putative neuroprotective mechanisms following status epilepticus. This should complement the animal data. In this review, we cover what is known about the role of progranulin as well as the links between microRNA changes and the progranulin pathway following status epilepticus in humans and animals hypothesizing neuroprotective and neurorehabilitative effects. Progranulin has also been found to feature prominently in the neuroprotective processes under hypoxic conditions and initiating neurorehabilitative processes. These properties may be used therapeutically, e.g., through drugs that raise the progranulin levels and therefore the cerebral progranulin levels as well with the goal of improving the outcome after status epilepticus.

  11. Reduced miR-659-3p levels correlate with progranulin increase in hypoxic conditions: implications for frontotemporal dementia.

    Directory of Open Access Journals (Sweden)

    Paola ePiscopo

    2016-05-01

    Full Text Available Progranulin (PGRN is a secreted protein expressed ubiquitously throughout the body, including the brain, where it localizes in neurons and activated microglia. Loss-of-function mutations in the GRN gene are an important cause of familial Frontotemporal Lobar Degeneration (FTLD. PGRN has a neurotrophic and anti-inflammatory activity, and it is neuroprotective in several injury conditions, such as oxygen or glucose deprivation, oxidative injury, and hypoxic stress. Indeed, we have previously demonstrated that hypoxia induces the up-regulation of GRN transcripts. Several studies have shown microRNAs involvement in hypoxia. Moreover, in FTLD patients with a genetic variant of GRN (rs5848, the reinforcement of miR-659-3p binding site has been suggested to be a risk factor. Here, we report that miR-659-3p interacts directly with GRN 3’UTR as shown by luciferase assay in HeLa cells and ELISA and Western Blot analysis in HeLa and Kelly cells. Moreover, we demonstrate the physical binding between GRN mRNA and miR-659-3p employing a miRNA capture-affinity technology in SK-N-BE and Kelly cells. In order to study miRNAs involvement in hypoxia-mediated up-regulation of GRN, we evaluated miR-659-3p levels in SK-N-BE cells after 24h of hypoxic treatment, finding them inversely correlated to GRN transcripts. Furthermore, we analyzed an animal model of asphyxia, finding that GRN mRNA levels increased at post-natal day (pnd 1 and pnd 4 in rat cortices subjected to asphyxia in comparison to control rats and miR-659-3p decreased at pnd 4 just when GRN reached the highest levels. Our results demonstrate the interaction between miR-659-3p and GRN transcript and the involvement of miR-659-3p in GRN up-regulation mediated by hypoxic/ischemic insults.

  12. Molecular evolution of the polyamine oxidase gene family in Metazoa

    Directory of Open Access Journals (Sweden)

    Polticelli Fabio

    2012-06-01

    Full Text Available Abstract Background Polyamine oxidase enzymes catalyze the oxidation of polyamines and acetylpolyamines. Since polyamines are basic regulators of cell growth and proliferation, their homeostasis is crucial for cell life. Members of the polyamine oxidase gene family have been identified in a wide variety of animals, including vertebrates, arthropodes, nematodes, placozoa, as well as in plants and fungi. Polyamine oxidases (PAOs from yeast can oxidize spermine, N1-acetylspermine, and N1-acetylspermidine, however, in vertebrates two different enzymes, namely spermine oxidase (SMO and acetylpolyamine oxidase (APAO, specifically catalyze the oxidation of spermine, and N1-acetylspermine/N1-acetylspermidine, respectively. Little is known about the molecular evolutionary history of these enzymes. However, since the yeast PAO is able to catalyze the oxidation of both acetylated and non acetylated polyamines, and in vertebrates these functions are addressed by two specialized polyamine oxidase subfamilies (APAO and SMO, it can be hypothesized an ancestral reference for the former enzyme from which the latter would have been derived. Results We analysed 36 SMO, 26 APAO, and 14 PAO homologue protein sequences from 54 taxa including various vertebrates and invertebrates. The analysis of the full-length sequences and the principal domains of vertebrate and invertebrate PAOs yielded consensus primary protein sequences for vertebrate SMOs and APAOs, and invertebrate PAOs. This analysis, coupled to molecular modeling techniques, also unveiled sequence regions that confer specific structural and functional properties, including substrate specificity, by the different PAO subfamilies. Molecular phylogenetic trees revealed a basal position of all the invertebrates PAO enzymes relative to vertebrate SMOs and APAOs. PAOs from insects constitute a monophyletic clade. Two PAO variants sampled in the amphioxus are basal to the dichotomy between two well supported

  13. Progranulin protects vascular endothelium against atherosclerotic inflammatory reaction via Akt/eNOS and nuclear factor-κB pathways.

    Science.gov (United States)

    Hwang, Hwan-Jin; Jung, Tae Woo; Hong, Ho Cheol; Choi, Hae Yoon; Seo, Ji-A; Kim, Sin Gon; Kim, Nan Hee; Choi, Kyung Mook; Choi, Dong Seop; Baik, Sei Hyun; Yoo, Hye Jin

    2013-01-01

    Atherosclerosis is considered a chronic inflammatory disease, initiated by activation and dysfunction of the endothelium. Recently, progranulin has been regarded as an important modulator of inflammatory processes; however, the role for prgranulin in regulating inflammation in vascular endothelial cells has not been described. Signaling pathways mediated by progranulin were analyzed in human umbilical vein endothelial cells (HUVECs) treated with progranulin. Progranulin significantly induced Akt and endothelial nitric oxide synthase (eNOS) phosphorylation in HUVECs, an effect that was blocked with Akt inhibitor. Furthermore, nitric oxide (NO) level, the end product of Akt/eNOS pathway, was significantly upregulated after progranulin treatment. Next, we showed that progranulin efficiently inhibited lipopolysaccharide (LPS)-mediated pro-inflammatory signaling. LPS-induced phosphorylation of IκB and nuclear factor-κB (NF-κB) levels decreased after progranulin treatment. Also, progranulin blocked translocation of NF-κB from the cytosol to the nucleus. In addition, progranulin significantly reduced the expression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) by inhibiting binding of NF- κB to their promoter regions and blocked attachment of monocytes to HUVECs. Progranulin also significantly reduced the expression of tumor necrosis factor receptor-α (TNF-α) and monocyte chemo-attractant protein-1 (MCP-1), the crucial inflammatory molecules known to aggravate atherosclerosis. Progranulin efficiently inhibited LPS-mediated pro-inflammatory signaling in endothelial cells through activation of the Akt/eNOS pathway and attenuation of the NF-κB pathway, suggesting its protective roles in vascular endothelium against inflammatory reaction underlying atherosclerosis.

  14. Progranulin protects vascular endothelium against atherosclerotic inflammatory reaction via Akt/eNOS and nuclear factor-κB pathways.

    Directory of Open Access Journals (Sweden)

    Hwan-Jin Hwang

    Full Text Available OBJECTIVE: Atherosclerosis is considered a chronic inflammatory disease, initiated by activation and dysfunction of the endothelium. Recently, progranulin has been regarded as an important modulator of inflammatory processes; however, the role for prgranulin in regulating inflammation in vascular endothelial cells has not been described. METHOD AND RESULTS: Signaling pathways mediated by progranulin were analyzed in human umbilical vein endothelial cells (HUVECs treated with progranulin. Progranulin significantly induced Akt and endothelial nitric oxide synthase (eNOS phosphorylation in HUVECs, an effect that was blocked with Akt inhibitor. Furthermore, nitric oxide (NO level, the end product of Akt/eNOS pathway, was significantly upregulated after progranulin treatment. Next, we showed that progranulin efficiently inhibited lipopolysaccharide (LPS-mediated pro-inflammatory signaling. LPS-induced phosphorylation of IκB and nuclear factor-κB (NF-κB levels decreased after progranulin treatment. Also, progranulin blocked translocation of NF-κB from the cytosol to the nucleus. In addition, progranulin significantly reduced the expression of vascular cell adhesion molecule-1 (VCAM-1 and intercellular adhesion molecule-1 (ICAM-1 by inhibiting binding of NF- κB to their promoter regions and blocked attachment of monocytes to HUVECs. Progranulin also significantly reduced the expression of tumor necrosis factor receptor-α (TNF-α and monocyte chemo-attractant protein-1 (MCP-1, the crucial inflammatory molecules known to aggravate atherosclerosis. CONCLUSION: Progranulin efficiently inhibited LPS-mediated pro-inflammatory signaling in endothelial cells through activation of the Akt/eNOS pathway and attenuation of the NF-κB pathway, suggesting its protective roles in vascular endothelium against inflammatory reaction underlying atherosclerosis.

  15. Mucosal Progranulin expression is induced by H. pylori, but independent of Secretory Leukocyte Protease Inhibitor (SLPI) expression.

    Science.gov (United States)

    Wex, Thomas; Kuester, Doerthe; Schönberg, Cornelius; Schindele, Daniel; Treiber, Gerhard; Malfertheiner, Peter

    2011-05-26

    Mucosal levels of Secretory Leukocyte Protease Inhibitor (SLPI) are specifically reduced in relation to H. pylori-induced gastritis. Progranulin is an epithelial growth factor that is proteolytically degraded into fragments by elastase (the main target of SLPI). Considering the role of SLPI for regulating the activity of elastase, we studied whether the H. pylori-induced reduction of SLPI and the resulting increase of elastase-derived activity would reduce the Progranulin protein levels both ex vivo and in vitro. The expression of Progranulin was studied in biopsies of H. pylori-positive, -negative and -eradicated subjects as well as in the gastric tumor cell line AGS by ELISA, immunohistochemistry and real-time RT-PCR. H. pylori-infected subjects had about 2-fold increased antral Progranulin expression compared to H. pylori-negative and -eradicated subjects (P Progranulin and SLPI levels were identified. Immunohistochemical analysis confirmed the upregulation of Progranulin in relation to H. pylori infection; both epithelial and infiltrating immune cells contributed to the higher Progranulin expression levels. The H. pylori-induced upregulation of Progranulin was verified in AGS cells infected by H. pylori. The down-regulation of endogenous SLPI expression in AGS cells by siRNA methodology did not affect the Progranulin expression independent of the infection by H. pylori. Taken together, Progranulin was identified as novel molecule that is upregulated in context to H. pylori infection. In contrast to other diseases, SLPI seems not to have a regulatory role for Progranulin in H. pylori-mediated gastritis.

  16. Genomewide analysis of MATE-type gene family in maize reveals ...

    Indian Academy of Sciences (India)

    Huasheng Zhu and Jiandong Wu contributed equally to this work. As a group of secondary active transporters, the MATE gene family consists of multiple genes that widely exist in ..... Roots of the stress-treated plants were collected at 0,.

  17. TreeFam: a curated database of phylogenetic trees of animal gene families

    DEFF Research Database (Denmark)

    Li, Heng; Coghlan, Avril; Ruan, Jue

    2006-01-01

    TreeFam is a database of phylogenetic trees of gene families found in animals. It aims to develop a curated resource that presents the accurate evolutionary history of all animal gene families, as well as reliable ortholog and paralog assignments. Curated families are being added progressively......, based on seed alignments and trees in a similar fashion to Pfam. Release 1.1 of TreeFam contains curated trees for 690 families and automatically generated trees for another 11 646 families. These represent over 128 000 genes from nine fully sequenced animal genomes and over 45 000 other animal proteins...

  18. Identification of a novel gene family that includes the interferon-inducible human genes 6–16 and ISG12

    Directory of Open Access Journals (Sweden)

    Parker Nadeene

    2004-01-01

    Full Text Available Abstract Background The human 6–16 and ISG12 genes are transcriptionally upregulated in a variety of cell types in response to type I interferon (IFN. The predicted products of these genes are small (12.9 and 11.5 kDa respectively, hydrophobic proteins that share 36% overall amino acid identity. Gene disruption and over-expression studies have so far failed to reveal any biochemical or cellular roles for these proteins. Results We have used in silico analyses to identify a novel family of genes (the ISG12 gene family related to both the human 6–16 and ISG12 genes. Each ISG12 family member codes for a small hydrophobic protein containing a conserved ~80 amino-acid motif (the ISG12 motif. So far we have detected 46 family members in 25 organisms, ranging from unicellular eukaryotes to humans. Humans have four ISG12 genes: the 6–16 gene at chromosome 1p35 and three genes (ISG12(a, ISG12(b and ISG12(c clustered at chromosome 14q32. Mice have three family members (ISG12(a, ISG12(b1 and ISG12(b2 clustered at chromosome 12F1 (syntenic with human chromosome 14q32. There does not appear to be a murine 6–16 gene. On the basis of phylogenetic analyses, genomic organisation and intron-alignments we suggest that this family has arisen through divergent inter- and intra-chromosomal gene duplication events. The transcripts from human and mouse genes are detectable, all but two (human ISG12(b and ISG12(c being upregulated in response to type I IFN in the cell lines tested. Conclusions Members of the eukaryotic ISG12 gene family encode a small hydrophobic protein with at least one copy of a newly defined motif of ~80 amino-acids (the ISG12 motif. In higher eukaryotes, many of the genes have acquired a responsiveness to type I IFN during evolution suggesting that a role in resisting cellular or environmental stress may be a unifying property of all family members. Analysis of gene-function in higher eukaryotes is complicated by the possibility of

  19. Quantification and regulation of the adipokines resistin and progranulin in human cerebrospinal fluid.

    Science.gov (United States)

    Berghoff, Martin; Hochberg, Alexandra; Schmid, Andreas; Schlegel, Jutta; Karrasch, Thomas; Kaps, Manfred; Schäffler, Andreas

    2016-01-01

    Adipokines bearing the potential to cross the blood-brain barrier (BBB) are promising candidates for the endocrine regulation of central nervous processes and of a postulated fat-brain axis. Resistin and progranulin concentrations in paired serum and cerebrospinal fluid (CSF) samples of patients undergoing neurological evaluation and spinal puncture were investigated. Samples of n = 270 consecutive patients with various neurological diseases were collected without prior selection. Adipokine serum and CSF concentrations were measured by enzyme-linked immunosorbent assay and serum and CSF routine parameters by standard procedures. Anthropometric data, medication and patient history were available. Serum levels of resistin and progranulin were positively correlated among each other, with respective CSF levels, low-density lipoprotein cholesterol levels and markers of systemic inflammation. CSF resistin concentrations were generally low. Progranulin CSF concentrations and CSF/serum progranulin ratio were significantly higher in patients with infectious diseases, with disturbed BBB function and with elevated CSF cell count and presence of oligoclonal bands. Both adipokines are able to cross the BBB depending on a differing patency that increases with increasing grade of barrier dysfunction. Whereas resistin represents a systemic marker of inflammation, CSF progranulin levels strongly depend on the underlying disease and dysfunction of blood-CSF barrier. Resistin and progranulin represent novel and putative regulators of the fat-brain axis by their ability to cross the BBB under physiological and pathophysiological conditions. The presented data provide insight into the characteristics of BBB function regarding progranulin and resistin and the basis for future establishment of normal values for CSF concentrations and CSF/serum ratios. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  20. Progranulin haploinsufficiency causes biphasic social dominance abnormalities in the tube test.

    Science.gov (United States)

    Arrant, A E; Filiano, A J; Warmus, B A; Hall, A M; Roberson, E D

    2016-07-01

    Loss-of-function mutations in progranulin (GRN) are a major autosomal dominant cause of frontotemporal dementia (FTD), a neurodegenerative disorder in which social behavior is disrupted. Progranulin-insufficient mice, both Grn(+/-) and Grn(-/-) , are used as models of FTD due to GRN mutations, with Grn(+/-) mice mimicking the progranulin haploinsufficiency of FTD patients with GRN mutations. Grn(+/-) mice have increased social dominance in the tube test at 6 months of age, although this phenotype has not been reported in Grn(-/-) mice. In this study, we investigated how the tube test phenotype of progranulin-insufficient mice changes with age, determined its robustness under several testing conditions, and explored the associated cellular mechanisms. We observed biphasic social dominance abnormalities in Grn(+/-) mice: at 6-8 months, Grn(+/-) mice were more dominant than wild-type littermates, while after 9 months of age, Grn(+/-) mice were less dominant. In contrast, Grn(-/-) mice did not exhibit abnormal social dominance, suggesting that progranulin haploinsufficiency has distinct effects from complete progranulin deficiency. The biphasic tube test phenotype of Grn(+/-) mice was associated with abnormal cellular signaling and neuronal morphology in the amygdala and prefrontal cortex. At 6-9 months, Grn(+/-) mice exhibited increased mTORC2/Akt signaling in the amygdala and enhanced dendritic arbors in the basomedial amygdala, and at 9-16 months Grn(+/-) mice exhibited diminished basal dendritic arbors in the prelimbic cortex. These data show a progressive change in tube test dominance in Grn(+/-) mice and highlight potential underlying mechanisms by which progranulin insufficiency may disrupt social behavior. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  1. Progranulin Levels in Plasma and Cerebrospinal Fluid in Granulin Mutation Carriers

    Directory of Open Access Journals (Sweden)

    Lieke H.H. Meeter

    2016-07-01

    Full Text Available Background: Pathogenic mutations in the granulin gene (GRN are causative in 5-10% of patients with frontotemporal dementia (FTD, mostly leading to reduced progranulin protein (PGRN levels. Upcoming therapeutic trials focus on enhancing PGRN levels. Methods: Fluctuations in plasma PGRN (n = 41 and its relationship with cerebrospinal fluid (CSF, n = 32 and specific single nucleotide polymorphisms were investigated in pre- and symptomatic GRN mutation carriers and controls. Results: Plasma PGRN levels were lower in carriers than in controls and showed a mean coefficient of variation of 5.3% in carriers over 1 week. Although plasma PGRN correlated with CSF PGRN in carriers (r = 0.54, p = 0.02, plasma only explained 29% of the variability in CSF PGRN. rs5848, rs646776 and rs1990622 genotypes only partly explained the variability of PGRN levels between subjects. Conclusions: Plasma PGRN is relatively stable over 1 week and therefore seems suitable for treatment monitoring of PGRN-enhancing agents. Since plasma PGRN only moderately correlated with CSF PGRN, CSF sampling will additionally be needed in therapeutic trials.

  2. Progranulin acts as a shared chaperone and regulates multiple lysosomal enzymes

    Directory of Open Access Journals (Sweden)

    Jinlong Jian

    2017-09-01

    Full Text Available Multifunctional factor progranulin (PGRN plays an important role in lysosomes, and its mutations and insufficiency are associated with lysosomal storage diseases, including neuronal ceroid lipofuscinosis and Gaucher disease (GD. The first breakthrough in understanding the molecular mechanisms of PGRN as regulator of lysosomal storage diseases came unexpectedly while investigating the role of PGRN in inflammation. Challenged PGRN null mice displayed typical features of GD. In addition, GRN gene variants were identified in GD patients and the serum levels of PGRN were significantly lower in GD patients. PGRN directly binds to and functions as a chaperone of the lysosomal enzyme β-glucocerebrosidase (GCaase, whose mutations cause GD. In addition, its C-terminus containing granulin E domain, termed Pcgin (PGRN C-terminus for GCase Interaction, is required for the association between PGRN and GCase. The concept that PGRN acts as a chaperone of lysosomal enzymes was further supported and extended by a recent article showing that PGRN acts as a chaperone molecule of lysosomal enzyme cathepsin D (CSTD, and the association between PGRN and CSTD is also mediated by PGRN's C-terminal granulin E domain. Collectively, these reports suggest that PGRN may act as a shared chaperone and regulates multiple lysosomal enzymes.

  3. Progranulin facilitates conversion and function of regulatory T cells under inflammatory conditions.

    Directory of Open Access Journals (Sweden)

    Fanhua Wei

    Full Text Available The progranulin (PGRN is known to protect regulatory T cells (Tregs from a negative regulation by TNF-α, and its levels are elevated in various kinds of autoimmune diseases. Whether PGRN directly regulates the conversion of CD4+CD25-T cells into Foxp3-expressing regulatory T cells (iTreg, and whether PGRN affects the immunosuppressive function of Tregs, however, remain unknown. In this study we provide evidences demonstrating that PGRN is able to stimulate the conversion of CD4+CD25-T cells into iTreg in a dose-dependent manner in vitro. In addition, PGRN showed synergistic effects with TGF-β1 on the induction of iTreg. PGRN was required for the immunosuppressive function of Tregs, since PGRN-deficient Tregs have a significant decreased ability to suppress the proliferation of effector T cells (Teff. In addition, PGRN deficiency caused a marked reduction in Tregs number in the course of inflammatory arthritis, although no significant difference was observed in the numbers of Tregs between wild type and PGRN deficient mice during development. Furthermore, PGRN deficiency led to significant upregulation of the Wnt receptor gene Fzd2. Collectively, this study reveals that PGRN directly regulates the numbers and function of Tregs under inflammatory conditions, and provides new insight into the immune regulatory mechanism of PGRN in the pathogenesis of inflammatory and immune-related diseases.

  4. Cytokinin Regulation of Gene Expression in the AHP Gene Family in Arabidopsis thaliana

    Czech Academy of Sciences Publication Activity Database

    Hradilová, Jana; Malbeck, Jiří; Brzobohatý, Břetislav

    2007-01-01

    Roč. 26, č. 3 (2007), s. 229-244 ISSN 0721-7595 R&D Projects: GA MŠk LN00A081; GA MŠk 1M06030; GA MŠk(CZ) LC06034; GA AV ČR(CZ) IAA600380507; GA AV ČR IAA600040612 Institutional research plan: CEZ:AV0Z50380511; CEZ:AV0Z50040702 Source of funding: V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje ; V - iné verejné zdroje Keywords : gene expression * AHP gene family * cytokinin signal transduction Subject RIV: EF - Botanics Impact factor: 2.220, year: 2007

  5. Identification and expression profiling analysis of TCP family genes involved in growth and development in maize.

    Science.gov (United States)

    Chai, Wenbo; Jiang, Pengfei; Huang, Guoyu; Jiang, Haiyang; Li, Xiaoyu

    2017-10-01

    The TCP family is a group of plant-specific transcription factors. TCP genes encode proteins harboring bHLH structure, which is implicated in DNA binding and protein-protein interactions and known as the TCP domain. TCP genes play important roles in plant development and have been evolutionarily and functionally elaborated in various plants, however, no overall phylogenetic analysis or expression profiling of TCP genes in Zea mays has been reported. In the present study, a systematic analysis of molecular evolution and functional prediction of TCP family genes in maize ( Z . mays L.) has been conducted. We performed a genome-wide survey of TCP genes in maize, revealing the gene structure, chromosomal location and phylogenetic relationship of family members. Microsynteny between grass species and tissue-specific expression profiles were also investigated. In total, 29 TCP genes were identified in the maize genome, unevenly distributed on the 10 maize chromosomes. Additionally, ZmTCP genes were categorized into nine classes based on phylogeny and purifying selection may largely be responsible for maintaining the functions of maize TCP genes. What's more, microsynteny analysis suggested that TCP genes have been conserved during evolution. Finally, expression analysis revealed that most TCP genes are expressed in the stem and ear, which suggests that ZmTCP genes influence stem and ear growth. This result is consistent with the previous finding that maize TCP genes represses the growth of axillary organs and enables the formation of female inflorescences. Altogether, this study presents a thorough overview of TCP family in maize and provides a new perspective on the evolution of this gene family. The results also indicate that TCP family genes may be involved in development stage in plant growing conditions. Additionally, our results will be useful for further functional analysis of the TCP gene family in maize.

  6. Molecular cloning of RBCS genes in Selaginella and the evolution of the rbcS gene family

    Directory of Open Access Journals (Sweden)

    Wang Bo

    2015-01-01

    Full Text Available Rubisco small subunits (RBCS are encoded by a nuclear rbcS multigene family in higher plants and green algae. However, owing to the lack of rbcS sequences in lycophytes, the characteristics of rbcS genes in lycophytes is unclear. Recently, the complete genome sequence of the lycophyte Selaginella moellendorffii provided the first insight into the rbcS gene family in lycophytes. To understand further the characteristics of rbcS genes in other Selaginella, the full length of rbcS genes (rbcS1 and rbcS2 from two other Selaginella species were isolated. Both rbcS1 and rbcS2 genes shared more than 97% identity among three Selaginella species. RBCS proteins from Selaginella contained the Pfam RBCS domain F00101, which was a major domain of other plant RBCS proteins. To explore the evolution of the rbcS gene family across Selaginella and other plants, we identified and performed comparative analysis of the rbcS gene family among 16 model plants based on a genome-wide analysis. The results showed that (i two rbcS genes were obtained in Selaginella, which is the second fewest number of rbcS genes among the 16 representative plants; (ii an expansion of rbcS genes occurred in the moss Physcomitrella patens; (iii only RBCS proteins from angiosperms contained the Pfam PF12338 domains, and (iv a pattern of concerted evolution existed in the rbcS gene family. Our study provides new insights into the evolution of the rbcS gene family in Selaginella and other plants.

  7. Molecular characterization of edestin gene family in Cannabis sativa L.

    Science.gov (United States)

    Docimo, Teresa; Caruso, Immacolata; Ponzoni, Elena; Mattana, Monica; Galasso, Incoronata

    2014-11-01

    Globulins are the predominant class of seed storage proteins in a wide variety of plants. In many plant species globulins are present in several isoforms encoded by gene families. The major seed storage protein of Cannabis sativa L. is the globulin edestin, widely known for its nutritional potential. In this work, we report the isolation of seven cDNAs encoding for edestin from the C. sativa variety Carmagnola. Southern blot hybridization is in agreement with the number of identified edestin genes. All seven sequences showed the characteristic globulin features, but they result to be divergent members/forms of two edestin types. According to their sequence similarity four forms named CsEde1A, CsEde1B, CsEde1C, CsEde1D have been assigned to the edestin type 1 and the three forms CsEde2A, CsEde2B, CsEde2C to the edestin type 2. Analysis of the coding sequences revealed a high percentage of similarity (98-99%) among the different forms belonging to the same type, which decreased significantly to approximately 64% between the forms belonging to different types. Quantitative RT-PCR analysis revealed that both edestin types are expressed in developing hemp seeds and the amount of CsEde1 was 4.44 ± 0.10 higher than CsEde2. Both edestin types exhibited a high percentage of arginine (11-12%), but CsEde2 resulted particularly rich in methionine residues (2.36%) respect to CsEde1 (0.82%). The amino acid composition determined in CsEde1 and CsEde2 types suggests that these seed proteins can be used to improve the nutritional quality of plant food-stuffs. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. The IQD gene family in soybean: structure, phylogeny, evolution and expression.

    Directory of Open Access Journals (Sweden)

    Lin Feng

    Full Text Available Members of the plant-specific IQ67-domain (IQD protein family are involved in plant development and the basal defense response. Although systematic characterization of this family has been carried out in Arabidopsis, tomato (Solanum lycopersicum, Brachypodium distachyon and rice (Oryza sativa, systematic analysis and expression profiling of this gene family in soybean (Glycine max have not previously been reported. In this study, we identified and structurally characterized IQD genes in the soybean genome. A complete set of 67 soybean IQD genes (GmIQD1-67 was identified using Blast search tools, and the genes were clustered into four subfamilies (IQD I-IV based on phylogeny. These soybean IQD genes are distributed unevenly across all 20 chromosomes, with 30 segmental duplication events, suggesting that segmental duplication has played a major role in the expansion of the soybean IQD gene family. Analysis of the Ka/Ks ratios showed that the duplicated genes of the GmIQD family primarily underwent purifying selection. Microsynteny was detected in most pairs: genes in clade 1-3 might be present in genome regions that were inverted, expanded or contracted after the divergence; most gene pairs in clade 4 showed high conservation with little rearrangement among these gene-residing regions. Of the soybean IQD genes examined, six were most highly expressed in young leaves, six in flowers, one in roots and two in nodules. Our qRT-PCR analysis of 24 soybean IQD III genes confirmed that these genes are regulated by MeJA stress. Our findings present a comprehensive overview of the soybean IQD gene family and provide insights into the evolution of this family. In addition, this work lays a solid foundation for further experiments aimed at determining the biological functions of soybean IQD genes in growth and development.

  9. Diagnostic Yield of Sequencing Familial Hypercholesterolemia Genes in Severe Hypercholesterolemia

    Science.gov (United States)

    Khera, Amit V.; Won, Hong-Hee; Peloso, Gina M.; Lawson, Kim S.; Bartz, Traci M.; Deng, Xuan; van Leeuwen, Elisabeth M.; Natarajan, Pradeep; Emdin, Connor A.; Bick, Alexander G.; Morrison, Alanna C.; Brody, Jennifer A.; Gupta, Namrata; Nomura, Akihiro; Kessler, Thorsten; Duga, Stefano; Bis, Joshua C.; van Duijn, Cornelia M.; Cupples, L. Adrienne; Psaty, Bruce; Rader, Daniel J.; Danesh, John; Schunkert, Heribert; McPherson, Ruth; Farrall, Martin; Watkins, Hugh; Lander, Eric; Wilson, James G.; Correa, Adolfo; Boerwinkle, Eric; Merlini, Piera Angelica; Ardissino, Diego; Saleheen, Danish; Gabriel, Stacey; Kathiresan, Sekar

    2017-01-01

    Background About 7% of US adults have severe hypercholesterolemia (untreated LDL cholesterol ≥190 mg/dl). Such high LDL levels may be due to familial hypercholesterolemia (FH), a condition caused by a single mutation in any of three genes. Lifelong elevations in LDL cholesterol in FH mutation carriers may confer CAD risk beyond that captured by a single LDL cholesterol measurement. Objectives Assess the prevalence of a FH mutation among those with severe hypercholesterolemia and determine whether CAD risk varies according to mutation status beyond the observed LDL cholesterol. Methods Three genes causative for FH (LDLR, APOB, PCSK9) were sequenced in 26,025 participants from 7 case-control studies (5,540 CAD cases, 8,577 CAD-free controls) and 5 prospective cohort studies (11,908 participants). FH mutations included loss-of-function variants in LDLR, missense mutations in LDLR predicted to be damaging, and variants linked to FH in ClinVar, a clinical genetics database. Results Among 8,577 CAD-free control participants, 430 had LDL cholesterol ≥190 mg/dl; of these, only eight (1.9%) carried a FH mutation. Similarly, among 11,908 participants from 5 prospective cohorts, 956 had LDL cholesterol ≥190 mg/dl and of these, only 16 (1.7%) carried a FH mutation. Within any stratum of observed LDL cholesterol, risk of CAD was higher among FH mutation carriers when compared with non-carriers. When compared to a reference group with LDL cholesterol <130 mg/dl and no mutation, participants with LDL cholesterol ≥190 mg/dl and no FH mutation had six-fold higher risk for CAD (OR 6.0; 95%CI 5.2–6.9) whereas those with LDL cholesterol ≥190 mg/dl as well as a FH mutation demonstrated twenty-two fold increased risk (OR 22.3; 95%CI 10.7–53.2). Conclusions Among individuals with LDL cholesterol ≥190 mg/dl, gene sequencing identified a FH mutation in <2%. However, for any given observed LDL cholesterol, FH mutation carriers are at substantially increased risk for CAD

  10. Induced Pluripotent Stem Cell Models of Progranulin-Deficient Frontotemporal Dementia Uncover Specific Reversible Neuronal Defects

    Science.gov (United States)

    Almeida, Sandra; Zhang, Zhijun; Coppola, Giovanni; Mao, Wenjie; Futai, Kensuke; Karydas, Anna; Geschwind, Michael D.; Tartaglia, M. Carmela; Gao, Fuying; Gianni, Davide; Sena-Esteves, Miguel; Geschwind, Daniel H.; Miller, Bruce L.; Farese, Robert V.; Gao, Fen-Biao

    2012-01-01

    SUMMARY The pathogenic mechanisms of frontotemporal dementia (FTD) remain poorly understood. Here we generated multiple induced pluripotent stem cell (iPSC) lines from a control subject, a patient with sporadic FTD, and an FTD patient with a novel GRN mutation (PGRN S116X). In neurons and microglia differentiated from PGRN S116X iPSCs, the levels of intracellular and secreted progranulin were reduced, establishing patient-specific cellular models of progranulin haploinsufficiency. Through a systematic screen of inducers of cellular stress, we found that PGRN S116X neurons, but not sporadic FTD neurons, exhibited increased sensitivity to staurosporine and other kinase inhibitors. Moreover, the serine/threonine kinase S6K2, a component of the PI3K and MAPK pathways, was specifically downregulated in PGRN S116X neurons. Both increased sensitivity to kinase inhibitors and reduced S6K2 were rescued by progranulin expression. Our findings identify cell-autonomous, reversible defects in patient neurons with progranulin deficiency and provide a new model for studying progranulin-dependent pathogenic mechanisms and testing potential therapies. PMID:23063362

  11. Search for intracranial aneurysm susceptibility gene(s using Finnish families

    Directory of Open Access Journals (Sweden)

    Ryynänen Markku

    2002-08-01

    Full Text Available Abstract Background Cerebrovascular disease is the third leading cause of death in the United States, and about one-fourth of cerebrovascular deaths are attributed to ruptured intracranial aneurysms (IA. Epidemiological evidence suggests that IAs cluster in families, and are therefore probably genetic. Identification of individuals at risk for developing IAs by genetic tests will allow concentration of diagnostic imaging on high-risk individuals. We used model-free linkage analysis based on allele sharing with a two-stage design for a genome-wide scan to identify chromosomal regions that may harbor IA loci. Methods We previously estimated sibling relative risk in the Finnish population at between 9 and 16, and proceeded with a genome-wide scan for loci predisposing to IA. In 85 Finnish families with two or more affected members, 48 affected sibling pairs (ASPs were available for our genetic study. Power calculations indicated that 48 ASPs were adequate to identify chromosomal regions likely to harbor predisposing genes and that a liberal stage I lod score threshold of 0.8 provided a reasonable balance between detection of false positive regions and failure to detect real loci with moderate effect. Results Seven chromosomal regions exceeded the stage I lod score threshold of 0.8 and five exceeded 1.0. The most significant region, on chromosome 19q, had a maximum multipoint lod score (MLS of 2.6. Conclusions Our study provides evidence for the locations of genes predisposing to IA. Further studies are necessary to elucidate the genes and their role in the pathophysiology of IA, and to design genetic tests.

  12. Fast and simple protein-alignment-guided assembly of orthologous gene families from microbiome sequencing reads.

    Science.gov (United States)

    Huson, Daniel H; Tappu, Rewati; Bazinet, Adam L; Xie, Chao; Cummings, Michael P; Nieselt, Kay; Williams, Rohan

    2017-01-25

    Microbiome sequencing projects typically collect tens of millions of short reads per sample. Depending on the goals of the project, the short reads can either be subjected to direct sequence analysis or be assembled into longer contigs. The assembly of whole genomes from metagenomic sequencing reads is a very difficult problem. However, for some questions, only specific genes of interest need to be assembled. This is then a gene-centric assembly where the goal is to assemble reads into contigs for a family of orthologous genes. We present a new method for performing gene-centric assembly, called protein-alignment-guided assembly, and provide an implementation in our metagenome analysis tool MEGAN. Genes are assembled on the fly, based on the alignment of all reads against a protein reference database such as NCBI-nr. Specifically, the user selects a gene family based on a classification such as KEGG and all reads binned to that gene family are assembled. Using published synthetic community metagenome sequencing reads and a set of 41 gene families, we show that the performance of this approach compares favorably with that of full-featured assemblers and that of a recently published HMM-based gene-centric assembler, both in terms of the number of reference genes detected and of the percentage of reference sequence covered. Protein-alignment-guided assembly of orthologous gene families complements whole-metagenome assembly in a new and very useful way.

  13. Molecular analysis of the NDP gene in two families with Norrie disease.

    Science.gov (United States)

    Rivera-Vega, M Refugio; Chiñas-Lopez, Silvet; Vaca, Ana Luisa Jimenez; Arenas-Sordo, M Luz; Kofman-Alfaro, Susana; Messina-Baas, Olga; Cuevas-Covarrubias, Sergio Alberto

    2005-04-01

    To describe the molecular defects in the Norrie disease protein (NDP) gene in two families with Norrie disease (ND). We analysed two families with ND at molecular level through polymerase chain reaction, DNA sequence analysis and GeneScan. Two molecular defects found in the NDP gene were: a missense mutation (265C > G) within codon 97 that resulted in the interchange of arginine by proline, and a partial deletion in the untranslated 3' region of exon 3 of the NDP gene. Clinical findings were more severe in the family that presented the partial deletion. We also diagnosed the carrier status of one daughter through GeneScan; this method proved to be a useful tool for establishing female carriers of ND. Here we report two novel mutations in the NDP gene in Mexican patients and propose that GeneScan is a viable mean of establishing ND carrier status.

  14. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    to efficiently search for and identify gene families. The FGF output displays the results as visual phylogenetic trees including information on gene structure, chromosome position, duplication fate and selective pressure. It is particularly useful to identify pseudogenes and detect changes in gene structure. FGF...

  15. FGF: A web tool for Fishing Gene Family in a whole genome database

    DEFF Research Database (Denmark)

    Zheng, Hongkun; Shi, Junjie; Fang, Xiaodong

    2007-01-01

    Gene duplication is an important process in evolution. The availability of genome sequences of a number of organisms has made it possible to conduct comprehensive searches for duplicated genes enabling informative studies of their evolution. We have established the FGF (Fishing Gene Family) progr...... is freely available on a web server at http://fgf.genomics.org.cn/...

  16. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    Science.gov (United States)

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  17. Gender in childhood obesity: family environment, hormones, and genes.

    Science.gov (United States)

    Wisniewski, Amy B; Chernausek, Steven D

    2009-01-01

    The prevalence of obesity among children in the United States represents a pool of latent morbidity. Though the prevalence of obesity has increased in both boys and girls, the causes and consequences differ between the sexes. Thus, interventions proposed to treat and prevent childhood obesity will need to account for these differences. This review examines gender differences in the presentation of obesity in children and describes environmental, hormonal, and genetic factors that contribute to observed gender differences. A search of peer-reviewed, published literature was performed with PubMed for articles published from January 1974 through October 2008. Search terms used were obesity, sex, gender, hormones, family environment, body composition, adiposity, and genes. Studies of children aged 0 to 18 years were included, and only articles published in English were reviewed for consideration. Articles that illustrated gender differences in either the presentation or underlying mechanisms of obesity in children were reviewed for content, and their bibliographies were used to identify other relevant literature. Gender differences in childhood obesity have been understudied partially because of how we define the categories of overweight and obesity. Close examination of studies revealed that gender differences were common, both before and during puberty. Boys and girls differ in body composition, patterns of weight gain, hormone biology, and the susceptibility to certain social, ethnic, genetic, and environmental factors. Our understanding of how gender differences in pediatric populations relate to the pathogenesis of obesity and the subsequent development of associated comorbid states is critical to developing and implementing both therapeutic and preventive interventions.

  18. Extensive lineage-specific gene duplication and evolution of the spiggin multi-gene family in stickleback

    Directory of Open Access Journals (Sweden)

    Nishida Mutsumi

    2007-11-01

    Full Text Available Abstract Background The threespine stickleback (Gasterosteus aculeatus has a characteristic reproductive mode; mature males build nests using a secreted glue-like protein called spiggin. Although recent studies reported multiple occurrences of genes that encode this glue-like protein spiggin in threespine and ninespine sticklebacks, it is still unclear how many genes compose the spiggin multi-gene family. Results Genome sequence analysis of threespine stickleback showed that there are at least five spiggin genes and two pseudogenes, whereas a single spiggin homolog occurs in the genomes of other fishes. Comparative genome sequence analysis demonstrated that Muc19, a single-copy mucous gene in human and mouse, is an ortholog of spiggin. Phylogenetic and molecular evolutionary analyses of these sequences suggested that an ancestral spiggin gene originated from a member of the mucin gene family as a single gene in the common ancestor of teleosts, and gene duplications of spiggin have occurred in the stickleback lineage. There was inter-population variation in the copy number of spiggin genes and positive selection on some codons, indicating that additional gene duplication/deletion events and adaptive evolution at some amino acid sites may have occurred in each stickleback population. Conclusion A number of spiggin genes exist in the threespine stickleback genome. Our results provide insight into the origin and dynamic evolutionary process of the spiggin multi-gene family in the threespine stickleback lineage. The dramatic evolution of genes for mucous substrates may have contributed to the generation of distinct characteristics such as "bio-glue" in vertebrates.

  19. Plasma progranulin and relaxin levels in PCOS women with normal BMI compared to control healthy subjects

    Directory of Open Access Journals (Sweden)

    Samad Akbarzadeh

    2013-09-01

    Full Text Available Background: Poly Cystic Ovary Syndrome (PCOS is the most commonly encountered endocrine gland disease affecting 5-10 present of women at their reproductive age. This syndrome is associated with type 2 diabetes, dyslipidemia, and obesity. Progranulin and relaxin are adipokins that are related with carbohydrate and lipid metabolism. Due to limited data about progranulin and relaxin plasma levels´ in women with PCOS and normal BMI, this study was conducted. Material and Methods: This study is a cross-sectional. During the study 39 women with PCOS and BMI< 25 on the basis of Rotterdam criteria were chosen as the patient group and 38 healthy women were selected as the control group. The concentration of progranulin and relaxin were measured by ELISA technique. Results: The difference in Plasma concentration of progranulin and relaxin, and also some of the biochemical parameters in the patient group versus to the control group was not significant, but there was significant difference in the concentrations of VLDL, triglyceride (p=0.046, insulin (p=0.016, HOMA-IR (p=0.015, testosterone (p=0.01, and DHEAS (p=0.034 in the patients group compared to the control group. Conclusion: In this study, the difference in Plasma concentration of progranulin and relaxin in the patient group compared to the control group was not significant. It could be inferred that lack of change in plasma level of progranulin and relaxin in women with PCOS is related to BMI<25 and FBS<110. Moreoverestosterones, insulin, DHEAS and HOMA-IR changes could be better predictors of PCOS and its associated diabetes.

  20. Partial Tmem106b reduction does not correct abnormalities due to progranulin haploinsufficiency.

    Science.gov (United States)

    Arrant, Andrew E; Nicholson, Alexandra M; Zhou, Xiaolai; Rademakers, Rosa; Roberson, Erik D

    2018-06-22

    Loss of function mutations in progranulin (GRN) are a major cause of frontotemporal dementia (FTD). Progranulin is a secreted glycoprotein that localizes to lysosomes and is critical for proper lysosomal function. Heterozygous GRN mutation carriers develop FTD with TDP-43 pathology and exhibit signs of lysosomal dysfunction in the brain, with increased levels of lysosomal proteins and lipofuscin accumulation. Homozygous GRN mutation carriers develop neuronal ceroid lipofuscinosis (NCL), an earlier-onset lysosomal storage disorder caused by severe lysosomal dysfunction. Multiple genome-wide association studies have shown that risk of FTD in GRN mutation carriers is modified by polymorphisms in TMEM106B, which encodes a lysosomal membrane protein. Risk alleles of TMEM106B may increase TMEM106B levels through a variety of mechanisms. Brains from FTD patients with GRN mutations exhibit increased TMEM106B expression, and protective TMEM106B polymorphisms are associated with decreased TMEM106B expression. Together, these data raise the possibility that reduction of TMEM106B levels may protect against the pathogenic effects of progranulin haploinsufficiency. We crossed Tmem106b +/- mice with Grn +/- mice, which model the progranulin haploinsufficiency of GRN mutation carriers and develop age-dependent social deficits and lysosomal abnormalities in the brain. We tested whether partial Tmem106b reduction could normalize the social deficits and lysosomal abnormalities of Grn +/- mice. Partial reduction of Tmem106b levels did not correct the social deficits of Grn +/- mice. Tmem106b reduction also failed to normalize most lysosomal abnormalities of Grn +/- mice, except for β-glucuronidase activity, which was suppressed by Tmem106b reduction and increased by progranulin insufficiency. These data do not support the hypothesis that Tmem106b reduction protects against the pathogenic effects of progranulin haploinsufficiency, but do show that Tmem106b reduction normalizes some

  1. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    Science.gov (United States)

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  2. Undefined familial colorectal cancer and the role of pleiotropism in cancer susceptibility genes.

    Science.gov (United States)

    Dobbins, Sara E; Broderick, Peter; Chubb, Daniel; Kinnersley, Ben; Sherborne, Amy L; Houlston, Richard S

    2016-10-01

    Although family history is a major risk factor for colorectal cancer (CRC) a genetic diagnosis cannot be obtained in over 50 % of familial cases when screened for known CRC cancer susceptibility genes. The genetics of undefined-familial CRC is complex and recent studies have implied additional clinically actionable mutations for CRC in susceptibility genes for other cancers. To clarify the contribution of non-CRC susceptibility genes to undefined-familial CRC we conducted a mutational screen of 114 cancer susceptibility genes in 847 patients with early-onset undefined-familial CRC and 1609 controls by analysing high-coverage exome sequencing data. We implemented American College of Medical Genetics and Genomics standards and guidelines for assigning pathogenicity to variants. Globally across all 114 cancer susceptibility genes no statistically significant enrichment of likely pathogenic variants was shown (6.7 % cases 57/847, 5.3 % controls 85/1609; P = 0.15). Moreover there was no significant enrichment of mutations in genes such as TP53 or BRCA2 which have been proposed for clinical testing in CRC. In conclusion, while we identified genes that may be considered interesting candidates as determinants of CRC risk warranting further research, there is currently scant evidence to support a role for genes other than those responsible for established CRC syndromes in the clinical management of familial CRC.

  3. Progranulin is a novel independent predictor of disease progression and overall survival in chronic lymphocytic leukemia.

    Directory of Open Access Journals (Sweden)

    Maria Göbel

    Full Text Available Progranulin (Pgrn is a 88 kDa secreted protein with pleiotropic functions including regulation of cell cycle progression, cell motility, wound repair and tumorigenesis. Using microarray based gene expression profiling we have recently demonstrated that the gene for Pgrn, granulin (GRN, is significantly higher expressed in aggressive CD38(+ZAP-70(+ as compared to indolent CD38(-ZAP-70(- chronic lymphocytic leukemia (CLL cases. Here, we measured Pgrn plasma concentrations by enzyme-linked immunosorbent assay (ELISA in the Essen CLL cohort of 131 patients and examined Pgrn for association with established prognostic markers and clinical outcome. We found that high Pgrn plasma levels were strongly associated with adverse risk factors including unmutated IGHV status, expression of CD38 and ZAP-70, poor risk cytogenetics (11q-, 17p- as detected by flourescence in situ hybridization (FISH and high Binet stage. Pgrn as well as the aforementioned risk factors were prognostic for time to first treatment and overall survival in this series. Importantly, these results could be confirmed in the independent multicentric CLL1 cohort of untreated Binet stage A patients (n = 163. Here, multivariate analysis of time to first treatment revealed that high risk Pgrn (HR = 2.06, 95%-CI = 1.13-3.76, p = 0.018, unmutated IGHV status (HR = 5.63, 95%-CI = 3.05-10.38, p<0.001, high risk as defined by the study protocol (HR = 2.06, 95%-CI = 1.09-3.89, p = 0.026 but not poor risk cytogenetics were independent prognostic markers. In summary our results suggest that Pgrn is a novel, robust and independent prognostic marker in CLL that can be easily measured by ELISA.

  4. MiR-145 mediates zebrafish hepatic outgrowth through progranulin A signaling.

    Directory of Open Access Journals (Sweden)

    Ya-Wen Li

    Full Text Available MicroRNAs (miRs are mRNA-regulatory molecules that fine-tune gene expression and modulate both processes of development and tumorigenesis. Our previous studies identified progranulin A (GrnA as a growth factor which induces zebrafish hepatic outgrowth through MET signaling. We also found that miR-145 is one of potential fine-tuning regulators of GrnA involved in embryonic hepatic outgrowth. The low level of miR-145 seen in hepatocarinogenesis has been shown to promote pathological liver growth. However, little is known about the regulatory mechanism of miR-145 in embryonic liver development. In this study, we demonstrate a significant decrease in miR-145 expression during hepatogenesis. We modulate miR-145 expression in zebrafish embryos by injection with a miR-145 mimic or a miR-145 hairpin inhibitor. Altered embryonic liver outgrowth is observed in response to miR-145 expression modulation. We also confirm a critical role of miR-145 in hepatic outgrowth by using whole-mount in situ hybridization. Loss of miR-145 expression in embryos results in hepatic cell proliferation, and vice versa. Furthermore, we demonstrate that GrnA is a target of miR-145 and GrnA-induced MET signaling is also regulated by miR-145 as determined by luciferase reporter assay and gene expression analysis, respectively. In addition, co-injection of GrnA mRNA with miR-145 mimic or MO-GrnA with miR-145 inhibitor restores the liver defects caused by dysregulation of miR-145 expression. In conclusion, our findings suggest an important role of miR-145 in regulating GrnA-dependent hepatic outgrowth in zebrafish embryonic development.

  5. Progranulin is a novel independent predictor of disease progression and overall survival in chronic lymphocytic leukemia.

    Science.gov (United States)

    Göbel, Maria; Eisele, Lewin; Möllmann, Michael; Hüttmann, Andreas; Johansson, Patricia; Scholtysik, René; Bergmann, Manuela; Busch, Raymonde; Döhner, Hartmut; Hallek, Michael; Seiler, Till; Stilgenbauer, Stephan; Klein-Hitpass, Ludger; Dührsen, Ulrich; Dürig, Jan

    2013-01-01

    Progranulin (Pgrn) is a 88 kDa secreted protein with pleiotropic functions including regulation of cell cycle progression, cell motility, wound repair and tumorigenesis. Using microarray based gene expression profiling we have recently demonstrated that the gene for Pgrn, granulin (GRN), is significantly higher expressed in aggressive CD38(+)ZAP-70(+) as compared to indolent CD38(-)ZAP-70(-) chronic lymphocytic leukemia (CLL) cases. Here, we measured Pgrn plasma concentrations by enzyme-linked immunosorbent assay (ELISA) in the Essen CLL cohort of 131 patients and examined Pgrn for association with established prognostic markers and clinical outcome. We found that high Pgrn plasma levels were strongly associated with adverse risk factors including unmutated IGHV status, expression of CD38 and ZAP-70, poor risk cytogenetics (11q-, 17p-) as detected by flourescence in situ hybridization (FISH) and high Binet stage. Pgrn as well as the aforementioned risk factors were prognostic for time to first treatment and overall survival in this series. Importantly, these results could be confirmed in the independent multicentric CLL1 cohort of untreated Binet stage A patients (n = 163). Here, multivariate analysis of time to first treatment revealed that high risk Pgrn (HR = 2.06, 95%-CI = 1.13-3.76, p = 0.018), unmutated IGHV status (HR = 5.63, 95%-CI = 3.05-10.38, p<0.001), high risk as defined by the study protocol (HR = 2.06, 95%-CI = 1.09-3.89, p = 0.026) but not poor risk cytogenetics were independent prognostic markers. In summary our results suggest that Pgrn is a novel, robust and independent prognostic marker in CLL that can be easily measured by ELISA.

  6. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants.

    Science.gov (United States)

    Rawal, H C; Singh, N K; Sharma, T R

    2013-01-01

    Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL) and peroxidase A (POX A) enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula), fruits (Vitis vinifera), cereals (Sorghum bicolor, Zea mays, and Oryza sativa), trees (Populus trichocarpa), and model dicot (Arabidopsis thaliana) and monocot (Brachypodium distachyon) species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  7. Conservation, Divergence, and Genome-Wide Distribution of PAL and POX A Gene Families in Plants

    Directory of Open Access Journals (Sweden)

    H. C. Rawal

    2013-01-01

    Full Text Available Genome-wide identification and phylogenetic and syntenic comparison were performed for the genes responsible for phenylalanine ammonia lyase (PAL and peroxidase A (POX A enzymes in nine plant species representing very diverse groups like legumes (Glycine max and Medicago truncatula, fruits (Vitis vinifera, cereals (Sorghum bicolor, Zea mays, and Oryza sativa, trees (Populus trichocarpa, and model dicot (Arabidopsis thaliana and monocot (Brachypodium distachyon species. A total of 87 and 1045 genes in PAL and POX A gene families, respectively, have been identified in these species. The phylogenetic and syntenic comparison along with motif distributions shows a high degree of conservation of PAL genes, suggesting that these genes may predate monocot/eudicot divergence. The POX A family genes, present in clusters at the subtelomeric regions of chromosomes, might be evolving and expanding with higher rate than the PAL gene family. Our analysis showed that during the expansion of POX A gene family, many groups and subgroups have evolved, resulting in a high level of functional divergence among monocots and dicots. These results will act as a first step toward the understanding of monocot/eudicot evolution and functional characterization of these gene families in the future.

  8. Transcriptional profiling of the human fibrillin/LTBP gene family, key regulators of mesenchymal cell functions

    DEFF Research Database (Denmark)

    Davis, Margaret R.; Andersson, Robin; Severin, Jessica

    2014-01-01

    in the structure of the extracellular matrix and controlling the bioavailability of TGFβ family members. Genes encoding these proteins show differential expression in mesenchymal cell types which synthesize the extracellular matrix. We have investigated the promoter regions of the seven gene family members using...... of the family members were expressed in a range of mesenchymal and other cell types, often associated with use of alternative promoters or transcription start sites within a promoter in different cell types. FBN3 was the lowest expressed gene, and was found only in embryonic and fetal tissues. The different...

  9. Identification of a novel Gig2 gene family specific to non-amniote vertebrates.

    Directory of Open Access Journals (Sweden)

    Yi-Bing Zhang

    Full Text Available Gig2 (grass carp reovirus (GCRV-induced gene 2 is first identified as a novel fish interferon (IFN-stimulated gene (ISG. Overexpression of a zebrafish Gig2 gene can protect cultured fish cells from virus infection. In the present study, we identify a novel gene family that is comprised of genes homologous to the previously characterized Gig2. EST/GSS search and in silico cloning identify 190 Gig2 homologous genes in 51 vertebrate species ranged from lampreys to amphibians. Further large-scale search of vertebrate and invertebrate genome databases indicate that Gig2 gene family is specific to non-amniotes including lampreys, sharks/rays, ray-finned fishes and amphibians. Phylogenetic analysis and synteny analysis reveal lineage-specific expansion of Gig2 gene family and also provide valuable evidence for the fish-specific genome duplication (FSGD hypothesis. Although Gig2 family proteins exhibit no significant sequence similarity to any known proteins, a typical Gig2 protein appears to consist of two conserved parts: an N-terminus that bears very low homology to the catalytic domains of poly(ADP-ribose polymerases (PARPs, and a novel C-terminal domain that is unique to this gene family. Expression profiling of zebrafish Gig2 family genes shows that some duplicate pairs have diverged in function via acquisition of novel spatial and/or temporal expression under stresses. The specificity of this gene family to non-amniotes might contribute to a large extent to distinct physiology in non-amniote vertebrates.

  10. Saltatory Evolution of the Ectodermal Neural Cortex Gene Family at the Vertebrate Origin

    Science.gov (United States)

    Feiner, Nathalie; Murakami, Yasunori; Breithut, Lisa; Mazan, Sylvie; Meyer, Axel; Kuraku, Shigehiro

    2013-01-01

    The ectodermal neural cortex (ENC) gene family, whose members are implicated in neurogenesis, is part of the kelch repeat superfamily. To date, ENC genes have been identified only in osteichthyans, although other kelch repeat-containing genes are prevalent throughout bilaterians. The lack of elaborate molecular phylogenetic analysis with exhaustive taxon sampling has obscured the possible link of the establishment of this gene family with vertebrate novelties. In this study, we identified ENC homologs in diverse vertebrates by means of database mining and polymerase chain reaction screens. Our analysis revealed that the ENC3 ortholog was lost in the basal eutherian lineage through single-gene deletion and that the triplication between ENC1, -2, and -3 occurred early in vertebrate evolution. Including our original data on the catshark and the zebrafish, our comparison revealed high conservation of the pleiotropic expression pattern of ENC1 and shuffling of expression domains between ENC1, -2, and -3. Compared with many other gene families including developmental key regulators, the ENC gene family is unique in that conventional molecular phylogenetic inference could identify no obvious invertebrate ortholog. This suggests a composite nature of the vertebrate-specific gene repertoire, consisting not only of de novo genes introduced at the vertebrate origin but also of long-standing genes with no apparent invertebrate orthologs. Some of the latter, including the ENC gene family, may be too rapidly evolving to provide sufficient phylogenetic signals marking orthology to their invertebrate counterparts. Such gene families that experienced saltatory evolution likely remain to be explored and might also have contributed to phenotypic evolution of vertebrates. PMID:23843192

  11. CRDB: database of chemosensory receptor gene families in vertebrate.

    Directory of Open Access Journals (Sweden)

    Dong Dong

    Full Text Available Chemosensory receptors (CR are crucial for animals to sense the environmental changes and survive on earth. The emergence of whole-genome sequences provides us an opportunity to identify the entire CR gene repertoires. To completely gain more insight into the evolution of CR genes in vertebrates, we identified the nearly all CR genes in 25 vertebrates using homology-based approaches. Among these CR gene repertoires, nearly half of them were identified for the first time in those previously uncharacterized species, such as the guinea pig, giant panda and elephant, etc. Consistent with previous findings, we found that the numbers of CR genes vary extensively among different species, suggesting an extreme form of 'birth-and-death' evolution. For the purpose of facilitating CR gene analysis, we constructed a database with the goals to provide a resource for CR genes annotation and a web tool for exploring their evolutionary patterns. Besides a search engine for the gene extraction from a specific chromosome region, an easy-to-use phylogenetic analysis tool was also provided to facilitate online phylogeny study of CR genes. Our work can provide a rigorous platform for further study on the evolution of CR genes in vertebrates.

  12. A shared promoter region suggests a common ancestor for the human VCX/Y, SPANX, and CSAG gene families and the murine CYPT family

    DEFF Research Database (Denmark)

    Hansen, Martin A; Nielsen, John E; Retelska, Dorota

    2008-01-01

    , sequences corresponding to the shared promoter region of the CYPT family were identified at 39 loci. Most loci were located immediately upstream of genes belonging to the VCX/Y, SPANX, or CSAG gene families. Sequence comparison of the loci revealed a conserved CYPT promoter-like (CPL) element featuring TATA...... cell types. The genomic regions harboring the gene families were rich in direct and inverted segmental duplications (SD), which may facilitate gene conversion and rapid evolution. The conserved CPL and the common expression profiles suggest that the human VCX/Y, SPANX, and CSAG2 gene families together......Many testis-specific genes from the sex chromosomes are subject to rapid evolution, which can make it difficult to identify murine genes in the human genome. The murine CYPT gene family includes 15 members, but orthologs were undetectable in the human genome. However, using refined homology search...

  13. A Patient With Desmoid Tumors and Familial FAP Having Frame Shift Mutation of the APC Gene

    Directory of Open Access Journals (Sweden)

    Sanambar Sadighi

    2017-02-01

    Full Text Available Desmoids tumors, characterized by monoclonal proliferation of myofibroblasts, could occur in 5-10% of patients with familial adenomatous polyposis (FAP as an extra-colonic manifestation of the disease. FAP can develop when there is a germ-line mutation in the adenomatous polyposis coli gene. Although mild or attenuated FAP may follow mutations in 5΄ extreme of the gene, it is more likely that 3΄ extreme mutations haveamore severe manifestation of thedisease. A 28-year-old woman was admitted to the Cancer Institute of Iran with an abdominal painful mass. She had strong family history of FAP and underwent prophylactic total colectomy. Pre-operative CT scans revealed a large mass. Microscopic observation showed diffuse fibroblast cell infiltration of the adjacent tissue structures. Peripheral blood DNA extraction followed by adenomatous polyposis coli gene exon by exon sequencing was performed to investigate the mutation in adenomatous polyposis coli gene. Analysis of DNA sequencing demonstrated a mutation of 4 bpdeletions at codon 1309-1310 of the exon 16 of adenomatous polyposis coli gene sequence which was repeated in 3 members of the family. Some of them had desmoid tumor without classical FAP history. Even when there is no familial history of adenomatous polyposis, the adenomatous polyposis coli gene mutation should be investigated in cases of familial desmoids tumors for a suitable prevention. The 3΄ extreme of the adenomatous polyposis coli gene is still the best likely location in such families.

  14. Repeat-associated plasticity in the Helicobacter pylori RD gene family.

    Science.gov (United States)

    Shak, Joshua R; Dick, Jonathan J; Meinersmann, Richard J; Perez-Perez, Guillermo I; Blaser, Martin J

    2009-11-01

    The bacterium Helicobacter pylori is remarkable for its ability to persist in the human stomach for decades without provoking sterilizing immunity. Since repetitive DNA can facilitate adaptive genomic flexibility via increased recombination, insertion, and deletion, we searched the genomes of two H. pylori strains for nucleotide repeats. We discovered a family of genes with extensive repetitive DNA that we have termed the H. pylori RD gene family. Each gene of this family is composed of a conserved 3' region, a variable mid-region encoding 7 and 11 amino acid repeats, and a 5' region containing one of two possible alleles. Analysis of five complete genome sequences and PCR genotyping of 42 H. pylori strains revealed extensive variation between strains in the number, location, and arrangement of RD genes. Furthermore, examination of multiple strains isolated from a single subject's stomach revealed intrahost variation in repeat number and composition. Despite prior evidence that the protein products of this gene family are expressed at the bacterial cell surface, enzyme-linked immunosorbent assay and immunoblot studies revealed no consistent seroreactivity to a recombinant RD protein by H. pylori-positive hosts. The pattern of repeats uncovered in the RD gene family appears to reflect slipped-strand mispairing or domain duplication, allowing for redundancy and subsequent diversity in genotype and phenotype. This novel family of hypervariable genes with conserved, repetitive, and allelic domains may represent an important locus for understanding H. pylori persistence in its natural host.

  15. Ancient signals: comparative genomics of plant MAPK and MAPKK gene families

    DEFF Research Database (Denmark)

    Hamel, Louis-Philippe; Nicole, Marie-Claude; Sritubtim, Somrudee

    2006-01-01

    MAPK signal transduction modules play crucial roles in regulating many biological processes in plants, and their components are encoded by highly conserved genes. The recent availability of genome sequences for rice and poplar now makes it possible to examine how well the previously described...... Arabidopsis MAPK and MAPKK gene family structures represent the broader evolutionary situation in plants, and analysis of gene expression data for MPK and MKK genes in all three species allows further refinement of those families, based on functionality. The Arabidopsis MAPK nomenclature appears sufficiently...

  16. Ultra Large Gene Families: A Matter of Adaptation or Genomic Parasites?

    Directory of Open Access Journals (Sweden)

    Philipp H. Schiffer

    2016-08-01

    Full Text Available Gene duplication is an important mechanism of molecular evolution. It offers a fast track to modification, diversification, redundancy or rescue of gene function. However, duplication may also be neutral or (slightly deleterious, and often ends in pseudo-geneisation. Here, we investigate the phylogenetic distribution of ultra large gene families on long and short evolutionary time scales. In particular, we focus on a family of NACHT-domain and leucine-rich-repeat-containing (NLR-genes, which we previously found in large numbers to occupy one chromosome arm of the zebrafish genome. We were interested to see whether such a tight clustering is characteristic for ultra large gene families. Our data reconfirm that most gene family inflations are lineage-specific, but we can only identify very few gene clusters. Based on our observations we hypothesise that, beyond a certain size threshold, ultra large gene families continue to proliferate in a mechanism we term “run-away evolution”. This process might ultimately lead to the failure of genomic integrity and drive species to extinction.

  17. Characterization and gene expression analysis of the cir multi-gene family of plasmodium chabaudi chabaudi (AS

    Directory of Open Access Journals (Sweden)

    Lawton Jennifer

    2012-03-01

    Full Text Available Abstract Background The pir genes comprise the largest multi-gene family in Plasmodium, with members found in P. vivax, P. knowlesi and the rodent malaria species. Despite comprising up to 5% of the genome, little is known about the functions of the proteins encoded by pir genes. P. chabaudi causes chronic infection in mice, which may be due to antigenic variation. In this model, pir genes are called cirs and may be involved in this mechanism, allowing evasion of host immune responses. In order to fully understand the role(s of CIR proteins during P. chabaudi infection, a detailed characterization of the cir gene family was required. Results The cir repertoire was annotated and a detailed bioinformatic characterization of the encoded CIR proteins was performed. Two major sub-families were identified, which have been named A and B. Members of each sub-family displayed different amino acid motifs, and were thus predicted to have undergone functional divergence. In addition, the expression of the entire cir repertoire was analyzed via RNA sequencing and microarray. Up to 40% of the cir gene repertoire was expressed in the parasite population during infection, and dominant cir transcripts could be identified. In addition, some differences were observed in the pattern of expression between the cir subgroups at the peak of P. chabaudi infection. Finally, specific cir genes were expressed at different time points during asexual blood stages. Conclusions In conclusion, the large number of cir genes and their expression throughout the intraerythrocytic cycle of development indicates that CIR proteins are likely to be important for parasite survival. In particular, the detection of dominant cir transcripts at the peak of P. chabaudi infection supports the idea that CIR proteins are expressed, and could perform important functions in the biology of this parasite. Further application of the methodologies described here may allow the elucidation of CIR sub-family

  18. Evolution of the defensin-like gene family in grass genomes

    Indian Academy of Sciences (India)

    that the DEFL gene family is subjected to purifying selection. However, sliding window analysis .... sorghum from DOE-JGI Community Sequencing Program ..... This work was supported by the National Key Technologies Re- search and ...

  19. Complexity of rice Hsp100 gene family: lessons from rice genome ...

    Indian Academy of Sciences (India)

    Madhu Sudhan

    2007-03-29

    Mar 29, 2007 ... Chaperonins are a class of molecular chaperones found in prokaryotes and in the ... Keywords. Chaperone, gene family, Hsp100, Oryza sativa ..... Sculpting the proteome with AAA+ proteases and disassembly machines; Cell ...

  20. Exclusion of known gene for enamel development in two Brazilian families with amelogenesis imperfecta.

    Science.gov (United States)

    Santos, Maria C L G; Hart, P Suzanne; Ramaswami, Mukundhan; Kanno, Cláudia M; Hart, Thomas C; Line, Sergio R P

    2007-01-31

    Amelogenesis imperfecta (AI) is a genetically heterogeneous group of diseases that result in defective development of tooth enamel. Mutations in several enamel proteins and proteinases have been associated with AI. The object of this study was to evaluate evidence of etiology for the six major candidate gene loci in two Brazilian families with AI. Genomic DNA was obtained from family members and all exons and exon-intron boundaries of the ENAM, AMBN, AMELX, MMP20, KLK4 and Amelotin gene were amplified and sequenced. Each family was also evaluated for linkage to chromosome regions known to contain genes important in enamel development. The present study indicates that the AI in these two families is not caused by any of the known loci for AI or any of the major candidate genes proposed in the literature. These findings indicate extensive genetic heterogeneity for non-syndromic AI.

  1. A family with X-linked anophthalmia: exclusion of SOX3 as a candidate gene.

    Science.gov (United States)

    Slavotinek, Anne; Lee, Stephen S; Hamilton, Steven P

    2005-10-01

    We report on a four-generation family with X-linked anophthalmia in four affected males and show that this family has LOD scores consistent with linkage to Xq27, the third family reported to be linked to the ANOP1 locus. We sequenced the SOX3 gene at Xq27 as a candidate gene for the X-linked anophthalmia based on the high homology of this gene to SOX2, a gene previously mutated in bilateral anophthlamia. However, no amino acid sequence alterations were identified in SOX3. We have improved the definition of the phenotype in males with anophthalmia linked to the ANOP1 locus, as microcephaly, ocular colobomas, and severe renal malformations have not been described in families linked to ANOP1. (c) 2005 Wiley-Liss, Inc.

  2. "It's good to know": experiences of gene identification and result disclosure in familial epilepsies.

    Science.gov (United States)

    Vears, Danya F; Dunn, Karen L; Wake, Samantha A; Scheffer, Ingrid E

    2015-05-01

    Recognition of the role of genetics in the epilepsies has increased dramatically, impacting on clinical practice across many epilepsy syndromes. There is limited research investigating the impact of gene identification on individuals and families with epilepsy. While research has focused on the impact of delivering genetic information to families at the time of diagnosis in genetic diseases more broadly, little is known about how genetic results in epileptic diseases influences people's lives many years after it has been conveyed. This study used qualitative methods to explore the experience of receiving a genetic result in people with familial epilepsy. Interviews were conducted with individuals with familial epilepsies in whom the underlying genetic mutation had been identified. Recorded interviews underwent thematic analysis. 20 individuals from three families with different epilepsy syndromes and causative genes were interviewed. Multiple generations within families were studied. The mean time from receiving the genetic result prior to interview was 10.9 years (range 5-14 years). Three major themes were identified: 1) living with epilepsy: an individual's experience of the severity of epilepsy in their family influenced their view. 2) Clinical utility of the test: participants expressed varying reactions to receiving a genetic result. While for some it provided helpful information and relief, others were not surprised by the finding given the familial context. Some valued the use of genetic information for reproductive decision-making, particularly in the setting of severely affected family members. While altruistic reasons for participating in genetic research were discussed, participants emphasised the benefit of participation to them and their families. 3) 'Talking about the family genes': individuals reported poor communication between family members about their epilepsy and its genetic implications. The results provide important insights into the family

  3. Gene structure, phylogeny and expression profile of the sucrose synthase gene family in cacao (Theobroma cacao L.).

    Science.gov (United States)

    Li, Fupeng; Hao, Chaoyun; Yan, Lin; Wu, Baoduo; Qin, Xiaowei; Lai, Jianxiong; Song, Yinghui

    2015-09-01

    In higher plants, sucrose synthase (Sus, EC 2.4.1.13) is widely considered as a key enzyme involved in sucrose metabolism. Although, several paralogous genes encoding different isozymes of Sus have been identified and characterized in multiple plant genomes, to date detailed information about the Sus genes is lacking for cacao. This study reports the identification of six novel Sus genes from economically important cacao tree. Analyses of the gene structure and phylogeny of the Sus genes demonstrated evolutionary conservation in the Sus family across cacao and other plant species. The expression of cacao Sus genes was investigated via real-time PCR in various tissues, different developmental phases of leaf, flower bud and pod. The Sus genes exhibited distinct but partially redundant expression profiles in cacao, with TcSus1, TcSus5 and TcSus6, being the predominant genes in the bark with phloem, TcSus2 predominantly expressing in the seed during the stereotype stage. TcSus3 and TcSus4 were significantly detected more in the pod husk and seed coat along the pod development, and showed development dependent expression profiles in the cacao pod. These results provide new insights into the evolution, and basic information that will assist in elucidating the functions of cacao Sus gene family.

  4. Gene-Environment Interplay, Family Relationships, and Child Adjustment

    Science.gov (United States)

    Horwitz, Briana N.; Neiderhiser, Jenae M.

    2011-01-01

    This paper reviews behavioral genetic research from the past decade that has moved beyond simply studying the independent influences of genes and environments. The studies considered in this review have instead focused on understanding gene-environment interplay, including genotype-environment correlation (rGE) and genotype x environment…

  5. Identification and analysis of YELLOW protein family genes in the silkworm, Bombyx mori

    Directory of Open Access Journals (Sweden)

    Yi Yong-Zhu

    2006-08-01

    Full Text Available Abstract Background The major royal jelly proteins/yellow (MRJP/YELLOW family possesses several physiological and chemical functions in the development of Apis mellifera and Drosophila melanogaster. Each protein of the family has a conserved domain named MRJP. However, there is no report of MRJP/YELLOW family proteins in the Lepidoptera. Results Using the YELLOW protein sequence in Drosophila melanogaster to BLAST silkworm EST database, we found a gene family composed of seven members with a conserved MRJP domain each and named it YELLOW protein family of Bombyx mori. We completed the cDNA sequences with RACE method. The protein of each member possesses a MRJP domain and a putative cleavable signal peptide consisting of a hydrophobic sequence. In view of genetic evolution, the whole Bm YELLOW protein family composes a monophyletic group, which is distinctly separate from Drosophila melanogaster and Apis mellifera. We then showed the tissue expression profiles of Bm YELLOW protein family genes by RT-PCR. Conclusion A Bombyx mori YELLOW protein family is found to be composed of at least seven members. The low homogeneity and unique pattern of gene expression by each member among the family ensure us to prophesy that the members of Bm YELLOW protein family would play some important physiological functions in silkworm development.

  6. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    OpenAIRE

    Hu, H.; Haas, S.A.; Chelly, J.; Van Esch, H.; Raynaud, M.; de Brouwer, A.P.M.; Weinert, S.; Froyen, G.; Frints, S.G.M.; Laumonnier, F.; Zemojtel, T.; Love, M.I.; Richard, H.; Emde, A.K.; Bienek, M.

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of ...

  7. Distinct Gene Expression Signatures in Lynch Syndrome and Familial Colorectal Cancer Type X

    DEFF Research Database (Denmark)

    Valentin, Mev; Therkildsen, Christina; Veerla, Srinivas

    2013-01-01

    Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects.......Heredity is estimated to cause at least 20% of colorectal cancer. The hereditary nonpolyposis colorectal cancer subset is divided into Lynch syndrome and familial colorectal cancer type X (FCCTX) based on presence of mismatch repair (MMR) gene defects....

  8. Novel genetic variants in miR-191 gene and familial ovarian cancer

    International Nuclear Information System (INIS)

    Shen, Jie; DiCioccio, Richard; Odunsi, Kunle; Lele, Shashikant B; Zhao, Hua

    2010-01-01

    Half of the familial aggregation of ovarian cancer can't be explained by any known risk genes, suggesting the existence of other genetic risk factors. Some of these unknown factors may not be traditional protein encoding genes. MicroRNA (miRNA) plays a critical role in tumorigenesis, but it is still unknown if variants in miRNA genes lead to predisposition to cancer. Considering the fact that miRNA regulates a number of tumor suppressor genes (TSGs) and oncogenes, genetic variations in miRNA genes could affect the levels of expression of TSGs or oncogenes and, thereby, cancer risk. To test this hypothesis in familial ovarian cancer, we screened for genetic variants in thirty selected miRNA genes, which are predicted to regulate key ovarian cancer genes and are reported to be misexpressed in ovarian tumor tissues, in eighty-three patients with familial ovarian cancer. All of the patients are non-carriers of any known BRCA1/2 or mismatch repair (MMR) gene mutations. Seven novel genetic variants were observed in four primary or precursor miRNA genes. Among them, three rare variants were found in the precursor or primary precursor of the miR-191 gene. In functional assays, the one variant located in the precursor of miR-191 resulted in conformational changes in the predicted secondary structures, and consequently altered the expression of mature miR-191. In further analysis, we found that this particular variant exists in five family members who had ovarian cancer. Our findings suggest that there are novel genetic variants in miRNA genes, and those certain genetic variants in miRNA genes can affect the expression of mature miRNAs and, consequently, might alter the regulation of TSGs or oncogenes. Additionally, the variant might be potentially associated with the development of familial ovarian cancer

  9. a photoreceptor gene mutation in an indigenous black african family

    African Journals Online (AJOL)

    MUTATION IN AN INDIGENOUS. BLACK AFRICAN FAMILY WITH. RETINITIS PIGMENTOSA. IDENTIFIED USING A RAPID. SCREENING APPROACH FOR. COMMON RHODOPSIN. MUTATIONS. JGreenberg, T Franz, R Goliath, R Ramesar. Hereditary retinal degenerations may be subdivided into those affecting ...

  10. Chitinase-3-like Protein 1: A Progranulin Downstream Molecule and Potential Biomarker for Gaucher Disease

    Directory of Open Access Journals (Sweden)

    Jinlong Jian

    2018-02-01

    Full Text Available We recently reported that progranulin (PGRN is a novel regulator of glucocerebrosidase and its deficiency associates with Gaucher Diseases (GD (Jian et al., 2016a; Jian et al., 2018. To isolate the relevant downstream molecules, we performed a whole genome microarray and mass spectrometry analysis, which led to the isolation of Chitinase-3-like-1 (CHI3L1 as one of the up-regulated genes in PGRN null mice. Elevated levels of CHI3L1 were confirmed by immunoblotting and immunohistochemistry. In contrast, treatment with recombinant Pcgin, a derivative of PGRN, as well as imigluerase, significantly reduced the expressions of CHI3L1 in both PGRN null GD model and the fibroblasts from GD patients. Serum levels of CHIT1, a clinical biomarker for GD, were significantly higher in GD patients than healthy controls (51.16 ± 2.824 ng/ml vs 35.07 ± 2.099 ng/ml, p < 0.001. Similar to CHIT1, serum CHI3L1 was also significantly increased in GD patients compared with healthy controls (1736 ± 152.1 pg/ml vs 684.7 ± 68.20 pg/ml, p < 0.001. Whereas the PGRN level is significantly reduced in GD patients as compared to the healthy control (91.56 ± 3.986 ng/ml vs 150.6 ± 4.501, p < 0.001. Collectively, these results indicate that CHI3L1 may be a previously unrecognized biomarker for diagnosing GD and for evaluating the therapeutic effects of new GD drug(s.

  11. [Analysis of the NDP gene in a Chinese family with X-linked recessive Norrie disease].

    Science.gov (United States)

    Mei, Libin; Huang, Yanru; Pan, Qian; Liang, Desheng; Wu, Lingqian

    2015-05-01

    The purpose of the current research was to investigate the NDP (Norrie disease protein) gene in one Chinese family with Norrie disease (ND) and to characterize the related clinical features. Clinical data of the proband and his family members were collected. Complete ophthalmic examinations were carried out on the proband. Genomic DNA was extracted from peripheral blood leukocytes of 35 family members. Molecular analysis of the NDP gene was performed by polymerase chain reaction and direct sequencing of all exons and flanking regions. A hemizygous NDP missense mutation c.362G > A (p.Arg121Gln) in exon 3 was identified in the affected members, but not in any of the unaffected family individuals. The missense mutation c.362G > A in NDP is responsible for the Norrie disease in this family. This discovery will help provide the family members with accurate and reliable genetic counseling and prenatal diagnosis.

  12. Identification of the WRKY gene family and functional analysis of two genes in Caragana intermedia.

    Science.gov (United States)

    Wan, Yongqing; Mao, Mingzhu; Wan, Dongli; Yang, Qi; Yang, Feiyun; Mandlaa; Li, Guojing; Wang, Ruigang

    2018-02-09

    WRKY transcription factors, one of the largest families of transcriptional regulators in plants, play important roles in plant development and various stress responses. The WRKYs of Caragana intermedia are still not well characterized, although many WRKYs have been identified in various plant species. We identified 53 CiWRKY genes from C. intermedia transcriptome data, 28 of which exhibited complete open reading frames (ORFs). These CiWRKYs were divided into three groups via phylogenetic analysis according to their WRKY domains and zinc finger motifs. Conserved domain analysis showed that the CiWRKY proteins contain a highly conserved WRKYGQK motif and two variant motifs (WRKYGKK and WKKYEEK). The subcellular localization of CiWRKY26 and CiWRKY28-1 indicated that these two proteins localized exclusively to nuclei, supporting their role as transcription factors. The expression patterns of the 28 CiWRKYs with complete ORFs were examined through quantitative real-time PCR (qRT-PCR) in various tissues and under different abiotic stresses (drought, cold, salt, high-pH and abscisic acid (ABA)). The results showed that each CiWRKY responded to at least one stress treatment. Furthermore, overexpression of CiWRKY75-1 and CiWRKY40-4 in Arabidopsis thaliana suppressed the drought stress tolerance of the plants and delayed leaf senescence, respectively. Fifty-three CiWRKY genes from the C. intermedia transcriptome were identified and divided into three groups via phylogenetic analysis. The expression patterns of the 28 CiWRKYs under different abiotic stresses suggested that each CiWRKY responded to at least one stress treatment. Overexpression of CiWRKY75-1 and CiWRKY40-4 suppressed the drought stress tolerance of Arabidopsis and delayed leaf senescence, respectively. These results provide a basis for the molecular mechanism through which CiWRKYs mediate stress tolerance.

  13. Identification of a novel FBN1 gene mutation in a large Pakistani family with Marfan syndrome

    NARCIS (Netherlands)

    Micheal, S.; Khan, M.I.; Akhtar, F.; Weiss, M.M.; Islam, F.; Ali, M.; Qamar, R.; Maugeri, A.; Hollander, A.I. den

    2012-01-01

    PURPOSE: To describe a novel mutation in the fibrillin-1 (FBN1) gene in a large Pakistani family with autosomal dominant Marfan syndrome (MFS). METHODS: Blood samples were collected of 11 family members affected with Marfan syndrome, and DNA was isolated by phenol-extraction. The coding exons of

  14. Sortilin-Mediated Endocytosis Determines Levels of the Fronto-Temporal Dementia Protein, Progranulin

    DEFF Research Database (Denmark)

    Hu, Fenghua; Padukkavidana, Thihan; Vægter, Christian Bjerggaard

    2010-01-01

    The most common inherited form of Fronto-Temporal Lobar Degeneration (FTLD) known stems from Progranulin (GRN) mutation, and exhibits TDP-43 plus ubiquitin protein aggregates in brain. Despite the causative role of GRN haploinsufficiency in FTLD-TDP, the neurobiology of this secreted glycoprotein...

  15. Progranulin genetic polymorphisms influence progression of disability and relapse recovery in multiple sclerosis.

    Science.gov (United States)

    Vercellino, Marco; Fenoglio, Chiara; Galimberti, Daniela; Mattioda, Alessandra; Chiavazza, Carlotta; Binello, Eleonora; Pinessi, Lorenzo; Giobbe, Dario; Scarpini, Elio; Cavalla, Paola

    2016-07-01

    Progranulin (GRN) is a multifunctional protein involved in inflammation and repair, and also a neurotrophic factor critical for neuronal survival. Progranulin is strongly expressed in multiple sclerosis (MS) brains by macrophages and microglia. In this study we evaluated GRN genetic variability in 400 MS patients, in correlation with clinical variables such as disease severity and relapse recovery. We also evaluated serum progranulin levels in the different groups of GRN variants carriers. We found that incomplete recovery after a relapse is correlated with an increased frequency of the rs9897526 A allele (odds ratio (OR) 4.367, p = 0.005). A more severe disease course (Multiple Sclerosis Severity Score > 5) is correlated with an increased frequency of the rs9897526 A allele (OR 1.886, p = 0.002) and of the rs5848 T allele (OR 1.580, p = 0.019). Carriers of the variants associated with a more severe disease course (rs9897526 A, rs5848 T) have significantly lower levels of circulating progranulin (80.5 ± 9.1 ng/mL vs. 165.7 ng/mL, p = 0.01). GRN genetic polymorphisms likely influence disease course and relapse recovery in MS. © The Author(s), 2015.

  16. The SOD gene family in tomato: identification, phylogenetic relationships and expression patterns

    Directory of Open Access Journals (Sweden)

    kun feng

    2016-08-01

    Full Text Available Superoxide dismutases (SODs are critical antioxidant enzymes that protect organisms from reactive oxygen species (ROS caused by adverse conditions, and have been widely found in the cytoplasm, chloroplasts, and mitochondria of eukaryotic and prokaryotic cells. Tomato (Solanum lycopersicum L. is an important economic crop and is cultivated worldwide. However, abiotic and biotic stresses severely hinder growth and development of the plant, which affects the production and quality of the crop. To reveal the potential roles of SOD genes under various stresses, we performed a systematic analysis of the tomato SOD gene family and analyzed the expression patterns of SlSOD genes in response to abiotic stresses at the whole-genome level. The characteristics of the SlSOD gene family were determined by analyzing gene structure, conserved motifs, chromosomal distribution, phylogenetic relationships, and expression patterns. We determined that there are at least nine SOD genes in tomato, including four Cu/ZnSODs, three FeSODs, and one MnSOD, and they are unevenly distributed on 12 chromosomes. Phylogenetic analyses of SOD genes from tomato and other plant species were separated into two groups with a high bootstrap value, indicating that these SOD genes were present before the monocot-dicot split. Additionally, many cis-elements that respond to different stresses were found in the promoters of nine SlSOD genes. Gene expression analysis based on RNA-seq data showed that most genes were expressed in all tested tissues, with the exception of SlSOD6 and SlSOD8, which were only expressed in young fruits. Microarray data analysis showed that most members of the SlSOD gene family were altered under salt- and drought-stress conditions. This genome-wide analysis of SlSOD genes helps to clarify the function of SlSOD genes under different stress conditions and provides information to aid in further understanding the evolutionary relationships of SOD genes in plants.

  17. Genome-Wide Identification and Analysis of the TIFY Gene Family in Grape

    Science.gov (United States)

    Zhang, Yucheng; Gao, Min; Singer, Stacy D.; Fei, Zhangjun; Wang, Hua; Wang, Xiping

    2012-01-01

    Background The TIFY gene family constitutes a plant-specific group of genes with a broad range of functions. This family encodes four subfamilies of proteins, including ZML, TIFY, PPD and JASMONATE ZIM-Domain (JAZ) proteins. JAZ proteins are targets of the SCFCOI1 complex, and function as negative regulators in the JA signaling pathway. Recently, it has been reported in both Arabidopsis and rice that TIFY genes, and especially JAZ genes, may be involved in plant defense against insect feeding, wounding, pathogens and abiotic stresses. Nonetheless, knowledge concerning the specific expression patterns and evolutionary history of plant TIFY family members is limited, especially in a woody species such as grape. Methodology/Principal Findings A total of two TIFY, four ZML, two PPD and 11 JAZ genes were identified in the Vitis vinifera genome. Phylogenetic analysis of TIFY protein sequences from grape, Arabidopsis and rice indicated that the grape TIFY proteins are more closely related to those of Arabidopsis than those of rice. Both segmental and tandem duplication events have been major contributors to the expansion of the grape TIFY family. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologues of several grape TIFY genes were found in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of lineages that led to grape and Arabidopsis. Analyses of microarray and quantitative real-time RT-PCR expression data revealed that grape TIFY genes are not a major player in the defense against biotrophic pathogens or viruses. However, many of these genes were responsive to JA and ABA, but not SA or ET. Conclusion The genome-wide identification, evolutionary and expression analyses of grape TIFY genes should facilitate further research of this gene family and provide new insights regarding their evolutionary history and regulatory control. PMID:22984514

  18. Natural killer cell receptor genes in the family Equidae: not only Ly49.

    Directory of Open Access Journals (Sweden)

    Jan Futas

    Full Text Available Natural killer (NK cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for

  19. Natural Killer Cell Receptor Genes in the Family Equidae: Not only Ly49

    Science.gov (United States)

    Futas, Jan; Horin, Petr

    2013-01-01

    Natural killer (NK) cells have important functions in immunity. NK recognition in mammals can be mediated through killer cell immunoglobulin-like receptors (KIR) and/or killer cell lectin-like Ly49 receptors. Genes encoding highly variable NK cell receptors (NKR) represent rapidly evolving genomic regions. No single conservative model of NKR genes was observed in mammals. Single-copy low polymorphic NKR genes present in one mammalian species may expand into highly polymorphic multigene families in other species. In contrast to other non-rodent mammals, multiple Ly49-like genes appear to exist in the horse, while no functional KIR genes were observed in this species. In this study, Ly49 and KIR were sought and their evolution was characterized in the entire family Equidae. Genomic sequences retrieved showed the presence of at least five highly conserved polymorphic Ly49 genes in horses, asses and zebras. These findings confirmed that the expansion of Ly49 occurred in the entire family. Several KIR-like sequences were also identified in the genome of Equids. Besides a previously identified non-functional KIR-Immunoglobulin-like transcript fusion gene (KIR-ILTA) and two putative pseudogenes, a KIR3DL-like sequence was analyzed. In contrast to previous observations made in the horse, the KIR3DL sequence, genomic organization and mRNA expression suggest that all Equids might produce a functional KIR receptor protein molecule with a single non-mutated immune tyrosine-based inhibition motif (ITIM) domain. No evidence for positive selection in the KIR3DL gene was found. Phylogenetic analysis including rhinoceros and tapir genomic DNA and deduced amino acid KIR-related sequences showed differences between families and even between species within the order Perissodactyla. The results suggest that the order Perissodactyla and its family Equidae with expanded Ly49 genes and with a potentially functional KIR gene may represent an interesting model for evolutionary biology of

  20. carboxylate synthase gene family in Arabidopsis, rice, grapevine

    African Journals Online (AJOL)

    Yomi

    2012-01-16

    Jan 16, 2012 ... evolutionary relationships of ACS genes in the four plant species. Chromosomal .... classification was consistent with the report from. Jakubowicz et al. ..... Analysis of the genome sequence of the flowering plant Arabidopsis ...

  1. Identification of pathogenic gene variants in small families with intellectually disabled siblings by exome sequencing.

    Science.gov (United States)

    Schuurs-Hoeijmakers, Janneke H M; Vulto-van Silfhout, Anneke T; Vissers, Lisenka E L M; van de Vondervoort, Ilse I G M; van Bon, Bregje W M; de Ligt, Joep; Gilissen, Christian; Hehir-Kwa, Jayne Y; Neveling, Kornelia; del Rosario, Marisol; Hira, Gausiya; Reitano, Santina; Vitello, Aurelio; Failla, Pinella; Greco, Donatella; Fichera, Marco; Galesi, Ornella; Kleefstra, Tjitske; Greally, Marie T; Ockeloen, Charlotte W; Willemsen, Marjolein H; Bongers, Ernie M H F; Janssen, Irene M; Pfundt, Rolph; Veltman, Joris A; Romano, Corrado; Willemsen, Michèl A; van Bokhoven, Hans; Brunner, Han G; de Vries, Bert B A; de Brouwer, Arjan P M

    2013-12-01

    Intellectual disability (ID) is a common neurodevelopmental disorder affecting 1-3% of the general population. Mutations in more than 10% of all human genes are considered to be involved in this disorder, although the majority of these genes are still unknown. We investigated 19 small non-consanguineous families with two to five affected siblings in order to identify pathogenic gene variants in known, novel and potential ID candidate genes. Non-consanguineous families have been largely ignored in gene identification studies as small family size precludes prior mapping of the genetic defect. Using exome sequencing, we identified pathogenic mutations in three genes, DDHD2, SLC6A8, and SLC9A6, of which the latter two have previously been implicated in X-linked ID phenotypes. In addition, we identified potentially pathogenic mutations in BCORL1 on the X-chromosome and in MCM3AP, PTPRT, SYNE1, and ZNF528 on autosomes. We show that potentially pathogenic gene variants can be identified in small, non-consanguineous families with as few as two affected siblings, thus emphasising their value in the identification of syndromic and non-syndromic ID genes.

  2. New mutations in the NHS gene in Nance-Horan Syndrome families from the Netherlands

    NARCIS (Netherlands)

    Florijn, Ralph J.; Loves, Willem; Maillette de Buy Wenniger-Prick, Liesbeth J. J. M.; Mannens, Marcel M. A. M.; Tijmes, Nel; Brooks, Simon P.; Hardcastle, Alison J.; Bergen, Arthur A. B.

    2006-01-01

    Mutations in the NHS gene cause Nance-Horan Syndrome (NHS), a rare X-chromosomal recessive disorder with variable features, including congenital cataract, microphthalmia, a peculiar form of the ear and dental anomalies. We investigated the NHS gene in four additional families with NHS from the

  3. Germline heterozygous variants in genes associated with familial hemophagocytic lymphohistiocytosis as a cause of increased bleeding

    DEFF Research Database (Denmark)

    Fager Ferrari, Marcus; Leinoe, Eva; Rossing, Maria

    2018-01-01

    Familial hemophagocytic lymphohistiocytosis (FHL) is caused by biallelic variants in genes regulating granule secretion in cytotoxic lymphocytes. In FHL3-5, the affected genes UNC13D, STX11 and STXBP2 have further been shown to regulate the secretion of platelet granules, giving rise to compromised...

  4. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    NARCIS (Netherlands)

    Hu, H; Haas, S.A.; Chelly, J.; Esch, H. Van; Raynaud, M.; Brouwer, A.P. de; Weinert, S.; Froyen, G.; Frints, S.G.; Laumonnier, F.; Zemojtel, T.; Love, M.I.; Richard, H.; Emde, A.K.; Bienek, M.; Jensen, C.; Hambrock, M.; Fischer, U.; Langnick, C.; Feldkamp, M.; Wissink-Lindhout, W.; Lebrun, N.; Castelnau, L.; Rucci, J.; Montjean, R.; Dorseuil, O.; Billuart, P.; Stuhlmann, T.; Shaw, M.; Corbett, M.A.; Gardner, A.; Willis-Owen, S.; Tan, C.; Friend, K.L.; Belet, S.; Roozendaal, K.E. van; Jimenez-Pocquet, M.; Moizard, M.P.; Ronce, N.; Sun, R.; O'Keeffe, S.; Chenna, R.; Bommel, A. van; Goke, J.; Hackett, A.; Field, M.; Christie, L.; Boyle, J.; Haan, E.; Nelson, J.; Turner, G.; Baynam, G.; Gillessen-Kaesbach, G.; Muller, U.; Steinberger, D.; Budny, B.; Badura-Stronka, M.; Latos-Bielenska, A.; Ousager, L.B.; Wieacker, P.; Rodriguez Criado, G.; Bondeson, M.L.; Anneren, G.; Dufke, A.; Cohen, M.; Maldergem, L. Van; Vincent-Delorme, C.; Echenne, B.; Simon-Bouy, B.; Kleefstra, T.; Willemsen, M.H.; Fryns, J.P.; Devriendt, K.; Ullmann, R.; Vingron, M.; Wrogemann, K.; Wienker, T.F.; Tzschach, A.; Bokhoven, H. van; Gecz, J.; Jentsch, T.J.; Chen, W.; Ropers, H.H.; Kalscheuer, V.M.

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or

  5. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes

    DEFF Research Database (Denmark)

    Hu, H; Haas, S A; Chelly, J

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes...

  6. Linkage studies and mutation analysis of the PDEB gene in 23 families with Leber congenital amaurosis

    DEFF Research Database (Denmark)

    Riess, O; Weber, B; Nørremølle, Anne

    1992-01-01

    as to whether mutations in the human PDEB gene might cause LCA. We have previously cloned and characterized the human homologue of the mouse Pdeb gene and have mapped it to chromosome 4p16.3. In this study, a total of 23 LCA families of various ethnic backgrounds have been investigated. Linkage analysis using...

  7. Expressional and Biochemical Characterization of Rice Disease Resistance Gene Xa3/Xa26 Family

    Institute of Scientific and Technical Information of China (English)

    Songjie Xu; Yinglong Cao; Xianghua Li; Shiping Wang

    2007-01-01

    The rice (Oryza sativa L.) Xa3/Xa26 gene, conferring race-specific resistance to bacterial blight disease and encoding a leucine-rich repeat (LRR) receptor kinase-like protein, belongs to a multigene family consisting of tandem clustered homologous genes, colocalizing with several uncharacterized genes for resistance to bacterial blight or fungal blast. To provide more information on the expressional and biochemical characteristics of the Xa3/Xa26 family, we analyzed the family members. Four Xa3/Xa26 family members in the indica rice variety Teqing, which carries a bacterial blight resistance gene with a chromosomal location tightly linked to Xa3/Xa26, and five Xa3/Xa26 family members in the japonica rice variety Nipponbare, which carries at least one uncharacterized blast resistance gene, were constitutively expressed in leaf tissue. The result suggests that some of the family members may be candidates of these uncharacterized resistance genes. At least five putative N-glycosylation sites in the LRR domain of XA3/XA26 protein are not glycosylated. The XA3/XA26 and its family members MRKa and MRKc all possess the consensus sequences of paired cysteines, which putatively function in dimerization of the receptor proteins for signal transduction, immediately before the first LRR and immediately after the last LRR. However, no homo-dimer between the XA3/XA26 molecules or hetero-dimer between XA3/XA26 and MRKa or MRKc were formed, indicating that XA3/XA26 protein might function either as a monomer or a hetero-dimer formed with other protein outside of the XA3/XA26 family. These results provide valuable information for further extensive investigation into this multiple protein family.

  8. The importance of melanoma inhibitory activity gene family in the tumor progression of oral cancer.

    Science.gov (United States)

    Sasahira, Tomonori; Bosserhoff, Anja Katrin; Kirita, Tadaaki

    2018-05-01

    Oral squamous cell carcinoma has a high potential for locoregional invasion and nodal metastasis. Consequently, early detection of such malignancies is of immense importance. The melanoma inhibitory activity (MIA) gene family comprises MIA, MIA2, transport and Golgi organization protein 1 (TANGO), and otoraplin (OTOR). These members of the MIA gene family have a highly conserved Src homology 3 (SH3)-like structure. Although the molecules of this family share 34-45% amino acid homology and 47-59% cDNA sequence homology, those members, excluding OTOR, play different tumor-associated functions. MIA has a pivotal role in the progression and metastasis of melanoma; MIA2 and TANGO have been suggested to possess tumor-suppressive functions; and OTOR is uniquely expressed in cochlea of the inner ear. Therefore, the definite functions of the MIA gene family in cancer cells remain unclear. Since the members of the MIA gene family are secreted proteins, these molecules might be useful tumor markers that can be detected in the body fluids, including serum and saliva. In this review, we described the molecular biological functions of the MIA gene family in oral cancer. © 2018 Japanese Society of Pathology and John Wiley & Sons Australia, Ltd.

  9. Duplications and losses in gene families of rust pathogens highlight putative effectors

    Directory of Open Access Journals (Sweden)

    Amanda L. Pendleton

    2014-06-01

    Full Text Available Rust fungi are a group of fungal pathogens that cause some of the world’s most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host’s cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of sixteen diverse fungal species, which include fifteen basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: i arose or expanded in rust pathogens relative to other fungi, or ii contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  10. Duplications and losses in gene families of rust pathogens highlight putative effectors.

    Science.gov (United States)

    Pendleton, Amanda L; Smith, Katherine E; Feau, Nicolas; Martin, Francis M; Grigoriev, Igor V; Hamelin, Richard; Nelson, C Dana; Burleigh, J Gordon; Davis, John M

    2014-01-01

    Rust fungi are a group of fungal pathogens that cause some of the world's most destructive diseases of trees and crops. A shared characteristic among rust fungi is obligate biotrophy, the inability to complete a lifecycle without a host. This dependence on a host species likely affects patterns of gene expansion, contraction, and innovation within rust pathogen genomes. The establishment of disease by biotrophic pathogens is reliant upon effector proteins that are encoded in the fungal genome and secreted from the pathogen into the host's cell apoplast or within the cells. This study uses a comparative genomic approach to elucidate putative effectors and determine their evolutionary histories. We used OrthoMCL to identify nearly 20,000 gene families in proteomes of 16 diverse fungal species, which include 15 basidiomycetes and one ascomycete. We inferred patterns of duplication and loss for each gene family and identified families with distinctive patterns of expansion/contraction associated with the evolution of rust fungal genomes. To recognize potential contributors for the unique features of rust pathogens, we identified families harboring secreted proteins that: (i) arose or expanded in rust pathogens relative to other fungi, or (ii) contracted or were lost in rust fungal genomes. While the origin of rust fungi appears to be associated with considerable gene loss, there are many gene duplications associated with each sampled rust fungal genome. We also highlight two putative effector gene families that have expanded in Cqf that we hypothesize have roles in pathogenicity.

  11. Common mutations identified in the MLH1 gene in familial Lynch syndrome

    Directory of Open Access Journals (Sweden)

    Jisha Elias

    2017-12-01

    In this study we identified three families with Lynch syndrome from a rural cancer center in western India (KCHRC, Goraj, Gujarat, where 70-75 CRC patients are seen annually. DNA isolated from the blood of consented family members of all three families (8-10 members/family was subjected to NGS sequencing methods on an Illumina HiSeq 4000 platform. We identified unique mutations in the MLH1 gene in all three HNPCC family members. Two of the three unrelated families shared a common mutation (154delA and 156delA. Total 8 members of a family were identified as carriers for 156delA mutation of which 5 members were unaffected while 3 were affected (age of onset: 1 member <30yrs & 2 were>40yr. The family with 154delA mutation showed 2 affected members (>40yr carrying the mutations.LYS618DEL mutation found in 8 members of the third family showed that both affected and unaffected carried the mutation. Thus the common mutations identified in the MLH1 gene in two unrelated families had a high risk for lynch syndrome especially above the age of 40.

  12. Understanding the mechanisms of ATPase beta family genes for cellular thermotolerance in crossbred bulls.

    Science.gov (United States)

    Deb, Rajib; Sajjanar, Basavaraj; Singh, Umesh; Alex, Rani; Raja, T V; Alyethodi, Rafeeque R; Kumar, Sushil; Sengar, Gyanendra; Sharma, Sheetal; Singh, Rani; Prakash, B

    2015-12-01

    Na+/K+-ATPase is an integral membrane protein composed of a large catalytic subunit (alpha), a smaller glycoprotein subunit (beta), and gamma subunit. The beta subunit is essential for ion recognition as well as maintenance of the membrane integrity. Present study was aimed to analyze the expression pattern of ATPase beta subunit genes (ATPase B1, ATPase B2, and ATPase B3) among the crossbred bulls under different ambient temperatures (20-44 °C). The present study was also aimed to look into the relationship of HSP70 with the ATPase beta family genes. Our results demonstrated that among beta family genes, transcript abundance of ATPase B1 and ATPase B2 is significantly (P ATPase Β1, ATPase B2, and ATPase B3 is highly correlated (P ATPase beta family genes for cellular thermotolerance in cattle.

  13. Genome-Wide Analysis of the RNA Helicase Gene Family in Gossypium raimondii

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-03-01

    Full Text Available The RNA helicases, which help to unwind stable RNA duplexes, and have important roles in RNA metabolism, belong to a class of motor proteins that play important roles in plant development and responses to stress. Although this family of genes has been the subject of systematic investigation in Arabidopsis, rice, and tomato, it has not yet been characterized in cotton. In this study, we identified 161 putative RNA helicase genes in the genome of the diploid cotton species Gossypium raimondii. We classified these genes into three subfamilies, based on the presence of either a DEAD-box (51 genes, DEAH-box (52 genes, or DExD/H-box (58 genes in their coding regions. Chromosome location analysis showed that the genes that encode RNA helicases are distributed across all 13 chromosomes of G. raimondii. Syntenic analysis revealed that 62 of the 161 G. raimondii helicase genes (38.5% are within the identified syntenic blocks. Sixty-six (40.99% helicase genes from G. raimondii have one or several putative orthologs in tomato. Additionally, GrDEADs have more conserved gene structures and more simple domains than GrDEAHs and GrDExD/Hs. Transcriptome sequencing data demonstrated that many of these helicases, especially GrDEADs, are highly expressed at the fiber initiation stage and in mature leaves. To our knowledge, this is the first report of a genome-wide analysis of the RNA helicase gene family in cotton.

  14. Plasma Progranulin Concentrations Are Increased in Patients with Type 2 Diabetes and Obesity and Correlated with Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Hua Qu

    2013-01-01

    Full Text Available Insulin resistance (IR is considered to be one of the most important pathogenesis of glycolipid metabolism disorders. However, the molecular mechanism responsible for IR is not fully understood. Recently, the chronic inflammation has been proposed to be involved in the pathogenesis of IR. In this study, we aim to investigate the concentrations of plasma progranulin in Chinese patients with obesity (OB and type 2 diabetes mellitus (T2DM, and its relationship to IR. Plasma progranulin concentrations were significantly higher in the T2DM patients than in the normal glucose tolerant (NGT subjects (. Within the T2DM and the NGT patients, the concentrations of progranulin were significantly higher in obese subjects than that in the normal weight subjects (225.22 ± 34.39 ng/mL versus 195.59 ± 50.47 ng/mL and 183.79 ± 61.63 ng/mL versus 148.69 ± 55.27 ng/mL, . Plasma progranulin concentrations correlated positively with weight, waist circumferences, BMI, HbA1c, TG, IL-6, FINS and HOMA-IR (, while correlated negatively with HOMA-β (. Multiple linear regression analysis showed that BMI, HbA1c, IL-6 and TG correlated independently with circulating progranulin concentrations (. These results suggested that Plasma progranulin concentrations were higher in Chinese patients with type 2 diabetes and obesity and correlated closely with glycolipid metabolism, chronic inflammation and IR.

  15. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    Directory of Open Access Journals (Sweden)

    Petar Petrov

    Full Text Available "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  16. Characterization of the avian Trojan gene family reveals contrasting evolutionary constraints.

    Science.gov (United States)

    Petrov, Petar; Syrjänen, Riikka; Smith, Jacqueline; Gutowska, Maria Weronika; Uchida, Tatsuya; Vainio, Olli; Burt, David W

    2015-01-01

    "Trojan" is a leukocyte-specific, cell surface protein originally identified in the chicken. Its molecular function has been hypothesized to be related to anti-apoptosis and the proliferation of immune cells. The Trojan gene has been localized onto the Z sex chromosome. The adjacent two genes also show significant homology to Trojan, suggesting the existence of a novel gene/protein family. Here, we characterize this Trojan family, identify homologues in other species and predict evolutionary constraints on these genes. The two Trojan-related proteins in chicken were predicted as a receptor-type tyrosine phosphatase and a transmembrane protein, bearing a cytoplasmic immuno-receptor tyrosine-based activation motif. We identified the Trojan gene family in ten other bird species and found related genes in three reptiles and a fish species. The phylogenetic analysis of the homologues revealed a gradual diversification among the family members. Evolutionary analyzes of the avian genes predicted that the extracellular regions of the proteins have been subjected to positive selection. Such selection was possibly a response to evolving interacting partners or to pathogen challenges. We also observed an almost complete lack of intracellular positively selected sites, suggesting a conserved signaling mechanism of the molecules. Therefore, the contrasting patterns of selection likely correlate with the interaction and signaling potential of the molecules.

  17. Enamelin/ameloblastin gene polymorphisms in autosomal amelogenesis imperfecta among Syrian families.

    Science.gov (United States)

    Dashash, Mayssoon; Bazrafshani, Mohamed Riza; Poulton, Kay; Jaber, Saaed; Naeem, Emad; Blinkhorn, Anthony Stevenson

    2011-02-01

      This study was undertaken to investigate whether a single G deletion within a series of seven G residues (codon 196) at the exon 9-intron 9 boundary of the enamelin gene ENAM and a tri-nucleotide deletion at codon 180 in exon 7 (GGA vs deletion) of ameloblastin gene AMBN could have a role in autosomal amelogenesis imperfecta among affected Syrian families.   A new technique - size-dependent, deletion screening - was developed to detect nucleotide deletion in ENAM and AMBN genes. Twelve Syrian families with autosomal-dominant or -recessive amelogenesis imperfecta were included.   A homozygous/heterozygous mutation in the ENAM gene (152/152, 152/153) was identified in affected members of three families with autosomal-dominant amelogenesis imperfecta and one family with autosomal-recessive amelogenesis imperfecta. A heterozygous mutation (222/225) in the AMBN gene was identified. However, no disease causing mutations was found. The present findings provide useful information for the implication of ENAM gene polymorphism in autosomal-dominant/-recessive amelogenesis imperfecta.   Further investigations are required to identify other genes responsible for the various clinical phenotypes. © 2010 Blackwell Publishing Asia Pty Ltd.

  18. Transcriptomic and phylogenetic analysis of Culex pipiens quinquefasciatus for three detoxification gene families

    Directory of Open Access Journals (Sweden)

    Yan Liangzhen

    2012-11-01

    Full Text Available Abstract Background The genomes of three major mosquito vectors of human diseases, Anopheles gambiae, Aedes aegypti, and Culex pipiens quinquefasciatus, have been previously sequenced. C. p. quinquefasciatus has the largest number of predicted protein-coding genes, which partially results from the expansion of three detoxification gene families: cytochrome P450 monooxygenases (P450, glutathione S-transferases (GST, and carboxyl/cholinesterases (CCE. However, unlike An. gambiae and Ae. aegypti, which have large amounts of gene expression data, C. p. quinquefasciatus has limited transcriptomic resources. Knowledge of complete gene expression information is very important for the exploration of the functions of genes involved in specific biological processes. In the present study, the three detoxification gene families of C. p. quinquefasciatus were analyzed for phylogenetic classification and compared with those of three other dipteran insects. Gene expression during various developmental stages and the differential expression responsible for parathion resistance were profiled using the digital gene expression (DGE technique. Results A total of 302 detoxification genes were found in C. p. quinquefasciatus, including 71 CCE, 196 P450, and 35 cytosolic GST genes. Compared with three other dipteran species, gene expansion in Culex mainly occurred in the CCE and P450 families, where the genes of α-esterases, juvenile hormone esterases, and CYP325 of the CYP4 subfamily showed the most pronounced expansion on the genome. For the five DGE libraries, 3.5-3.8 million raw tags were generated and mapped to 13314 reference genes. Among 302 detoxification genes, 225 (75% were detected for expression in at least one DGE library. One fourth of the CCE and P450 genes were detected uniquely in one stage, indicating potential developmentally regulated expression. A total of 1511 genes showed different expression levels between a parathion-resistant and a

  19. Identification and description of three families with familial Alzheimer disease that segregate variants in the SORL1 gene.

    Science.gov (United States)

    Thonberg, Håkan; Chiang, Huei-Hsin; Lilius, Lena; Forsell, Charlotte; Lindström, Anna-Karin; Johansson, Charlotte; Björkström, Jenny; Thordardottir, Steinunn; Sleegers, Kristel; Van Broeckhoven, Christine; Rönnbäck, Annica; Graff, Caroline

    2017-06-09

    Alzheimer disease (AD) is a progressive neurodegenerative disorder and the most common form of dementia. The majority of AD cases are sporadic, while up to 5% are families with an early onset AD (EOAD). Mutations in one of the three genes: amyloid beta precursor protein (APP), presenilin 1 (PSEN1) or presenilin 2 (PSEN2) can be disease causing. However, most EOAD families do not carry mutations in any of these three genes, and candidate genes, such as the sortilin-related receptor 1 (SORL1), have been suggested to be potentially causative. To identify AD causative variants, we performed whole-exome sequencing on five individuals from a family with EOAD and a missense variant, p.Arg1303Cys (c.3907C > T) was identified in SORL1 which segregated with disease and was further characterized with immunohistochemistry on two post mortem autopsy cases from the same family. In a targeted re-sequencing effort on independent index patients from 35 EOAD-families, a second SORL1 variant, c.3050-2A > G, was found which segregated with the disease in 3 affected and was absent in one unaffected family member. The c.3050-2A > G variant is located two nucleotides upstream of exon 22 and was shown to cause exon 22 skipping, resulting in a deletion of amino acids Gly1017- Glu1074 of SORL1. Furthermore, a third SORL1 variant, c.5195G > C, recently identified in a Swedish case control cohort included in the European Early-Onset Dementia (EU EOD) consortium study, was detected in two affected siblings in a third family with familial EOAD. The finding of three SORL1-variants that segregate with disease in three separate families with EOAD supports the involvement of SORL1 in AD pathology. The cause of these rare monogenic forms of EOAD has proven difficult to find and the use of exome and genome sequencing may be a successful route to target them.

  20. Evidence of the innate antiviral and neuroprotective properties of progranulin.

    Directory of Open Access Journals (Sweden)

    Hyeon-Sook Suh

    Full Text Available Compelling data exist that show that normal levels of progranulin (PGRN are required for successful CNS aging. PGRN production is also modulated by inflammation and infection, but no data are available on the production and role of PGRN during CNS HIV infection.To determine the relationships between PGRN and HIV disease, neurocognition, and inflammation, we analyzed 107 matched CSF and plasma samples from CHARTER, a well-characterized HIV cohort. Levels of PGRN were determined by ELISA and compared to levels of several inflammatory mediators (IFNγ, IL-6, IL-10, IP-10, MCP-1, TNFα, IL-1β, IL-4 and IL-13, as well as clinical, virologic and demographic parameters. The relationship between HIV infection and PGRN was also examined in HIV-infected primary human microglial cultures.In plasma, PGRN levels correlated with the viral load (VL, p<0.001. In the CSF of subjects with undetectable VL, lower PGRN was associated with neurocognitive impairment (p = 0.046. CSF PGRN correlated with CSF IP-10, TNFα and IL-10, and plasma PGRN correlated with plasma IP-10. In vitro, microglial HIV infection increased PGRN production and PGRN knockdown increased HIV replication, demonstrating that PGRN is an innate antiviral protein.We propose that PGRN plays dual roles in people living with HIV disease. With active HIV replication, PGRN is induced in infected macrophages and microglia and functions as an antiviral protein. In individuals without active viral replication, decreased PGRN production contributes to neurocognitive dysfunction, probably through a diminution of its neurotrophic functions. Our results have implications for the pathogenesis, biomarker studies and therapy for HIV diseases including HIV-associated neurocognitive dysfunction (HAND.

  1. Diverse expression of sucrose transporter gene family in Zea mays

    Indian Academy of Sciences (India)

    2015-03-04

    Mar 4, 2015 ... In this study, we identified four sucrose transporter genes. (ZmSUT1 .... strand synthesis was done with forward and reverse primers designed at .... Qazi H. A., Paranjpe S. and Bhargava S. 2012 Stem sugar accu- mulation in ...

  2. Gene Panel Testing in Epileptic Encephalopathies and Familial Epilepsies

    DEFF Research Database (Denmark)

    Møller, Rikke S.; Larsen, Line H.G.; Johannesen, Katrine M.

    2016-01-01

    -causing variant in 49 (23%) of the 216 patients. The variants were found in 19 different genes including SCN1A, STXBP1, CDKL5, SCN2A, SCN8A, GABRA1, KCNA2, and STX1B. Patients with neonatal-onset epilepsies had the highest rate of positive findings (57%). The overall yield for patients with EEs was 32%, compared...

  3. Gene Panel Testing in Epileptic Encephalopathies and Familial Epilepsies

    DEFF Research Database (Denmark)

    Møller, Rikke S; Larsen, Line H G; Johannesen, Katrine M

    2016-01-01

    In recent years, several genes have been causally associated with epilepsy. However, making a genetic diagnosis in a patient can still be difficult, since extensive phenotypic and genetic heterogeneity has been observed in many monogenic epilepsies. This study aimed to analyze the genetic basis o...

  4. Genetic diversity of bitter taste receptor gene family in Sichuan ...

    Indian Academy of Sciences (India)

    Previous research had revealed that chicken has only three bitter taste receptor genes (Tas2r1, ... Journal of Genetics, DOI 10.1007/s12041-016-0684-4, Vol. ..... between red-winged blackbirds and European starlings. ... Academic Press,.

  5. The SULTR gene family in maize (Zea mays L.): Gene cloning and expression analyses under sulfate starvation and abiotic stress.

    Science.gov (United States)

    Huang, Qin; Wang, Meiping; Xia, Zongliang

    2018-01-01

    Sulfur is an essential macronutrient required for plant growth, development and stress responses. The family of sulfate transporters (SULTRs) mediates the uptake and translocation of sulfate in higher plants. However, basic knowledge of the SULTR gene family in maize (Zea mays L.) is scarce. In this study, a genome-wide bioinformatic analysis of SULTR genes in maize was conducted, and the developmental expression patterns of the genes and their responses to sulfate starvation and abiotic stress were further investigated. The ZmSULTR family includes eight putative members in the maize genome and is clustered into four groups in the phylogenetic tree. These genes displayed differential expression patterns in various organs of maize. For example, expression of ZmSULTR1;1 and ZmSULTR4;1 was high in roots, and transcript levels of ZmSULTR3;1 and ZmSULTR3;3 were high in shoots. Expression of ZmSULTR1;2, ZmSULTR2;1, ZmSULTR3;3, and ZmSULTR4;1 was high in flowers. Also, these eight genes showed differential responses to sulfate deprivation in roots and shoots of maize seedlings. Transcript levels of ZmSULTR1;1, ZmSULTR1;2, and ZmSULTR3;4 were significantly increased in roots during 12-day-sulfate starvation stress, while ZmSULTR3;3 and ZmSULTR3;5 only showed an early response pattern in shoots. In addition, dynamic transcriptional changes determined via qPCR revealed differential expression profiles of these eight ZmSULTR genes in response to environmental stresses such as salt, drought, and heat stresses. Notably, all the genes, except for ZmSULTR3;3, were induced by drought and heat stresses. However, a few genes were induced by salt stress. Physiological determination showed that two important thiol-containing compounds, cysteine and glutathione, increased significantly under these abiotic stresses. The results suggest that members of the SULTR family might function in adaptations to sulfur deficiency stress and adverse growing environments. This study will lay a

  6. Genome-Wide Analysis of the Aquaporin Gene Family in Chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Deokar, Amit A; Tar'an, Bunyamin

    2016-01-01

    Aquaporins (AQPs) are essential membrane proteins that play critical role in the transport of water and many other solutes across cell membranes. In this study, a comprehensive genome-wide analysis identified 40 AQP genes in chickpea ( Cicer arietinum L.). A complete overview of the chickpea AQP (CaAQP) gene family is presented, including their chromosomal locations, gene structure, phylogeny, gene duplication, conserved functional motifs, gene expression, and conserved promoter motifs. To understand AQP's evolution, a comparative analysis of chickpea AQPs with AQP orthologs from soybean, Medicago, common bean, and Arabidopsis was performed. The chickpea AQP genes were found on all of the chickpea chromosomes, except chromosome 7, with a maximum of six genes on chromosome 6, and a minimum of one gene on chromosome 5. Gene duplication analysis indicated that the expansion of chickpea AQP gene family might have been due to segmental and tandem duplications. CaAQPs were grouped into four subfamilies including 15 NOD26-like intrinsic proteins (NIPs), 13 tonoplast intrinsic proteins (TIPs), eight plasma membrane intrinsic proteins (PIPs), and four small basic intrinsic proteins (SIPs) based on sequence similarities and phylogenetic position. Gene structure analysis revealed a highly conserved exon-intron pattern within CaAQP subfamilies supporting the CaAQP family classification. Functional prediction based on conserved Ar/R selectivity filters, Froger's residues, and specificity-determining positions suggested wide differences in substrate specificity among the subfamilies of CaAQPs. Expression analysis of the AQP genes indicated that some of the genes are tissue-specific, whereas few other AQP genes showed differential expression in response to biotic and abiotic stresses. Promoter profiling of CaAQP genes for conserved cis -acting regulatory elements revealed enrichment of cis -elements involved in circadian control, light response, defense and stress responsiveness

  7. Genome-wide evolutionary characterization and expression analyses of WRKY family genes in Brachypodium distachyon.

    Science.gov (United States)

    Wen, Feng; Zhu, Hong; Li, Peng; Jiang, Min; Mao, Wenqing; Ong, Chermaine; Chu, Zhaoqing

    2014-06-01

    Members of plant WRKY gene family are ancient transcription factors that function in plant growth and development and respond to biotic and abiotic stresses. In our present study, we have investigated WRKY family genes in Brachypodium distachyon, a new model plant of family Poaceae. We identified a total of 86 WRKY genes from B. distachyon and explored their chromosomal distribution and evolution, domain alignment, promoter cis-elements, and expression profiles. Combining the analysis of phylogenetic tree of BdWRKY genes and the result of expression profiling, results showed that most of clustered gene pairs had higher similarities in the WRKY domain, suggesting that they might be functionally redundant. Neighbour-joining analysis of 301 WRKY domains from Oryza sativa, Arabidopsis thaliana, and B. distachyon suggested that BdWRKY domains are evolutionarily more closely related to O. sativa WRKY domains than those of A. thaliana. Moreover, tissue-specific expression profile of BdWRKY genes and their responses to phytohormones and several biotic or abiotic stresses were analysed by quantitative real-time PCR. The results showed that the expression of BdWRKY genes was rapidly regulated by stresses and phytohormones, and there was a strong correlation between promoter cis-elements and the phytohormones-induced BdWRKY gene expression. © The Author 2014. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  8. Targeted sequencing of established and candidate colorectal cancer genes in the Colon Cancer Family Registry Cohort.

    Science.gov (United States)

    Raskin, Leon; Guo, Yan; Du, Liping; Clendenning, Mark; Rosty, Christophe; Lindor, Noralane M; Gruber, Stephen B; Buchanan, Daniel D

    2017-11-07

    The underlying genetic cause of colorectal cancer (CRC) can be identified for 5-10% of all cases, while at least 20% of CRC cases are thought to be due to inherited genetic factors. Screening for highly penetrant mutations in genes associated with Mendelian cancer syndromes using next-generation sequencing (NGS) can be prohibitively expensive for studies requiring large samples sizes. The aim of the study was to identify rare single nucleotide variants and small indels in 40 established or candidate CRC susceptibility genes in 1,046 familial CRC cases (including both MSS and MSI-H tumor subtypes) and 1,006 unrelated controls from the Colon Cancer Family Registry Cohort using a robust and cost-effective DNA pooling NGS strategy. We identified 264 variants in 38 genes that were observed only in cases, comprising either very rare (minor allele frequency cancer susceptibility genes BAP1, CDH1, CHEK2, ENG, and MSH3 . For the candidate CRC genes, we identified likely pathogenic variants in the helicase domain of POLQ and in the LRIG1 , SH2B3 , and NOS1 genes and present their clinicopathological characteristics. Using a DNA pooling NGS strategy, we identified novel germline mutations in established CRC susceptibility genes in familial CRC cases. Further studies are required to support the role of POLQ , LRIG1 , SH2B3 and NOS1 as CRC susceptibility genes.

  9. Genome-wide analysis of the WRKY gene family in physic nut (Jatropha curcas L.).

    Science.gov (United States)

    Xiong, Wangdan; Xu, Xueqin; Zhang, Lin; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2013-07-25

    The WRKY proteins, which contain highly conserved WRKYGQK amino acid sequences and zinc-finger-like motifs, constitute a large family of transcription factors in plants. They participate in diverse physiological and developmental processes. WRKY genes have been identified and characterized in a number of plant species. We identified a total of 58 WRKY genes (JcWRKY) in the genome of the physic nut (Jatropha curcas L.). On the basis of their conserved WRKY domain sequences, all of the JcWRKY proteins could be assigned to one of the previously defined groups, I-III. Phylogenetic analysis of JcWRKY genes with Arabidopsis and rice WRKY genes, and separately with castor bean WRKY genes, revealed no evidence of recent gene duplication in JcWRKY gene family. Analysis of transcript abundance of JcWRKY gene products were tested in different tissues under normal growth condition. In addition, 47 WRKY genes responded to at least one abiotic stress (drought, salinity, phosphate starvation and nitrogen starvation) in individual tissues (leaf, root and/or shoot cortex). Our study provides a useful reference data set as the basis for cloning and functional analysis of physic nut WRKY genes. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. Genome-wide investigation and transcriptome analysis of the WRKY gene family in Gossypium.

    Science.gov (United States)

    Ding, Mingquan; Chen, Jiadong; Jiang, Yurong; Lin, Lifeng; Cao, YueFen; Wang, Minhua; Zhang, Yuting; Rong, Junkang; Ye, Wuwei

    2015-02-01

    WRKY transcription factors play important roles in various stress responses in diverse plant species. In cotton, this family has not been well studied, especially in relation to fiber development. Here, the genomes and transcriptomes of Gossypium raimondii and Gossypium arboreum were investigated to identify fiber development related WRKY genes. This represents the first comprehensive comparative study of WRKY transcription factors in both diploid A and D cotton species. In total, 112 G. raimondii and 109 G. arboreum WRKY genes were identified. No significant gene structure or domain alterations were detected between the two species, but many SNPs distributed unequally in exon and intron regions. Physical mapping revealed that the WRKY genes in G. arboreum were not located in the corresponding chromosomes of G. raimondii, suggesting great chromosome rearrangement in the diploid cotton genomes. The cotton WRKY genes, especially subgroups I and II, have expanded through multiple whole genome duplications and tandem duplications compared with other plant species. Sequence comparison showed many functionally divergent sites between WRKY subgroups, while the genes within each group are under strong purifying selection. Transcriptome analysis suggested that many WRKY genes participate in specific fiber development processes such as fiber initiation, elongation and maturation with different expression patterns between species. Complex WRKY gene expression such as differential Dt and At allelic gene expression in G. hirsutum and alternative splicing events were also observed in both diploid and tetraploid cottons during fiber development process. In conclusion, this study provides important information on the evolution and function of WRKY gene family in cotton species.

  11. Gene mapping in an anophthalmic pedigree of a consanguineous Pakistani family opened new horizons for research

    Directory of Open Access Journals (Sweden)

    Saleha S

    2016-06-01

    Full Text Available Clinical anophthalmia is a rare inherited disease of the eye and phenotype refers to the absence of ocular tissue in the orbit of eye. Patients may have unilateral or bilateral anophthalmia, and generally have short palpebral fissures and small orbits. Anophthalmia may be isolated or associated with a broader syndrome and may have genetic or environmental causes. However, genetic cause has been defined in only a small proportion of cases, therefore, a consanguineous Pakistani family of the Pashtoon ethnic group, with isolated clinical anophthalmia was investigated using linkage mapping. A family pedigree was created to trace the possible mode of inheritance of the disease. Blood samples were collected from affected as well as normal members of this family, and screened for disease-associated mutations. This family was analyzed for linkage to all the known loci of clinical anophthalmia, using microsatellite short tandem repeat (STR markers. Direct sequencing was performed to find out disease-associated mutations in the candidate gene. This family with isolated clinical anophthalmia, was mapped to the SOX2 gene that is located at chromosome 3q26.3-q27. However, on exonic and regulatory regions mutation screening of the SOX2 gene, the disease-associated mutation was not identified. It showed that another gene responsible for development of the eye might be present at chromosome 3q26.3-q27 and needs to be identified and screened for the disease-associated mutation in this family.

  12. Gene mapping in an anophthalmic pedigree of a consanguineous Pakistani family opened new horizons for research

    Science.gov (United States)

    Ajmal, M; Zafar, S; Hameed, A

    2016-01-01

    ABSTRACT Clinical anophthalmia is a rare inherited disease of the eye and phenotype refers to the absence of ocular tissue in the orbit of eye. Patients may have unilateral or bilateral anophthalmia, and generally have short palpebral fissures and small orbits. Anophthalmia may be isolated or associated with a broader syndrome and may have genetic or environmental causes. However, genetic cause has been defined in only a small proportion of cases, therefore, a consanguineous Pakistani family of the Pashtoon ethnic group, with isolated clinical anophthalmia was investigated using linkage mapping. A family pedigree was created to trace the possible mode of inheritance of the disease. Blood samples were collected from affected as well as normal members of this family, and screened for disease-associated mutations. This family was analyzed for linkage to all the known loci of clinical anophthalmia, using microsatellite short tandem repeat (STR) markers. Direct sequencing was performed to find out disease-associated mutations in the candidate gene. This family with isolated clinical anophthalmia, was mapped to the SOX2 gene that is located at chromosome 3q26.3-q27. However, on exonic and regulatory regions mutation screening of the SOX2 gene, the disease-associated mutation was not identified. It showed that another gene responsible for development of the eye might be present at chromosome 3q26.3-q27 and needs to be identified and screened for the disease-associated mutation in this family. PMID:27785411

  13. Gene Environment Interactions and Predictors of Colorectal Cancer in Family-Based, Multi-Ethnic Groups.

    Science.gov (United States)

    Shiao, S Pamela K; Grayson, James; Yu, Chong Ho; Wasek, Brandi; Bottiglieri, Teodoro

    2018-02-16

    For the personalization of polygenic/omics-based health care, the purpose of this study was to examine the gene-environment interactions and predictors of colorectal cancer (CRC) by including five key genes in the one-carbon metabolism pathways. In this proof-of-concept study, we included a total of 54 families and 108 participants, 54 CRC cases and 54 matched family friends representing four major racial ethnic groups in southern California (White, Asian, Hispanics, and Black). We used three phases of data analytics, including exploratory, family-based analyses adjusting for the dependence within the family for sharing genetic heritage, the ensemble method, and generalized regression models for predictive modeling with a machine learning validation procedure to validate the results for enhanced prediction and reproducibility. The results revealed that despite the family members sharing genetic heritage, the CRC group had greater combined gene polymorphism rates than the family controls ( p relation to gene-environment interactions in the prevention of CRC.

  14. Aux/IAA Gene Family in Plants: Molecular Structure, Regulation, and Function

    Directory of Open Access Journals (Sweden)

    Jie Luo

    2018-01-01

    Full Text Available Auxin plays a crucial role in the diverse cellular and developmental responses of plants across their lifespan. Plants can quickly sense and respond to changes in auxin levels, and these responses involve several major classes of auxin-responsive genes, including the Auxin/Indole-3-Acetic Acid (Aux/IAA family, the auxin response factor (ARF family, small auxin upregulated RNA (SAUR, and the auxin-responsive Gretchen Hagen3 (GH3 family. Aux/IAA proteins are short-lived nuclear proteins comprising several highly conserved domains that are encoded by the auxin early response gene family. These proteins have specific domains that interact with ARFs and inhibit the transcription of genes activated by ARFs. Molecular studies have revealed that Aux/IAA family members can form diverse dimers with ARFs to regulate genes in various ways. Functional analyses of Aux/IAA family members have indicated that they have various roles in plant development, such as root development, shoot growth, and fruit ripening. In this review, recently discovered details regarding the molecular characteristics, regulation, and protein–protein interactions of the Aux/IAA proteins are discussed. These details provide new insights into the molecular basis of the Aux/IAA protein functions in plant developmental processes.

  15. Dichotomy in the NRT gene families of dicots and grass species.

    Directory of Open Access Journals (Sweden)

    Darren Plett

    Full Text Available A large proportion of the nitrate (NO(3(- acquired by plants from soil is actively transported via members of the NRT families of NO(3(- transporters. In Arabidopsis, the NRT1 family has eight functionally characterised members and predominantly comprises low-affinity transporters; the NRT2 family contains seven members which appear to be high-affinity transporters; and there are two NRT3 (NAR2 family members which are known to participate in high-affinity transport. A modified reciprocal best hit (RBH approach was used to identify putative orthologues of the Arabidopsis NRT genes in the four fully sequenced grass genomes (maize, rice, sorghum, Brachypodium. We also included the poplar genome in our analysis to establish whether differences between Arabidopsis and the grasses may be generally applicable to monocots and dicots. Our analysis reveals fundamental differences between Arabidopsis and the grass species in the gene number and family structure of all three families of NRT transporters. All grass species possessed additional NRT1.1 orthologues and appear to lack NRT1.6/NRT1.7 orthologues. There is significant separation in the NRT2 phylogenetic tree between NRT2 genes from dicots and grass species. This indicates that determination of function of NRT2 genes in grass species will not be possible in cereals based simply on sequence homology to functionally characterised Arabidopsis NRT2 genes and that proper functional analysis will be required. Arabidopsis has a unique NRT3.2 gene which may be a fusion of the NRT3.1 and NRT3.2 genes present in all other species examined here. This work provides a framework for future analysis of NO(3(- transporters and NO(3(- transport in grass crop species.

  16. The role of IL-4 gene 70 bp VNTR and ACE gene I/D variants in Familial Mediterranean fever.

    Science.gov (United States)

    Yigit, Serbülent; Tural, Sengul; Tekcan, Akın; Tasliyurt, Turker; Inanir, Ahmet; Uzunkaya, Süheyla; Kismali, Gorkem

    2014-05-01

    Familial Mediterranean fever (FMF) is characterized by recurrent attacks of fever and inflammation in the peritoneum, synovium, or pleura, accompanied by pain. It is an autosomal recessive disease caused by mutations in the MEFV (MEditerranean FeVer) gene. Patients with similar genotypes exhibit phenotypic diversity. As a result, the variations in different genes could be responsible for the clinical findings of this disease. In previous studies genes encoding Angiotensin-Converting Enzyme (ACE) and IL-4 (Interleukin-4) were found to be associated with rheumatologic and autoimmune diseases. In the present study we hypothesized whether ACE I/D or IL-4 70 bp variable tandem repeats (VNTR) genes are associated with FMF and its clinical findings in Turkish patients. Genomic DNA obtained from 670 persons (339 patients with FMF and 331 healthy controls) was used in the study. Genotypes for an ACE gene I/D polymorphism and IL-4 gene 70 bp VNTR were determined by polymerase chain reaction with specific primers. To our knowledge, this is the first study examining ACE gene I/D polymorphism and IL-4 gene 70 bp VNTR polymorphism in FMF patients. As a result, there was a statistically significant difference between the groups with respect to genotype distribution (pACE gene DD genotype was associated with an increased risk in FMF [pACE genotype frequencies according to the clinical characteristics, we found a statistically significant association between DD+ID genotype and fever (p=0.04). In addition IL-4 gene P1P1 genotype was associated with FMF (pACE gene and P1 allele or P1P1 genotype of IL-4 gene may be important molecular markers for susceptibility of FMF. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. [PAX3 gene mutation analysis for two Waardenburg syndrome type Ⅰ families and their prenatal diagnosis].

    Science.gov (United States)

    Bai, Y; Liu, N; Kong, X D; Yan, J; Qin, Z B; Wang, B

    2016-12-07

    Objective: To analyze the mutations of PAX3 gene in two Waardenburg syndrome type Ⅰ (WS1) pedigrees and make prenatal diagnosis for the high-risk 18-week-old fetus. Methods: PAX3 gene was first analyzed by Sanger sequencing and multiplex ligation-dependent probe amplification(MLPA) for detecting pathogenic mutation of the probands of the two pedigrees. The mutations were confirmed by MLPA and Sanger in parents and unrelated healthy individuals.Prenatal genetic diagnosis for the high-risk fetus was performed by amniotic fluid cell after genotyping. Results: A heterozygous PAX3 gene gross deletion (E7 deletion) was identified in all patients from WS1-01 family, and not found in 20 healthy individuals.Prenatal diagnosis in WS1-01 family indicated that the fetus was normal. Molecular studies identified a novel deletion mutation c. 1385_1386delCT within the PAX3 gene in all affected WS1-02 family members, but in none of the unaffected relatives and 200 healthy individuals. Conclusions: PAX3 gene mutation is etiological for two WS1 families. Sanger sequencing plus MLPA is effective and accurate for making gene diagnosis and prenatal diagnosis.

  18. Distribution of mutations in the PEX gene in families with X-linked hypophosphataemic rickets (HYP).

    Science.gov (United States)

    Rowe, P S; Oudet, C L; Francis, F; Sinding, C; Pannetier, S; Econs, M J; Strom, T M; Meitinger, T; Garabedian, M; David, A; Macher, M A; Questiaux, E; Popowska, E; Pronicka, E; Read, A P; Mokrzycki, A; Glorieux, F H; Drezner, M K; Hanauer, A; Lehrach, H; Goulding, J N; O'Riordan, J L

    1997-04-01

    Mutations in the PEX gene at Xp22.1 (phosphate-regulating gene with homologies to endopeptidases, on the X-chromosome), are responsible for X-linked hypophosphataemic rickets (HYP). Homology of PEX to the M13 family of Zn2+ metallopeptidases which include neprilysin (NEP) as prototype, has raised important questions regarding PEX function at the molecular level. The aim of this study was to analyse 99 HYP families for PEX gene mutations, and to correlate predicted changes in the protein structure with Zn2+ metallopeptidase gene function. Primers flanking 22 characterised exons were used to amplify DNA by PCR, and SSCP was then used to screen for mutations. Deletions, insertions, nonsense mutations, stop codons and splice mutations occurred in 83% of families screened for in all 22 exons, and 51% of a separate set of families screened in 17 PEX gene exons. Missense mutations in four regions of the gene were informative regarding function, with one mutation in the Zn2+-binding site predicted to alter substrate enzyme interaction and catalysis. Computer analysis of the remaining mutations predicted changes in secondary structure, N-glycosylation, protein phosphorylation and catalytic site molecular structure. The wide range of mutations that align with regions required for protease activity in NEP suggests that PEX also functions as a protease, and may act by processing factor(s) involved in bone mineral metabolism.

  19. Chicken genome analysis reveals novel genes encoding biotin-binding proteins related to avidin family

    Directory of Open Access Journals (Sweden)

    Nordlund Henri R

    2005-03-01

    Full Text Available Abstract Background A chicken egg contains several biotin-binding proteins (BBPs, whose complete DNA and amino acid sequences are not known. In order to identify and characterise these genes and proteins we studied chicken cDNAs and genes available in the NCBI database and chicken genome database using the reported N-terminal amino acid sequences of chicken egg-yolk BBPs as search strings. Results Two separate hits showing significant homology for these N-terminal sequences were discovered. For one of these hits, the chromosomal location in the immediate proximity of the avidin gene family was found. Both of these hits encode proteins having high sequence similarity with avidin suggesting that chicken BBPs are paralogous to avidin family. In particular, almost all residues corresponding to biotin binding in avidin are conserved in these putative BBP proteins. One of the found DNA sequences, however, seems to encode a carboxy-terminal extension not present in avidin. Conclusion We describe here the predicted properties of the putative BBP genes and proteins. Our present observations link BBP genes together with avidin gene family and shed more light on the genetic arrangement and variability of this family. In addition, comparative modelling revealed the potential structural elements important for the functional and structural properties of the putative BBP proteins.

  20. Two Paralogous Families of a Two-Gene Subtilisin Operon Are Widely Distributed in Oral Treponemes

    Science.gov (United States)

    Correia, Frederick F.; Plummer, Alvin R.; Ellen, Richard P.; Wyss, Chris; Boches, Susan K.; Galvin, Jamie L.; Paster, Bruce J.; Dewhirst, Floyd E.

    2003-01-01

    Certain oral treponemes express a highly proteolytic phenotype and have been associated with periodontal diseases. The periodontal pathogen Treponema denticola produces dentilisin, a serine protease of the subtilisin family. The two-gene operon prcA-prtP is required for expression of active dentilisin (PrtP), a putative lipoprotein attached to the treponeme's outer membrane or sheath. The purpose of this study was to examine the diversity and structure of treponemal subtilisin-like proteases in order to better understand their distribution and function. The complete sequences of five prcA-prtP operons were determined for Treponema lecithinolyticum, “Treponema vincentii,” and two canine species. Partial operon sequences were obtained for T. socranskii subsp. 04 as well as 450- to 1,000-base fragments of prtP genes from four additional treponeme strains. Phylogenetic analysis demonstrated that the sequences fall into two paralogous families. The first family includes the sequence from T. denticola. Treponemes possessing this operon family express chymotrypsin-like protease activity and can cleave the substrate N-succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide (SAAPFNA). Treponemes possessing the second paralog family do not possess chymotrypsin-like activity or cleave SAAPFNA. Despite examination of a range of protein and peptide substrates, the specificity of the second protease family remains unknown. Each of the fully sequenced prcA and prtP genes contains a 5′ hydrophobic leader sequence with a treponeme lipobox. The two paralogous families of treponeme subtilisins represent a new subgroup within the subtilisin family of proteases and are the only subtilisin lipoprotein family. The present study demonstrated that the subtilisin paralogs comprising a two-gene operon are widely distributed among treponemes. PMID:14617650

  1. Characterization and gene expression analysis of the cir multi-gene family of plasmodium chabaudi chabaudi (AS)

    KAUST Repository

    Lawton, Jennifer

    2012-03-29

    Background: The pir genes comprise the largest multi-gene family in Plasmodium, with members found in P. vivax, P. knowlesi and the rodent malaria species. Despite comprising up to 5% of the genome, little is known about the functions of the proteins encoded by pir genes. P. chabaudi causes chronic infection in mice, which may be due to antigenic variation. In this model, pir genes are called cirs and may be involved in this mechanism, allowing evasion of host immune responses. In order to fully understand the role(s) of CIR proteins during P. chabaudi infection, a detailed characterization of the cir gene family was required.Results: The cir repertoire was annotated and a detailed bioinformatic characterization of the encoded CIR proteins was performed. Two major sub-families were identified, which have been named A and B. Members of each sub-family displayed different amino acid motifs, and were thus predicted to have undergone functional divergence. In addition, the expression of the entire cir repertoire was analyzed via RNA sequencing and microarray. Up to 40% of the cir gene repertoire was expressed in the parasite population during infection, and dominant cir transcripts could be identified. In addition, some differences were observed in the pattern of expression between the cir subgroups at the peak of P. chabaudi infection. Finally, specific cir genes were expressed at different time points during asexual blood stages.Conclusions: In conclusion, the large number of cir genes and their expression throughout the intraerythrocytic cycle of development indicates that CIR proteins are likely to be important for parasite survival. In particular, the detection of dominant cir transcripts at the peak of P. chabaudi infection supports the idea that CIR proteins are expressed, and could perform important functions in the biology of this parasite. Further application of the methodologies described here may allow the elucidation of CIR sub-family A and B protein

  2. Characterization and gene expression analysis of the cir multi-gene family of plasmodium chabaudi chabaudi (AS)

    KAUST Repository

    Lawton, Jennifer; Brugat, Thibaut; Yan, Yam Xue; Reid, Adam James; Bö hme, Ulrike; Otto, Thomas Dan; Pain, Arnab; Jackson, Andrew; Berriman, Matthew; Cunningham, Deirdre; Preiser, Peter; Langhorne, Jean

    2012-01-01

    Background: The pir genes comprise the largest multi-gene family in Plasmodium, with members found in P. vivax, P. knowlesi and the rodent malaria species. Despite comprising up to 5% of the genome, little is known about the functions of the proteins encoded by pir genes. P. chabaudi causes chronic infection in mice, which may be due to antigenic variation. In this model, pir genes are called cirs and may be involved in this mechanism, allowing evasion of host immune responses. In order to fully understand the role(s) of CIR proteins during P. chabaudi infection, a detailed characterization of the cir gene family was required.Results: The cir repertoire was annotated and a detailed bioinformatic characterization of the encoded CIR proteins was performed. Two major sub-families were identified, which have been named A and B. Members of each sub-family displayed different amino acid motifs, and were thus predicted to have undergone functional divergence. In addition, the expression of the entire cir repertoire was analyzed via RNA sequencing and microarray. Up to 40% of the cir gene repertoire was expressed in the parasite population during infection, and dominant cir transcripts could be identified. In addition, some differences were observed in the pattern of expression between the cir subgroups at the peak of P. chabaudi infection. Finally, specific cir genes were expressed at different time points during asexual blood stages.Conclusions: In conclusion, the large number of cir genes and their expression throughout the intraerythrocytic cycle of development indicates that CIR proteins are likely to be important for parasite survival. In particular, the detection of dominant cir transcripts at the peak of P. chabaudi infection supports the idea that CIR proteins are expressed, and could perform important functions in the biology of this parasite. Further application of the methodologies described here may allow the elucidation of CIR sub-family A and B protein

  3. The Mycobacterium leprae antigen 85 complex gene family: identification of the genes for the 85A, 85C, and related MPT51 proteins

    NARCIS (Netherlands)

    Rinke de Wit, T. F.; Bekelie, S.; Osland, A.; Wieles, B.; Janson, A. A.; Thole, J. E.

    1993-01-01

    The genes for two novel members (designated 85A and 85C) of the Mycobacterium leprae antigen 85 complex family of proteins and the gene for the closely related M. leprae MPT51 protein were isolated. The complete DNA sequence of the M. leprae 85C gene and partial sequences of the 85A and MPT51 genes

  4. Analysis of factor VIII gene inversions in 164 unrelated hemophilia A families

    Energy Technology Data Exchange (ETDEWEB)

    Vnencak-Jones, L.; Phillips, J.A. III; Janco, R.L. [Vanderbilt Univ. School of Medicine, Nashville, TN (United States)] [and others

    1994-09-01

    Hemophilia A is an X-linked recessive disease with variable phenotype and both heterogeneous and wide spread mutations in the factor VIII (F8) gene. As a result, diagnostic carrier or prenatal testing often relies upon laborious DNA linkage analysis. Recently, inversion mutations resulting from an intrachromosomal recombination between DNA sequences in one of two A genes {approximately}500 kb upstream from the F8 gene and a homologous A gene in intron 22 of the F8 gene were identified and found in 45% of severe hemophiliacs. We have analyzed banked DNA collected since 1986 from affected males or obligate carrier females representing 164 unrelated hemophilia A families. The disease was sporadic in 37%, familial in 54% and in 10% of families incomplete information was given. A unique deletion was identified in 1/164, a normal pattern was observed in 110/164 (67%), and 53/164 (32%) families had inversion mutations with 43/53 (81%) involving the distal A gene (R3 pattern) and 10/53 (19%) involving the proximal A gene (R2 pattern). While 19% of all rearrangements were R2, in 35 families with severe disease (< 1% VIII:C activity) all 16 rearrangements seen were R3. In 18 families with the R3 pattern and known activities, 16 (89%) had levels < 1%, with the remaining 2 families having {le} 2.4% activity. Further, 18 referrals specifically noted the production of inhibitors and 8/18 (45%) had the R3 pattern. Our findings demonstrate that the R3 inversion mutation patterns is (1) only seen with VIII:C activity levels of {le} 2.4%, (2) seen in 46% of families with severe hemophilia, (3) seen in 45% of hemophiliacs known to have inhibitors, (4) not correlated with sporadic or familial disease and (5) not in disequilibrium with the Bcl I or Taq I intron 18 or ST14 polymorphisms. Finally, in families positive for an inversion mutation, direct testing offers a highly accurate and less expensive alternative to DNA linkage analysis.

  5. Mutation analysis of pre-mRNA splicing genes in Chinese families with retinitis pigmentosa

    Science.gov (United States)

    Pan, Xinyuan; Chen, Xue; Liu, Xiaoxing; Gao, Xiang; Kang, Xiaoli; Xu, Qihua; Chen, Xuejuan; Zhao, Kanxing; Zhang, Xiumei; Chu, Qiaomei; Wang, Xiuying

    2014-01-01

    Purpose Seven genes involved in precursor mRNA (pre-mRNA) splicing have been implicated in autosomal dominant retinitis pigmentosa (adRP). We sought to detect mutations in all seven genes in Chinese families with RP, to characterize the relevant phenotypes, and to evaluate the prevalence of mutations in splicing genes in patients with adRP. Methods Six unrelated families from our adRP cohort (42 families) and two additional families with RP with uncertain inheritance mode were clinically characterized in the present study. Targeted sequence capture with next-generation massively parallel sequencing (NGS) was performed to screen mutations in 189 genes including all seven pre-mRNA splicing genes associated with adRP. Variants detected with NGS were filtered with bioinformatics analyses, validated with Sanger sequencing, and prioritized with pathogenicity analysis. Results Mutations in pre-mRNA splicing genes were identified in three individual families including one novel frameshift mutation in PRPF31 (p.Leu366fs*1) and two known mutations in SNRNP200 (p.Arg681His and p.Ser1087Leu). The patients carrying SNRNP200 p.R681H showed rapid disease progression, and the family carrying p.S1087L presented earlier onset ages and more severe phenotypes compared to another previously reported family with p.S1087L. In five other families, we identified mutations in other RP-related genes, including RP1 p. Ser781* (novel), RP2 p.Gln65* (novel) and p.Ile137del (novel), IMPDH1 p.Asp311Asn (recurrent), and RHO p.Pro347Leu (recurrent). Conclusions Mutations in splicing genes identified in the present and our previous study account for 9.5% in our adRP cohort, indicating the important role of pre-mRNA splicing deficiency in the etiology of adRP. Mutations in the same splicing gene, or even the same mutation, could correlate with different phenotypic severities, complicating the genotype–phenotype correlation and clinical prognosis. PMID:24940031

  6. The polyphenol oxidase gene family in land plants: Lineage-specific duplication and expansion

    Directory of Open Access Journals (Sweden)

    Tran Lan T

    2012-08-01

    Full Text Available Abstract Background Plant polyphenol oxidases (PPOs are enzymes that typically use molecular oxygen to oxidize ortho-diphenols to ortho-quinones. These commonly cause browning reactions following tissue damage, and may be important in plant defense. Some PPOs function as hydroxylases or in cross-linking reactions, but in most plants their physiological roles are not known. To better understand the importance of PPOs in the plant kingdom, we surveyed PPO gene families in 25 sequenced genomes from chlorophytes, bryophytes, lycophytes, and flowering plants. The PPO genes were then analyzed in silico for gene structure, phylogenetic relationships, and targeting signals. Results Many previously uncharacterized PPO genes were uncovered. The moss, Physcomitrella patens, contained 13 PPO genes and Selaginella moellendorffii (spike moss and Glycine max (soybean each had 11 genes. Populus trichocarpa (poplar contained a highly diversified gene family with 11 PPO genes, but several flowering plants had only a single PPO gene. By contrast, no PPO-like sequences were identified in several chlorophyte (green algae genomes or Arabidopsis (A. lyrata and A. thaliana. We found that many PPOs contained one or two introns often near the 3’ terminus. Furthermore, N-terminal amino acid sequence analysis using ChloroP and TargetP 1.1 predicted that several putative PPOs are synthesized via the secretory pathway, a unique finding as most PPOs are predicted to be chloroplast proteins. Phylogenetic reconstruction of these sequences revealed that large PPO gene repertoires in some species are mostly a consequence of independent bursts of gene duplication, while the lineage leading to Arabidopsis must have lost all PPO genes. Conclusion Our survey identified PPOs in gene families of varying sizes in all land plants except in the genus Arabidopsis. While we found variation in intron numbers and positions, overall PPO gene structure is congruent with the phylogenetic

  7. Genome-wide identification of the SWEET gene family in wheat.

    Science.gov (United States)

    Gao, Yue; Wang, Zi Yuan; Kumar, Vikranth; Xu, Xiao Feng; Yuan, De Peng; Zhu, Xiao Feng; Li, Tian Ya; Jia, Baolei; Xuan, Yuan Hu

    2018-02-05

    The SWEET (sugars will eventually be exported transporter) family is a newly characterized group of sugar transporters. In plants, the key roles of SWEETs in phloem transport, nectar secretion, pollen nutrition, stress tolerance, and plant-pathogen interactions have been identified. SWEET family genes have been characterized in many plant species, but a comprehensive analysis of SWEET members has not yet been performed in wheat. Here, 59 wheat SWEETs (hereafter TaSWEETs) were identified through homology searches. Analyses of phylogenetic relationships, numbers of transmembrane helices (TMHs), gene structures, and motifs showed that TaSWEETs carrying 3-7 TMHs could be classified into four clades with 10 different types of motifs. Examination of the expression patterns of 18 SWEET genes revealed that a few are tissue-specific while most are ubiquitously expressed. In addition, the stem rust-mediated expression patterns of SWEET genes were monitored using a stem rust-susceptible cultivar, 'Little Club' (LC). The resulting data showed that the expression of five out of the 18 SWEETs tested was induced following inoculation. In conclusion, we provide the first comprehensive analysis of the wheat SWEET gene family. Information regarding the phylogenetic relationships, gene structures, and expression profiles of SWEET genes in different tissues and following stem rust disease inoculation will be useful in identifying the potential roles of SWEETs in specific developmental and pathogenic processes. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members

    Directory of Open Access Journals (Sweden)

    Tianyu Zhou

    2015-01-01

    Full Text Available Peroxisome proliferators-activated receptor (PPAR gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3′ UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3′ UTR are essential for PPARs evolution and diversity functions acquired.

  9. Evolutionary Pattern and Regulation Analysis to Support Why Diversity Functions Existed within PPAR Gene Family Members.

    Science.gov (United States)

    Zhou, Tianyu; Yan, Xiping; Wang, Guosong; Liu, Hehe; Gan, Xiang; Zhang, Tao; Wang, Jiwen; Li, Liang

    2015-01-01

    Peroxisome proliferators-activated receptor (PPAR) gene family members exhibit distinct patterns of distribution in tissues and differ in functions. The purpose of this study is to investigate the evolutionary impacts on diversity functions of PPAR members and the regulatory differences on gene expression patterns. 63 homology sequences of PPAR genes from 31 species were collected and analyzed. The results showed that three isolated types of PPAR gene family may emerge from twice times of gene duplication events. The conserved domains of HOLI (ligand binding domain of hormone receptors) domain and ZnF_C4 (C4 zinc finger in nuclear in hormone receptors) are essential for keeping basic roles of PPAR gene family, and the variant domains of LCRs may be responsible for their divergence in functions. The positive selection sites in HOLI domain are benefit for PPARs to evolve towards diversity functions. The evolutionary variants in the promoter regions and 3' UTR regions of PPARs result into differential transcription factors and miRNAs involved in regulating PPAR members, which may eventually affect their expressions and tissues distributions. These results indicate that gene duplication event, selection pressure on HOLI domain, and the variants on promoter and 3' UTR are essential for PPARs evolution and diversity functions acquired.

  10. Evolutionary mechanisms driving the evolution of a large polydnavirus gene family coding for protein tyrosine phosphatases

    Directory of Open Access Journals (Sweden)

    Serbielle Céline

    2012-12-01

    Full Text Available Abstract Background Gene duplications have been proposed to be the main mechanism involved in genome evolution and in acquisition of new functions. Polydnaviruses (PDVs, symbiotic viruses associated with parasitoid wasps, are ideal model systems to study mechanisms of gene duplications given that PDV genomes consist of virulence genes organized into multigene families. In these systems the viral genome is integrated in a wasp chromosome as a provirus and virus particles containing circular double-stranded DNA are injected into the parasitoids’ hosts and are essential for parasitism success. The viral virulence factors, organized in gene families, are required collectively to induce host immune suppression and developmental arrest. The gene family which encodes protein tyrosine phosphatases (PTPs has undergone spectacular expansion in several PDV genomes with up to 42 genes. Results Here, we present strong indications that PTP gene family expansion occurred via classical mechanisms: by duplication of large segments of the chromosomally integrated form of the virus sequences (segmental duplication, by tandem duplications within this form and by dispersed duplications. We also propose a novel duplication mechanism specific to PDVs that involves viral circle reintegration into the wasp genome. The PTP copies produced were shown to undergo conservative evolution along with episodes of adaptive evolution. In particular recently produced copies have undergone positive selection in sites most likely involved in defining substrate selectivity. Conclusion The results provide evidence about the dynamic nature of polydnavirus proviral genomes. Classical and PDV-specific duplication mechanisms have been involved in the production of new gene copies. Selection pressures associated with antagonistic interactions with parasitized hosts have shaped these genes used to manipulate lepidopteran physiology with evidence for positive selection involved in

  11. Identification and characterization of NF-YB family genes in tung tree.

    Science.gov (United States)

    Yang, Susu; Wang, Yangdong; Yin, Hengfu; Guo, Haobo; Gao, Ming; Zhu, Huiping; Chen, Yicun

    2015-12-01

    The NF-YB transcription factor gene family encodes a subunit of the CCAAT box-binding factor (CBF), a highly conserved trimeric activator that strongly binds to the CCAAT box promoter element. Studies on model plants have shown that NF-YB proteins participate in important developmental and physiological processes, but little is known about NF-YB proteins in trees. Here, we identified seven NF-YB transcription factor-encoding genes in Vernicia fordii, an important oilseed tree in China. A phylogenetic analysis separated the genes into two groups; non-LEC1 type (VfNF-YB1, 5, 7, 9, 11, 13) and LEC1-type (VfNF-YB 14). A gene structure analysis showed that VfNF-YB 5 has three introns and the other genes have no introns. The seven VfNF-YB sequences contain highly conserved domains, a disordered region at the N terminus, and two long helix structures at the C terminus. Phylogenetic analyses showed that VfNF-YB family genes are highly homologous to GmNF-YB genes, and many of them are closely related to functionally characterized NF-YBs. In expression analyses of various tissues (root, stem, leaf, and kernel) and the root during pathogen infection, VfNF-YB1, 5, and 11 were dominantly expressed in kernels, and VfNF-YB7 and 9 were expressed only in the root. Different VfNF-YB family genes showed different responses to pathogen infection, suggesting that they play different roles in the pathogen response. Together, these findings represent the first extensive evaluation of the NF-YB family in tung tree and provide a foundation for dissecting the functions of VfNF-YB genes in seed development, stress adaption, fatty acid synthesis, and pathogen response.

  12. AtTZF gene family localizes to cytoplasmic foci

    OpenAIRE

    Pomeranz, Marcelo; Lin, Pei-Chi; Finer, John; Jang, Jyan-Chyun

    2010-01-01

    In eukaryotes, mRNA turnover and translational repression represent important regulatory steps in gene expression. Curiously, when under cellular stresses, factors involved in these processes aggregate into cytoplasmic foci known as Processing bodies (P-bodies) and Stress Granules (SGs). In animals, CCCH Tandem Zinc Finger (TZF) proteins play important roles in mRNA decay within P-bodies. TTP, a P-body localized mammalian TZF, can bind to the 3'UTRs of mRNAs containing AU-rich elements (AREs)...

  13. A mutation in the Norrie disease gene (NDP) associated with X-linked familial exudative vitreoretinopathy.

    Science.gov (United States)

    Chen, Z Y; Battinelli, E M; Fielder, A; Bundey, S; Sims, K; Breakefield, X O; Craig, I W

    1993-10-01

    Familial exudative vitreoretinopathy (FEVR) is a hereditary disorder characterized by an abnormality of the peripheral retina. Both autosomal dominant (adFEVR) and X-linked (XLFEVR) forms have been described, but the biochemical defect(s) underlying the symptoms are unknown. Molecular analysis of the Norrie gene locus (NDP) in a four generation FEVR family (shown previously to exhibit linkage to the X-chromosome markers DXS228 and MAOA (Xp11.4-p11.3)) reveals a missense mutation in the highly conserved region of the NDP gene, which caused a neutral amino acid substitution (Leu124Phe), was detected in all of the affected males, but not in the unaffected family members, nor in normal controls. The observations suggest that phenotypes of both XLFEVR and Norrie disease can result from mutations in the same gene.

  14. [Mutation analysis of FGFR3 gene in a family featuring hereditary dwarfism].

    Science.gov (United States)

    Zhang, Qiong; Jiang, Hai-ou; Quan, Qing-li; Li, Jun; He, Ting; Huang, Xue-shuang

    2011-12-01

    To investigate the clinical symptoms and potential mutation in FGFR3 gene for a family featuring hereditary dwarfism in order to attain diagnosis and provide prenatal diagnosis. Five patients and two unaffected relatives from the family, in addition with 100 healthy controls, were recruited. Genome DNA was extracted. Exons 10 and 13 of the FGFR3 gene were amplified using polymerase chain reaction (PCR). PCR products were sequenced in both directions. All patients had similar features including short stature, short limbs, lumbar hyperlordosis but normal craniofacial features. A heterozygous mutation G1620T (N540K) was identified in the cDNA from all patients but not in the unaffected relatives and 100 control subjects. A heterozygous G380R mutation was excluded. The hereditary dwarfism featured by this family has been caused by hypochondroplasia (HCH) due to a N540K mutation in the FGFR3 gene.

  15. Phylogenetic analysis of the MS4A and TMEM176 gene families.

    Directory of Open Access Journals (Sweden)

    Jonathan Zuccolo

    2010-02-01

    Full Text Available The MS4A gene family in humans includes CD20 (MS4A1, FcRbeta (MS4A2, Htm4 (MS4A3, and at least 13 other syntenic genes encoding membrane proteins, most having characteristic tetraspanning topology. Expression of MS4A genes is variable in tissues throughout the body; however, several are limited to cells in the hematopoietic system where they have known roles in immune cell functions. Genes in the small TMEM176 group share significant sequence similarity with MS4A genes and there is evidence of immune function of at least one of the encoded proteins. In this study, we examined the evolutionary history of the MS4A/TMEM176 families as well as tissue expression of the phylogenetically earliest members, in order to investigate their possible origins in immune cells.Orthologs of human MS4A genes were found only in mammals; however, MS4A gene homologs were found in most jawed vertebrates. TMEM176 genes were found only in mammals and bony fish. Several unusual MS4A genes having 2 or more tandem MS4A sequences were identified in the chicken (Gallus gallus and early mammals (opossum, Monodelphis domestica and platypus, Ornithorhyncus anatinus. A large number of highly conserved MS4A and TMEM176 genes was found in zebrafish (Danio rerio. The most primitive organism identified to have MS4A genes was spiny dogfish (Squalus acanthus. Tissue expression of MS4A genes in S. acanthias and D. rerio showed no evidence of expression restricted to the hematopoietic system.Our findings suggest that MS4A genes first appeared in cartilaginous fish with expression outside of the immune system, and have since diversified in many species into their modern forms with expression and function in both immune and nonimmune cells.

  16. Phylogenetic Analysis of the MS4A and TMEM176 Gene Families

    Science.gov (United States)

    Zuccolo, Jonathan; Bau, Jeremy; Childs, Sarah J.; Goss, Greg G.; Sensen, Christoph W.; Deans, Julie P.

    2010-01-01

    Background The MS4A gene family in humans includes CD20 (MS4A1), FcRβ (MS4A2), Htm4 (MS4A3), and at least 13 other syntenic genes encoding membrane proteins, most having characteristic tetraspanning topology. Expression of MS4A genes is variable in tissues throughout the body; however, several are limited to cells in the hematopoietic system where they have known roles in immune cell functions. Genes in the small TMEM176 group share significant sequence similarity with MS4A genes and there is evidence of immune function of at least one of the encoded proteins. In this study, we examined the evolutionary history of the MS4A/TMEM176 families as well as tissue expression of the phylogenetically earliest members, in order to investigate their possible origins in immune cells. Principal Findings Orthologs of human MS4A genes were found only in mammals; however, MS4A gene homologs were found in most jawed vertebrates. TMEM176 genes were found only in mammals and bony fish. Several unusual MS4A genes having 2 or more tandem MS4A sequences were identified in the chicken (Gallus gallus) and early mammals (opossum, Monodelphis domestica and platypus, Ornithorhyncus anatinus). A large number of highly conserved MS4A and TMEM176 genes was found in zebrafish (Danio rerio). The most primitive organism identified to have MS4A genes was spiny dogfish (Squalus acanthus). Tissue expression of MS4A genes in S. acanthias and D. rerio showed no evidence of expression restricted to the hematopoietic system. Conclusions/Significance Our findings suggest that MS4A genes first appeared in cartilaginous fish with expression outside of the immune system, and have since diversified in many species into their modern forms with expression and function in both immune and nonimmune cells. PMID:20186339

  17. Characterization of the bovine pregnancy-associated glycoprotein gene family – analysis of gene sequences, regulatory regions within the promoter and expression of selected genes

    Directory of Open Access Journals (Sweden)

    Walker Angela M

    2009-04-01

    Full Text Available Abstract Background The Pregnancy-associated glycoproteins (PAGs belong to a large family of aspartic peptidases expressed exclusively in the placenta of species in the Artiodactyla order. In cattle, the PAG gene family is comprised of at least 22 transcribed genes, as well as some variants. Phylogenetic analyses have shown that the PAG family segregates into 'ancient' and 'modern' groupings. Along with sequence differences between family members, there are clear distinctions in their spatio-temporal distribution and in their relative level of expression. In this report, 1 we performed an in silico analysis of the bovine genome to further characterize the PAG gene family, 2 we scrutinized proximal promoter sequences of the PAG genes to evaluate the evolution pressures operating on them and to identify putative regulatory regions, 3 we determined relative transcript abundance of selected PAGs during pregnancy and, 4 we performed preliminary characterization of the putative regulatory elements for one of the candidate PAGs, bovine (bo PAG-2. Results From our analysis of the bovine genome, we identified 18 distinct PAG genes and 14 pseudogenes. We observed that the first 500 base pairs upstream of the translational start site contained multiple regions that are conserved among all boPAGs. However, a preponderance of conserved regions, that harbor recognition sites for putative transcriptional factors (TFs, were found to be unique to the modern boPAG grouping, but not the ancient boPAGs. We gathered evidence by means of Q-PCR and screening of EST databases to show that boPAG-2 is the most abundant of all boPAG transcripts. Finally, we provided preliminary evidence for the role of ETS- and DDVL-related TFs in the regulation of the boPAG-2 gene. Conclusion PAGs represent a relatively large gene family in the bovine genome. The proximal promoter regions of these genes display differences in putative TF binding sites, likely contributing to observed

  18. Genome-wide identification and characterization of WRKY gene family in Salix suchowensis.

    Science.gov (United States)

    Bi, Changwei; Xu, Yiqing; Ye, Qiaolin; Yin, Tongming; Ye, Ning

    2016-01-01

    WRKY proteins are the zinc finger transcription factors that were first identified in plants. They can specifically interact with the W-box, which can be found in the promoter region of a large number of plant target genes, to regulate the expressions of downstream target genes. They also participate in diverse physiological and growing processes in plants. Prior to this study, a plenty of WRKY genes have been identified and characterized in herbaceous species, but there is no large-scale study of WRKY genes in willow. With the whole genome sequencing of Salix suchowensis, we have the opportunity to conduct the genome-wide research for willow WRKY gene family. In this study, we identified 85 WRKY genes in the willow genome and renamed them from SsWRKY1 to SsWRKY85 on the basis of their specific distributions on chromosomes. Due to their diverse structural features, the 85 willow WRKY genes could be further classified into three main groups (group I-III), with five subgroups (IIa-IIe) in group II. With the multiple sequence alignment and the manual search, we found three variations of the WRKYGQK heptapeptide: WRKYGRK, WKKYGQK and WRKYGKK, and four variations of the normal zinc finger motif, which might execute some new biological functions. In addition, the SsWRKY genes from the same subgroup share the similar exon-intron structures and conserved motif domains. Further studies of SsWRKY genes revealed that segmental duplication events (SDs) played a more prominent role in the expansion of SsWRKY genes. Distinct expression profiles of SsWRKY genes with RNA sequencing data revealed that diverse expression patterns among five tissues, including tender roots, young leaves, vegetative buds, non-lignified stems and barks. With the analyses of WRKY gene family in willow, it is not only beneficial to complete the functional and annotation information of WRKY genes family in woody plants, but also provide important references to investigate the expansion and evolution of

  19. Diagnosing CADASIL using MRI: evidence from families with known mutations of Notch 3 gene

    International Nuclear Information System (INIS)

    Chawda, S.J.; Lange, R.P.J. de; St-Clair, D.; Hourihan, M.D.; Halpin, S.F.S.

    2000-01-01

    Clinical data and MRI findings are presented on 18 subjects from two families with neuropathologically confirmed CADASIL. DNA analysis revealed mutations in exon 4 of Notch 3 gene in both families. All family members with mutations in Notch 3 gene had extensive abnormalities on MRI, principally lesions in the white matter of the frontal lobes and in the external capsules. Of several family members in whom a diagnosis of CADASIL was suspected on the basis of minor symptoms, one had MRI changes consistent with CADASIL; none of these cases carried a mutation in the Notch 3 gene. MRI and clinical features that may alert the radiologist to the diagnosis of CADASIL are reviewed. However, a wide differential diagnosis exists for the MRI appearances of CADASIL, including multiple sclerosis and small-vessel disease secondary to hypertension. The definitive diagnosis cannot be made on MRI alone and requires additional evidence, where available, from a positive family history and by screening DNA for mutations of Notch 3 gene. (orig.)

  20. New mutations in the NHS gene in Nance-Horan Syndrome families from the Netherlands.

    Science.gov (United States)

    Florijn, Ralph J; Loves, Willem; Maillette de Buy Wenniger-Prick, Liesbeth J J M; Mannens, Marcel M A M; Tijmes, Nel; Brooks, Simon P; Hardcastle, Alison J; Bergen, Arthur A B

    2006-09-01

    Mutations in the NHS gene cause Nance-Horan Syndrome (NHS), a rare X-chromosomal recessive disorder with variable features, including congenital cataract, microphthalmia, a peculiar form of the ear and dental anomalies. We investigated the NHS gene in four additional families with NHS from the Netherlands, by dHPLC and direct sequencing. We identified an unique mutation in each family. Three out of these four mutations were not reported before. We report here the first splice site sequence alteration mutation and three protein truncating mutations. Our results suggest that X-linked cataract and NHS are allelic disorders.

  1. Evaluation of the norrie disease gene in a family with incontinentia pigmenti.

    Science.gov (United States)

    Shastry, B S; Trese, M T

    2000-01-01

    Incontinentia pigmenti (IP) is an ectodermal multisystem disorder which can affect dental, ocular, cardiac and neurologic structures. The ocular changes of IP can have a very similar appearance to the retinal detachment of X-linked familial exudative vitreoretinopathy, which has been shown to be caused by the mutations in the Norrie disease gene. Therefore, it is of interest to determine whether similar mutations in the gene can account for the retinal pathology in patients with IP. To test our hypothesis, we have analyzed the entire Norrie disease gene for a family with IP, by single strand conformational polymorphism followed by DNA sequencing. The sequencing data revealed no disease-specific sequence alterations. These data suggest that ocular findings of IP are perhaps associated with different genes and there is no direct relationship between the genotype and phenotype. Copyright 2000 S. Karger AG, Basel

  2. Evolutionary relationship and structural characterization of the EPF/EPFL gene family.

    Directory of Open Access Journals (Sweden)

    Naoki Takata

    Full Text Available EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes.

  3. Evolutionary relationship and structural characterization of the EPF/EPFL gene family.

    Science.gov (United States)

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that AtEPF1/EPF2-like peptides form an additional disulfide bond in their loop regions and show greater flexibility in these regions than AtEPFL9/Stomagen-like peptides. This study uncovered the evolutionary relationship and the conformational divergence of proteins encoded by the EPF/EPFL family genes.

  4. Positive selection in the SLC11A1 gene in the family Equidae

    DEFF Research Database (Denmark)

    Bayerova, Zuzana; Janova, Eva; Matiasovic, Jan

    2016-01-01

    Immunity-related genes are a suitable model for studying effects of selection at the genomic level. Some of them are highly conserved due to functional constraints and purifying selection, while others are variable and change quickly to cope with the variation of pathogens. The SLC11A1 gene encodes...... a transporter protein mediating antimicrobial activity of macrophages. Little is known about the patterns of selection shaping this gene during evolution. Although it is a typical evolutionarily conserved gene, functionally important polymorphisms associated with various diseases were identified in humans...... and other species. We analyzed the genomic organization, genetic variation, and evolution of the SLC11A1 gene in the family Equidae to identify patterns of selection within this important gene. Nucleotide SLC11A1 sequences were shown to be highly conserved in ten equid species, with more than 97 % sequence...

  5. Genome-wide identification and characterization of the SBP-box gene family in Petunia.

    Science.gov (United States)

    Zhou, Qin; Zhang, Sisi; Chen, Feng; Liu, Baojun; Wu, Lan; Li, Fei; Zhang, Jiaqi; Bao, Manzhu; Liu, Guofeng

    2018-03-12

    SQUAMOSA PROMOTER BINDING PROTEIN (SBP)-box genes encode a family of plant-specific transcription factors (TFs) that play important roles in many growth and development processes including phase transition, leaf initiation, shoot and inflorescence branching, fruit development and ripening etc. The SBP-box gene family has been identified and characterized in many species, but has not been well studied in Petunia, an important ornamental genus. We identified 21 putative SPL genes of Petunia axillaris and P. inflata from the reference genome of P. axillaris N and P. inflata S6, respectively, which were supported by the transcriptome data. For further confirmation, all the 21 genes were also cloned from P. hybrida line W115 (Mitchel diploid). Phylogenetic analysis based on the highly conserved SBP domains arranged PhSPLs in eight groups, analogous to those from Arabidopsis and tomato. Furthermore, the Petunia SPL genes had similar exon-intron structure and the deduced proteins contained very similar conserved motifs within the same subgroup. Out of 21 PhSPL genes, fourteen were predicted to be potential targets of PhmiR156/157, and the putative miR156/157 response elements (MREs) were located in the coding region of group IV, V, VII and VIII genes, but in the 3'-UTR regions of group VI genes. SPL genes were also identified from another two wild Petunia species, P. integrifolia and P. exserta, based on their transcriptome databases to investigate the origin of PhSPLs. Phylogenetic analysis and multiple alignments of the coding sequences of PhSPLs and their orthologs from wild species indicated that PhSPLs were originated mainly from P. axillaris. qRT-PCR analysis demonstrated differential spatiotemperal expression patterns of PhSPL genes in petunia and many were expressed predominantly in the axillary buds and/or inflorescences. In addition, overexpression of PhSPL9a and PhSPL9b in Arabidopsis suggested that these genes play a conserved role in promoting the vegetative

  6. Phylogenetic analysis of the expansion of the MATH-BTB gene family in the grasses.

    Science.gov (United States)

    Juranić, Martina; Dresselhaus, Thomas

    2014-01-01

    MATH-BTB proteins are known to act as substrate-specific adaptors of cullin3 (CUL3)-based ubiquitin E3 ligases to target protein for ubiquitination. In a previous study we reported the presence of 31 MATH-BTB genes in the maize genome and determined the regulatory role of the MATH-BTB protein MAB1 during meiosis to mitosis transition. In contrast to maize, there are only 6 homologous genes in the model plant Arabidopsis, while this family has largely expanded in grasses. Here, we report a phylogenetic analysis of the MATH-BTB gene family in 9 land plant species including various mosses, eudicots, and grasses. We extend a previous classification of the plant MATH-BTB family and additionally arrange the expanded group into 5 grass-specific clades. Synteny studies indicate that expansion occurred to a large extent due to local gene duplications. Expression studies of 3 closely related MATH-BTB genes in maize (MAB1-3) indicate highly specific expression pattern. In summary, this work provides a solid base for further studies comparing genetic and functional information of the MATH-BTB family especially in the grasses.

  7. [Study of gene mutation and pathogenetic mechanism for a family with Waardenburg syndrome].

    Science.gov (United States)

    Chen, Hongsheng; Liao, Xinbin; Liu, Yalan; He, Chufeng; Zhang, Hua; Jiang, Lu; Feng, Yong; Mei, Lingyun

    2017-08-10

    To explore the pathogenetic mechanism of a family affected with Waardenburg syndrome. Clinical data of the family was collected. Potential mutation of the MITF, SOX10 and SNAI2 genes were screened. Plasmids for wild type (WT) and mutant MITF proteins were constructed to determine their exogenous expression and subcellular distribution by Western blotting and immunofluorescence assay, respectively. A heterozygous c.763C>T (p.R255X) mutation was detected in exon 8 of the MITF gene in the proband and all other patients from the family. No pathological mutation of the SOX10 and SNAI2 genes was detected. The DNA sequences of plasmids of MITF wild and mutant MITF R255X were confirmed. Both proteins were detected with the expected size. WT MITF protein only localized in the nucleus, whereas R255X protein showed aberrant localization in the nucleus as well as the cytoplasm. The c.763C>T mutation of the MITF gene probably underlies the disease in this family. The mutation can affect the subcellular distribution of MITF proteins in vitro, which may shed light on the molecular mechanism of Waardenburg syndrome caused by mutations of the MITF gene.

  8. Elevated TMEM106B levels exaggerate lipofuscin accumulation and lysosomal dysfunction in aged mice with progranulin deficiency.

    Science.gov (United States)

    Zhou, Xiaolai; Sun, Lirong; Brady, Owen Adam; Murphy, Kira A; Hu, Fenghua

    2017-01-26

    Mutations resulting in haploinsufficiency of progranulin (PGRN) cause frontotemporal lobar degeneration with TDP-43-positive inclusions (FTLD-TDP), a devastating neurodegenerative disease. Accumulating evidence suggest a crucial role of progranulin in maintaining proper lysosomal function during aging. TMEM106B has been identified as a risk factor for frontotemporal lobar degeneration with progranulin mutations and elevated mRNA and protein levels of TMEM106B are associated with increased risk for frontotemporal lobar degeneration. Increased levels of TMEM106B alter lysosomal morphology and interfere with lysosomal degradation. However, how progranulin and TMEM106B interact to regulate lysosomal function and frontotemporal lobar degeneration (FTLD) disease progression is still unclear. Here we report that progranulin deficiency leads to increased TMEM106B protein levels in the mouse cortex with aging. To mimic elevated levels of TMEM106B in frontotemporal lobar degeneration (FTLD) cases, we generated transgenic mice expressing TMEM106B under the neuronal specific promoter, CamKII. Surprisingly, we found that the total protein levels of TMEM106B are not altered despite the expression of the TMEM106B transgene at mRNA and protein levels, suggesting a tight regulation of TMEM106B protein levels in the mouse brain. However, progranulin deficiency results in accumulation of TMEM106B protein from the transgene expression during aging, which is accompanied by exaggerated lysosomal abnormalities and increased lipofuscin accumulation. In summary, our mouse model nicely recapitulates the interaction between progranulin and TMEM106B in human patients and supports a critical role of lysosomal dysfunction in the frontotemporal lobar degeneration (FTLD) disease progression.

  9. Prevalence of variations in melanoma susceptibility genes among Slovenian melanoma families

    Directory of Open Access Journals (Sweden)

    Besic Nikola

    2008-09-01

    Full Text Available Abstract Background Two high-risk genes have been implicated in the development of CM (cutaneous melanoma. Germline mutations of the CDKN2A gene are found in CDK4 gene reported to date. Beside those high penetrance genes, certain allelic variants of the MC1R gene modify the risk of developing the disease. The aims of our study were: to determine the prevalence of germline CDKN2A mutations and variants in members of families with familial CM and in patients with multiple primary CM; to search for possible CDK4 mutations, and to determine the frequency of variations in the MC1R gene. Methods From January 2001 until January 2007, 64 individuals were included in the study. The group included 28 patients and 7 healthy relatives belonging to 25 families, 26 patients with multiple primary tumors and 3 children with CM. Additionally 54 healthy individuals were included as a control group. Mutations and variants of the melanoma susceptibility genes were identified by direct sequencing. Results Seven families with CDKN2A mutations were discovered (7/25 or 28.0%. The L94Q mutation found in one family had not been previously reported in other populations. The D84N variant, with possible biological impact, was discovered in the case of patient without family history but with multiple primary CM. Only one mutation carrier was found in the control group. Further analysis revealed that c.540C>T heterozygous carriers were more common in the group of CM patients and their healthy relatives (11/64 vs. 2/54. One p14ARF variant was discovered in the control group and no mutations of the CDK4 gene were found. Most frequently found variants of the MC1R gene were T314T, V60L, V92M, R151C, R160W and R163Q with frequencies slightly higher in the group of patients and their relatives than in the group of controls, but the difference was statistically insignificant. Conclusion The present study has shown high prevalence of p16INK4A mutations in Slovenian population of

  10. Comprehensive identification and expression analysis of Hsp90s gene family in Solanum lycopersicum.

    Science.gov (United States)

    Zai, W S; Miao, L X; Xiong, Z L; Zhang, H L; Ma, Y R; Li, Y L; Chen, Y B; Ye, S G

    2015-07-14

    Heat shock protein 90 (Hsp90) is a protein produced by plants in response to adverse environmental stresses. In this study, we identified and analyzed Hsp90 gene family members using a bioinformatic method based on genomic data from tomato (Solanum lycopersicum L.). The results illustrated that tomato contains at least 7 Hsp90 genes distributed on 6 chromosomes; protein lengths ranged from 267-794 amino acids. Intron numbers ranged from 2-19 in the genes. The phylogenetic tree revealed that Hsp90 genes in tomato (Solanum lycopersicum L.), rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana L.) could be divided into 5 groups, which included 3 pairs of orthologous genes and 4 pairs of paralogous genes. Expression analysis of RNA-sequence data showed that the Hsp90-1 gene was specifically expressed in mature fruits, while Hsp90-5 and Hsp90-6 showed opposite expression patterns in various tissues of cultivated and wild tomatoes. The expression levels of the Hsp90-1, Hsp90-2, and Hsp90- 3 genes in various tissues of cultivated tomatoes were high, while both the expression levels of genes Hsp90-3 and Hsp90-4 were low. Additionally, quantitative real-time polymerase chain reaction showed that these genes were involved in the responses to yellow leaf curl virus in tomato plant leaves. Our results provide a foundation for identifying the function of the Hsp90 gene in tomato.

  11. Characterization of Soybean WRKY Gene Family and Identification of Soybean WRKY Genes that Promote Resistance to Soybean Cyst Nematode.

    Science.gov (United States)

    Yang, Yan; Zhou, Yuan; Chi, Yingjun; Fan, Baofang; Chen, Zhixiang

    2017-12-19

    WRKY proteins are a superfamily of plant transcription factors with important roles in plants. WRKY proteins have been extensively analyzed in plant species including Arabidopsis and rice. Here we report characterization of soybean WRKY gene family and their functional analysis in resistance to soybean cyst nematode (SCN), the most important soybean pathogen. Through search of the soybean genome, we identified 174 genes encoding WRKY proteins that can be classified into seven groups as established in other plants. WRKY variants including a WRKY-related protein unique to legumes have also been identified. Expression analysis reveals both diverse expression patterns in different soybean tissues and preferential expression of specific WRKY groups in certain tissues. Furthermore, a large number of soybean WRKY genes were responsive to salicylic acid. To identify soybean WRKY genes that promote soybean resistance to SCN, we first screened soybean WRKY genes for enhancing SCN resistance when over-expressed in transgenic soybean hairy roots. To confirm the results, we transformed five WRKY genes into a SCN-susceptible soybean cultivar and generated transgenic soybean lines. Transgenic soybean lines overexpressing three WRKY transgenes displayed increased resistance to SCN. Thus, WRKY genes could be explored to develop new soybean cultivars with enhanced resistance to SCN.

  12. X-exome sequencing of 405 unresolved families identifies seven novel intellectual disability genes.

    Science.gov (United States)

    Hu, H; Haas, S A; Chelly, J; Van Esch, H; Raynaud, M; de Brouwer, A P M; Weinert, S; Froyen, G; Frints, S G M; Laumonnier, F; Zemojtel, T; Love, M I; Richard, H; Emde, A-K; Bienek, M; Jensen, C; Hambrock, M; Fischer, U; Langnick, C; Feldkamp, M; Wissink-Lindhout, W; Lebrun, N; Castelnau, L; Rucci, J; Montjean, R; Dorseuil, O; Billuart, P; Stuhlmann, T; Shaw, M; Corbett, M A; Gardner, A; Willis-Owen, S; Tan, C; Friend, K L; Belet, S; van Roozendaal, K E P; Jimenez-Pocquet, M; Moizard, M-P; Ronce, N; Sun, R; O'Keeffe, S; Chenna, R; van Bömmel, A; Göke, J; Hackett, A; Field, M; Christie, L; Boyle, J; Haan, E; Nelson, J; Turner, G; Baynam, G; Gillessen-Kaesbach, G; Müller, U; Steinberger, D; Budny, B; Badura-Stronka, M; Latos-Bieleńska, A; Ousager, L B; Wieacker, P; Rodríguez Criado, G; Bondeson, M-L; Annerén, G; Dufke, A; Cohen, M; Van Maldergem, L; Vincent-Delorme, C; Echenne, B; Simon-Bouy, B; Kleefstra, T; Willemsen, M; Fryns, J-P; Devriendt, K; Ullmann, R; Vingron, M; Wrogemann, K; Wienker, T F; Tzschach, A; van Bokhoven, H; Gecz, J; Jentsch, T J; Chen, W; Ropers, H-H; Kalscheuer, V M

    2016-01-01

    X-linked intellectual disability (XLID) is a clinically and genetically heterogeneous disorder. During the past two decades in excess of 100 X-chromosome ID genes have been identified. Yet, a large number of families mapping to the X-chromosome remained unresolved suggesting that more XLID genes or loci are yet to be identified. Here, we have investigated 405 unresolved families with XLID. We employed massively parallel sequencing of all X-chromosome exons in the index males. The majority of these males were previously tested negative for copy number variations and for mutations in a subset of known XLID genes by Sanger sequencing. In total, 745 X-chromosomal genes were screened. After stringent filtering, a total of 1297 non-recurrent exonic variants remained for prioritization. Co-segregation analysis of potential clinically relevant changes revealed that 80 families (20%) carried pathogenic variants in established XLID genes. In 19 families, we detected likely causative protein truncating and missense variants in 7 novel and validated XLID genes (CLCN4, CNKSR2, FRMPD4, KLHL15, LAS1L, RLIM and USP27X) and potentially deleterious variants in 2 novel candidate XLID genes (CDK16 and TAF1). We show that the CLCN4 and CNKSR2 variants impair protein functions as indicated by electrophysiological studies and altered differentiation of cultured primary neurons from Clcn4(-/-) mice or after mRNA knock-down. The newly identified and candidate XLID proteins belong to pathways and networks with established roles in cognitive function and intellectual disability in particular. We suggest that systematic sequencing of all X-chromosomal genes in a cohort of patients with genetic evidence for X-chromosome locus involvement may resolve up to 58% of Fragile X-negative cases.

  13. New mutation of the MPZ gene in a family with the Dejerine-Sottas disease phenotype.

    Science.gov (United States)

    Floroskufi, Paraskewi; Panas, Marios; Karadima, Georgia; Vassilopoulos, Demetris

    2007-05-01

    Charcot-Marie-Tooth disease type 1B is associated with mutations in the myelin protein zero gene. In the present study a new myelin protein zero gene mutation (c.89T>C,Ile30Thr) was detected in a family with the Dejerine-Sottas disease phenotype. The results support the hypothesis that severe, early-onset neuropathy may be related to either an alteration of a conserved amino acid or a disruption of the tertiary structure of myelin protein zero.

  14. Genome-wide analysis of the GRAS gene family in Prunus mume.

    Science.gov (United States)

    Lu, Jiuxing; Wang, Tao; Xu, Zongda; Sun, Lidan; Zhang, Qixiang

    2015-02-01

    Prunus mume is an ornamental flower and fruit tree in Rosaceae. We investigated the GRAS gene family to improve the breeding and cultivation of P. mume and other Rosaceae fruit trees. The GRAS gene family encodes transcriptional regulators that have diverse functions in plant growth and development, such as gibberellin and phytochrome A signal transduction, root radial patterning, and axillary meristem formation and gametogenesis in the P. mume genome. Despite the important roles of these genes in plant growth regulation, no findings on the GRAS genes of P. mume have been reported. In this study, we discerned phylogenetic relationships of P. mume GRAS genes, and their locations, structures in the genome and expression levels of different tissues. Out of 46 identified GRAS genes, 45 were located on the 8 P. mume chromosomes. Phylogenetic results showed that these genes could be classified into 11 groups. We found that Group X was P. mume-specific, and three genes of Group IX clustered with the rice-specific gene Os4. We speculated that these genes existed before the divergence of dicotyledons and monocotyledons and were lost in Arabidopsis. Tissue expression analysis indicated that 13 genes showed high expression levels in roots, stems, leaves, flowers and fruits, and were related to plant growth and development. Functional analysis of 24 GRAS genes and an orthologous relationship analysis indicated that many functioned during plant growth and flower and fruit development. Our bioinformatics analysis provides valuable information to improve the economic, agronomic and ecological benefits of P. mume and other Rosaceae fruit trees.

  15. Genome-wide analysis of the WRKY gene family in cotton.

    Science.gov (United States)

    Dou, Lingling; Zhang, Xiaohong; Pang, Chaoyou; Song, Meizhen; Wei, Hengling; Fan, Shuli; Yu, Shuxun

    2014-12-01

    WRKY proteins are major transcription factors involved in regulating plant growth and development. Although many studies have focused on the functional identification of WRKY genes, our knowledge concerning many areas of WRKY gene biology is limited. For example, in cotton, the phylogenetic characteristics, global expression patterns, molecular mechanisms regulating expression, and target genes/pathways of WRKY genes are poorly characterized. Therefore, in this study, we present a genome-wide analysis of the WRKY gene family in cotton (Gossypium raimondii and Gossypium hirsutum). We identified 116 WRKY genes in G. raimondii from the completed genome sequence, and we cloned 102 WRKY genes in G. hirsutum. Chromosomal location analysis indicated that WRKY genes in G. raimondii evolved mainly from segmental duplication followed by tandem amplifications. Phylogenetic analysis of alga, bryophyte, lycophyta, monocot and eudicot WRKY domains revealed family member expansion with increasing complexity of the plant body. Microarray, expression profiling and qRT-PCR data revealed that WRKY genes in G. hirsutum may regulate the development of fibers, anthers, tissues (roots, stems, leaves and embryos), and are involved in the response to stresses. Expression analysis showed that most group II and III GhWRKY genes are highly expressed under diverse stresses. Group I members, representing the ancestral form, seem to be insensitive to abiotic stress, with low expression divergence. Our results indicate that cotton WRKY genes might have evolved by adaptive duplication, leading to sensitivity to diverse stresses. This study provides fundamental information to inform further analysis and understanding of WRKY gene functions in cotton species.

  16. Restoration of Progranulin Expression Rescues Cortical Neuron Generation in an Induced Pluripotent Stem Cell Model of Frontotemporal Dementia

    Directory of Open Access Journals (Sweden)

    Susanna Raitano

    2015-01-01

    Full Text Available To understand how haploinsufficiency of progranulin (PGRN causes frontotemporal dementia (FTD, we created induced pluripotent stem cells (iPSCs from patients carrying the GRNIVS1+5G > C mutation (FTD-iPSCs. FTD-iPSCs were fated to cortical neurons, the cells most affected in FTD. Although generation of neuroprogenitors was unaffected, their further differentiation into CTIP2-, FOXP2-, or TBR1-TUJ1 double-positive cortical neurons, but not motorneurons, was significantly decreased in FTD-neural progeny. Zinc finger nuclease-mediated introduction of GRN cDNA into the AAVS1 locus corrected defects in cortical neurogenesis, demonstrating that PGRN haploinsufficiency causes inefficient cortical neuron generation. RNA sequencing analysis confirmed reversal of the altered gene expression profile following genetic correction. We identified the Wnt signaling pathway as one of the top defective pathways in FTD-iPSC-derived neurons, which was reversed following genetic correction. Differentiation of FTD-iPSCs in the presence of a WNT inhibitor mitigated defective corticogenesis. Therefore, we demonstrate that PGRN haploinsufficiency hampers corticogenesis in vitro.

  17. Genome-wide survey and characterization of the WRKY gene family in Populus trichocarpa.

    Science.gov (United States)

    He, Hongsheng; Dong, Qing; Shao, Yuanhua; Jiang, Haiyang; Zhu, Suwen; Cheng, Beijiu; Xiang, Yan

    2012-07-01

    WRKY transcription factors participate in diverse physiological and developmental processes in plants. They have highly conserved WRKYGQK amino acid sequences in their N-termini, followed by the novel zinc-finger-like motifs, Cys₂His₂ or Cys₂HisCys. To date, numerous WRKY genes have been identified and characterized in a number of herbaceous species. Survey and characterization of WRKY genes in a ligneous species would facilitate a better understanding of the evolutionary processes and functions of this gene family. In this study, 104 poplar WRKY genes (PtWRKY) were identified in the latest poplar genome sequence. According to their structural features, the predicted members were divided into the previously defined groups I-III, as described in rice. In addition, chromosomal localization of the genes demonstrated that there might be WRKY gene hot spots in 2.3 Mb regions on chromosome 14. Furthermore, approximately 83% (86 out of 104) WRKY genes participated in gene duplication events, including 69% (29 out of 42) gene pairs which exhibited segmental duplication. Using semi-quantitative RT-PCR, the expression patterns of subgroup III genes were investigated under different stresses [cold, drought, salinity and salicylic acid (SA)]. The data revealed that these genes presented different expression levels in response to various stress conditions. Expression analysis exhibited PtWRKY76 gene induced markedly in 0.1 mM SA or 25% PEG-6000 treatment. The results presented here provide a fundamental clue for cloning specific function genes in further studies and applications. This study identified 104 poplar WRKY genes and demonstrated WRKY gene hot spots on chromosome 14. Furthermore, semi-quantitative RT-PCR showed variable stress responses in subgroup III.

  18. Diversification and evolution of the SDG gene family in Brassica rapa after the whole genome triplication.

    Science.gov (United States)

    Dong, Heng; Liu, Dandan; Han, Tianyu; Zhao, Yuxue; Sun, Ji; Lin, Sue; Cao, Jiashu; Chen, Zhong-Hua; Huang, Li

    2015-11-24

    Histone lysine methylation, controlled by the SET Domain Group (SDG) gene family, is part of the histone code that regulates chromatin function and epigenetic control of gene expression. Analyzing the SDG gene family in Brassica rapa for their gene structure, domain architecture, subcellular localization, rate of molecular evolution and gene expression pattern revealed common occurrences of subfunctionalization and neofunctionalization in BrSDGs. In comparison with Arabidopsis thaliana, the BrSDG gene family was found to be more divergent than AtSDGs, which might partly explain the rich variety of morphotypes in B. rapa. In addition, a new evolutionary pattern of the four main groups of SDGs was presented, in which the Trx group and the SUVR subgroup evolved faster than the E(z), Ash groups and the SUVH subgroup. These differences in evolutionary rate among the four main groups of SDGs are perhaps due to the complexity and variability of the regions that bind with biomacromolecules, which guide SDGs to their target loci.

  19. [Genome-wide identification and bioinformatic analysis of PPR gene family in tomato].

    Science.gov (United States)

    Ding, Anming; Li, Ling; Qu, Xu; Sun, Tingting; Chen, Yaqiong; Zong, Peng; Li, Zunqiang; Gong, Daping; Sun, Yuhe

    2014-01-01

    Pentatricopeptide repeats (PPRs) genes constitute one of the largest gene families in plants, which play a broad and essential role in plant growth and development. In this study, the protein sequences annotated by the tomato (S. lycopersicum L.) genome project were screened with the Pfam PPR sequences. A total of 471 putative PPR-encoding genes were identified. Based on the motifs defined in A. thaliana L., protein structure and conserved sequences for each tomato motif were analyzed. We also analyzed phylogenetic relationship, subcellular localization, expression and GO analysis of the identified gene sequences. Our results demonstrate that tomato PPR gene family contains two subfamilies, P and PLS, each accounting for half of the family. PLS subfamily can be divided into four subclasses i.e., PLS, E, E+ and DYW. Each subclass of sequences forms a clade in the phylogenetic tree. The PPR motifs were found highly conserved among plants. The tomato PPR genes were distributed over 12 chromosomes and most of them lack introns. The majority of PPR proteins harbor mitochondrial or chloroplast localization sequences, whereas GO analysis showed that most PPR proteins participate in RNA-related biological processes.

  20. Rapid expansion of the protein disulfide isomerase gene family facilitates the folding of venom peptides

    DEFF Research Database (Denmark)

    Safavi-Hemami, Helena; Li, Qing; Jackson, Ronneshia L.

    2016-01-01

    Formation of correct disulfide bonds in the endoplasmic reticulum is a crucial step for folding proteins destined for secretion. Protein disulfide isomerases (PDIs) play a central role in this process. We report a previously unidentified, hypervariable family of PDIs that represents the most...... diverse gene family of oxidoreductases described in a single genus to date. These enzymes are highly expressed specifically in the venom glands of predatory cone snails, animals that synthesize a remarkably diverse set of cysteine-rich peptide toxins (conotoxins). Enzymes in this PDI family, termed...

  1. The nuclear IκB family of proteins controls gene regulation and immune homeostasis.

    Science.gov (United States)

    MaruYama, Takashi

    2015-10-01

    The inhibitory IκB family of proteins is subdivided into two groups based on protein localization in the cytoplasm or in the nucleus. These proteins interact with NF-κB, a major transcription factor regulating the expression of many inflammatory cytokines, by modulating its transcriptional activity. However, nuclear IκB family proteins not only interact with NF-κB to change its transcriptional activity, but they also bind to chromatin and control gene expression. This review provides an overview of nuclear IκB family proteins and their role in immune homeostasis. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Comparative genomic analysis of the WRKY III gene family in populus, grape, arabidopsis and rice.

    Science.gov (United States)

    Wang, Yiyi; Feng, Lin; Zhu, Yuxin; Li, Yuan; Yan, Hanwei; Xiang, Yan

    2015-09-08

    WRKY III genes have significant functions in regulating plant development and resistance. In plant, WRKY gene family has been studied in many species, however, there still lack a comprehensive analysis of WRKY III genes in the woody plant species poplar, three representative lineages of flowering plant species are incorporated in most analyses: Arabidopsis (a model plant for annual herbaceous dicots), grape (one model plant for perennial dicots) and Oryza sativa (a model plant for monocots). In this study, we identified 10, 6, 13 and 28 WRKY III genes in the genomes of Populus trichocarpa, grape (Vitis vinifera), Arabidopsis thaliana and rice (Oryza sativa), respectively. Phylogenetic analysis revealed that the WRKY III proteins could be divided into four clades. By microsynteny analysis, we found that the duplicated regions were more conserved between poplar and grape than Arabidopsis or rice. We dated their duplications by Ks analysis of Populus WRKY III genes and demonstrated that all the blocks were formed after the divergence of monocots and dicots. Strong purifying selection has played a key role in the maintenance of WRKY III genes in Populus. Tissue expression analysis of the WRKY III genes in Populus revealed that five were most highly expressed in the xylem. We also performed quantitative real-time reverse transcription PCR analysis of WRKY III genes in Populus treated with salicylic acid, abscisic acid and polyethylene glycol to explore their stress-related expression patterns. This study highlighted the duplication and diversification of the WRKY III gene family in Populus and provided a comprehensive analysis of this gene family in the Populus genome. Our results indicated that the majority of WRKY III genes of Populus was expanded by large-scale gene duplication. The expression pattern of PtrWRKYIII gene identified that these genes play important roles in the xylem during poplar growth and development, and may play crucial role in defense to drought

  3. Gene Environment Interactions and Predictors of Colorectal Cancer in Family-Based, Multi-Ethnic Groups

    Directory of Open Access Journals (Sweden)

    S. Pamela K. Shiao

    2018-02-01

    Full Text Available For the personalization of polygenic/omics-based health care, the purpose of this study was to examine the gene–environment interactions and predictors of colorectal cancer (CRC by including five key genes in the one-carbon metabolism pathways. In this proof-of-concept study, we included a total of 54 families and 108 participants, 54 CRC cases and 54 matched family friends representing four major racial ethnic groups in southern California (White, Asian, Hispanics, and Black. We used three phases of data analytics, including exploratory, family-based analyses adjusting for the dependence within the family for sharing genetic heritage, the ensemble method, and generalized regression models for predictive modeling with a machine learning validation procedure to validate the results for enhanced prediction and reproducibility. The results revealed that despite the family members sharing genetic heritage, the CRC group had greater combined gene polymorphism rates than the family controls (p < 0.05, on MTHFR C677T, MTR A2756G, MTRR A66G, and DHFR 19 bp except MTHFR A1298C. Four racial groups presented different polymorphism rates for four genes (all p < 0.05 except MTHFR A1298C. Following the ensemble method, the most influential factors were identified, and the best predictive models were generated by using the generalized regression models, with Akaike’s information criterion and leave-one-out cross validation methods. Body mass index (BMI and gender were consistent predictors of CRC for both models when individual genes versus total polymorphism counts were used, and alcohol use was interactive with BMI status. Body mass index status was also interactive with both gender and MTHFR C677T gene polymorphism, and the exposure to environmental pollutants was an additional predictor. These results point to the important roles of environmental and modifiable factors in relation to gene–environment interactions in the prevention of CRC.

  4. Genome-wide identification and expression analysis of the WRKY gene family in cassava

    Directory of Open Access Journals (Sweden)

    Yunxie eWei

    2016-02-01

    Full Text Available The WRKY family, a large family of transcription factors (TFs found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta. In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing 3 exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  5. Genome-Wide Identification and Expression Analysis of the WRKY Gene Family in Cassava.

    Science.gov (United States)

    Wei, Yunxie; Shi, Haitao; Xia, Zhiqiang; Tie, Weiwei; Ding, Zehong; Yan, Yan; Wang, Wenquan; Hu, Wei; Li, Kaimian

    2016-01-01

    The WRKY family, a large family of transcription factors (TFs) found in higher plants, plays central roles in many aspects of physiological processes and adaption to environment. However, little information is available regarding the WRKY family in cassava (Manihot esculenta). In the present study, 85 WRKY genes were identified from the cassava genome and classified into three groups according to conserved WRKY domains and zinc-finger structure. Conserved motif analysis showed that all of the identified MeWRKYs had the conserved WRKY domain. Gene structure analysis suggested that the number of introns in MeWRKY genes varied from 1 to 5, with the majority of MeWRKY genes containing three exons. Expression profiles of MeWRKY genes in different tissues and in response to drought stress were analyzed using the RNA-seq technique. The results showed that 72 MeWRKY genes had differential expression in their transcript abundance and 78 MeWRKY genes were differentially expressed in response to drought stresses in different accessions, indicating their contribution to plant developmental processes and drought stress resistance in cassava. Finally, the expression of 9 WRKY genes was analyzed by qRT-PCR under osmotic, salt, ABA, H2O2, and cold treatments, indicating that MeWRKYs may be involved in different signaling pathways. Taken together, this systematic analysis identifies some tissue-specific and abiotic stress-responsive candidate MeWRKY genes for further functional assays in planta, and provides a solid foundation for understanding of abiotic stress responses and signal transduction mediated by WRKYs in cassava.

  6. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Qing-lin [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Xu, Jia [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Zhang, Zeng [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); He, Jin-wei [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Lu, Lian-song [Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Medical College of Soochow University, Suzhou, Jiangsu province 215000 (China); Fu, Wen-zhen [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China); Zhang, Zhen-lin, E-mail: zzl2002@medmail.com.cn [Metabolic Bone Disease and Genetic Research Unit, Department of Osteoporosis and Bone Diseases, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, Shanghai 200233 (China)

    2012-07-13

    Highlights: Black-Right-Pointing-Pointer In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. Black-Right-Pointing-Pointer We identified three novel PHEX gene mutations in four unrelated families with XLH. Black-Right-Pointing-Pointer We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. Black-Right-Pointing-Pointer We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  7. Three novel PHEX gene mutations in four Chinese families with X-linked dominant hypophosphatemic rickets

    International Nuclear Information System (INIS)

    Kang, Qing-lin; Xu, Jia; Zhang, Zeng; He, Jin-wei; Lu, Lian-song; Fu, Wen-zhen; Zhang, Zhen-lin

    2012-01-01

    Highlights: ► In our study, all of the patients were of Han Chinese ethnicity, which were rarely reported. ► We identified three novel PHEX gene mutations in four unrelated families with XLH. ► We found that the relationship between the phenotype and genotype of the PHEX gene was not invariant. ► We found that two PHEX gene sites, p.534 and p.731, were conserved. -- Abstract: Background: X-linked hypophosphatemia (XLH), the most common form of inherited rickets, is a dominant disorder that is characterized by renal phosphate wasting with hypophosphatemia, abnormal bone mineralization, short stature, and rachitic manifestations. The related gene with inactivating mutations associated with XLH has been identified as PHEX, which is a phosphate-regulating gene with homologies to endopeptidases on the X chromosome. In this study, a variety of PHEX mutations were identified in four Chinese families with XLH. Methods: We investigated four unrelated Chinese families who exhibited typical features of XLH by using PCR to analyze mutations that were then sequenced. The laboratory and radiological investigations were conducted simultaneously. Results: Three novel mutations were found in these four families: one frameshift mutation, c.2033dupT in exon 20, resulting in p.T679H; one nonsense mutation, c.1294A > T in exon 11, resulting in p.K432X; and one missense mutation, c.2192T > C in exon 22, resulting in p.F731S. Conclusions: We found that the PHEX gene mutations were responsible for XLH in these Chinese families. Our findings are useful for understanding the genetic basis of Chinese patients with XLH.

  8. Comprehensive Genomic Identification and Expression Analysis of the Phosphate Transporter (PHT) Gene Family in Apple.

    Science.gov (United States)

    Sun, Tingting; Li, Mingjun; Shao, Yun; Yu, Lingyan; Ma, Fengwang

    2017-01-01

    Elemental phosphorus (Pi) is essential to plant growth and development. The family of phosphate transporters (PHTs) mediates the uptake and translocation of Pi inside the plants. Members include five sub-cellular phosphate transporters that play different roles in Pi uptake and transport. We searched the Genome Database for Rosaceae and identified five clusters of phosphate transporters in apple ( Malus domestica ), including 37 putative genes. The MdPHT1 family contains 14 genes while MdPHT2 has two, MdPHT3 has seven, MdPHT4 has 11, and MdPHT5 has three. Our overview of this gene family focused on structure, chromosomal distribution and localization, phylogenies, and motifs. These genes displayed differential expression patterns in various tissues. For example, expression was high for MdPHT1;12, MdPHT3;6 , and MdPHT3;7 in the roots, and was also increased in response to low-phosphorus conditions. In contrast, MdPHT4;1, MdPHT4;4 , and MdPHT4;10 were expressed only in the leaves while transcript levels of MdPHT1;4, MdPHT1;12 , and MdPHT5;3 were highest in flowers. In general, these 37 genes were regulated significantly in either roots or leaves in response to the imposition of phosphorus and/or drought stress. The results suggest that members of the PHT family function in plant adaptations to adverse growing environments. Our study will lay a foundation for better understanding the PHT family evolution and exploring genes of interest for genetic improvement in apple.

  9. Novel mutations in Norrie disease gene in Japanese patients with Norrie disease and familial exudative vitreoretinopathy.

    Science.gov (United States)

    Kondo, Hiroyuki; Qin, Minghui; Kusaka, Shunji; Tahira, Tomoko; Hasebe, Haruyuki; Hayashi, Hideyuki; Uchio, Eiichi; Hayashi, Kenshi

    2007-03-01

    To search for mutations in the Norrie disease gene (NDP) in Japanese patients with familial exudative vitreoretinopathy (FEVR) and Norrie disease (ND) and to delineate the mutation-associated clinical features. Direct sequencing after polymerase chain reaction of all exons of the NDP gene was performed on blood collected from 62 probands (31 familial and 31 simplex) with FEVR, from 3 probands with ND, and from some of their family members. The clinical symptoms and signs in the patients with mutations were assessed. X-inactivation in the female carriers was examined in three FEVR families by using leukocyte DNA. Four novel mutations-I18K, K54N, R115L, and IVS2-1G-->A-and one reported mutation, R97P, in the NDP gene were identified in six families. The severity of vitreoretinopathy varied among these patients. Three probands with either K54N or R115L had typical features of FEVR, whereas the proband with R97P had those of ND. Families with IVS2-1G-->A exhibited either ND or FEVR characteristics. A proband with I18K presented with significant phenotypic heterogeneity between the two eyes. In addition, affected female carriers in a family harboring the K54N mutation presented with different degrees of vascular abnormalities in the periphery of the retina. X-inactivation profiles indicated that the skewing was not significantly different between affected and unaffected women. These observations indicate that mutations of the NDP gene can cause ND and 6% of FEVR cases in the Japanese population. The X-inactivation assay with leukocytes may not be predictive of the presence of a mutation in affected female carriers.

  10. Learning and memory in mice with neuropathic pain: impact of old age and progranulin deficiency

    Directory of Open Access Journals (Sweden)

    Boris eAlbuquerque

    2013-11-01

    Full Text Available Persistent neuropathic pain is a frequent consequence of peripheral nerve injuries, particularly in the elderly. Using the IntelliCage we studied if a sciatic nerve injury obstructed learning and memory in young and aged mice, each in wild type and progranulin deficient mice, which develop premature signs of brain aging and are more susceptible to nerve injury evoked nociceptive hypersensitivity and hence allow to assess a potential mutual aggravation of pain and old age. Both young and aged mice developed long-term nerve injury-evoked hyperalgesia and allodynia but, in both genotypes, only aged mice with neuropathic pain showed high error rates in place avoidance acquisition tasks. Once learnt however, aged mice with neuropathic pain maintained the aversive memory longer, i.e. the extinction was significantly slowed. In addition, nerve injury in progranulin deficient mice impaired the learning of spatial sequences of awarded places, particularly in aged mice, whereas easy place preference learning was not affected by nerve injury or progranulin deficiency. The sequencing task required a discrimination of clockwise and anti-clockwise sequences and spatial flexibility to re-learn a novel sequence. The loss of spatial flexibility did not occur in sham operated mice, i.e. was a consequence of nerve injury and suggests that neuropathic pain accelerates manifestations of old age and progranulin deficiency. Neuropathic pain at old age, irrespective of the genotype, resulted in a long maintenance of aversive memory suggesting a negative alliance and possibly mutual aggravation of chronic neuropathic pain and aversive memory at old age.

  11. Genomic sequence and organization of two members of a human lectin gene family

    International Nuclear Information System (INIS)

    Gitt, M.A.; Barondes, S.H.

    1991-01-01

    The authors have isolated and sequenced the genomic DNA encoding a human dimeric soluble lactose-binding lectin. The gene has four exons, and its upstream region contains sequences that suggest control by glucocorticoids, heat (environmental) shock, metals, and other factors. They have also isolated and sequenced three exons of the gene encoding another human putative lectin, the existence of which was first indicated by isolation of its cDNA. Comparisons suggest a general pattern of genomic organization of members of this lectin gene family

  12. Evolutionary Relationship and Structural Characterization of the EPF/EPFL Gene Family

    OpenAIRE

    Takata, Naoki; Yokota, Kiyonobu; Ohki, Shinya; Mori, Masashi; Taniguchi, Toru; Kurita, Manabu

    2013-01-01

    EPF1-EPF2 and EPFL9/Stomagen act antagonistically in regulating leaf stomatal density. The aim of this study was to elucidate the evolutionary functional divergence of EPF/EPFL family genes. Phylogenetic analyses showed that AtEPFL9/Stomagen-like genes are conserved only in vascular plants and are closely related to AtEPF1/EPF2-like genes. Modeling showed that EPF/EPFL peptides share a common 3D structure that is constituted of a scaffold and loop. Molecular dynamics simulation suggested that...

  13. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability.

    Science.gov (United States)

    Riazuddin, S; Hussain, M; Razzaq, A; Iqbal, Z; Shahzad, M; Polla, D L; Song, Y; van Beusekom, E; Khan, A A; Tomas-Roca, L; Rashid, M; Zahoor, M Y; Wissink-Lindhout, W M; Basra, M A R; Ansar, M; Agha, Z; van Heeswijk, K; Rasheed, F; Van de Vorst, M; Veltman, J A; Gilissen, C; Akram, J; Kleefstra, T; Assir, M Z; Grozeva, D; Carss, K; Raymond, F L; O'Connor, T D; Riazuddin, S A; Khan, S N; Ahmed, Z M; de Brouwer, A P M; van Bokhoven, H; Riazuddin, S

    2017-11-01

    Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1-3% of the general population. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause autosomal recessive ID (ARID) has lagged behind, predominantly due to non-availability of sizeable families. Here we present the results of exome sequencing in 121 large consanguineous Pakistani ID families. In 60 families, we identified homozygous or compound heterozygous DNA variants in a single gene, 30 affecting reported ID genes and 30 affecting novel candidate ID genes. Potential pathogenicity of these alleles was supported by co-segregation with the phenotype, low frequency in control populations and the application of stringent bioinformatics analyses. In another eight families segregation of multiple pathogenic variants was observed, affecting 19 genes that were either known or are novel candidates for ID. Transcriptome profiles of normal human brain tissues showed that the novel candidate ID genes formed a network significantly enriched for transcriptional co-expression (P<0.0001) in the frontal cortex during fetal development and in the temporal-parietal and sub-cortex during infancy through adulthood. In addition, proteins encoded by 12 novel ID genes directly interact with previously reported ID proteins in six known pathways essential for cognitive function (P<0.0001). These results suggest that disruptions of temporal parietal and sub-cortical neurogenesis during infancy are critical to the pathophysiology of ID. These findings further expand the existing repertoire of genes involved in ARID, and provide new insights into the molecular mechanisms and the transcriptome map of ID.

  14. Whole genome duplications and expansion of the vertebrate GATA transcription factor gene family

    Directory of Open Access Journals (Sweden)

    Bowerman Bruce

    2009-08-01

    Full Text Available Abstract Background GATA transcription factors influence many developmental processes, including the specification of embryonic germ layers. The GATA gene family has significantly expanded in many animal lineages: whereas diverse cnidarians have only one GATA transcription factor, six GATA genes have been identified in many vertebrates, five in many insects, and eleven to thirteen in Caenorhabditis nematodes. All bilaterian animal genomes have at least one member each of two classes, GATA123 and GATA456. Results We have identified one GATA123 gene and one GATA456 gene from the genomic sequence of two invertebrate deuterostomes, a cephalochordate (Branchiostoma floridae and a hemichordate (Saccoglossus kowalevskii. We also have confirmed the presence of six GATA genes in all vertebrate genomes, as well as additional GATA genes in teleost fish. Analyses of conserved sequence motifs and of changes to the exon-intron structure, and molecular phylogenetic analyses of these deuterostome GATA genes support their origin from two ancestral deuterostome genes, one GATA 123 and one GATA456. Comparison of the conserved genomic organization across vertebrates identified eighteen paralogous gene families linked to multiple vertebrate GATA genes (GATA paralogons, providing the strongest evidence yet for expansion of vertebrate GATA gene families via genome duplication events. Conclusion From our analysis, we infer the evolutionary birth order and relationships among vertebrate GATA transcription factors, and define their expansion via multiple rounds of whole genome duplication events. As the genomes of four independent invertebrate deuterostome lineages contain single copy GATA123 and GATA456 genes, we infer that the 0R (pre-genome duplication invertebrate deuterostome ancestor also had two GATA genes, one of each class. Synteny analyses identify duplications of paralogous chromosomal regions (paralogons, from single ancestral vertebrate GATA123 and GATA456

  15. Progressive Retinal Degeneration and Accumulation of Autofluorescent Lipopigments in Progranulin Deficient Mice

    Science.gov (United States)

    Hafler, Brian P.; Klein, Zoe A.; Zhou, Z. Jimmy; Strittmatter, Stephen M.

    2014-01-01

    Prior investigations have shown that patients with neuronal ceroid lipofuscinosis (NCL) develop neurodegeneration characterized by vision loss, motor dysfunction, seizures, and often early death. Neuropathological analysis of patients with NCL shows accumulation of intracellular autofluorescent storage material, lipopigment, throughout neurons in the central nervous system including in the retina. A recent study of a sibling pair with adult onset NCL and retinal degeneration showed linkage to the region of the progranulin (GRN) locus and a homozygous mutation was demonstrated in GRN. In particular, the sibling pair with a mutation in GRN developed retinal degeneration and optic atrophy. This locus for this form of adult onset neuronal ceroid lipofuscinosis was designated neuronal ceroid lipofuscinosis-11 (CLN11). Based on these clinical observations, we wished to determine whether Grn-null mice develop accumulation of autofluorescent particles and retinal degeneration. Retinas of both wild-type and Progranulin deficient mice were examined by immunostaining and autofluorescence. Accumulation of autofluorescent material was present in Progranulin deficient mice at 12 months. Degeneration of multiple classes of neurons including photoreceptors and retinal ganglion cells was noted in mice at 12 and 18 months. Our data shows that Grn−/− mice develop degenerative pathology similar to features of human CLN11. PMID:25234724

  16. Retrograde Signaling from Progranulin to Sort1 Counteracts Synapse Elimination in the Developing Cerebellum.

    Science.gov (United States)

    Uesaka, Naofumi; Abe, Manabu; Konno, Kohtarou; Yamazaki, Maya; Sakoori, Kazuto; Watanabe, Takaki; Kao, Tzu-Huei; Mikuni, Takayasu; Watanabe, Masahiko; Sakimura, Kenji; Kano, Masanobu

    2018-02-21

    Elimination of redundant synapses formed early in development and strengthening of necessary connections are crucial for shaping functional neural circuits. Purkinje cells (PCs) in the neonatal cerebellum are innervated by multiple climbing fibers (CFs) with similar strengths. A single CF is strengthened whereas the other CFs are eliminated in each PC during postnatal development. The underlying mechanisms, particularly for the strengthening of single CFs, are poorly understood. Here we report that progranulin, a multi-functional growth factor implicated in the pathogenesis of frontotemporal dementia, strengthens developing CF synaptic inputs and counteracts their elimination from postnatal day 11 to 16. Progranulin derived from PCs acts retrogradely onto its putative receptor Sort1 on CFs. This effect is independent of semaphorin 3A, another retrograde signaling molecule that counteracts CF synapse elimination. We propose that progranulin-Sort1 signaling strengthens and maintains developing CF inputs, and may contribute to selection of single "winner" CFs that survive synapse elimination. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Correlation of Progranulin, Granulin, Adiponectin and Vaspin with Metaflammation (hs-CRP in Indonesian Obese Men

    Directory of Open Access Journals (Sweden)

    Rosalia E Napitupulu

    2013-08-01

    Full Text Available BACKGROUND: Obesity is closely related to chronic, low grade systemic inflammation (metaflammation and it leads to further metabolic complications such as hypertension, atherosclerosis, and type 2 diabetes due to the adipocytokine imbalance. This study was carried out to assess the correlation between progranulin, granulin, adiponectin and visceral adipose tissue-derived serine protease inhibitor (Vaspin with metaflammation (high sensitivity C-reactive protein (hs-CRP in centrally obese men. METHODS: This study was observational with a cross sectional design involving 60 men aged 30-60 years, consisted of 43 obese men (waist circumference (WC ≥90 cm and 13 non obese men (WC 105 cm. CONCLUSIONS: We found metaflammation (hs-CRP was significantly correlated with Vaspin, but not with progranulin, granulin and adiponectin, in obese men. We suggest the possibility of a dynamic expression of adipokines related to WC that are subjected to adipocytes hypertrophy-hyperplasia phenomenon. KEYWORDS: progranulin, granulin, adiponectin, Vaspin, hs-CRP, metaflammation, central obesity.

  18. Gene Structures, Evolution, Classification and Expression Profiles of the Aquaporin Gene Family in Castor Bean (Ricinus communis L..

    Directory of Open Access Journals (Sweden)

    Zhi Zou

    Full Text Available Aquaporins (AQPs are a class of integral membrane proteins that facilitate the passive transport of water and other small solutes across biological membranes. Castor bean (Ricinus communis L., Euphobiaceae, an important non-edible oilseed crop, is widely cultivated for industrial, medicinal and cosmetic purposes. Its recently available genome provides an opportunity to analyze specific gene families. In this study, a total of 37 full-length AQP genes were identified from the castor bean genome, which were assigned to five subfamilies, including 10 plasma membrane intrinsic proteins (PIPs, 9 tonoplast intrinsic proteins (TIPs, 8 NOD26-like intrinsic proteins (NIPs, 6 X intrinsic proteins (XIPs and 4 small basic intrinsic proteins (SIPs on the basis of sequence similarities. Functional prediction based on the analysis of the aromatic/arginine (ar/R selectivity filter, Froger's positions and specificity-determining positions (SDPs showed a remarkable difference in substrate specificity among subfamilies. Homology analysis supported the expression of all 37 RcAQP genes in at least one of examined tissues, e.g., root, leaf, flower, seed and endosperm. Furthermore, global expression profiles with deep transcriptome sequencing data revealed diverse expression patterns among various tissues. The current study presents the first genome-wide analysis of the AQP gene family in castor bean. Results obtained from this study provide valuable information for future functional analysis and utilization.

  19. Childhood temperament: passive gene-environment correlation, gene-environment interaction, and the hidden importance of the family environment.

    Science.gov (United States)

    Lemery-Chalfant, Kathryn; Kao, Karen; Swann, Gregory; Goldsmith, H Hill

    2013-02-01

    Biological parents pass on genotypes to their children, as well as provide home environments that correlate with their genotypes; thus, the association between the home environment and children's temperament can be genetically (i.e., passive gene-environment correlation) or environmentally mediated. Furthermore, family environments may suppress or facilitate the heritability of children's temperament (i.e., gene-environment interaction). The sample comprised 807 twin pairs (mean age = 7.93 years) from the longitudinal Wisconsin Twin Project. Important passive gene-environment correlations emerged, such that home environments were less chaotic for children with high effortful control, and this association was genetically mediated. Children with high extraversion/surgency experienced more chaotic home environments, and this correlation was also genetically mediated. In addition, heritability of children's temperament was moderated by home environments, such that effortful control and extraversion/surgency were more heritable in chaotic homes, and negative affectivity was more heritable under crowded or unsafe home conditions. Modeling multiple types of gene-environment interplay uncovered the complex role of genetic factors and the hidden importance of the family environment for children's temperament and development more generally.

  20. Members of the barley NAC transcription factor gene family show differential co-regulation with senescence-associated genes during senescence of flag leaves

    DEFF Research Database (Denmark)

    Christiansen, Michael W; Gregersen, Per L.

    2014-01-01

    -expressed with members of the NAC gene family. In conclusion, a list of up to 15 NAC genes from barley that are strong candidates for being regulatory factors of importance for senescence and biotic stress-related traits affecting the productivity of cereal crop plants has been generated. Furthermore, a list of 71...... in the NAC transcription factor family during senescence of barley flag leaves was studied. Several members of the NAC transcription factor gene family were up-regulated during senescence in a microarray experiment, together with a large range of senescence-associated genes, reflecting the coordinated...... activation of degradation processes in senescing barley leaf tissues. This picture was confirmed in a detailed quantitative reverse transcription–PCR (qRT–PCR) experiment, which also showed distinct gene expression patterns for different members of the NAC gene family, suggesting a group of ~15 out of the 47...

  1. Genome-wide analysis of the GRAS gene family in physic nut (Jatropha curcas L.).

    Science.gov (United States)

    Wu, Z Y; Wu, P Z; Chen, Y P; Li, M R; Wu, G J; Jiang, H W

    2015-12-29

    GRAS proteins play vital roles in plant growth and development. Physic nut (Jatropha curcas L.) was found to have a total of 48 GRAS family members (JcGRAS), 15 more than those found in Arabidopsis. The JcGRAS genes were divided into 12 subfamilies or 15 ancient monophyletic lineages based on the phylogenetic analysis of GRAS proteins from both flowering and lower plants. The functions of GRAS genes in 9 subfamilies have been reported previously for several plants, while the genes in the remaining 3 subfamilies were of unknown function; we named the latter families U1 to U3. No member of U3 subfamily is present in Arabidopsis and Poaceae species according to public genome sequence data. In comparison with the number of GRAS genes in Arabidopsis, more were detected in physic nut, resulting from the retention of many ancient GRAS subfamilies and the formation of tandem repeats during evolution. No evidence of recent duplication among JcGRAS genes was observed in physic nut. Based on digital gene expression data, 21 of the 48 genes exhibited differential expression in four tissues analyzed. Two members of subfamily U3 were expressed only in buds and flowers, implying that they may play specific roles. Our results provide valuable resources for future studies on the functions of GRAS proteins in physic nut.

  2. Characterization and expression of the cytochrome P450 gene family in diamondback moth, Plutella xylostella (L.).

    Science.gov (United States)

    Yu, Liying; Tang, Weiqi; He, Weiyi; Ma, Xiaoli; Vasseur, Liette; Baxter, Simon W; Yang, Guang; Huang, Shiguo; Song, Fengqin; You, Minsheng

    2015-03-10

    Cytochrome P450 monooxygenases are present in almost all organisms and can play vital roles in hormone regulation, metabolism of xenobiotics and in biosynthesis or inactivation of endogenous compounds. In the present study, a genome-wide approach was used to identify and analyze the P450 gene family of diamondback moth, Plutella xylostella, a destructive worldwide pest of cruciferous crops. We identified 85 putative cytochrome P450 genes from the P. xylostella genome, including 84 functional genes and 1 pseudogene. These genes were classified into 26 families and 52 subfamilies. A phylogenetic tree constructed with three additional insect species shows extensive gene expansions of P. xylostella P450 genes from clans 3 and 4. Gene expression of cytochrome P450s was quantified across multiple developmental stages (egg, larva, pupa and adult) and tissues (head and midgut) using P. xylostella strains susceptible or resistant to insecticides chlorpyrifos and fiprinol. Expression of the lepidopteran specific CYP367s predominantly occurred in head tissue suggesting a role in either olfaction or detoxification. CYP340s with abundant transposable elements and relatively high expression in the midgut probably contribute to the detoxification of insecticides or plant toxins in P. xylostella. This study will facilitate future functional studies of the P. xylostella P450s in detoxification.

  3. Positive selection in the SLC11A1 gene in the family Equidae.

    Science.gov (United States)

    Bayerova, Zuzana; Janova, Eva; Matiasovic, Jan; Orlando, Ludovic; Horin, Petr

    2016-05-01

    Immunity-related genes are a suitable model for studying effects of selection at the genomic level. Some of them are highly conserved due to functional constraints and purifying selection, while others are variable and change quickly to cope with the variation of pathogens. The SLC11A1 gene encodes a transporter protein mediating antimicrobial activity of macrophages. Little is known about the patterns of selection shaping this gene during evolution. Although it is a typical evolutionarily conserved gene, functionally important polymorphisms associated with various diseases were identified in humans and other species. We analyzed the genomic organization, genetic variation, and evolution of the SLC11A1 gene in the family Equidae to identify patterns of selection within this important gene. Nucleotide SLC11A1 sequences were shown to be highly conserved in ten equid species, with more than 97 % sequence identity across the family. Single nucleotide polymorphisms (SNPs) were found in the coding and noncoding regions of the gene. Seven codon sites were identified to be under strong purifying selection. Codons located in three regions, including the glycosylated extracellular loop, were shown to be under diversifying selection. A 3-bp indel resulting in a deletion of the amino acid 321 in the predicted protein was observed in all horses, while it has been maintained in all other equid species. This codon comprised in an N-glycosylation site was found to be under positive selection. Interspecific variation in the presence of predicted N-glycosylation sites was observed.

  4. Identification of Candidate Gene Variants in Korean MODY Families by Whole-Exome Sequencing.

    Science.gov (United States)

    Shim, Ye Jee; Kim, Jung Eun; Hwang, Su-Kyeong; Choi, Bong Seok; Choi, Byung Ho; Cho, Eun-Mi; Jang, Kyoung Mi; Ko, Cheol Woo

    2015-01-01

    To date, 13 genes causing maturity-onset diabetes of the young (MODY) have been identified. However, there is a big discrepancy in the genetic locus between Asian and Caucasian patients with MODY. Thus, we conducted whole-exome sequencing in Korean MODY families to identify causative gene variants. Six MODY probands and their family members were included. Variants in the dbSNP135 and TIARA databases for Koreans and the variants with minor allele frequencies >0.5% of the 1000 Genomes database were excluded. We selected only the functional variants (gain of stop codon, frameshifts and nonsynonymous single-nucleotide variants) and conducted a case-control comparison in the family members. The selected variants were scanned for the previously introduced gene set implicated in glucose metabolism. Three variants c.620C>T:p.Thr207Ile in PTPRD, c.559C>G:p.Gln187Glu in SYT9, and c.1526T>G:p.Val509Gly in WFS1 were respectively identified in 3 families. We could not find any disease-causative alleles of known MODY 1-13 genes. Based on the predictive program, Thr207Ile in PTPRD was considered pathogenic. Whole-exome sequencing is a valuable method for the genetic diagnosis of MODY. Further evaluation is necessary about the role of PTPRD, SYT9 and WFS1 in normal insulin release from pancreatic beta cells. © 2015 S. Karger AG, Basel.

  5. Novel glucokinase gene mutation in the first Macedonian family tested for MODY.

    Science.gov (United States)

    Kocova, M; Elblova, L; Pruhova, S; Lebl, J; Dusatkova, P

    2017-08-01

    We present a boy with mild hyperglycemia detected during an upper respiratory infection. Novel splicing mutation in the intron 1 of the GCK gene (c.45+1G>A) was detected, and was subsequently confirmed in his father. This is the first case of genetically confirmed Macedonian family with MODY. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. [The mutation analysis of PAH gene and prenatal diagnosis in classical phenylketonuria family].

    Science.gov (United States)

    Yan, Yousheng; Hao, Shengju; Yao, Fengxia; Sun, Qingmei; Zheng, Lei; Zhang, Qinghua; Zhang, Chuan; Yang, Tao; Huang, Shangzhi

    2014-12-01

    To characterize the mutation spectrum of phenylalanine hydroxylase (PAH) gene and perform prenatal diagnosis for families with classical phenylketonuria. By stratified sequencing, mutations were detected in the exons and flaking introns of PAH gene of 44 families with classical phenylketonuria. 47 fetuses were diagnosed by combined sequencing with linkage analysis of three common short tandem repeats (STR) (PAH-STR, PAH-26 and PAH-32) in the PAH gene. Thirty-one types of mutations were identified. A total of 84 mutations were identified in 88 alleles (95.45%), in which the most common mutation have been R243Q (21.59%), EX6-96A>G (6.82%), IVS4-1G>A (5.86%) and IVS7+2T>A (5.86%). Most mutations were found in exons 3, 5, 6, 7, 11 and 12. The polymorphism information content (PIC) of these three STR markers was 0.71 (PAH-STR), 0.48 (PAH-26) and 0.40 (PAH-32), respectively. Prenatal diagnosis was performed successfully with the combined method in 47 fetuses of 44 classical phenylketonuria families. Among them, 11 (23.4%) were diagnosed as affected, 24 (51.1%) as carriers, and 12 (25.5%) as unaffected. Prenatal diagnosis can be achieved efficiently and accurately by stratified sequencing of PAH gene and linkage analysis of STR for classical phenylketonuria families.

  7. Novel duplication mutation of the DYSF gene in a Pakistani family with Miyoshi Myopathy

    Directory of Open Access Journals (Sweden)

    Muhammad I. Ullah

    2017-12-01

    Full Text Available Objectives: To identify the underlying gene mutation in a large consanguineous Pakistani family. Methods: This is an observational descriptive study carried out at the Department of Biochemistry, Shifa International Hospital, Quaid-i-Azam University, and Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan from 2013-2016. Genomic DNA of all recruited family members was extracted and the Trusight one sequencing panel was used to assess genes associated with a neuro-muscular phenotype. Comparative modeling of mutated and wild-type protein was carried out by PyMOL tool. Results: Clinical investigations of an affected individual showed typical features of Miyoshi myopathy (MM like elevated serum creatine kinase (CK levels, distal muscle weakness, myopathic changes in electromyography (EMG and muscle histopathology. Sequencing with the Ilumina Trusight one sequencing panel revealed a novel 22 nucleotide duplication (CTTCAACTTGTTTGACTCTCCT in the DYSF gene (NM_001130987.1_c.897-918dup; p.Gly307Leufs5X, which results in a truncating frameshift mutation and perfectly segregated with the disease in this family. Protein modeling studies suggested a disruption in spatial configuration of the putative mutant protein. Conclusion: A novel duplication of 22 bases (c.897_918dup; p.Gly307Leufs5X in the DYSF gene was identified in a family suffering from Miyoshi myopathy. Protein homology analysis proposes a disruptive impact of this mutation on protein function.

  8. The role of retrotransposons in gene family expansions in the human and mouse genomes

    Czech Academy of Sciences Publication Activity Database

    Janoušek, Václav; Laukaitis, C. M.; Yanchukov, Alexey; Karn, R. C.

    2016-01-01

    Roč. 8, č. 9 (2016), s. 2632-2650 ISSN 1759-6653 R&D Projects: GA MŠk EE2.3.20.0303 Institutional support: RVO:68081766 Keywords : gene families * transposable elements * retrotransposons * LINE * LTR * SINE Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.979, year: 2016

  9. Identification of the 14-3-3 gene family in Rafflesia cantleyi

    Science.gov (United States)

    Rosli, Khadijah; Wan, Kiew-Lian

    2018-04-01

    Rafflesia is known to be the largest flower in the world. Due to its size and appearance, it is considered to be very unique. Little is known about the molecular biology of this rare parasitic flowering plant as it is very difficult to locate and has a short life-span as a flower. Physiological activities in plants are regulated by signalling regulators such as the members of the 14-3-3 gene family. The number of members of this gene family varies in plants and there are thirteen known members in Arabidopsis thaliana. Their role is to bind to phosphorylated targets to complete signal transduction processes. Sequence comparison using BLAST of transcriptome data from three different Rafflesia cantleyi floral bud stages against the Swissprot database revealed 27 transcripts annotated as members of this gene family. All of the transcripts were expressed during floral bud stage 1 (S1) while 14 and four transcripts were expressed during floral bud stages 2 (S2) and 3 (S3), respectively. Significant downregulation was recorded for six and nine transcripts at S1 vs. S2 and S2 vs. S3 respectively. This gene family may play a critical role as signalling regulators during the development of Rafflesia floral bud.

  10. [Analysis of USH2A gene mutation in a Chinese family affected with Usher syndrome].

    Science.gov (United States)

    Li, Pengcheng; Liu, Fei; Zhang, Mingchang; Wang, Qiufen; Liu, Mugen

    2015-08-01

    To investigate the disease-causing mutation in a Chinese family affected with Usher syndrome type II. All of the 11 members from the family underwent comprehensive ophthalmologic examination and hearing test, and their genomic DNA were isolated from venous leukocytes. PCR and direct sequencing of USH2A gene were performed for the proband. Wild type and mutant type minigene vectors containing exon 42, intron 42 and exon 43 of the USH2A gene were constructed and transfected into Hela cells by lipofectamine reagent. Reverse transcription (RT)-PCR was carried out to verify the splicing of the minigenes. Pedigree analysis and clinical diagnosis indicated that the patients have suffered from autosomal recessive Usher syndrome type II. DNA sequencing has detected a homozygous c.8559-2A>G mutation of the USH2A gene in the proband, which has co-segregated with the disease in the family. The mutation has affected a conserved splice site in intron 42, which has led to inactivation of the splice site. Minigene experiment has confirmed the retaining of intron 42 in mature mRNA. The c.8559-2A>G mutation in the USH2A gene probably underlies the Usher syndrome type II in this family. The splice site mutation has resulted in abnormal splicing of USH2A pre-mRNA.

  11. [Gene mutation analysis and prenatal diagnosis of a family with Bartter syndrome].

    Science.gov (United States)

    Li, Long; Ma, Na; Li, Xiu-Rong; Gong, Fei; DU, Juan

    2016-08-01

    To investigate the mutation of related genes and prenatal diagnosis of a family with Bartter syndrome (BS). The high-throughput capture sequencing technique and PCR-Sanger sequencing were used to detect pathogenic genes in the proband of this family and analyze the whole family at the genomic level. After the genetic cause was clarified, the amniotic fluid was collected from the proband's mother who was pregnant for 5 months for prenatal diagnosis. The proband carried compound heterozygous mutations of c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene; c.88C>T(p.Arg30*) had been reported as a pathogenic mutation, and c.968+2T>A was a new mutation. Pedigree analysis showed that the two mutations were inherited from the mother and father, respectively. Prenatal diagnosis showed that the fetus did not inherit the mutations from parents and had no mutations at the two loci. The follow-up visit confirmed that the infant was in a healthy state, which proved the accuracy of genetic diagnosis and prenatal diagnosis. The compound heterozygous mutations c.88C>T(p.Arg30*) and c.968+2T>A in the CLCNKB gene are the cause of BS in the proband, and prenatal diagnosis can prevent the risk of recurrence of BS in this family.

  12. A novel AVP gene mutation in a Turkish family with neurohypophyseal diabetes insipidus.

    Science.gov (United States)

    Ilhan, M; Tiryakioglu, N O; Karaman, O; Coskunpinar, E; Yildiz, R S; Turgut, S; Tiryakioglu, D; Toprak, H; Tasan, E

    2016-03-01

    Familial neurohypophyseal diabetes insipidus (FNDI) is a rare, autosomal dominant, inherited disorder which is characterized by severe polydipsia and polyuria generally presenting in early childhood. In the present study, we aimed to analyze the AVP gene in a Turkish family with FNDI. Four patients with neurohypophyseal diabetes insipidus and ten healthy members of the family were studied. Diabetes insipidus was diagnosed by the water deprivation test in affected family members. Mutation analysis was performed by sequencing the whole coding region of AVP-NPII gene using DNA isolated from peripheral blood samples. Urine osmolality was low (C in all patients. c.-3A>C mutation in 5'UTR of AVP gene in this family might lead to the truncation of signal peptide, aggregation of AVP in the cytoplasm instead of targeting in the endoplasmic reticulum, thereby could disrupt AVP secretion without causing neuronal cytotoxicity, which might explain the presence of bright spot. The predicted effect of this mutation should be investigated by further in vitro molecular studies.

  13. Familial Dilated Cardiomyopathy Caused by a Novel Frameshift in the BAG3 Gene.

    Directory of Open Access Journals (Sweden)

    Rocio Toro

    Full Text Available Dilated cardiomyopathy, a major cause of chronic heart failure and cardiac transplantation, is characterized by left ventricular or biventricular heart dilatation. In nearly 50% of cases the pathology is inherited, and more than 60 genes have been reported as disease-causing. However, in 30% of familial cases the mutation remains unidentified even after comprehensive genetic analysis. This study clinically and genetically assessed a large Spanish family affected by dilated cardiomyopathy to search for novel variations.Our study included a total of 100 family members. Clinical assessment was performed in alive, and genetic analysis was also performed in alive and 1 deceased relative. Genetic screening included resequencing of 55 genes associated with sudden cardiac death, and Sanger sequencing of main disease-associated genes. Genetic analysis identified a frame-shift variation in BAG3 (p.H243Tfr*64 in 32 patients. Genotype-phenotype correlation identified substantial heterogeneity in disease expression. Of 32 genetic carriers (one deceased, 21 relatives were clinically affected, and 10 were asymptomatic. Seventeen of the symptomatic genetic carriers exhibited proto-diastolic septal knock by echocardiographic assessment.We report p.H243Tfr*64_BAG3 as a novel pathogenic variation responsible for familial dilated cardiomyopathy. This variation correlates with a more severe phenotype of the disease, mainly in younger individuals. Genetic analysis in families, even asymptomatic individuals, enables early identification of individuals at risk and allows implementation of preventive measures.

  14. The SKP1-like gene family of Arabidopsis exhibits a high degree of differential gene expression and gene product interaction during development.

    Directory of Open Access Journals (Sweden)

    Mohammad H Dezfulian

    Full Text Available The Arabidopsis thaliana genome encodes several families of polypeptides that are known or predicted to participate in the formation of the SCF-class of E3-ubiquitin ligase complexes. One such gene family encodes the Skp1-like class of polypeptide subunits, where 21 genes have been identified and are known to be expressed in Arabidopsis. Phylogenetic analysis based on deduced polypeptide sequence organizes the family of ASK proteins into 7 clades. The complexity of the ASK gene family, together with the close structural similarity among its members raises the prospect of significant functional redundancy among select paralogs. We have assessed the potential for functional redundancy within the ASK gene family by analyzing an expanded set of criteria that define redundancy with higher resolution. The criteria used include quantitative expression of locus-specific transcripts using qRT-PCR, assessment of the sub-cellular localization of individual ASK:YFP auto-fluorescent fusion proteins expressed in vivo as well as the in planta assessment of individual ASK-F-Box protein interactions using bimolecular fluorescent complementation techniques in combination with confocal imagery in live cells. The results indicate significant functional divergence of steady state transcript abundance and protein-protein interaction specificity involving ASK proteins in a pattern that is poorly predicted by sequence-based phylogeny. The information emerging from this and related studies will prove important for defining the functional intersection of expression, localization and gene product interaction that better predicts the formation of discrete SCF complexes, as a prelude to investigating their molecular mode of action.

  15. Nocturnal levels of chemerin and progranulin in adolescents: influence of sex, body mass index, glucose metabolism and sleep.

    Science.gov (United States)

    Daxer, Johann; Herttrich, Theresa; Zhao, Ying Y; Vogel, Mandy; Hiemisch, Andreas; Scheuermann, Kathrin; Körner, Antje; Kratzsch, Jürgen; Kiess, Wieland; Quante, Mirja

    2017-01-01

    Adipokines have been implicated in obesity, insulin resistance and sleep regulation. However, the role of chemerin and progranulin, two recently described adipokines, in the context of sleep remains unclear. The aim of this study was to compare nocturnal serum chemerin and progranulin levels between overweight/obese and normal-weight adolescents and to assess variations by sex, across different sleep stages and in relation to glucose metabolism. The study sample included 34 overweight/obese and 32 normal-weight adolescents from secondary schools and the Leipzig Research Center for Civilization Diseases (LIFE) Child study cohort. We obtained longitudinal serum adipokine levels during in-laboratory polysomnography followed by an oral glucose tolerance test. Overweight/obese adolescents had significantly higher mean nocturnal serum chemerin area under the curve (AUC) levels (348.2±133.3 vs. 241.7±67.7 vs. ng/mL×h, pprogranulin AUC was found between the groups. However, when assessing sex-specific levels, serum progranulin AUC levels were ~30% higher in overweight/obese males compared to overweight/obese females. Of note, nocturnal serum chemerin and progranulin AUC did not exhibit a correlation with markers of glucose metabolism or sleep stages. Collectively, we report a sexual dimorphism in nocturnal progranulin and chemerin levels, which may help explain underlying differences in energy balance and body composition between males and females in the context of obesity.

  16. Positioning the expanded akirin gene family of Atlantic salmon within the transcriptional networks of myogenesis

    International Nuclear Information System (INIS)

    Macqueen, Daniel J.; Bower, Neil I.; Johnston, Ian A.

    2010-01-01

    Research highlights: → The expanded akirin gene family of Atlantic salmon was characterised. → akirin paralogues are regulated between mono- and multi-nucleated muscle cells. → akirin paralogues positioned within known genetic networks controlling myogenesis. → Co-expression of akirin paralogues is evident across cell types/during myogenesis. → Selection has likely maintained common regulatory elements among akirin paralogues. -- Abstract: Vertebrate akirin genes usually form a family with one-to-three members that regulate gene expression during the innate immune response, carcinogenesis and myogenesis. We recently established that an expanded family of eight akirin genes is conserved across salmonid fish. Here, we measured mRNA levels of the akirin family of Atlantic salmon (Salmo salar L.) during the differentiation of primary myoblasts cultured from fast-skeletal muscle. Using hierarchical clustering and correlation, the data was positioned into a network of expression profiles including twenty further genes that regulate myogenesis. akirin1(2b) was not significantly regulated during the maturation of the cell culture. akirin2(1a) and 2(1b), along with IGF-II and several igfbps, were most highly expressed in mononuclear cells, then significantly and constitutively downregulated as differentiation proceeded and myotubes formed/matured. Conversely, akirin1(1a), 1(1b), 1(2a), 2(2a) and 2(2b) were expressed at lowest levels when mononuclear cells dominated the culture and highest levels when confluent layers of myotubes were evident. However, akirin1(2a) and 2(2a) were first upregulated earlier than akirin1(1a), 1(1b) and 2(2b), when rates of myoblast proliferation were highest. Interestingly, akirin1(1b), 1(2a), 2(2a) and 2(2b) formed part of a module of co-expressed genes involved in muscle differentiation, including myod1a, myog, mef2a, 14-3-3β and 14-3-3γ. All akirin paralogues were expressed ubiquitously across ten tissues, although mRNA levels

  17. Positioning the expanded akirin gene family of Atlantic salmon within the transcriptional networks of myogenesis

    Energy Technology Data Exchange (ETDEWEB)

    Macqueen, Daniel J., E-mail: djm59@st-andrews.ac.uk [Laboratory of Physiological and Evolutionary Genomics, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB (United Kingdom); Bower, Neil I., E-mail: nib@st-andrews.ac.uk [Laboratory of Physiological and Evolutionary Genomics, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB (United Kingdom); Johnston, Ian A., E-mail: iaj@st-andrews.ac.uk [Laboratory of Physiological and Evolutionary Genomics, Scottish Oceans Institute, University of St Andrews, St Andrews, Fife KY16 8LB (United Kingdom)

    2010-10-01

    Research highlights: {yields} The expanded akirin gene family of Atlantic salmon was characterised. {yields} akirin paralogues are regulated between mono- and multi-nucleated muscle cells. {yields} akirin paralogues positioned within known genetic networks controlling myogenesis. {yields} Co-expression of akirin paralogues is evident across cell types/during myogenesis. {yields} Selection has likely maintained common regulatory elements among akirin paralogues. -- Abstract: Vertebrate akirin genes usually form a family with one-to-three members that regulate gene expression during the innate immune response, carcinogenesis and myogenesis. We recently established that an expanded family of eight akirin genes is conserved across salmonid fish. Here, we measured mRNA levels of the akirin family of Atlantic salmon (Salmo salar L.) during the differentiation of primary myoblasts cultured from fast-skeletal muscle. Using hierarchical clustering and correlation, the data was positioned into a network of expression profiles including twenty further genes that regulate myogenesis. akirin1(2b) was not significantly regulated during the maturation of the cell culture. akirin2(1a) and 2(1b), along with IGF-II and several igfbps, were most highly expressed in mononuclear cells, then significantly and constitutively downregulated as differentiation proceeded and myotubes formed/matured. Conversely, akirin1(1a), 1(1b), 1(2a), 2(2a) and 2(2b) were expressed at lowest levels when mononuclear cells dominated the culture and highest levels when confluent layers of myotubes were evident. However, akirin1(2a) and 2(2a) were first upregulated earlier than akirin1(1a), 1(1b) and 2(2b), when rates of myoblast proliferation were highest. Interestingly, akirin1(1b), 1(2a), 2(2a) and 2(2b) formed part of a module of co-expressed genes involved in muscle differentiation, including myod1a, myog, mef2a, 14-3-3{beta} and 14-3-3{gamma}. All akirin paralogues were expressed ubiquitously across ten

  18. Genome-Wide Identification and Expression Analysis of WRKY Gene Family in Capsicum annuum L.

    Science.gov (United States)

    Diao, Wei-Ping; Snyder, John C; Wang, Shu-Bin; Liu, Jin-Bing; Pan, Bao-Gui; Guo, Guang-Jun; Wei, Ge

    2016-01-01

    The WRKY family of transcription factors is one of the most important families of plant transcriptional regulators with members regulating multiple biological processes, especially in regulating defense against biotic and abiotic stresses. However, little information is available about WRKYs in pepper (Capsicum annuum L.). The recent release of completely assembled genome sequences of pepper allowed us to perform a genome-wide investigation for pepper WRKY proteins. In the present study, a total of 71 WRKY genes were identified in the pepper genome. According to structural features of their encoded proteins, the pepper WRKY genes (CaWRKY) were classified into three main groups, with the second group further divided into five subgroups. Genome mapping analysis revealed that CaWRKY were enriched on four chromosomes, especially on chromosome 1, and 15.5% of the family members were tandemly duplicated genes. A phylogenetic tree was constructed depending on WRKY domain' sequences derived from pepper and Arabidopsis. The expression of 21 selected CaWRKY genes in response to seven different biotic and abiotic stresses (salt, heat shock, drought, Phytophtora capsici, SA, MeJA, and ABA) was evaluated by quantitative RT-PCR; Some CaWRKYs were highly expressed and up-regulated by stress treatment. Our results will provide a platform for functional identification and molecular breeding studies of WRKY genes in pepper.

  19. Embryonic expression of zebrafish MiT family genes tfe3b, tfeb, and tfec.

    Science.gov (United States)

    Lister, James A; Lane, Brandon M; Nguyen, Anhthu; Lunney, Katherine

    2011-11-01

    The MiT family comprises four genes in mammals: Mitf, Tfe3, Tfeb, and Tfec, which encode transcription factors of the basic-helix-loop-helix/leucine zipper class. Mitf is well-known for its essential role in the development of melanocytes, however the functions of the other members of this family, and of interactions between them, are less well understood. We have now characterized the complete set of MiT genes from zebrafish, which totals six instead of four. The zebrafish genome contain two mitf (mitfa and mitfb), two tfe3 (tfe3a and tfe3b), and single tfeb and tfec genes; this distribution is shared with other teleosts. We present here the sequence and embryonic expression patterns for the zebrafish tfe3b, tfeb, and tfec genes, and identify a new isoform of tfe3a. These findings will assist in elucidating the roles of the MiT gene family over the course of vertebrate evolution. Copyright © 2011 Wiley-Liss, Inc.

  20. Characterization of vNr-13, the first alphaherpesvirus gene of the bcl-2 family

    International Nuclear Information System (INIS)

    Aouacheria, Abdel; Banyai, Michelle; Rigal, Dominique; Schmidt, Carl J.; Gillet, Germain

    2003-01-01

    The Bcl-2 family, including antiapoptotic and proapoptotic members, plays key regulating roles in programmed cell death. We report the characterization of a new member of the bcl-2 family, encoded by herpesvirus of turkeys (HVT). The product of this gene shares 80% homology with Nr-13, an apoptosis inhibitor, which is overexpressed in avian cells transformed by the v-src oncogene. This new gene, that we propose to call vnr-13, is the first member of the bcl-2 family to be isolated among α-herpesviruses. Results from cells expressing the HVT-vnr-13 gene product show that the encoded protein inhibits apoptosis and also reduces the rate of cellular proliferation. Contrary to all bcl-2 homologues found in γ-herpesvirus, which are intronless, vnr-13 has the same organization as the cellular nr-13 gene. Hence, the HVT vnr-13 gene may have been acquired from a reverse transcriptase product of an unspliced precursor RNA, or via direct recombination with the host chromosomal DNA

  1. The Vitis vinifera sugar transporter gene family: phylogenetic overview and macroarray expression profiling

    Directory of Open Access Journals (Sweden)

    Atanassova Rossitza

    2010-11-01

    Full Text Available Abstract Background In higher plants, sugars are not only nutrients but also important signal molecules. They are distributed through the plant via sugar transporters, which are involved not only in sugar long-distance transport via the loading and the unloading of the conducting complex, but also in sugar allocation into source and sink cells. The availability of the recently released grapevine genome sequence offers the opportunity to identify sucrose and monosaccharide transporter gene families in a woody species and to compare them with those of the herbaceous Arabidopsis thaliana using a phylogenetic analysis. Results In grapevine, one of the most economically important fruit crop in the world, it appeared that sucrose and monosaccharide transporter genes are present in 4 and 59 loci, respectively and that the monosaccharide transporter family can be divided into 7 subfamilies. Phylogenetic analysis of protein sequences has indicated that orthologs exist between Vitis and Arabidospis. A search for cis-regulatory elements in the promoter sequences of the most characterized transporter gene families (sucrose, hexoses and polyols transporters, has revealed that some of them might probably be regulated by sugars. To profile several genes simultaneously, we created a macroarray bearing cDNA fragments specific to 20 sugar transporter genes. This macroarray analysis has revealed that two hexose (VvHT1, VvHT3, one polyol (VvPMT5 and one sucrose (VvSUC27 transporter genes, are highly expressed in most vegetative organs. The expression of one hexose transporter (VvHT2 and two tonoplastic monosaccharide transporter (VvTMT1, VvTMT2 genes are regulated during berry development. Finally, three putative hexose transporter genes show a preferential organ specificity being highly expressed in seeds (VvHT3, VvHT5, in roots (VvHT2 or in mature leaves (VvHT5. Conclusions This study provides an exhaustive survey of sugar transporter genes in Vitis vinifera and

  2. Genomic Organization, Phylogenetic Comparison and Differential Expression of the SBP-Box Family Genes in Grape

    Science.gov (United States)

    Hou, Hongmin; Li, Jun; Gao, Min; Singer, Stacy D.; Wang, Hao; Mao, Linyong; Fei, Zhangjun; Wang, Xiping

    2013-01-01

    Background The SBP-box gene family is specific to plants and encodes a class of zinc finger-containing transcription factors with a broad range of functions. Although SBP-box genes have been identified in numerous plants including green algae, moss, silver birch, snapdragon, Arabidopsis, rice and maize, there is little information concerning SBP-box genes, or the corresponding miR156/157, function in grapevine. Methodology/Principal Findings Eighteen SBP-box gene family members were identified in Vitis vinifera, twelve of which bore sequences that were complementary to miRNA156/157. Phylogenetic reconstruction demonstrated that plant SBP-domain proteins could be classified into seven subgroups, with the V. vinifera SBP-domain proteins being more closely related to SBP-domain proteins from dicotyledonous angiosperms than those from monocotyledonous angiosperms. In addition, synteny analysis between grape and Arabidopsis demonstrated that homologs of several grape SBP genes were found in corresponding syntenic blocks of Arabidopsis. Expression analysis of the grape SBP-box genes in various organs and at different stages of fruit development in V. quinquangularis ‘Shang-24’ revealed distinct spatiotemporal patterns. While the majority of the grape SBP-box genes lacking a miR156/157 target site were expressed ubiquitously and constitutively, most genes bearing a miR156/157 target site exhibited distinct expression patterns, possibly due to the inhibitory role of the microRNA. Furthermore, microarray data mining and quantitative real-time RT-PCR analysis identified several grape SBP-box genes that are potentially involved in the defense against biotic and abiotic stresses. Conclusion The results presented here provide a further understanding of SBP-box gene function in plants, and yields additional insights into the mechanism of stress management in grape, which may have important implications for the future success of this crop. PMID:23527172

  3. Genome-wide Identification and Expression Analysis of the CDPK Gene Family in Grape, Vitis spp.

    Science.gov (United States)

    Zhang, Kai; Han, Yong-Tao; Zhao, Feng-Li; Hu, Yang; Gao, Yu-Rong; Ma, Yan-Fei; Zheng, Yi; Wang, Yue-Jin; Wen, Ying-Qiang

    2015-06-30

    Calcium-dependent protein kinases (CDPKs) play vital roles in plant growth and development, biotic and abiotic stress responses, and hormone signaling. Little is known about the CDPK gene family in grapevine. In this study, we performed a genome-wide analysis of the 12X grape genome (Vitis vinifera) and identified nineteen CDPK genes. Comparison of the structures of grape CDPK genes allowed us to examine their functional conservation and differentiation. Segmentally duplicated grape CDPK genes showed high structural conservation and contributed to gene family expansion. Additional comparisons between grape and Arabidopsis thaliana demonstrated that several grape CDPK genes occured in the corresponding syntenic blocks of Arabidopsis, suggesting that these genes arose before the divergence of grapevine and Arabidopsis. Phylogenetic analysis divided the grape CDPK genes into four groups. Furthermore, we examined the expression of the corresponding nineteen homologous CDPK genes in the Chinese wild grape (Vitis pseudoreticulata) under various conditions, including biotic stress, abiotic stress, and hormone treatments. The expression profiles derived from reverse transcription and quantitative PCR suggested that a large number of VpCDPKs responded to various stimuli on the transcriptional level, indicating their versatile roles in the responses to biotic and abiotic stresses. Moreover, we examined the subcellular localization of VpCDPKs by transiently expressing six VpCDPK-GFP fusion proteins in Arabidopsis mesophyll protoplasts; this revealed high variability consistent with potential functional differences. Taken as a whole, our data provide significant insights into the evolution and function of grape CDPKs and a framework for future investigation of grape CDPK genes.

  4. Phylogenetic relationships among Perissodactyla: secretoglobin 1A1 gene duplication and triplication in the Equidae family.

    Science.gov (United States)

    Côté, Olivier; Viel, Laurent; Bienzle, Dorothee

    2013-12-01

    Secretoglobin family 1A member 1 (SCGB 1A1) is a small anti-inflammatory and immunomodulatory protein that is abundantly secreted in airway surface fluids. We recently reported the existence of three distinct SCGB1A1 genes in the domestic horse genome as opposed to the single gene copy consensus present in other mammals. The origin of SCGB1A1 gene triplication and the evolutionary relationship of the three genes amongst Equidae family members are unknown. For this study, SCGB1A1 genomic data were collected from various Equus individuals including E. caballus, E. przewalskii, E. asinus, E. grevyi, and E. quagga. Three SCGB1A1 genes in E. przewalskii, two SCGB1A1 genes in E. asinus, and a single SCGB1A1 gene in E. grevyi and E. quagga were identified. Sequence analysis revealed that the non-synonymous nucleotide substitutions between the different equid genes coded for 17 amino acid changes. Most of these changes localized to the SCGB 1A1 central cavity that binds hydrophobic ligands, suggesting that this area of SCGB 1A1 evolved to accommodate diverse molecular interactions. Three-dimensional modeling of the proteins revealed that the size of the SCGB 1A1 central cavity is larger than that of SCGB 1A1A. Altogether, these findings suggest that evolution of the SCGB1A1 gene may parallel the separation of caballine and non-caballine species amongst Equidae, and may indicate an expansion of function for SCGB1A1 gene products. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Genome-wide analysis of WRKY gene family in Cucumis sativus.

    Science.gov (United States)

    Ling, Jian; Jiang, Weijie; Zhang, Ying; Yu, Hongjun; Mao, Zhenchuan; Gu, Xingfang; Huang, Sanwen; Xie, Bingyan

    2011-09-28

    WRKY proteins are a large family of transcriptional regulators in higher plant. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. Prior to the present study, only one full-length cucumber WRKY protein had been reported. The recent publication of the draft genome sequence of cucumber allowed us to conduct a genome-wide search for cucumber WRKY proteins, and to compare these positively identified proteins with their homologs in model plants, such as Arabidopsis. We identified a total of 55 WRKY genes in the cucumber genome. According to structural features of their encoded proteins, the cucumber WRKY (CsWRKY) genes were classified into three groups (group 1-3). Analysis of expression profiles of CsWRKY genes indicated that 48 WRKY genes display differential expression either in their transcript abundance or in their expression patterns under normal growth conditions, and 23 WRKY genes were differentially expressed in response to at least one abiotic stresses (cold, drought or salinity). The expression profile of stress-inducible CsWRKY genes were correlated with those of their putative Arabidopsis WRKY (AtWRKY) orthologs, except for the group 3 WRKY genes. Interestingly, duplicated group 3 AtWRKY genes appear to have been under positive selection pressure during evolution. In contrast, there was no evidence of recent gene duplication or positive selection pressure among CsWRKY group 3 genes, which may have led to the expressional divergence of group 3 orthologs. Fifty-five WRKY genes were identified in cucumber and the structure of their encoded proteins, their expression, and their evolution were examined. Considering that there has been extensive expansion of group 3 WRKY genes in angiosperms, the occurrence of different evolutionary events could explain the functional divergence of these genes.

  6. Sulfur restriction extends fission yeast chronological lifespan through Ecl1 family genes by downregulation of ribosome.

    Science.gov (United States)

    Ohtsuka, Hokuto; Takinami, Masahiro; Shimasaki, Takafumi; Hibi, Takahide; Murakami, Hiroshi; Aiba, Hirofumi

    2017-07-01

    Nutritional restrictions such as calorie restrictions are known to increase the lifespan of various organisms. Here, we found that a restriction of sulfur extended the chronological lifespan (CLS) of the fission yeast Schizosaccharomyces pombe. The restriction decreased cellular size, RNA content, and ribosomal proteins and increased sporulation rate. These responses depended on Ecl1 family genes, the overexpression of which results in the extension of CLS. We also showed that the Zip1 transcription factor results in the sulfur restriction-dependent expression of the ecl1 + gene. We demonstrated that a decrease in ribosomal activity results in the extension of CLS. Based on these observations, we propose that sulfur restriction extends CLS through Ecl1 family genes in a ribosomal activity-dependent manner. © 2017 John Wiley & Sons Ltd.

  7. Genome-wide identification and characterization of WRKY gene family in peanut

    Directory of Open Access Journals (Sweden)

    Hui eSong

    2016-04-01

    Full Text Available WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA and jasmonic acid (JA treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  8. Genome-Wide Identification and Characterization of WRKY Gene Family in Peanut.

    Science.gov (United States)

    Song, Hui; Wang, Pengfei; Lin, Jer-Young; Zhao, Chuanzhi; Bi, Yuping; Wang, Xingjun

    2016-01-01

    WRKY, an important transcription factor family, is widely distributed in the plant kingdom. Many reports focused on analysis of phylogenetic relationship and biological function of WRKY protein at the whole genome level in different plant species. However, little is known about WRKY proteins in the genome of Arachis species and their response to salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and 75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches. Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and A. ipaënsis chromosome B3, while the least number of WRKY genes was found in chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis chromosomes were highly syntenic. Our analysis indicated that segmental duplication events played a major role in AdWRKY and AiWRKY genes, and strong purifying selection was observed in gene duplication pairs. Furthermore, we translate the knowledge gained from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to reveal that gene activities of specific cultivated peanut WRKY gene were changed due to SA and JA treatment. Peanut WRKY7, 8 and 13 genes were down-regulated, whereas WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could provide valuable information for peanut improvement.

  9. Runx family genes in a cartilaginous fish, the elephant shark (Callorhinchus milii.

    Directory of Open Access Journals (Sweden)

    Giselle Sek Suan Nah

    Full Text Available The Runx family genes encode transcription factors that play key roles in hematopoiesis, skeletogenesis and neurogenesis and are often implicated in diseases. We describe here the cloning and characterization of Runx1, Runx2, Runx3 and Runxb genes in the elephant shark (Callorhinchus milii, a member of Chondrichthyes, the oldest living group of jawed vertebrates. Through the use of alternative promoters and/or alternative splicing, each of the elephant shark Runx genes expresses multiple isoforms similar to their orthologs in human and other bony vertebrates. The expression profiles of elephant shark Runx genes are similar to those of mammalian Runx genes. The syntenic blocks of genes at the elephant shark Runx gene loci are highly conserved in human, but represented by shorter conserved blocks in zebrafish indicating a higher degree of rearrangements in this teleost fish. Analysis of promoter regions revealed conservation of binding sites for transcription factors, including two tandem binding sites for Runx that are totally conserved in the distal promoter regions of elephant shark Runx1-3. Several conserved noncoding elements (CNEs, which are putative cis-regulatory elements, and miRNA binding sites were identified in the elephant shark and human Runx gene loci. Some of these CNEs and miRNA binding sites are absent in teleost fishes such as zebrafish and fugu. In summary, our analysis reveals that the genomic organization and expression profiles of Runx genes were already complex in the common ancestor of jawed vertebrates.

  10. Altered microRNA expression in frontotemporal lobar degeneration with TDP-43 pathology caused by progranulin mutations

    Directory of Open Access Journals (Sweden)

    Kocerha Jannet

    2011-10-01

    Full Text Available Abstract Background Frontotemporal lobar degeneration (FTLD is a progressive neurodegenerative disorder that can be triggered through genetic or sporadic mechanisms. MicroRNAs (miRNAs have become a major therapeutic focus as their pervasive expression and powerful regulatory roles in disease pathogenesis become increasingly apparent. Here we examine the role of miRNAs in FTLD patients with TAR DNA-binding protein 43 pathology (FTLD-TDP caused by genetic mutations in the progranulin (PGRN gene. Results Using miRNA array profiling, we identified the 20 miRNAs that showed greatest evidence (unadjusted P PGRN mutations when compared to 32 FTLD-TDP patients with no apparent genetic abnormalities. Quantitative real-time PCR (qRT-PCR analyses provided technical validation of the differential expression for 9 of the 20 miRNAs in frontal cortex. Additional qRT-PCR analyses showed that 5 out of 9 miRNAs (miR-922, miR-516a-3p, miR-571, miR-548b-5p, and miR-548c-5p were also significantly dysregulated (unadjusted P PGRN mutation carriers, consistent with a systemic reduction in PGRN levels. We developed a list of gene targets for the 5 candidate miRNAs and found 18 genes dysregulated in a reported FTLD mRNA study to exhibit anti-correlated miRNA-mRNA patterns in affected cortex and cerebellar tissue. Among the targets is brain-specific angiogenesis inhibitor 3, which was recently identified as an important player in synapse biology. Conclusions Our study suggests that miRNAs may contribute to the pathogenesis of FTLD-TDP caused by PGRN mutations and provides new insight into potential future therapeutic options.

  11. A family of related proteins is encoded by the major Drosophila heat shock gene family

    International Nuclear Information System (INIS)

    Wadsworth, S.C.

    1982-01-01

    At least four proteins of 70,000 to 75,000 molecular weight (70-75K) were synthesized from mRNA which hybridized with a cloned heat shock gene previously shown to be localized to the 87A and 87C heat shock puff sites. These in vitro-synthesized proteins were indistinguishable from in vivo-synthesized heat shock-induced proteins when analyzed on sodium dodecyl sulfate-polyacrylamide gels. A comparison of the pattern of this group of proteins synthesized in vivo during a 5-min pulse or during continuous labeling indicates that the 72-75K proteins are probably not kinetic precursors to the major 70K heat shock protein. Partial digestion products generated with V8 protease indicated that the 70-75K heat shock proteins are closely related, but that there are clear differences between them. The partial digestion patterns obtained from heat shock proteins from the Kc cell line and from the Oregon R strain of Drosophila melanogaster are very similar. Genetic analysis of the patterns of 70-75K heat shock protein synthesis indicated that the genes encoding at least two of the three 72-75K heat shock proteins are located outside of the major 87A and 87C puff sites

  12. Differential evolution of members of the rhomboid gene family with conservative and divergent patterns.

    Science.gov (United States)

    Li, Qi; Zhang, Ning; Zhang, Liangsheng; Ma, Hong

    2015-04-01

    Rhomboid proteins are intramembrane serine proteases that are involved in a plethora of biological functions, but the evolutionary history of the rhomboid gene family is not clear. We performed a comprehensive molecular evolutionary analysis of the rhomboid gene family and also investigated the organization and sequence features of plant rhomboids in different subfamilies. Our results showed that eukaryotic rhomboids could be divided into five subfamilies (RhoA-RhoD and PARL). Most orthology groups appeared to be conserved only as single or low-copy genes in all lineages in RhoB-RhoD and PARL, whereas RhoA genes underwent several duplication events, resulting in multiple gene copies. These duplication events were due to whole genome duplications in plants and animals and the duplicates might have experienced functional divergence. We also identified a novel group of plant rhomboid (RhoB1) that might have lost their enzymatic activity; their existence suggests that they might have evolved new mechanisms. Plant and animal rhomboids have similar evolutionary patterns. In addition, there are mutations affecting key active sites in RBL8, RBL9 and one of the Brassicaceae PARL duplicates. This study delineates a possible evolutionary scheme for intramembrane proteins and illustrates distinct fates and a mechanism of evolution of gene duplicates. © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.

  13. Identification and molecular characterization of the nicotianamine synthase gene family in bread wheat.

    Science.gov (United States)

    Bonneau, Julien; Baumann, Ute; Beasley, Jesse; Li, Yuan; Johnson, Alexander A T

    2016-12-01

    Nicotianamine (NA) is a non-protein amino acid involved in fundamental aspects of metal uptake, transport and homeostasis in all plants and constitutes the biosynthetic precursor of mugineic acid family phytosiderophores (MAs) in graminaceous plant species. Nicotianamine synthase (NAS) genes, which encode enzymes that synthesize NA from S-adenosyl-L-methionine (SAM), are differentially regulated by iron (Fe) status in most plant species and plant genomes have been found to contain anywhere from 1 to 9 NAS genes. This study describes the identification of 21 NAS genes in the hexaploid bread wheat (Triticum aestivum L.) genome and their phylogenetic classification into two distinct clades. The TaNAS genes are highly expressed during germination, seedling growth and reproductive development. Fourteen of the clade I NAS genes were up-regulated in root tissues under conditions of Fe deficiency. Protein sequence analyses revealed the presence of endocytosis motifs in all of the wheat NAS proteins as well as chloroplast, mitochondrial and secretory transit peptide signals in four proteins. These results greatly expand our knowledge of NAS gene families in graminaceous plant species as well as the genetics underlying Fe nutrition in bread wheat. © 2016 The Authors. Plant Biotechnology Journal published by Society for Experimental Biology and The Association of Applied Biologists and John Wiley & Sons Ltd.

  14. A novel ATP1A2 gene mutation in an Irish familial hemiplegic migraine kindred.

    LENUS (Irish Health Repository)

    Fernandez, Desiree M

    2012-02-03

    OBJECTIVE: We studied a large Irish Caucasian pedigree with familial hemiplegic migraine (FHM) with the aim of finding the causative gene mutation. BACKGROUND: FHM is a rare autosomal-dominant subtype of migraine with aura, which is linked to 4 loci on chromosomes 19p13, 1q23, 2q24, and 1q31. The mutations responsible for hemiplegic migraine have been described in the CACNA1A gene (chromosome 19p13), ATP1A2 gene (chromosome 1q23), and SCN1A gene (chromosome 2q24). METHODS: We performed linkage analyses in this family for chromosome 1q23 and performed mutation analysis of the ATP1A2 gene. RESULTS: Linkage to the FHM2 locus on chromosome 1 was demonstrated. Mutation screening of the ATP1A2 gene revealed a G to C substitution in exon 22 resulting in a novel protein variant, D999H, which co-segregates with FHM within this pedigree and is absent in 50 unaffected individuals. This residue is also highly conserved across species. CONCLUSIONS: We propose that D999H is a novel FHM ATP1A2 mutation.

  15. Genome-wide analysis of the MYB gene family in physic nut (Jatropha curcas L.).

    Science.gov (United States)

    Zhou, Changpin; Chen, Yanbo; Wu, Zhenying; Lu, Wenjia; Han, Jinli; Wu, Pingzhi; Chen, Yaping; Li, Meiru; Jiang, Huawu; Wu, Guojiang

    2015-11-01

    The MYB proteins comprise one of the largest transcription factor families in plants, and play key roles in regulatory networks controlling development, metabolism, and stress responses. A total of 125 MYB genes (JcMYB) have been identified in the physic nut (Jatropha curcas L.) genome, including 120 2R-type MYB, 4 3R-MYB, and 1 4R-MYB genes. Based on exon-intron arrangement of MYBs from both lower (Physcomitrella patens) and higher (physic nut, Arabidopsis, and rice) plants, we can classify plant MYB genes into ten groups (MI-X), except for MIX genes which are nonexistent in higher plants. We also observed that MVIII genes may be one of the most ancient MYB types which consist of both R2R3- and 3R-MYB genes. Most MYB genes (76.8% in physic nut) belong to the MI group which can be divided into 34 subgroups. The JcMYB genes were nonrandomly distributed on its 11 linkage groups (LGs). The expansion of MYB genes across several subgroups was observed and resulted from genome triplication of ancient dicotyledons and from both ancient and recent tandem duplication events in the physic nut genome. The expression patterns of several MYB duplicates in the physic nut showed differences in four tissues (root, stem, leaf, and seed), and 34 MYB genes responded to at least one abiotic stressor (drought, salinity, phosphate starvation, and nitrogen starvation) in leaves and/or roots based on the data analysis of digital gene expression tags. Overexpression of the JcMYB001 gene in Arabidopsis increased its sensitivity to drought and salinity stresses. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. NHS Gene Mutations in Ashkenazi Jewish Families with Nance-Horan Syndrome.

    Science.gov (United States)

    Shoshany, Nadav; Avni, Isaac; Morad, Yair; Weiner, Chen; Einan-Lifshitz, Adi; Pras, Eran

    2017-09-01

    To describe ocular and extraocular abnormalities in two Ashkenazi Jewish families with infantile cataract and X-linked inheritance, and to identify their underlying mutations. Seven affected members were recruited. Medical history, clinical findings, and biometric measurements were recorded. Mutation analysis of the Nance-Horan syndrome (NHS) gene was performed by direct sequencing of polymerase chain reaction-amplified exons. An unusual anterior Y-sutural cataract was documented in the affected male proband. Other clinical features among examined patients included microcorneas, long and narrow faces, and current or previous dental anomalies. A nonsense mutation was identified in each family, including a previously described 742 C>T, p.(Arg248*) mutation in Family A, and a novel mutation 2915 C>A, p.(Ser972*) in Family B. Our study expands the repertoire of NHS mutations and the related phenotype, including newly described anterior Y-sutural cataract and dental findings.

  17. Molecular analysis of the Duchenne muscular dystrophy gene in Spanish individuals: Deletion detection and familial diagnosis

    Energy Technology Data Exchange (ETDEWEB)

    Patino, A.; Garcia-Delgado, M.; Narbona, J. [Univ. of Navarra, Pamplona (Spain)

    1995-11-06

    Deletion studies were performed in 26 Duchenne muscular dystrophy (DMD) patients through amplification of nine different exons by multiplex polymerase chain reaction (PCR). DNA from paraffin-embedded muscle biopsies was analyzed in 12 of the 26 patients studied. Optimization of this technique is of great utility because it enables analysis of material stored in pathology archives. PCR deletion detection, useful in DMD-affected boys, is problematic in determining the carrier state in female relatives. For this reason, to perform familial linkage diagnosis, we made use of a dinucleotide repeat polymorphism (STRP, or short tandem repeat polymorphism) located in intron 49 of the gene. We designed a new pair of primers that enabled the detection of 22 different alleles in relatives in the 14 DMD families studied. The use of this marker allowed familial diagnosis in 11 of the 14 DMD families and detection of de novo deletions in 3 of the probands. 8 refs., 5 figs., 2 tabs.

  18. The evolutionary history of the SAL1 gene family in eutherian mammals

    Directory of Open Access Journals (Sweden)

    Callebaut Isabelle

    2011-05-01

    Full Text Available Abstract Background SAL1 (salivary lipocalin is a member of the OBP (Odorant Binding Protein family and is involved in chemical sexual communication in pig. SAL1 and its relatives may be involved in pheromone and olfactory receptor binding and in pre-mating behaviour. The evolutionary history and the selective pressures acting on SAL1 and its orthologous genes have not yet been exhaustively described. The aim of the present work was to study the evolution of these genes, to elucidate the role of selective pressures in their evolution and the consequences for their functions. Results Here, we present the evolutionary history of SAL1 gene and its orthologous genes in mammals. We found that (1 SAL1 and its related genes arose in eutherian mammals with lineage-specific duplications in rodents, horse and cow and are lost in human, mouse lemur, bushbaby and orangutan, (2 the evolution of duplicated genes of horse, rat, mouse and guinea pig is driven by concerted evolution with extensive gene conversion events in mouse and guinea pig and by positive selection mainly acting on paralogous genes in horse and guinea pig, (3 positive selection was detected for amino acids involved in pheromone binding and amino acids putatively involved in olfactory receptor binding, (4 positive selection was also found for lineage, indicating a species-specific strategy for amino acid selection. Conclusions This work provides new insights into the evolutionary history of SAL1 and its orthologs. On one hand, some genes are subject to concerted evolution and to an increase in dosage, suggesting the need for homogeneity of sequence and function in certain species. On the other hand, positive selection plays a role in the diversification of the functions of the family and in lineage, suggesting adaptive evolution, with possible consequences for speciation and for the reinforcement of prezygotic barriers.

  19. Unequal rates of Y chromosome gene divergence during speciation of the family Ursidae.

    Science.gov (United States)

    Nakagome, Shigeki; Pecon-Slattery, Jill; Masuda, Ryuichi

    2008-07-01

    Evolution of the bear family Ursidae is well investigated in terms of morphological, paleontological, and genetic features. However, several phylogenetic ambiguities occur within the subfamily Ursinae (the family Ursidae excluding the giant panda and spectacled bear), which may correlate with behavioral traits of female philopatry and male-biased dispersal which form the basis of the observed matriarchal population structure in these species. In the process of bear evolution, we investigate the premise that such behavioral traits may be reflected in patterns of variation among genes with different modes of inheritance: matrilineal mitochondrial DNA (mtDNA), patrilineal Y chromosome, biparentally inherited autosomes, and the X chromosome. In the present study, we sequenced 3 Y-linked genes (3,453 bp) and 4 X-linked genes (4,960 bp) and reanalyzed previously published sequences from autosome genes (2,347 bp) in ursid species to investigate differences in evolutionary rates associated with patterns of inheritance. The results describe topological incongruence between sex-linked genes and autosome genes and between nuclear DNA and mtDNA. In more ancestral branches within the bear phylogeny, Y-linked genes evolved faster than autosome and X-linked genes, consistent with expectations based on male-driven evolution. However, this pattern changes among branches leading to each species within the lineage of Ursinae whereby the evolutionary rates of Y-linked genes have fewer than expected substitutions. This inconsistency between more recent nodes of the bear phylogeny with more ancestral nodes may reflect the influences of sex-biased dispersal as well as molecular evolutionary characteristics of the Y chromosome, and stochastic events in species natural history, and phylogeography unique to ursine bears.

  20. Gene amplification as a cause of inherited thyroxine-binding globulin excess in two Japanese families

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Yuichi; Miura, Yoshitaka; Saito, Hidehiko [Toyota Memorial Hospital (Japan)] [and others

    1995-12-01

    T{sub 4}-binding globulin (TBG) is the major thyroid hormone transport protein in man. Inherited abnormalities in the level of serum TBG have been classified as partial deficiency, complete deficiency, and excess. Sequencing analysis of the TBG gene, located on Xq21-22, has uncovered the molecular defects causing partial and complete deficiency. However, the mechanism leading to inherited TBG excess remains unknown. In this study, two Japanese families, F-A and F-T, with inherited TBG excess were analyzed. Serum TBG levels in hemizygous males were 58 and 44 {mu}g/mL, 3- and 2-fold the normal value, respectively. The molecule had normal properties in terms of heat stability and isoelectric focussing pattern. The sequence of the coding region and the promoter activity of the TBG gene were also indistinguishable between hemizygotes and normal subjects. The gene dosage of TBG relative to that of {beta}-globin, which is located on chromosome 11, and Duchenne muscular dystropy, which is located on Xp, was evaluated by coamplification of these target genes using polymerase chain reaction and subsequent quantitation by HPLC. The TBG/{beta}-globin ratios of the affected male and female of F-A were 3.13 and 4.13 times, respectively, that in the normal males. The TBG/Duchenne muscular dystrophy ratios were 2.92 and 2.09 times the normal value, respectively. These results are compatible with three copies of TBG gene on the affected X-chromosome. Similarly, a 2-fold increase in gene dosage was demonstrated in the affected hemizygote of F-T. A 3-fold tandem amplification of the TBG gene was shown by in situ hybridization of prometaphase and interphase chromosomes from the affected male with a biotinylated genomic TBG probe, confirming the gene dosage results. Gene amplification of TBG is the cause of inherited TBG excess in these two families. 35 refs., 3 figs., 2 tabs.

  1. Genomic Survey and Expression Profiling of the MYB Gene Family in Watermelon

    Directory of Open Access Journals (Sweden)

    Qing XU

    2018-01-01

    Full Text Available Myeloblastosis (MYB proteins constitute one of the largest transcription factor (TF families in plants. They are functionally diverse in regulating plant development, metabolism, and multiple stress responses. However, the function of watermelon MYB proteins remains elusive to date. Here, a genome-wide identification of watermelon MYB TFs was performed by bioinformatics analysis. A total of 162 MYB genes were identified from watermelon (ClaMYB. A comprehensive overview of the ClaMYB genes was undertaken, including the gene structures, chromosomal distribution, gene duplication, conserved protein motif, and phylogenetic relationship. According to the analyses, the watermelon MYB genes were categorized into three groups (R1R2R3-MYB, R2R3-MYB, and MYB-related. Amino acid alignments for all MYB motifs of ClaMYBs demonstrated high conservation. Investigation of their chromosomal localization revealed that these ClaMYB genes distributed across the 11 watermelon chromosomes. Gene duplication analyses showed that tandem duplication events contributed predominantly to the expansion of the MYB gene family in the watermelon genome. Phylogenetic comparison of the ClaMYB proteins with Arabidopsis MYB proteins revealed that watermelon MYB proteins underwent a more diverse evolution after divergence from Arabidopsis. Some watermelon MYBs were found to cluster into the functional clades of Arabidopsis MYB proteins. Expression analysis under different stress conditions identified a group of watermelon MYB proteins implicated in the plant stress responses. The comprehensive investigation of watermelon MYB genes in this study provides a useful reference for future cloning and functional analysis of watermelon MYB proteins. Keywords: watermelon, MYB transcription factor, abiotic stress, phylogenetic analysis

  2. Expression of REG family genes in human inflammatory bowel diseases and its regulation

    Directory of Open Access Journals (Sweden)

    Chikatsugu Tsuchida

    2017-12-01

    Full Text Available The pathophysiology of inflammatory bowel disease (IBD reflects a balance between mucosal injury and reparative mechanisms. Some regenerating gene (Reg family members have been reported to be expressed in Crohn's disease (CD and ulcerative colitis (UC and to be involved as proliferative mucosal factors in IBD. However, expression of all REG family genes in IBD is still unclear. Here, we analyzed expression of all REG family genes (REG Iα, REG Iβ, REG III, HIP/PAP, and REG IV in biopsy specimens of UC and CD by real-time RT-PCR. REG Iα, REG Iβ, and REG IV genes were overexpressed in CD samples. REG IV gene was also overexpressed in UC samples. We further analyzed the expression mechanisms of REG Iα, REG Iβ, and REG IV genes in human colon cells. The expression of REG Iα was significantly induced by IL-6 or IL-22, and REG Iβ was induced by IL-22. Deletion analyses revealed that three regions (− 220 to − 211, − 179 to − 156, and − 146 to − 130 in REG Iα and the region (− 274 to− 260 in REG Iβ promoter were responsible for the activation by IL-22/IL-6. The promoters contain consensus transcription factor binding sequences for MZF1, RTEF1/TEAD4, and STAT3 in REG Iα, and HLTF/FOXN2F in REG Iβ, respectively. The introduction of siRNAs for MZF1, RTEF1/TEAD4, STAT3, and HLTF/FOXN2F abolished the transcription of REG Iα and REG Iβ. The gene activation mechanisms of REG Iα/REG Iβ may play a role in colon mucosal regeneration in IBD.

  3. [Genome-wide identification and expression analysis of the WRKY gene family in peach].

    Science.gov (United States)

    Gu, Yan-bing; Ji, Zhi-rui; Chi, Fu-mei; Qiao, Zhuang; Xu, Cheng-nan; Zhang, Jun-xiang; Zhou, Zong-shan; Dong, Qing-long

    2016-03-01

    The WRKY transcription factors are one of the largest families of transcriptional regulators and play diverse regulatory roles in biotic and abiotic stresses, plant growth and development processes. In this study, the WRKY DNA-binding domain (Pfam Database number: PF03106) downloaded from Pfam protein families database was exploited to identify WRKY genes from the peach (Prunus persica 'Lovell') genome using HMMER 3.0. The obtained amino acid sequences were analyzed with DNAMAN 5.0, WebLogo 3, MEGA 5.1, MapInspect and MEME bioinformatics softwares. Totally 61 peach WRKY genes were found in the peach genome. Our phylogenetic analysis revealed that peach WRKY genes were classified into three Groups: Ⅰ, Ⅱ and Ⅲ. The WRKY N-terminal and C-terminal domains of Group Ⅰ (group I-N and group I-C) were monophyletic. The Group Ⅱ was sub-divided into five distinct clades (groupⅡ-a, Ⅱ-b, Ⅱ-c, Ⅱ-d and Ⅱ-e). Our domain analysis indicated that the WRKY regions contained a highly conserved heptapeptide stretch WRKYGQK at its N-terminus followed by a zinc-finger motif. The chromosome mapping analysis showed that peach WRKY genes were distributed with different densities over 8 chromosomes. The intron-exon structure analysis revealed that structures of the WRKY gene were highly conserved in the peach. The conserved motif analysis showed that the conserved motifs 1, 2 and 3, which specify the WRKY domain, were observed in all peach WRKY proteins, motif 5 as the unknown domain was observed in group Ⅱ-d, two WRKY domains were assigned to GroupⅠ. SqRT-PCR and qRT-PCR results indicated that 16 PpWRKY genes were expressed in roots, stems, leaves, flowers and fruits at various expression levels. Our analysis thus identified the PpWRKY gene families, and future functional studies are needed to reveal its specific roles.

  4. Genome-wide identification and expression analysis of the CIPK gene family in cassava

    Directory of Open Access Journals (Sweden)

    Wei eHu

    2015-10-01

    Full Text Available Cassava is an important food and potential biofuel crop that is tolerant to multiple abiotic stressors. The mechanisms underlying these tolerances are currently less known. CBL-interacting protein kinases (CIPKs have been shown to play crucial roles in plant developmental processes, hormone signaling transduction, and in the response to abiotic stress. However, no data is currently available about the CPK family in cassava. In this study, a total of 25 CIPK genes were identified from cassava genome based on our previous genome sequencing data. Phylogenetic analysis suggested that 25 MeCIPKs could be classified into four subfamilies, which was supported by exon-intron organizations and the architectures of conserved protein motifs. Transcriptomic analysis of a wild subspecies and two cultivated varieties showed that most MeCIPKs had different expression patterns between wild subspecies and cultivatars in different tissues or in response to drought stress. Some orthologous genes involved in CIPK interaction networks were identified between Arabidopsis and cassava. The interaction networks and co-expression patterns of these orthologous genes revealed that the crucial pathways controlled by CIPK networks may be involved in the differential response to drought stress in different accessions of cassava. Nine MeCIPK genes were selected to investigate their transcriptional response to various stimuli and the results showed the comprehensive response of the tested MeCIPK genes to osmotic, salt, cold, oxidative stressors, and ABA signaling. The identification and expression analysis of CIPK family suggested that CIPK genes are important components of development and multiple signal transduction pathways in cassava. The findings of this study will help lay a foundation for the functional characterization of the CIPK gene family and provide an improved understanding of abiotic stress responses and signaling transduction in cassava.

  5. Linkage and candidate gene analysis of X-linked familial exudative vitreoretinopathy.

    Science.gov (United States)

    Shastry, B S; Hejtmancik, J F; Plager, D A; Hartzer, M K; Trese, M T

    1995-05-20

    Familial exudative vitreoretinopathy (FEVR) is a hereditary eye disorder characterized by avascularity of the peripheral retina, retinal exudates, tractional detachment, and retinal folds. The disorder is most commonly transmitted as an autosomal dominant trait, but X-linked transmission also occurs. To initiate the process of identifying the gene responsible for the X-linked disorder, linkage analysis has been performed with three previously unreported three- or four-generation families. Two-point analysis showed linkage to MAOA (Zmax = 2.1, theta max = 0) and DXS228 (Zmax = 0.5, theta max = 0.11), and this was further confirmed by multipoint analysis with these same markers (Zmax = 2.81 at MAOA), which both lie near the gene causing Norrie disease. Molecular genetic analysis further reveals a missense mutation (R121W) in the third exon of the Norrie's disease gene that perfectly cosegregates with the disease through three generations in one family. This mutation was not detected in the unaffected family members and six normal unrelated controls, suggesting that it is likely to be the pathogenic mutation. Additionally, a polymorphic missense mutation (H127R) was detected in a severely affected patient.

  6. Characterization of the MLO gene family in Rosaceae and gene expression analysis in Malus domestica

    NARCIS (Netherlands)

    Pessina, S.; Pavan, S.N.C.; Catalano, D.; Gallotta, A.; Visser, R.G.F.; Bai, Y.; Malnoy, M.; Schouten, H.J.

    2014-01-01

    Background Powdery mildew (PM) is a major fungal disease of thousands of plant species, including many cultivated Rosaceae. PM pathogenesis is associated with up-regulation of MLO genes during early stages of infection, causing down-regulation of plant defense pathways. Specific members of the MLO

  7. Isolation, structural analysis, and expression characteristics of the maize nuclear factor Y gene families

    International Nuclear Information System (INIS)

    Zhang, Zhongbao; Li, Xianglong; Zhang, Chun; Zou, Huawen; Wu, Zhongyi

    2016-01-01

    NUCLEAR FACTOR-Y (NF-Y) has been shown to play an important role in growth, development, and response to environmental stress. A NF-Y complex, which consists of three subunits, NF-YA, NF-YB, and, NF-YC, binds to CCAAT sequences in a promoter to control the expression of target genes. Although NF-Y proteins have been reported in Arabidopsis and rice, a comprehensive and systematic analysis of ZmNF-Y genes has not yet been performed. To examine the functions of ZmNF-Y genes in this family, we isolated and characterized 50 ZmNF-Y (14 ZmNF-YA, 18 ZmNF-YB, and 18 ZmNF-YC) genes in an analysis of the maize genome. The 50 ZmNF-Y genes were distributed on all 10 maize chromosomes, and 12 paralogs were identified. Multiple alignments showed that maize ZmNF-Y family proteins had conserved regions and relatively variable N-terminal or C-terminal domains. The comparative syntenic map illustrated 40 paralogous NF-Y gene pairs among the 10 maize chromosomes. Microarray data showed that the ZmNF-Y genes had tissue-specific expression patterns in various maize developmental stages and in response to biotic and abiotic stresses. The results suggested that ZmNF-YB2, 4, 8, 10, 13, and 16 and ZmNF-YC6, 8, and 15 were induced, while ZmNF-YA1, 3, 4, 6, 7, 10, 12, and 13, ZmNF-YB15, and ZmNF-YC3 and 9 were suppressed by drought stress. ZmNF-YA3, ZmNF-YA8 and ZmNF-YA12 were upregulated after infection by the three pathogens, while ZmNF-YA1 and ZmNF-YB2 were suppressed. These results indicate that the ZmNF-Ys may have significant roles in the response to abiotic and biotic stresses. - Highlights: • We indicated a total of 50 members of ZmNF-Y gene family in maize genome. • We analyzed gene structure, protein architecture of ZmNF-Y genes. • Evolution pattern and phylogenic relationships were analyzed among 50 ZmNF-Y genes. • Expression pattern of ZmNF-Ys were detected in various maize tissues. • Transcript levels of ZmNF-Ys were measured under various abiotic and biotic stresses.

  8. An Efficient Test for Gene-Environment Interaction in Generalized Linear Mixed Models with Family Data.

    Science.gov (United States)

    Mazo Lopera, Mauricio A; Coombes, Brandon J; de Andrade, Mariza

    2017-09-27

    Gene-environment (GE) interaction has important implications in the etiology of complex diseases that are caused by a combination of genetic factors and environment variables. Several authors have developed GE analysis in the context of independent subjects or longitudinal data using a gene-set. In this paper, we propose to analyze GE interaction for discrete and continuous phenotypes in family studies by incorporating the relatedness among the relatives for each family into a generalized linear mixed model (GLMM) and by using a gene-based variance component test. In addition, we deal with collinearity problems arising from linkage disequilibrium among single nucleotide polymorphisms (SNPs) by considering their coefficients as random effects under the null model estimation. We show that the best linear unbiased predictor (BLUP) of such random effects in the GLMM is equivalent to the ridge regression estimator. This equivalence provides a simple method to estimate the ridge penalty parameter in comparison to other computationally-demanding estimation approaches based on cross-validation schemes. We evaluated the proposed test using simulation studies and applied it to real data from the Baependi Heart Study consisting of 76 families. Using our approach, we identified an interaction between BMI and the Peroxisome Proliferator Activated Receptor Gamma ( PPARG ) gene associated with diabetes.

  9. Gene structure, transcripts and calciotropic effects of the PTH family of peptides in Xenopus and chicken

    Directory of Open Access Journals (Sweden)

    Power Deborah M

    2010-12-01

    Full Text Available Abstract Background Parathyroid hormone (PTH and PTH-related peptide (PTHrP belong to a family of endocrine factors that share a highly conserved N-terminal region (amino acids 1-34 and play key roles in calcium homeostasis, bone formation and skeletal development. Recently, PTH-like peptide (PTH-L was identified in teleost fish raising questions about the evolution of these proteins. Although PTH and PTHrP have been intensively studied in mammals their function in other vertebrates is poorly documented. Amphibians and birds occupy unique phylogenetic positions, the former at the transition of aquatic to terrestrial life and the latter at the transition to homeothermy. Moreover, both organisms have characteristics indicative of a complex system in calcium regulation. This study investigated PTH family evolution in vertebrates with special emphasis on Xenopus and chicken. Results The PTH-L gene is present throughout the vertebrates with the exception of placental mammals. Gene structure of PTH and PTH-L seems to be conserved in vertebrates while PTHrP gene structure is divergent and has acquired new exons and alternative promoters. Splice variants of PTHrP and PTH-L are common in Xenopus and chicken and transcripts of the former have a widespread tissue distribution, although PTH-L is more restricted. PTH is widely expressed in fish tissue but from Xenopus to mammals becomes largely restricted to the parathyroid gland. The N-terminal (1-34 region of PTH, PTHrP and PTH-L in Xenopus and chicken share high sequence conservation and the capacity to modify calcium fluxes across epithelia suggesting a conserved role in calcium metabolism possibly via similar receptors. Conclusions The parathyroid hormone family contains 3 principal members, PTH, PTHrP and the recently identified PTH-L. In teleosts there are 5 genes which encode PTHrP (2, PTH (2 and PTH-L and in tetrapods there are 3 genes (PTHrP, PTH and PTH-L, the exception is placental mammals which

  10. [Analysis of SOX10 gene mutation in a family affected with Waardenburg syndrome type II].

    Science.gov (United States)

    Zheng, Lei; Yan, Yousheng; Chen, Xue; Zhang, Chuan; Zhang, Qinghua; Feng, Xuan; Hao, Shen

    2018-02-10

    OBJECTIVE To detect potential mutation of SOX10 gene in a pedigree affected with Warrdenburg syndrome type II. METHODS Genomic DNA was extracted from peripheral blood samples of the proband and his family members. Exons and flanking sequences of MITF, PAX3, SOX10, SNAI2, END3 and ENDRB genes were analyzed by chip capturing and high throughput sequencing. Suspected mutations were verified with Sanger sequencing. RESULTS A c.127C>T (p.R43X) mutation of the SOX10 gene was detected in the proband, for which both parents showed a wild-type genotype. CONCLUSION The c.127C>T (p.R43X) mutation of SOX10 gene probably underlies the ocular symptoms and hearing loss of the proband.

  11. Are progranulin levels associated with polycystic ovary syndrome and its possible metabolic effects in adolescents and young women?

    Science.gov (United States)

    Ersoy, Ali Ozgur; Tokmak, Aytekin; Ozler, Sibel; Oztas, Efser; Ersoy, Ebru; Celik, Huseyin Tugrul; Erdamar, Husamettin; Yilmaz, Nafiye

    2016-08-01

    Polycystic ovary syndrome (PCOS) is an important disease that may alter metabolic balances of the whole body. Progranulin is a growth factor which is related to epithelial, neuronal growth and oogenesis. Here, we aimed to investigate the diagnostic value of the levels of Progranulin in the clinical setting of PCOS, and its metabolic effects. Forty-one adolescents and young women with PCOS and 39 age and body mass index matched adolescents and young women as a control group who attended to the youth center of a tertiary referral center were included in this cross-sectional case-control study. Progranulin levels, indices of insulin sensitivity, lipidemic markers, metabolic syndrome (MetS) criteria were compared between the groups. Progranulin levels in patients with PCOS (7.48 ± 1.93 ng/mL) were significantly higher than in the control group (6.25 ± 1.98 ng/mL) (p = 0.006). Luteinizing hormone (LH) levels, LH/Follicle stimulating hormone (FSH) ratios, free testosterone, dehydroepiandrosterone sulfate (DHEAS), C-reactive protein (CRP) levels in patients with PCOS were significantly higher than in the control group (p progranulin levels of patients diagnosed with PCOS (p = 0.008). Progranulin may be a novel biomarker for cardiovascular risk in patients with PCOS, thus these cases should be directed to close follow-up for possible cardiovascular diseases. Future larger studies should focus on this entity.

  12. A Clinical and Molecular Genetic Study of 50 Families with Autosomal Recessive Parkinsonism Revealed Known and Novel Gene Mutations.

    Science.gov (United States)

    Taghavi, Shaghayegh; Chaouni, Rita; Tafakhori, Abbas; Azcona, Luis J; Firouzabadi, Saghar Ghasemi; Omrani, Mir Davood; Jamshidi, Javad; Emamalizadeh, Babak; Shahidi, Gholam Ali; Ahmadi, Mona; Habibi, Seyed Amir Hassan; Ahmadifard, Azadeh; Fazeli, Atena; Motallebi, Marzieh; Petramfar, Peyman; Askarpour, Saeed; Askarpour, Shiva; Shahmohammadibeni, Hossein Ali; Shahmohammadibeni, Neda; Eftekhari, Hajar; Shafiei Zarneh, Amir Ehtesham; Mohammadihosseinabad, Saeed; Khorrami, Mehdi; Najmi, Safa; Chitsaz, Ahmad; Shokraeian, Parasto; Ehsanbakhsh, Hossein; Rezaeidian, Jalal; Ebrahimi Rad, Reza; Madadi, Faranak; Andarva, Monavvar; Alehabib, Elham; Atakhorrami, Minoo; Mortazavi, Seyed Erfan; Azimzadeh, Zahra; Bayat, Mahdis; Besharati, Amir Mohammad; Harati-Ghavi, Mohammad Ali; Omidvari, Samareh; Dehghani-Tafti, Zahra; Mohammadi, Faraz; Mohammad Hossein Pour, Banafsheh; Noorollahi Moghaddam, Hamid; Esmaili Shandiz, Ehsan; Habibi, Arman; Taherian-Esfahani, Zahra; Darvish, Hossein; Paisán-Ruiz, Coro

    2018-04-01

    In this study, the role of known Parkinson's disease (PD) genes was examined in families with autosomal recessive (AR) parkinsonism to assist with the differential diagnosis of PD. Some families without mutations in known genes were also subject to whole genome sequencing with the objective to identify novel parkinsonism-related genes. Families were selected from 4000 clinical files of patients with PD or parkinsonism. AR inheritance pattern, consanguinity, and a minimum of two affected individuals per family were used as inclusion criteria. For disease gene/mutation identification, multiplex ligation-dependent probe amplification, quantitative PCR, linkage, and Sanger and whole genome sequencing assays were carried out. A total of 116 patients (50 families) were examined. Fifty-four patients (46.55%; 22 families) were found to carry pathogenic mutations in known genes while a novel gene, not previously associated with parkinsonism, was found mutated in a single family (2 patients). Pathogenic mutations, including missense, nonsense, frameshift, and exon rearrangements, were found in Parkin, PINK1, DJ-1, SYNJ1, and VAC14 genes. In conclusion, variable phenotypic expressivity was seen across all families.

  13. The FTF gene family regulates virulence and expression of SIX effectors in Fusarium oxysporum.

    Science.gov (United States)

    Niño-Sánchez, Jonathan; Casado-Del Castillo, Virginia; Tello, Vega; De Vega-Bartol, José J; Ramos, Brisa; Sukno, Serenella A; Díaz Mínguez, José María

    2016-09-01

    The FTF (Fusarium transcription factor) gene family comprises a single copy gene, FTF2, which is present in all the filamentous ascomycetes analysed, and several copies of a close relative, FTF1, which is exclusive to Fusarium oxysporum. An RNA-mediated gene silencing system was developed to target mRNA produced by all the FTF genes, and tested in two formae speciales: F. oxysporum f. sp. phaseoli (whose host is common bean) and F. oxysporum f. sp. lycopersici (whose host is tomato). Quantification of the mRNA levels showed knockdown of FTF1 and FTF2 in randomly isolated transformants of both formae speciales. The attenuation of FTF expression resulted in a marked reduction in virulence, a reduced expression of several SIX (Secreted In Xylem) genes, the best studied family of effectors in F. oxysporum, and lower levels of SGE1 (Six Gene Expression 1) mRNA, the presumptive regulator of SIX expression. Moreover, the knockdown mutants showed a pattern of colonization of the host plant similar to that displayed by strains devoid of FTF1 copies (weakly virulent strains). Gene knockout of FTF2 also resulted in a reduction in virulence, but to a lesser extent. These results demonstrate the role of the FTF gene expansion, mostly the FTF1 paralogues, as a regulator of virulence in F. oxysporum and suggest that the control of effector expression is the mechanism involved. © 2016 The Authors Molecular Plant Pathology Published by British Society for Plant Pathology and John Wiley & Sons Ltd.

  14. Genome-wide characterization of phenylalanine ammonia-lyase gene family in watermelon (Citrullus lanatus).

    Science.gov (United States)

    Dong, Chun-Juan; Shang, Qing-Mao

    2013-07-01

    Phenylalanine ammonia-lyase (PAL), the first enzyme in the phenylpropanoid pathway, plays a critical role in plant growth, development, and adaptation. PAL enzymes are encoded by a gene family in plants. Here, we report a genome-wide search for PAL genes in watermelon. A total of 12 PAL genes, designated ClPAL1-12, are identified . Nine are arranged in tandem in two duplication blocks located on chromosomes 4 and 7, and the other three ClPAL genes are distributed as single copies on chromosomes 2, 3, and 8. Both the cDNA and protein sequences of ClPALs share an overall high identity with each other. A phylogenetic analysis places 11 of the ClPALs into a separate cucurbit subclade, whereas ClPAL2, which belongs to neither monocots nor dicots, may serve as an ancestral PAL in plants. In the cucurbit subclade, seven ClPALs form homologous pairs with their counterparts from cucumber. Expression profiling reveals that 11 of the ClPAL genes are expressed and show preferential expression in the stems and male and female flowers. Six of the 12 ClPALs are moderately or strongly expressed in the fruits, particularly in the pulp, suggesting the potential roles of PAL in the development of fruit color and flavor. A promoter motif analysis of the ClPAL genes implies redundant but distinctive cis-regulatory structures for stress responsiveness. Finally, duplication events during the evolution and expansion of the ClPAL gene family are discussed, and the relationships between the ClPAL genes and their cucumber orthologs are estimated.

  15. Evaluation of maternal serum hypoxia inducible factor-1α, progranulin and syndecan-1 levels in pregnancies with early- and late-onset preeclampsia.

    Science.gov (United States)

    Alici Davutoğlu, Ebru; Akkaya Firat, Asuman; Ozel, Ayşegül; Yılmaz, Nevin; Uzun, Isil; Temel Yuksel, Ilkbal; Madazlı, Riza

    2018-08-01

    To determine the serum levels of HIF-1 α, progranulin, and syndecan-1 in preeclampsia (PE) and normal pregnancy, and to compare whether these markers demonstrate any difference between early-onset PE (EO-PE) and late-onset PE (LO-PE). This cross-sectional study was conducted on 27 women with EO-PE, 27 women with LO-PE, and 26 healthy normotensive pregnant controls matched for gestational age. Maternal levels of serum HIF-1 α, progranulin, and syndecan-1 were measured with the use of an enzyme-linked immunosorbent assay kit. Statistical analysis revealed significant differences between the control and the PE groups in progranulin (p progranulin levels were significantly higher in LO-PE compared with the other two groups (EO-PE versus LO-PE and LO-PE versus controls p = .000). Control group presented significantly higher syndecan-1 levels, than EO and LO-PE (p progranulin levels (r = .439, p= .000). Serum progranulin may have potential to be used as a biomarker for the differentiation of EO-PE and LO-PE. The co-operative action between HIF-1 α and progranulin might play a key role in the pathogenesis of LO-PE. The predominant feature of LO-PE seems to be an inflammatory process, whereas in EO-PE placentation problem seems to be the main pathology.

  16. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model.

    Science.gov (United States)

    Toh, Huishi; Cao, Mingju; Daniels, Eugene; Bateman, Andrew

    2013-01-01

    Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2-promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5-14.5) and later (E15.5-17.5) developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with subsequent effects in

  17. Expression of the growth factor progranulin in endothelial cells influences growth and development of blood vessels: a novel mouse model.

    Directory of Open Access Journals (Sweden)

    Huishi Toh

    Full Text Available Progranulin is a secreted glycoprotein that regulates cell proliferation, migration and survival. It has roles in development, tumorigenesis, wound healing, neurodegeneration and inflammation. Endothelia in tumors, wounds and placenta express elevated levels of progranulin. In culture, progranulin activates endothelial proliferation and migration. This suggested that progranulin might regulate angiogenesis. It was, however, unclear how elevated endothelial progranulin levels influence vascular growth in vivo. To address this issue, we generated mice with progranulin expression targeted specifically to developing endothelial cells using a Tie2-promoter/enhancer construct. Three Tie2-Grn mouse lines were generated with varying Tie2-Grn copy number, and were called GrnLo, GrnMid, and GrnHi. All three lines showed increased mortality that correlates with Tie2-Grn copy number, with greatest mortality and lowest germline transmission in the GrnHi line. Death of the transgenic animals occurred around birth, and continued for three days after birth. Those that survived beyond day 3 survived into adulthood. Transgenic neonates that died showed vascular abnormalities of varying severity. Some exhibited bleeding into body cavities such as the pericardial space. Smaller localized hemorrhages were seen in many organs. Blood vessels were often dilated and thin-walled. To establish the development of these abnormalities, we examined mice at early (E10.5-14.5 and later (E15.5-17.5 developmental phases. Early events during vasculogenesis appear unaffected by Tie2-Grn as apparently normal primary vasculature had been established at E10.5. The earliest onset of vascular abnormality was at E15.5, with focal cerebral hemorrhage and enlarged vessels in various organs. Aberrant Tie2-Grn positive vessels showed thinning of the basement membrane and reduced investiture with mural cells. We conclude that progranulin promotes exaggerated vessel growth in vivo, with

  18. Exome sequencing of a large family identifies potential candidate genes contributing risk to bipolar disorder.

    Science.gov (United States)

    Zhang, Tianxiao; Hou, Liping; Chen, David T; McMahon, Francis J; Wang, Jen-Chyong; Rice, John P

    2018-03-01

    Bipolar disorder is a mental illness with lifetime prevalence of about 1%. Previous genetic studies have identified multiple chromosomal linkage regions and candidate genes that might be associated with bipolar disorder. The present study aimed to identify potential susceptibility variants for bipolar disorder using 6 related case samples from a four-generation family. A combination of exome sequencing and linkage analysis was performed to identify potential susceptibility variants for bipolar disorder. Our study identified a list of five potential candidate genes for bipolar disorder. Among these five genes, GRID1(Glutamate Receptor Delta-1 Subunit), which was previously reported to be associated with several psychiatric disorders and brain related traits, is particularly interesting. Variants with functional significance in this gene were identified from two cousins in our bipolar disorder pedigree. Our findings suggest a potential role for these genes and the related rare variants in the onset and development of bipolar disorder in this one family. Additional research is needed to replicate these findings and evaluate their patho-biological significance. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. A large and functionally diverse family of Fad2 genes in safflower (Carthamus tinctorius L.

    Directory of Open Access Journals (Sweden)

    Cao Shijiang

    2013-01-01

    Full Text Available Abstract Background The application and nutritional value of vegetable oil is highly dependent on its fatty acid composition, especially the relative proportion of its two major fatty acids, i.e oleic acid and linoleic acid. Microsomal oleoyl phosphatidylcholine desaturase encoded by FAD2 gene is known to introduce a double bond at the Δ12 position of an oleic acid on phosphatidylcholine and convert it to linoleic acid. The known plant FAD2 enzymes are encoded by small gene families consisting of 1-4 members. In addition to the classic oleate Δ12-desaturation activity, functional variants of FAD2 that are capable of undertaking additional or alternative acyl modifications have also been reported in a limited number of plant species. In this study, our objective was to identify FAD2 genes from safflower and analyse their differential expression profile and potentially diversified functionality. Results We report here the characterization and functional expression of an exceptionally large FAD2 gene family from safflower, and the temporal and spatial expression profiles of these genes as revealed through Real-Time quantitative PCR. The diversified functionalities of some of the safflower FAD2 gene family members were demonstrated by ectopic expression in yeast and transient expression in Nicotiana benthamiana leaves. CtFAD2-1 and CtFAD2-10 were demonstrated to be oleate desaturases specifically expressed in developing seeds and flower head, respectively, while CtFAD2-2 appears to have relatively low oleate desaturation activity throughout the plant. CtFAD2-5 and CtFAD2-8 are specifically expressed in root tissues, while CtFAD2-3, 4, 6, 7 are mostly expressed in the cotyledons and hypocotyls in young safflower seedlings. CtFAD2-9 was found to encode a novel desaturase operating on C16:1 substrate. CtFAD2-11 is a tri-functional enzyme able to introduce a carbon double bond in either cis or trans configuration, or a carbon triple (acetylenic bond

  20. Genome-Wide Identification, Characterization and Expression Analysis of the Solute Carrier 6 Gene Family in Silkworm (Bombyx mori).

    Science.gov (United States)

    Tang, Xin; Liu, Huawei; Chen, Quanmei; Wang, Xin; Xiong, Ying; Zhao, Ping

    2016-10-03

    The solute carrier 6 (SLC6) gene family, initially known as the neurotransmitter transporters, plays vital roles in the regulation of neurotransmitter signaling, nutrient absorption and motor behavior. In this study, a total of 16 candidate genes were identified as SLC6 family gene homologs in the silkworm (Bombyx mori) genome. Spatio-temporal expression patterns of silkworm SLC6 gene transcripts indicated that these genes were highly and specifically expressed in midgut, brain and gonads; moreover, these genes were expressed primarily at the feeding stage or adult stage. Levels of expression for most midgut-specific and midgut-enriched gene transcripts were down-regulated after starvation but up-regulated after re-feeding. In addition, we observed that expression levels of these genes except for BmSLC6-15 and BmGT1 were markedly up-regulated by a juvenile hormone analog. Moreover, brain-enriched genes showed differential expression patterns during wandering and mating processes, suggesting that these genes may be involved in modulating wandering and mating behaviors. Our results improve our understanding of the expression patterns and potential physiological functions of the SLC6 gene family, and provide valuable information for the comprehensive functional analysis of the SLC6 gene family.