WorldWideScience

Sample records for program pine tree

  1. Grading sugar pine saw logs in trees.

    Science.gov (United States)

    John W. Henley

    1972-01-01

    Small limbs and small overgrown limbs cause problems when grading saw logs in sugar pine trees. Surface characteristics and lumber recovery information for 426 logs from 64 sugar pine trees were examined. Resulting modifications in the grading specification that allow a grader to ignore small limbs and small limb indicators do not appear to decrease the performance of...

  2. Weathering the storm: how lodgepole pine trees survive mountain pine beetle outbreaks.

    Science.gov (United States)

    Erbilgin, Nadir; Cale, Jonathan A; Hussain, Altaf; Ishangulyyeva, Guncha; Klutsch, Jennifer G; Najar, Ahmed; Zhao, Shiyang

    2017-06-01

    Recent mountain pine beetle outbreaks in western North America killed millions of lodgepole pine trees, leaving few survivors. However, the mechanism underlying the ability of trees to survive bark beetle outbreaks is unknown, but likely involve phytochemicals such as monoterpenes and fatty acids that can drive beetle aggregation and colonization on their hosts. Thus, we conducted a field survey of beetle-resistant lodgepole pine (Pinus contorta) trees to retrospectively deduce whether these phytochemicals underlie their survival by comparing their chemistry to that of non-attacked trees in the same stands. We also compared beetle attack characteristics between resistant and beetle-killed trees. Beetle-killed trees had more beetle attacks and longer ovipositional galleries than resistant trees, which also lacked the larval establishment found in beetle-killed trees. Resistant trees contained high amounts of toxic and attraction-inhibitive compounds and low amounts of pheromone-precursor and synergist compounds. During beetle host aggregation and colonization, these compounds likely served three critical roles in tree survival. First, low amounts of pheromone-precursor (α-pinene) and synergist (mycrene, terpinolene) compounds reduced or prevented beetles from attracting conspecifics to residual trees. Second, high amounts of 4-allyanisole further inhibited beetle attraction to its pheromone. Finally, high amounts of toxic limonene, 3-carene, 4-allyanisole, α-linolenic acid, and linoleic acid inhibited beetle gallery establishment and oviposition. We conclude that the variation of chemotypic expression of local plant populations can have profound ecological consequences including survival during insect outbreaks.

  3. Mountain pine beetle-killed trees as snags in Black Hills ponderosa pine stands

    Science.gov (United States)

    J. M. Schmid; S. A. Mata; W. C. Schaupp

    2009-01-01

    Mountain pine beetle-killed ponderosa pine trees in three stands of different stocking levels near Bear Mountain in the Black Hills National Forest were surveyed over a 5-year period to determine how long they persisted as unbroken snags. Rate of breakage varied during the first 5 years after MPB infestation: only one tree broke during the first 2 years in the three...

  4. Population densities and tree diameter effects associated with verbenone treatments to reduce mountain pine beetle-caused mortality of lodgepole pine.

    Science.gov (United States)

    Progar, R A; Blackford, D C; Cluck, D R; Costello, S; Dunning, L B; Eager, T; Jorgensen, C L; Munson, A S; Steed, B; Rinella, M J

    2013-02-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins (Coleoptera: Curculionidae: Scolytinae), is among the primary causes of mature lodgepole pine, Pinus contorta variety latifolia mortality. Verbenone is the only antiaggregant semiochemical commercially available for reducing mountain pine beetle infestation of lodgepole pine. The success of verbenone treatments has varied greatly in previous studies because of differences in study duration, beetle population size, tree size, or other factors. To determine the ability of verbenone to protect lodgepole pine over long-term mountain pine beetle outbreaks, we applied verbenone treatments annually for 3 to 7 yr at five western United States sites. At one site, an outbreak did not develop; at two sites, verbenone reduced lodgepole pine mortality in medium and large diameter at breast height trees, and at the remaining two sites verbenone was ineffective at reducing beetle infestation. Verbenone reduced mountain pine beetle infestation of lodgepole pine trees in treated areas when populations built gradually or when outbreaks in surrounding untreated forests were of moderate severity. Verbenone did not protect trees when mountain pine beetle populations rapidly increase.

  5. To live fast or not: growth, vigor and longevity of old-growth ponderosa pine and lodgepole pine trees

    Energy Technology Data Exchange (ETDEWEB)

    Kaufmann, M. R. [Forest Service, Fort Collins, CO (United States). Rocky Mountain Forest and Range Experiment Station

    1996-01-01

    Old ponderosa pine and lodgepole pine trees were studied to determine volume growth patterns in relation to leaf area. Ponderosa pine trees varied in age from 166 to 432 years and were about 77 inches in diameter; lodgepole pine trees ranged in age from 250 to 296 years and were 31 inches in diameter. Trees of both species had flat tops, heavy branches and foliage distribution characteristic of older trees. Annual volume increments were determined from crossdated radial increments measured on discs at four meter height intervals; leaf areas were determined based on leaf area/branch sapwood area ratios. Ponderosa pine volume growth was found to have been gradual at first, reaching a plateau that persisted for a century or more, followed by a rapid increase, and a sudden decrease in growth to less than one half of the earlier rate and persisting at these levels for several decades. In lodgepole pine growth decline was less frequent and less spectacular; growth in general was more even, with slight annual variations. Volume growth in the most recent years prior to felling weakly correlated with leaf area. Growth efficiencies were generally higher for trees having the lowest leaf areas. The fact that these persisted for many decades with low growth efficiencies suggests that defence mechanisms are more effective in old trees than in younger ones. 16 refs., 8 figs.

  6. Successful Colonization of Lodgepole Pine Trees by Mountain Pine Beetle Increased Monoterpene Production and Exhausted Carbohydrate Reserves.

    Science.gov (United States)

    Roth, Marla; Hussain, Altaf; Cale, Jonathan A; Erbilgin, Nadir

    2018-02-01

    Lodgepole pine (Pinus contorta) forests have experienced severe mortality from mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North America for the last several years. Although the mechanisms by which beetles kill host trees are unclear, they are likely linked to pine defense monoterpenes that are synthesized from carbohydrate reserves. However, how carbohydrates and monoterpenes interact in response to MPB colonization is unknown. Understanding this relationship could help to elucidate how pines succumb to bark beetle attack. We compared concentrations of individual and total monoterpenes and carbohydrates in the phloem of healthy pine trees with those naturally colonized by MPB. Trees attacked by MPB had nearly 300% more monoterpenes and 40% less carbohydrates. Total monoterpene concentrations were most strongly associated with the concentration of sugars in the phloem. These results suggest that bark beetle colonization likely depletes carbohydrate reserves by increasing the production of carbon-rich monoterpenes, and other carbon-based secondary compounds. Bark beetle attacks also reduce water transport causing the disruption of carbon transport between tree foliage and roots, which restricts carbon assimilation. Reduction in carbohydrate reserves likely contributes to tree mortality.

  7. The effect of water limitation on volatile emission, tree defense response, and brood success of Dendroctonus ponderosae in two pine hosts, lodgepole and jack pine

    Directory of Open Access Journals (Sweden)

    Inka eLusebrink

    2016-02-01

    Full Text Available The mountain pine beetle (MPB; Dendroctonus ponderosae has recently expanded its range from lodgepole pine forest into the lodgepole × jack pine hybrid zone in central Alberta, within which it has attacked pure jack pine. This study tested the effects of water limitation on tree defense response of mature lodgepole and jack pine (Pinus contorta and Pinus banksiana trees in the field. Tree defense response was initiated by inoculation of trees with the MPB-associated fungus Grosmannia clavigera and measured through monoterpene emission from tree boles and concentration of defensive compounds in phloem, needles, and necrotic tissues. Lodgepole pine generally emitted higher amounts of monoterpenes than jack pine; particularly from fungal-inoculated trees. Compared to non-inoculated trees, fungal inoculation increased monoterpene emission in both species, whereas water treatment had no effect on monoterpene emission. The phloem of both pine species contains (--α-pinene, the precursor of the beetle’s aggregation pheromone, however lodgepole pine contains two times as much as jack pine. The concentration of defensive compounds was 70-fold greater in the lesion tissue in jack pine, but only 10-fold in lodgepole pine compared to healthy phloem tissue in each species, respectively. Water-deficit treatment inhibited an increase of L-limonene as response to fungal inoculation in lodgepole pine phloem. The amount of myrcene in jack pine phloem was higher in water-deficit trees compared to ambient trees. Beetles reared in jack pine were not affected by either water or biological treatment, whereas beetles reared in lodgepole pine benefited from fungal inoculation by producing larger and heavier female offspring. Female beetles that emerged from jack pine bolts contained more fat than those that emerged from lodgepole pine, even though lodgepole pine phloem had a higher nitrogen content than jack pine phloem. These results suggest that jack pine chemistry

  8. Whitebark pine mortality related to white pine blister rust, mountain pine beetle outbreak, and water availability

    Science.gov (United States)

    Shanahan, Erin; Irvine, Kathryn M.; Thoma, David P.; Wilmoth, Siri K.; Ray, Andrew; Legg, Kristin; Shovic, Henry

    2016-01-01

    efforts. Using tree-level observations, the National Park Service-led Greater Yellowstone Interagency Whitebark Pine Long-term Monitoring Program provided important ecological insight on the size-dependent effects of white pine blister rust, mountain pine beetle, and water availability on whitebark pine mortality. This ongoing monitoring campaign will continue to offer observations that advance conservation in the Greater Yellowstone Ecosystem.

  9. Distribution of radiocesium and stable elements within a pine tree

    International Nuclear Information System (INIS)

    Yoshida, S.; Watanabe, M.; Suzuki, A.

    2011-01-01

    Distributions of 137 Cs and stable elements in different parts of a pine tree collected in Chernobyl-contaminated area in Belarus were determined. Samples include annual tree rings of wood, branches and needles with different ages. The concentrations of 137 Cs and stable Cs in annual tree rings were the highest in cambium and decreased sharply towards inside. The youngest needles and branches contained higher 137 Cs and stable Cs than older ones. The concentration of 137 Cs being highest in growing parts suggests the highest radiation dose to the radiation-sensitive parts of tree. Distribution patterns of stable elements in pine tree differ among the elements. Distributions similar to those of Cs were observed for K and Rb, suggesting that alkaline metals tend to be translocated to young growing parts of pine tree. A similar distribution was also observed for phosphorus. Distributions of alkaline earth metals and several heavy metals were different from those of alkaline metals. (authors)

  10. 7 CFR 160.91 - Meaning of words “pine” and “pine tree.”

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Meaning of words âpineâ and âpine tree.â 160.91... REGULATIONS AND STANDARDS FOR NAVAL STORES Labeling, Advertising and Packing § 160.91 Meaning of words “pine” and “pine tree.” The words “pine” or “pine tree,” when used to designate the source of spirits of...

  11. Physiological girdling of pine trees via phloem chilling: proof of concept

    Science.gov (United States)

    Kurt Johnsen; Chris Maier; Felipe Sanchez; Peter Anderson; John Butnor; Richard Waring; Sune Linder

    2007-01-01

    Quantifying below-ground carbon (C) allocation is particularly difficult as methods usually disturb the root– mycorrhizal–soil continuum. We reduced C allocation below ground of loblolly pine trees by: (1) physically girdling trees and (2) physiologically girdling pine trees by chilling the phloem. Chilling reduced cambium temperatures by approximately 18 °C. Both...

  12. The Effect of Water Limitation on Volatile Emission, Tree Defense Response, and Brood Success of Dendroctonus ponderosae in Two Pine Hosts, Lodgepole, and Jack Pine

    OpenAIRE

    Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L.

    2016-01-01

    The mountain pine beetle (MPB; Dendroctonus ponderosae) has recently expanded its range from lodgepole pine forest into the lodgepole × jack pine hybrid zone in central Alberta, within which it has attacked pure jack pine. This study tested the effects of water limitation on tree defense response of mature lodgepole and jack pine (Pinus contorta and Pinus banksiana) trees in the field. Tree defense response was initiated by inoculation of trees with the MPB-associated fungus Grosmannia clavig...

  13. Rooting Rose Cuttings in Whole Pine Tree Substrates

    Science.gov (United States)

    Increased demand for alternatives to pine bark (PB) and peat moss (P) has led to extensive research on wood-based substrates, such as processed whole pine trees (WPT), for nursery and greenhouse crop production. Limited information is available on how WPT may perform as a rooting substrate for cutti...

  14. Tree response and mountain pine beetle attack preference, reproduction, and emergence timing in mixed whitebark and lodgepole pines

    Science.gov (United States)

    Barbara J. Bentz; Celia Boone; Kenneth F. Raffa

    2015-01-01

    Mountain pine beetle (Dendroctonus ponderosae) is an important disturbance agent in Pinus ecosystems of western North America, historically causing significant tree mortality. Most recorded outbreaks have occurred in mid elevation lodgepole pine (Pinus contorta). In warm years, tree mortality also occurs at higher elevations in mixed species stands.

  15. Changes in transpiration and foliage growth in lodgepole pine trees following mountain pine beetle attack and mechanical girdling

    Science.gov (United States)

    Robert M. Hubbard; Charles C. Rhoades; Kelly Elder; Jose Negron

    2013-01-01

    The recent mountain pine beetle outbreak in North American lodgepole pine forests demonstrates the importance of insect related disturbances in changing forest structure and ecosystem processes. Phloem feeding by beetles disrupts transport of photosynthate from tree canopies and fungi introduced to the tree's vascular system by the bark beetles inhibit water...

  16. Fertilizer responses of longleaf pine trees within a loblolly pine plantation: separating direct effects from competition effects

    Science.gov (United States)

    Peter H Anderson; Kurt H. Johnsen

    2009-01-01

    Evidence is mixed on how well longleaf pine (Pinus palustris Mill.) responds to increased soil nitrogen via fertilization. We examined growth and physiological responses of volunteer longleaf pine trees within an intensive loblolly pine (Pinus taeda L.) fertilization experiment. Fertilizer was applied annually following thinning at age 8 years (late 1992) at rates...

  17. The Effect of Restoration Treatments on the Spatial Variability of Soil Processes under Longleaf Pine Trees

    Directory of Open Access Journals (Sweden)

    John K. Hiers

    2012-08-01

    Full Text Available The objectives of this study were to (1 characterize tree-based spatial patterning of soil properties and understory vegetation in frequently burned (“reference state” and fire-suppressed longleaf pine forests; and (2 determine how restoration treatments affected patterning. To attain these objectives, we used an experimental manipulation of management types implemented 15 years ago in Florida. We randomly located six mature longleaf pine trees in one reference and four restoration treatments (i.e., burn, control, herbicide, and mechanical, for a total of 36 trees. In addition to the original treatments and as part of a monitoring program, all plots were subjected to several prescribed fires during these 15 years. Under each tree, we sampled mineral soil and understory vegetation at 1 m, 2 m, 3 m and 4 m (vegetation only away from the tree. At these sites, soil carbon and nitrogen were higher near the trunk while graminoids, forbs and saw palmetto covers showed an opposite trend. Our results confirmed that longleaf pine trees affect the spatial patterning of soil and understory vegetation, and this patterning was mostly limited to the restoration sites. We suggest frequent burning as a probable cause for a lack of spatial structure in the “reference state”. We attribute the presence of spatial patterning in the restoration sites to accumulation of organic materials near the base of mature trees.

  18. Stand conditions and tree characteristics affect quality of longleaf pine for red-cockaded woodpecker cavity trees

    Science.gov (United States)

    W.G. Ross; D.L. Kulhavy; R.N. Conner

    1997-01-01

    We measured resin flow of longleaf (Pinus palustris Mill.) pines in red-cockaded woodpecker (Picoides borealis Vieillot) clusters in the Angelina National Forest in Texas, and the Apalachicola National Forest in Florida. Sample trees were categorized as active cavity trees, inactive cavity trees and control trees. Sample trees were further...

  19. Content of chemical elements in tree rings of lodgepole pine and whitebark pine from a subalpine Sierra Nevada forest

    Science.gov (United States)

    David L. Peterson; Darren R. Anderson

    1990-01-01

    The wood of lodgepole pines and whitebark pines from a high elevation site in the east central Sierra Nevada of California was analyzed for chemical content to determine whether there were any temporal patterns of chemical distribution in tree rings. Cores were taken from 10 trees of each species and divided into 5-year increments for chemical analysis. Correlation...

  20. Development of a shortleaf pine individual-tree growth equation using non-linear mixed modeling techniques

    Science.gov (United States)

    Chakra B. Budhathoki; Thomas B. Lynch; James M. Guldin

    2010-01-01

    Nonlinear mixed-modeling methods were used to estimate parameters in an individual-tree basal area growth model for shortleaf pine (Pinus echinata Mill.). Shortleaf pine individual-tree growth data were available from over 200 permanently established 0.2-acre fixed-radius plots located in naturally-occurring even-aged shortleaf pine forests on the...

  1. Wind noise under a pine tree canopy.

    Science.gov (United States)

    Raspet, Richard; Webster, Jeremy

    2015-02-01

    It is well known that infrasonic wind noise levels are lower for arrays placed in forests and under vegetation than for those in open areas. In this research, the wind noise levels, turbulence spectra, and wind velocity profiles are measured in a pine forest. A prediction of the wind noise spectra from the measured meteorological parameters is developed based on recent research on wind noise above a flat plane. The resulting wind noise spectrum is the sum of the low frequency wind noise generated by the turbulence-shear interaction near and above the tops of the trees and higher frequency wind noise generated by the turbulence-turbulence interaction near the ground within the tree layer. The convection velocity of the low frequency wind noise corresponds to the wind speed above the trees while the measurements showed that the wind noise generated by the turbulence-turbulence interaction is near stationary and is generated by the slow moving turbulence adjacent to the ground. Comparison of the predicted wind noise spectrum with the measured wind noise spectrum shows good agreement for four measurement sets. The prediction can be applied to meteorological estimates to predict the wind noise under other pine forests.

  2. Limited growth recovery after drought-induced forest dieback in very defoliated trees of two pine species

    Directory of Open Access Journals (Sweden)

    Guillermo eGuada

    2016-04-01

    Full Text Available Mediterranean pine forests display high resilience after extreme climatic events such as severe droughts. However, recent dry spells causing growth decline and triggering forest dieback challenge the capacity of some forests to recover following major disturbances. To describe how resilient the responses of forests to drought can be, we quantified growth dynamics in plantations of two pine species (Scots pine, black pine located in south-eastern Spain and showing drought-triggered dieback. Radial growth was characterized at inter- (tree-ring width and intra-annual (xylogenesis scales in three defoliation levels. It was assumed that the higher defoliation the more negative the impact of drought on tree growth. Tree-ring width chronologies were built and xylogenesis was characterized three years after the last severe drought occurred. Annual growth data and the number of tracheids produced in different stages of xylem formation were related to climate data at several time scales. Drought negatively impacted growth of the most defoliated trees in both pine species. In Scots pine, xylem formation started earlier in the non-defoliated than in the most defoliated trees. Defoliated trees presented the shortest duration of the radial-enlargement phase in both species. On average the most defoliated trees formed 60% of the number of mature tracheids formed by the non-defoliated trees in both species. Since radial enlargement is the xylogenesis phase most tightly related to final growth, this explains why the most defoliated trees grew the least due to their altered xylogenesis phases. Our findings indicate a very limited resilience capacity of drought-defoliated Scots and black pines. Moreover, droughts produce legacy effects on xylogenesis of highly defoliated trees which could not recover previous growth rates and are thus more prone to die.

  3. Risk Analysis of Loblolly Pine Controlled Mass Pollination Program

    Science.gov (United States)

    T.D. Byram; F.E. Bridgwater

    1999-01-01

    The economic success of controlled mass pollination (CMP) depends both upon the value of the genetic gain obtained and the cost per seed. Crossing the best six loblolly pine (Pinus taeda) parents currently available in each deployment region of the Western Gulf Forest Tree Improvement Program will produce seed with an average additional gain in mean...

  4. A biologically-based individual tree model for managing the longleaf pine ecosystem

    Science.gov (United States)

    Rick Smith; Greg Somers

    1998-01-01

    Duration: 1995-present Objective: Develop a longleaf pine dynamics model and simulation system to define desirable ecosystem management practices in existing and future longleaf pine stands. Methods: Naturally-regenerated longleaf pine trees are being destructively sampled to measure their recent growth and dynamics. Soils and climate data will be combined with the...

  5. Radiocarbon dating of a pine tree (Pinus densiflora) from Yeongwol, Korea

    International Nuclear Information System (INIS)

    Kim, C.H.; Lee, J.H.; Kang, J.; Song, S.; Yun, M.H.; Kim, J.C.

    2015-01-01

    We report the results of the dating of a pine tree (Pinus densiflora) from Yeongwol, Korea. The age of the tree was estimated to be in the range of hundreds of years, however, the tree had been broken by a strong wind in March 2010 and now only the stump of the tree is left. At the time of sampling in 2014, there were several decayed parts in the stump, so using the usual dendrochronological method (i.e. ring counting) for dating was difficult. However, we found a small wood sample with tree rings near the center of the stump that could be used for radiocarbon wiggle-match dating. Radiocarbon dates were determined using Accelerator mass spectrometry (AMS). The IntCal13 curve was used to calibrate the radiocarbon dates, and the wiggle matching technique was used to reduce the error of the calibrated ages. Based on the dating results, we suggest that the pine tree is approximately 300 years or older.

  6. Radiocarbon dating of a pine tree (Pinus densiflora) from Yeongwol, Korea

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.H.; Lee, J.H.; Kang, J.; Song, S.; Yun, M.H. [AMS Lab., NCIRF, Seoul National University, Seoul 151-742 (Korea, Republic of); Kim, J.C. [Dept. of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of)

    2015-10-15

    We report the results of the dating of a pine tree (Pinus densiflora) from Yeongwol, Korea. The age of the tree was estimated to be in the range of hundreds of years, however, the tree had been broken by a strong wind in March 2010 and now only the stump of the tree is left. At the time of sampling in 2014, there were several decayed parts in the stump, so using the usual dendrochronological method (i.e. ring counting) for dating was difficult. However, we found a small wood sample with tree rings near the center of the stump that could be used for radiocarbon wiggle-match dating. Radiocarbon dates were determined using Accelerator mass spectrometry (AMS). The IntCal13 curve was used to calibrate the radiocarbon dates, and the wiggle matching technique was used to reduce the error of the calibrated ages. Based on the dating results, we suggest that the pine tree is approximately 300 years or older.

  7. Radiocarbon dating of a pine tree (Pinus densiflora) from Yeongwol, Korea

    Science.gov (United States)

    Kim, C. H.; Lee, J. H.; Kang, J.; Song, S.; Yun, M. H.; Kim, J. C.

    2015-10-01

    We report the results of the dating of a pine tree (Pinus densiflora) from Yeongwol, Korea. The age of the tree was estimated to be in the range of hundreds of years, however, the tree had been broken by a strong wind in March 2010 and now only the stump of the tree is left. At the time of sampling in 2014, there were several decayed parts in the stump, so using the usual dendrochronological method (i.e. ring counting) for dating was difficult. However, we found a small wood sample with tree rings near the center of the stump that could be used for radiocarbon wiggle-match dating. Radiocarbon dates were determined using Accelerator mass spectrometry (AMS). The IntCal13 curve was used to calibrate the radiocarbon dates, and the wiggle matching technique was used to reduce the error of the calibrated ages. Based on the dating results, we suggest that the pine tree is approximately 300 years or older.

  8. Biogeochemical hotspots following a simulated tree mortality event of southern pine beetle

    Science.gov (United States)

    Siegert, C. M.; Renninger, H. J.; Karunarathna, S.; Hornslein, N.; Riggins, J. J.; Clay, N. A.; Tang, J. D.; Chaney, B.; Drotar, N.

    2017-12-01

    Disturbances in forest ecosystems can alter functions like productivity, respiration, and nutrient cycling through the creation of biogeochemical hotspots. These events occur sporadically across the landscape, leading to uncertainty in terrestrial biosphere carbon models, which have yet to capture the full complexity of biotic and abiotic factors driving ecological processes in the terrestrial environment. Given the widespread impact of southern pine beetle on forest ecosystems throughout the southeastern United States, it is critical to management and planning activities to understand the role of these disturbances. As such, we hypothesize that bark beetle killed trees create biogeochemical hotspots in the soils surrounding their trunk as they undergo mortality due to (1) increased soil moisture from reductions in plant water uptake and increased stemflow production, (2) enhanced canopy-derived inputs of carbon and nitrogen, and (3) increased microbial activity and root mortality. In 2015, a field experiment to mimic a southern pine beetle attack was established by girdling loblolly pine trees. Subsequent measurements of throughfall and stemflow for water quantity and quality, transpiration, stem respiration, soil respiration, and soil chemistry were used to quantify the extent of spatial and temporal impacts of tree mortality on carbon budgets. Compared to control trees, girdled trees exhibited reduced water uptake within the first 6 months of the study and succumbed to mortality within 18 months. Over two years, the girdled trees generated 33% more stemflow than control trees (7836 vs. 5882 L m-2). Preliminary analysis of carbon and nitrogen concentrations and dissolved organic matter quality are still pending. In the surrounding soils, C:N ratios were greater under control trees (12.8) than under girdled trees (12.1), which was driven by an increase in carbon around control trees (+0.13 mg C mg-1 soil) and not a decrease around girdled trees (-0.01 mg C mg-1

  9. Influence of weather and climate variables on the basal area growth of individual shortleaf pine trees

    Science.gov (United States)

    Pradip Saud; Thomas B. Lynch; Duncan S. Wilson; John Stewart; James M. Guldin; Bob Heinemann; Randy Holeman; Dennis Wilson; Keith Anderson

    2015-01-01

    An individual-tree basal area growth model previously developed for even-aged naturally occurring shortleaf pine trees (Pinus echinata Mill.) in western Arkansas and southeastern Oklahoma did not include weather variables. Individual-tree growth and yield modeling of shortleaf pine has been carried out using the remeasurements of over 200 plots...

  10. Individual tree diameter, height, and volume functions for longleaf pine

    Science.gov (United States)

    Carlos A. Gonzalez-Benecke; Salvador A. Gezan; Timothy A. Martin; Wendell P. Cropper; Lisa J. Samuelson; Daniel J. Leduc

    2014-01-01

    Currently, little information is available to estimate individual tree attributes for longleaf pine (Pinus palustris Mill.), an important tree species of the southeastern United States. The majority of available models are local, relying on stem diameter outside bark at breast height (dbh, cm) and not including stand-level parameters. We developed...

  11. Growth following pruning of young loblolly pine trees: some early results

    Science.gov (United States)

    Ralph L. Amateis; Harold E. Burkhart

    2006-01-01

    In the spring of 2000, a designed experiment was established to study the effects of pruning on juvenile loblolly pine (Pinus taeda L.) tree growth and the subsequent formation of mature wood. Trees were planted at a 3 m x 3 m square spacing in plots of 6 rows with 6 trees per row, with the inner 16 trees constituting the measurement plot. Among the...

  12. Inhibiting effect of ponderosa pine seed trees on seedling growth

    Science.gov (United States)

    Philip M. McDonald

    1976-01-01

    Ponderosa pine seed trees, numbering 4, 8, and 12 per acre, were left standing for 9 years after harvest cutting on the Challenge Experimental Forest, Calif. Seedling heights were measured at ages 5, 9, and 14, and for all ages were poorest if within 20 feet of a seed tree. Seedlings 20 feet or less from a seed tree at the ages given lost the equivalent in years of...

  13. Pinon Pine Tree Study, Los Alamos National Laboratory: Source document

    International Nuclear Information System (INIS)

    Gonzales, G.J.; Fresquez, P.R.; Mullen, M.A.; Naranjo, L. Jr.

    2000-01-01

    One of the dominant tree species growing within and around Los Alamos National Laboratory (LANL), Los Alamos, NM, lands is the pinon pine (Pinus edulis) tree. Pinon pine is used for firewood, fence posts, and building materials and is a source of nuts for food--the seeds are consumed by a wide variety of animals and are also gathered by people in the area and eaten raw or roasted. This study investigated the (1) concentration of 3 H, 137 Cs, 90 Sr, tot U, 238 Pu, 239,240 Pu, and 241 Am in soils (0- to 12-in. [31 cm] depth underneath the tree), pinon pine shoots (PPS), and pinon pine nuts (PPN) collected from LANL lands and regional background (BG) locations, (2) concentrations of radionuclides in PPN collected in 1977 to present data, (3) committed effective dose equivalent (CEDE) from the ingestion of nuts, and (4) soil to PPS to PPN concentration ratios (CRs). Most radionuclides, with the exception of 3 H in soils, were not significantly higher (p < 0.10) in soils, PPS, and PPN collected from LANL as compared to BG locations, and concentrations of most radionuclides in PPN from LANL have decreased over time. The maximum net CEDE (the CEDE plus two sigma minus BG) at the most conservative ingestion rate (10 lb [4.5 kg]) was 0.0018 mrem (0.018 microSv). Soil-to-nut CRs for most radionuclides were within the range of default values in the literature for common fruits and vegetables

  14. Assessing crown dynamics and inter-tree competition in southern pines

    Science.gov (United States)

    Timothy A. Martin; Angelica Garcia; Tania Quesada; Eric J. Jokela; Salvador Gezan

    2015-01-01

    Genetic improvement of southern pines has been underway for 50 years and during this time, deployment of germplasm has generally evolved from more genetically diverse to less genetically diverse. Information is needed on how deployment of individual genotypes in pure blocks will affect traits such as within-stand variation in individual tree traits, as well as tree-...

  15. Physical and chemical properties of slash pine tree parts

    Science.gov (United States)

    E. T. Howard

    1973-01-01

    In three 22-year-old slash pines from an unthinned plantation in central Louisiana, stemwood comprised 58.5 percent of total ovendry tree weight. Stumps and main roots made up 16.5 percent, bark 12.5, top of bole 5.0, needles 4.0, and branches 3.5. This material now is largely wasted when a tree is harvested; methods of utilizing it would extend fiber supplies by 70...

  16. Investigation of Growth and Survival of Transplanted Plane and Pine Trees According to IBA Application, Tree Age, Transplanting Time and Method

    Directory of Open Access Journals (Sweden)

    N. Etemadi

    2015-03-01

    Full Text Available The major problems in transplanting the landscape trees are high level of mortality and low establishment rate of transplanted trees, especially in the first year. In order to achieve the best condition for successful transplanting of pine and plane trees in Isfahan landscape, the present study was carried out based on a completely randomized block design with four replicates and three treatments including transplanting method (balled and burlapped and bare root, tree age (immature and mature and IBA application (0 and 150 mg/L. Trees were transplanted during 2009 and 2010 in three times (dormant season, early and late growing season. Survival rate and Relative Growth Rate index based on tree height (RGRH and trunk diameter (RGRD were measured during the first and second years. Trees transplanted early in the growing season showed the most survival percentage during the two years, as compared to other transplanting dates. Survival of Balled and burlapped and immature transplanted trees was significantly greater than bare root or mature trees. The significant effect of age treatment was continued in the second year. IBA treatment had no effect on survival rate of the studied species. Balled and burlapped and immature transplanted pine trees also had higher RGRH and RGRD compared to bare root or mature trees. According to the results of this study, early growing season is the best time for transplanting pine and plane trees. Also, transplanting of immature trees using balled and burlapped method is recommended to increase the survival and establishment rate.

  17. Harmful effects of atmospheric nitrous acid on the physiological status of Scots pine trees

    International Nuclear Information System (INIS)

    Sakugawa, Hiroshi; Cape, J. Neil

    2007-01-01

    An open top chamber experiment was carried out in the summer of 2003 to examine the effect of nitrous acid (HONO) gas on the physiological status of Scots pine saplings (Pinus sylvestris). Four-year-old pine trees were exposed to two different levels of HONO gas (at ca. 2.5 ppb and 5.0 ppb) and a control (filtered air) from early evening to early morning (18:00-6:00), in duplicate open top chambers. Significant decreases in the ratios of chlorophylls a to b, an increase in the carbon to nitrogen (C/N) ratio, and a reduction of maximum yield of PS II (F v /F m ) in pine needles were also observed after the 2 months' fumigation. Cation contents of pine needles were also decreased by the fumigation with HONO gas. The results could be explained by the harmful effects of OH radicals, generated from photolysis of HONO gas, and/or aqueous phase HONO (NO 2 - /HONO), on the photosynthetic capacity of pine needles. - Exposure to HONO affects photosynthesis and nutrient status of pine trees

  18. Concentrations of radiocesium and stable elements in different parts of pine tree collected in Chernobyl area

    International Nuclear Information System (INIS)

    Yoshida, Satoshi; Watanabe, Masumi; Suzuki, Akira; Linkov, Igor; Dvornik, Alexander; Zhuchenko, Tatiana

    2007-01-01

    Radial distributions of 137 Cs and related stable elements in a pine tree collected in Chernobyl contaminated area in Belarus were determined, in order to get basic information for dose estimation of pine tree. The concentration of 137 Cs in annual tree rings was the highest in cambium, and decreased sharply toward inside. The highest concentration of 137 Cs in cambium suggests the highest radiation dose to growing part of wood. Distribution of stable Cs was similar as that of 137 Cs, and the 137 Cs/stable Cs ratio was almost constant, indicating the equilibrium of Chernobyl 137 Cs with stable Cs in the pine wood. The similar distributions as Cs were observed for K and Rb. (author)

  19. Use of Hardwood Tree Species by Birds Nesting in Ponderosa Pine Forests

    Science.gov (United States)

    Kathryn L. Purcell; Douglas A. Drynan

    2008-01-01

    We examined the use of hardwood tree species for nesting by bird species breeding in ponderosa pine (Pinus ponderosa) forests in the Sierra National Forest, California. From 1995 through 2002, we located 668 nests of 36 bird species nesting in trees and snags on four 60-ha study sites. Two-thirds of all species nesting in trees or snags used...

  20. Whole-tree bark and wood properties of loblolly pine from intensively managed plantations

    Science.gov (United States)

    Finto Antony; Laurence R. Schimleck; Richard F. Daniels; Alexander Clark; Bruce E. Borders; Michael B. Kane; Harold E. Burkhart

    2015-01-01

    A study was conducted to identify geographical variation in loblolly pine bark and wood properties at the whole-tree level and to quantify the responses in whole-tree bark and wood properties following contrasting silvicultural practices that included planting density, weed control, and fertilization. Trees were destructively sampled from both conventionally managed...

  1. Ponderosa pine seed-tree removal reduces stocking only slightly

    Science.gov (United States)

    Philip M. McDonald

    1969-01-01

    After ponderosa pine seed trees were removed on the Challenge Experimental Forest, California, seedling stocking fell by 3.8 percent or about 212 seedlings per acre. This loss is slightly less than that incurred from natural mortality, and one that did not reduce regeneration levels below the minimum standard.

  2. Dynamic programming for optimization of timber production and grazing in ponderosa pine

    Science.gov (United States)

    Kurt H. Riitters; J. Douglas Brodie; David W. Hann

    1982-01-01

    Dynamic programming procedures are presented for optimizing thinning and rotation of even-aged ponderosa pine by using the four descriptors: age, basal area, number of trees, and time since thinning. Because both timber yield and grazing yield are functions of stand density, the two outputs-forage and timber-can both be optimized. The soil expectation values for single...

  3. Comparing single-tree selection, group selection, and clearcutting for regenerating oaks and pines in the Missouri Ozarks

    Science.gov (United States)

    Randy G. Jensen; John M. Kabrick

    2008-01-01

    In the Missouri Ozarks, there is considerable concern about the effectiveness of the uneven-aged methods of single-tree selection and group selection for oak (Quercus L.) and shortleaf pine (Pinus echinata Mill.) regeneration. We compared the changes in reproduction density of oaks and pine following harvesting by single-tree...

  4. Field Tests of Pine Oil as a Repellent for Southern Pine Bark Beetles

    Science.gov (United States)

    J.C. Nod; F.L. Hastings; A.S. Jones

    1990-01-01

    An experimental mixture of terpene hydrocarbons derived from wood pulping, BBR-2, sprayed on the lower 6 m of widely separated southern pine trees did not protect nearby trees from southern pine beetle attacks. Whether treated trees were protected from southern pine beetle was inconclusive. The pine oil mixture did not repellpsfrom treated trees or nearby untreated...

  5. Tree canopy types constrain plant distributions in ponderosa pine-Gambel oak forests, northern Arizona

    Science.gov (United States)

    Scott R. Abella

    2009-01-01

    Trees in many forests affect the soils and plants below their canopies. In current high-density southwestern ponderosa pine (Pinus ponderosa) forests, managers have opportunities to enhance multiple ecosystem values by manipulating tree density, distribution, and canopy cover through tree thinning. I performed a study in northern Arizona ponderosa...

  6. Tree mortality in drought-stressed mixed-conifer and ponderosa pine forests, Arizona, USA

    Science.gov (United States)

    Joseph L. Ganey; Scott C. Vojta

    2011-01-01

    We monitored tree mortality in northern Arizona (USA) mixed-conifer and ponderosa pine (Pinus ponderosa Dougl. ex Laws) forests from 1997 to 2007, a period of severe drought in this area. Mortality was pervasive, occurring on 100 and 98% of 53 mixed-conifer and 60 ponderosa pine plots (1-ha each), respectively. Most mortality was attributable to a suite of forest...

  7. Is lodgepole pine mortality due to mountain pine beetle linked to the North American Monsoon?

    Science.gov (United States)

    Sara A. Goeking; Greg C. Liknes

    2012-01-01

    Regional precipitation patterns may have influenced the spatial variability of tree mortality during the recent mountain pine beetle (Dendroctonus ponderosa) (MPB) outbreak in the western United States. Data from the Forest Inventory and Analysis (FIA) Program show that the outbreak was especially severe in the state of Colorado where over 10 million lodgepole pines (...

  8. The weight of the past: land-use legacies and recolonization of pine plantations by oak trees.

    Science.gov (United States)

    Navarro-González, Irene; Pérez-Luque, Antonio J; Bonet, Francisco J; Zamora, Regino

    2013-09-01

    Most of the world's plantations were established on previously disturbed sites with an intensive land-use history. Our general hypothesis was that native forest regeneration within forest plantations depends largely on in situ biological legacies as a source of propagules. To test this hypothesis, we analyzed native oak regeneration in 168 pine plantation plots in southern Spain in relation to land use in 1956, oak patch proximity, and pine tree density. Historical land-use patterns were determined from aerial photography from 1956, and these were compared with inventory data from 2004-2005 and additional orthophoto images. Our results indicate that oak forest regeneration in pine plantations depends largely on land-use legacies, although nearby, well-conserved areas can provide propagules for colonization from outside the plantation, and pine tree density also affected oak recruit density. More intense land uses in the past meant fewer biological legacies and, therefore, lower likelihood of regenerating native forest. That is, oak recruit density was lower when land use in 1956 was croplands (0.004 +/- 0.002 recruits/m2 [mean +/- SE]) or pasture (0.081 +/- 0.054 recruits/m2) instead of shrubland (0.098 +/- 0.031 recruits/m2) or oak formations (0.314 +/- 0.080 recruits/m2). Our study shows that land use in the past was more important than propagule source distance or pine tree density in explaining levels of native forest regeneration in plantations. Thus, strategies for restoring native oak forests in pine plantations may benefit from considering land-use legacies as well as distance to propagule sources and pine density.

  9. Unthinned slow-growing ponderosa pine (Pinus ponderosa) trees contain muted isotopic signals in tree rings as compared to thinned trees

    Science.gov (United States)

    We analysed the oxygen isotopic values of wood (δ18Ow) of 12 ponderosa pine (Pinus ponderosa) trees from control, moderately, and heavily thinned stands and compared them with existing wood-based estimates of carbon isotope discrimination (∆13C), basal area increment (BAI), and g...

  10. Overstory Tree Mortality in Ponderosa Pine and Spruce-Fir Ecosystems Following a Drought in Northern New Mexico

    Directory of Open Access Journals (Sweden)

    Brian P. Oswald

    2016-10-01

    Full Text Available Drought-caused tree dieback is an issue around the world as climates change and many areas become dryer and hotter. A drought from 1998–2004 resulted in a significant tree dieback event in many of the wooded areas in portions of the Jemez Mountains and the adjacent Pajarito Plateau in northern New Mexico. The objectives of this study were to evaluate and quantify the differences in tree mortality before and after a recent drought in ponderosa pine and spruce-fir ecosystems, and to assess the effect of mechanical thinning on ponderosa pine mortality. Significant increases in mortality were observed in the unthinned ponderosa pine ecosystem. Mortality varied significantly between species and within size classes. Mechanical thinning of ponderosa pines reduced overstory mortality to non-significant levels. A lack of rainfall, snowfall, and increases in daily minimum temperature contributed most to the mortality. Adaptive management, including the use of thinning activities, appear to moderate the impact of climate change on ponderosa pine forests in this region, increasing the long-term health of the ecosystem. The impact of climate change on the spruce-fir ecosystems may accelerate successional changes.

  11. Status of fusiform rust incidence in slash and loblolly pine plantations in the southeastern United States

    Science.gov (United States)

    KaDonna C. Randolph

    2016-01-01

    Southern pine tree improvement programs have been in operation in the southeastern United States since the 1950s. Their goal has been to improve volume growth, tree form, disease resistance, and wood quality in southern pines, particularly slash pine (Pinus elliottii) and loblolly pine (P. taeda). The disease of focus has been...

  12. Incorporating additional tree and environmental variables in a lodgepole pine stem profile model

    Science.gov (United States)

    John C. Byrne

    1993-01-01

    A new variable-form segmented stem profile model is developed for lodgepole pine (Pinus contorta) trees from the northern Rocky Mountains of the United States. I improved estimates of stem diameter by predicting two of the model coefficients with linear equations using a measure of tree form, defined as a ratio of dbh and total height. Additional improvements were...

  13. Reproduction ecology of Pinus halepensis : a monoecious, wind-pollinated and partially serotinous Mediterranean pine tree

    NARCIS (Netherlands)

    Goubitz, Shirrinka

    2001-01-01

    Fire is an important factor in the evolution and ecology of Mediterranean plant species. The fire frequency has increased in the 20st century. Pines are the most important tree species in the area. Pinus halepensis is the only natural pine in parts of the east Mediterranean basin, such as Israel and

  14. Mountain pine beetle infestations in relation to lodgepole pine diameters

    Science.gov (United States)

    Walter E. Cole; Gene D. Amman

    1969-01-01

    Tree losses resulting from infestation by the mountain pine beetle (Dendroctonus ponderosae Hopkins) were measured in two stands of lodgepole pine (Pinus contorta Dougl.) where the beetle population had previously been epidemic. Measurement data showed that larger diameter trees were infested and killed first. Tree losses...

  15. [Dendroclimatic potentials for the tree rings of Huangshan pine (Pinus taiwanensis ) at Xiaolinhai in the western Dabie Mountains, China].

    Science.gov (United States)

    Peng, Jian-Feng; Li, Guo-Dong; Li, Ling-Ling

    2014-07-01

    By using the dendrochronology research methods, this paper developed the 1915-2011 tree ring-width standard chronology of the Huangshan pine (Pinus taiwanesis) at the north slope of western Dabie Mountains in the junction of Hubei, Henan and Anhui provinces. High mean sensitivity (MS) indicated that there was conspicuous high-frequency climate signals and high first-order autocorrelation (AC) showed there were significant lag-effects of tree previous growth. The higher signal-to-noise ratio (SNR) and expressed population signal (EPS) indicated that the trees had high levels of common climate signals. Correlations between the tree ring-width standard chronology and climatic factors (1959-2011) revealed the significant influences of temperature, precipitation and relative humidity on the tree width growth of Huangshan pine by the end of growing season (September and October). Significant positive correlations were found between the tree-ring indices and the Palmer drought severity index (PDSI) of current September and October. In conclusion, the combination of water and heat of September and October is the major effect factor for the growth of Huangshan pine in western Dabie Mountains.

  16. Non-labile tritium in Savannah River Plant pine trees

    International Nuclear Information System (INIS)

    Sanders, S.M. Jr.

    1976-06-01

    Non-labile tritium bound in cellulose of pine trees was measured to learn about the effects and fate of tritium contributed to the environment by the Savannah River Plant (SRP). An estimation of the regional inventory and the distance tritium can be observed from SRP was desired because tritium is a major component of the radioactivity released by SRP, and as the oxide, it readily disperses in the environment

  17. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Directory of Open Access Journals (Sweden)

    Andrew P Lerch

    Full Text Available Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae, but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug. and 599 ponderosa (Pinus ponderosa Doug. ex Law pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  18. Mountain Pine Beetle Dynamics and Reproductive Success in Post-Fire Lodgepole and Ponderosa Pine Forests in Northeastern Utah.

    Science.gov (United States)

    Lerch, Andrew P; Pfammatter, Jesse A; Bentz, Barbara J; Raffa, Kenneth F

    2016-01-01

    Fire injury can increase tree susceptibility to some bark beetles (Curculionidae, Scolytinae), but whether wildfires can trigger outbreaks of species such as mountain pine beetle (Dendroctonus ponderosae Hopkins) is not well understood. We monitored 1173 lodgepole (Pinus contorta var. latifolia Doug.) and 599 ponderosa (Pinus ponderosa Doug. ex Law) pines for three years post-wildfire in the Uinta Mountains of northeastern Utah in an area with locally endemic mountain pine beetle. We examined how the degree and type of fire injury influenced beetle attacks, brood production, and subsequent tree mortality, and related these to beetle population changes over time. Mountain pine beetle population levels were high the first two post-fire years in lodgepole pine, and then declined. In ponderosa pine, populations declined each year after initial post-fire sampling. Compared to trees with strip or failed attacks, mass attacks occurred on trees with greater fire injury, in both species. Overall, a higher degree of damage to crowns and boles was associated with higher attack rates in ponderosa pines, but additional injury was more likely to decrease attack rates in lodgepole pines. In lodgepole pine, attacks were initially concentrated on fire-injured trees, but during subsequent years beetles attacked substantial numbers of uninjured trees. In ponderosa pine, attacks were primarily on injured trees each year, although these stands were more heavily burned and had few uninjured trees. In total, 46% of all lodgepole and 56% of ponderosa pines underwent some degree of attack. Adult brood emergence within caged bole sections decreased with increasing bole char in lodgepole pine but increased in ponderosa pine, however these relationships did not scale to whole trees. Mountain pine beetle populations in both tree species four years post-fire were substantially lower than the year after fire, and wildfire did not result in population outbreaks.

  19. Assessment of morphometric indexes in the second generation of Scots pine trees in the Chernobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    Ekaterina Sergeevna Makarenko

    2015-12-01

    Full Text Available Background. A series of morphometric indexes was studied in Scots pine trees, which are the second generation of trees severely exposed at the Chernobyl accident in doses of 4-5, 10-20 and 80-100 Gy. Materials and methods. Variability of length and mass of needles, curvature of sprouts, tree height and trunk circumference were studied in 2011-2014. Results. Needle gigantism, one of the typical radiomorphoses, was observed in 2012 and 2013 in all groups of trees. Curved sprouts were discovered more often in a reference group. Tree height and trunk circumference in groups of 4-5 and 10-20 Gy were significantly higher than in the reference group. Conclusion. The trees of the second generation of severely exposed pines can be characterized with needle gigantism and stimulation of growth processes (circumference of the trunk, height of the tree at doses of 4-5 Gy and 10-20 Gy.

  20. Rehabilitation of Understocked Loblolly-Shortleaf Pine Stands - II. Development of Intermediate and Suppressed Trees Following Release in Natural Stands

    Science.gov (United States)

    James B. Baker; Michael G. Shelton

    1998-01-01

    Development of 86 intermediate and suppressed loblolly pine (Pinus taeda L.) trees, that had been recently released from overtopping pines and hardwoods, was monitored over a 15 year period. The trees were growing in natural stands on good sites (site index = 90 ft at 50 years) that had been recently cut to stocking levels ranging from 10 to 50 percent. At time of...

  1. Canopy Fuel Load Mapping of Mediterranean Pine Sites Based on Individual Tree-Crown Delineation

    Directory of Open Access Journals (Sweden)

    Giorgos Mallinis

    2013-12-01

    Full Text Available This study presents an individual tree-crown-based approach for canopy fuel load estimation and mapping in two Mediterranean pine stands. Based on destructive sampling, an allometric equation was developed for the estimation of crown fuel weight considering only pine crown width, a tree characteristic that can be estimated from passive imagery. Two high resolution images were used originally for discriminating Aleppo and Calabrian pines crown regions through a geographic object based image analysis approach. Subsequently, the crown region images were segmented using a watershed segmentation algorithm and crown width was extracted. The overall accuracy of the tree crown isolation expressed through a perfect match between the reference and the delineated crowns was 34.00% for the Kassandra site and 48.11% for the Thessaloniki site, while the coefficient of determination between the ground measured and the satellite extracted crown width was 0.5. Canopy fuel load values estimated in the current study presented mean values from 1.29 ± 0.6 to 1.65 ± 0.7 kg/m2 similar to other conifers worldwide. Despite the modest accuracies attained in this first study of individual tree crown fuel load mapping, the combination of the allometric equations with satellite-based extracted crown width information, can contribute to the spatially explicit mapping of canopy fuel load in Mediterranean areas. These maps can be used among others in fire behavior prediction, in fuel reduction treatments prioritization and during active fire suppression.

  2. Development of a water-soluble preparation of emamectin benzoate and its preventative effect against the wilting of pot-grown pine trees inoculated with the pine wood nematode, Bursaphelenchus xylophilus.

    Science.gov (United States)

    Takai, K; Soejima, T; Suzuki, T; Kawazu, K

    2001-05-01

    Water-soluble preparations have been investigated to develop a trunk injection agent based on the poorly water-soluble anti-nematode emamectin benzoate. Following tests on the phytotoxicity of some solvents and solubilizers and demonstration of the ability of some solubilizers to dissolve emamectin benzoate in water, acetone + methanol was selected as the solvent and Polysorbate 80 as the solubilizer. This water-soluble preparation of emamectin benzoate prevented the wilting of pot-grown 4-year-old trees of the Japanese black pine, Pinus thunbergii, artificially inoculated with the pine wood nematode, Bursaphelenchus xylophilus, at a dose of 20 g emamectin benzoate per cubic metre of pine tree.

  3. Tree regeneration and future stand development after bark beetle infestation and harvesting in Colorado lodgepole pine stands

    Science.gov (United States)

    Byron J. Collins; Charles C. Rhoades; Robert M. Hubbard; Michael A. Battaglia

    2011-01-01

    In the southern Rocky Mountains, current mountain pine beetle (Dendroctonus ponderosae Hopkins) outbreaks and associated harvesting have set millions of hectares of lodgepole pine (Pinus contorta var. latifolia Engelm. ex Wats.) forest onto new stand development trajectories. Information about immediate, post-disturbance tree regeneration will provide insight on...

  4. Mountain pine beetle attack associated with low levels of 4-allylanisole in ponderosa pine.

    Science.gov (United States)

    Emerick, Jay J; Snyder, Aaron I; Bower, Nathan W; Snyder, Marc A

    2008-08-01

    Mountain pine beetle (Dendroctonus ponderosae) is the most important insect pest in southern Rocky Mountain ponderosa pine (Pinus ponderosa) forests. Tree mortality is hastened by the various fungal pathogens that are symbiotic with the beetles. The phenylpropanoid 4-allylanisole is an antifungal and semiochemical for some pine beetle species. We analyzed 4-allylanisole and monoterpene profiles in the xylem oleoresin from a total of 107 trees at six sites from two chemotypes of ponderosa pine found in Colorado and New Mexico using gas chromatography-mass spectroscopy (GC-MS). Although monoterpene profiles were essentially the same in attacked and nonattacked trees, significantly lower levels of 4-allylanisole were found in attacked trees compared with trees that showed no evidence of attack for both chemotypes.

  5. Eco-physiological characteristics and variation in water source use between montane Douglas-Fir and lodgepole pine trees in southwestern Alberta

    Science.gov (United States)

    Andrews, S.; Flanagan, L. B.

    2009-12-01

    Winter weather on the Canadian prairies is now warmer and drier than 50 years ago and this has implications for soil water re-charge in montane ecosystems with consequences for tree and ecosystem function. We used measurements of the hydrogen isotope ratio of tree stem water to analyze the use of different water sources (winter snow melt, ground water, summer precipitation) in two montane forest sites, one dominated by Douglas-Fir and the other dominated by lodgepole pine trees. On average during the growing season (May-October) stem water in both Douglas-Fir and lodgepole pine trees was composed of 60% summer precipitation. However, during late summer Douglas-Fir trees showed an increased use of ground water as summer precipitation was minimal and ground water was accessible at the bottom of a relatively large soil reservoir. The low summer precipitation and reduced soil water availability in the shallow soils at the lodgepole pine site resulted in severely reduced photosynthetic capacity in late summer. Increased precipitation during the autumn resulted in recovery of photosynthetic gas exchange in lodgepole pine before winter dormancy was induced by low temperatures. Stomatal limitation of photosynthesis, as estimated from measurements of the carbon isotope composition of leaf tissue, was higher in Douglas-Fir than lodgepole pine. This was also associated with lower midday water potential values in Douglas-Fir and sapwood cross-sectional area that was only 70% of that measured in lodgepole pine. The vulnerability of xylem to loss of conductivity with declines in water potential was very similar between the two species. However, midday water potential in Douglas-Fir approached values where cavitation and loss of conductivity were apparent, while in lodgepole pine midday water potential was always much higher than the point at which loss of hydraulic conductivity occurred. These data suggest that, despite the presence of Douglas-Fir on deeper and higher quality

  6. Ponderosa pine mortality resulting from a mountain pine beetle outbreak

    Science.gov (United States)

    William F. McCambridge; Frank G. Hawksworth; Carleton B. Edminster; John G. Laut

    1982-01-01

    From 1965 to 1978, mountain pine beetles killed 25% of the pines taller than 4.5 feet in a study area in north-central Colorado. Average basal area was reduced from 92 to 58 square feet per acre. Mortality increased with tree diameter up to about 9 inches d.b.h. Larger trees appeared to be killed at random. Mortality was directly related to number of trees per acre and...

  7. Tree Regeneration Spatial Patterns in Ponderosa Pine Forests Following Stand-Replacing Fire: Influence of Topography and Neighbors

    Directory of Open Access Journals (Sweden)

    Justin P. Ziegler

    2017-10-01

    Full Text Available Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses to examine the spatial pattern of tree locations and heights as well as the influence of tree interactions and topography on tree patterns. In these sparse, early-seral forests, we found that all species were spatially aggregated, partly attributable to the influence of (1 aspect and slope on conifers; (2 topographic position on quaking aspen; and (3 interspecific attraction between ponderosa pine and other species. Specifically, tree interactions were related to finer-scale patterns whereas topographic effects influenced coarse-scale patterns. Spatial structures of heights revealed conspecific size hierarchies with taller trees in denser neighborhoods. Topography and heterospecific tree interactions had nominal effect on tree height spatial structure. Our results demonstrate how stand-replacing fires create heterogeneous forest structures and suggest that scale-dependent, and often facilitatory, rather than competitive, processes act on regenerating trees. These early-seral processes will establish potential pathways of stand development, affecting future forest dynamics and management options.

  8. DETECTING FORESTS DAMAGED BY PINE WILT DISEASE AT THE INDIVIDUAL TREE LEVEL USING AIRBORNE LASER DATA AND WORLDVIEW-2/3 IMAGES OVER TWO SEASONS

    Directory of Open Access Journals (Sweden)

    Y. Takenaka

    2017-10-01

    Full Text Available Pine wilt disease is caused by the pine wood nematode (Bursaphelenchus xylophilus and Japanese pine sawyer (Monochamus alternatus. This study attempted to detect damaged pine trees at different levels using a combination of airborne laser scanning (ALS data and high-resolution space-borne images. A canopy height model with a resolution of 50 cm derived from the ALS data was used for the delineation of tree crowns using the Individual Tree Detection method. Two pan-sharpened images were established using the ortho-rectified images. Next, we analyzed two kinds of intensity-hue-saturation (IHS images and 18 remote sensing indices (RSI derived from the pan-sharpened images. The mean and standard deviation of the 2 IHS images, 18 RSI, and 8 bands of the WV-2 and WV-3 images were extracted for each tree crown and were used to classify tree crowns using a support vector machine classifier. Individual tree crowns were assigned to one of nine classes: bare ground, Larix kaempferi, Cryptomeria japonica, Chamaecyparis obtusa, broadleaved trees, healthy pines, and damaged pines at slight, moderate, and heavy levels. The accuracy of the classifications using the WV-2 images ranged from 76.5 to 99.6 %, with an overall accuracy of 98.5 %. However, the accuracy of the classifications using the WV-3 images ranged from 40.4 to 95.4 %, with an overall accuracy of 72 %, which suggests poorer accuracy compared to those classes derived from the WV-2 images. This is because the WV-3 images were acquired in October 2016 from an area with low sun, at a low altitude.

  9. Juvenile wood volume and its proportion to stem volume vs. selected biometric features of Scots pine (Pinus sylvestris L. trees

    Directory of Open Access Journals (Sweden)

    Arkadiusz Tomczak

    2011-01-01

    Full Text Available The aim of the study was to determine whether there is a correlation between breast height diameter, tree height and stem total volume of Scots pines, on the one hand, and volume and proportion of juvenile wood, on the other. The investigations comprised pure pine stands of the IInd, IIIrd, IVth and Vth age classes developed in conditions of fresh mixed coniferous forest. A distinct curvilinear correlation was found between volume and proportion of juvenile wood in tree stems and breast height diameter, height and stem total volume. Because of high values of determination coefficients (R2, which characterised the above-mentioned correlations, it seems appropriate to use these regularities to assess the quality of the timber raw material regarding the proportions of its volume and juvenile wood in stems of Scots pine trees.

  10. Relationships between stem CO2 efflux, substrate supply, and growth in young loblolly pine trees

    Science.gov (United States)

    Chris A. Maier; Kurt H. Johnsen; Barton D. Clinton; Kim H. Ludovici

    2009-01-01

    We examined the relationships between stem CO2 efflux (Es), diametergrowth, and nonstructural carbohydrate concentration in loblolly pine trees. Carbohydratesupply was altered via stem girdling during rapid stem growth in the

  11. The lodgepole × jack pine hybrid zone in Alberta, Canada: a stepping stone for the mountain pine beetle on its journey East across the boreal forest?

    Science.gov (United States)

    Lusebrink, Inka; Erbilgin, Nadir; Evenden, Maya L

    2013-09-01

    Historical data show that outbreaks of the tree killing mountain pine beetle are often preceded by periods of drought. Global climate change impacts drought frequency and severity and is implicated in the range expansion of the mountain pine beetle into formerly unsuitable habitats. Its expanded range has recently reached the lodgepole × jack pine hybrid zone in central Alberta, Canada, which could act as a transition from its historical lodgepole pine host to a jack pine host present in the boreal forest. This field study tested the effects of water limitation on chemical defenses of mature trees against mountain pine beetle-associated microorganisms and on beetle brood success in lodgepole × jack pine hybrid trees. Tree chemical defenses as measured by monoterpene emission from tree boles and monoterpene concentration in needles were greater in trees that experienced water deficit compared to well-watered trees. Myrcene was identified as specific defensive compound, since it significantly increased upon inoculation with dead mountain pine beetles. Beetles reared in bolts from trees that experienced water deficit emerged with a higher fat content, demonstrating for the first time experimentally that drought conditions benefit mountain pine beetles. Further, our study demonstrated that volatile chemical emission from tree boles and phloem chemistry place the hybrid tree chemotype in-between lodgepole pine and jack pine, which might facilitate the host shift from lodgepole pine to jack pine.

  12. Determination of Pb and Cd pollution in Pine tree (Pinus Sylvestris) by atomic absorption spectrometry

    International Nuclear Information System (INIS)

    Rudovica, V.; Katkevic, J; Viksna, A.; Nulle, S.; Balcerbule, Z. . E-mai: wita@navigator.lv

    2004-01-01

    Forest is subordinate anthropogenic (carbon, petroleum, wood, waste incineration) and natural (climatic, biological, chemical) factors influencing. In current investigation pine tree as environmental indicator (Pinus Sylvestris L.) is selected. The aim of current investigations are to improve methods, that easy and unerring can establish threshold and critical toxic elements accumulation in the samples, such as pine needles, peels, trunk; the second - to find fact of pine reactions on pollution toxic elements concentrations in the soil, nutrition solutions. The reception efficiency of lead and cadmium from the solution with different concentrations of these toxic elements is estimated. The distribution of lead and cadmium in the different parts of pine trunk is edematous with some selective organic reagents. We find out that these toxic elements accumulate in pine trunk and peels and we cannot wash out from samples with water, so these elements are fixed in live tissue. The pollution of pine seedlings with Cd and Pb through the needles, peels, pulp, roots is connected with nutrition solutions, so with soil pollution

  13. Sapwood Stored Resources Decline in Whitebark and Lodgepole Pines Attacked by Mountain Pine Beetles (Coleoptera: Curculionidae).

    Science.gov (United States)

    Lahr, Eleanor C; Sala, Anna

    2016-12-01

    Recent outbreaks of forest insects have been directly linked to climate change-induced warming and drought, but effects of tree stored resources on insects have received less attention. We asked whether tree stored resources changed following mountain pine beetle (Dendroctonus ponderosae Hopkins) attack and whether they affected beetle development. We compared initial concentrations of stored resources in the sapwood of whitebark pine (Pinus albicaulis Engelmann) and lodgepole pine (Pinus contorta Douglas ex. Louden) with resource concentrations one year later, in trees that were naturally attacked by beetles and trees that remained unattacked. Beetles did not select host trees based on sapwood resources-there were no consistent a priori differences between attacked versus unattacked trees-but concentrations of nonstructural carbohydrate (NSC), lipids, and phosphorus declined in attacked trees, relative to initial concentrations and unattacked trees. Whitebark pine experienced greater resource declines than lodgepole pine; however, sapwood resources were not correlated with beetle success in either species. Experimental manipulation confirmed that the negative effect of beetles on sapwood and phloem NSC was not due to girdling. Instead, changes in sapwood resources were related to the percentage of sapwood with fungal blue-stain. Overall, mountain pine beetle attack affected sapwood resources, but sapwood resources did not contribute directly to beetle success; instead, sapwood resources may support colonization by beetle-vectored fungi that potentially accelerate tree mortality. Closer attention to stored resource dynamics will improve our understanding of the interaction between mountain pine beetles, fungi, and host trees, an issue that is relevant to our understanding of insect range expansion under climate change. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions

  14. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine (Pinus elliottii var. densa) Forests in the Florida Keys, USA

    International Nuclear Information System (INIS)

    Sah, J.P.; Ross, M.S.; Ross, M.S.; Ogurcak, D.E.; Snyder, J.R.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on post fire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with under story type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pine lands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  15. Peatland pines as a proxy for water table fluctuations: disentangling tree growth, hydrology and possible human influence.

    Science.gov (United States)

    Smiljanić, Marko; Seo, Jeong-Wook; Läänelaid, Alar; van der Maaten-Theunissen, Marieke; Stajić, Branko; Wilmking, Martin

    2014-12-01

    Dendrochronological investigations of Scots pine (Pinus sylvestris L.) growing on Männikjärve peatland in central Estonia showed that annual tree growth of peatland pines can be used as a proxy for past variations of water table levels. Reconstruction of past water table levels can help us to better understand the dynamics of various ecological processes in peatlands, e.g. the formation of vegetation patterns or carbon and nitrogen cycling. Männikjärve bog has one of the longest water table records in the boreal zone, continuously monitored since 1956. Common uncertainties encountered while working with peatland trees (e.g. narrow, missing and wedging rings) were in our case exacerbated with difficulties related to the instability of the relationship between tree growth and peatland environment. We hypothesized that the instable relationship was mainly due to a significant change of the limiting factor, i.e. the rise of the water table level due to human activity. To test our hypothesis we had to use several novel methods of tree-ring chronology analysis as well as to test explicitly whether undetected missing rings biased our results. Since the hypothesis that the instable relationship between tree growth and environment was caused by a change in limiting factor could not be rejected, we proceeded to find possible significant changes of past water table levels using structural analysis of the tree-ring chronologies. Our main conclusions were that peatland pines can be proxies to water table levels and that there were several shifting periods of high and low water table levels in the past 200 years. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. CHRONIC IRRADIATION OF SCOTS PINE TREES (PINUS SYLVESTRIS) IN THE CHERNOBYL EXCLUSION ZONE: DOSIMETRY AND RADIOBIOLOGICAL EFFECTS

    Energy Technology Data Exchange (ETDEWEB)

    Farfan, E.; Jannik, T.

    2011-10-01

    To identify effects of chronic internal and external radiation exposure for components of terrestrial ecosystems, a comprehensive study of Scots pine trees in the Chernobyl Exclusion Zone was performed. The experimental plan included over 1,100 young trees (up to 20 years old) selected from areas with varying levels of radioactive contamination. These pine trees were planted after the 1986 Chernobyl Nuclear Power Plant accident mainly to prevent radionuclide resuspension and soil erosion. For each tree, the major morphological parameters and radioactive contamination values were identified. Cytological analyses were performed for selected trees representing all dose rate ranges. A specially developed dosimetric model capable of taking into account radiation from the incorporated radionuclides in the trees was developed for the apical meristem. The calculated dose rates for the trees in the study varied within three orders of magnitude, from close to background values in the control area (about 5 mGy y{sup -1}) to approximately 7 Gy y{sup -1} in the Red Forest area located in the immediate vicinity of the Chernobyl Nuclear Power Plant site. Dose rate/effect relationships for morphological changes and cytogenetic defects were identified and correlations for radiation effects occurring on the morphological and cellular level were established.

  17. Seedling regeneration on decayed pine logs after the deforestation events caused by pine wilt disease

    Directory of Open Access Journals (Sweden)

    Y. Fukasawa

    2016-12-01

    Full Text Available Coarse woody debris (CWD forms an important habitat suitable for tree seedling establishment, and the CWD decay process influences tree seedling community. In Japan, a severe dieback of Pinus densiflora Sieb. & Zucc. caused by pine wilt disease (PWD damaged huge areas of pine stands but creates huge mass of pine CWD. It is important to know the factors influencing seedling colonization on pine CWD and their variations among geographical gradient in Japan to expect forest regeneration in post-PWD stands. I conducted field surveys on the effects of latitude, climates, light condition, decay type of pine logs, and log diameter on tree seedling colonization at ten geographically distinct sites in Japan. In total, 59 tree taxa were recorded as seedlings on pine logs. Among them, 13 species were recorded from more than five sites as adult trees or seedlings and were used for the analyses. A generalized linear model showed that seedling colonization of Pinus densiflora was negatively associated with brown rot in sapwood, while that of Rhus trichocarpa was positively associated with brown rot in heartwood. Regeneration of Ilex macropoda had no relationships with wood decay type but negatively associated with latitude and MAT, while positively with log diameter. These results suggested that wood decay type is a strong determinant of seedling establishment for certain tree species, even at a wide geographical scale; however, the effect is tree species specific.

  18. Influence of tree provenance on biogenic VOC emissions of Scots pine (Pinus sylvestris) stumps

    Science.gov (United States)

    Kivimäenpää, Minna; Magsarjav, Narantsetseg; Ghimire, Rajendra; Markkanen, Juha-Matti; Heijari, Juha; Vuorinen, Martti; Holopainen, Jarmo K.

    2012-12-01

    Resin-storing plant species such as conifer trees can release substantial amounts of volatile organic compounds (VOCs) into the atmosphere under stress circumstances that cause resin flow. Wounding can be induced by animals, pathogens, wind or direct mechanical damage e.g. during harvesting. In atmospheric modelling of biogenic VOCs, actively growing vegetation has been mostly considered as the source of emissions. Root systems and stumps of resin-storing conifer trees could constitute a significant store of resin after tree cutting. Therefore, we assessed the VOC emission rates from the cut surface of Scots pine stumps and estimated the average emission rates for an area with a density of 2000 stumps per ha. The experiment was conducted with trees of one Estonian and three Finnish Scots pine provenances covering a 1200 km gradient at a common garden established in central Finland in 1991. VOC emissions were dominated by monoterpenes and less than 0.1% of the total emission was sesquiterpenes. α-Pinene (7-92% of the total emissions) and 3-carene (0-76% of the total emissions) were the dominant monoterpenes. Proportions of α-pinene and camphene were significantly lower and proportions of 3-carene, sabinene, γ-terpinene and terpinolene higher in the southernmost Saaremaa provenance compared to the other provenances. Total terpene emission rates (standardised to +20 °C) from stumps varied from 27 to 1582 mg h-1 m-2 when measured within 2-3 h after tree cutting. Emission rates decreased rapidly to between 2 and 79 mg h-1 m-2 at 50 days after cutting. The estimated daily terpene emission rates on a hectare basis from freshly cut stumps at a cut tree density of 2000 per ha varied depending on provenance. Estimated emission ranges were 100-710 g ha-1 d-1 and 137-970 g ha-1 d-1 in 40 and in 60 year-old forest stands, respectively. Our result suggests that emission directly from stump surfaces could be a significant source of monoterpene emissions for a few weeks after

  19. Diameter Growth of Loblolly Pine Trees as Affected by Soil-Moisture Availibility

    Science.gov (United States)

    John R. Bassett

    1964-01-01

    In a 30-year-old even-aged stand of loblolly pine on a site 90 loessial soil in southeast Arkansas during foul growing seasons, most trees on plots thinned to 125 square feet of basal area per acre increased in basal area continuously when, under the crown canopy, available water in the surface foot remained above 65 percent. Measurable diameter growth ceased when...

  20. Mechanisms of piñon pine mortality after severe drought: a retrospective study of mature trees.

    Science.gov (United States)

    Gaylord, Monica L; Kolb, Thomas E; McDowell, Nate G

    2015-08-01

    Conifers have incurred high mortality during recent global-change-type drought(s) in the western USA. Mechanisms of drought-related tree mortality need to be resolved to support predictions of the impacts of future increases in aridity on vegetation. Hydraulic failure, carbon starvation and lethal biotic agents are three potentially interrelated mechanisms of tree mortality during drought. Our study compared a suite of measurements related to these mechanisms between 49 mature piñon pine (Pinus edulis Engelm.) trees that survived severe drought in 2002 (live trees) and 49 trees that died during the drought (dead trees) over three sites in Arizona and New Mexico. Results were consistent over all sites indicating common mortality mechanisms over a wide region rather than site-specific mechanisms. We found evidence for an interactive role of hydraulic failure, carbon starvation and biotic agents in tree death. For the decade prior to the mortality event, dead trees had twofold greater sapwood cavitation based on frequency of aspirated tracheid pits observed with scanning electron microscopy (SEM), smaller inter-tracheid pit diameter measured by SEM, greater diffusional constraints to photosynthesis based on higher wood δ(13)C, smaller xylem resin ducts, lower radial growth and more bark beetle (Coleoptera: Curculionidae) attacks than live trees. Results suggest that sapwood cavitation, low carbon assimilation and low resin defense predispose piñon pine trees to bark beetle attacks and mortality during severe drought. Our novel approach is an important step forward to yield new insights into how trees die via retrospective analysis. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Effects of Grosmannia clavigera and Leptographium longiclavatum on Western White Pine seedlings and the fungicidal activity of Alamo®, Arbotect®, and TREE-age®

    Science.gov (United States)

    Stephen A. Wyka; Joseph J. Doccola; Brian L. Strom; Sheri L. Smith; Douglas W. McPherson; Srdan G. Acimovic; Kier D. Klepzig

    2016-01-01

    Bark beetles carry a number of associated organisms that are transferred to the host tree upon attack that are thought to play a role in tree decline. To assess the pathogenicity to western white pine (WWP; Pinus monticola) of fungi carried by the mountain pine beetle (MPB; Dendroctonus ponderosae), and to evaluate the...

  2. Scientific Opinion on a composting method proposed by Portugal as a heat treatment to eliminate pine wood nematode from the bark of pine trees

    DEFF Research Database (Denmark)

    Baker, R.; Candresse, T.; Dormannsné Simon, E.

    2010-01-01

    Following a request from the European Commission, the Panel on Plant Health was asked to deliver a scientific opinion on the appropriateness of a composting method proposed by Portugal as a heat treatment to eliminate pine wood nematode (PWN), Bursaphelenchus xylophilus (Steiner and Buhrer) Nickle......) insufficient evidence on the sampling methodology is provided to determine the reliability of the testing method provided by the Portuguese document to determine freedom from PWN. Although there is potential for development of a composting method as a heat treatment to eliminate PWN from bark of pine trees...

  3. Microculture of western white pine (Pinus monticola) by induction of shoots on bud explants from 1- to 7-year-old trees.

    Science.gov (United States)

    Lapp, M S; Malinek, J; Coffey, M

    1996-04-01

    We developed a protocol for the production of shoots from bud explants from 1- to 7-year-old trees of western white pine (Pinus monticola Dougl.). The best explant was a 2-mm-thick cross-sectional slice of the early winter bud. Genotype of the donor tree was a significant factor affecting shoot production, but more than 80% of the genotypes tested produced shoots. Of the media tested, bud slices from 1- to 3-year-old trees grew best in Litvay's medium containing N(6)-benzyladenine in the range of 1 to 30 micro M, whereas bud slices from older trees grew best in Gupta and Durzan's DCR medium with zeatin riboside. Up to 400 shoots more than 3 mm in height were obtained from 100 bud-slice explants taken from 7-year-old western white pine trees.

  4. Warm summer nights and the growth decline of shore pine in Southeast Alaska

    Science.gov (United States)

    Sullivan, Patrick F.; Mulvey, Robin L.; Brownlee, Annalis H.; Barrett, Tara M.; Pattison, Robert R.

    2015-12-01

    Shore pine, which is a subspecies of lodgepole pine, was a widespread and dominant tree species in Southeast Alaska during the early Holocene. At present, the distribution of shore pine in Alaska is restricted to coastal bogs and fens, likely by competition with Sitka spruce and Western hemlock. Monitoring of permanent plots as part of the United States Forest Service Forest Inventory and Analysis program identified a recent loss of shore pine biomass in Southeast Alaska. The apparent loss of shore pine is concerning, because its presence adds a vertical dimension to coastal wetlands, which are the richest plant communities of the coastal temperate rainforest in Alaska. In this study, we examined the shore pine tree-ring record from a newly established plot network throughout Southeast Alaska and explored climate-growth relationships. We found a steep decline in shore pine growth from the early 1960s to the present. Random Forest regression revealed a strong correlation between the decline in shore pine growth and the rise in growing season diurnal minimum air temperature. Warm summer nights, cool daytime temperatures and a reduced diurnal temperature range are associated with greater cloud cover in Southeast Alaska. This suite of conditions could lead to unfavorable tree carbon budgets (reduced daytime photosynthesis and greater nighttime respiration) and/or favor infection by foliar pathogens, such as Dothistroma needle blight, which has recently caused widespread tree mortality on lodgepole pine plantations in British Columbia. Further field study that includes experimental manipulation (e.g., fungicide application) will be necessary to identify the proximal cause(s) of the growth decline. In the meantime, we anticipate continuation of the shore pine growth decline in Southeast Alaska.

  5. Identifying ponderosa pines infested with mountain pine beetles

    Science.gov (United States)

    William F. McCambridge

    1974-01-01

    Trees successfully and unsuccessfully attacked by mountain pine beetles have several symptoms in common, so that proper diagnosis is not always easy. Guidelines presented here enable the observer to correctly distinguish nearly all attacked trees.

  6. Mountain pine beetle attack alters the chemistry and flammability of lodgepole pine foliage

    Science.gov (United States)

    Wesley G. Page; Michael J. Jenkins; Justin B. Runyon

    2012-01-01

    During periods with epidemic mountain pine beetle (Dendroctonus ponderosae Hopkins) populations in lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forests, large amounts of tree foliage are thought to undergo changes in moisture content and chemistry brought about by tree decline and death. However, many of the presumed changes have yet to be...

  7. The relative contributions of disease and insects in the decline of a long-lived tree: a stochastic demographic model of whitebark pine (Pinus albicaulis)

    Science.gov (United States)

    Jules, Erik S; Jackson, Jenell I.; van Mantgem, Phillip J.; Beck, Jennifer S.; Murray, Michael P.; Sahara, E. April

    2016-01-01

    Pathogens and insect pests have become increasingly important drivers of tree mortality in forested ecosystems. Unfortunately, understanding the relative contributions of multiple mortality agents to the population decline of trees is difficult, because it requires frequent measures of tree survival, growth, and recruitment, as well as the incidence of mortality agents. We present a population model of whitebark pine (Pinus albicaulis), a high-elevation tree undergoing rapid decline in western North America. The loss of whitebark pine is thought to be primarily due to an invasive pathogen (white pine blister rust; Cronartium ribicola) and a native insect (mountain pine beetle; Dendroctonus ponderosae). We utilized seven plots in Crater Lake National Park (Oregon, USA) where 1220 trees were surveyed for health and the presence of blister rust and beetle activity annually from 2003–2014, except 2008. We constructed size-based projection matrices for nine years and calculated the deterministic growth rate (λ) using an average matrix and the stochastic growth rate (λs) by simulation for whitebark pine in our study population. We then assessed the roles of blister rust and beetles by calculating λ and λsusing matrices in which we removed trees with blister rust and, separately, trees with beetles. We also conducted life-table response experiments (LTRE) to determine which demographic changes contributed most to differences in λ between ambient conditions and the two other scenarios. The model suggests that whitebark pine in our plots are currently declining 1.1% per year (λ = 0.9888, λs = 0.9899). Removing blister rust from the models resulted in almost no increase in growth (λ = 0.9916, λs = 0.9930), while removing beetles resulted in a larger increase in growth (λ = 1.0028, λs = 1.0045). The LTRE demonstrated that reductions in stasis of the three largest size classes due to beetles contributed most to the smaller λ in the ambient condition

  8. Impact of solar activity on growth of pine trees (Pinus cembra: 1610 - 1970; Pinus pinaster: 1910 -1989)

    Science.gov (United States)

    Surový, P.; Dorotovič, I.; Karlovský, V.; Rodrigues, J. C.; Rybanský, M.; Fleischer, P.

    2010-12-01

    In this work we have focused on the analysis of the data on the annual growth of cembra pine (Pinus cembra) grown in the Kôprová dolina Valley in the High Tatra Mountains. The database covers the period of 1406 - 1970, however, the sunspot data (minima and maxima) at the NGDC web site are only available since 1610. Moreover, reliable sunspot data are only available since 1749. The results of this analysis agree with the observation made in our previous work, i.e. there is a negative impact of high SA on the pine tree growth. However, it should be noted that statistical significance of the results is low. We also applied wavelet analysis to the data on the tree growth evolution, with the results indicating growth variations' period of about 20 years (duration of approximately two solar cycles or one magnetic cycle, respectively). A negative impact of the SA was also observed in growth of a 90 year-old maritime pine tree (Pinus pinaster) grown in northern Portugal. The width of the annual rings was smaller in the years of maximum SA; furthermore, it was found that it is the latewood growth that it is affected while the earlywood growth is not, and consequently the latewood additions also show a significative negative correlation with SA.

  9. Leaf Physiological and Morphological Responses to Shade in Grass-Stage Seedlings and Young Trees of Longleaf Pine

    Directory of Open Access Journals (Sweden)

    Lisa J. Samuelson

    2012-08-01

    Full Text Available Longleaf pine has been classified as very shade intolerant but leaf physiological plasticity to light is not well understood, especially given longleaf pine’s persistent seedling grass stage. We examined leaf morphological and physiological responses to light in one-year-old grass-stage seedlings and young trees ranging in height from 4.6 m to 6.3 m to test the hypothesis that young longleaf pine would demonstrate leaf phenotypic plasticity to light environment. Seedlings were grown in a greenhouse under ambient levels of photosynthetically active radiation (PAR or a 50% reduction in ambient PAR and whole branches of trees were shaded to provide a 50% reduction in ambient PAR. In seedlings, shading reduced leaf mass per unit area (LMA, the light compensation point, and leaf dark respiration (RD, and increased the ratio of light-saturated photosynthesis to RD and chlorophyll b and total chlorophyll expressed per unit leaf dry weight. In trees, shading reduced LMA, increased chlorophyll a, chlorophyll b and total chlorophyll on a leaf dry weight basis, and increased allocation of total foliar nitrogen to chlorophyll nitrogen. Changes in leaf morphological and physiological traits indicate a degree of shade tolerance that may have implications for even and uneven-aged management of longleaf pine.

  10. Tree-growth analyses to estimate tree species' drought tolerance.

    Science.gov (United States)

    Eilmann, Britta; Rigling, Andreas

    2012-02-01

    Climate change is challenging forestry management and practices. Among other things, tree species with the ability to cope with more extreme climate conditions have to be identified. However, while environmental factors may severely limit tree growth or even cause tree death, assessing a tree species' potential for surviving future aggravated environmental conditions is rather demanding. The aim of this study was to find a tree-ring-based method suitable for identifying very drought-tolerant species, particularly potential substitute species for Scots pine (Pinus sylvestris L.) in Valais. In this inner-Alpine valley, Scots pine used to be the dominating species for dry forests, but today it suffers from high drought-induced mortality. We investigate the growth response of two native tree species, Scots pine and European larch (Larix decidua Mill.), and two non-native species, black pine (Pinus nigra Arnold) and Douglas fir (Pseudotsuga menziesii Mirb. var. menziesii), to drought. This involved analysing how the radial increment of these species responded to increasing water shortage (abandonment of irrigation) and to increasingly frequent drought years. Black pine and Douglas fir are able to cope with drought better than Scots pine and larch, as they show relatively high radial growth even after irrigation has been stopped and a plastic growth response to drought years. European larch does not seem to be able to cope with these dry conditions as it lacks the ability to recover from drought years. The analysis of trees' short-term response to extreme climate events seems to be the most promising and suitable method for detecting how tolerant a tree species is towards drought. However, combining all the methods used in this study provides a complete picture of how water shortage could limit species.

  11. Has Virginia pine declined? The use of forest health monitoring and other information in the determination

    Science.gov (United States)

    William G. Burkman; William A. Bechtold

    2000-01-01

    This paper examines the current status of Virginia pine, focusing on Forest Health Monitoring (FHM) results and using Forest Inventory and Analysis (FIA) information to determine if Virginia pine is showing a decline. An examination of crown condition data from live trees in the FHM program from 1991 through 1997 showed that Virginia pine had significantly poorer crown...

  12. Probability of infestation and extent of mortality models for mountain pine beetle in lodgepole pine forests in Colorado

    Science.gov (United States)

    Jose F. Negron; Jennifer G. Klutsch

    2017-01-01

    The mountain pine beetle, Dendroctonus ponderosae Hopkins, is a significant agent of tree mortality in lodgepole pine (Pinus contorta Dougl. ex Loud.) forests throughout western North America. A large outbreak of mountain pine beetle caused extensive tree mortality in north-central Colorado beginning in the late 1990s. We use data from a network of plots established in...

  13. Ten-Year Performance of Eastern White Pine - under a Crop Tree Release Regime on an Outwash Site

    Science.gov (United States)

    Kenneth M. Desmarais; William B. Leak; William B. Leak

    2005-01-01

    A young stand of eastern white pine aged 38-40 years received a crop tree release cutting reducing stocking to 100 tree/ac. This stocking level reflects the number of sterms per acre that would be contained in a well stocked mature stand at final harvest (20-in. quadratic mean stand diameter). The stand then was monitored for growth and value change. Stems that grew...

  14. Search for major genes with progeny test data to accelerate the development of genetically superior loblolly pine

    Energy Technology Data Exchange (ETDEWEB)

    NCSU

    2003-12-30

    This research project is to develop a novel approach that fully utilized the current breeding materials and genetic test information available from the NCSU-Industry Cooperative Tree Improvement Program to identify major genes that are segregating for growth and disease resistance in loblolly pine. If major genes can be identified in the existing breeding population, they can be utilized directly in the conventional loblolly pine breeding program. With the putative genotypes of parents identified, tree breeders can make effective decisions on management of breeding populations and operational deployment of genetically superior trees. Forest productivity will be significantly enhanced if genetically superior genotypes with major genes for economically important traits could be deployed in an operational plantation program. The overall objective of the project is to develop genetic model and analytical methods for major gene detection with progeny test data and accelerate the development of genetically superior loblolly pine. Specifically, there are three main tasks: (1) Develop genetic models for major gene detection and implement statistical methods and develop computer software for screening progeny test data; (2) Confirm major gene segregation with molecular markers; and (3) Develop strategies for using major genes for tree breeding.

  15. Large-scale thinning, ponderosa pine, and mountain pine beetle in the Black Hills, USA

    Science.gov (United States)

    Jose F. Negron; Kurt K. Allen; Angie Ambourn; Blaine Cook; Kenneth Marchand

    2017-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) (MPB), can cause extensive ponderosa pine (Pinus ponderosa Dougl. ex Laws.) mortality in the Black Hills of South Dakota and Wyoming, USA. Lower tree densities have been associated with reduced MPB-caused tree mortality, but few studies have reported on large-scale thinning and most data come from small plots that...

  16. Impact of a Mountain Pine Beetle Outbreak on Young Lodgepole Pine Stands in Central British Columbia

    OpenAIRE

    Dhar, Amalesh; Balliet, Nicole; Runzer, Kyle; Hawkins, Christopher

    2015-01-01

    The current mountain pine beetle (MPB) (Dendroctonous ponderosae Hopkins) epidemic has severely affected pine forests of Western Canada and killed millions of hectares of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm.) forest. Generally, MPB attack larger and older (diameter > 20 cm or >60 years of age) trees, but the current epidemic extends this limit with attacks on even younger and smaller trees. The study’s aim was to investigate the extent of MPB attack in y...

  17. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests.

    Science.gov (United States)

    Grüning, Maren M; Simon, Judy; Rennenberg, Heinz; L-M-Arnold, Anne

    2017-01-01

    Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15 N net uptake capacity of fine roots) as well as N pools in fine roots and needles in a Scots pine ( Pinus sylvestris L.) forest over an entire vegetation period. Plots were either infested by the nun moth ( Lymantria monacha L.) or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  18. Lodgepole Pine Dwarf Mistletoe

    Science.gov (United States)

    Frank G. Hawksworth; Oscar J. Dooling

    1984-01-01

    Lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt. ex Engelm.) is a native, parasitic, seed plant that occurs essentially throughout the range of lodgepole pine in North America. It is the most damaging disease agent in lodgepole pine, causing severe growth loss and increased tree mortality. Surveys in the Rocky Mountains show that the parasite is found in...

  19. Chemical composition of needles and cambial activity of stems of Scots pine trees affected by air pollutants in Polish forests

    Science.gov (United States)

    Wojciech Dmuchowski; Ewa U. Kurczynska; Wieslaw Wloch

    1998-01-01

    The impact of environmental pollution is defined for the chemical composition of Scots pine (Pinus sylvestris L.) needles and cambial activity in the tree stems in Polish forests. The research investigated 20-year-old trees growing in two areas in significantly different levels of pollution. The highly polluted area was located near the Warsaw...

  20. Genetic variation of lodgepole pine, Pinus contorta var. latifolia, chemical and physical defenses that affect mountain pine beetle, Dendroctonus ponderosae, attack and tree mortality.

    Science.gov (United States)

    Ott, Daniel S; Yanchuk, Alvin D; Huber, Dezene P W; Wallin, Kimberly F

    2011-09-01

    Plant secondary chemistry is determined by both genetic and environmental factors, and while large intraspecific variation in secondary chemistry has been reported frequently, the levels of genetic variation of many secondary metabolites in forest trees in the context of potential resistance against pests have been rarely investigated. We examined the effect of tree genotype and environment/site on the variation in defensive secondary chemistry of lodgepole pine, Pinus contorta var. latifolia, against the fungus, Grosmannia clavigera (formerly known as Ophiostoma clavigerum), associated with the mountain pine beetle, Dendroctonus ponderosae. Terpenoids were analyzed in phloem samples from 887, 20-yr-old trees originating from 45 half-sibling families planted at two sites. Samples were collected both pre- and post-inoculation with G. clavigera. Significant variation in constitutive and induced terpenoid compounds was attributed to differences among families. The response to the challenge inoculation with G. clavigera was strong for some individual compounds, but primarily for monoterpenoids. Environment (site) also had a significant effect on the accumulation of some compounds, whereas for others, no significant environmental effect occurred. However, for a few compounds significant family x environment interactions were found. These results suggest that P. c. latifolia secondary chemistry is under strong genetic control, but the effects depend on the individual compounds and whether or not they are expressed constitutively or following induction.

  1. Studies on black stain root disease in ponderosa pine. pp. 236-240. M. Garbelotto & P. Gonthier (Editors). Proceedings 12th International Conference on Root and Butt Rots of Forest Trees.

    Science.gov (United States)

    W. J. Otrosina; J. T. Kliejunas; S. S. Sung; S. Smith; D. R. Cluck

    2008-01-01

    Black stain root disease of ponderosa pine, caused by Lepfographium wageneri var. ponderosum (Harrington & Cobb) Harrington & Cobb, is increasing on many eastside pine stands in northeastern California. The disease is spread from tree to tree via root contacts and grafts but new infections are likely vectored by root...

  2. Tree Mortality following Prescribed Fire and a Storm Surge Event in Slash Pine (Pinus elliottii var. densa Forests in the Florida Keys, USA

    Directory of Open Access Journals (Sweden)

    Jay P. Sah

    2010-01-01

    Full Text Available In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  3. Tree mortality following prescribed fire and a storm surge event in Slash Pine (pinus elliottii var. densa) forests in the Florida Keys, USA

    Science.gov (United States)

    Sah, Jay P.; Ross, Michael S.; Snyder, James R.; Ogurcak, Danielle E.

    2010-01-01

    In fire-dependent forests, managers are interested in predicting the consequences of prescribed burning on postfire tree mortality. We examined the effects of prescribed fire on tree mortality in Florida Keys pine forests, using a factorial design with understory type, season, and year of burn as factors. We also used logistic regression to model the effects of burn season, fire severity, and tree dimensions on individual tree mortality. Despite limited statistical power due to problems in carrying out the full suite of planned experimental burns, associations with tree and fire variables were observed. Post-fire pine tree mortality was negatively correlated with tree size and positively correlated with char height and percent crown scorch. Unlike post-fire mortality, tree mortality associated with storm surge from Hurricane Wilma was greater in the large size classes. Due to their influence on population structure and fuel dynamics, the size-selective mortality patterns following fire and storm surge have practical importance for using fire as a management tool in Florida Keys pinelands in the future, particularly when the threats to their continued existence from tropical storms and sea level rise are expected to increase.

  4. The Austrian x red pine hybrid

    Science.gov (United States)

    W. B. Critchfield

    1963-01-01

    The genetic improvement of red pine (Pinus resinosa Ait.) presents tree breeders with one of their most difficult problems. Not only is this valuable species remarkably uniform, but until 1955 it resisted all attempts to cross it with other pines. In that year red pine and Austrian pine (P. nigra var. austriaca [...

  5. Management intensity and genetics affect loblolly pine seedling performance

    Science.gov (United States)

    Scott D. Roberts; Randall J. Rousseau; B. Landis Herrin

    2012-01-01

    Capturing potential genetic gains from tree improvement programs requires selection of the appropriate genetic stock and application of appropriate silvicultural management techniques. Limited information is available on how specific loblolly pine varietal genotypes perform under differing growing environments and management approaches. This study was established in...

  6. Estimating aboveground tree biomass for beetle-killed lodgepole pine in the Rocky Mountains of northern Colorado

    Science.gov (United States)

    Woodam Chung; Paul Evangelista; Nathaniel Anderson; Anthony Vorster; Hee Han; Krishna Poudel; Robert Sturtevant

    2017-01-01

    The recent mountain pine beetle (Dendroctonus ponderosae Hopkins) epidemic has affected millions of hectares of conifer forests in the Rocky Mountains. Land managers are interested in using biomass from beetle-killed trees for bioenergy and biobased products, but they lack adequate information to accurately estimate biomass in stands with heavy mortality. We...

  7. Mountain pine beetle in lodgepole pine: mortality and fire implications (Project INT-F-07-03)

    Science.gov (United States)

    Jennifer G. Klutsch; Daniel R. West; Mike A Battaglia; Sheryl L. Costello; José F. Negrón; Charles C. Rhoades; John Popp; Rick Caissie

    2013-01-01

    Mountain pine beetle (Dendroctonus ponderosae Hopkins) has infested over 2 million acres of lodgepole pine (Pinus contorta Dougl. ex Loud.) forest since an outbreak began approximately in 2000 in north central Colorado. The tree mortality from mountain pine beetle outbreaks has the potential to alter stand composition and stand...

  8. Fire injury reduces inducible defenses of lodgepole pine against Mountain pine beetle.

    Science.gov (United States)

    Powell, Erinn N; Raffa, Kenneth F

    2011-11-01

    We examined the effect of wildfire injury on lodgepole pine chemical defenses against mountain pine beetle. We compared the constitutive phloem chemistry among uninjured, lightly-, moderately-, and severely-injured trees, and the induced chemistry elicited by simulated beetle attack, among these same categories. We also compared the entry rates of caged female beetles into trees of these categories. The volatiles we studied included thirteen monoterpene hydrocarbons, four allylic monoterpene alcohols, one ester, and one phenyl propanoid, of which the monoterpene hydrocarbons always comprised 96% or more of the total. Fire injury reduced the total concentration of these compounds in the induced but not constitutive phloem tissue of lodgepole pines. Fire injury also affected the relative composition of some volatiles in both induced and constitutive phloem. For example, increased fire injury reduced 4-allylanisole, a host compound that inhibits mountain pine beetle aggregation. Increased fire injury also increased (-) α-pinene, which can serve as precursor of pheromone communication. However, it also reduced myrcene and terpinolene, which can serve as stimulants and synergists of pheromone communication. Beetle entry did not show statistical differences among fire injury categories, although there was a trend to increased entry with fire injury. These results suggest that the reduced ability of trees to mobilize induced chemical defenses is an important mechanism behind the higher incidence of attack on fire-injured trees in the field. Future studies should concentrate on whether beetles that enter fire-injured trees are more likely to elicit aggregation, based on the differences we observed in volatile composition.

  9. Economic Sustainability of Payments for Water Yield in Slash Pine Plantations in Florida

    Directory of Open Access Journals (Sweden)

    Andres Susaeta

    2016-09-01

    Full Text Available Forests play an important role with respect to water resources, and can be managed to increase surface- and groundwater recharge. With the creation of a forest water yield payment system, privately-owned forests, which comprise the majority of forest area in the Southeastern US, could become an important potential source of additional water supply. The economic tradeoffs between timber revenues and water yield are not well understood. To address this, we use the example case of slash pine production in Florida, and employ a forest stand-level optimal rotation model that incorporates forest management, and assessed a range of feasible water yield prices on forest profitability. Our analysis was limited to a range of water yield prices ($0.03, $0.07, and $0.30 kL−1 that would make water yield from slash pine economically competitive with water supply alternatives (e.g., reservoir construction. Even at relatively low water prices, we found that managing slash pine forests for both timber and water yield was preferred to managing just for timber when assuming an initial tree density less than 2200 trees·ha−1. However, with higher levels of initial tree planting density and low water prices, managing slash pine for timber production alone was more profitable unless stands are heavily-thinned, suggesting that even mid-rotation stands could be included in a forest water yield payments program. Compared to low-tree planting density and lightly thinned slash pine forests, an intensive approach of planting a lot of trees and then heavily thinning them generated 8% to 33% higher profits, and 11% more ($192 ha−1 on average. We conclude that payments for water yield are economically feasible for slash pine stands in Florida, and would benefit forest landowners, particularly with higher prices for water yield.

  10. Perception of Pine Trees among Citizens of the Balearic Islands: Analysis and Description of Some Mistaken Ideas

    Science.gov (United States)

    Sureda-Negre, Jaume; Catalan-Fernandez, Albert; Comas-Forgas, Ruben; Fagan, Geoffrey; Llabres-Bernat, Antonia

    2011-01-01

    In this article, the authors analyze evidence regarding the dissemination of mistaken ideas concerning the presence and function of pine trees ("Pinus halepensis") in a Mediterranean archipelago: the Balearic Islands (Spain). The main errors concerning the natural vegetation that are disseminated among citizens by the forest management…

  11. Short-term exposure to atmospheric ammonia does not affect frost hardening of needles from three- and five-year-old Scots pine trees

    NARCIS (Netherlands)

    Clement, J.M A M; van Hasselt, P.R; van Eerden, L.J.M.; Dueck, T.A.

    The effect of atmospheric ammonia on frost hardening of needles from 3- and 5-year-old Scots pine trees was investigated. Trees were exposed to various concentrations of NH(3) during different hardening stages under laboratory conditions and in experiments with open-top chambers under a natural

  12. Mountain pine beetle infestation: GCxGCTOFMS and GC-MS of lodgepole pine (pinus contorta) acetone extractives

    Science.gov (United States)

    Roderquita K. Moore; Michael Leitch; Erick Arellano-ruiz; Jonathon Smaglick; Doreen Mann

    2015-01-01

    The Rocky Mountains and western U.S. forests are impacted by the infestation of mountain pine beetles (MPB). MPB outbreak is killing pine and spruce trees at an alarming rate. These trees present a fuel build-up in the forest, which can result in catastrophic wildland fires. MPB carry blue-stain fungi from the genus Ophiostoma and transmit infection by burrowing into...

  13. Defoliating Insect Mass Outbreak Affects Soil N Fluxes and Tree N Nutrition in Scots Pine Forests

    Directory of Open Access Journals (Sweden)

    Maren M. Grüning

    2017-06-01

    Full Text Available Biotic stress by mass outbreaks of defoliating pest insects does not only affect tree performance by reducing its photosynthetic capacity, but also changes N cycling in the soil of forest ecosystems. However, how insect induced defoliation affects soil N fluxes and, in turn, tree N nutrition is not well-studied. In the present study, we quantified N input and output fluxes via dry matter input, throughfall, and soil leachates. Furthermore, we investigated the effects of mass insect herbivory on tree N acquisition (i.e., organic and inorganic 15N net uptake capacity of fine roots as well as N pools in fine roots and needles in a Scots pine (Pinus sylvestris L. forest over an entire vegetation period. Plots were either infested by the nun moth (Lymantria monacha L. or served as controls. Our results show an increased N input by insect feces, litter, and throughfall at the infested plots compared to controls, as well as increased leaching of nitrate. However, the additional N input into the soil did not increase, but reduce inorganic and organic net N uptake capacity of Scots pine roots. N pools in the fine roots and needles of infested trees showed an accumulation of total N, amino acid-N, protein-N, and structural N in the roots and the remaining needles as a compensatory response triggered by defoliation. Thus, although soil N availability was increased via surplus N input, trees did not respond with an increased N acquisition, but rather invested resources into defense by accumulation of amino acid-N and protein-N as a survival strategy.

  14. Landscape-scale analysis of aboveground tree carbon stocks affected by mountain pine beetles in Idaho

    International Nuclear Information System (INIS)

    Bright, B C; Hicke, J A; Hudak, A T

    2012-01-01

    Bark beetle outbreaks kill billions of trees in western North America, and the resulting tree mortality can significantly impact local and regional carbon cycling. However, substantial variability in mortality occurs within outbreak areas. Our objective was to quantify landscape-scale effects of beetle infestations on aboveground carbon (AGC) stocks using field observations and remotely sensed data across a 5054 ha study area that had experienced a mountain pine beetle outbreak. Tree mortality was classified using multispectral imagery that separated green, red, and gray trees, and models relating field observations of AGC to LiDAR data were used to map AGC. We combined mortality and AGC maps to quantify AGC in beetle-killed trees. Thirty-nine per cent of the forested area was killed by beetles, with large spatial variability in mortality severity. For the entire study area, 40–50% of AGC was contained in beetle-killed trees. When considered on a per-hectare basis, 75–89% of the study area had >25% AGC in killed trees and 3–6% of the study area had >75% of the AGC in killed trees. Our results show that despite high variability in tree mortality within an outbreak area, bark beetle epidemics can have a large impact on AGC stocks at the landscape scale. (letter)

  15. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem.

    Science.gov (United States)

    Keville, Megan P; Reed, Sasha C; Cleveland, Cory C

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH₄⁺) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  16. Nitrogen cycling responses to mountain pine beetle disturbance in a high elevation whitebark pine ecosystem

    Science.gov (United States)

    Keville, Megan P.; Reed, Sasha C.; Cleveland, Cory C.

    2013-01-01

    Ecological disturbances can significantly affect biogeochemical cycles in terrestrial ecosystems, but the biogeochemical consequences of the extensive mountain pine beetle outbreak in high elevation whitebark pine (WbP) (Pinus albicaulis) ecosystems of western North America have not been previously investigated. Mountain pine beetle attack has driven widespread WbP mortality, which could drive shifts in both the pools and fluxes of nitrogen (N) within these ecosystems. Because N availability can limit forest regrowth, understanding how beetle-induced mortality affects N cycling in WbP stands may be critical to understanding the trajectory of ecosystem recovery. Thus, we measured above- and belowground N pools and fluxes for trees representing three different times since beetle attack, including unattacked trees. Litterfall N inputs were more than ten times higher under recently attacked trees compared to unattacked trees. Soil inorganic N concentrations also increased following beetle attack, potentially driven by a more than two-fold increase in ammonium (NH4+) concentrations in the surface soil organic horizon. However, there were no significant differences in mineral soil inorganic N or soil microbial biomass N concentrations between attacked and unattacked trees, implying that short-term changes in N cycling in response to the initial stages of WbP attack were restricted to the organic horizon. Our results suggest that while mountain pine beetle attack drives a pulse of N from the canopy to the forest floor, changes in litterfall quality and quantity do not have profound effects on soil biogeochemical cycling, at least in the short-term. However, continuous observation of these important ecosystems will be crucial to determining the long-term biogeochemical effects of mountain pine beetle outbreaks.

  17. Decision-Tree Program

    Science.gov (United States)

    Buntine, Wray

    1994-01-01

    IND computer program introduces Bayesian and Markov/maximum-likelihood (MML) methods and more-sophisticated methods of searching in growing trees. Produces more-accurate class-probability estimates important in applications like diagnosis. Provides range of features and styles with convenience for casual user, fine-tuning for advanced user or for those interested in research. Consists of four basic kinds of routines: data-manipulation, tree-generation, tree-testing, and tree-display. Written in C language.

  18. Risk Assessment for the Southern Pine Beetle

    Science.gov (United States)

    Andrew Birt

    2011-01-01

    The southern pine beetle (SPB) causes significant damage (tree mortality) to pine forests. Although this tree mortality has characteristic temporal and spatial patterns, the precise location and timing of damage is to some extent unpredictable. Consequently, although forest managers are able to identify stands that are predisposed to SPB damage, they are unable to...

  19. Pulp quality from small-diameter trees.

    Science.gov (United States)

    G.C. Myers; S. Kumar; R.R. Gustafson; R.J. Barbour; S.M. Abubakr

    1997-01-01

    Kraft and thermomechanical (TMP) pulps were prepared and evaluated from lodgepole pine and mixed Douglas-fir/western larch sawmill residue chips; lodgepole pine, Douglas-fir, and western larch submerchantable logs; and lodgepole pine, Douglas-fir, and western larch small trees and tops. Kraft pulp from small trees and tops was identical to that from submerchantable...

  20. Branch growth and gas exchange in 13-year old loblobby pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization

    International Nuclear Information System (INIS)

    Maier, C. A.; Johnsen, K. H.; Butnor, J.; Kress, L. W.; Anderson, P. H.

    2002-01-01

    The combined effects of nutrient availability and carbon dioxide on growth and physiology in mature loblobby pine trees was investigated. Whole-tree open top chambers were used to expose 13-year old loblobby pine trees, growing in soil with high or low nutrient availability to elevated carbon dioxide to examine how carbon dioxide, foliar nutrition and crown position affect branch growth, phenology and physiology. Results showed that fertilization and elevated carbon dioxide increased branch leaf area, and the combined effects were additive. However, fertilization and elevated carbon dioxide differentially altered needle lengths, number of fascicles and flush length in such a way that flush density increased with improved nutrition but decreased with exposure to elevated carbon dioxide. Based on these results, it was concluded that changes in nitrogen availability and atmospheric carbon dioxide may alter canopy structure, facilitating greater foliage retention and deeper crowns in loblobby pine forests. Net photosynthesis and photosynthetic efficiency was increased in the presence of elevated carbon dioxide concentration and lowered the light compensation point, whereas fertilization had no appreciable effect on foliage gas exchange. 71 refs., 7 tabs., 7 figs

  1. Individual variation of sap-flow rate in large pine and spruce trees and stand transpiration: a pilot study at the central NOPEX site

    Science.gov (United States)

    Čermák, J.; Cienciala, E.; Kučera, J.; Lindroth, A.; Bednářová, E.

    1995-06-01

    Transpiration in a mixed old stand of sub-boreal forest in the Norunda region (central Sweden) was estimated on the basis of direct measurement of sap flow rate in 24 large Scots pine and Norway spruce trees in July and August 1993. Sap flow rate was measured using the trunk tissue heat balance method based on internal (electric) heating and sensing of temperature. Transpiration was only 0.7 mm day -1 in a relatively dry period in July (i.e. about 20% of potential evaporation) and substantially higher after a rainy period in August. The error of the estimates of transpiration was higher during a dry period (about 13% and 22% in pine and spruce, respectively) and significantly lower (about 9% in both species) during a period of sufficient water supply. Shallow-rooted spruce trees responded much faster to precipitation than deeply rooted pines.

  2. Dynamic relationship between the VOC emissions from a Scots pine stem and the tree water relations

    Science.gov (United States)

    Vanhatalo, Anni; Chan, Tommy; Aalto, Juho; Kolari, Pasi; Rissanen, Kaisa; Hakola, Hannele; Hölttä, Teemu; Bäck, Jaana

    2013-04-01

    The stems of coniferous trees contain huge storages of oleoresin. The composition of oleoresin depends on e.g. tree species, age, provenance, health status, and environmental conditions. Oleoresin is under pressure in the extensive network of resin ducts in wood and needles. It flows out from a mechanically damaged site to protect the tree by sealing the wounded site. Once in contact with air, volatile parts of oleoresin evaporate, and the residual compounds harden to make a solid protective seal over damaged tissues. The hardening time of the resin depends on evaporation rate of the volatiles which in turn depends on temperature. The storage is also toxic to herbivores and attracts predators that restrict the herbivore damage. Despite abundant knowledge on emissions of volatile isoprenoids from foliage, very little is known about their emissions from woody plant parts. We set up an experiment to measure emissions of isoprene and monoterpenes as well as two oxygenated VOCs, methanol and acetone, from a Scots pine (Pinus sylvestris) stem and branches. The measurements were started in early April and continued until mid-June, 2012. Simultaneously, we measured the dynamics of whole stem and xylem diameter changes, stem sap flow rate and foliage transpiration rate. These measurements were used to estimate A) pressure changes inside the living stem tissue and the water conducting xylem, B) the refilling of stem water stores after winter dehydration (the ratio of sap flow at the stem base to water loss by foliage), and C) the increase in tree water transport capacity (the ratio of maximum daily sap flow rate to the diurnal variation in xylem pressure) during spring due to winter embolism refilling and/or the temperature dependent root water uptake capacity. The results show that already very early in spring, significant VOC emissions from pine stem can be detected, and that they exhibit a diurnal cycle similar to that of ambient temperature. During the highest emission

  3. Branch growth and gas exchange in 13-year-old loblolly pine (Pinus taeda) trees in response to elevated carbon dioxide concentration and fertilization

    Science.gov (United States)

    Chris A. Maier; Kurt H. Johnsen; John Butnor; Lance W. Kress; Peter H. Anderson

    2002-01-01

    Summary We used whole-tree, open-top chambers to expose 13-year-old loblolly pine (Pinus taeda L.) trees, growing in soil with high or low nutrient availability, to either ambient or elevated (ambient + 200 µmol mol-1 ) carbon dioxide concentration ([CO2]) for 28 months. Branch growth...

  4. Pine needle abortion biomarker detected in bovine fetal fluids

    Science.gov (United States)

    Pine needle abortion is a naturally occurring condition in free-range cattle caused by the consumption of pine needles from select species of cypress, juniper, pine, and spruce trees. Confirmatory diagnosis of pine needle abortion has previously relied on a combined case history of pine needle cons...

  5. The influence of prefire tree growth and crown condition on postfire mortality of sugar pine following prescribed fire in Sequoia National Park

    Science.gov (United States)

    Nesmith, Jonathan C. B.; Das, Adrian J.; O'Hara, Kevin L.; van Mantgem, Phillip J.

    2015-01-01

    Tree mortality is a vital component of forest management in the context of prescribed fires; however, few studies have examined the effect of prefire tree health on postfire mortality. This is especially relevant for sugar pine (Pinus lambertiana Douglas), a species experiencing population declines due to a suite of anthropogenic factors. Using data from an old-growth mixed-conifer forest in Sequoia National Park, we evaluated the effects of fire, tree size, prefire radial growth, and crown condition on postfire mortality. Models based only on tree size and measures of fire damage were compared with models that included tree size, fire damage, and prefire tree health (e.g., measures of prefire tree radial growth or crown condition). Immediately following the fire, the inclusion of different metrics of prefire tree health produced variable improvements over the models that included only tree size and measures of fire damage, as models that included measures of crown condition performed better than fire-only models, but models that included measures of prefire radial growth did not perform better. However, 5 years following the fire, sugar pine mortality was best predicted by models that included measures of both fire damage and prefire tree health, specifically, diameter at breast height (DBH, 1.37 m), crown scorch, 30-year mean growth, and the number of sharp declines in growth over a 30-year period. This suggests that factors that influence prefire tree health (e.g., drought, competition, pathogens, etc.) may partially determine postfire mortality, especially when accounting for delayed mortality following fire.

  6. Mountain pine beetle infestation of lodgepole pine in areas of water diversion.

    Science.gov (United States)

    Smolinski, Sharon L; Anthamatten, Peter J; Bruederle, Leo P; Barbour, Jon M; Chambers, Frederick B

    2014-06-15

    The Rocky Mountains have experienced extensive infestations from the mountain pine beetle (Dendroctonus ponderosae Hopkins), affecting numerous pine tree species including lodgepole pine (Pinus contorta Dougl. var. latifolia). Water diversions throughout the Rocky Mountains transport large volumes of water out of the basins of origin, resulting in hydrologic modifications to downstream areas. This study examines the hypothesis that lodgepole pine located below water diversions exhibit an increased incidence of mountain pine beetle infestation and mortality. A ground survey verified diversion structures in a portion of Grand County, Colorado, and sampling plots were established around two types of diversion structures, canals and dams. Field studies assessed mountain pine beetle infestation. Lodgepole pines below diversions show 45.1% higher attack and 38.5% higher mortality than lodgepole pines above diversions. These findings suggest that water diversions are associated with increased infestation and mortality of lodgepole pines in the basins of extraction, with implications for forest and water allocation management. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Mountain pine beetle-killed lodgepole pine for the production of submicron lignocellulose fibrils

    Science.gov (United States)

    Ingrid Hoeger; Rolland Gleisner; Jose Negron; Orlando J. Rojas; J. Y. Zhu

    2014-01-01

    The elevated levels of tree mortality attributed to mountain pine beetle (MPB) (Dendroctonus ponderosae Hopkins) in western North American forests create forest management challenges. This investigation introduces the production of submicron or nanometer lignocellulose fibrils for value-added materials from the widely available resource represented by dead pines after...

  8. Tree Notation: an antifragile program notation

    OpenAIRE

    Yunits, Breck

    2017-01-01

    This paper presents Tree Notation, a new simple, universal syntax. Language designers can invent new programming languages, called Tree Languages, on top of Tree Notation. Tree Languages have a number of advantages over traditional programming languages. We include a Visual Abstract to succinctly display the problem and discovery. Then we describe the problem--the BNF to abstract syntax tree (AST) parse step--and introduce the novel solution we discovered: a new family of 2D programming langu...

  9. The legacy of attack: implications of high phloem resin monoterpene levels in lodgepole pines following mass attack by mountain pine beetle, Dendroctonus ponderosae Hopkins.

    Science.gov (United States)

    Clark, E L; Huber, D P W; Carroll, A L

    2012-04-01

    The mountain pine beetle (Dendroctonus ponderosae Hopkins) is the most serious pest of pines (Pinus) in western North America. Host pines protect themselves from attack by producing a complex mixture of terpenes in their resin. We sampled lodgepole pine (Pinus contorta variety latifolia) phloem resin at four widely separated locations in the interior of British Columbia, Canada, both just before (beginning of July) and substantially after (end of August) the mountain pine beetle dispersal period. The sampled trees then were observed the next spring for evidence of survival, and the levels of seven resin monoterpenes were compared between July and August samples. Trees that did not survive consistently had significantly higher phloem resin monoterpene levels at the end of August compared with levels in July. Trees that did survive mainly did not exhibit a significant difference between the two sample dates. The accumulation of copious defense-related secondary metabolites in the resin of mountain pine beetle-killed lodgepole pine has important implications for describing the environmental niche that the beetle offspring survive in as well as that of parasitoids, predators, and other associates.

  10. Retention of seed trees fails to lifeboat ectomycorrhizal fungal diversity in harvested Scots pine forests.

    Science.gov (United States)

    Varenius, Kerstin; Lindahl, Björn D; Dahlberg, Anders

    2017-09-01

    Fennoscandian forestry has in the past decades changed from natural regeneration of forests towards replantation of clear-cuts, which negatively impacts ectomycorrhizal fungal (EMF) diversity. Retention of trees during harvesting enables EMF survival, and we therefore expected EMF communities to be more similar to those in old natural stands after forest regeneration using seed trees compared to full clear-cutting and replanting. We sequenced fungal internal transcribed spacer 2 (ITS2) amplicons to assess EMF communities in 10- to 60-year-old Scots pine stands regenerated either using seed trees or through replanting of clear-cuts with old natural stands as reference. We also investigated local EMF communities around retained old trees. We found that retention of seed trees failed to mitigate the impact of harvesting on EMF community composition and diversity. With increasing stand age, EMF communities became increasingly similar to those in old natural stands and permanently retained trees maintained EMF locally. From our observations, we conclude that EMF communities, at least common species, post-harvest are more influenced by environmental filtering, resulting from environmental changes induced by harvest, than by the continuity of trees. These results suggest that retention of intact forest patches is a more efficient way to conserve EMF diversity than retaining dispersed single trees. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Suitability of live and fire-killed small-diameter ponderosa and lodgepole pine trees for manufacturing a new structural wood composite.

    Science.gov (United States)

    Linton, J M; Barnes, H M; Seale, R D; Jones, P D; Lowell, E C; Hummel, S S

    2010-08-01

    Finding alternative uses for raw material from small-diameter trees is a critical problem throughout the United States. In western states, a lack of markets for small-diameter ponderosa pine (Pinus ponderosa) and lodgepole pine (Pinus contorta) can contribute to problems associated with overstocking. To test the feasibility of producing structural composite lumber (SCL) beams from these two western species, we used a new technology called steam-pressed scrim lumber (SPSL) based on scrimming technology developed in Australia. Both standing green and fire-killed ponderosa and lodgepole pine logs were used in an initial test. Fire-killed logs of both species were found to be unsuitable for producing SPSL but green logs were suitable for producing SPSL. For SPSL from green material, ponderosa pine had significantly higher modulus of rupture and work-to-maximum load values than did SPSL from lodgepole pine. Modulus of elasticity was higher for lodgepole pine. The presence of blows was greater with lodgepole pine than with ponderosa. Blows had a negative effect on the mechanical properties of ponderosa pine but no significant effect on the mechanical properties of SPSL from lodgepole pine. An evaluation of non-destructive testing methods showed that X-ray could be used to determine low density areas in parent beams. The use of a sonic compression wave tester for NDE evaluation of modulus of rupture showed some promise with SPSL but requires further research. (c) 2010 Elsevier Ltd. All rights reserved.

  12. Culture and Density Effects on Tree Quality in Midrotation Non-Thinned Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    P. Corey Green

    2018-02-01

    Full Text Available Six non-thinned loblolly pine (Pinus taeda L. culture × density study sites in the Piedmont and Upper Coastal Plain of the Southeast U.S. were used to examine the effects of two cultural intensities and three planting densities on solid wood potential as well as the proportion and position of product-defining defects (forks, crooks, broken tops. A tree quality index (TQI was used to grade stems for solid wood potential. The results show that an operational management regime exhibited a higher proportion of trees with solid wood product potential than did a very intensive management regime. Trees subject to operational management exhibited product-defining defects higher on the stem; however, the proportion of stems with defects was not significantly different from the intensive management. Planting densities of 741, 1482, and 2223 trees per hectare (TPH exhibited a relatively narrow range of the proportion of trees with solid wood product potential that were not significantly different. Density did not have a significant effect on the heights of the product-defining defects. These results show that management intensity and less so planting density, affect the solid wood product potential indicators evaluated and should be considered when making management decisions.

  13. Nonstructural carbohydrate dynamics of lodgepole pine dying from mountain pine beetle attack.

    Science.gov (United States)

    Wiley, Erin; Rogers, Bruce J; Hodgkinson, Robert; Landhäusser, Simon M

    2016-01-01

    Bark beetle outbreaks are an important cause of tree death, but the process by which trees die remains poorly understood. The effect of beetle attack on whole-tree nonstructural carbohydrate (NSC) dynamics is particularly unclear, despite the potential role of carbohydrates in plant defense and survival. We monitored NSC dynamics of all organs in attacked and protected lodgepole pines (Pinus contorta) during a mountain pine beetle (Dendroctonus ponderosae) outbreak in British Columbia, starting before beetle flight in June 2011 through October 2012, when most attacked trees had died. Following attack, NSC concentrations were first reduced in the attacked region of the bole. The first NSC reduction in a distant organ appeared in the needles at the end of 2011, while branch and root NSC did not decline until much later in 2012. Attacked trees that were still alive in October 2012 had less beetle damage, which was negatively correlated with initial bark sugar concentrations in the attack region. The NSC dynamics of dying trees indicate that trees were killed by a loss of water conduction and not girdling. Further, our results identify locally reduced carbohydrate availability as an important mechanism by which stressors like drought may increase tree susceptibility to biotic attack. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  14. Investigation of urban environment from photographic information (photosurvey). Part I. Method and survey of vigor of trees

    Energy Technology Data Exchange (ETDEWEB)

    Nakazawa, S; Oshima, T

    1975-01-01

    Fundamental data were gathered for a tree-planting program by surveying photometrically the growth state of plants in relation to topography in Suginami Ward, where the living environment is drastically changing. The photographs taken for the purpose were natural color 1972, infrared color 1972, panchromatic 1963 and 1966, panchromatio-infrachromatic 1970, and infrared 1971. The methods of evaluating tree vigor is explained. The tree species investigated were pasania, zelkova, ginkgo, Himalayan cedar, cherry, and pine. The results were summarized in a tree-vigor map. Vigor was in the descending order of ginkgo, Himalayan cedar, pasania, pine, zelkova and cherry. Along railroads and main roads, vigor was lower.

  15. Low offspring survival in mountain pine beetle infesting the resistant Great Basin bristlecone pine supports the preference-performance hypothesis.

    Directory of Open Access Journals (Sweden)

    Erika L Eidson

    Full Text Available The preference-performance hypothesis states that ovipositing phytophagous insects will select host plants that are well-suited for their offspring and avoid host plants that do not support offspring performance (survival, development and fitness. The mountain pine beetle (Dendroctonus ponderosae, a native insect herbivore in western North America, can successfully attack and reproduce in most species of Pinus throughout its native range. However, mountain pine beetles avoid attacking Great Basin bristlecone pine (Pinus longaeva, despite recent climate-driven increases in mountain pine beetle populations at the high elevations where Great Basin bristlecone pine grows. Low preference for a potential host plant species may not persist if the plant supports favorable insect offspring performance, and Great Basin bristlecone pine suitability for mountain pine beetle offspring performance is unclear. We infested cut bolts of Great Basin bristlecone pine and two susceptible host tree species, limber (P. flexilis and lodgepole (P. contorta pines with adult mountain pine beetles and compared offspring performance. To investigate the potential for variation in offspring performance among mountain pine beetles from different areas, we tested beetles from geographically-separated populations within and outside the current range of Great Basin bristlecone pine. Although mountain pine beetles constructed galleries and laid viable eggs in all three tree species, extremely few offspring emerged from Great Basin bristlecone pine, regardless of the beetle population. Our observed low offspring performance in Great Basin bristlecone pine corresponds with previously documented low mountain pine beetle attack preference. A low preference-low performance relationship suggests that Great Basin bristlecone pine resistance to mountain pine beetle is likely to be retained through climate-driven high-elevation mountain pine beetle outbreaks.

  16. Speleothems and pine trees as sensitive indicators of environmental pollution - A case study of the effect of uranium-ore mining in Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Siklosy, Zoltan, E-mail: siklosy@geochem.hu [Institute for Geochemical Research, Hungarian Academy of Sciences, Budapest (Hungary); Kern, Zoltan; Demeny, Attila [Institute for Geochemical Research, Hungarian Academy of Sciences, Budapest (Hungary); Pilet, Sebastian [Institute of Mineralogy and Geochemistry, University of Lausanne (Switzerland); Leel-Ossy, Szabolcs [Eotvos University, Budapest (Hungary); Lin, Ke; Shen, Chuan-Chou [High-precision Mass Spectrometry and Environment Change Laboratory, Department of Geosciences, National Taiwan University, Taipei, Taiwan (China); Szeles, Eva [Institute of Isotopes, Hungarian Academy of Sciences, Budapest (Hungary); Breitner, Daniel [Atomic Energy Research Institute, Hungarian Academy of Sciences, Budapest (Hungary)

    2011-05-15

    Research Highlights: > Stalagmites can preserve anthropogenic impact in the environment. > Living pine (P. sylvestis) trees are also act as a chemoenviromental archive. > A rise in uranium of the stalagmite suggested increasing amounts pollutants. > Two different geochemical proxies as pollution recorders were highlighted. - Abstract: Four decades of U ore production in Hungary provides an opportunity to study the possible environmental effects of mining. The study reveals significant changes in chemical composition of a stalagmite (cave deposit). The good fit between U content changes in the studied deposit and the U ore production rate support the assumption of the relationship with mining activity. An independent chemoenviromental archive, living pine (Pinus sylvestis) trees were also investigated. Data on pine tree cores collected from the same region show different levels of pollution (Cu, Zn, Mn, U) after the 1950s and 1960s, linked to the opening of mines and subsequent dust fallout around the site. Elevated concentrations of detritally derived elements (Si, Al, Th) coupled with a rise in U concentration and change in {delta}{sup 234}U values of the stalagmite suggest increasing amounts of mine-derived dust from 1 to 3 km distance that settled and washed into the karst system. The combined usage of different proxies not only provides historic records for the anthropogenic impact in the environment, but also allows the timing of U concentration increases within the stalagmite and the identification of elemental behavior from the pollution. This study shows that complementary geochemical archives such as stalagmites and tree rings used together can enhance understanding of past environmental contamination.

  17. Effects of vibration on stone pine trees (Pinus pinea L.) on the vigor of the trees: crown density, growth shoots and parasites of weak trees.; Efectos del vibrado del pino pinonero (Pinus pinea L.) en el vigor de los arboles: densidad de copa, crecimiento de guias y parasitos de debilidad

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Zurimendi, P.; Alvarez, J. M.; Pando, V.; Dominguez, M.; Gordo, J.; Finat, L.; Sierra-De-Grado, R.

    2009-07-01

    In the northwest of Spain the mechanized harvesting of pine cones is more and more frequent. In order to quantify the effects of vibration on the vigor of the trees, parcels of stone pine were planted in plateau and countryside. Both the mechanized and manual harvests were analyzed in adult and young trees. The growth of the tree shoots was measured. The presence and abundance of three insect plagues was analyzed in those same trees: Tacoma's piniperda, Rhyacionia buoliana and Thaumetopoea pityocampa. The average shoot length of those trees manually harvested was superior to that of those mechanically harvested. The difference was very significant in young trees (40-50 years old) in the countryside and in adult trees (more than 80 years) on the plateau. Rhyacionia buoliana was more abundant in adult trees that young trees, but the relation of its abundance with the harvest method was not seen. The presence of Tomicus piniperda was rare and was only detected in mechanically harvested stands. Thaumetopoea pityocampa was more frequent in trees harvested by hand than those harvested mechanically and was more abundant in young stands. The percentage tree of defoliation was low in all stands independent of harvest method. (Author) 45 refs.

  18. Growth dynamics of tree-line and lake-shore Scots pine (Pinus sylvestris L. in the central Scandinavian Mountains during the Medieval Climate Anomaly and the early Little Ice Age

    Directory of Open Access Journals (Sweden)

    Hans W Linderholm

    2014-05-01

    Full Text Available Trees growing at their altitudinal or latitudinal distribution in Fennoscandia have been widely used to reconstruct warm season temperatures, and the region hosts some of the world’s longest tree-ring chronologies. These multi-millennial long chronologies have mainly been built from tree remains found in lakes (subfossil wood from lake-shore trees. We used a unique dataset of Scots pine tree-ring data collected from wood remains found on a mountain slope in the central Scandinavian Mountains, yielding a chronology spanning over much of the last 1200 years. This data was compared with a local subfossil wood chronology with the aim to 1 describe growth variability in two environments during the Medieval Climate Anomaly (MCA and the early Little Ice Age (LIA, and 2 investigate differences in growth characteristics during these contrasting periods. It was shown that the local tree-line during both the MCA and early LIA was almost 150 m higher that at present. Based on living pines from the two environments, tree-line pine growth was strongly associated with mid-summer temperatures, while the lake-shore trees showed an additional response to summer precipitation. During the MCA, regarded to be a period of favourable climate in the region, the tree-ring data from both environments showed strong coherency and moderate growth variability. In the early LIA, the two chronologies were less coherent, with the tree-line chronology showing more variability, suggesting different growth responses in the two environments during this period of less favourable growing conditions. Our results indicate that tree-ring width chronologies mainly based on lake-shore trees may need to be re-evaluated.

  19. White pine blister rust resistance in limber pine: Evidence for a major gene

    Science.gov (United States)

    A. W. Schoettle; R. A. Sniezko; A. Kegley; K. S. Burns

    2014-01-01

    Limber pine (Pinus flexilis) is being threatened by the lethal disease white pine blister rust caused by the non-native pathogen Cronartium ribicola. The types and frequencies of genetic resistance to the rust will likely determine the potential success of restoration or proactive measures. These first extensive inoculation trials using individual tree seed collections...

  20. Increased resin flow in mature pine trees growing under elevated CO2 and moderate soil fertility

    Science.gov (United States)

    K.A. Novick; G.G. Katul; H.R. McCarthy; R. Oren

    2012-01-01

    Warmer climates induced by elevated atmospheric CO2 (eCO2) are expected to increase damaging bark beetle activity in pine forests, yet the effect of eCO2 on resin production—the tree’s primary defense against beetle attack—remains largely unknown. Following growth-differentiation balance theory, if extra carbohydrates produced under eCO2 are not consumed by respiration...

  1. Study of needles morphometric indexes in Scots pine trees in 25 years after the Chernobyl accident

    Energy Technology Data Exchange (ETDEWEB)

    Makarenko, E.S. [Russian Institute of Agricultural Radiology and Agroecology, 249030, Obninsk, Russia, Kievskoe shosse 109 km (Russian Federation); Oudalova, A.A. [Russian Institute of Agricultural Radiology and Agroecology, 249030, Obninsk, Russia, Kievskoe shosse 109 km (Russian Federation); Obninsk Institute of Nuclear Power Engineering, National Research Nuclear University MEPhI, 249032, Obninsk, Russia, Studgorodok, 1 (Russian Federation)

    2014-07-01

    Long-term observations of coniferous tree populations within areas contaminated after radiation accidents provide unique information on biological consequences in plant populations from chronic radiation exposure. Many studies have been performed in a near zone of the Chernobyl NPP where in the primary period after the accident non-human biota was exposed to high doses, and dose rates essentially exceed natural radiation background up to now. Of special interest, however, are biological effects in plant and animal populations inhabiting territories with less pronounced exposure levels. Pine is especially important species for investigation in the field of environment radiation protection since it is included in the ICRP reference plants and animals list as one of the most radiosensitive plant species. The aim of this work was to estimate biological effects of chronic radiation impact for pine trees using needle indexes as test-functions. Study-sites are situated in the Bryansk Region of Russia contaminated after the Chernobyl accident. Scots pine populations under study have been growing in the radioactively contaminated areas over 20 years. In 2011 and 2013 samples of 2-years old needle were collected at 6 study-sites. {sup 137}Cs activities in soils at the time of sampling were from 1.57 to 96.9 kBq/kg. Estimated annual doses to pine tree crowns were calculated in a range of 7-130 mGy. Length and weight of the needles were measured, and necrosis rank was determined. Developmental disturbances were estimated via indexes of fluctuating asymmetry calculation for length (FA{sub L}) and weight (FA{sub W}) characteristics. Needle length of the Scots pine from study-sites ranged from 64.8 to 80.2 mm. Needle weight ranged from 18.2 to 30.5 mg, and was higher at radioactively contaminated sites in comparison to reference populations. Correlation of morphometric parameters and radiation impact was, however, statistically insignificant. Normal needle appeared with frequency

  2. The influence of drought on the water uptake by Scots pines (Pinus sylvestris L. at different positions in the tree stand

    Directory of Open Access Journals (Sweden)

    Boczoń Andrzej

    2015-12-01

    Full Text Available Periodically occurring drought is typical for the climate of Poland. In habitats supplied exclusively with rain water, tree stands are frequently exposed to the negative effects of water deficit in the soil. The aim of this study was to examine the water uptake and consumption of two individual Scots pine trees under drought conditions. The trees were located at different positions within the stand and at the time of study were over 150 years old. Soil moisture, availability of soil water and the quantity of water uptake by the individual trees were examined by measuring the water velocity inside the trunks (Thermal Dissipation Probe method.

  3. Impact of a Mountain Pine Beetle Outbreak on Young Lodgepole Pine Stands in Central British Columbia

    Directory of Open Access Journals (Sweden)

    Amalesh Dhar

    2015-09-01

    Full Text Available The current mountain pine beetle (MPB (Dendroctonous ponderosae Hopkins epidemic has severely affected pine forests of Western Canada and killed millions of hectares of lodgepole pine (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. forest. Generally, MPB attack larger and older (diameter > 20 cm or >60 years of age trees, but the current epidemic extends this limit with attacks on even younger and smaller trees. The study’s aim was to investigate the extent of MPB attack in young pine stands and its possible impact on stand dynamics. Although MPB attacks were observed in trees as small as 7.5 cm diameter at breast height (DBH and as young as 13 years old, the degree of MPB attack (percent stems ha−1 increased with increasing tree diameter and age class (13–20, 21–40, 41–60, and 61–80 years old (6.4%, 49.4%, 62.6%, and 69.5% attack, respectively, by age class which is greater than that reported from previous epidemics for stands of this age. The mean density of surviving residual structure varied widely among age classes and ecological subzones. Depending on age class, 65% to 77% of the attacked stands could contribute to mid-term timber supply. The surviving residual structure of young stands offers an opportunity to mitigate the effects of MPB-attack on future timber supply, increase age class diversity, and enhance ecological resilience in younger stands.

  4. Silvicultural Considerations in Managing Southern Pine Stands in the Context of Southern Pine Beetle

    Science.gov (United States)

    James M. Guldin

    2011-01-01

    Roughly 30 percent of the 200 million acres of forest land in the South supports stands dominated by southern pines. These are among the most productive forests in the nation. Adapted to disturbance, southern pines are relatively easy to manage with even-aged methods such as clearcutting and planting, or the seed tree and shelterwood methods with natural regeneration....

  5. Tree rings provide early warning signals of jack pine mortality across a moisture gradient in the southern boreal forest

    Science.gov (United States)

    Mamet, S. D.; Chun, K. P.; Metsaranta, J. M.; Barr, A. G.; Johnstone, J. F.

    2015-08-01

    Recent declines in productivity and tree survival have been widely observed in boreal forests. We used early warning signals (EWS) in tree ring data to anticipate premature mortality in jack pine (Pinus banksiana)—an extensive and dominant species occurring across the moisture-limited southern boreal forest in North America. We sampled tree rings from 113 living and 84 dead trees in three soil moisture regimes (subxeric, submesic, subhygric) in central Saskatchewan, Canada. We reconstructed annual increments of tree basal area to investigate (1) whether we could detect EWS related to mortality of individual trees, and (2) how water availability and tree growth history may explain the mortality warning signs. EWS were evident as punctuated changes in growth patterns prior to transition to an alternative state of reduced growth before dying. This transition was likely triggered by a combination of severe drought and insect outbreak. Higher moisture availability associated with a soil moisture gradient did not appear to reduce tree sensitivity to stress-induced mortality. Our results suggest tree rings offer considerable potential for detecting critical transitions in tree growth, which are linked to premature mortality.

  6. Perry Pinyon Pines Protection Project

    Science.gov (United States)

    Daniel McCarthy

    2012-01-01

    Fuel reduction treatments around pinyon pine trees began as a simple project but ended in something more complex, enjoyable, and rewarding. The project eventually led to pinyon species (Pinus monophylla and P. quadrifolia) reforestation efforts, something that has been tried in the past with disappointing results. The Perry Pinyon Pines Protection Project and current...

  7. Damage by pathogens and insects to Scots pine and lodgepole pine 25 years after reciprocal plantings in Canada and Sweden

    OpenAIRE

    Fries, Anders

    2017-01-01

    A combined species - provenance - family experiment with Scots pine and lodgepole pine was planted in Canada and Sweden. One aim of the experiment was to evaluate the two species' sensitivities to pathogens and insects 25 years after establishment in their non-native continents. In Canada, Scots pine had better average survival than lodgepole pine, but survival rates among trees from the best seed-lots were equal. In Canada only western gall rust infected Scots pine to some extent, and mounta...

  8. Growth, aboveground biomass, and nutrient concentration of young Scots pine and lodgepole pine in oil shale post-mining landscapes in Estonia.

    Science.gov (United States)

    Kuznetsova, Tatjana; Tilk, Mari; Pärn, Henn; Lukjanova, Aljona; Mandre, Malle

    2011-12-01

    The investigation was carried out in 8-year-old Scots pine (Pinus sylvestris L.) and lodgepole pine (Pinus contorta var. latifolia Engelm.) plantations on post-mining area, Northeast Estonia. The aim of the study was to assess the suitability of lodgepole pine for restoration of degraded lands by comparing the growth, biomass, and nutrient concentration of studied species. The height growth of trees was greater in the Scots pine stand, but the tree aboveground biomass was slightly larger in the lodgepole pine stand. The aboveground biomass allocation to the compartments did not differ significantly between species. The vertical distribution of compartments showed that 43.2% of the Scots pine needles were located in the middle layer of the crown, while 58.5% of the lodgepole pine needles were in the lowest layer of the crown. The largest share of the shoots and stem of both species was allocated to the lowest layer of the crown. For both species, the highest NPK concentrations were found in the needles and the lowest in the stems. On the basis of the present study results, it can be concluded that the early growth of Scots pine and lodgepole pine on oil shale post-mining landscapes is similar.

  9. Macromycetes diversity of pine-tree plantings on a post-fire forest site in Notecka Forest (NW Poland

    Directory of Open Access Journals (Sweden)

    Stefan Friedrich

    2014-08-01

    Full Text Available The article presents the results of a study on fungi in pine-tree plantings after the last great fire in Notecka Forest. The occurrence of 134 species of fungi and 3 species of myxomycetes was recorded in 25 permanent study areas investigated between 1993 and 1998. The particpalion of bio-ecological of macromycetes was described in the context of vegetation changes in the years following the fire.

  10. Pine growth and plant community response to chemical vs. mechanical site preparation for establishing loblolly and slash pine

    Science.gov (United States)

    James H. Miller; Zhijuan Qiu

    1995-01-01

    Chemical and mechanical site preparation methods were studied for establishing loblolly (Pinus taeda L) and slash (P. elliottii var. elliottii Engelm.) pine following both integrated fuelwood-pulpwood harvesting and conventional whole-tree harvesting of pines and hardwoods in southem Alabama's Middle Coastal...

  11. How seed orchard culture affects seed quality: experience with the southern pines

    Science.gov (United States)

    James P. Barnett

    1996-01-01

    Tree improvement programs have influenced significantly the quality of southern pine seeds produced when compared to collections from native stands. Seed orchard management practices such as fertilization can increase seed size and reduce seed dormancy. These result in the need for less complex pregermination treatments. Repeated cone collections from the same clones...

  12. Programmable calculator programs to solve softwood volume and value equations.

    Science.gov (United States)

    Janet K. Ayer. Sachet

    1982-01-01

    This paper presents product value and product volume equations as programs for handheld calculators. These tree equations are for inland Douglas-fir, young-growth Douglas-fir, western white pine, ponderosa pine, and western larch. Operating instructions and an example are included.

  13. Analysis of Logic Programs Using Regular Tree Languages

    DEFF Research Database (Denmark)

    Gallagher, John Patrick

    2012-01-01

    The eld of nite tree automata provides fundamental notations and tools for reasoning about set of terms called regular or recognizable tree languages. We consider two kinds of analysis using regular tree languages, applied to logic programs. The rst approach is to try to discover automatically...... a tree automaton from a logic program, approximating its minimal Herbrand model. In this case the input for the analysis is a program, and the output is a tree automaton. The second approach is to expose or check properties of the program that can be expressed by a given tree automaton. The input...... to the analysis is a program and a tree automaton, and the output is an abstract model of the program. These two contrasting abstract interpretations can be used in a wide range of analysis and verication problems....

  14. Why are young pines not attacked by Bupalus piniarius: preference, performance or predation ?

    Energy Technology Data Exchange (ETDEWEB)

    Zonneveld, P.

    1997-12-31

    Only large mature Scots pine trees are defoliated by the pine looper moth Bupalus piniarius. Small, young pine trees remain seemingly undefoliated. Possible explanations behind this observation include, that eggs or larvae are heavily predated on young trees or that the quality of young trees as food for larvae is very poor. Another possibility is that one or both of these are true and that the female moth has evolved a behaviour not to oviposit on young trees and/or that oviposition may be related to mating behaviour. In a field laboratory, first instar B. piniarius larvae were reared on shoots from both young and old pine trees until pupation. Survival and development were monitored weekly. Larvae reared on young pine shoots achieved a lower weight as pupae than those reared on shoots from old pines. This indication of an effect of food quality on performance could not be detected for survival or development time. In the field, the role of ants for larval survival was studied by placing of B. piniarius larvae on pairs of comparable trees with ants and where ants were excluded. Formica spp. were more efficient larval predators than Lasius niger. Observational studies of predating behaviour of ants in contact with B. piniarius larvae supported these differences in predating efficiency between the two ant genera. My data suggest that it would be profitable for B. piniarius females to oviposit on large trees because it may reduce the risk for the offspring to be attacked by ants and increase the weight and probably the fecundity of the offspring Examination paper in entomology 1997:5. 14 refs, 5 figs, 1 tab

  15. Some forest trees for honeydew honey production in Turkey

    Directory of Open Access Journals (Sweden)

    S. Ünal

    2017-08-01

    Full Text Available Honey is an important source of nutrients and energy and an effective remedy against various human diseases. Honeydew honey is produced from honeydew of phloem-feeders that honeybees gather. In this study, we focused on honeydew producers and diversity of host tree species which are involved in honeydew production in Turkey. A total of 24 honeydew producers by host tree species are identified in Turkey. Of these, 13 coniferous trees and 11 deciduous trees. The main honeydew producer in Turkey is a scale insect, Marchalina hellenica Gennadius (Hemiptera: Margarodidae living mainly on pines (Turkish red pine, Aleppo pine, and rarely on stone pine, Anatolian black pine and Scots pine. Honeydew producer insects can be treated as serious pests of conifer and broadleaf trees. The aphids and the scale insects such as Ceroplastes floridensis, Cinara cedri, C. laportei, Eulachnus rileyi, Icerya purchase, Kermes vermilio, Lichtensia viburni and Saissetia oleae are known as pests in several European, Asian and African countries. Despite their potential harm to their host plants, insect species producing honeydew play an important role in honey production in Turkey. Turkish honey production is exported to EU countries and, furthermore beekeeping is an important part of agricultural sector in Turkey.

  16. Remnant large 'rescue' trees enhance epiphyte resilience to anthropogenic disturbance of pine-oak forests in the Highlands of Chiapas, Mexico

    NARCIS (Netherlands)

    Wolf, J.H.D.

    2006-01-01

    I studied vascular epiphytes in 16 pine-oak forest fragments within an 400 km2 relatively flat area at c. 2300 m elevation on an extended gradient of anthropogenic disturbance. Epiphyte biomass and species richness on 35 oak host trees in six diameter classes varied between the sites from 0.8 to 243

  17. Impact of uranium mining activity on cave deposit (stalagmite) and pine trees (S-Hungary)

    Science.gov (United States)

    Siklosy, Z.; Kern, Z.; Demeny, A.; Pilet, S.; Leel-Ossy, Sz.; Lin, K.; Shen, C.-C.; Szeles, E.

    2009-04-01

    Speleothems are well known paleoclimate archives but their potential for monitoring environmental pollution has not been fully explored. This study deals with an actively growing stalagmite whose trace-element concentration suggests anthropogenic contamination, rather then natural forcing. Paralell, as a potential independent chemo-enviromental archive, living pine (Pinus sylvestis) trees were also involved into investigation. U production in S-Hungary started in 1957 and was expanded closer to the cave site in 1965, covering a mining plot area of ca. 65 km2. The deep-level ore production ended in 1997 and remediation of the mine site has since been completed. Our objective was to determine the possible effect of the four-decade-long uranium (U) ore mining activity on the environment, as recorded by a cave deposit and the pine trees. The Trio Cave is located in the Mecsek Mts (S-Hungary), ca. 1.5-3 km east from the nearest air-shaft and entrance of the uranium mine. A stalagmite located about 150 m away from the cave entrance was drilled and the core investigated for stable isotope and trace element compositions. Pine trees were sampled by increment borer. Continuous flow mass spectrometry was applied on carbonate samples and laser ablation ICP-MS was applied for trace element analysis of both stalagmite (Siklosy et al., 2009) and pine samples. The youngest 1 cm of the drill core was selected for this study that may represent the last cca. 100 years (based on MC-ICP-MS age dating of older parts of the core) that covers the uranium mining period. The pre-mining period is characterized by systematic co-variations of trace elements (U, P, Si, Al, Ba, Mg, etc.) that can be related to soil activity and precipitation amount. The youngest 1.3 mm, however, records a sudden change in U content uncorrelated with any other variables. Starting from a background value of 0.2-0.3 ppm, the concentration gradually increases to about 2 ppm (within about 1 mm), remains constant for

  18. Efficacy of "Verbenone Plus" for protecting ponderosa pine trees and stands from Dendroctonus brevicomis (Coleoptera: Curculionidae) attack in British Columbia and California.

    Science.gov (United States)

    Fettig, Christopher J; McKelvey, Stephen R; Dabney, Christopher P; Huber, Dezene P W; Lait, Cameron G; Fowler, Donald L; Borden, John H

    2012-10-01

    The western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae, Scolytinae), is a major cause of ponderosa pine, Pinus ponderosa Douglas ex Lawson, mortality in much of western North America. We review several years of research that led to the identification of Verbenone Plus, a novel four-component semiochemcial blend [acetophenone, (E)-2-hexen-1-ol + (Z)-2-hexen-1-ol, and (-)-verbenone] that inhibits the response of D. brevicomis to attractant-baited traps, and examine the efficacy of Verbenone Plus for protecting individual trees and forest stands from D. brevicomis infestations in British Columbia and California. In all experiments, semiochemicals were stapled around the bole of treated trees at approximately equal to 2 m in height. (-)-Verbenone alone had no effect on the density of total attacks and successful attacks by D. brevicomis on attractant-baited P. ponderosa, but significantly increased the percentage of pitchouts (unsuccessful D. brevicomis attacks). Verbenone Plus significantly reduced the density of D. brevicomis total attacks and D. brevicomis successful attacks on individual trees. A significantly higher percentage of pitchouts occurred on Verbenone Plus-treated trees. The application of Verbenone Plus to attractant-baited P. ponderosa significantly reduced levels of tree mortality. In stand protection studies, Verbenone Plus significantly reduced the percentage of trees mass attacked by D. brevicomis in one study, but in a second study no significant treatment effect was observed. Future research should concentrate on determining optimal release rates and spacings of release devices in stand protection studies, and expansion of Verbenone Plus into other systems where verbenone alone has not provided adequate levels of tree protection.

  19. Does bristlecone pine senesce?

    Science.gov (United States)

    R.M Lanner; Kristina F. Connor

    2001-01-01

    We evaluated hypotheses of senscence in old trees by comparing putative biomarkers of aging in great basin bristlecone pine ( Pinus longaeva) ranging in age from 23 to 4713 years. To teast a hypothesis that water and nutrient conduction is impaired in old trees we examined cambial products in the xylem and phloem. We found no statiscally significant...

  20. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon

    Science.gov (United States)

    Michelle C. Agne; David C. Shaw; Travis J. Woolley; Mónica E. Queijeiro-Bolaños; Mai-He. Li

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes....

  1. DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony.

    Science.gov (United States)

    Wehe, André; Bansal, Mukul S; Burleigh, J Gordon; Eulenstein, Oliver

    2008-07-01

    DupTree is a new software program for inferring rooted species trees from collections of gene trees using the gene tree parsimony approach. The program implements a novel algorithm that significantly improves upon the run time of standard search heuristics for gene tree parsimony, and enables the first truly genome-scale phylogenetic analyses. In addition, DupTree allows users to examine alternate rootings and to weight the reconciliation costs for gene trees. DupTree is an open source project written in C++. DupTree for Mac OS X, Windows, and Linux along with a sample dataset and an on-line manual are available at http://genome.cs.iastate.edu/CBL/DupTree

  2. Pines

    Science.gov (United States)

    C. Plomion; D. Chagne; D. Pot; S. Kumar; P.L. Wilcox; R.D. Burdon; D. Prat; D.G. Peterson; J. Paiva; P. Chaumeil; G.G. Vendramin; F. Sebastiani; C.D. Nelson; C.S. Echt; O. Savolainen; T.L. Kubisiak; M.T. Cervera; N. de Maria; M.N. Islam-Faridi

    2007-01-01

    Pinus is the most important genus within the Family Pinaceae and also within the gymnosperms by the number of species (109 species recognized by Farjon 2001) and by its contribution to forest ecosystems. All pine species are evergreen trees or shrubs. They are widely distributed in the northern hemisphere, from tropical areas to northern areas in America and Eurasia....

  3. Soil properties in 35 y old pine and hardwood plantations after conversion from mixed pine-hardwood forest

    Science.gov (United States)

    D. Andrew Scott; Michael G. Messina

    2009-01-01

    Past management practices have changed much of the native mixed pine-hardwood forests on upland alluvial terraces of the western Gulf Coastal Plain to either pine monocultures or hardwood (angiosperm) stands. Changes in dominant tree species can alter soil chemical, biological, and physical properties and processes, thereby changing soil attributes, and ultimately,...

  4. Spatial patterns of ponderosa pine regeneration in high-severity burn patches

    Science.gov (United States)

    Suzanne M. Owen; Carolyn H. Sieg; Andrew J. Sanchez. Meador; Peter Z. Fule; Jose M. Iniguez; L. Scott. Baggett; Paula J. Fornwalt; Michael A. Battaglia

    2017-01-01

    Contemporary wildfires in southwestern US ponderosa pine forests can leave uncharacteristically large patches of tree mortality, raising concerns about the lack of seed-producing trees, which can prevent or significantly delay ponderosa pine regeneration. We established 4-ha plots in high-severity burn patches in two Arizona wildfires, the 2000 Pumpkin and 2002 Rodeo-...

  5. Field guide to old ponderosa pines in the Colorado Front Range

    Science.gov (United States)

    Laurie Stroh Huckaby; Merrill R. Kaufmann; Paula J. Fornwalt; Jason M. Stoker; Chuck Dennis

    2003-01-01

    We describe the distinguishing physical characteristics of old ponderosa pine trees in the Front Range of Colorado and the ecological processes that tend to preserve them. Photographs illustrate identifying features of old ponderosa pines and show how to differentiate them from mature and young trees. The publication includes a photographic gallery of old ponderosa...

  6. Diseases of lodgepole pine

    Science.gov (United States)

    Frank G. Hawksworth

    1964-01-01

    Diseases are a major concern to forest managers throughout the lodgepole pine type. In many areas, diseases constitute the primary management problem. As might be expected for a tree that has a distribution from Baja California, Mexico to the Yukon and from the Pacific to the Dakotas, the diseases of chief concern vary in different parts of the tree's range. For...

  7. Development of merchantable volume equations for natural brutian pine and black pine stands in Eğirdir District

    Directory of Open Access Journals (Sweden)

    Ramazan Özçelik

    2016-01-01

    Full Text Available Determination of stem standing volume is very useful for both sustainable management of timber resources and practical purposes in forestry. Brutian pine (Pinus brutia Ten. and black pine (Pinus nigra Arnold. are important raw material of forest products industry of Turkey. With ever changing market conditions, there is a need to accurately estimate tree volumes utilizing multiple upper stem merchantability limits. This is not currently possible with the existing total stem volume tables for these three species. Nowadays, taper equations are the best way to estimate volume for saw timber and biomass purposes. In this study, variable exponent taper equations evaluated and fitted to data come from 253 destructively sampled trees which were collected in natural brutian pine and black pine stands in Eğirdir district. For this aim, the taper equations of Lee et al. (2003, Kozak (2004, and Sharma and Zhang (2004 were used. A second-order continuous-time autoregressive error structure was used to correct the inherent autocorrelation in the hierarchical data. The proposed models generally performed better for Merchantable tree volume. Results show that the Kozak (2004 taper equation was superior to the other equations in predicting diameter and merchantable height, while The Sharma and Zhang (2004 taper model provided the best predictions for merchantable volume than the other models. The one of the important results of this study, the importance of checking fit statistics of taper equations for both diameters and volume estimations.As a results, Sharma and Zhang (2004 taper model recommended for estimating diameter at a specific height, height to a specific diameter along the stem, and merchantable volume for brutian pine and black pine stands in Eğirdir analyzed

  8. Environmental relevance of correlations of δ13C and climate in tree rings of young pines (Pinus silvestris L.)

    International Nuclear Information System (INIS)

    Hemmann, A.G.

    1993-08-01

    From two groups of trees, 15 damaged ones and 15 healthy ones, tree slices were taken and in these the tree-ring widths, ratios of δ 13 C isotopes in cellulose and trace element concentrations were determined. Healthy trees have wider tree-rings over their entire period of life from 1891 to 1986 than the group of trees of damage category 3 (severely damaged). The pattern of tree-ring width development, however, is similar. From eight synchronous δ 13 C traces of non-damaged pines a normal chronology was derived. The ontogenesis of some damaged individuals does not correspond to this normal course. In this way the onset of damage can be reconstructed by means of the δ 13 C values. A link between the δ 13 C values curves and anthropogenously induced changes of atmospheric CO 2 concentration could not be established. The yearly variations of the δ 13 C values of the normal chronology are climate-sensitive. The established trace element concentrations of the wood samples are neither in the toxic nor in the deficiency range. Their magnitude is abour equal in all radial sections, independently of the damage category. (UWA) [de

  9. Influence of water deficit on the molecular responses of Pinus contorta × Pinus banksiana mature trees to infection by the mountain pine beetle fungal associate, Grosmannia clavigera.

    Science.gov (United States)

    Arango-Velez, Adriana; González, Leonardo M Galindo; Meents, Miranda J; El Kayal, Walid; Cooke, Barry J; Linsky, Jean; Lusebrink, Inka; Cooke, Janice E K

    2014-11-01

    Conifers exhibit a number of constitutive and induced mechanisms to defend against attack by pests and pathogens such as mountain pine beetle (Dendroctonus ponderosae Hopkins) and their fungal associates. Ecological studies have demonstrated that stressed trees are more susceptible to attack by mountain pine beetle than their healthy counterparts. In this study, we tested the hypothesis that water deficit affects constitutive and induced responses of mature lodgepole pine × jack pine hybrids (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. ex S. Wats. × Pinus banksiana Lamb.) to inoculation with the mountain pine beetle fungal associate Grosmannia clavigera (Robinson-Jeffrey and Davidson) Zipfel, de Beer and Wingfield. The degree of stress induced by the imposed water-deficit treatment was sufficient to reduce photosynthesis. Grosmannia clavigera-induced lesions exhibited significantly reduced dimensions in water-deficit trees relative to well-watered trees at 5 weeks after inoculation. Treatment-associated cellular-level changes in secondary phloem were also observed. Quantitative RT-PCR was used to analyze transcript abundance profiles of 18 genes belonging to four families classically associated with biotic and abiotic stress responses: aquaporins (AQPs), dehydration-responsive element binding (DREB), terpene synthases (TPSs) and chitinases (CHIs). Transcript abundance profiles of a TIP2 AQP and a TINY-like DREB decreased significantly in fungus-inoculated trees, but not in response to water deficit. One TPS, Pcb(+)-3-carene synthase, and the Class II CHIs PcbCHI2.1 and PcbCHI2.2 showed increased expression under water-deficit conditions in the absence of fungal inoculation, while another TPS, Pcb(E)-β-farnesene synthase-like, and two CHIs, PcbCHI1.1 and PcbCHI4.1, showed attenuated expression under water-deficit conditions in the presence of fungal inoculation. The effects were observed both locally and systemically. These results demonstrate

  10. Influence of smelter fumes on the growth of white pine in the Sudbury region

    Energy Technology Data Exchange (ETDEWEB)

    Linzon, S N

    1958-01-01

    An additional study was started in 1949 to determine the effects on neighboring white pine forests of sulfur fumes discharged from large smelters operated by two mining companies in the Sudbury district of Ontario. A number of sample timber areas, near to, farther removed, and remote from the sources of the fumes, were placed under observation. Approximately 7000 white pine trees in the vigorous age class of 50 to 90 years had been examined annually by 1954. Foliage on the white pine trees located less than 25 miles northeast of Sudbury showed more extensive injuries every year than foliage on trees located at greater distances from the smelters. Studies of diameter increment showed that there was a gradual decline in the annual growth of white pine in the areas near to the smelters, whereas a constant pattern was maintained in areas located farther from the sources of smoke. Further, in the areas close to the smelters, the volume of white pine lost through excessive tree mortality of all crown class sizes exceeded the volume added by the surviving trees. However, at distances beyond 25 to 30 miles northeast of Sudbury in the direction of the prevailing wind the condition of white pine improved remarkably. It is indicated that the combination of concentration frequency, and duration of atmospheric sulfur dioxide visitations has here declined to a threshold value for the inhibition of growth of white pine. 25 references, 25 figures, 23 tables.

  11. Modeling of SAR returns from a red pine stand

    Science.gov (United States)

    Lang, R. H.; Kilic, O.; Chauhan, N. S.; Ranson, J.

    1992-01-01

    Bright P-band radar returns from red pine forests have been observed on synthetic aperture radar (SAR) images in Bangor, Maine. A plot of red pine trees was selected for the characterization and modeling to understand the cause of the high P-band returns. The red pine stand under study consisted of mature trees. Diameter at breast height (DBH) measurements were made to determine stand density as a function of tree diameter. Soil moisture and bulk density measurements were taken along with ground rough surface profiles. Detailed biomass measurements of the needles, shoots, branches, and trunks were also taken. These site statistics have been used in a distorted Born approximation model of the forest. Computations indicate that the direct-reflected or the double-bounce contributions from the ground are responsible for the high observed P-band returns for HH polarization.

  12. Foliar fungi of Scots pine (Pinus sylvestris)

    OpenAIRE

    Millberg, Hanna

    2015-01-01

    Scots pine (Pinus sylvestris) is an ecologically and economically important tree species in Fennoscandia. Scots pine needles host a variety of fungi, some with the potential to profoundly influence their host. These fungi can have beneficial or detrimental effects with important implications for both forest health and primary production. In this thesis, the foliar fungi of Scots pine needles were investigated with the aim of exploring spatial and temporal patterns, and development with needle...

  13. Ponderosa pine resin defenses and growth: metrics matter.

    Science.gov (United States)

    Hood, Sharon; Sala, Anna

    2015-11-01

    Bark beetles (Coleoptera: Curculionidae, Scolytinae) cause widespread tree mortality in coniferous forests worldwide. Constitutive and induced host defenses are important factors in an individual tree's ability to survive an attack and in bottom-up regulation of bark beetle population dynamics, yet quantifying defense levels is often difficult. For example, in Pinus spp., resin flow is important for resistance to bark beetles but is extremely variable among individuals and within a season. While resin is produced and stored in resin ducts, the specific resin duct metrics that best correlate with resin flow remain unclear. The ability and timing of some pine species to produce induced resin is also not well understood. We investigated (i) the relationships between ponderosa pine (Pinus ponderosa Lawson & C. Lawson) resin flow and axial resin duct characteristics, tree growth and physiological variables, and (ii) if mechanical wounding induces ponderosa pine resin flow and resin ducts in the absence of bark beetles. Resin flow increased later in the growing season under moderate water stress and was highest in faster growing trees. The best predictors of resin flow were nonstandardized measures of resin ducts, resin duct size and total resin duct area, both of which increased with tree growth. However, while faster growing trees tended to produce more resin, models of resin flow using only tree growth were not statistically significant. Further, the standardized measures of resin ducts, density and duct area relative to xylem area, decreased with tree growth rate, indicating that slower growing trees invested more in resin duct defenses per unit area of radial growth, despite a tendency to produce less resin overall. We also found that mechanical wounding induced ponderosa pine defenses, but this response was slow. Resin flow increased after 28 days, and resin duct production did not increase until the following year. These slow induced responses may allow

  14. Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism.

    Science.gov (United States)

    Adams, Aaron S; Aylward, Frank O; Adams, Sandye M; Erbilgin, Nadir; Aukema, Brian H; Currie, Cameron R; Suen, Garret; Raffa, Kenneth F

    2013-06-01

    The mountain pine beetle, Dendroctonus ponderosae, is a subcortical herbivore native to western North America that can kill healthy conifers by overcoming host tree defenses, which consist largely of high terpene concentrations. The mechanisms by which these beetles contend with toxic compounds are not well understood. Here, we explore a component of the hypothesis that beetle-associated bacterial symbionts contribute to the ability of D. ponderosae to overcome tree defenses by assisting with terpene detoxification. Such symbionts may facilitate host tree transitions during range expansions currently being driven by climate change. For example, this insect has recently breached the historical geophysical barrier of the Canadian Rocky Mountains, providing access to näive tree hosts and unprecedented connectivity to eastern forests. We use culture-independent techniques to describe the bacterial community associated with D. ponderosae beetles and their galleries from their historical host, Pinus contorta, and their more recent host, hybrid P. contorta-Pinus banksiana. We show that these communities are enriched with genes involved in terpene degradation compared with other plant biomass-processing microbial communities. These pine beetle microbial communities are dominated by members of the genera Pseudomonas, Rahnella, Serratia, and Burkholderia, and the majority of genes involved in terpene degradation belong to these genera. Our work provides the first metagenome of bacterial communities associated with a bark beetle and is consistent with a potential microbial contribution to detoxification of tree defenses needed to survive the subcortical environment.

  15. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae) outbreak in pine forests.

    Science.gov (United States)

    Pec, Gregory J; Karst, Justine; Sywenky, Alexandra N; Cigan, Paul W; Erbilgin, Nadir; Simard, Suzanne W; Cahill, James F

    2015-01-01

    The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae) in lodgepole pine (Pinus contorta) forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  16. Rapid Increases in forest understory diversity and productivity following a mountain pine beetle (Dendroctonus ponderosae outbreak in pine forests.

    Directory of Open Access Journals (Sweden)

    Gregory J Pec

    Full Text Available The current unprecedented outbreak of mountain pine beetle (Dendroctonus ponderosae in lodgepole pine (Pinus contorta forests of western Canada has resulted in a landscape consisting of a mosaic of forest stands at different stages of mortality. Within forest stands, understory communities are the reservoir of the majority of plant species diversity and influence the composition of future forests in response to disturbance. Although changes to stand composition following beetle outbreaks are well documented, information on immediate responses of forest understory plant communities is limited. The objective of this study was to examine the effects of D. ponderosae-induced tree mortality on initial changes in diversity and productivity of understory plant communities. We established a total of 110 1-m2 plots across eleven mature lodgepole pine forests to measure changes in understory diversity and productivity as a function of tree mortality and below ground resource availability across multiple years. Overall, understory community diversity and productivity increased across the gradient of increased tree mortality. Richness of herbaceous perennials increased with tree mortality as well as soil moisture and nutrient levels. In contrast, the diversity of woody perennials did not change across the gradient of tree mortality. Understory vegetation, namely herbaceous perennials, showed an immediate response to improved growing conditions caused by increases in tree mortality. How this increased pulse in understory richness and productivity affects future forest trajectories in a novel system is unknown.

  17. Impact of pine needle leachates from a mountain pine beetle infested watershed on groundwater geochemistry

    Science.gov (United States)

    Pryhoda, M.; Sitchler, A.; Dickenson, E.

    2013-12-01

    The mountain pine beetle (MPB) epidemic in the northwestern United States is a recent indicator of climate change; having an impact on the lodgepole pine forest ecosystem productivity. Pine needle color can be used to predict the stage of a MPB infestation, as they change color from a healthy green, to red, to gray as the tree dies. Physical processes including precipitation and snowfall can cause leaching of pine needles in all infestation stages. Understanding the evolution of leachate chemistry through the stages of MPB infestation will allow for better prediction of the impact of MPBs on groundwater geochemistry, including a potential increase in soil metal mobilization and potential increases in disinfection byproduct precursor compounds. This study uses batch experiments to determine the leachate chemistry of pine needles from trees in four stages of MPB infestation from Summit County, CO, a watershed currently experiencing the MPB epidemic. Each stage of pine needles undergoes four subsequent leach periods in temperature-controlled DI water. The subsequent leaching method adds to the experiment by determining how leachate chemistry of each stage changes in relation to contact time with water. The leachate is analyzed for total organic carbon. Individual organic compounds present in the leachate are analyzed by UV absorption spectra, fluorescence spectrometry, high-pressure liquid chromatography for organic acid analysis, and size exclusion chromatography. Leachate chemistry results will be used to create a numerical model simulating reactions of the leachate with soil as it flows through to groundwater during precipitation and snowfall events.

  18. Southern pine beetle infestations in relation to forest stand conditions, previous thinning, and prescribed burning: evaluation of the Southern Pine Beetle Prevention Program

    Science.gov (United States)

    John T. Nowak; James R. Meeker; David R. Coyle; Chris A. Steiner; Cavell Brownie

    2015-01-01

    Since 2003, the Southern Pine Beetle Prevention Program (SPBPP) (a joint effort of the USDA Forest Service and Southern Group of State Foresters) has encouraged and provided cost-share assistance for silvicultural treatments to reduce stand/forest susceptibility to the southern pine beetle (SPB)(Dendroctonus frontalis Zimmermann) in the southeastern United States....

  19. Climatic response of stable isotope variations in wood cellulose of pine (Pinus sylvestris l.) and their tree-ring width on the Kola Peninsula, north-western Russia

    International Nuclear Information System (INIS)

    Boettger, T.; Hiller, A.; Gehre, M.; Friedrich, M.; Kremenetski, C.

    2002-01-01

    The Kola Peninsula region of northwestern Russia, adjacent to relatively well studied Scandinavian areas, is climatically affected by not only the Gulf Stream and the North Atlantic but also the Eurasian continent. Living and subfossil pine trees from the Khibiny mountains on the Kola Peninsula were analysed for carbon, oxygen and hydrogen isotope composition and for tree-ring width. Comparisons of local meteorological and tree-ring data revealed significant correlations. δ 13 C and δ 18 O values are particularly sensitive to changes in the temperature in July and August and to precipitation in the winter months of the previous year, respectively. On average, 13 C in the cellulose of pine trees between c. 1000 and 1300 AD is enriched by δ values of around 1 per mille compared to the modern trees from this region. This indicates a distinctly warmer summer climate at that time (the Medieval Warm epoch in Europe) than recently observed. The δ 18 O values of wood cellulose and the δ 2 H values of non-exchangeable hydrogen of tree cellulose from both fossil and modern samples cover a wide range between around 22 and 29 per mille and between about -80 and -120 per mille vs. SMOW, respectively. This suggests variations in the seasonal distribution of precipitation at that time, assuming its source has remained the same as in the past. (author)

  20. Effect of culture and density on aboveground biomass allocation of 12 years old loblolly pine trees in the upper coastal plain and piedmont of Georgia and Alabama

    Science.gov (United States)

    Santosh Subedi; Dr. Michael Kane; Dr. Dehai Zhao; Dr. Bruce Borders; Dr. Dale Greene

    2012-01-01

    We destructively sampled a total of 192 12-year-old loblolly pine trees from four installations established by the Plantation Management Research Cooperative (PMRC) to analyze the effects of planting density and cultural intensity on tree level biomass allocation in the Piedmont and Upper Coastal Plain of Georgia and Alabama. Each installation had 12 plots, each plot...

  1. Tandem selection for fusiform rust sisease resistance to develop a clonal elite breeding population of loblolly pine

    Science.gov (United States)

    Steve McKeand; Saul Garcia; Josh Steiger; Jim Grissom; Ross Whetten; Fikret. Isik

    2012-01-01

    The elite breeding populations of loblolly pine (Pinus taeda L.) in the North Carolina State University Cooperative Tree Improvement Program are intensively managed for short-term genetic gain. Fusiform rust disease, caused by the fungus Cronartium quercuum f. sp. fusiforme, is the most economically...

  2. Mountain pine beetle selectivity in old-growth ponderosa pine forests, Montana, USA.

    Science.gov (United States)

    Knapp, Paul A; Soulé, Peter T; Maxwell, Justin T

    2013-05-01

    A historically unprecedented mountain pine beetle (MPB) outbreak affected western Montana during the past decade. We examined radial growth rates (AD 1860-2007/8) of co-occurring mature healthy and MPB-infected ponderosa pine trees collected at two sites (Cabin Gulch and Kitchen Gulch) in western Montana and: (1) compared basal area increment (BAI) values within populations and between sites; (2) used carbon isotope analysis to calculate intrinsic water-use efficiency (iWUE) at Cabin Gulch; and (3) compared climate-growth responses using a suite of monthly climatic variables. BAI values within populations and between sites were similar until the last 20-30 years, at which point the visually healthy populations had consistently higher BAI values (22-34%) than the MPB-infected trees. These results suggest that growth rates two-three decades prior to the current outbreak diverged between our selected populations, with the slower-growing trees being more vulnerable to beetle infestation. Both samples from Cabin Gulch experienced upward trends in iWUE, with significant regime shifts toward higher iWUE beginning in 1955-59 for the visually healthy trees and 1960-64 for the MPB-infected trees. Drought tolerance also varied between the two populations with the visually healthy trees having higher growth rates than MPB-infected trees prior to infection during a multi-decadal period of drying summertime conditions. Intrinsic water-use efficiency significantly increased for both populations during the past 150 years, but there were no significant differences between the visually healthy and MPB-infected chronologies.

  3. Native ectomycorrhizal fungi of limber and whitebark pine: Necessary for forest sustainability?

    Science.gov (United States)

    Cathy L. Cripps; Robert K. Antibus

    2011-01-01

    Ectomycorrhizal fungi are an important component of northern coniferous forests, including those of Pinus flexilis (limber pine) and P. albicaulis (whitebark pine) which are being decimated by white pine blister rust and mountain pine beetles. Ectomycorrhizal fungi are known to promote seedling establishment, tree health, and may play a role in forest sustainability....

  4. Diversity and decay ability of basidiomycetes isolated from lodgepole pines killed by the mountain pine beetle.

    Science.gov (United States)

    Son, E; Kim, J-J; Lim, Y W; Au-Yeung, T T; Yang, C Y H; Breuil, C

    2011-01-01

    When lodgepole pines (Pinus contorta Douglas ex Louden var. latifolia Engelm. ex S. Watson) that are killed by the mountain pine beetle (Dendroctonus ponderosae) and its fungal associates are not harvested, fungal decay can affect wood and fibre properties. Ophiostomatoids stain sapwood but do not affect the structural properties of wood. In contrast, white or brown decay basidiomycetes degrade wood. We isolated both staining and decay fungi from 300 lodgepole pine trees killed by mountain pine beetle at green, red, and grey stages at 10 sites across British Columbia. We retained 224 basidiomycete isolates that we classified into 34 species using morphological and physiological characteristics and rDNA large subunit sequences. The number of basidiomycete species varied from 4 to 14 species per site. We assessed the ability of these fungi to degrade both pine sapwood and heartwood using the soil jar decay test. The highest wood mass losses for both sapwood and heartwood were measured for the brown rot species Fomitopsis pinicola and the white rot Metulodontia and Ganoderma species. The sap rot species Trichaptum abietinum was more damaging for sapwood than for heartwood. A number of species caused more than 50% wood mass losses after 12 weeks at room temperature, suggesting that beetle-killed trees can rapidly lose market value due to degradation of wood structural components.

  5. Effect of accelerating growth on flowering in lodgepole pine seedlings and grafts

    Energy Technology Data Exchange (ETDEWEB)

    Wheeler, N.C.; Ying, C.C.; Murphy, J.C.

    1982-09-01

    Seedlings and grafts from lodgepole pine (Pinus contorta var. latifolia Dougl.) plus-tree selections in British Columbia were established and maintained in the greenhouse under 24-hour photoperiod for 6 months. Subsequently, seedlings were outplanted in the nursery and grafts in a breeding orchard at Red Rock Research Centre. In the 5th year from seed (1980), the proportion of flowering trees and the average number of seed cones per flowering tree were roughly six times greater for accelerated growth seedlings (81%, 18 flowers/tree) than for controls (12%, 3.6 flowers/tree). Differences in pollen cone production were of similar magnitude. Flower enhancement in seedlings carried over into the next year. Grafted trees were considerably less productive than seedlings. At age 5 a mean of four female strobili were produced on 77% of treated grafts compared with 1.6 strobili on 36% of untreated controls. These values decreased slightly in 1981. Pollen production was yet to be observed on grafted materials. While the superiority in height of accelerated seedlings relative to controls has steadily decreased since time of establishment, large differences in number of branches per tree and biomass remain. Root systems of accelerated seedlings generally were excessively pot-bound, resulting in considerable root grafting after outplanting. The possible causes of increased flower production in accelerated growth trees are briefly discussed. The production of both pollen and seed cones in numbers large enough to support a modest breeding scheme greatly increases the opportunity for rapid generation turnover in forest trees such as logepole pine and permits greater flexibility in planning a long-term tree improvement program.

  6. Simulating the effects of site index variation within loblolly pine plantations using an individual tree growth and yield model

    Science.gov (United States)

    Ralph L. Amateis; Harold E. Burkhart

    2016-01-01

    Site index is the most common metric of site productivity in loblolly pine plantations. Generally applied as a constant for a particular stand, it provides an overall measure of a site’s ability to grow trees. It is well known, however, that even the most uniform stands can have considerable variation in site index due to soil factors that influence microsite,...

  7. Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd

    International Nuclear Information System (INIS)

    Krznaric, Erik; Verbruggen, Nathalie; Wevers, Jan H.L.; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V.

    2009-01-01

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils. - The evolutionary adaptation for higher Cd tolerance in Suillus luteus, an ectomycorrhizal fungus, is of major importance for the amelioration of Cd toxicity in pine trees exposed to high Cd concentrations.

  8. Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd

    Energy Technology Data Exchange (ETDEWEB)

    Krznaric, Erik [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Verbruggen, Nathalie [Laboratoire de Physiologie et de Genetique Moleculaire des Plantes, Universite Libre de Bruxelles, Campus Plaine, CP242, Bd du Triomphe, 1050 Brussels (Belgium); Wevers, Jan H.L. [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Carleer, Robert [Laboratory of Applied Chemistry, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Vangronsveld, Jaco [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium); Colpaert, Jan V., E-mail: jan.colpaert@uhasselt.b [Environmental Biology Group, Centre for Environmental Sciences, Hasselt University, Agoralaan, Gebouw D, 3590 Diepenbeek (Belgium)

    2009-05-15

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils. - The evolutionary adaptation for higher Cd tolerance in Suillus luteus, an ectomycorrhizal fungus, is of major importance for the amelioration of Cd toxicity in pine trees exposed to high Cd concentrations.

  9. Nitrogen release, tree uptake, and ecosystem retention in a mid-rotation loblolly pine plantation following fertilization with 15N-enriched enhanced efficiency fertilizers.

    OpenAIRE

    Werner, Amy

    2013-01-01

    Nitrogen is the most frequently limiting nutrient in southern pine plantations.  Previous studies found that only 10 to 25% of applied urea fertilizer N is taken up by trees.  Enhanced efficiency fertilizers could increase tree uptake efficiency by controlling the release of N and/or stabilize N.  Three enhanced efficiency fertilizers were selected as a representation of fertilizers that could be used in forestry: 1) NBPT treated urea (NBPT urea), 2) polymer coated urea (PC urea), and 3) mono...

  10. Interaction of an invasive bark beetle with a native forest pathogen: Potential effect of dwarf mistletoe on range expansion of mountain pine beetle in jack pine forests

    Science.gov (United States)

    Jennifer Klutsch; Nadir Erbilgin

    2012-01-01

    In recent decades, climate change has facilitated shifts in species ranges that have the potential to significantly affect ecosystem dynamics and resilience. Mountain pine beetle (Dendroctonus ponderosae) is expanding east from British Columbia, where it has killed millions of pine trees, primarily lodgepole pine (Pinus contorta...

  11. Wood anatomical parameters of lowland European oak and Scots pine as proxies for climate reconstructions

    Science.gov (United States)

    Balanzategui, Daniel; Heußner, Karl-Uwe; Wazny, Tomasz; Helle, Gerd; Heinrich, Ingo

    2017-04-01

    Tree-ring based temperature reconstructions from the temperate lowlands worldwide are largely missing due to diffuse climate signals so far found in tree-ring widths. This motivated us to concentrate our efforts on the wood anatomies of two common European tree species, the European oak (Quercus robur) and Scots pine (Pinus sylvestris). We combined core samples of living trees with archaeological wood from northern Germany and Poland. We measured approx. 46,000 earlywood oak vessels of 34 trees covering the period AD 1500 to 2016 and approx. 7.5 million pine tracheid cells of 41 trees covering the period AD 1300 to 2010. First climate growth analyses indicate that both oak earlywood vessel and pine tracheid parameters contain climate signals which are different and more significant than those found in tree-ring widths. Preliminary results will be presented and discussed at EGU for the first time.

  12. Feasibility of high-density climate reconstruction based on Forest Inventory and Analysis (FIA) collected tree-ring data

    Science.gov (United States)

    R. Justin DeRose; Shih-Yu Wang; John D. Shaw

    2013-01-01

    This study introduces a novel tree-ring dataset, with unparalleled spatial density, for use as a climate proxy. Ancillary Douglas fir and pinyon pine tree-ring data collected by the U.S. Forest Service Forest Inventory and Analysis Program (FIA data) were subjected to a series of tests to determine their feasibility as climate proxies. First, temporal coherence between...

  13. Mistletoe effects on Scots pine decline following drought events: insights from within-tree spatial patterns, growth and carbohydrates.

    Science.gov (United States)

    Sangüesa-Barreda, Gabriel; Linares, Juan Carlos; Camarero, J Julio

    2012-05-01

    Forest decline has been attributed to the interaction of several stressors including biotic factors such as mistletoes and climate-induced drought stress. However, few data exist on how mistletoes are spatially arranged within trees and how this spatial pattern is related to changes in radial growth, responses to drought stress and carbon use. We used dendrochronology to quantify how mistletoe (Viscum album L.) infestation and drought stress affected long-term growth patterns in Pinus sylvestris L. at different heights. Basal area increment (BAI) trends and comparisons between trees of three different infestation degrees (without mistletoe, ID1; moderately infested trees, ID2; and severely infested trees, ID3) were performed using linear mixed-effects models. To identify the main climatic drivers of tree growth tree-ring widths were converted into indexed chronologies and related to climate data using correlation functions. We performed spatial analyses of the 3D distribution of mistletoe individuals and their ages within the crowns of three severely infested pines to describe their patterns. Lastly, we quantified carbohydrate and nitrogen concentrations in needles and sapwood of branches from severely infested trees and from trees without mistletoe. Mistletoe individuals formed strongly clustered groups of similar age within tree crowns and their age increased towards the crown apex. Mistletoe infestation negatively impacted growth but this effect was stronger near the tree apex than in the rest of sampled heights, causing an average loss of 64% in BAI (loss of BAI was ∼51% at 1.3 m or near the tree base). We found that BAI of severely infested trees and moderately or non-infested trees diverged since 2001 and such divergence was magnified by drought. Infested trees had lower concentrations of soluble sugars in their needles than non-infested ones. We conclude that mistletoe infestation causes growth decline and increases the sensitivity of trees to drought

  14. MixtureTree annotator: a program for automatic colorization and visual annotation of MixtureTree.

    Directory of Open Access Journals (Sweden)

    Shu-Chuan Chen

    Full Text Available The MixtureTree Annotator, written in JAVA, allows the user to automatically color any phylogenetic tree in Newick format generated from any phylogeny reconstruction program and output the Nexus file. By providing the ability to automatically color the tree by sequence name, the MixtureTree Annotator provides a unique advantage over any other programs which perform a similar function. In addition, the MixtureTree Annotator is the only package that can efficiently annotate the output produced by MixtureTree with mutation information and coalescent time information. In order to visualize the resulting output file, a modified version of FigTree is used. Certain popular methods, which lack good built-in visualization tools, for example, MEGA, Mesquite, PHY-FI, TreeView, treeGraph and Geneious, may give results with human errors due to either manually adding colors to each node or with other limitations, for example only using color based on a number, such as branch length, or by taxonomy. In addition to allowing the user to automatically color any given Newick tree by sequence name, the MixtureTree Annotator is the only method that allows the user to automatically annotate the resulting tree created by the MixtureTree program. The MixtureTree Annotator is fast and easy-to-use, while still allowing the user full control over the coloring and annotating process.

  15. [Dendrochronology of Chinese pine in Mulan-Weichang, Hebei Province: a primary study].

    Science.gov (United States)

    Cui, Ming-xing; He, Xing-yuan; Chen, Wei; Chen, Zhen-ju; Zhou, Chang-hong; Wu, Tao

    2008-11-01

    Dendroclimatic methods were used to investigate the relationships between the growth of Chinese pine (Pinus tabulaeformis Carr.) and the climatic parameters in Mulan-Weichang of Hebei Province. The results showed that Chinese pine presented high sensitivity to climatic changes, and its earlywood width showed the highest sensitivity. There was a significant negative correlation between the tree-ring width chronology of Chinese pine and the air temperature in May-June. The precipitation and relative humidity in June had strong positive effects on the growth of earlywood, the precipitation from September to next September had significant positive effects on Chinese pine growth, and the relative humidity in winter more strongly affected the growth of latewood than of earlywood. There was a definite correlation between the tree-ring width chronology of Chinese pine and the large scale climate fluctuation. From 1951 to 2006, the increase of air temperature in study area was significant, and the sensitivity of Chinese pine to the variations of local temperature and precipitation decreased, presenting an inverse transforming trend with increasing temperature. Greater differences were observed between the reconstructed and observed data of mean temperature in May - June in a century scale, suggesting that the tree-ring growth of Chinese pine in study area had a greater fluctuation of sensitivity to the variation of climatic factors.

  16. How to recover more value from small pine trees: Essential oils and resins

    International Nuclear Information System (INIS)

    Kelkar, Vasant M.; Geils, Brian W.; Becker, Dennis R.; Overby, Steven T.; Neary, Daniel G.

    2006-01-01

    In recent years, the young dense forests of northern Arizona have suffered extreme droughts, wildfires, and insect outbreaks. Improving forest health requires reducing forest density by cutting many small-diameter trees with the consequent production of large volumes of residual biomass. To offset the cost of handling this low-value timber, additional marketing options for current operations are urgently needed to recover more value as wood products, energy, and chemicals. Northern Arizona forests are predominantly composed of ponderosa pine (Pinus ponderosa) which, besides producing abundant timber, can also yield many useful chemicals such as essential oils and resins. We describe a case study to assess the opportunities, constraints, and information required to integrate recovery of essential oils into forest and mill operations as might be used in northern Arizona. Preliminary results support the proposition there is an available, large supply of biomass with high concentrations of essential oils. The chemistry and process engineering for recovering these essential oils by distillation are well known. The potential output and uses also appear attractive given the substantial United States market for such products. However, less is known of the capability of essential oils extracted from ponderosa pine to compete with products imported from other countries. A more detailed assessment of product uses and further analysis of viable markets and environmental benefits are justified. (author)

  17. TREDRA, Minimal Cut Sets Fault Tree Plot Program

    International Nuclear Information System (INIS)

    Fussell, J.B.

    1983-01-01

    1 - Description of problem or function: TREDRA is a computer program for drafting report-quality fault trees. The input to TREDRA is similar to input for standard computer programs that find minimal cut sets from fault trees. Output includes fault tree plots containing all standard fault tree logic and event symbols, gate and event labels, and an output description for each event in the fault tree. TREDRA contains the following features: a variety of program options that allow flexibility in the program output; capability for automatic pagination of the output fault tree, when necessary; input groups which allow labeling of gates, events, and their output descriptions; a symbol library which includes standard fault tree symbols plus several less frequently used symbols; user control of character size and overall plot size; and extensive input error checking and diagnostic oriented output. 2 - Method of solution: Fault trees are generated by user-supplied control parameters and a coded description of the fault tree structure consisting of the name of each gate, the gate type, the number of inputs to the gate, and the names of these inputs. 3 - Restrictions on the complexity of the problem: TREDRA can produce fault trees with a minimum of 3 and a maximum of 56 levels. The width of each level may range from 3 to 37. A total of 50 transfers is allowed during pagination

  18. Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations

    Science.gov (United States)

    Zhou, Xiaoqi; Wang, Shen S. J.; Chen, Chengrong

    2017-12-01

    Forest plantations have been widely used as an effective measure for increasing soil carbon (C), and nitrogen (N) stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA) to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species-enzyme-C/N model to investigate how temperature and tree species influence soil C/N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG), N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP) and phosphorus acquisition enzymes (acid phosphatases). The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01-2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99-2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii) and hoop pine (Araucaria cunninghamii Ait.), increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22-1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native coniferous tree species like hoop pine and

  19. Modeling the effects of tree species and incubation temperature on soil's extracellular enzyme activity in 78-year-old tree plantations

    Directory of Open Access Journals (Sweden)

    X. Zhou

    2017-12-01

    Full Text Available Forest plantations have been widely used as an effective measure for increasing soil carbon (C, and nitrogen (N stocks and soil enzyme activities play a key role in soil C and N losses during decomposition of soil organic matter. However, few studies have been carried out to elucidate the mechanisms behind the differences in soil C and N cycling by different tree species in response to climate warming. Here, we measured the responses of soil's extracellular enzyme activity (EEA to a gradient of temperatures using incubation methods in 78-year-old forest plantations with different tree species. Based on a soil enzyme kinetics model, we established a new statistical model to investigate the effects of temperature and tree species on soil EEA. In addition, we established a tree species–enzyme–C∕N model to investigate how temperature and tree species influence soil C∕N contents over time without considering plant C inputs. These extracellular enzymes included C acquisition enzymes (β-glucosidase, BG, N acquisition enzymes (N-acetylglucosaminidase, NAG; leucine aminopeptidase, LAP and phosphorus acquisition enzymes (acid phosphatases. The results showed that incubation temperature and tree species significantly influenced all soil EEA and Eucalyptus had 1.01–2.86 times higher soil EEA than coniferous tree species. Modeling showed that Eucalyptus had larger soil C losses but had 0.99–2.38 times longer soil C residence time than the coniferous tree species over time. The differences in the residual soil C and N contents between Eucalyptus and coniferous tree species, as well as between slash pine (Pinus elliottii Engelm. var. elliottii and hoop pine (Araucaria cunninghamii Ait., increase with time. On the other hand, the modeling results help explain why exotic slash pine can grow faster, as it has 1.22–1.38 times longer residual soil N residence time for LAP, which mediate soil N cycling in the long term, than native

  20. Do Pine Trees in Aspen Stands Increase Bird Diversity

    OpenAIRE

    Rumble, Mark A; Mills, Todd R; Dystra, Brian L; Flake, Lester D

    2001-01-01

    In the Black Hills of South Dakota, quaking aspen (Populus tremuloides) is being replaced by conifers through fire suppression and successional processes. Al- though the Black Hills National forest is removing conifers (primarily ponderosa pine [Pinus ponderosa])toincreasetheaspencommunitiesinsomemixedstands,ForestPlan guidelines allow four conifers per hectare to remain to increase diversity in the remaining aspen stand. We compared bird species richness in pure ponderosa pine, mixed stands ...

  1. Variation in water potential, hydraulic characteristics and water source use in montane Douglas-fir and lodgepole pine trees in southwestern Alberta and consequences for seasonal changes in photosynthetic capacity.

    Science.gov (United States)

    Andrews, Shilo F; Flanagan, Lawrence B; Sharp, Eric J; Cai, Tiebo

    2012-02-01

    Tree species response to climate change-induced shifts in the hydrological cycle depends on many physiological traits, particularly variation in water relations characteristics. We evaluated differences in shoot water potential, vulnerability of branches to reductions in hydraulic conductivity, and water source use between Pinus contorta Dougl. ex Loud. var. latifolia Engelm. (lodgepole pine) and Pseudotsuga menziesii (Mirb.) Franco (interior Douglas-fir), and determined the consequences for seasonal changes in photosynthetic capacity. The Douglas-fir site had soil with greater depth, finer texture and higher organic matter content than soil at the lodgepole pine site, all factors that increased the storage of soil moisture. While the measured xylem vulnerability curves were quite similar for the two species, Douglas-fir had lower average midday shoot water potentials than did lodgepole pine. This implied that lodgepole pine exhibited stronger stomatal control of transpiration than Douglas-fir, which helped to reduce the magnitude of the water potential gradient required to access water from drying soil. Stable hydrogen isotope measurements indicated that Douglas-fir increased the use of groundwater during mid-summer when precipitation inputs were low, while lodgepole pine did not. There was a greater reduction of photosynthetic carbon gain in lodgepole pine compared with Douglas-fir when the two tree species were exposed to seasonal declines in soil water content. The contrasting patterns of seasonal variation in photosynthetic capacity observed for the two species were a combined result of differences in soil characteristics at the separate sites and the inherent physiological differences between the species.

  2. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas-fir landscape in the southern Rocky Mountains after a century of fire suppression

    Science.gov (United States)

    Merrill R. Kaufmann; Laurie S. Huckaby; Paula J. Fornwalt; Jason M. Stoker; William H. Romme

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas-fir (Pinus ponderosa/Pseudotsuga menziesii) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post-fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an...

  3. Presence of carbaryl in the smoke of treated lodgepole and ponderosa pine bark

    Science.gov (United States)

    Chris J. Peterson; Sheryl L. Costello

    2013-01-01

    Lodgepole and ponderosa pine trees were treated with a 2% carbaryl solution at recreational areas near Fort Collins, CO, in June 2010 as a prophylactic bole spray against the mountain pine beetle. Bark samples from treated and untreated trees were collected one day following application and at 4-month intervals for one year. The residual amount of carbaryl was...

  4. Key to utilization of hardwoods on pine sites: the shaping-lathe headrig

    Science.gov (United States)

    P. Koch

    1976-01-01

    In past years, only 30% of southern pine biomass (above- and below-ground parts) ended as primary product. Moreover, hardwoods on pine sites were, and in many cases still are, destroyed with no thought of utilization. Now, however, processes have been invented that can raise utilization of each tree- pine and hardwood on pine sites a like to 67% of total biomass,...

  5. Influence of thinning intensity and canopy type on Scots pine stand and growth dynamics in a mixed managed forest

    Energy Technology Data Exchange (ETDEWEB)

    Primicia, I.; Artázcoz, R.; Imbert, J.B.; Puertas, F.; Traver, M.C.; Castillo, F.J.

    2016-07-01

    Aim of the study: We analysed the effects of thinning intensity and canopy type on Scots pine growth and stand dynamics in a mixed Scots pine-beech forest. Area of the study: Western Pyrenees. Material and methods: Three thinning intensities were applied in 1999 (0, 20 and 30% basal area removed) and 2009 (0, 20 and 40%) on 9 plots. Within each plot, pure pine and mixed pine-beech patches are distinguished. All pine trees were inventoried in 1999, 2009 and 2014. The effects of treatments on the tree and stand structure variables (density, basal area, stand and tree volume), on the periodic annual increment in basal area and stand and tree volume, and on mortality rates, were analysed using linear mixed effects models. Main Results: The enhancement of tree growth was mainly noticeable after the second thinning. Growth rates following thinning were similar or higher in the moderate than in the severe thinning. Periodic stand volume annual increments were higher in the thinned than in the unthinned plots, but no differences were observed between the thinned treatments. We observed an increase in the differences of the Tree volume annual increment between canopy types (mixed < pure) over time in the unthinned plots, as beech crowns developed. Research highlights: Moderate thinning is suggested as an appropriate forest practice at early pine age in these mixed forests, since it produced higher tree growth rates than the severe thinning and it counteracted the negative effect of beech on pine growth observed in the unthinned plots. (Author)

  6. Seasonal changes in amino acids, protein and total nitrogen in needles of fertilized Scots pine trees.

    Science.gov (United States)

    Näsholm, T; Ericsson, A

    1990-09-01

    Seasonal changes in amino acids, protein and total nitrogen in needles of 30-year-old, fertilized Scots pine (Pinus sylvestris L.) trees growing in Northern Sweden were investigated over two years in field experiments. The studied plots had been fertilized annually for 17 years with (i) a high level of N, (ii) a medium level of N, or (iii) a medium level of N, P and K. Trees growing on unfertilized plots served as controls. In control trees, glutamine, glutamic acid, gamma-aminobutyric acid, aspartic acid and proline represented 50-70% of the total free amino acids determined. Arginine was present only in low concentrations in control trees throughout the year, but it was usually the most abundant amino acid in fertilized trees. Glutamine concentrations were high during the spring and summer in both years of study, whereas proline concentrations were high in the spring but otherwise low throughout the year. In the first year of study, glutamic acid concentrations were high during the spring and summer, whereas gamma-aminobutyric acid was present in high concentrations during the winter months. This pattern was less pronounced in the second year of investigation. The concentrations of most amino acids, except glutamic acid, increased in response to fertilization. Nitrogen fertilization increased the foliar concentration of arginine from trees to a maximum of 110 micromol g(dw) (-1). Trees fertilized with nitrogen, phosphorus and potassium had significantly lower arginine concentrations than trees fertilized with the same amount of nitrogen only. Protein concentrations were similar in all fertilized trees but higher than those in control trees. For all treatments, protein concentrations were high in winter and at a minimum in early spring. In summer, the protein concentration remained almost constant except for a temporary decrease which coincided with the expansion of new shoots. Apart from arginine, the amino acid composition of proteins was similar in all

  7. A Strategy for the Third Breeding Cycle of Loblolly Pine in the Southeastern U.S.

    Science.gov (United States)

    S.E. McKeand; F.E. Bridgwater

    1998-01-01

    A strategy for the North Carolina State University - Industry Cooperative Tree Improvement Program's third-cycle breeding for loblolly pine (Pinus taeda L.) was developed to provide genetic gain in the short-term as well as to maintain genetic diversity so that long-term genetic gains will also be possible. Our strategy will be to manage a...

  8. Afforestation in Serbia in the period 1961-2007 with special reference to Austrian pine and Scots pine

    Directory of Open Access Journals (Sweden)

    Ranković Nenad

    2009-01-01

    Full Text Available The significance of afforestation in Serbia is high because only in this way the forest area can be increased and brought to the level which corresponds to the demands of the population. This is also indicated by the content of some documents, such as 'Professional base for the design of the National Forest Action Programme', which emphasises this problem from the very beginning. Special significance is assigned to afforestation with Austrian pine and Scots pine, which are most frequently applied in the afforestation of the most unfavourable terrains. This study analyses the scope of afforestation over the period 1961-2007, the percentage of Austrian pine and Scots pine and the relationship of the afforested areas, and generates the forecasts of the changes in the future period. In this way, the socialeconomic significance of afforestation can be assessed from the aspect of satisfying the objectives of forest policy, and particularly of afforestation with Austrian pine and Scots pine, as the specific tree species.

  9. Seasonal trends of light-saturated net photosynthesis and stomatal conductance of loblolly pine trees grown in contrasting environments of nutrition, water and carbon dioxide

    Science.gov (United States)

    Ramesh Murthy; Stanley J. Zarnoch; P.M. Dougherty

    1997-01-01

    Repeated measures analysis was used to evaluate the effect of long-term CO2 enhancement on seasonal trends of light-saturated rates of net photosynthesis (Asat) and stomatal conductance to water vapour (gsat) of 9-year-old loblolly pine (Pinus taeda L.; trees grown in a 2x2...

  10. Soil respiration shifts as drought-induced tree substitution advances from Scots pine to Holm oak forest

    Science.gov (United States)

    Barba, Josep; Curiel Yuste, Jorge; Poyatos, Rafael; Janssens, Ivan A.; Lloret, Francisco

    2014-05-01

    There is more and more evidences that the current global warming trend and the increase of frequency and intensity of drought events during the last decades in the Northern hemisphere are currently producing an increment of drought-induced forest die-off events, being the Mediterranean region one of the most affected areas. This drought-induced mortality could lead in a vegetation shift with unpredicted consequences in carbon pools, where soils are the most determinant factor in this carbon balance as they contain over two-thirds of carbon on forest ecosystems. There are several uncertainties related on the interaction between soil, environmental conditions and vegetation shifts that could modify their capability to be net carbon sinks or sources in a warming context. We studied soil respiration and its heterotrophic (RH) and autotrophic (Ra) (split in fine roots [Rr] and mycorrhizal respiration [Rs]) components in a mixed Mediterranean forest where Scots pine (Pinus sylvestris L.) are suffering from drought-induced die-off and replaced by Holm oak (Quercus ilex L.) as the dominant tree species. Soil respiration fluxes and its fractions were measured every two weeks during one year at four stages of the substitution process (non defoliated pines [NDP], defoliated pines [DFP], dead pines [DP] and Holm oak [HO]), using the mesh exclusion method. The aims were (i) to describe soil respiration fluxes in a drought-induced secondary successional process, (ii) to test whether the changes in vegetation affected soil respiration fluxes and (iii) to determine the influence of environmental and abiotic variables on the different soil respiration fractions. Total soil respiration was 10.10±6.17 TC ha-1 y-1, RH represented the 67% of the total, Ra represented the 34% of the total, and Rr and Rs were the 22 and 12%, respectively. Significant differences were found in total soil respiration and RH between NDP and HO, being lower in HO than in NDP (34% in total and 48% in RH). No

  11. Acute and long-term effects of irradiation on pine (Pinus silvestris) stands post-Chernobyl

    International Nuclear Information System (INIS)

    Arkhipov, N.P.; Kuchma, N.D.; Askbrant, S.; Pasternak, P.S.; Musica, V.V.

    1994-01-01

    The effect of ionizing irradiation on the viability of pine stands after the fallout from the damaged nuclear energy plant at Chernobyl (ChNPP) was shown within the territory of the 10-km zone. During the period 1986-1991, irradiated and damaged forest stands, so-called 'red forest', located in this area were systematically classified by observation. Mortality rate, re-establishment, development of tree canopies, reproduction anomalies and stand viability were shown to be dependent on absorbed irradiation dose, on the age of the stand and on forest composition. For pine stands in the acutely affected zone, doses of more than 60 Gy resulted in a massive mortality and no regeneration of pine trees since 1987. The injured trees had burned or had dried-up. The drying process was accelerated by a massive production of pathogenic insects invading the dying trees. Specifically, irradiation doses of 10-60 Gy, 1-10 Gy and 0.1-1 Gy caused high, medium and low injury to the forest stands, respectively. Doses of less than 0.1 Gy did not cause any visible damage to the trees. In 1987, repair processes were displayed by the tree canopies and practically the entire viability of the forest stands had recovered except for trees in the acute and highly affected zones. The young forest was reestablished in the same place as the perished trees and new pine saplings were planted on the reclaimed areas

  12. Acute and long-term effects of irradiation on pine (Pinus silvestris) stands post-Chernobyl

    Energy Technology Data Exchange (ETDEWEB)

    Arkhipov, N.P.; Kuchma, N.D. (Department of Radiology and Land Restoration, Pripyat Research and Industrial Association, Chernobyl (Ukraine)); Askbrant, S. (National Radiation Protection Institute, Stockholm (Sweden)); Pasternak, P.S.; Musica, V.V. (Lyes Research and Industrial Association, Kharykov (Ukraine))

    1994-10-14

    The effect of ionizing irradiation on the viability of pine stands after the fallout from the damaged nuclear energy plant at Chernobyl (ChNPP) was shown within the territory of the 10-km zone. During the period 1986-1991, irradiated and damaged forest stands, so-called 'red forest', located in this area were systematically classified by observation. Mortality rate, re-establishment, development of tree canopies, reproduction anomalies and stand viability were shown to be dependent on absorbed irradiation dose, on the age of the stand and on forest composition. For pine stands in the acutely affected zone, doses of more than 60 Gy resulted in a massive mortality and no regeneration of pine trees since 1987. The injured trees had burned or had dried-up. The drying process was accelerated by a massive production of pathogenic insects invading the dying trees. Specifically, irradiation doses of 10-60 Gy, 1-10 Gy and 0.1-1 Gy caused high, medium and low injury to the forest stands, respectively. Doses of less than 0.1 Gy did not cause any visible damage to the trees. In 1987, repair processes were displayed by the tree canopies and practically the entire viability of the forest stands had recovered except for trees in the acute and highly affected zones. The young forest was reestablished in the same place as the perished trees and new pine saplings were planted on the reclaimed areas.

  13. Acute and long-term effects of irradiation on pine (Pinus silvestris) strands post-Chernobyl.

    Science.gov (United States)

    Arkhipov, N P; Kuchma, N D; Askbrant, S; Pasternak, P S; Musica, V V

    1994-12-11

    The effect of ionizing irradiation on the viability of pine stands after the fallout from the damaged nuclear energy plant at Chernobyl (ChNPP) was shown within the territory of the 10-km zone. During the period 1986-1991, irradiated and damaged forest stands, so-called 'red forest', located in this area were systematically classified by observation. Mortality rate, re-establishment, development of tree canopies, reproduction anomalies and stand viability were shown to be dependent on absorbed irradiation dose, on the age of the stand and on forest composition. For pine stands in the acutely affected zone, doses of more than 60 Gy resulted in a massive mortality and no regeneration of pine trees since 1987. The injured trees had burned or had dried-up. The drying process was accelerated by a massive production of pathogenic insects invading the dying trees. Specifically, irradiation doses of 10-60 Gy, 1-10 Gy and 0.1-1 Gy caused high, medium and low injury to the forest stands, respectively. Doses of less than 0.1 Gy did not cause any visible damage to the trees. In 1987, repair processes were displayed by the tree canopies and practically the entire viability of the forest stands had recovered except for trees in the acute and highly affected zones. The young forest was reestablished in the same place as the perished trees and new pine saplings were planted on the reclaimed areas.

  14. Mapping pine mortality by aerial photography, Umstead State Park, North Carolina

    Science.gov (United States)

    Clarence J. DeMars; Garey W. Slaughter; Lnla E. Greene; John H. Ghent

    1982-01-01

    In 1975-1976, pine trees killed by the southern pine beetle Dendroctonus frontalis Zimm.) in a 2l70-hectare (5362-acre) area at the William B. Umstead State Park in central North Carolina, were monitored by sequential color infrared aerial photography. From 1973 through summer 1975, beetles in 350 infestation spots killed more than 20,500 pines on...

  15. Utilization of the southern pines

    Energy Technology Data Exchange (ETDEWEB)

    Koch, P

    1972-01-01

    After several years out of print, this book is again available. The two-volume reference characterizes the southern pine tree as raw material and describes the process by which it is converted to use. All 10 species are considered. The book is addressed primarily to the incoming generation of researchers and industrial managers in the southern pine industry. Foremen, superintendents, quality control personnel, wood procurement men, forest managers, extension workers, professors, and students of wood technology should find the handbook of value.

  16. Black stain root disease studies on ponderosa pine parameters and disturbance treatments affecting infection and mortality

    Science.gov (United States)

    W.J. Otrosina; J.T. Kliejunas; S. Smith; D.R. Cluck; S.S. Sung; C.D. Cook

    2007-01-01

    Black stain root disease of ponderosa pine (Pinus ponderosa Doug. Ex Laws.), caused by Leptographium wageneri var. ponderosum (Harrington & Cobb) Harrington & Cobb, is increasing on many eastside Sierra Nevada pine stands in northeastern California. The disease is spread from tree to tree via root...

  17. Bole girdling affects metabolic properties and root, trunk and branch hydraulics of young ponderosa pine trees.

    Science.gov (United States)

    Domec, Jean-Christophe; Pruyn, Michele L

    2008-10-01

    Effects of trunk girdling on seasonal patterns of xylem water status, water transport and woody tissue metabolic properties were investigated in ponderosa pine (Pinus ponderosa Dougl. ex P. Laws.) trees. At the onset of summer, there was a sharp decrease in stomatal conductance (g(s)) in girdled trees followed by a full recovery after the first major rainfall in September. Eliminating the root as a carbohydrate sink by girdling induced a rapid reversible reduction in g(s). Respiratory potential (a laboratory measure of tissue-level respiration) increased above the girdle (branches and upper trunk) and decreased below the girdle (lower trunk and roots) relative to control trees during the growing season, but the effect was reversed after the first major rainfall. The increase in branch respiratory potential induced by girdling suggests that the decrease in g(s) was caused by the accumulation of carbohydrates above the girdle, which is consistent with an observed increase in leaf mass per area in the girdled trees. Trunk girdling did not affect native xylem embolism or xylem conductivity. Both treated and control trunks experienced loss of xylem conductivity ranging from 10% in spring to 30% in summer. Girdling reduced xylem growth and sapwood to leaf area ratio, which in turn reduced branch leaf specific conductivity (LSC). The girdling-induced reductions in g(s) and transpiration were associated with a decrease in leaf hydraulic conductance. Two years after girdling, when root-to-shoot phloem continuity had been restored, girdled trees had a reduced density of new wood, which increased xylem conductivity and whole-tree LSC, but also vulnerability to embolism.

  18. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes

    Science.gov (United States)

    Salzer, Matthew W.; Hughes, Malcolm K.; Bunn, Andrew G.; Kipfmueller, Kurt F.

    2009-01-01

    Great Basin bristlecone pine (Pinus longaeva) at 3 sites in western North America near the upper elevation limit of tree growth showed ring growth in the second half of the 20th century that was greater than during any other 50-year period in the last 3,700 years. The accelerated growth is suggestive of an environmental change unprecedented in millennia. The high growth is not overestimated because of standardization techniques, and it is unlikely that it is a result of a change in tree growth form or that it is predominantly caused by CO2 fertilization. The growth surge has occurred only in a limited elevational band within ≈150 m of upper treeline, regardless of treeline elevation. Both an independent proxy record of temperature and high-elevation meteorological temperature data are positively and significantly correlated with upper-treeline ring width both before and during the high-growth interval. Increasing temperature at high elevations is likely a prominent factor in the modern unprecedented level of growth for Pinus longaeva at these sites. PMID:19918054

  19. Tree planters` notes, Volume 46, Number 2, Spring 1995. Quarterly report

    Energy Technology Data Exchange (ETDEWEB)

    Nisley, R.

    1995-12-31

    ;Contents: Certified Seed and Artificial Forest Regeneration; Missoula Technology and Development Center`s 1995 Nursery and Reforestation Programs; Trees Grow Better With Water; Botrytis cinerea Carried by Adult Fungus Gnats (Diptera: Sciaridae) in Container Nurseries; Oak Seedling Root and Shoot Growth on Restored Topsoil; Improved Vegetative Propagation of Scouler Willow; Estimating Poller Yield From Western White Pine: Preliminary Studies.

  20. Dendrochronology of bristlecone pine, Pinus longaeva

    International Nuclear Information System (INIS)

    Ferguson, C.W.

    1979-01-01

    Since 1953 the Laboratory of Tree-Ring Research has conducted dendrochronological studies of bristlecone pine Pinus longaeva D.K. Bailey, sp. nov.) in the White Mountains of California. This research resulted in the establishment of a continuous tree-ring sequence of 8253 yr. The millennia-old pines have emerged as a unique source of chronological data and the precisely dated wood is essential to certain paleoenvironmental and geophysical investigations. Over 1000 dendrochronologically dated decade samples of bristlecone pine supplied to three C-14 laboratories have been used to calibrate the radiocarbon time scale for the past seven millennia, a development of far reaching consequences in the fields of archaeology and geology. In addition, recent advances in other methods of analyzing past climatic variability - techniques involving stable isotope ratios, amino acid racemization, remanent magnetism and trace element abundances - have greatly increased the demand for wood of known age and, hence, for chronology development. Spanning the past 7500 yr, 1138 prepared decade samples, with a total weight of nearly 16 kg are available for study. (author)

  1. Growth Response of Silver Fir and Bosnian Pine from Kosovo

    Directory of Open Access Journals (Sweden)

    Elvin Toromani

    2010-06-01

    Full Text Available Background and Purpose: This paper explore the growth-climate relationships in total ring width chronologies of silver fir (Abies alba Mill. and Bosnian pine (Pinus heldreichii Christ. The objective of this study is to quantify the climate influence on radial growth of both species. The relationships between climate and ring widths were analyzed using extreme growing years (called pointer years, simple correlations and response functions analysis (bootstrapped coefficients. The objectives of this study were: (1 to define the pattern of climatic response of each species, (2 to highlight the influence of local ecological conditions on tree's growth, and (3 to compare the response of silver fir and Bosnian pine to climate. Responses of total ring width to climate were estimated by establishing the mean relationship between growth and climate through simple correlations analysis and bootstrapped response functions. The response to climatic variability was also assessed by analyzing pointer years which correspond to abrupt changes in growth pattern and revealing the tree-growth response to extreme climatic events. For the period 1908-2008 the mean sensitivity (MS of total ring width chronology for Bosnian pine (0.209 was higher than silver fir (0.169 suggesting that Bosnian pine is more sensitive to climate (pointer years were more frequent in ring width chronology of Bosnian pine than in silver fir ring width chronology. The high values of first-order autocorrelations for Bosnian pine (0.674 indicated a strong dependence of current growth on the previous year’s growth. Pointer years analysis underlined the high sensitivity to spring temperatures and precipitation for both species. Radial growth for both species depends strongly on spring climate variables (temperatures and precipitation which play a significant role particularly for earlywood production. Material and Methods: We selected 12 silver fir trees and 15 Bosnian pine trees and took two 5

  2. Radioactive contamination of pine (Pinus sylvestris) in Krasnoyarsk (Russia) following fallout from the Fukushima accident

    International Nuclear Information System (INIS)

    Bolsunovsky, A.; Dementyev, D.

    2014-01-01

    Following the Fukushima accident in March 2011, samples of pine trees (Pinus sylvestris) were collected from three sites near the city of Krasnoyarsk (Siberia, Russia) during 2011–2012 and analyzed for artificial radionuclides. Concentrations of Fukushima-derived radionuclides in the samples of pine needles in April 2011 reached 5.51 ± 0.52 Bq kg −1131 I, 0.92 ± 0.04 Bq kg −1134 Cs, and 1.51 ± 0.07 Bq kg −1137 Cs. An important finding was the detection of 134 Cs from the Fukushima accident not only in the pine needles and branches but also in the new shoots in 2012, which suggested a transfer of Fukushima cesium isotopes from branches to shoots. In 2011 and 2012, the 137 Cs/ 134 Cs ratio for pine needles and branches collected in sampling areas Krasnoyarsk-1 and Krasnoyarsk-2 was greater than 1 (varying within a range of 1.2–2.6), suggesting the presence of “older”, pre-Fukushima accident 137 Cs. Calculations showed that for pine samples growing in areas of the Krasnoyarskii Krai unaffected by contamination from the nuclear facility, the activity of the Fukushima-derived cesium isotopes was two–three times higher than the activity of the pre-accident 137 Cs. - Highlights: • 137 Cs, 134 Cs and 131 I were detected in samples of pine trees near Krasnoyarsk (Russia). • 134 Cs was transferred from old tree parts to the new (2012) shoots of pine trees. • The 137 Cs total / 134 Cs activity ratio for pine samples was greater than 1 due to the presence of pre-accident 137 Cs. • The accident 137 Cs activity in pine samples was higher than the pre-accident 137 Cs activity

  3. Modelling the productivity of Anatolian black pine plantations in Turkey

    Directory of Open Access Journals (Sweden)

    Şükrü Teoman Güner

    2016-01-01

    Full Text Available This study was carried out to determine the relationships between height growth (site index of Anatolian black pine (Pinus nigra Arnold. subsp. pallasina (Lamb. Holmboe and site factors of the plantation areas in Turkey. Data were collected from 118 sample plots by taking into consideration the variations of aspect, altitude, slope position, slope degree and site class. A representative tree for the productivity and soil samples were taken at each sample plot. Some chemical and physical properties of soil samples were determined in the laboratory. The relationships between site index values of the trees and site factors including parent material, soil, climate and topography were examined by using correlation, stepwise regression and regression tree analysis. Significant linear relations were found between site index of black pine and site factors being altitude, slope degree, slope position, annual rainfall, precipitation amount in the most drought month, solum depth and bedrock including granite, mica schist and dacite. Explanation variance percentage on the site index of black pine was found 54.4% by using regression tree analysis whereas explained variance become 34.7% by stepwise regression analysis.

  4. Can early thinning and pruning lessen the impact of pine plantations ...

    African Journals Online (AJOL)

    dwelling insects found in pine tree plantations in Patagonia. We compared the abundance, species richness and composition of the beetle and ant assemblages within 16-year-old pine stands (n = 10) subjected to early pruning and thinning (i.e. ...

  5. Susceptibility of ponderosa pine, Pinus ponderosa (Dougl. Ex Laws.), to mountain pine beetle, Dendroctonus ponderosae Hopkins, attack in uneven-aged stands in the Black Hills of South Dakota and Wyoming USA

    Science.gov (United States)

    Jose F. Negron; Kurt Allen; Blaine Cook; John R. Withrow

    2008-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins can cause extensive tree mortality in ponderosa pine, Pinus ponderosa Dougl. ex Laws., forests in the Black Hills of South Dakota and Wyoming. Most studies that have examined stand susceptibility to mountain pine beetle have been conducted in even-aged stands. Land managers...

  6. Resilience of ponderosa and lodgepole pine forests to mountain pine beetle disturbance and limited regeneration

    Science.gov (United States)

    Briggs, Jenny S.; Hawbaker, Todd J.; Vandendriesche, Don

    2015-01-01

    After causing widespread mortality in lodgepole pine forests in North America, the mountain pine beetle (MPB) has recently also affected ponderosa pine, an alternate host species that may have different levels of resilience to this disturbance. We collected field data in ponderosa pine- and lodgepole pine-dominated forests attacked by MPB in Colorado and then simulated stand growth over 200 years using the Forest Vegetation Simulator. We compared scenarios of no disturbance with scenarios of MPB-caused mortality, both with and without regeneration. Results indicated that basal area and tree density recovered to predisturbance levels relatively rapidly (within 1‐8 decades) in both forest types. However, convergence of the disturbed conditions with simulated undisturbed conditions took longer (12‐20+ decades) and was delayed by the absence of regeneration. In MPB-affected ponderosa pine forests without regeneration, basal area did not converge with undisturbed conditions within 200 years, implying lower resilience in this ecosystem. Surface fuels accumulated rapidly in both forest types after MPB-induced mortality, remaining high for 3‐6 decades in simulations. Our results suggest that future patterns of succession, regeneration, fuel loading, climate, and disturbance interactions over long time periods should be considered in management strategies addressing MPB effects in either forest type, but particularly in ponderosa pine.

  7. Xylem monoterpenes of some hard pines of Western North America: three studies

    Science.gov (United States)

    Richard H. Smith

    1982-01-01

    Monoterpene composition was studied in a number of hard pine species and results were compared with earlier work. (1) Intratree measurements showed strong constancy of composition in both single-stemmed and forked trees of ponderosa, Jeffrey, Coulter, and Jeffrey x ponderosa pines. In grafts of these and other pines, the scion influenced the root stock, but not the...

  8. Resinosis Inhibits Monochamus spp. (Coleoptera: Cerambycidae) Colonization of Healthy Shortleaf Pines in Southeastern United States.

    Science.gov (United States)

    Ethington, Matthew W; Galligan, Larry D; Stephen, Fred M

    2018-05-14

    The genus Monochamus Dejean (Coleoptera: Cerambycidae) includes large, woodboring, longhorned beetles, which colonize pine trees in North America. Many authors have classified the genus as saprophagous, but one recent study reported successful colonization of standing jack pine trees (Pinus banksiana Lamb.) (Pinales: Pinaceae) following severe wind disturbance in Minnesota. We tested whether two Monochamus species native to the southeastern United States (M. titillator (Fabricius) and M. carolinensis (Olivier)) could successfully colonize healthy shortleaf pines (Pinus echinata Mill.) (Pinales: Pinaceae) in recently harvested stands without coincident abiotic or biotic stressors, such as lightning strikes or bark beetle attacks. We attached commercially available semiochemical lures, including monochamol, ethanol, and ipsenol, to healthy shortleaf pine trees and observed Monochamus spp. oviposition response. Egg development was monitored following oviposition by harvesting attacked trees and dissecting oviposition pits. High numbers of oviposition pits were observed on trees treated with lures containing the bark beetle pheromone ipsenol and pits were highly concentrated on the tree bole near lures. Although egg deposition occurred, pit dissection revealed large amounts of resin present in almost all dissected pits and that egg hatch and subsequent larval development were rare. Our results demonstrate that southeastern Monochamus spp. are unlikely to be primary pests of healthy shortleaf pines due to resinosis. To better understand the host finding behavior of these two Monochamus species, we also conducted trapping trials with several semiochemical combinations. Both species and sexes demonstrated similar attraction to compounds, and the most attractive lure combined host volatiles, pheromone, and sympatric insect kairomone.

  9. Individual fluctuations of S content in healthy, and smoke-damaged Scots Pine and the relations between S content and contents of other major nutrients

    Energy Technology Data Exchange (ETDEWEB)

    Themlitz, R

    1960-01-01

    This paper compares the sulfur content of pine needles on trees not subject to smoke damage to the sulfur content of pine needles from trees subject to smoke damage. Four stands of pines located in East and West Germany were studied. The data showed no correlation with the sulfur content, with the age of the trees, nor with the uptake of other nutrients.

  10. Characteristics of Blister Rust Cankers on Eastern White Pine

    Science.gov (United States)

    William R. Phelps; Ray Weber

    1969-01-01

    The growth, development, and sporulation of white pine blister rust cankers were studied on eastern white pine in Wisconsin and Minnesota. Three district canker types were identified on the basis of physical appearance, growth rate, and sporulation. Canker growth rate and sporulation decreased as tree size or age increased, and many cankers apparently became inactive...

  11. Spatial and population genetic structure of microsatellites in white pine

    Science.gov (United States)

    Paula E. Marquardt; Bryan K. Epperson

    2004-01-01

    We evaluated the population genetic structure of seven microsatellite loci for old growth and second growth populations of eastern white pine (Pinus strobus). From each population, located within Hartwick Pines State Park, Grayling, Michigan, USA, 120-122 contiguous trees were sampled for genetic analysis. Within each population, genetic diversity...

  12. User guide for HCR Estimator 2.0: software to calculate cost and revenue thresholds for harvesting small-diameter ponderosa pine.

    Science.gov (United States)

    Dennis R. Becker; Debra Larson; Eini C. Lowell; Robert B. Rummer

    2008-01-01

    The HCR (Harvest Cost-Revenue) Estimator is engineering and financial analysis software used to evaluate stand-level financial thresholds for harvesting small-diameter ponderosa pine (Pinus ponderosa Dougl. ex Laws.) in the Southwest United States. The Windows-based program helps contractors and planners to identify costs associated with tree...

  13. The dynamics of pine forests in Prebaikalia under anthropogenic impact

    Directory of Open Access Journals (Sweden)

    T. A. Mikhailova

    2017-02-01

    Full Text Available Analyzed and generalized were the results of prolonged (10–25 years monitoring of condition pine Pinus sylvestris L. forests affected by technogenic pollution and high recreation load in the South Prebaikalia. The results show that both factors have similarity in the stress effect on pine tree-stands, as confirmed by alteration in morphometric parameters of tree assimilating phytomass, decrease in photosynthetic pigments level, as well as by disturbance the nutrient elements proportions in the needles. As tree crown defoliation level reaches 65–70 %, the morphometric parameters for shoots and needles are found to decrease the background level by in 1.3–4.5 times. Under technogenic pollution, the needles’ chlorophylls sum was reduced 2.8–3.5 times, level of carotenoides – to 3.9 times maximum in comparison with the background needles while under high recreation load the green pigments content was reduced 1.9–5.7 times, carotenoids content – to 5.5 times. There is a imbalance in quantitative proportions between nutritional elements under any type of stress, N : P : K proportion changes due to increase of nitrogen level and reduction of phosphorus and potassium level. Index of tree-stand vital condition was calculated on the basis of the representative parameters to analyze the long forest dynamics. Significant reduction was shown in the index in the present time and correspondingly the obvious tendency to pine forest decline in the territories polluted by Irkutsk, Shelekhov, and Angarsk-Usolie industrial centers. At the same time near Cheremkhovo and Sayansk-Zima centers there are not heavy changes in the forest’s condition; during long time a middle level of weakening is registered but in the distance 20 km – a low level of weakening. In the territories characterized by a high recreation load, a sharp trend to declining pine tree-stands vital condition was found, and most clearly it is expressed in the towns of Khuzhir (Olkhon

  14. Genome and transcriptome analyses of the mountain pine beetle-fungal symbiont Grosmannia clavigera, a lodgepole pine pathogen.

    Science.gov (United States)

    DiGuistini, Scott; Wang, Ye; Liao, Nancy Y; Taylor, Greg; Tanguay, Philippe; Feau, Nicolas; Henrissat, Bernard; Chan, Simon K; Hesse-Orce, Uljana; Alamouti, Sepideh Massoumi; Tsui, Clement K M; Docking, Roderick T; Levasseur, Anthony; Haridas, Sajeet; Robertson, Gordon; Birol, Inanc; Holt, Robert A; Marra, Marco A; Hamelin, Richard C; Hirst, Martin; Jones, Steven J M; Bohlmann, Jörg; Breuil, Colette

    2011-02-08

    In western North America, the current outbreak of the mountain pine beetle (MPB) and its microbial associates has destroyed wide areas of lodgepole pine forest, including more than 16 million hectares in British Columbia. Grosmannia clavigera (Gc), a critical component of the outbreak, is a symbiont of the MPB and a pathogen of pine trees. To better understand the interactions between Gc, MPB, and lodgepole pine hosts, we sequenced the ∼30-Mb Gc genome and assembled it into 18 supercontigs. We predict 8,314 protein-coding genes, and support the gene models with proteome, expressed sequence tag, and RNA-seq data. We establish that Gc is heterothallic, and report evidence for repeat-induced point mutation. We report insights, from genome and transcriptome analyses, into how Gc tolerates conifer-defense chemicals, including oleoresin terpenoids, as they colonize a host tree. RNA-seq data indicate that terpenoids induce a substantial antimicrobial stress in Gc, and suggest that the fungus may detoxify these chemicals by using them as a carbon source. Terpenoid treatment strongly activated a ∼100-kb region of the Gc genome that contains a set of genes that may be important for detoxification of these host-defense chemicals. This work is a major step toward understanding the biological interactions between the tripartite MPB/fungus/forest system.

  15. Isozyme markers associated with O3 tolerance indicate shift in genetic structure of ponderosa and Jeffrey pine in Sequoia National Park, California

    International Nuclear Information System (INIS)

    Staszak, J.; Grulke, N.E.; Marrett, M.J.; Prus-Glowacki, W.

    2007-01-01

    Effects of canopy ozone (O 3 ) exposure and signatures of genetic structure using isozyme markers associated with O 3 tolerance were analyzed in ∼20-, ∼80-, and >200-yr-old ponderosa (Pinus ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. and Balf.) in Sequoia National Park, California. For both species, the number of alleles and genotypes per loci was higher in parental trees relative to saplings. In ponderosa pine, the heterozygosity value increased, and the fixation index indicated reduction of homozygosity with increasing tree age class. The opposite tendencies were observed for Jeffrey pine. Utilizing canopy attributes known to be responsive to O 3 exposure, ponderosa pine was more symptomatic than Jeffrey pine, and saplings were more symptomatic than old growth trees. We suggest that these trends are related to differing sensitivity of the two species to O 3 exposure, and to higher O 3 exposures and drought stress that younger trees may have experienced during germination and establishment. - Genetic variation in isozyme markers associated with ozone tolerance differed between parental trees and their progeny in two closely related species of yellow pine

  16. Comparison of Monterey pine stress in urban and natural forests

    Science.gov (United States)

    David J. Nowak; Joe R. McBride

    1991-01-01

    Monterey pine street trees within Carmel, California and its immediate vicinity, as well as forest-grown Monterey pine within adjacent natural stands, were sampled with regard to visual stress characteristics, and various environmental and biological variables. Two stress indices were computed, one hypothesized before data collection was based on relative foliage...

  17. Coastal fog during summer drought improves the water status of sapling trees more than adult trees in a California pine forest.

    Science.gov (United States)

    Baguskas, Sara A; Still, Christopher J; Fischer, Douglas T; D'Antonio, Carla M; King, Jennifer Y

    2016-05-01

    Fog water inputs can offset seasonal drought in the Mediterranean climate of coastal California and may be critical to the persistence of many endemic plant species. The ability to predict plant species response to potential changes in the fog regime hinges on understanding the ways that fog can impact plant physiological function across life stages. Our study uses a direct metric of water status, namely plant water potential, to understand differential responses of adult versus sapling trees to seasonal drought and fog water inputs. We place these measurements within a water balance framework that incorporates the varying climatic and soil property impacts on water budgets and deficit. We conducted our study at a coastal and an inland site within the largest stand of the regionally endemic bishop pine (Pinus muricata D. Don) on Santa Cruz Island. Our results show conclusively that summer drought negatively affects the water status of sapling more than adult trees and that sapling trees are also more responsive to changes in shallow soil moisture inputs from fog water deposition. Moreover, between the beginning and end of a large, late-season fog drip event, water status increased more for saplings than for adults. Relative to non-foggy conditions, we found that fog water reduces modeled peak water deficit by 80 and 70 % at the inland and coastal sites, respectively. Results from our study inform mechanistically based predictions of how population dynamics of this and other coastal species may be affected by a warmer, drier, and potentially less foggy future.

  18. Hybrid pine for tough sites

    International Nuclear Information System (INIS)

    Davidson, W.H.

    1994-01-01

    A test planting of 30 first- and second-generation pitch x loblolly pine (pinus rigida x P. taeda) hybrids was established on a West Virginia minesoil in 1985. The site was considered orphaned because earlier attempts at revegetation were unsuccessful. The soil was acid (pH 4.6), lacking in nutrients, and compacted. Vegetation present at the time of planting consisted of a sparse cover of tall fescue (Festuca arundinacea) and poverty grass (Danthonia spicata) and a few sourwood (Oxydendrum arboreum) and mountain laurel (Kalmia latifolia) seedlings. In the planting trial, 30 different hybrids were set out in 4 tree linear plots replicated 5 times. The seedlings had been grown in containers for 1 yr before outplanting. Evaluations made after 6 growing seasons showed overall plantation survival was 93%; six hybrids and one open-pollinated cross survived 100%. Individual tree heights ranged from 50 to 425 cm with a plantation average of 235 cm (7.7 ft). Eleven of the hybrids had average heights that exceeded the plantation average. Another test planting of tree and shrub species on this site has very poor survival. Therefore, pitch x loblolly hybrid pine can be recommended for reclaiming this and similar sites

  19. Evaluation of the seasonal and annual abortifacient risk of western juniper trees on Oregon rangelands: Abortion risk of western juniper trees

    Science.gov (United States)

    Western juniper trees can cause late term abortions in cattle, similar to ponderosa pine trees. Analyses of western juniper trees from 35 locations across the state of Oregon suggest that western juniper trees in all areas present an abortion risk in pregnant cattle. Results from this study demonstr...

  20. Large variations in diurnal and seasonal patterns of sap flux among Aleppo pine trees in semi-arid forest reflect tree-scale hydraulic adjustments

    Science.gov (United States)

    Preisler, Yakir; Tatarinov, Fyodor; Rohatyn, Shani; Rotenberg, Eyal; Grünzweig, José M.; Klein, Tamir; Yakir, Dan

    2015-04-01

    Adjustments and adaptations of trees to drought vary across different biomes, species and habitats, with important implications for tree mortality and forest dieback associated with global climate change. The aim of this study was to investigate possible links between the patterns of variations in water flux dynamics and drought resistance in Aleppo pine (Pinus halepensis) trees in a semi-arid stand (Yatir forest, Israel). We measured sap flow (SF) and variations in stem diameter, complemented with short-term campaigns of leaf-scale measurements of water vapour and CO2 gas exchange, branch water potential and hydraulic conductivity, as well as eddy flux measurements of evapotranspiration (ET) from a permanent flux tower at the site. SF rates were well synchronized with ET, reaching maximum rates during midday in all trees during the rainy season (Dec-Apr). However, during the dry season (May-Nov), the daily trend in the rates of SF greatly varied among trees, allowing classification into three tree classes: 1) trees with SF maximum rate constantly occurring in mid-day (12:00-13:00); 2)trees showing a shift to an early morning SF peak (04:00-06:00); and 3) trees shifting their daily SF peak to the evening (16:00-18:00). This classification did not change during the four years study period, between 2010 and 2014. Checking for correlation of tree parameters as DBH, tree height, crown size, and competition indices with rates of SF, indicated that timing of maximum SF in summer was mainly related to tree size (DBH), when large trees tended to have a later SF maximum. Dendrometer measurements indicated that large trees (high DBH) had maximum daily diameter in the morning during summer and winter, while small trees typically had maximum daily diameter during midday and afternoon in winter and summer, respectively. Leaf-scale transpiration (T) measurements showed typical morning peak in all trees, and another peak in the afternoon in large trees only. Different diurnal

  1. Multidisciplinary research program directed toward utilization of solar energy through bioconversion of renewable resources

    Energy Technology Data Exchange (ETDEWEB)

    1980-07-01

    Progress is reported in this multidisciplinary research program. Genetic selection of superior trees, physiological basis of vigor, tissue culture systems leading to cloning of diploid and haploid cell lines are discussed in the Program A report. The physiological basis of enhanced oleoresin formation in southern pines when treated with sublethal concentrations of the herbicide paraquat was investigated in Program B. In Program C, metabolic changes in the stems of slash pine, in vivo, after application with paraquat were determined. The use of phdoem and xylem tissue slices as a laboratory model for studying paraquat associated- and normal-terpene synthesis in pines is discussed. The biochemistry and physiology of methane formation from cellulose during anaerobic fermentation are discussed in the Program D report. (DMC)

  2. Longleaf Pine Ecosystem Restoration on Small and Mid-Sized Tracts

    Science.gov (United States)

    Joan L. Walker

    1999-01-01

    Speaking of restoring the longleaf pine ecosystem, conservationists may present images of open stands I trees, prescribed burning, grassy ground layers, and of providing habitat for red-cockaded woodpeckers. Unfortunately, planting a longleaf pine forest, using fire, and recovering an endangered woodpecker all seem require lands larger than a backyard. To many,...

  3. Oleoresin crystallization in eastern white pine: relationships with chemical components of cortical oleoresin and resistance to the white-pine weevil

    Science.gov (United States)

    Ronald C. Wilkinson

    1979-01-01

    Natural and weevil-larva-induced crystallization of oleoresin from 45 eastern white pine trees with known resin acid and monoterpene composition, and from 59 pairs of nonweeviled and heavily weeviled trees from the same seed sources, was examined in mid- and late spring. Very little difference was found between larva-induced and natural crystallization. Strobic acid-...

  4. Isozyme markers associated with O{sub 3} tolerance indicate shift in genetic structure of ponderosa and Jeffrey pine in Sequoia National Park, California

    Energy Technology Data Exchange (ETDEWEB)

    Staszak, J. [A Mickiewicz University, Genetics Department, ul. Umultowska 89, 61-614 Poznan (Poland); Grulke, N.E. [USDA Forest Service, 4955 Canyon Crest Drive, Riverside, CA 92507 (United States)], E-mail: ngrulke@fs.fed.us; Marrett, M.J. [5184 Tower Road, Riverside, CA 92506 (United States); Prus-Glowacki, W. [A Mickiewicz University, Genetics Department, ul. Umultowska 89, 61-614 Poznan (Poland)

    2007-10-15

    Effects of canopy ozone (O{sub 3}) exposure and signatures of genetic structure using isozyme markers associated with O{sub 3} tolerance were analyzed in {approx}20-, {approx}80-, and >200-yr-old ponderosa (Pinus ponderosa Dougl. ex Laws.) and Jeffrey pine (Pinus jeffreyi Grev. and Balf.) in Sequoia National Park, California. For both species, the number of alleles and genotypes per loci was higher in parental trees relative to saplings. In ponderosa pine, the heterozygosity value increased, and the fixation index indicated reduction of homozygosity with increasing tree age class. The opposite tendencies were observed for Jeffrey pine. Utilizing canopy attributes known to be responsive to O{sub 3} exposure, ponderosa pine was more symptomatic than Jeffrey pine, and saplings were more symptomatic than old growth trees. We suggest that these trends are related to differing sensitivity of the two species to O{sub 3} exposure, and to higher O{sub 3} exposures and drought stress that younger trees may have experienced during germination and establishment. - Genetic variation in isozyme markers associated with ozone tolerance differed between parental trees and their progeny in two closely related species of yellow pine.

  5. Thickness and roughness measurements for air-dried longleaf pine bark

    Science.gov (United States)

    Thomas L. Eberhardt

    2015-01-01

    Bark thicknesses for longleaf pine (Pinus palustris Mill.) were investigated using disks collected from trees harvested on a 70-year-old plantation. Maximum inner bark thickness was relatively constant along the tree bole whereas maximum outer bark thickness showed a definite decrease from the base of the tree to the top. The minimum whole bark thickness followed the...

  6. Population dynamics of bacteria associated with different strains of the pine wood nematode Bursaphelenchus xylophilus after inoculation in maritime pine (Pinus pinaster).

    Science.gov (United States)

    Roriz, Mariana; Santos, Carla; Vasconcelos, Marta W

    2011-08-01

    For a long time it was thought that Bursaphelenchus xylophilus was the only agent of the pine wilt disease. Recently, it was discovered that there are bacteria associated with the nematodes that contribute to the pathogenesis of this disease, mainly through the release of toxins that promote the death of the pines. Among the species most commonly found, are bacteria belonging to the Bacillus, Pantoea, Pseudomonas and Xanthomonas genera. The main objective of this work was to study the effect of inoculation of maritime pine (Pinus pinaster) with four different nematode isolates, in the bacterial population of nematodes and trees, at different stages of disease progression. The monitoring of progression of disease symptoms was also recorded. Also, the identification of bacteria isolated from the xylem of trees and the surface of nematodes was performed by classical identification methods, by the API20E identification system and by sequencing of bacterial DNA. The results showed that for the symptoms progression, the most striking difference was observed for the pines inoculated with the avirulent isolate, C14-5, which led to a slower and less severe aggravation of symptoms than in pines inoculated with the virulent isolates. In general, it was found that bacterial population, inside the tree, increased with disease progression. A superior bacterial quantity was isolated from pines inoculated with the nematode isolates HF and 20, and, comparatively, few bacteria were isolated from pines inoculated with the avirulent isolate. The identification system API20E was insufficient in the identification of bacterial species; Enterobacter cloacae species was identified in 79% of the isolated bacterial colonies and seven of these colonies could not be identified by this method. Molecular identification methods, through bacterial DNA sequencing, allowed a more reliable identification: eleven different bacterial species within the Bacillus, Citrobacter, Enterobacter, Escherichia

  7. Programming macro tree transducers

    DEFF Research Database (Denmark)

    Bahr, Patrick; Day, Laurence E.

    2013-01-01

    transducers can be concisely represented in Haskell, and demonstrate the benefits of utilising such an approach with a number of examples. In particular, tree transducers afford a modular programming style as they can be easily composed and manipulated. Our Haskell representation generalises the original...

  8. Comparison of the measured specific activities of cesium in mushrooms, pine tree twigs, blueberries, honey and game in Aachen after 1986

    International Nuclear Information System (INIS)

    Bonka, H.; Schmelz, G.

    1998-01-01

    After the nuclear reactor accident at Chernobyl the specific activity in mushrooms originating from the region of Aachen was continuously measured until today. At the same time the specific activity was determined in pine tree twigs, blueberries, honey and game. There is a strong connection of the living organisms and the inanimate environment within the forest ecosystem. The decrease of the specific caesium activity in living organisms is slower than in the other environment. (orig.) [de

  9. Environmental impact analysis (EIA) concerning lodgepole pine forestry in Sweden

    International Nuclear Information System (INIS)

    Andersson, Bengt; Rosvall, Ola; Engelmark, Ola; Sjoeberg, Kjell

    1999-01-01

    This report presents an analysis of the ecological consequences of forestry with Canadian lodgepole pine introduced into Sweden. The report includes a compilation of present knowledge in the area, research priorities, and proposed measures for dealing with the negative environmental consequences that could arise. The point of departure of the analysis is a description of the properties of lodgepole pine, including species-specific characteristics of the tree, and changes in stand environment and silvicultural management practices that can be expected. The report describes the dispersal capacity of lodgepole pine in its new Swedish environment and the effects of host-parasite interactions. Thereafter, ecological effects on the capacity of the soil for sustainable production and on biological diversity at various scales (tree, stand, landscape) are analysed. Lodgepole pine forestry is also considered in relation to current laws and regulations as well as national and international environmental goals. At the end of the report, a strategy is proposed for handling the inevitable uncertainties associated with the introduction of exotic species 111 refs, 14 figs

  10. Environmental impact analysis (EIA) concerning lodgepole-pine forestry in Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bengt; Rosvall, O. [Forestry Research Inst. of Sweden, Uppsala (Sweden); Engelmark, O. [Umeaa Univ. (Sweden). Dept. of Ecological Botany; Sjoeberg, K. [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Animal Ecology

    1999-07-01

    This report presents an analysis of the ecological consequences of forestry with Canadian lodgepole pine introduced into Sweden. The report includes a compilation of present knowledge in the area, research priorities, and proposed measures for dealing with the negative environmental consequences that could arise. The point of departure of the analysis is a description of the properties of lodgepole pine, including species-specific characteristics of the tree, and changes in stand environment and silvicultural management practices that can be expected. The report describes the dispersal capacity of lodgepole pine in its new Swedish environment and the effects of host-parasite interactions. Thereafter, ecological effects on the capacity of the soil for sustainable production and on biological diversity at various scales (tree, stand, landscape) are analysed. Lodgepole pine forestry is also considered in relation to current laws and regulations as well as national and international environmental goals. At the end of the report, a strategy is proposed for handling the inevitable uncertainties associated with the introduction of exotic species.

  11. Biomonitoring of airborne inorganic and organic pollutants by means of pine tree barks. I. Temporal and spatial variations

    International Nuclear Information System (INIS)

    Schulz, H.; Huhn, G.; Schuermann, G.; Popp, P.; Staerk, H.J.

    2000-01-01

    Scots pine (Pinus sylvestris L.) bark samples were collected at two field sites (Neuglobsow, Roesa) and in different years between 1987 and 1996 in the east of Germany. The barks were analyzed with respect to the following inorganic and organic substances: Al, As, B, Ca, Cd, Ce, Cr, Cu, Fe, Hg, Mo, NH 4 + , Ni, NO 3 - , PO 4 3- , Pb, Sr, SO 4 2- , Ti, V, W, Zr, Zn, benzo(a)pyrene, fluoranthene, pyrene, a-hexachlorocyclohexane (a-HCH) and dichlorodiphenyltrichloroethane (DDT). In addition to bark samples from the site Roesa, 53 test sites were investigated in the Nature Park Duebener Heide. Here, the analysis of the barks aimed at discovering spatial patterns of the above-mentioned substances. Since 1991, most of the determined substances (e.g. sulfate, nitrate, calcium, lead, benzo(a)pyrene, a-HCH) show decreased concentration values in bark samples from both sites. Temporal variations reflect substantial infra-structural changes in eastern Germany, especially at Roesa and in the industrial region around the cities Leipzig, Halle, and Bitterfeld. Moreover, nitrate concentrations in barks are increasing since 1995. The trend can be explained with increased nitrogen emissions from motor traffic and livestock farms. Spatial patterns of sulphate and ammonia reflect inputs from power plants and agriculture in pine stands of the Nature Park Duebener Heide. The results show that barks of pine trees can be used as biomonitoring tools to indicate and characterize depositions of airborne organic and inorganic pollutants. (author)

  12. Surfing the Koehler Curve: revisiting a method for the identification of longleaf pine stumps and logs

    Science.gov (United States)

    Thomas L. Eberhardt; Philip M. Sheridan; Karen G. Reed

    2009-01-01

    Measurements of pith and second growth ring diameters were used by Koehler in 1932 to separate longleaf pine (Pinus palustris Mill.) timbers from those of several southern pines (e.g., loblolly, shortleaf). In the current study, measurements were taken from plantation-grown longleaf, loblolly and shortleaf pine trees, as well as old growth longleaf pine, lightwood, and...

  13. Blue-stain Fungi Associated with Roots of Southern Pine Trees Attacked by the Southern Pine Beetle, Dendroctonus frontalis

    Science.gov (United States)

    William J. Otrosina; Nolan J. Hess; Stanley J. Zarnoch; Thelma J. Perry; John P. Jones

    1997-01-01

    Forty paired plots were established from eastern Texas to Alabama to study root-infecting, blue-stain fungi in southern pine stands undergoing southern pine beetle (SPB) attack. Woody roots were sampled in plots undergoing recent or current attack by the SPB. Comparisons were made between occurrence of Lcptogrqhiumspp. and related fungi and data on various...

  14. MAPLE-II. A program for plotting fault trees

    International Nuclear Information System (INIS)

    Poucet, A.; Van Den Muyzenberg, C.L.

    1987-01-01

    The MAPLE II code is an improved version of the MAPLE program for plotting fault trees. MAPLE II has added features which make it a versatile tool for drawing large and complex logic trees. The code is developed as part of a package for computer aided fault tree construction and analysis in which it is integrated and used as a documentation tool. However the MAPLE II code can be used as a separate program which uses as input a structure function of a tree and a description of the events and gates which make up the tree. This report includes a short description of the code and of its features. Moreover it contains the how-to-use and some indications for implementing the code and for adapting it to different graphics systems

  15. FTAP, Minimal Cut Sets of Arbitrary Fault Trees. FRTPLT, Fault Tree Structure and Logical Gates Plot for Program FTAP. FRTGEN, Fault Trees by Sub-tree Generator from Parent Tree for Program FTAP

    International Nuclear Information System (INIS)

    Willie, Randall R.; Rabien, U.

    1997-01-01

    1 - Description of problem or function: FTAP is a general-purpose program for deriving minimal reliability cut and path set families from the fault tree for a complex system. The program has a number of useful features that make it well-suited to nearly all fault tree applications. An input fault tree may specify the system state as any logical function of subsystem or component state variables or complements of these variables; thus, for instance, 'exclusive-or' type relations may be formed. When fault tree logical relations involve complements of state variables, the analyst may instruct FTAP to produce a family of prime implicants, a generalization of the minimal cut set concept. The program offers the flexibility of several distinct methods of generating cut set families. FTAP can also identify certain subsystems as system modules and provide a collection of minimal cut set families that essentially expresses the system state as a function of these module state variables. Another feature allows a useful subfamily to be obtained when the family of minimal cut sets or prime implicants is too large to be found in its entirety; this subfamily may consist of only those sets not containing more than some fixed number of elements or only those sets 'interesting' to the analyst in some special sense. Finally, the analyst can modify the input fault tree in various ways by declaring state variables identically true or false. 2 - Method of solution: Fault tree methods are based on the observation that the system state, either working or failed, can usually be expressed as a Boolean relation between states of several large, readily identifiable subsystems. The state of each subsystem in turn depends on states of simpler subsystems and components which compose it, so that the state of the system itself is determined by a hierarchy of logical relationships between states of subsystems. A fault tree is a graphical representation of these relationships. 3 - Restrictions on the

  16. Limited response of ponderosa pine bole defenses to wounding and fungi.

    Science.gov (United States)

    Gaylord, Monica L; Hofstetter, Richard W; Kolb, Thomas E; Wagner, Michael R

    2011-04-01

    Tree defense against bark beetles (Curculionidae: Scolytinae) and their associated fungi generally comprises some combination of constitutive (primary) and induced (secondary) defenses. In pines, the primary constitutive defense against bark beetles consists of preformed resin stored in resin ducts. Induced defenses at the wound site (point of beetle entry) in pines may consist of an increase in resin flow and necrotic lesion formation. The quantity and quality of both induced and constitutive defenses can vary by species and season. The inducible defense response in ponderosa pine is not well understood. Our study examined the inducible defense response in ponderosa pine using traumatic mechanical wounding, and wounding with and without fungal inoculations with two different bark beetle-associated fungi (Ophiostoma minus and Grosmannia clavigera). Resin flow did not significantly increase in response to any treatment. In addition, necrotic lesion formation on the bole after fungal inoculation was minimal. Stand thinning, which has been shown to increase water availability, had no, or inconsistent, effects on inducible tree defense. Our results suggest that ponderosa pine bole defense against bark beetles and their associated fungi is primarily constitutive and not induced.

  17. Tolerance of Loblolly Pines to Fusiform Rust

    Science.gov (United States)

    Charles H. Walkinshaw; James P. Barnett

    1995-01-01

    Loblolly pines (Pinus taeda L.) that were 8 to 17 yr old tolerated one to three fusiform rust (Cronartium quercuum [Berk.] Miyabe ex Shirai f. sp. fusiforme) galls in their stems.Families with four or more galls in their stems lost 2.5% or more of the trees by age 17.In living trees with less than four stem galls, diameter growth was comparable to...

  18. Tree Hazards Recognition and Reduction in Recreation Sites

    Science.gov (United States)

    David W. Johnson

    1981-01-01

    Defective trees are potential hazards to people and property in recreation areas. Most reported tree failures within recreation sites in the Rocky Mountain Region occur in lodgepole pine. Defective root systems account for the greatest percentage of failures. External indicators of defects are used to identify trees that may fail. Some tree species, particularly aspen...

  19. Analyzing Whitebark Pine Distribution in the Northern Rocky Mountains in Support of Grizzly Bear Recovery

    Science.gov (United States)

    Lawrence, R.; Landenburger, L.; Jewett, J.

    2007-12-01

    Whitebark pine seeds have long been identified as the most significant vegetative food source for grizzly bears in the Greater Yellowstone Ecosystem (GYE) and, hence, a crucial element of suitable grizzly bear habitat. The overall health and status of whitebark pine in the GYE is currently threatened by mountain pine beetle infestations and the spread of whitepine blister rust. Whitebark pine distribution (presence/absence) was mapped for the GYE using Landsat 7 Enhanced Thematic Mapper (ETM+) imagery and topographic data as part of a long-term inter-agency monitoring program. Logistic regression was compared with classification tree analysis (CTA) with and without boosting. Overall comparative classification accuracies for the central portion of the GYE covering three ETM+ images along a single path ranged from 91.6% using logistic regression to 95.8% with See5's CTA algorithm with the maximum 99 boosts. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales. The analysis is being extended to the entire northern Rocky Mountain Ecosystem and extended over decadal time scales.

  20. Effect of prescribed burning on mortality of resettlement ponderosa pines in Grand Canyon National Park

    Science.gov (United States)

    G. Alan Kaufmann; W. Wallace Covington

    2001-01-01

    Ponderosa pine (Pinus ponderosa) trees established before Euro-American settlement are becoming rare on the landscape. Prescribed fire is the prime tool used to restore ponderosa pine ecosystems, but can cause high mortality in presettlement ponderosa pines. This study uses retrospective techniques to estimate mortality from prescribed burns within Grand Canyon...

  1. Smoke hardiness of pines

    Energy Technology Data Exchange (ETDEWEB)

    Pelz, E

    1958-01-01

    It has been determined in East Germany that some species of pines are more susceptible to the damaging effects of sulfates than others. On sites that are deficient in nutrients, the trees were found to be more susceptible to injuries. Pinus nigra was the most resistant, then Pinus strobus was next, and Pinus sylvestris was the most sensitive.

  2. Interception loss, throughfall and stemflow in a maritime pine stand. I. Variability of throughfall and stemflow beneath the pine canopy

    Science.gov (United States)

    Loustau, D.; Berbigier, P.; Granier, A.; Moussa, F. El Hadj

    1992-10-01

    Patterns of spatial variability of throughfall and stemflow were determined in a maritime pine ( Pinus pinaster Ait.) stand for two consecutive years. Data were obtained from 52 fixed rain gauges and 12 stemflow measuring devices located in a 50m × 50m plot at the centre of an 18-year-old stand. The pine trees had been sown in rows 4m apart and had reached an average height of 12.6m. The spatial distribution of stems had a negligible effect on the throughfall partitioning beneath the canopy. Variograms of throughfall computed for a sample of storms did not reveal any spatial autocorrelation of throughfall for the sampling design used. Differences in throughfall, in relation to the distance from the rows, were not consistently significant. In addition, the distance from the tree stem did not influence the amount of throughfall. The confidence interval on the amount of throughfall per storm was between 3 and 8%. The stemflow was highly variable between trees. The effect of individual trees on stemflow was significant but the amount of stemflow per tree was not related to tree size (i.e. height, trunk diameter, etc.). The cumulative sampling errors on stemflow and throughfall for a single storm created a confidence interval of between ±7 and ±51% on interception. This resulted mainly from the low interception rate and sampling error on throughfall.

  3. Evaluation of mountain beetle-infested lodgepole pine for cellulosic ethanol production by sulfite pretreatment to overcome recalcitrance of lignocellulose

    Science.gov (United States)

    X. Luo; R. Gleisner; S. Tian; J. Negron; W. Zhu; E. Horn; X. J. Pan; J. Y. Zhu

    2010-01-01

    The potentials of deteriorated mountain pine beetle (Dendroctonus ponderosae)-killed lodgepole pine (Pinus contorta) trees for cellulosic ethanol production were evaluated using the sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) process. The trees were harvested from two sites in the United States Arapaho-Roosevelt National Forest, Colorado....

  4. Disturbance from southern pine beetle, suppression, and wildfire affects vegetation composition in central Louisiana: a case study

    Science.gov (United States)

    T.W. Coleman; Alton Martin; J.R. Meeker

    2010-01-01

    We assessed plant composition and forest succession following tree mortality from infestation of southern pine beetle (Dendroctonus frontalis), associated suppression, and wildfire in two forest types, pine (Pinus spp.) with mixed hardwood and longleaf pine (P. palustris). In this case study, vegetation was...

  5. Pathogenicity of Leptographium Species Associated with Loblolly Pine Decline

    Science.gov (United States)

    L. G. Eckhardt; J. P. Jones; Kier D. Klepzig

    2004-01-01

    Freshly lifted seedlings and 21-year-old trees of loblolly pine were wound-inoculated with Leptographium species recovered from the soil and/or roots of trees with loblolly decline symptoms in central Alabama. Seedlings inoculated with L. procerum in the greenhouse produced significantly fewer root initials and a smaller root mass than control...

  6. Cd-tolerant Suillus luteus: a fungal insurance for pines exposed to Cd.

    Science.gov (United States)

    Krznaric, Erik; Verbruggen, Nathalie; Wevers, Jan H L; Carleer, Robert; Vangronsveld, Jaco; Colpaert, Jan V

    2009-05-01

    Soil metal pollution can trigger evolutionary adaptation in soil-borne organisms. An in vitro screening test showed cadmium adaptation in populations of Suillus luteus (L.: Fr.) Roussel, an ectomycorrhizal fungus of pine trees. Cadmium stress was subsequently investigated in Scots pine (Pinus sylvestris L.) seedlings inoculated with a Cd-tolerant S. luteus, isolated from a heavy metal contaminated site, and compared to plants inoculated with a Cd-sensitive isolate from a non-polluted area. A dose-response experiment with mycorrhizal pines showed better plant protection by a Cd-adapted fungus: more fungal biomass and a higher nutrient uptake at high Cd exposure. In addition, less Cd was transferred to aboveground plant parts. Because of the key role of the ectomycorrhizal symbiosis for tree fitness, the evolution of Cd tolerance in an ectomycorrhizal partner such as S. luteus can be of major importance for the establishment of pine forests on Cd-contaminated soils.

  7. "Growing trees backwards": Description of a stand reconstruction model

    Science.gov (United States)

    Jonathan D. Bakker; Andrew J. Sanchez Meador; Peter Z. Fule; David W. Huffman; Margaret M. Moore

    2008-01-01

    We describe an individual-tree model that uses contemporary measurements to "grow trees backward" and reconstruct past tree diameters and stand structure in ponderosa pine dominated stands of the Southwest. Model inputs are contemporary structural measurements of all snags, logs, stumps, and living trees, and radial growth measurements, if available. Key...

  8. Siberian Pine Decline and Mortality in Southern Siberian Mountains

    Science.gov (United States)

    Kharuk, V. I.; Im, S. T.; Oskorbin, P. A.; Petrov, I. A.; Ranson, K. J.

    2013-01-01

    The causes and resulting spatial patterns of Siberian pine mortality in eastern Kuznetzky Alatau Mountains, Siberia were analyzed based on satellite (Landsat, MODIS) and dendrochronology data. Climate variables studied included temperature, precipitation and Standardized Precipitation-Evapotranspiration Index (SPEI) drought index. Landsat data analysis showed that stand mortality was first detected in the year 2006 at an elevation of 650 m, and extended up to 900 m by the year 2012. Mortality was accompanied by a decrease in MODIS derived vegetation index (EVI).. The area of dead stands and the upper mortality line were correlated with increased drought. The uphill margin of mortality was limited by elevational precipitation gradients. Dead stands (i.e., >75% tree mortality) were located mainly on southern slopes. With respect to slope, mortality was observed within a 7 deg - 20 deg range with greatest mortality occurring on convex terrain. Tree radial incrementmeasurements correlate and were synchronous with SPEI (r sq = 0.37, r(sub s) = 80). Increasing synchrony between tree ring growth and SPEI indicates that drought has reduced the ecological niche of Siberian pine. The results also showed the primary role of drought stress on Siberian pine mortality. A secondary role may be played by bark beetles and root fungi attacks. The observed Siberian pine mortality is part of a broader phenomenon of "dark needle conifers" (DNC, i.e., Siberian pine, fir and spruce) decline and mortality in European Russia, Siberia, and the Russian Far East. All locations of DNC decline coincided with areas of observed drought increase. The results obtained are one of the first observations of drought-induced decline and mortality of DNC at the southern border of boreal forests. Meanwhile if model projections of increased aridity are correct DNC, within the southern part of its range may be replaced by drought-resistant Pinus silvestris and Larix sibirica.

  9. Neighboring trees affect ectomycorrhizal fungal community composition in a woodland-forest ecotone.

    Science.gov (United States)

    Hubert, Nathaniel A; Gehring, Catherine A

    2008-09-01

    Ectomycorrhizal fungi (EMF) are frequently species rich and functionally diverse; yet, our knowledge of the environmental factors that influence local EMF diversity and species composition remains poor. In particular, little is known about the influence of neighboring plants on EMF community structure. We tested the hypothesis that the EMF of plants with heterospecific neighbors would differ in species richness and community composition from the EMF of plants with conspecific neighbors. We conducted our study at the ecotone between pinyon (Pinus edulis)-juniper (Juniperus monosperma) woodland and ponderosa pine (Pinus ponderosa) forest in northern Arizona, USA where the dominant trees formed associations with either EMF (P. edulis and P. ponderosa) or arbuscular mycorrhizal fungi (AMF; J. monosperma). We also compared the EMF communities of pinyon and ponderosa pines where their rhizospheres overlapped. The EMF community composition, but not species richness of pinyon pines was significantly influenced by neighboring AM juniper, but not by neighboring EM ponderosa pine. Ponderosa pine EMF communities were different in species composition when growing in association with pinyon pine than when growing in association with a conspecific. The EMF communities of pinyon and ponderosa pines were similar where their rhizospheres overlapped consisting of primarily the same species in similar relative abundance. Our findings suggest that neighboring tree species identity shaped EMF community structure, but that these effects were specific to host-neighbor combinations. The overlap in community composition between pinyon pine and ponderosa pine suggests that these tree species may serve as reservoirs of EMF inoculum for one another.

  10. Resiliency of an Interior Ponderosa Pine Forest to Bark Beetle Infestations Following Fuel-Reduction and Forest-Restoration Treatments

    Directory of Open Access Journals (Sweden)

    Christopher J. Fettig

    2014-01-01

    Full Text Available Mechanical thinning and the application of prescribed fire are commonly used to restore fire-adapted forest ecosystems in the Western United States. During a 10-year period, we monitored the effects of fuel-reduction and forest-restoration treatments on levels of tree mortality in an interior ponderosa pine, Pinus ponderosa Dougl. ex Laws., forest in California. Twelve experimental plots, ranging in size from 77–144 ha, were established to create two distinct forest structural types: mid-seral stage (low structural diversity; LoD and late-seral stage (high structural diversity; HiD. Following harvesting, half of each plot was treated with prescribed fire (B. A total of 16,473 trees (8.7% of all trees died during the 10-year period. Mortality was primarily attributed to bark beetles (Coleoptera: Curculionidae, Scolytinae (10,655 trees, specifically fir engraver, Scolytus ventralis LeConte, mountain pine beetle, Dendroctonus ponderosae Hopkins, western pine beetle, D. brevicomis LeConte, pine engraver, Ips pini (Say, and, to a much lesser extent, Jeffrey pine beetle, D. jeffreyi Hopkins. Trees of all ages and size classes were killed, but mortality was concentrated in the smaller-diameter classes (19–29.2 and 29.3–39.3 cm at 1.37 m in height. Most mortality occurred three to five years following prescribed burns. Higher levels of bark beetle-caused tree mortality were observed on LoD + B (8.7% than LoD (4.2%. The application of these and other results to the   management of interior P. ponderosa forests are discussed, with an emphasis on the maintenance of large trees.

  11. Long-term effects of drought on tree-ring growth and carbon isotope variability in Scots pine in a dry environment.

    Science.gov (United States)

    Timofeeva, Galina; Treydte, Kerstin; Bugmann, Harald; Rigling, Andreas; Schaub, Marcus; Siegwolf, Rolf; Saurer, Matthias

    2017-08-01

    Drought frequency is increasing in many parts of the world and may enhance tree decline and mortality. The underlying physiological mechanisms are poorly understood, however, particularly regarding chronic effects of long-term drought and the response to increasing temperature and vapor pressure deficit (VPD). We combined analyses of radial growth and stable carbon isotope ratios (δ13C) in tree rings in a mature Scots pine (Pinus sylvestris L.) forest over the 20th century to elucidate causes of tree mortality in one of the driest parts of the European Alps (Pfynwald, Switzerland). We further compared trees that have recently died with living trees in a 10-year irrigation experiment, where annual precipitation was doubled. We found a sustained growth increase and immediate depletion of δ13C values for irrigated trees, indicating higher stomatal conductance and thus indeed demonstrating that water is a key limiting factor for growth. Growth of the now-dead trees started declining in the mid-1980s, when both mean temperature and VPD increased strongly. But growth of these trees was reduced to some extent already several decades earlier, while intrinsic water-use efficiency derived from δ13C values was higher. This indicates a more conservative water-use strategy compared with surviving trees, possibly at the cost of low carbon uptake and long-term reduction of the needle mass. We observed reduced climatic sensitivity of raw tree-ring δ13C for the now-dead in contrast to surviving trees, indicating impaired stomatal regulation, although this difference between the tree groups was smaller after detrending the data. Higher autocorrelation and a lower inter-annual δ13C variability of the now-dead trees further indicates a strong dependence on (low) carbon reserves. We conclude that the recent increase in atmospheric moisture demand in combination with insufficient soil water supply was the main trigger for mortality of those trees that were weakened by long

  12. Assessing Pine Processionary Moth Defoliation Using Unmanned Aerial Systems

    Directory of Open Access Journals (Sweden)

    Adrián Cardil

    2017-10-01

    Full Text Available Pine processionary moth (PPM is one of the most destructive insect defoliators in the Mediterranean for many conifers, causing losses of growth, vitality and eventually the death of trees during outbreaks. There is a growing need for cost-effective monitoring of the temporal and spatial impacts of PPM in forest ecology to better assess outbreak spread patterns and provide guidance on the development of measures targeting the negative impacts of the species on forests, industry and human health. Remote sensing technology mounted on unmanned aerial systems (UASs with high-resolution image processing has been proposed to assess insect outbreak impacts at local and forest stand levels. Here, we used UAS-acquired RGB imagery in two pine sites to quantify defoliation at the tree-level and to verify the accuracy of the estimates. Our results allowed the identification of healthy, infested and completely defoliated trees and suggested that pine defoliation estimates using UASs are robust and allow high-accuracy (79% field-based infestation indexes to be derived that are comparable to those used by forest technicians. When compared to current field-based methods, our approach provides PPM impact assessments with an efficient data acquisition method in terms of time and staff, allowing the quantitative estimation of defoliation at tree-level scale. Furthermore, our method could be expanded to a number of situations and scaled up in combination with satellite remote sensing imagery or citizen science approaches.

  13. Biomonitoring, status and source risk assessment of polycyclic aromatic hydrocarbons (PAHs) using honeybees, pine tree leaves, and propolis.

    Science.gov (United States)

    Kargar, Navid; Matin, Golnar; Matin, Amir Abbas; Buyukisik, Hasan Baha

    2017-11-01

    In this study, to identify and quantify the sources of airborne polycyclic aromatic hydrocarbons (PAHs), we gathered honeybee, pine tree leaf, and propolis samples to serve as bioindicators from five stations in the village of "Bozkoy" in the Aliaga industrial district of Izmir (Turkey) during April-May 2014. The PAH concentrations which measured by gas chromatography (GC) varied from 261.18 to 553.33 μg kg -1 dry weight (dw) in honeybee samples, 138.57-853.67 μg kg -1 dw in pine leaf samples, and 798.61-2905.53 μg kg -1 dw in propolis samples. The total PAH concentrations can be ranked as follows: propolis > pine leaves > honeybees. The ring sequence pattern was 5 > 3 > 6 > 4 > 2 for honeybees, 5 > 3 > 4 > 6 > 2 for pine leaves, and 5 > 4 > 6 > 3 > 2 for propolis. The diagnostic ratios [fluoranthene/fluoranthene + pyrene], [indeno(1,2,3-c,d)pyrene/indeno(1,2,3-c,d)pyrene + benzo(g,h,i)perylene], and [benzo(a)anthracene/benzo(a)anthracene + chrysene] indicate coal and biomass combustion to be the dominant PAH source in the study area. In biomonitoring studies of airborne PAHs based on honeybees, fluoranthene is considered to be a characteristic PAH compound. Distribution maps with different numbers of PAH rings among the sampling sites show the advantages of honeybee samples as indicators due to the honeybee's provision of a broader range of information with respect to heavier pollutants that are typically not in the gas or suspended phase for long periods of time. Our correlation, factor analysis, and principal components analysis (PCA) results indicate potential sources of PAH pollution in pine leaves and honeybees from airborne emissions, but we found propolis to be contaminated by PAHs due to the replacement of herbal sources of resins with synthetic gummy substances from paving materials (e.g., asphalt and tar leaks). Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Tree mortality in the eastern Mediterranean, causes and implications under climatic change

    Science.gov (United States)

    Sarris, Dimitrios; Iacovou, Valentina; Hoch, Guenter; Vennetier, Michel; Siegwolf, Rolf; Christodoulakis, Dimitrios; Koerner, Christian

    2015-04-01

    The eastern Mediterranean has experienced repeated incidents of forest mortality related to drought in recent decades. Such events may become more frequent in the future as drought conditions are projected to further intensify due to global warming. We have been investigating the causes behind such forest mortality events in Pinus halepensis, (the most drought tolerant pine in the Mediterranean). We cored tree stems and sampled various tissue types from dry habitats close to sea level and explored growth responses, stable isotope signals and non-structural carbohydrate (NSC) concentrations. Under intense drought that coincided with pine desiccation events in natural populations our result indicate a significant reduction in tree growth, the most significant in more than a century despite the increase in atmospheric CO2 concentrations in recent decades. This has been accompanied by a lengthening in the integration periods of rainfall needed for pine growth, reaching even 5-6 years before and including the year of mortality occurrence. Oxygen stable isotopes indicate that these signals were associated with a shift in tree water utilization from deeper moisture pools related to past rainfall events. Furthermore, where the driest conditions occur, pine carbon reserves were found to increase in stem tissue, indicating that mortality in these pines cannot be explained by carbon starvation. Our findings suggest that for pine populations that are already water limited (i) a further atmospheric CO2 increase will not compensate for the reduction in growth because of a drier climate, (ii) hydraulic failure appears as the most likely cause of pine desiccation, as no shortage occurs in tree carbon reserves, (iii) a further increase in mortality events may cause these systems to become carbon sources.

  15. Tritium concentrations in tree ring cellulose

    International Nuclear Information System (INIS)

    Kaji, Toshio; Momoshima, Noriyuki; Takashima, Yoshimasa.

    1989-01-01

    Measurements of tritium (tissue bound tritium; TBT) concentration in tree rings are presented and discussed. Such measurement is expected to provide a useful means of estimating the tritium level in the environment in the past. The concentration of tritium bound in the tissue (TBT) in a tree ring considered to reflect the environmental tritium level in the area at the time of the formation of the ring, while the concentration of tritium in the free water in the tissue represents the current environmental tritium level. First, tritium concentration in tree ring cellulose sampled from a cedar tree grown in a typical environment in Fukuoka Prefecture is compared with the tritium concentration in precipitation in Tokyo. Results show that the year-to-year variations in the tritium concentration in the tree rings agree well with those in precipitation. The maximum concentration, which occurred in 1963, is attibuted to atmospheric nuclear testing which was performed frequently during the 1961 - 1963 period. Measurement is also made of the tritium concentration in tree ring cellulose sampled from a pine tree grown near the Isotope Center of Kyushu University (Fukuoka). Results indicate that the background level is higher probably due to the release of tritium from the facilities around the pine tree. Thus, measurement of tritium in tree ring cellulose clearly shows the year-to-year variation in the tritium concentration in the atmosphere. (N.K.)

  16. Quantifying ozone uptake at the canopy level of spruce, pine and larch trees at the alpine timberline: an approach based on sap flow measurement

    International Nuclear Information System (INIS)

    Wieser, G.; Matyssek, R.; Koestner, B.; Oberhuber, W.

    2003-01-01

    Sap-flow based measurements can be used to estimate ozone uptake at whole-tree and stand levels. - Micro-climatic and ambient ozone data were combined with measurements of sap flow through tree trunks in order to estimate whole-tree ozone uptake of adult Norway spruce (Picea abies), cembran pine (Pinus cembra), and European larch (Larix decidua) trees. Sap flow was monitored by means of the heat balance approach in two trees of each species during the growing season of 1998. In trees making up the stand canopy, the ozone uptake by evergreen foliages was significantly higher than by deciduous ones, when scaled to the ground area. However, if expressed per unit of whole-tree foliage area, ozone flux through the stomata into the needle mesophyll was 1.09, 1.18 and 1.40 nmol m -2 s -1 in Picea abies, Pinus cembra and Larix decidua, respectively. These fluxes are consistent with findings from measurements of needle gas exchange, published from the same species at the study site. It is concluded that the sap flow-based approach offers an inexpensive, spatially and temporally integrating way for estimating ozone uptake at the whole-tree and stand level, intrinsically covering the effect of boundary layers on ozone flux

  17. Seed release in serotinous lodgepole pine forests after mountain pine beetle outbreak.

    Science.gov (United States)

    Teste, François P; Lieffers, Victor J; Landhausser, Simon M

    2011-01-01

    There are concerns that large-scale stand mortality due to mountain pine beetle (MPB) could greatly reduce natural regeneration of serotinous Rocky Mountain (RM) lodgepole pine (Pinus contorta var. latifolia) because the closed cones are held in place without the fire cue for cone opening. We selected 20 stands (five stands each of live [control], 3 years since MPB [3-yr-MPB], 6 years since MPB [6-yr-MPB], and 9 years since MPB [9-yr-MPB] mortality) in north central British Columbia, Canada. The goal was to determine partial loss of serotiny due to fall of crown-stored cones via breakage of branches and in situ opening of canopy cones throughout the 2008 and 2009 growing seasons. We also quantified seed release by the opening of forest-floor cones, loss of seed from rodent predation, and cone burial. Trees killed by MPB three years earlier dropped approximately 3.5 times more cones via branch breakage compared to live stands. After six years, MPB-killed stands had released 45% of their canopy seed bank through cone opening, cone fall due to breakage, and squirrel predation. Further losses of canopy seed banks are expected with time since we found 9-yr-MPB stands had 38% more open canopy cones. This was countered by the development of a modest forest-floor seed bank (6% of the original canopy seed bank) from burial of cones; this seed bank may be ecologically important if a fire or anthropogenic disturbance reexposes these cones. If adequate levels of regeneration are to occur, disturbances to create seedbeds must occur shortly after tree mortality, before the seed banks are lost. Our findings also suggest that the sustained seed rain (over at least nine years) after MPB outbreak may be beneficial for population growth of ground-foraging vertebrates. Our study adds insight to the seed ecology of serotinous pines under a potentially continental-wide insect outbreak, threatening vast forests adapted to regeneration after fire. Key words: biotic disturbance; cone

  18. Development of a pathway model to assess the exposure of European pine trees to pine wood nematode via the trade of wood.

    Science.gov (United States)

    Douma, J C; van der Werf, W; Hemerik, L; Magnusson, C; Robinet, C

    2017-04-01

    Pine wood nematode (PWN), Bursaphelenchus xylophilus, is a threat for pine species (Pinus spp.) throughout the world. The nematode is native to North America, and invaded Japan, China, Korea, and Taiwan, and more recently Portugal and Spain. PWN enters new areas through trade in wood products. Once established, eradication is not practically feasible. Therefore, preventing entry of PWN into new areas is crucial. Entry risk analysis can assist in targeting management to reduce the probability of entry. Assessing the entry of PWN is challenging due to the complexity of the wood trade and the wood processing chain. In this paper, we develop a pathway model that describes the wood trade and wood processing chain to determine the structure of the entry process. We consider entry of PWN through imported coniferous wood from China, a possible origin of Portuguese populations, to Europe. We show that exposure increased over years due to an increase in imports of sawn wood. From 2000 to 2012, Europe received an estimated 84 PWN propagules from China, 88% of which arose from imported sawn wood and 12% from round wood. The region in Portugal where the PWN was first reported is among those with the highest PWN transfer per unit of imported wood due to a high host cover and vector activity. An estimated 62% of PWN is expected to enter in countries where PWN is not expected to cause the wilt of pine trees because of low summer temperatures (e.g., Belgium, Sweden, Norway). In these countries, PWN is not easily detected, and such countries can thus serve as potential reservoirs of PWN. The model identifies ports and regions with high exposure, which helps targeting monitoring and surveillance, even in areas where wilt disease is not expected to occur. In addition, we show that exposure is most efficiently reduced by additional treatments in the country of origin, and/or import wood from PWN-free zones. Pathway modelling assists plant health managers in analyzing risks along the

  19. Value loss from weevil-caused defects in eastern white pine lumber

    Science.gov (United States)

    Myron D. Ostrander; Carl H. Stoltenberg

    1957-01-01

    Owners of eastern white pine stands suffer financially in several ways from attacks by the white-pine weevil (Pissodes strobi). Crooks, forks, and other weevil-caused tree-bole deformities increase bucking, logging, and sawing costs, and they reduce recoverable volumes. The injuries also reduce the average value of the lumber recovered. It is only with this reduction...

  20. The Growth of Bosnian Pine (Pinus hedreichii Christ. at Tree-Line Locations from Kosovo and its Response to Climate

    Directory of Open Access Journals (Sweden)

    Faruk Bojaxhi

    2016-12-01

    Full Text Available Background and Purpose: Pinus heldreichii Christ. is a sub-endemic species occurring at tree-line locations in Kosovo and covering an area of 2500 ha. In high elevation sites radial growth is mainly controlled by low temperatures. The main purpose of this study was the analysis of radial growth of P. heldreichii and its response to local climate conditions. Materials and Methods: Research sites comprise of three high elevation stands of P. heldreichii with specific site conditions. Core samples were collected from 98 healthy dominant and co-dominant trees at breast height using increment borer. They were prepared and cross-dated using standard dendrochronological methods, while tree-ring widths were measured to the nearest 0.001 mm using the TSAP software. The ARSTAN program was used to standardize the tree-ring widths and to calculate dendrochronological statistical parameters. The growth-climate relationship was investigated using bootstrapped correlation function analysing the residual chronologies of each sampled site as a dependent variable and the climatic data from May of the (n-1 year up to the October of the n year for the common period 1951-2013 as an independent variable. Results: The length of Bosnian pine chronologies ranged from 175 to 541 years. All chronologies had high values of first-order autocorrelation indicating that radial growth of P. heldreichii is affected by the climate conditions of the previous growing year. Koritnik chronology had the highest values of the mean sensitivity due to the influence of drought stress. This conclusion is also supported by the result of growth-climate relationship where radial growth is negatively correlated with June temperatures and positively associated with July and August precipitation. We found that radial growth of young trees from Koritnik site is limited by the combined effect of temperatures and summer drought stress. In high elevation sites, temperature is expected to control the

  1. The Impacts of Pine Tree Die-Off on Snow Accumulation and Distribution at Plot to Catchment Scales

    Science.gov (United States)

    Biederman, J. A.; Harpold, A. A.; Gutmann, E. D.; Reed, D. E.; Gochis, D. J.; Brooks, P. D.

    2011-12-01

    Seasonal snow cover is a primary water source throughout much of Western North America, where insect-induced tree die-off is changing the montane landscape. Widespread mortality from insects or drought differs from well-studied cases of fire and logging in that tree mortality is not accompanied by other immediate biophysical changes. Much of the impacted landscape is a mosaic of stands of varying species, structure, management history and health overlain on complex terrain. To address the challenge of predicting the effects of forest die-off on snow water input, we quantified snow accumulation and ablation at scales ranging from individual trees, through forest stands, to nested small catchments. Our study sites in Northern Colorado and Southern Wyoming are dominated by lodgepole pine, but they include forest stands that are naturally developed, managed and clear-cut with varying mortality from Mountain Pine Beetle (MPB). Our record for winters 2010 and 2011 includes continuous meteorological data and snow depth in plots with varying MPB impact as well as stand- to catchment-scale snow surveys mid-winter and near maximal accumulation. At the plot scale, snow depth sensors in healthy stands recorded greater inputs during storms (21-42% of depth) and greater seasonal accumulation (15-40%) in canopy gaps than under trees, whereas no spatial effects of canopy geometry were observed in stands with heavy mortality. Similar patterns were observed in snow surveys near peak accumulation. At both impacted and thinned sites, spatial variability in snow depth was more closely associated with larger scale topography and changes in stand structure than with canopy cover. The role of aspect in ablation was observed to increase in impacted stands as both shading and wind attenuation decreased. Evidence of wind-controlled snow distribution was found 80-100 meters from exposed stand edges in impacted forest as compared to 10-15 meters in healthy forest. Integrating from the scale of

  2. Arthropod density and biomass in longleaf pines: effects of pine age and hardwood midstory

    Science.gov (United States)

    Richard N. Conner; Christopher S. Collins; Daniel Saenz; Toni Trees; Richard R. Schaefer; D. Craig Rudolph

    2004-01-01

    During a 2-year study we examined arthropod communities (density and biomass) on longleaf pines (Pinus palustris) in eastern Texas during spring, summer, and winter on trees in 3 age classes: 40-50, 60-70, and 130-1 50 years, as a potential food source for the red-cockaded woodpecker (Picoides borealis). We also examined arthropod...

  3. Growth and Survival Variation among Scots Pine (Pinus sylvestris L. Provenances

    Directory of Open Access Journals (Sweden)

    Süleyman Gülcü

    2017-01-01

    Full Text Available Tree height, basal diameter, and survival were examined in thirteen-year-old provenance test established by 30 seed sources of Scots pine (Pinus sylvestris L. at two exotic sites of the species in Southern part of Turkey. Variations within provenance and among provenances and relations among the traits were estimated to compare Scots pine provenance and two other native species. Averages of tree height and basal diameter were 350 cm and 52.7 mm in Aydogmus site and 385 cm and 51.2 mm in Kemer site, respectively. There were large differences within and among provenances for the characters. Sites were similar (p>0.05 for the characters, while there were significant differences (p≤0.05 among provenances within site according to results of variance analysis (ANOVA. Scots pine provenances were higher and had more thickness than that of black pine (Pinus nigra Arnold and Taurus cedar (Cedrus libani A. Rich. which were natural species of the region. There were positive and significant (p<0.05 correlations between height and basal diameter in the species. Average survivals were 56% and 35% of the provenances in the sites. They were 71% and 11% in black pine and 53% in Taurus cedar for the sites respectively.

  4. Destroyed virgin longleaf pine stand lives-on digitally

    Science.gov (United States)

    John C. Gilbert; S. Kush; Rebecca J. Barlow

    2015-01-01

    The Flomaton Natural Area (FNA) once stood as one of the few remnant fragments of virgin, old-growth longleaf pine stands (Pinus palustris Mill.) in the Southeast. This 80-acre stand contained trees over 200 years old. A restoration effort began in 1994 to remove off-site trees and to reintroduce fire to the site after over 40 years of fire suppression. A geographic...

  5. Influence of uranium mill tailings on tree growth at Elliot Lake

    International Nuclear Information System (INIS)

    Murray, D.R.

    1978-01-01

    A four-year study was carried out to determine the ability of coniferous trees to aid in the reclamation of uranium tailings at Elliot Lake. Five species were planted: white cedar, white spruce, jack pine, scotch pine and red pine. More than 570 bare-root, two-year-old seedlings were planted on bare tailings and in areas of established grasses. A further division was made between areas of coarse and fine tailings. Over-all survival and growth of the trees has been far below expectations based on previous experience with several varieties of grasses. The criteria for assessment have been per cent survival and yearly growth as determined by plant height. Pine was superior, with 68% survival when planted in bare coarse tailings, 45% for vegetated coarse tailings and 34% for vegetated fine tailings. Cedar had the worst survival rates at 49%, 14% and 7% respectively. No species survived on bare fine tailings. The survival and growth of the coniferous trees have been related to species, environmental conditions and tailings properties. (author)

  6. Influence of uranium mill tailings on tree growth at Elliot Lake

    International Nuclear Information System (INIS)

    Murray, D.R.

    1978-01-01

    A four year study was carried out to determine the ability of coniferous trees to aid in the reclamation of uranium tailings at Elliot Lake. Five species were planted: white cedar, white spruce, jack pine, scotch pine and red pine. More than 570 bare-root, two-year-old seedlings were planted on bare tailings and in areas of established grasses. A further division was made between areas of coarse and fine tailings. Over-all survival and growth of the trees has been far below expectations based on previous experience with several varieties of grasses. The crieteria for assessment have been per cent survival and yearly growth as determined by plant height. Pine was superior, with 68% survival when planted in bare coarse tailings, 45% for vegetated coarse tailings and 34% for vegetated fine tailings. Cedar had the worst survival rates at 49%, 14% and 7% respectively. No species survived on bare fine tailings. The survival and growth of the coniferous trees have been related to species, environmental conditions and tailings properties. (auth)

  7. Performance and value of CAD-deficient pine- Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bailian Li; Houmin Chang; Hasan Jameel

    2007-02-28

    The southern US produces 58% of the nation's timber, much of it grown in intensively managed plantations of genetically improved loblolly pine. One of the fastest-growing loblolly pine selections made by the NCSU-Industry Cooperative Tree Improvement Program, whose progeny are widely planted, is also the only known natural carrier of a rare gene, cadn1. This allele codes for deficiency in an enzyme, cinnamyl alcohol dehydrogenase, which catalyzes the last step in the biosynthesis of lignin precursors. This study is to characterize this candidate gene for marker-assisted selection and deployment in the breeding program. This research will enhance the sustainability of forest production in the South, where land-use pressures will limit the total area available in the future for intensively managed plantations. Furthermore, this research will provide information to establish higher-value plantation forests with more desirable wood/fiber quality traits. A rare mutant allele (cad-n1) of the cad gene in loblolly pine (Pinus taeda L.) causes a deficiency in the production of cinnamyl alcohol dehydrogenase (CAD). The effects of this allele were examined by comparing wood density and growth traits of cad-n1 heterozygous trees with those of wild-type trees in a 10-year-old open-pollinated family trial growing under two levels of fertilization in Scotland County, North Carolina. In all, 200 trees were sampled with 100 trees for each treatment. Wood density measurements were collected from wood cores at breast height using x-ray densitometry. We found that the substitution of cad-n1 for a wild-type allele (Cad) was associated with a significant effect on wood density. The cad-n1 heterozygotes had a significantly higher wood density (+2.6%) compared to wild-type trees. The higher density was apparently due to the higher percentage of latewood in the heterozygotes. The fertilization effect was highly significant for both growth and wood density traits. While no cad genotype

  8. Features of Scots pine radial growth in conditions of provenance trial.

    Science.gov (United States)

    Kuzmin, Sergey; Kuzmina, Nina

    2013-04-01

    Provenance trial of Scots pine in Boguchany forestry of Krasnoyarsk krai is conducted on two different soils - dark-grey loam forest soil and sod-podzol sandy soil. Complex of negative factors for plant growth and development appears in dry conditions of sandy soil. It could results in decrease of resistance to diseases. Sandy soils in different climatic zones have such common traits as low absorbing capacity, poorness of elemental nutrition, low microbiological activity and moisture capacity, very high water permeability. But Scots pine trees growing in such conditions could have certain advantages and perspectives of use. In the scope of climate change (global warming) the study of Scots pine growth on sandy soil become urgent because of more frequent appearance of dry seasons. Purpose of the work is revelation of radial growth features of Scots pine with different origin in dry conditions of sandy soil and assessment of external factors influence. The main feature of radial growth of majority of studied pine provenances in conditions of sandy soil is presence of significant variation of increment with distinct decline in 25-years old with loss of tree rings in a number of cases. The reason of it is complex of factors: deficit of June precipitation and next following outbreak of fungal disease. Found «frost rings» for all trees of studied clymatypes in 1992 are the consequence of temperature decline from May 21 to June 2 - from 23 down to 2 degree Celsius. Perspective climatypes with biggest radial increments and least sensitivity to fungal disease were revealed. Eniseysk and Vikhorevka (from Krasnoyarsk krai and Irkutsk oblast)provenances of pine have the biggest radial increments, the least sensitivity to Cenangium dieback and smallest increments decline. These climatypes are in the group of perspective provenances and in present time they are recommended for wide trial in the region for future use in plantation forest growing. Kandalaksha (Murmansk oblast

  9. Differential effects of plant ontogeny and damage type on phloem and foliage monoterpenes in jack pine (Pinus banksiana).

    Science.gov (United States)

    Erbilgin, Nadir; Colgan, L Jessie

    2012-08-01

    Coniferous trees have both constitutive and inducible defences that deter or kill herbivores and pathogens. We investigated constitutive and induced monoterpene responses of jack pine (Pinus banksiana Lamb.) to a number of damage types: a fungal associate of the mountain pine beetle (Dendroctonus ponderosae Hopkins), Grosmannia clavigera (Robinson-Jeffrey & R.W. Davidson); two phytohormones, methyl jasmonate (MJ) and methyl salicylate (MS); simulated herbivory; and mechanical wounding. We only included the fungal, MJ and mechanical wounding treatments in the field experiments while all treatments were part of the greenhouse studies. We focused on both constitutive and induced responses between juvenile and mature jack pine trees and differences in defences between phloem and needles. We found that phytohormone applications and fungal inoculation resulted in the greatest increase in monoterpenes in both juvenile and mature trees. Additionally, damage types differentially affected the proportions of individual monoterpenes: MJ-treated mature trees had higher myrcene and β-pinene than fungal-inoculated mature trees, while needles of juveniles inoculated with the fungus contained higher limonene than MJ- or MS-treated juveniles. Although the constitutive monoterpenes were higher in the phloem of juveniles than mature jack pine trees, the phloem of mature trees had a much higher magnitude of induction. Further, induced monoterpene concentrations in juveniles were higher in phloem than in needles. There was no difference in monoterpene concentration between phytohormone applications and G. clavigera inoculation in mature trees, while in juvenile trees MJ was different from both G. clavigera and simulated herbivory in needle monoterpenes, but there was no difference between phytohormone applications and simulated herbivory in the phloem.

  10. Modeling Forest Structural Parameters in the Mediterranean Pines of Central Spain using QuickBird-2 Imagery and Classification and Regression Tree Analysis (CART

    Directory of Open Access Journals (Sweden)

    José A. Delgado

    2012-01-01

    Full Text Available Forest structural parameters such as quadratic mean diameter, basal area, and number of trees per unit area are important for the assessment of wood volume and biomass and represent key forest inventory attributes. Forest inventory information is required to support sustainable management, carbon accounting, and policy development activities. Digital image processing of remotely sensed imagery is increasingly utilized to assist traditional, more manual, methods in the estimation of forest structural attributes over extensive areas, also enabling evaluation of change over time. Empirical attribute estimation with remotely sensed data is frequently employed, yet with known limitations, especially over complex environments such as Mediterranean forests. In this study, the capacity of high spatial resolution (HSR imagery and related techniques to model structural parameters at the stand level (n = 490 in Mediterranean pines in Central Spain is tested using data from the commercial satellite QuickBird-2. Spectral and spatial information derived from multispectral and panchromatic imagery (2.4 m and 0.68 m sided pixels, respectively served to model structural parameters. Classification and Regression Tree Analysis (CART was selected for the modeling of attributes. Accurate models were produced of quadratic mean diameter (QMD (R2 = 0.8; RMSE = 0.13 m with an average error of 17% while basal area (BA models produced an average error of 22% (RMSE = 5.79 m2/ha. When the measured number of trees per unit area (N was categorized, as per frequent forest management practices, CART models correctly classified 70% of the stands, with all other stands classified in an adjacent class. The accuracy of the attributes estimated here is expected to be better when canopy cover is more open and attribute values are at the lower end of the range present, as related in the pattern of the residuals found in this study. Our findings indicate that attributes derived from

  11. Process in ovules from the second-year-old cones of scotch pine after acute irradiation in zone of Chernobyl NPP

    International Nuclear Information System (INIS)

    Khromova, L.V.

    1999-01-01

    Embryological processes after acute irradiation in the Chernobyl NPP zone (480-520 rad) were studied from the second-year-old cones of scotch pine. Four levels of anomalies were detected in ovules of all experimental pine trees: undeveloped ovules in layer of strobiles; substitution of female gametophit by tissues original from tapetal or nuclear cells; death of macrogametophytes connected with the interruption of divisions during the cenocitic stage in full-fertile pine trees. These anomalies appear during the normal development of microgametophytes [ru

  12. Tree Growth and Climate Relationship: Dynamics of Scots Pine (Pinus Sylvestris L.) Growing in the Near-Source Region of the Combined Heat and Power Plant During the Development of the Pro-Ecological Strategy in Poland.

    Science.gov (United States)

    Sensuła, Barbara; Wilczyński, Sławomir; Opała, Magdalena

    Since the 1990s, the emission of pollutants was reduced in a majority of Polish and developing country factories whereas the level of energy production was similar to that prior to the 1990s. The conifer investigated in this study has grown for many years under the stress of industrial pollution. Despite this, the trees are preserved, to a large extent, sensitive to the natural climatic factors. We present a complex analysis of the climatic (sunshine, temperature, precipitation, humidity, and wind circulation) and anthropogenic factors influencing the radial increment dynamics of Scots pine ( Pinus sylvestris L.) growing in the vicinity of the combined heat and power station in Łaziska (Poland). We analyzed the spatiotemporal distribution of growth reductions, the depth of reduction with respect to the distance from the emitter, the relationship between tree growth and climate during the industry development period and during proecological strategy application . Samples of carbon isotopic composition in pine needles from 2012 to 2013 were additionally determined. Pines series of 3 positions indicate that they have a similar sensitivity to most climatic elements of the previous and given year, but there is also a different rhythm between the studied populations of incremental growth of pines. The causes of diversity are due to the different types of habitat (site types) and industrial pollution. The variation in carbon stable isotopic composition in pine needles was connected with an increase of CO 2 .

  13. Effects of cultural intensity and density regime treatment on post-thinning loblolly pine individual tree DBH increment in the lower coastal plain of the southeastern United States

    Science.gov (United States)

    John T. Perren; Michael Kane; Dehai Zhao; Richard Daniels

    2016-01-01

    Thinning is a well understood concept used to manage density dependent factors at the stand level. This study evaluates the effect of planting density, cultural intensity, and thinning treatment on loblolly pine post-thinning individual tree development. The Lower Coastal Plain Culture/Density Study, has four initial densities, in combination with two cultural...

  14. Modelling tree biomasses in Finland

    Energy Technology Data Exchange (ETDEWEB)

    Repola, J.

    2013-06-01

    Biomass equations for above- and below-ground tree components of Scots pine (Pinus sylvestris L), Norway spruce (Picea abies [L.] Karst) and birch (Betula pendula Roth and Betula pubescens Ehrh.) were compiled using empirical material from a total of 102 stands. These stands (44 Scots pine, 34 Norway spruce and 24 birch stands) were located mainly on mineral soil sites representing a large part of Finland. The biomass models were based on data measured from 1648 sample trees, comprising 908 pine, 613 spruce and 127 birch trees. Biomass equations were derived for the total above-ground biomass and for the individual tree components: stem wood, stem bark, living and dead branches, needles, stump, and roots, as dependent variables. Three multivariate models with different numbers of independent variables for above-ground biomass and one for below-ground biomass were constructed. Variables that are normally measured in forest inventories were used as independent variables. The simplest model formulations, multivariate models (1) were mainly based on tree diameter and height as independent variables. In more elaborated multivariate models, (2) and (3), additional commonly measured tree variables such as age, crown length, bark thickness and radial growth rate were added. Tree biomass modelling includes consecutive phases, which cause unreliability in the prediction of biomass. First, biomasses of sample trees should be determined reliably to decrease the statistical errors caused by sub-sampling. In this study, methods to improve the accuracy of stem biomass estimates of the sample trees were developed. In addition, the reliability of the method applied to estimate sample-tree crown biomass was tested, and no systematic error was detected. Second, the whole information content of data should be utilized in order to achieve reliable parameter estimates and applicable and flexible model structure. In the modelling approach, the basic assumption was that the biomasses of

  15. Results of growing relatively smoke resistant types of trees and their practical use. [German Democratic Republic

    Energy Technology Data Exchange (ETDEWEB)

    Tzschacksch, O.

    1985-01-01

    Achievements in cultivating sulfur dioxide resistant conifers in the German Democratic Republic are summarized. These conifers will be planted in afforestation programs in smoke damage zones I, i.e. in conifer forests at high elevations with maximum pollution damage. Nurseries with the most promising tree types have been established for harvesting seeds for propagation. Cultivation of cuttings and tree grafting is carried out in experimental nurseries along with laboratory gas treatment tests. Smoke resistant varieties of the common spruce Picae abies (L.) show vigorous growth in smoke damage zone I. Other spruce types suitable for cultivation are Picea pungens Engelm., Picea omorica (Panc.) Purk. with the highest vitality in 15 to 20 year old trial plantings in smoke damage zone I extreme, and Picea glanca, rubens and orientalis. Suitable pines are Pinus contorta Dougl. ex Loud. (Murray pine), Pinus mugo Turra, and others; resistant larches are Larix decidua and Larix leptolepis. Deciduous trees being cultivated for afforestation are aspens (Populus tremula L.) and mountain ash (Sorbus aucuparia L.). 11 references.

  16. Glasshouse seedling δ13C and canopy δ13C of 8-year-old hoop pine families grown in south-east Queensland in relation to canopy δ18O, nitrogen concentration and tree growth

    International Nuclear Information System (INIS)

    Prasolova, N.V.; Saffigna, P.G.; Farquhar, G.D.

    1999-01-01

    occurred between the family δ l3 C at this site and that at another wetter site, indicating that the ranking of the families for δ 13 C remains the same between dry and wet sites. Significant correlation existed between field canopy δ 13 C and seedling δ 13 C, indicating the potential of juvenile δ 13 C in tree improvement programs. The mechanisms of the variation in δ 13 C are discussed in relation to photosynthetic capacity as reflected by the N mass and stomatal conductance as indexed by branchlet oxygen isotope composition (δ 18 O). The significance of these findings is discussed in relation to water and light competition within the hoop pine tree canopy

  17. Spatiotemporal Dynamics of Fire in Whitebark Pine Stands on two Mountains in the Lolo National Forest, Montana, USA.

    Science.gov (United States)

    Larson, E. R.; Grissino-Mayer, H. D.

    2004-12-01

    Whitebark pine (Pinus albicaulis) is a long-lived tree species that exists throughout high elevation and treeline forest communities of western North America. It is the foundation of a diminishing ecosystem that supports Clark's nutcrackers (Nucifraga columbiana), red squirrels (Tamiasciurus hudsonicus), grizzly bears (Ursus arctos), and black bears (U. americana). Several factors are directly linked to the decline of the whitebark pine ecosystem: mortality from recent and widespread mountain pine beetle (Dendroctonus ponderosae) outbreaks, infestation by the invasive white pine blister rust (Cronartium ribicola, an exotic fungal canker that weakens and eventually kills white pines), and fire suppression that may have altered the historic fire regime and enabled fire-intolerant tree species to encroach upon whitebark pine stands. The synergistic effects of these factors have led to a dramatic decline in whitebark pine communities throughout its native range, and in response land managers and conservationists have called for research to better understand the ecological dynamics of this little studied ecosystem. My research uses dendrochronology to investigate the fire history of whitebark pine stands on three mountains in the Lolo National Forest, Montana, via fire-scar and age structure analyses. I present here the results from the fire-scar analyses from Morrell Mountain where I obtained 40 cross sections from dead and down whitebark pines. Individual tree mean fire return intervals (MFRI) range from 33 to 119 years, with a stand MFRI of 49 years that includes fire scars dating to the 16th century. Fire events scarred multiple trees in AD 1754, 1796, and 1843, indicating a mixed-severity fire regime. The majority of the samples recorded a frost event in AD 1601, perhaps evidence of the AD 1600 eruption of Mt. Huaynapatina in the Peruvian Andes. My research not only provides an historical framework for land managers, but also provides an opportunity to examine long

  18. Plasticity in gas-exchange physiology of mature Scots pine and European larch drive short- and long-term adjustments to changes in water availability.

    Science.gov (United States)

    Feichtinger, Linda M; Siegwolf, Rolf T W; Gessler, Arthur; Buchmann, Nina; Lévesque, Mathieu; Rigling, Andreas

    2017-09-01

    Adjustment mechanisms of trees to changes in soil-water availability over long periods are poorly understood, but crucial to improve estimates of forest development in a changing climate. We compared mature trees of Scots pine (Pinus sylvestris) and European larch (Larix decidua) growing along water-permeable channels (irrigated) and under natural conditions (control) at three sites in inner-Alpine dry valleys. At two sites, the irrigation had been stopped in the 1980s. We combined measurements of basal area increment (BAI), tree height and gas-exchange physiology (Δ 13 C) for the period 1970-2009. At one site, the Δ 13 C of irrigated pine trees was higher than that of the control in all years, while at the other sites, it differed in pine and larch only in years with dry climatic conditions. During the first decade after the sudden change in water availability, the BAI and Δ 13 C of originally irrigated pine and larch trees decreased instantly, but subsequently reached higher levels than those of the control by 2009 (15 years afterwards). We found a high plasticity in the gas-exchange physiology of pine and larch and site-specific responses to changes in water availability. Our study highlights the ability of trees to adjust to new conditions, thus showing high resilience. © 2017 John Wiley & Sons Ltd.

  19. Physiological responses of ponderosa pine in western Montana to thinning, prescribed fire and burning season.

    Science.gov (United States)

    Sala, Anna; Peters, Gregory D; McIntyre, Lorna R; Harrington, Michael G

    2005-03-01

    Low-elevation ponderosa pine (Pinus ponderosa Dougl. ex. Laws.) forests of the northern Rocky Mountains historically experienced frequent low-intensity fires that maintained open uneven-aged stands. A century of fire exclusion has contributed to denser ponderosa pine forests with greater competition for resources, higher tree stress and greater risk of insect attack and stand-destroying fire. Active management intended to restore a semblance of the more sustainable historic stand structure and composition includes selective thinning and prescribed fire. However, little is known about the relative effects of these management practices on the physiological performance of ponderosa pine. We measured soil water and nitrogen availability, physiological performance and wood radial increment of second growth ponderosa pine trees at the Lick Creek Experimental Site in the Bitterroot National Forest, Montana, 8 and 9 years after the application of four treatments: thinning only; thinning followed by prescribed fire in the spring; thinning followed by prescribed fire in the fall; and untreated controls. Volumetric soil water content and resin capsule ammonium did not differ among treatments. Resin capsule nitrate in the control treatment was similar to that in all other treatments, although burned treatments had lower nitrate relative to the thinned-only treatment. Trees of similar size and canopy condition in the three thinned treatments (with and without fire) displayed higher leaf-area-based photosynthetic rate, stomatal conductance and mid-morning leaf water potential in June and July, and higher wood radial increment relative to trees in control units. Specific leaf area, mass-based leaf nitrogen content and carbon isotope discrimination did not vary among treatments. Our results suggest that, despite minimal differences in soil resource availability, trees in managed units where basal area was reduced had improved gas exchange and growth compared with trees in

  20. Root deformation reduces tolerance of lodgepole pine to attack by Warren root collar weevil.

    Science.gov (United States)

    Robert, Jeanne A; Lindgren, B Staffan

    2010-04-01

    Surveys were conducted on regenerating stands of lodgepole pine to determine the relationship between root deformation and susceptibility to attack by the Warren root collar weevil, Hylobius warreni Wood. The total number of trees attacked by H. warreni did not differ between planted and natural trees. A matched case-control logistic regression suggested that root cross-sectional area was more important in predicting weevil attack for naturally regenerated trees than for planted trees, but weevils were associated with a larger reduction in height-to-diameter ratios for trees with planted root characteristics than for trees with natural root form. Neither the stability of attacked versus unattacked trees differed significantly and there was no significant interaction of weevil attack and tree type, but weevil-killed trees had different root characteristics than alive, attacked trees. Lateral distribution and root cross-sectional area were significant predictors of alive attacked trees versus weevil-killed trees, suggesting that trees with poor lateral spread or poor root cross-sectional area are more likely to die from weevil attack. We conclude that root deformation does not necessarily increase susceptibility to attack but may increase the likelihood of mortality. Thus, measures to facilitate good root form are needed when planting pine in areas with high risk of Warren root collar weevil attack.

  1. Fatty Acid Composition of Novel Host Jack Pine Do Not Prevent Host Acceptance and Colonization by the Invasive Mountain Pine Beetle and Its Symbiotic Fungus

    Science.gov (United States)

    Ishangulyyeva, Guncha; Najar, Ahmed; Curtis, Jonathan M.

    2016-01-01

    Fatty acids are major components of plant lipids and can affect growth and development of insect herbivores. Despite a large literature examining the roles of fatty acids in conifers, relatively few studies have tested the effects of fatty acids on insect herbivores and their microbial symbionts. Particularly, whether fatty acids can affect the suitability of conifers for insect herbivores has never been studied before. Thus, we evaluated if composition of fatty acids impede or facilitate colonization of jack pine (Pinus banksiana) by the invasive mountain pine beetle (Dendroctonus ponderosae) and its symbiotic fungus (Grosmannia clavigera). This is the first study to examine the effects of tree fatty acids on any bark beetle species and its symbiotic fungus. In a novel bioassay, we found that plant tissues (hosts and non-host) amended with synthetic fatty acids at concentrations representative of jack pine were compatible with beetle larvae. Likewise, G. clavigera grew in media amended with lipid fractions or synthetic fatty acids at concentrations present in jack pine. In contrast, fatty acids and lipid composition of a non-host were not suitable for the beetle larvae or the fungus. Apparently, concentrations of individual, rather than total, fatty acids determined the suitability of jack pine. Furthermore, sampling of host and non-host tree species across Canada demonstrated that the composition of jack pine fatty acids was similar to the different populations of beetle’s historical hosts. These results demonstrate that fatty acids composition compatible with insect herbivores and their microbial symbionts can be important factor defining host suitability to invasive insects. PMID:27583820

  2. Object-oriented fault tree evaluation program for quantitative analyses

    Science.gov (United States)

    Patterson-Hine, F. A.; Koen, B. V.

    1988-01-01

    Object-oriented programming can be combined with fault free techniques to give a significantly improved environment for evaluating the safety and reliability of large complex systems for space missions. Deep knowledge about system components and interactions, available from reliability studies and other sources, can be described using objects that make up a knowledge base. This knowledge base can be interrogated throughout the design process, during system testing, and during operation, and can be easily modified to reflect design changes in order to maintain a consistent information source. An object-oriented environment for reliability assessment has been developed on a Texas Instrument (TI) Explorer LISP workstation. The program, which directly evaluates system fault trees, utilizes the object-oriented extension to LISP called Flavors that is available on the Explorer. The object representation of a fault tree facilitates the storage and retrieval of information associated with each event in the tree, including tree structural information and intermediate results obtained during the tree reduction process. Reliability data associated with each basic event are stored in the fault tree objects. The object-oriented environment on the Explorer also includes a graphical tree editor which was modified to display and edit the fault trees.

  3. Season of prescribed burn in ponderosa pine forests in eastern Oregon: impact on pine mortality.

    Science.gov (United States)

    Walter G. Thies; Douglas J. Westlind; Mark. Loewen

    2005-01-01

    A study of the effects of season of prescribed burn on tree mortality was established in mixed-age ponderosa pine (Pinus ponderosa Dougl. ex Laws.) at the south end of the Blue Mountains near Burns, Oregon. Each of six previously thinned stands was subdivided into three experimental units and one of three treatments was randomly assigned to each:...

  4. Root Disease, Longleaf Pine Mortality, and Prescribed Burning

    Energy Technology Data Exchange (ETDEWEB)

    Otrosina, W.J; C.H. Walkinshaw; S.J. Zarnoch; S-J. Sung; B.T. Sullivan

    2001-01-01

    Study to determine factors involved in decline of longleaf pine associated with prescribed burning. Trees having symptoms were recorded by crown rating system based upon symptom severity-corresponded to tree physiological status-increased in hot burn plots. Root pathogenic fungi widespread throughout the study site. Histological studies show high fine root mortality rate in the hot burn treatment. Decline syndrome is complexed by root pathogens, soil factors, root damage and dysfunction.

  5. Efficacy of verbenone for protecting ponderosa pine stands from western pine beetle (Coleoptera: Curculionidae: Scolytinae) attack in California.

    Science.gov (United States)

    Fettig, Christopher J; McKelvey, Stephen R; Borys, Robert R; Dabney, Christopher P; Hamud, Shakeeb M; Nelson, Lori J; Seybold, Steven J

    2009-10-01

    The western pine beetle, Dendroctonus brevicomis LeConte (Coleoptera: Curculionidae: Scolytinae), is a major cause of ponderosa pine, Pinus ponderosa Dougl. ex Laws., mortality in much of western North America. Currently, techniques for managing D. brevicomis infestations are limited. Verbenone (4,6,6-trimethylbicyclo [3.1.1] hept-3-en-2-one) is an antiaggregation pheromone of several Dendroctonus spp., including D. brevicomis, and it has been registered as a biopesticide for control of mountain pine beetle, Dendroctonus ponderosae Hopkins, and southern pine beetle, Dendroctonus frontalis Zimmermann. We evaluated the efficacy of a 5-g verbenone pouch [82%-(-); 50 mg/d] applied at 125 Ulha for protecting P. ponderosa stands (2 ha) from D. brevicomis attack over a 3-yr period. No significant differences in levels of D. brevicomis-caused tree mortality or the percentage of unsuccessfully attacked trees were found between verbenone-treated and untreated plots during each year or cumulatively over the 3-yr period. Laboratory analyses of release rates and chemical composition of volatiles emanating from verbenone pouches after field exposure found no deterioration of the active ingredient or physical malfunction of the release device. The mean release rate of pouches from all locations and exposure periods was 44.5 mg/d. In a trapping bioassay, the range of inhibition of the 5-g verbenone pouch was determined to be statistically constant 2 m from the release device. We discuss the implications of these and other results to the development of verbenone as a semiochemical-based tool for management of D. brevicomis infestations in P. ponderosa stands.

  6. Use of sulfur and nitrogen stable isotopes to determine the importance of whitebark pine nuts to Yellowstone grizzly bears

    Science.gov (United States)

    Felicetti, L.A.; Schwartz, C.C.; Rye, R.O.; Haroldson, M.A.; Gunther, K.A.; Phillips, D.L.; Robbins, C.T.

    2003-01-01

    Whitebark pine (Pinus albicaulis) is a masting species that produces relatively large, fat- and protein-rich nuts that are consumed by grizzly bears (Ursus arctos horribilis). Trees produce abundant nut crops in some years and poor crops in other years. Grizzly bear survival in the Greater Yellowstone Ecosystem is strongly linked to variation in pine-nut availability. Because whitebark pine trees are infected with blister rust (Cronartium ribicola), an exotic fungus that has killed the species throughout much of its range in the northern Rocky Mountains, we used stable isotopes to quantify the importance of this food resource to Yellowstone grizzly bears while healthy populations of the trees still exist. Whitebark pine nuts have a sulfur-isotope signature (9.2 ?? 1.3??? (mean ?? 1 SD)) that is distinctly different from those of all other grizzly bear foods (ranging from 1.9 ?? 1.7??? for all other plants to 3.1 ?? 2.6??? for ungulates). Feeding trials with captive grizzly bears were used to develop relationships between dietary sulfur-, carbon-, and nitrogen-isotope signatures and those of bear plasma. The sulfur and nitrogen relationships were used to estimate the importance of pine nuts to free-ranging grizzly bears from blood and hair samples collected between 1994 and 2001. During years of poor pine-nut availability, 72% of the bears made minimal use of pine nuts. During years of abundant cone availability, 8 ?? 10% of the bears made minimal use of pine nuts, while 67 ?? 19% derived over 51% of their assimilated sulfur and nitrogen (i.e., protein) from pine nuts. Pine nuts and meat are two critically important food resources for Yellowstone grizzly bears.

  7. The effect of pile size on moisture content of loblolly pine while field drying

    Science.gov (United States)

    John Klepac; Dana Mitchell; Jason. and Thompson

    2014-01-01

    A 14-year old loblolly pine (Pinus taeda) plantation approximately 5 acres in size was cut during August 2013 with a tracked feller-buncher. A grapple skidder transported trees from one-half of the tract to a landing where they were piled whole-tree. Remaining trees were left whole-tree in skidder bundles (small piles) in the stand. All trees were left on-site and...

  8. An Old-Growth Definition for Dry and Dry-Mesic Oak-Pine Forests.

    Science.gov (United States)

    David L. White; F. Thomas. Lloyd

    1998-01-01

    Dry and dry-mesic oak-pine forests are widely distributed from New Jersey to Texas, but representative old-growth stands are rare. Historical accounts of composition, along with information from existing old-growth stands, were used to characterize this type. Shortleaf pine and white oak were the most widely distributed trees across all old-growth stands. Shortleaf was...

  9. Southern Pine Based on Biorefinery Center

    Energy Technology Data Exchange (ETDEWEB)

    Ragauskas, Arthur J. [Georgia Inst. of Technology, Atlanta, GA (United States); Singh, Preet [Georgia Inst. of Technology, Atlanta, GA (United States)

    2013-12-20

    This program seeks to develop an integrated southern pine wood to biofuels/biomaterials processing facility on the Recipient’s campus, that will test advanced integrated wood processing technologies at the laboratory scale, including: The generation of the bioethanol from pines residues and hemicelluloses extracted from pine woodchips; The conversion of extracted woodchips to linerboard and bleach grade pulps; and the efficient conversion of pine residues, bark and kraft cooking liquor into a useful pyrolysis oil.

  10. Dimensional stability of wood-plastic composites reinforced with potassium methyl siliconate modified fiber and sawdust made from beetle-killed trees

    Science.gov (United States)

    Cheng Piao; Zhiyong Cai; Nicole M. Stark; Charles J. Montezun

    2014-01-01

    Wood fromtwovarieties of beetle-killed trees was used to fabricate wood–plastic composites. Loblolly pine and lodgepole pine beetle-killed trees were defibrated mechanically and thermomechanically, respectively, into fiber. Fiber and sawdust produced from the trees were modified with potassium methyl siliconate (PMS) and injection-molded into fiber/sawdust reinforced...

  11. Pinus albicaulis Engelm. (Whitebark Pine in Mixed-Species Stands throughout Its US Range: Broad-Scale Indicators of Extent and Recent Decline

    Directory of Open Access Journals (Sweden)

    Sara A. Goeking

    2018-03-01

    Full Text Available We used data collected from >1400 plots by a national forest inventory to quantify population-level indicators for a tree species of concern. Whitebark pine (Pinus albicaulis has recently experienced high mortality throughout its US range, where we assessed the area of land with whitebark pine present, size-class distribution of individual whitebark pine, growth rates, and mortality rates, all with respect to dominant forest type. As of 2016, 51% of all standing whitebark pine trees in the US were dead. Dead whitebark pines outnumbered live ones—and whitebark pine mortality outpaced growth—in all size classes ≥22.8 cm diameter at breast height (DBH, across all forest types. Although whitebark pine occurred across 4.1 million ha in the US, the vast majority of this area (85% and of the total number of whitebark pine seedlings (72% fell within forest types other than the whitebark pine type. Standardized growth of whitebark pines was most strongly correlated with the relative basal area of whitebark pine trees (rho = 0.67; p < 0.01, while both standardized growth and mortality were moderately correlated with relative whitebark pine stem density (rho = 0.39 and 0.40; p = 0.031 and p < 0.01, respectively. Neither growth nor mortality were well correlated with total stand basal area, total stem density, or stand mean diameter. The abundance, extent, and relative growth vs. mortality rates of whitebark pine in multiple forest types presents opportunities for management to encourage whitebark pine recruitment in mixed-species stands. The lodgepole pine forest type contained more whitebark pine seedlings (35% than any other forest type, suggesting that this forest type represents a potential management target for silvicultural treatments that seek to facilitate the recruitment of whitebark pine seedlings into larger size classes. National forest inventories in other countries may use a similar approach to assess species of concern.

  12. Verbenone Plus reduces levels of tree mortality attributed to mountain pine beetle infestations in whitebark pine, a tree species of concern

    Science.gov (United States)

    Christopher J. Fettig; Beverly M. Bulaon; Christopher P. Dabney; Christopher J. Hayes; Stepehen R. McKelvey

    2012-01-01

    In western North America, recent outbreaks of the mountain pine beetle, Dendroctonus ponderosae Hopkins, have been severe, long-lasting and well-documented. We review previous research that led to the identification of Verbenone Plus, a novel four-component semiochemical blend [acetophenone, (E)-2-hexen-1-ol + (Z)-2-hexen-1-ol, and (–)-verbenone]...

  13. Long-term monitoring of Sacramento Shade program trees: tree survival, growth and energy-saving performance

    Science.gov (United States)

    Yekang Ko; Jun-Hak Lee; E. Gregory McPherson; Lara A. Roman

    2015-01-01

    Long-term survival and growth of urban forests are critical to achieve the targeted benefits of urban tree planting programs, such as building energy savings from tree shade. However, little is known about how trees perform in the long-term, especially in residential areas. Given this gap in the literature, we monitored 22-years of post-planting survival, growth, and...

  14. "Growing trees backwards": Description of a stand reconstruction model (P-53)

    Science.gov (United States)

    Jonathan D. Bakker; Andrew J. Sanchez Meador; Peter Z. Fule; David W. Huffman; Margaret M. Moore

    2008-01-01

    We describe an individual-tree model that uses contemporary measurements to "grow trees backward" and reconstruct past tree diameters and stand structure in ponderosa pine dominated stands of the Southwest. Model inputs are contemporary structural measurements of all snags, logs, stumps, and living trees, and radial growth measurements, if available. Key...

  15. Thermal conditions within tree cavities in ponderosa pine (Pinus ponderosa) forests: potential implications for cavity users

    Science.gov (United States)

    Vierling, Kerri T.; Lorenz, Teresa J.; Cunningham, Patrick; Potterf, Kelsi

    2017-11-01

    Tree cavities provide critical roosting and breeding sites for multiple species, and thermal environments in these cavities are important to understand. Our objectives were to (1) describe thermal characteristics in cavities between June 3 and August 9, 2014, and (2) investigate the environmental factors that influence cavity temperatures. We placed iButtons in 84 different cavities in ponderosa pine (Pinus ponderosa) forests in central Washington, and took hourly measurements for at least 8 days in each cavity. Temperatures above 40 °C are generally lethal to developing avian embryos, and 18% of the cavities had internal temperatures of ≥ 40 °C for at least 1 h of each day. We modeled daily maximum cavity temperature, the amplitude of daily cavity temperatures, and the difference between the mean internal cavity and mean ambient temperatures as a function of several environmental variables. These variables included canopy cover, tree diameter at cavity height, cavity volume, entrance area, the hardness of the cavity body, the hardness of the cavity sill (which is the wood below the cavity entrance which forms the barrier between the cavity and the external environment), and sill width. Ambient temperature had the largest effect size for maximum cavity temperature and amplitude. Larger trees with harder sills may provide more thermally stable cavity environments, and decayed sills were positively associated with maximum cavity temperatures. Summer temperatures are projected to increase in this region, and additional research is needed to determine how the thermal environments of cavities will influence species occupancy, breeding, and survival.

  16. Mineral Analysis of Pine Nuts (Pinus spp.) Grown in New Zealand.

    Science.gov (United States)

    Vanhanen, Leo P; Savage, Geoffrey P

    2013-04-03

    Mineral analysis of seven Pinus species grown in different regions of New Zealand; Armand pine ( Pinus armandii Franch), Swiss stone pine ( Pinus cembra L.), Mexican pinyon ( Pinus cembroides Zucc. var. bicolor Little), Coulter pine ( Pinus coulteri D. Don), Johann's pine ( Pinus johannis M.F. Robert), Italian stone pine ( Pinus pinea L.) and Torrey pine ( Pinus torreyana Parry ex Carrière), was carried out using an inductively coupled plasma optical emission spectrophotometer (ICP-OES) analysis. Fourteen different minerals (Al, B, Ca, Cr, Cu, Fe, K, Mg, Mn, Na, Ni, P, S and Zn) were identified in all seven varieties, except that no Al or Na was found in Pinus coulteri D. Don. New Zealand grown pine nuts are a good source of Cu, Mg, Mn, P and Zn, meeting or exceeding the recommended RDI for these minerals (based on an intake of 50 g nuts/day) while they supplied between 39%-89% of the New Zealand RDI for Fe. Compared to other commonly eaten tree-nuts New Zealand grown pine nuts are an excellent source of essential minerals.

  17. Soil microbial community structure and diversity are largely influenced by soil pH and nutrient quality in 78-year-old tree plantations

    Science.gov (United States)

    Zhou, Xiaoqi; Guo, Zhiying; Chen, Chengrong; Jia, Zhongjun

    2017-04-01

    Forest plantations have been recognised as a key strategy management tool for stocking carbon (C) in soils, thereby contributing to climate warming mitigation. However, long-term ecological consequences of anthropogenic forest plantations on the community structure and diversity of soil microorganisms and the underlying mechanisms in determining these patterns are poorly understood. In this study, we selected 78-year-old tree plantations that included three coniferous tree species (i.e. slash pine, hoop pine and kauri pine) and a eucalypt species in subtropical Australia. We investigated the patterns of community structure, and the diversity of soil bacteria and eukaryotes by using high-throughput sequencing of 16S rRNA and 18S rRNA genes. We also measured the potential methane oxidation capacity under different tree species. The results showed that slash pine and Eucalyptus significantly increased the dominant taxa of bacterial Acidobacteria and the dominant taxa of eukaryotic Ascomycota, and formed clusters of soil bacterial and eukaryotic communities, which were clearly different from the clusters under hoop pine and kauri pine. Soil pH and nutrient quality indicators such as C : nitrogen (N) and extractable organic C : extractable organic N were key factors in determining the patterns of soil bacterial and eukaryotic communities between the different tree species treatments. Slash pine and Eucalyptus had significantly lower soil bacterial and eukaryotic operational taxonomical unit numbers and lower diversity indices than kauri pine and hoop pine. A key factor limitation hypothesis was introduced, which gives a reasonable explanation for lower diversity indices under slash pine and Eucalyptus. In addition, slash pine and Eucalyptus had a higher soil methane oxidation capacity than the other tree species. These results suggest that significant changes in soil microbial communities may occur in response to chronic disturbance by tree plantations, and highlight

  18. Establishing Pine Monocultures and Mixed Pine-Hardwood Stands on Reclaimed Surface Mined Land in Eastern Kentucky: Implications for Forest Resilience in a Changing Climate

    Directory of Open Access Journals (Sweden)

    Geoffrey Bell

    2017-10-01

    Full Text Available Surface mining and mine reclamation practices have caused significant forest loss and forest fragmentation in Appalachia. Shortleaf pine (Pinus echinata is threatened by a variety of stresses, including diseases, pests, poor management, altered fire regimes, and climate change, and the species is the subject of a widescale restoration effort. Surface mines may present opportunity for shortleaf pine restoration; however, the survival and growth of shortleaf pine on these harsh sites has not been critically evaluated. This paper presents first-year survival and growth of native shortleaf pine planted on a reclaimed surface mine, compared to non-native loblolly pine (Pinus taeda, which has been highly successful in previous mined land reclamation plantings. Pine monoculture plots are also compared to pine-hardwood polyculture plots to evaluate effects of planting mix on tree growth and survival, as well as soil health. Initial survival of shortleaf pine is low (42%, but height growth is similar to that of loblolly pine. No differences in survival or growth were observed between monoculture and polyculture treatments. Additional surveys in coming years will address longer-term growth and survival patterns of these species, as well as changes to relevant soil health endpoints, such as soil carbon.

  19. Climate Response of Tree Radial Growth at Different Timescales in the Qinling Mountains.

    Directory of Open Access Journals (Sweden)

    Changfeng Sun

    Full Text Available The analysis of the tree radial growth response to climate is crucial for dendroclimatological research. However, the response relationships between tree-ring indices and climatic factors at different timescales are not yet clear. In this study, the tree-ring width of Huashan pine (Pinus armandii from Huashan in the Qinling Mountains, north-central China, was used to explore the response differences of tree growth to climatic factors at daily, pentad (5 days, dekad (10 days and monthly timescales. Correlation function and linear regression analysis were applied in this paper. The tree-ring width showed a more sensitive response to daily and pentad climatic factors. With the timescale decreasing, the absolute value of the maximum correlation coefficient between the tree-ring data and precipitation increases as well as temperature (mean, minimum and maximum temperature. Compared to the other three timescales, pentad was more suitable for analysing the response of tree growth to climate. Relative to the monthly climate data, the association between the tree-ring data and the pentad climate data was more remarkable and accurate, and the reconstruction function based on the pentad climate was also more reliable and stable. We found that the major climatic factor limiting Huashan pine growth was the precipitation of pentads 20-35 (from April 6 to June 24 rather than the well-known April-June precipitation. The pentad was also proved to be a better timescale for analysing the climate and tree growth in the western and eastern Qinling Mountains. The formation of the earlywood density of Chinese pine (Pinus tabulaeformis from Shimenshan in western Qinling was mainly affected by the maximum temperature of pentads 28-32 (from May 16 to June 9. The maximum temperature of pentads 28-33 (from May 16 to June 14 was the major factor affecting the ring width of Chinese pine from Shirenshan in eastern Qinling.

  20. Mathematical analysis of dynamic spread of Pine Wilt disease.

    Science.gov (United States)

    Dimitrijevic, D D; Bacic, J

    2013-01-01

    Since its detection in Portugal in 1999, the pinewood nematode Bursaphelenchus xylophilus (Steiner and Buhrer), a causal agent of Pine Wilt Disease, represents a threat to European forestry. Significant amount of money has been spent on its monitoring and eradication. This paper presents mathematical analysis of spread of pine wilt disease using a set of partial differential equations with space (longitude and latitude) and time as parameters of estimated spread of disease. This methodology can be used to evaluate risk of various assumed entry points of disease and make defense plans in advance. In case of an already existing outbreak, it can be used to draw optimal line of defense and plan removal of trees. Optimization constraints are economic loss of removal of susceptible trees as well as budgetary constraints of workforce cost.

  1. Factors Influencing Formation of the Siberian Stone Pine Stands Near Settlements in Northern Taiga

    Directory of Open Access Journals (Sweden)

    V. N. Sedykh

    2014-04-01

    Full Text Available The peculiarities of formation of seed productive Siberian stone pine stands near settlements, due to the total destruction of the living ground cover and forest litter, providing heat influx in the root-inhabited zone of the Siberian stone pine trees is discussed in the paper.

  2. Asymmetry in food handling behavior of a tree-dwelling rodent (Sciurus vulgaris.

    Directory of Open Access Journals (Sweden)

    Nuria Polo-Cavia

    Full Text Available Asymmetry in motor patterns is present in a wide variety of animals. Many lateralized behaviors seem to depend on brain asymmetry, as it is the case of different tasks associated to food handling by several bird and mammal species. Here, we analyzed asymmetry in handling behavior of pine cones by red squirrels (Sciurus vulgaris. Red squirrels devote most of their daily activity to feeding, thus this species constitutes an appropriate model for studying asymmetry in food processing. We aimed to explore 1 the potential lateralization in handling of pine cones by squirrels, 2 the dominant pattern for this behavior (left- vs. right-handed, and 3 whether this pattern varies among populations and depending on the pine tree species available. Results revealed that red squirrels handle pine cones in an asymmetrical way, and that direction of asymmetry varies among populations and seems to be determined more by local influences rather than by the pine tree species.

  3. Response of dwarf mistletoe-infested ponderosa pine to thinning: 2. Dwarf mistletoe propagation.

    Science.gov (United States)

    Lewis F. Roth; James W. Barrett

    1985-01-01

    Propagation of dwarf mistletoe in ponderosa pine saplings is little influenced by thinning overly dense stands to 250 trees per acre. Numerous plants that appear soon after thinning develop from formerly latent plants in the suppressed under-story. Subsequently, dwarf mistletoe propagates nearly as fast as tree crowns enlarge but the rate differs widely among trees....

  4. Adjustment capacity of maritime pine cambial activity in drought-prone environments.

    Directory of Open Access Journals (Sweden)

    Joana Vieira

    Full Text Available Intra-annual density fluctuations (IADFs are anatomical features formed in response to changes in the environmental conditions within the growing season. These anatomical features are commonly observed in Mediterranean pines, being more frequent in younger and wider tree rings. However, the process behind IADF formation is still unknown. Weekly monitoring of cambial activity and wood formation would fill this void. Although studies describing cambial activity and wood formation have become frequent, this knowledge is still fragmentary in the Mediterranean region. Here we present data from the monitoring of cambial activity and wood formation in two diameter classes of maritime pine (Pinus pinaster Ait., over two years, in order to test: (i whether the differences in stem diameter in an even-aged stand were due to timings and/or rates of xylogenesis; (ii if IADFs were more common in large trees; and (iii if their formation is triggered by cambial resumption after the summer drought. Larger trees showed higher rates of cell production and longer growing seasons, due to an earlier start and later end of xylogenesis. When a drier winter occurs, larger trees were more affected, probably limiting xylogenesis in the summer months. In both diameter classes a latewood IADF was formed in 2012 in response to late-September precipitation, confirming that the timing of the precipitation event after the summer drought is crucial in determining the resumption of cambial activity and whether or not an IADF is formed. It was the first time that the formation of a latewood IADF was monitored at a weekly time scale in maritime pine. The capacity of maritime pine to adjust cambial activity to the current environmental conditions represents a valuable strategy under the future climate change conditions.

  5. Adjustment capacity of maritime pine cambial activity in drought-prone environments.

    Science.gov (United States)

    Vieira, Joana; Campelo, Filipe; Rossi, Sergio; Carvalho, Ana; Freitas, Helena; Nabais, Cristina

    2015-01-01

    Intra-annual density fluctuations (IADFs) are anatomical features formed in response to changes in the environmental conditions within the growing season. These anatomical features are commonly observed in Mediterranean pines, being more frequent in younger and wider tree rings. However, the process behind IADF formation is still unknown. Weekly monitoring of cambial activity and wood formation would fill this void. Although studies describing cambial activity and wood formation have become frequent, this knowledge is still fragmentary in the Mediterranean region. Here we present data from the monitoring of cambial activity and wood formation in two diameter classes of maritime pine (Pinus pinaster Ait.), over two years, in order to test: (i) whether the differences in stem diameter in an even-aged stand were due to timings and/or rates of xylogenesis; (ii) if IADFs were more common in large trees; and (iii) if their formation is triggered by cambial resumption after the summer drought. Larger trees showed higher rates of cell production and longer growing seasons, due to an earlier start and later end of xylogenesis. When a drier winter occurs, larger trees were more affected, probably limiting xylogenesis in the summer months. In both diameter classes a latewood IADF was formed in 2012 in response to late-September precipitation, confirming that the timing of the precipitation event after the summer drought is crucial in determining the resumption of cambial activity and whether or not an IADF is formed. It was the first time that the formation of a latewood IADF was monitored at a weekly time scale in maritime pine. The capacity of maritime pine to adjust cambial activity to the current environmental conditions represents a valuable strategy under the future climate change conditions.

  6. Numerical experiments to explain multiscale hydrological responses to mountain pine beetle tree mortality in a headwater watershed

    Science.gov (United States)

    Penn, Colin A.; Bearup, Lindsay A.; Maxwell, Reed M.; Clow, David W.

    2016-01-01

    The effects of mountain pine beetle (MPB)-induced tree mortality on a headwater hydrologic system were investigated using an integrated physical modeling framework with a high-resolution computational grid. Simulations of MPB-affected and unaffected conditions, each with identical atmospheric forcing for a normal water year, were compared at multiple scales to evaluate the effects of scale on MPB-affected hydrologic systems. Individual locations within the larger model were shown to maintain hillslope-scale processes affecting snowpack dynamics, total evapotranspiration, and soil moisture that are comparable to several field-based studies and previous modeling work. Hillslope-scale analyses also highlight the influence of compensating changes in evapotranspiration and snow processes. Reduced transpiration in the Grey Phase of MPB-induced tree mortality was offset by increased late-summer evaporation, while overall snowpack dynamics were more dependent on elevation effects than MPB-induced tree mortality. At the watershed scale, unaffected areas obscured the magnitude of MPB effects. Annual water yield from the watershed increased during Grey Phase simulations by 11 percent; a difference that would be difficult to diagnose with long-term gage observations that are complicated by inter-annual climate variability. The effects on hydrology observed and simulated at the hillslope scale can be further damped at the watershed scale, which spans more life zones and a broader range of landscape properties. These scaling effects may change under extreme conditions, e.g., increased total MPB-affected area or a water year with above average snowpack.

  7. Trees as bioindicator of heavy metal pollution in three European cities

    Energy Technology Data Exchange (ETDEWEB)

    Sawidis, T. [Department of Botany, University of Thessaloniki, 54124 Thessaloniki (Greece); Breuste, J., E-mail: juergen.breuste@sbg.ac.at [Department of Geography and Geology, University of Salzburg, 5010 Salzburg (Austria); Mitrovic, M.; Pavlovic, P. [Department of Ecology, Institute for Biological Research ' Sinisa Stankovic' , University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade (Serbia); Tsigaridas, K. [Department of Botany, University of Thessaloniki, 54124 Thessaloniki (Greece)

    2011-12-15

    Concentrations of four heavy metals were determined in tree leaves and bark collected from polluted and non-polluted areas of three European cities (Salzburg, Belgrade and Thessaloniki) for a comparative study. Platanus orientalis L. and Pinus nigra Arn., widespread in urban northern and southern Europe, were tested for their suitability for air quality biomonitoring. Leaves and barks were collected uniformly of an initial quantity of about 30 g of each sample. Analysis was accomplished by electrothermal atomic absorption spectrometry after total digestion. Site-dependent variations were found with the highest concentration level measured in Belgrade, followed by Thessaloniki and Salzburg. A higher accumulation of heavy metals was found in bark compared to leaves. Pine tree bark, accumulating higher concentrations of trace metals compared to plane tree bark, shows a higher efficiency as bioindicator for urban pollution. Both indicator species are suitable for comparative studies on bioindication of urban air pollution. - Highlights: > Oriental plane and Austrian pine are suitable for comparative urban air quality biomonitoring of heavy metal pollution. > Pine tree is excellently suitable as urban bioindicator as it accumulates high concentrations of trace metals. > The highest heavy metal pollution was found in Belgrade followed by Thessaloniki and Salzburg. - Oriental plane (Platanus orientalis L.) and Austrian pine (Pinus nigra Arn.), widespread in urban northern and southern Europe, are suitable for comparative biomonitoring of urban air pollution.

  8. Trees as bioindicator of heavy metal pollution in three European cities

    International Nuclear Information System (INIS)

    Sawidis, T.; Breuste, J.; Mitrovic, M.; Pavlovic, P.; Tsigaridas, K.

    2011-01-01

    Concentrations of four heavy metals were determined in tree leaves and bark collected from polluted and non-polluted areas of three European cities (Salzburg, Belgrade and Thessaloniki) for a comparative study. Platanus orientalis L. and Pinus nigra Arn., widespread in urban northern and southern Europe, were tested for their suitability for air quality biomonitoring. Leaves and barks were collected uniformly of an initial quantity of about 30 g of each sample. Analysis was accomplished by electrothermal atomic absorption spectrometry after total digestion. Site-dependent variations were found with the highest concentration level measured in Belgrade, followed by Thessaloniki and Salzburg. A higher accumulation of heavy metals was found in bark compared to leaves. Pine tree bark, accumulating higher concentrations of trace metals compared to plane tree bark, shows a higher efficiency as bioindicator for urban pollution. Both indicator species are suitable for comparative studies on bioindication of urban air pollution. - Highlights: → Oriental plane and Austrian pine are suitable for comparative urban air quality biomonitoring of heavy metal pollution. → Pine tree is excellently suitable as urban bioindicator as it accumulates high concentrations of trace metals. → The highest heavy metal pollution was found in Belgrade followed by Thessaloniki and Salzburg. - Oriental plane (Platanus orientalis L.) and Austrian pine (Pinus nigra Arn.), widespread in urban northern and southern Europe, are suitable for comparative biomonitoring of urban air pollution.

  9. Harvester Productivity for Row Thinning Loblolly Pine Plantations

    Science.gov (United States)

    James E. Granskog; Walter C. Anderson

    1980-01-01

    Tivo tree harvesters currently being used to thin southern pine plantations were evaluated to determine the effects of stand characteristics on machine productivity. Production rates for row thinning loblolly plantations are presented by stand age, site index, and stand density.

  10. Sensitivity of ring growth and carbon allocation to climatic variation vary within ponderosa pine trees.

    Science.gov (United States)

    Kerhoulas, Lucy P; Kane, Jeffrey M

    2012-01-01

    Most dendrochronological studies focus on cores sampled from standard positions (main stem, breast height), yet vertical gradients in hydraulic constraints and priorities for carbon allocation may contribute to different growth sensitivities with position. Using cores taken from five positions (coarse roots, breast height, base of live crown, mid-crown branch and treetop), we investigated how radial growth sensitivity to climate over the period of 1895-2008 varies by position within 36 large ponderosa pines (Pinus ponderosa Dougl.) in northern Arizona. The climate parameters investigated were Palmer Drought Severity Index, water year and monsoon precipitation, maximum annual temperature, minimum annual temperature and average annual temperature. For each study tree, we generated Pearson correlation coefficients between ring width indices from each position and six climate parameters. We also investigated whether the number of missing rings differed among positions and bole heights. We found that tree density did not significantly influence climatic sensitivity to any of the climate parameters investigated at any of the sample positions. Results from three types of analyses suggest that climatic sensitivity of tree growth varied with position height: (i) correlations of radial growth and climate variables consistently increased with height; (ii) model strength based on Akaike's information criterion increased with height, where treetop growth consistently had the highest sensitivity and coarse roots the lowest sensitivity to each climatic parameter; and (iii) the correlation between bole ring width indices decreased with distance between positions. We speculate that increased sensitivity to climate at higher positions is related to hydraulic limitation because higher positions experience greater xylem tensions due to gravitational effects that render these positions more sensitive to climatic stresses. The low sensitivity of root growth to all climatic variables

  11. Provenance variations of scots pine (Pinus sylvestris L.) in the Southern PART of Turkey

    International Nuclear Information System (INIS)

    Gulcu, S.; Bilir, N.

    2015-01-01

    Tree height, basal diameter, stem form, number, angle and diameter of branches were assessed in eight-year-old provenance test established by 30 seed sources of Scots pine (Pinus sylvestris L.) at Aydogmus and Kemer experimental sites of Southern part of Turkey. Growth of the provenances was also compared to two native species (Taurus cedar- Cedrus libani A. Rich and Black pine-Pinus nigra Arnold.) of the region. Variations within provenance and among provenances, and relations among the traits were estimated. There were large differences (p <= 0.05) within provenance and among provenances for the traits, while sites showed similar (0.05 <= p) performance for tree height and stem form. For instance, average of tree height was 181 cm and varied between 138.3 cm and 229.8 cm in provenances of Aydogmus site, it was 184 cm and ranged from 130 cm to 246.1 cm in that of Kemer site. Averages of tree height of a provenance were 144.4 cm in Aydogmus and 194.5 cm in Kemer. Individual tree height of the provenance varied between 69 cm and 267 cm, and ranged from 51 cm to 280 cm in sites. Averages of tree height were 143.2 cm in Black pine 145.6 cm in Taurus cedar which were natural species of the region. There were mostly positive and significant (p <= 0.05) correlations among the traits. Results of the study were discussed for new plantations and breeding of the species. (author)

  12. Accumulation of logging residue in first thinnings of Scots pine and Norway spruce. Impact of top bucking diameter of roundwood

    Energy Technology Data Exchange (ETDEWEB)

    Raeisaenen, T.; Nurmi, J. (Finnish Forest Research Inst., Kannus (Finland)), e-mail: tommi.raisanen@metla.fi

    2010-07-01

    The aim of this study was to examine the impacts of changes in the minimum top diameter of roundwood on the accumulation of logging residue. The aim was also to compare estimates of residue accumulation calculated by tree-specific biomass models with field measurements from thinnings. Felling experiments were performed in first thinnings of pine and spruce to evaluate the model calculations. In the felling, mean relative masses of the tree tops of spruce were nearly doubled with each increment of 2 cm in the top diameter. Respectively in pine, the mean relative tree top mass was increased by 50-60 % when the top diameter was increased by 2 cm. The mass of total residue (tree top and all delimbed branches) was similarly increased, but the differences were not as large. Compared to pine, a lesser variation in the crown mass of the spruce sample resulted in a more accurate model prediction of masses of tree tops and total residue. The results indicate that the residue accumulation from a small group of trees cannot be predicted very reliably, but when a larger tree population or area is considered, the model predictions are enhanced to a more practicable level. (orig.)

  13. Possibilities of the chemical analysis of Scots pine (Pinus sylvestris) needles

    International Nuclear Information System (INIS)

    Viksna, A.

    1999-01-01

    Scots pine (Pinus sylvestris L.) is a good bio indicator. This species is widely distributed in Europe, including Latvia, is easily identified, and is used in bio indication studies. It is known that the concentrations of most elements in needles change with time. These changes are connected to the processes involved in the uptake, transportation, storage and retranslocation of the elements. Scots pine keeps their needles for several years (3 to 4 years) and are suitable for the study of time related processes. The chemical composition of pine needles is used for the study the deposition and impact of air pollutants. Coniferous needles are covered with epicuticular wax, which act as a trap for airborne deposits. A comparison of chemical composition of pine needles that were unwashed and washed with chloroform made it possible to distinguish which elements were on the needles and to evaluate the character of pollution. The most important stage of the analysis of pine needles is sampling. Nutrient concentrations in the needles of coniferous trees have been shown to vary with the needle age and tree age, the phase of the annual physiological cycle, availability of nutrients in the soil and needle position within the crown. It is very important to take representative sample for the analysis. In the current work the trace element concentrations of the single needle were analysed by electrothermal atomic absorption spectrometry (ETAAS) and total reflection X-ray spectrometry (TXRF). The results of analysis showed that concentration of some elements depends from the position of needle within branch for the same needle age class. The concentrations of trace elements in the single needles within main shoot were more or less constant compare with other order shoots at given needle age class. Some higher variations in the elemental concentrations between single needles were observed in the tip part of main shoot. The actual distribution of the elements within a needle has

  14. Changes in Gambel oak densities in southwestern ponderosa pine forests since Euro-American settlement

    Science.gov (United States)

    Scott R. Abella; Peter Z. Fulé

    2008-01-01

    Densities of small-diameter ponderosa pine (Pinus ponderosa) trees have increased in southwestern ponderosa pine forests during a period of fire exclusion since Euro-American settlement in the late 1800s. However, less well known are potential changes in Gambel oak (Quercus gambelii) densities during this period in these forests....

  15. Strategies and case studies for incorporating ecophysiology into southern pine tree improvement programs

    Science.gov (United States)

    Timothy A. Martin; Philip M. Dougherty; M.A. Topa; Steve E. McKeand

    2005-01-01

    Both genetic and environmental influences on tree growth are expressed through physiological processes. This central, integrating role of physiology has made the field of forest ecophysiology a major area of biological research for the past several decades. Specifically, forest ecophysiology is the study of how plants interact with their abiotic and biotic environment...

  16. Piedmont community tree guide: benefits, costs, and strategic planting

    Science.gov (United States)

    E. Gregory McPherson; James R. Simpson; Paula J. Peper; Shelley L. Gardner; Kelaine E. Vargas; Scott E. Maco; Qingfu Xiao

    2006-01-01

    This report quantifies benefits and costs for small, medium, and large broadleaf trees and one coniferous tree in the Piedmont region: the species chosen as representative are dogwood (Cornus florida), Southern magnolia (Magnolia grandiflora), red maple (Acer rubrum), and loblolly pine (Pinus taeda...

  17. Fire ecology of Scots pine in Northwest Europe

    NARCIS (Netherlands)

    Hille, M.G.

    2006-01-01

    Keywords: biodiversity, fire ecology, fuel modelling, succession, tree regenerationIn this thesis the ecological consequences of forest fire are studied in North-west European Scots pine {Pinus sylvestris) forests. The focus is on post-fire succession, and the factors and mechanisms that influence

  18. Recruitment patterns and growth of high-elevation pines in response to climatic variability (1883–2013), in the western Great Basin, USA

    Science.gov (United States)

    Constance I. Millar; Robert D. Westfall; Diane L. Delany; Alan L. Flint; Lorraine E. Flint

    2015-01-01

    Over the period 1883–2013, recruitment of subalpine limber pine (Pinus flexilis E. James) and Great Basin bristlecone pine (Pinus longaeva D.K. Bailey) above the upper tree line, below the lower tree line, and across middle-elevation forest borders occurred at localized sites across four mountain ranges in the western Great...

  19. Are Scots pine forest edges particularly prone to drought-induced mortality?

    Science.gov (United States)

    Buras, Allan; Schunk, Christian; Zeiträg, Claudia; Herrmann, Corinna; Kaiser, Laura; Lemme, Hannes; Straub, Christoph; Taeger, Steffen; Gößwein, Sebastian; Klemmt, Hans-Joachim; Menzel, Annette

    2018-02-01

    Climate change is expected to exacerbate the frequency of drought-induced tree mortality world-wide. To better predict the associated change of species composition and forest dynamics on various scales and develop adequate adaptation strategies, more information on the mechanisms driving the often observed patchiness of tree die-back is needed. Although forest-edge effects may play an important role within the given context, only few corresponding studies exist. Here, we investigate the regional die-back of Scots pine in Franconia, Germany, after a hot and dry summer in 2015, thereby emphasizing possible differences in mortality between forest edge and interior. By means of dendroecological investigations and close-range remote sensing, we assess long-term growth performance and current tree vitality along five different forest-edge distance gradients. Our results clearly indicate a differing growth performance between edge and interior trees, associated with a higher vulnerability to drought, increased mortality rates, and lower tree vitality at the forest edge. Prior long-lasting growth decline of dead trees compared to live trees suggests depletion of carbon reserves in course of a long-term drought persisting since the 1990s to be the cause of regional Scots pine die-back. These findings highlight the forest edge as a potential focal point of forest management adaptation strategies in the context of drought-induced mortality.

  20. Importance of resin ducts in reducing ponderosa pine mortality from bark beetle attack.

    Science.gov (United States)

    Kane, Jeffrey M; Kolb, Thomas E

    2010-11-01

    The relative importance of growth and defense to tree mortality during drought and bark beetle attacks is poorly understood. We addressed this issue by comparing growth and defense characteristics between 25 pairs of ponderosa pine (Pinus ponderosa) trees that survived and trees that died from drought-associated bark beetle attacks in forests of northern Arizona, USA. The three major findings of our research were: (1) xylem resin ducts in live trees were >10% larger (diameter), >25% denser (no. of resin ducts mm(-2)), and composed >50% more area per unit ring growth than dead trees; (2) measures of defense, such as resin duct production (no. of resin ducts year(-1)) and the proportion of xylem ring area to resin ducts, not growth, were the best model parameters of ponderosa pine mortality; and (3) most correlations between annual variation in growth and resin duct characteristics were positive suggesting that conditions conducive to growth also increase resin duct production. Our results suggest that trees that survive drought and subsequent bark beetle attacks invest more carbon in resin defense than trees that die, and that carbon allocation to resin ducts is a more important determinant of tree mortality than allocation to radial growth.

  1. Evolution of a research prototype expert system for endemic populations of mountain pine beetle in lodgepole pine forests

    Science.gov (United States)

    Dale L. Bartos; Kent B. Downing

    1989-01-01

    A knowledge acquisition program was written to aid in obtaining knowledge from the experts concerning endemic populations of mountain pine beetle in lodgepole pine forest. An application expert system is then automatically generated by the knowledge acquisition program that contains the codified base of expert knowledge. Data can then be entered into the expert system...

  2. Modeling corewood-outerwood transition in loblolly pine using wood specific gravity

    Science.gov (United States)

    Christian R. Mora; H. Lee Allen; Richard F. Daniels; Alexander Clark

    2007-01-01

    A modified logistic function was used for modeling specific-gravity profiles obtained from X-ray densitometry analysis in 675 loblolly pine (Pinus taeda L.) trees in four regeneration trials. Trees were 21 or 22 years old at the time of the study. The function was used for demarcating corewood, transitional, and outerwood zones. Site and silvicultural effects were...

  3. Anatomical characteristics of southern pine stemwood

    Science.gov (United States)

    Elaine T. Howard; Floyd G. Manwiller

    1968-01-01

    To obtain a definitive description of the wood and anatomy of all 10 species of southern pine, juvenile, intermediate, and mature wood was sampled at three heights in one tree of each species and examined under a light microscope. Photographs and three-dimensional drawings were made to illustrate the morphology. No significant anatomical differences were found...

  4. Evaluation of Whole Tree Growth Increment Derived from Tree-Ring Series for Use in Assessments of Changes in Forest Productivity across Various Spatial Scales

    Directory of Open Access Journals (Sweden)

    Juha M. Metsaranta

    2016-12-01

    Full Text Available The inherent predictability of inter-annual variation in forest productivity remains unknown. Available field-based data sources for understanding this variability differ in their spatial resolution, temporal resolution, and typical units of measure. Nearly all other tree and forest characteristics are in practice derived from measurements of diameter at breast height (DBH. Therefore, diameter increment reconstructed annually from tree-ring data can be used to estimate annual growth increments of wood volume, but the accuracy and precision of these estimates requires assessment. Annual growth estimates for n = 170 trees sampled for whole stem analysis from five tree species (jack pine, lodgepole pine, black spruce, white spruce, and trembling aspen in Western Canada were compared against increments derived from breast height measurements only. Inter-annual variability of breast height and whole tree growth increments was highly correlated for most trees. Relative errors varied by species, diameter class, and the equation used to estimate volume (regional vs. national. A simple example of the possible effect of this error when propagated to the stand level is provided.

  5. Algorithms and programs for consequence diagram and fault tree construction

    International Nuclear Information System (INIS)

    Hollo, E.; Taylor, J.R.

    1976-12-01

    A presentation of algorithms and programs for consequence diagram and sequential fault tree construction that are intended for reliability and disturbance analysis of large systems. The system to be analyzed must be given as a block diagram formed by mini fault trees of individual system components. The programs were written in LISP programming language and run on a PDP8 computer with 8k words of storage. A description is given of the methods used and of the program construction and working. (author)

  6. Nantucket pine tip moth phenology and timing of insecticide spray applications in seven Southeastern States

    Science.gov (United States)

    Christopher J. Fettig; Mark J. Dalusky; C. Wayne Berisford

    2000-01-01

    The Nantucket pine tip moth, Rhyacionia frustrana (Comstock) (Lepidoptera: Tortricidae), is a common pest of Christmas tree and pine plantations throughout much of the Eastern United States. The moth completes two to five generations annually, and insecticide spray timing models are currently available for controlling populations where three or...

  7. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae

    Directory of Open Access Journals (Sweden)

    Erin L. Clark

    2014-02-01

    Full Text Available The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC, where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle’s historic range (central BC to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC and one population of jack pine (AB were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels – a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle – were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the

  8. Comparison of lodgepole and jack pine resin chemistry: implications for range expansion by the mountain pine beetle, Dendroctonus ponderosae (Coleoptera: Curculionidae).

    Science.gov (United States)

    Clark, Erin L; Pitt, Caitlin; Carroll, Allan L; Lindgren, B Staffan; Huber, Dezene P W

    2014-01-01

    The mountain pine beetle, Dendroctonus ponderosae, is a significant pest of lodgepole pine in British Columbia (BC), where it has recently reached an unprecedented outbreak level. Although it is native to western North America, the beetle can now be viewed as a native invasive because for the first time in recorded history it has begun to reproduce in native jack pine stands within the North American boreal forest. The ability of jack pine trees to defend themselves against mass attack and their suitability for brood success will play a major role in the success of this insect in a putatively new geographic range and host. Lodgepole and jack pine were sampled along a transect extending from the beetle's historic range (central BC) to the newly invaded area east of the Rocky Mountains in north-central Alberta (AB) in Canada for constitutive phloem resin terpene levels. In addition, two populations of lodgepole pine (BC) and one population of jack pine (AB) were sampled for levels of induced phloem terpenes. Phloem resin terpenes were identified and quantified using gas chromatography. Significant differences were found in constitutive levels of terpenes between the two species of pine. Constitutive α-pinene levels - a precursor in the biosynthesis of components of the aggregation and antiaggregation pheromones of mountain pine beetle - were significantly higher in jack pine. However, lower constitutive levels of compounds known to be toxic to bark beetles, e.g., 3-carene, in jack pine suggests that this species could be poorly defended. Differences in wounding-induced responses for phloem accumulation of five major terpenes were found between the two populations of lodgepole pine and between lodgepole and jack pine. The mountain pine beetle will face a different constitutive and induced phloem resin terpene environment when locating and colonizing jack pine in its new geographic range, and this may play a significant role in the ability of the insect to persist in

  9. Histology of white pine blister rust in needles of resistant and susceptible eastern white pine

    Science.gov (United States)

    Joel A. Jurgens; Robert A. Blanchette; Paul J. Zambino; Andrew David

    2003-01-01

    White pine blister rust, Cronartium ribicola, has plagued the forests of North America for almost a century. Over past decades, eastern white pine (Pinus strobus) that appear to tolerate the disease have been selected and incorporated into breeding programs. Seeds from P. strobus with putative resistance were...

  10. Integrated Procurement of Pulpwood and Energy Wood by Whole-Tree Bundling

    Energy Technology Data Exchange (ETDEWEB)

    Jylhae, Paula (Finnish Forest Research Inst., Kannus Unit, P.O. Box 44, FI-69101 Kannus (Finland)); Kaerhae, Kalle (Metsaeteho Oy, P.O. Box 101, FI-00171 Helsinki (Finland)); Laitila, Juha (Finnish Forest Research Inst., Joensuu Unit, P.O. Box 68, FI-80101 Joensuu (Finland))

    2008-10-15

    Total supply chain costs of pulpwood and energy wood harvested from early thinnings can be reduced by applying an integrated procurement system based on whole-tree bundling using a newly-developed whole-tree bundler. Pulpwood-dimensioned whole trees are incorporated into pulpwood bundles. The pulp and energy fraction are not separated before the wood reaches the debarking drum of the pulp mill. Based on industrial trials with Scots pine harvested from first thinnings, pulp made from blend of bundles and conventional pulpwood meets the quality requirements of chemical pine pulp. Small-diameter trees and undesirable tree species can be accumulated into separate energy wood bundles, which are transported to energy generation. Due to load compaction, cost savings are expected especially in forest haulage and road transportation. The system shows greatest potential when harvesting first-thinning stands with a breast-height diameter of 7-10 cm

  11. Enhancing Stand Structure through Snag Creation in Northeastern U.S. Forests: Using Ethanol Injections and Bark Beetle Pheromones to Artificially Stress Red Maple and White Pine

    Directory of Open Access Journals (Sweden)

    Kevin J. Dodds

    2016-06-01

    Full Text Available We investigated two methods to create white pine and red maple snags in a forested setting. The first involved injecting trees with ethanol at two times (single Ethanol (ETOH and double ETOH injections to increase attractiveness to insects and elicit attacks on trees. The second method was unique to white pines and involved both injection treatments in combination with baiting trees with Ips-specific pheromones. Three of five white pines from the double ETOH treatment died in the second year. Species including Ips pini (Say, Ips grandicollis Eichhoff, Orthotomicus caelatus Eichhoff, Crypturgus borealis Swaine and Monochamus notatus (Drury responded more strongly to at least one of the treatments over control trees. However, there were no differences found in individual Scolytinae or Cerambycidae species response to treatments in red maple. Fitness (FV/FM and vitality (PIabs were both significantly reduced in both ETOH treatments compared to controls in white pine. In red maple, fitness was reduced in the double ETOH treated trees but the final mean FV/FM values were within the approximate optimal of health. Ethanol injections, in combination with Ips-specific semiochemicals, show promise for creating standing coarse woody debris (CWD in white pine. Injecting ethanol was not effective for stressing red maple.

  12. Analysis of polycyclic aromatic hydrocarbons in tree-rings of Masson pine (Pinus massoniana L.) from two industrial sites in the Pearl River Delta, south China.

    Science.gov (United States)

    Kuang, Yuan-wen; Zhou, Guo-yi; Wen, Da-zhi; Li, Jiong; Sun, Fang-fang

    2011-09-01

    Concentrations of polycyclic aromatic hydrocarbons (PAHs) were examined and potential sources of PAHs were identified from the dated tree-rings of Masson pine (Pinus massoniana L.) near two industrial sites (Danshuikeng, DSK and Xiqiaoshan, XQS) in the Pearl River Delta of south China. Total concentrations of PAHs (∑PAHs) were revealed with similar patterns of temporal trends in the tree-rings at both sites, suggesting tree-rings recorded the historical variation in atmospheric PAHs. The differences of individual PAHs and of ∑PAHs detected in the tree-rings between the two sites reflected the historical differences of airborne PAHs. Regional changes in industrial activities might contribute to the site-specific and period-specific patterns of the tree-ring PAHs. The diagnostic PAH ratios of Ant/(Ant + PA), FL/(FL + Pyr), and BaA/(BaA + Chr)) revealed that PAHs in the tree-rings at both sites mainly stemmed from the combustion process (pyrogenic sources). Principal component analysis further confirmed that wood burning, coal combustion, diesel, and gasoline-powered vehicular emissions were the dominant contributors of PAHs sources at DSK, while diesel combustion, gasoline and natural gas combustion, and incomplete coal combustion were responsible for the main origins of PAHs at XQS. Tree-ring analysis of PAHs was indicative of PAHs from a mixture of sources of combustion, thus minimizing the bias of short-term active air sampling.

  13. Development of a pathway model to assess the exposure of European pine trees to pine wood nematode via the trade of wood

    NARCIS (Netherlands)

    Douma, J.C.; Werf, Van Der W.; Hemerik, L.; Magnusson, C.; Robinet, C.

    2017-01-01

    Pine wood nematode (PWN), Bursaphelenchus xylophilus, is a threat for pine species (Pinus spp.) throughout the world. The nematode is native to North America, and invaded Japan, China, Korea, and Taiwan, and more recently Portugal and Spain. PWN enters new areas through trade in wood products. Once

  14. Lodgepole Pine Cambium (Pinus contorta Dougl. ex Loud. var. latifolia Engelm. ex S. Wats.): a springtime first peoples' food in British Columbia.

    Science.gov (United States)

    Dilbone, Megan; Turner, Nancy J; von Aderkas, Patrick

    2013-01-01

    Lodgepole pine (Pinus contorta var. latifolia) is a tree species utilized for succulent edible cambium and secondary phloem in the spring by Interior First Peoples of the Pacific Northwest. In this article we present a nutritional analysis of this food based on a pooled sample of 17 trees harvested in the Chilcotin region of British Columbia. We also present enzymatic sugar analysis of raw, dried, and cooked lodgepole pine cambium harvested from the Chilcotin and Okanagan regions in British Columbia. In the discussion we interpret the nutrient values of raw lodgepole pine cambium in comparison to dried and cooked cambium, results from other nutritional studies of pine cambium, and nutrients in some other traditional and nontraditional foods.

  15. 137Cs accumulation in components of pine stands in Polessye of Ukraine

    International Nuclear Information System (INIS)

    Krasnov, V.P.; Orlov, A.A.; Gusarevich, M.G.

    2005-01-01

    Distribution of 137 Cs specific activity in structural components of Scotch pine in different parts of crone and tree trunk (according the height) was analyzed; the average value 137 Cs transfer factor (TF) for all investigated components was calculated. Decreasing of 137 Cs specific activity and values of TF from upper crone part through middle to the lowest one has been shown for the majority pine crone components in edatops B 2 and B 3 . It was drown a calculation that 137 Cs specific activities and TF values stably decreased in tree trunk components from upper part through middle to the lowest one in edatop B 3 . In edatop B 2 decreasing of 137 Cs specific activity and TF values for external and internal bark was also revealed in the same direction. The decreasing of 137 Cs specific activity and TF values for wood was revealed from upper part of the trunk to middle one and their increasing to the lowest tree trunk part. It was shown that physiologically active organs and tissues in the pine are characterized by the maximum accumulation: one-year-o;d shoots, one-year-old needles, internal bark. It was drown an important conclusion that part of tree trunk (according to its height), which used as fuel wood and construction materials, is a strong modification factor of 137 Cs content in complete product and this fact should be taken into account for forest cutting activities. (author)

  16. Establishing trees on cut-over peatlands in eastern Canada

    Directory of Open Access Journals (Sweden)

    J. Bussières

    2008-12-01

    Full Text Available Four major tree-planting trials on cut-over peatlands in eastern Canada were surveyed in 2002, in order to evaluate the potential use of trees in rehabilitation following horticultural peat extraction. At one of the sites, an experiment to determine the appropriate fertilisation rate for trees planted on cut-over peatlands was also conducted over several years. Tree performance was assessed by measuring survival, total height and annual growth of red maple (Acer rubrum L., tamarack (Larix laricina (Du Roi Koch., black spruce (Picea mariana (Mill. B.S.P., jack pine (Pinus banksiana Lamb. and hybrid poplar (Populus spp.. Establishment and growth of tamarack and black spruce in cut-over peatlands showed good potential when compared to performance in conventional forestry plantations. Red maple and jack pine gave poor productivity but promising survival, whilst hybrid poplar plantings failed. Adding nutrients was essential for growth but dosages above 122.5 g of 3.4N-8.3P-24.2K per tree gave no further improvement. Therefore, several different tree species can be planted to reclaim cut-over peatlands in eastern Canada, so long as the appropriate species are chosen and nutrients are provided.

  17. Influences of climate on the radial growth of lodgepole pine in Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Chhin, S.; Lieffers, V.J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Renewable Resources; Hogg, E.H. [Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB (Canada); Huang, S. [Alberta Sustainable Resource Development, Edmonton, AB (Canada). Forest Management Branch

    2008-02-15

    The forests of the Cordilleran region were used to document past relationships between tree growth and climate. Radial growth and climate relationships of lodgepole pines were examined across a network of 17 sites in Alberta over a distance of 1100 km. Pine sites were selected from a permanent plot database covering the predominant latitudinal and elevational range of lodgepole pines. An average of 21 dominant and co-dominant trees were sampled in a 50 m buffer zone. Ring-width series were detrended in 3 stages using negative exponential curves, linear regression, and low frequency standardized series (LFS). Each LFS series was detrended with a cubic-smoothing spline. Autocorrelation in each series was removed via autoregressive (AR) modelling resulting in high frequency residual series. High frequency residual (HFR) site chronologies were constructed by averaging HFR series developed at each site. Primary climate variables included mean daily minimum and maximum temperatures for each month and total monthly precipitation. Relationships between the different chronology types were then examined. Results of the study demonstrated that cool and moist conditions during the later summer months led to improved radial growth levels during the following years. Warm, dry winters and warm conditions during the autumn of the year in which the ring was formed also promoted tree growth. Results suggested that climatic warming and drying have opposing effects. It was concluded that future impacts on lodgepole pine radial growth will depend on the pattern and magnitude of changes in temperature and precipitation in each season. 55 refs., 3 tabs., 8 figs.

  18. Spatial patterns of longleaf pine (Pinus palustris) seedling eastablishment on the croatan national forest, North Carolina

    Science.gov (United States)

    Chadwick R. Avery; Susan Cohen; Kathleen C. Parker; John S. Kush

    2004-01-01

    Ecological research aimed at determining optimal conditions for longleaf pine regeneration has become increasingly important in efforts @ restore the longleaf pine ecosystem. Numerous authors have concluded that a negative relationship exists between the occurrence of seedlings and the occurrence of mature trees; however, observed field conditions in several North...

  19. Evaluation of insecticides for protecting southwestern ponderosa pines from attack by engraver beetles (Coleoptera: Curculionidae: Scolytinae)

    Science.gov (United States)

    Tom E. DeGomez; Christopher J. Hayes; John A. Anhold; Joel D. McMillin; Karen M. Clancy; Paul P. Bosu

    2006-01-01

    Insecticides that might protect pine trees from attack by engraver beetles (Ips spp.) have not been rigorously tested in the southwestern United States. We conducted two field experiments to evaluate the efficacy of several currently and potentially labeled preventative insecticides for protecting high-value ponderosa pine, Pinus ponderosa...

  20. Efficient ethanol production from beetle-killed lodgepole pine using SPORL technology and Saccharomyces cerevisiae without detoxification

    Science.gov (United States)

    Junyong Zhu; Xiaolin Luo; Shen Tian; Roland Gleisner; Jose Negron; Eric Horn

    2011-01-01

    This study applied Sulfite Pretreatment to Overcome Recalcitrance of Lignocelluloses (SPORL) to evaluate the potential of mountain pine beetle-killed lodgepole pine for ethanol production using conventional Saccharomyces cerevisiae without hydrolysate detoxification. The results indicate that the beetle-killed trees are more susceptible to SPORL pretreatment than live...

  1. Distribution of biomass and nutrients in lodgepole pine/bitterbrush ecosystems in central Oregon.

    Science.gov (United States)

    Susan N. Little; Laurl J. Shainsky

    1992-01-01

    We investigated the distribution of biomass and nutrients in lodgepole pine (Pinus contorta var. murryana Dougl.) ecosystems on pumice soils in south-central Oregon. Sixty-three trees were sampled to develop equations for estimating dry weights of tree crowns, boles, bark, and coarse roots from diameter at breast height and...

  2. Rapid changes in the range limits of Scots pine 4000 years ago

    International Nuclear Information System (INIS)

    Gear, A.J.; Huntley, B.

    1991-01-01

    Paleoecological data provide estimates of response rates to past climate changes. Fossil Pinus sylvestris stumps in far northern Scotland demonstrate former presence of pine trees where conventional pollen evidence of pine forests is lacking. Radiocarbon, dendrochronological, and fine temporal-resolution palynological data show that pine forest were present for about four centuries some 4,000 years ago; the forests expanded and then retreated rapidly some 70 to 80 kilometers. Despite the rapidity of this response to climate change, it occurred at rates slower by an order of magnitude than those necessary to maintain equilibrium with forecast climate changes attributed to the greenhouse effect

  3. Climate influences the leaf area/sapwood area ratio in Scots pine.

    Science.gov (United States)

    Mencuccini, M; Grace, J

    1995-01-01

    We tested the hypothesis that the leaf area/sapwood area ratio in Scots pine (Pinus sylvestris L.) is influenced by site differences in water vapor pressure deficit of the air (D). Two stands of the same provenance were selected, one in western Scotland and one in eastern England, so that effects resulting from age, genetic variability, density and fertility were minimized. Compared with the Scots pine trees at the cooler and wetter site in Scotland, the trees at the warmer and drier site in England produced less leaf area per unit of conducting sapwood area both at a stem height of 1.3 m and at the base of the live crown, whereas stem permeability was similar at both sites. Also, trees at the drier site had less leaf area per unit branch cross-sectional area at the branch base than trees at the wetter site. For each site, the average values for leaf area, sapwood area and permeability were used, together with values of transpiration rates at different D, to calculate average stem water potential gradients. Changes in the leaf area/sapwood area ratio acted to maintain a similar water potential gradient in the stems of trees at both sites despite climatic differences between the sites.

  4. Invasive pathogen threatens bird-pine mutualism: implications for sustaining a high-elevation ecosystem.

    Science.gov (United States)

    McKinney, Shawn T; Fiedler, Carl E; Tomback, Diana F

    2009-04-01

    Human-caused disruptions to seed-dispersal mutualisms increase the extinction risk for both plant and animal species. Large-seeded plants can be particularly vulnerable due to highly specialized dispersal systems and no compensatory regeneration mechanisms. Whitebark pine (Pinus albicaulis), a keystone subalpine species, obligately depends upon the Clark's Nutcracker (Nucifraga columbiana) for dispersal of its large, wingless seeds. Clark's Nutcracker, a facultative mutualist with whitebark pine, is sensitive to rates of energy gain, and emigrates from subalpine forests during periods of cone shortages. The invasive fungal pathogen Cronartium ribicola, which causes white pine blister rust, reduces whitebark pine cone production by killing cone-bearing branches and trees. Mortality from blister rust reaches 90% or higher in some whitebark pine forests in the Northern Rocky Mountains, USA, and the rust now occurs nearly rangewide in whitebark pine. Our objectives were to identify the minimum level of cone production necessary to elicit seed dispersal by nutcrackers and to determine how cone production is influenced by forest structure and health. We quantified forest conditions and ecological interactions between nutcrackers and whitebark pine in three Rocky Mountain ecosystems that differ in levels of rust infection and mortality. Both the frequency of nutcracker occurrence and probability of seed dispersal were strongly related to annual whitebark pine cone production, which had a positive linear association with live whitebark pine basal area, and negative linear association with whitebark pine tree mortality and rust infection. From our data, we estimated that a threshold level of approximately 1000 cones/ha is needed for a high likelihood of seed dispersal by nutcrackers (probability > or = 0.7), and that this level of cone production can be met by forests with live whitebark pine basal area > 5.0 m2/ha. The risk of mutualism disruption is greatest in northern

  5. Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks.

    Science.gov (United States)

    Chun, Man Young

    2014-07-17

    This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba), Pine (Pinus densiflora), Platanus (Platanus), and Metasequoia (Metasequoia glyptostroboides). These were used as passive air sampler (PAS) of atmospheric polybrominated diphenyl ethers (PBDEs). Tree barks were sampled from the same site. PBDEs were analyzed by highresolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Gingko contained the highest lipid content (7.82 mg/g dry), whereas pine (4.85 mg/g dry), Platanus (3.61 mg/g dry), and Metasequoia (0.97 mg/g dry) had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry), followed by Ginkgo (53,538.4 pg/g dry), Pine (20,266.4 pg/g dry), and Platanus (12,572.0 pg/g dry). There were poor correlations between lipid content and total PBDE concentrations in tree barks (R(2)=0.1011, p =0.682). Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6%) of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data.

  6. Insight into the hydraulics and resilience of Ponderosa pine seedlings using a mechanistic ecohydrologic model

    Science.gov (United States)

    Maneta, M. P.; Simeone, C.; Dobrowski, S.; Holden, Z.; Sapes, G.; Sala, A.; Begueria, S.

    2017-12-01

    In semiarid regions, drought-induced seedling mortality is considered to be caused by failure in the tree hydraulic column. Understanding the mechanisms that cause hydraulic failure and death in seedlings is important, among other things, to diagnose where some tree species may fail to regenerate, triggering demographic imbalances in the forest that could result in climate-driven shifts of tree species. Ponderosa pine is a common lower tree line species in the western US. Seedlings of ponderosa pine are often subject to low soil water potentials, which require lower water potentials in the xylem and leaves to maintain the negative pressure gradient that drives water upward. The resilience of the hydraulic column to hydraulic tension is species dependent, but from greenhouse experiments, we have identified general tension thresholds beyond which loss of xylem conductivity becomes critical, and mortality in Ponderosa pine seedlings start to occur. We describe this hydraulic behavior of plants using a mechanistic soil-vegetation-atmosphere transfer model. Before we use this models to understand water-stress induced seedling mortality at the landscape scale, we perform a modeling analysis of the dynamics of soil moisture, transpiration, leaf water potential and loss of plant water conductivity using detailed data from our green house experiments. The analysis is done using a spatially distributed model that simulates water fluxes, energy exchanges and water potentials in the soil-vegetation-atmosphere continuum. Plant hydraulic and physiological parameters of this model were calibrated using Monte Carlo methods against information on soil moisture, soil hydraulic potential, transpiration, leaf water potential and percent loss of conductivity in the xylem. This analysis permits us to construct a full portrait of the parameter space for Ponderosa pine seedling and generate posterior predictive distributions of tree response to understand the sensitivity of transpiration

  7. Analysis of seasonal, diurnal, and noctural growth patterns of young longleaf pine

    Science.gov (United States)

    John C. Gilbert; Ralph S. Meldahl; John S. Kush; William D. Boyer

    2006-01-01

    Forty longleaf pine (Pinus palustris Mill.) trees initially ranging from 1 to 1.5 m in height were measured on the Escambia Experimental Forest from 1969 through 1980. The trees were evenly divided between two soil types. From 1969 through 1970, height and diameter measurements were recorded one to four times weekly during the growing seasons and...

  8. Precommercial thinning of naturally seeded slash pine increases volume and monetary returns

    Science.gov (United States)

    Earle P. Jones

    1977-01-01

    A naturally seeded slash pine (Pinus elliottii Engelm. var. elliottii) stand, having up to 50,000 stems per acre, was precommercially thinned at age 3. Two thinning methods left single trees spaced 10 by 10 feet, and clumps of 6 to 8 trees spaced 10 by 10 feet, compared with the unthinned original stand. At age 23, the single-...

  9. What's known about managing eastern white pine

    Science.gov (United States)

    Charles R. Lockard

    1959-01-01

    At the 1957 meeting of the Northeastern Forest Research Advisory Council the comment was made that although Eastern white pine has been the most studied forest tree species in the Northeast, the only literature on the management of the species was in reports on isolated and uncoordinated studies. There was no comprehensive compendium of knowledge.

  10. Modifications in pine (Pinus silvestris) under the impact of industrial air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Wolak, J

    1970-01-01

    Growth habit forms in pine which developed in the Upper Silesian Industrial Region in places where industrial air pollution is a dominant ecological factor are described. Juvenile pine individuals, when not growing in density, soon cease to grow in height and their lateral branches grow freely while creeping on ground. In contrast to lifted up branches which are invaded by pests, those creeping one are healthy, with great increment, healthy needles, and normally developed cones. Pine shrubs acquire the habit of mountain pine. In pine shrubs there is formed the plant association Pinus silvestris-Solanum dulcamara which is not to be found elsewhere. When air pollution reaches its threshold value, when pine trees have no lower verticils, then upper branches grow downward until they reach soil surface and creep on it similarly as in the former case. The phenomenon of the formation of genuine habit forms in pine is one of the symptoms of impairment of productive capacity of habitat under the impact of the industrial air pollution.

  11. Seasonal photosynthesis and water relations of juvenile loblolly pine relative to stand density and canopy position

    Science.gov (United States)

    Zhenmin Tang; Jim L. Chambers; Mary A. Sword Sayer; James P. Barnett

    2003-01-01

    To assess the effects of stand density and canopy environment on tree physiology, we measured gas exchange responses of the same needle age class of 16-year-old loblolly pines (Pinus taeda L.) in thinned (512 trees ha-1) and non-thinned treatment plots (2,863 trees ha-1) in central Louisiana....

  12. Comparison of four harvesting systems in a loblolly pine plantation

    Science.gov (United States)

    J. Klepac; Dana Mitchell

    2016-01-01

    Felling and skidding operations were monitored while clearcut harvesting a 12-acre area of a 14-year old loblolly pine (Pinus taeda) plantation. The study area contained 465 trees per acre for trees 2.0 inches Diameter at Breast Height (DBH) and larger with a Quadratic Mean Diameter (QMD) of 7.26 inches. Two feller-bunchers (tracked and rubber-tired) and two skidders (...

  13. Environment-dependent microevolution in a Mediterranean pine (Pinus pinaster Aiton).

    Science.gov (United States)

    Alía, Ricardo; Chambel, Regina; Notivol, Eduardo; Climent, José; González-Martínez, Santiago C

    2014-09-23

    A central question for understanding the evolutionary responses of plant species to rapidly changing environments is the assessment of their potential for short-term (in one or a few generations) genetic change. In our study, we consider the case of Pinus pinaster Aiton (maritime pine), a widespread Mediterranean tree, and (i) test, under different experimental conditions (growth chamber and semi-natural), whether higher recruitment in the wild from the most successful mothers is due to better performance of their offspring; and (ii) evaluate genetic change in quantitative traits across generations at two different life stages (mature trees and seedlings) that are known to be under strong selection pressure in forest trees. Genetic control was high for most traits (h2 = 0.137-0.876) under the milder conditions of the growth chamber, but only for ontogenetic change (0.276), total height (0.415) and survival (0.719) under the more stressful semi-natural conditions. Significant phenotypic selection gradients were found in mature trees for traits related to seed quality (germination rate and number of empty seeds). Moreover, female relative reproductive success was significantly correlated with offspring performance for specific leaf area (SLA) in the growth chamber experiment, and stem mass fraction (SMF) in the experiment under semi-natural conditions, two adaptive traits related to abiotic stress-response in pines. Selection gradients based on genetic covariance of seedling traits and responses to selection at this stage involved traits related to biomass allocation (SMF) and growth (as decomposed by a Gompertz model) or delayed ontogenetic change, depending also on the testing environment. Despite the evidence of microevolutionary change in adaptive traits in maritime pine, directional or disruptive changes are difficult to predict due to variable selection at different life stages and environments. At mature-tree stages, higher female effective reproductive

  14. Growth and wood properties of genetically improved loblolly pine: propagation type comparison and genetic parameters

    Science.gov (United States)

    Finto Antony; Laurence Schimleck; Lewis Jordan; Benjamin Hornsby; Joseph Dahlen; Richard Daniels; Alexander Clark; Luis Apiolaza; Dudley Huber

    2013-01-01

    The use of clonal varieties in forestry offers great potential to improve growth traits (quantity) and wood properties (quality) of loblolly pine (Pinus taeda L.). Loblolly pine trees established via somatic embryogenesis (clones), full-sib zygotic crosses, and half-sib zygotic open-pollinated families were sampled to identify variation in growth and wood properties...

  15. Evaluation of general-use insecticides for preventing host colonization by New Jersey southern pine beetles.

    Science.gov (United States)

    Brian Strom; W.K. Oldland; J.R. Meeker; J. Dunn

    2015-01-01

    Four general-use insecticides (Astro, Onyx, Dominion Tree & Shrub, and Xytect 2F) were evaluated for their effectiveness at preventing attacks by the southern pine beetle (SPB) (Dendroctonus frontalis) and the small southern pine engraver (Ips avulsus) using a previously developed small-bolt method. Evaluations were conducted between 58 and 126 days post treatment...

  16. Computer programs for optical dendrometer measurements of standing tree profiles

    Science.gov (United States)

    Jacob R. Beard; Thomas G. Matney; Emily B. Schultz

    2015-01-01

    Tree profile equations are effective volume predictors. Diameter data for building these equations are collected from felled trees using diameter tapes and calipers or from standing trees using optical dendrometers. Developing and implementing a profile function from the collected data is a tedious and error prone task. This study created a computer program, Profile...

  17. Comparison of arthropod prey of red-cockaded woodpeckers on the boles of long-leaf and loblolly pines

    Science.gov (United States)

    Scott Horn; James L. Hanula

    2002-01-01

    Red-cockaded woodpeckers (Picoides borealis) forage on the boles of most southern pines. Woodpeckers may select trees based on arthropod availability, yet no published studies have evaluated differences in arthropod abundance on different species of pines. We used knockdown insecticides to sample arthropods on longleaf (Pinus palustris...

  18. Effects of Patagonian pine forestry on native breeding birds

    Directory of Open Access Journals (Sweden)

    Moises Pescador

    2014-12-01

    Full Text Available Aim of the study: The objective is to assess the influences of the tree stand age and other forestry management practices on species richness, composition, and distribution of the Patagonian pine plantation bird assemblages. Area of Study: The work was carried out in forested plots of Ponderosa pine located at the Lanín National Park (Patagonia, Argentina.Material and Methods: Birds were sampled using 25 m fixed radius point counts, at four plots varying in age, management, and forest structure. Main Results: A total of 2090 individuals belonging to 34 bird species were observed, their numbers vary significantly depending on the different modes of plantation management. The population density of the 14 most abundant bird species was compared among the four plantation plots and ten species don’t show statistically significant differences in their population density among the different forest plots. The California Quail, the White-Crested Elaenia and the Southern House Wren showed higher densities in pine plantations with lower tree densities and fewer cutting treatments. The Diuca Finch had high densities in the younger plantations not subjected to any treatment. Research highlights: Most of these bird species are opportunistic and a few are found more regularly in these non-native woods than in other native forested or afforested areas. Our data suggest that a mixed scenario based on a mosaic of plantation with patches of native deciduous forest may help maximize the bird diversity in the management of northwestern Patagonian plantation landscapes.Keywords: Bird population; diversity; exotic plantations; Patagonia; tree-age.

  19. Short Communication. Resin tapping activity as a contribution to the management of maritime pine forest

    Directory of Open Access Journals (Sweden)

    Amélia Palma

    2016-07-01

    Full Text Available Aim of the study: In this work potential resin yield in a region of high forest ability where maritime pine is the main species was estimated in order to understand the viability of promoting resin exploitation. Area of study: This study was conducted in Castro Daire County in central region of Portugal. Material and methods: To quantify the resin yield of trees tapped for the first time two plots were installed in a maritime pine stand with average tree age 65 years. Before the beginning of the resin tapping, dendrometric tree variables were measured. Also, in a neighbouring stand, 25 trees were selected to check the relation between tree dbh and resin yield. Gum resin from every tree was weighted during the season. Estimates of potential resin yield in Castro Daire County were made based on data from National Forest Inventory plots, resin tapping legislation and resin yield values obtained in the field. Two scenarios were considered: high and low resin yield. To understand the intentions of forest owners towards restarting resin tapping activity 16 maritime pine forest owners were interviewed. Main results: The results point out a high yield potential capacity for gum resin production in the County: values between 2,025 and 5,873 tons were obtained. Research highlights: Results may highlight the important socio-economical role of the resin tapping activity and can be used to support national forest policies to the resin sector and give forest owners motivation to reactivate resin tapping activity. Keywords: non-wood forest product; resin yield potential; forest owner.

  20. Short Communication. Resin tapping activity as a contribution to the management of maritime pine forest

    Energy Technology Data Exchange (ETDEWEB)

    Palma, A.; Pereira, J.M.; Soares, P.

    2016-07-01

    Aim of the study: In this work potential resin yield in a region of high forest ability where maritime pine is the main species was estimated in order to understand the viability of promoting resin exploitation. Area of study: This study was conducted in Castro Da ire County in central region of Portugal. Material and methods: To quantify the resin yield of trees tapped for the first time two plots were installed in a maritime pine stand with average tree age 65 years. Before the beginning of the resin tapping, dendrometric tree variables were measured. Also, in a neighbouring stand, 25 trees were selected to check the relation between tree dbh and resin yield. Gum resin from every tree was weighted during the season. Estimates of potential resin yield in Castro Daire County were made based on data from National Forest Inventory plots, resin tapping legislation and resin yield values obtained in the field. Two scenarios were considered: high and low resin yield. To understand the intentions of forest owners towards restarting resin tapping activity 16 maritime pine forest owners were interviewed. Main results: The results point out a high yield potential capacity for gum resin production in the County: values between 2,025 and 5,873 tons were obtained. Research highlights: Results may highlight the important socio-economical role of the resin tapping activity and can be used to support national forest policies to the resin sector and give forest owners motivation to reactivate resin tapping activity. (Author)

  1. Mannitol can mitigate negative effects of simulated acid mist and fluoranthene in juvenile Japanese red pine (P. densiflora Sieb. et Zucc.)

    International Nuclear Information System (INIS)

    Oguntimehin, Ilemobayo; Bandai, Sayuri; Sakugawa, Hiroshi

    2013-01-01

    The negative health effects of simulated acid mists and fluoranthene on juvenile Japanese red pine were investigated, and the methods of protection from these pollutants were examined. The needle gas exchange, chlorophyll fluorescence, chemical contents and visual damage to needles caused by acid mist applied alone or its conjunction with fluoranthene were investigated over 60 d and 20 d, respectively. Acid mist at pH 2 and 3 caused physiological and visual damage, which was enhanced by the addition of fluoranthene to the mist. However, fluoranthene and acid mist at pH 4 and 5 showed only minor effects. These findings indicate that acid mist may be more harmful to pine trees if it occurs in conjunction with polycyclic aromatic hydrocarbons. Moreover, suppression of the singular and additive effects of these compounds was achieved using mannitol, which may be widely applicable to suppression of reactive oxygen species-mediated plant damage. -- Highlights: ► We evaluate acid mist alone and acid mist plus fluoranthene effects on pine needles. ► Acid mist more damages pine needles if fluoranthene was additionally sprayed. ► The suppression of the mixture of pollutants effects are achieved with mannitol. ► Mannitol could be useful for protecting pine trees from air pollutants. -- Mannitol could be useful for protecting pine trees and other plants from air pollutants

  2. Okadaic acid and trifluoperazine enhance Agrobacterium-mediated transformation in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Lin, Jinxing; Newton, Ronald J

    2007-05-01

    Mature zygotic embryos of recalcitrant Christmas tree species eastern white pine (Pinus strobus L.) were used as explants for Agrobacterium tumefaciens strain GV3101-mediated transformation using the uidA (beta-Glucuronidase) gene as a reporter. Influence of the time of sonication and the concentrations of protein phosphatase inhibitor (okadaic acid) and kinase inhibitor (trifluoperazine) on Agrobacterium-mediated transformation have been evaluated. A high transformation frequency was obtained after embryos were sonicated for 45-50 s, or treated with 1.5-2.0 microM okadaic acid or treated with 100-200 microM trifluoperazine, respectively. Protein phosphatase and kinase inhibitors enhance Agrobacterium-mediated transformation in eastern white pine. A 2-3.5-fold higher rate of hygromycin-resistant callus was obtained with an addition of 2 microM okadaic acid or 150 microM trifluoperazine or sonicated embryos for 45 s. Stable integration of the uidA gene in the plant genome of eastern white pine was confirmed by polymerase chain reaction (PCR), Southern and northern blot analyses. These results demonstrated that a stable and enhanced transformation system has been established in eastern white pine and this system would provide an opportunity to transfer economically important genes into this Christmas tree species.

  3. Latent resilience in ponderosa pine forest: effects of resumed frequent fire.

    Science.gov (United States)

    Larson, Andrew J; Belote, R Travis; Cansler, C Alina; Parks, Sean A; Dietz, Matthew S

    2013-09-01

    Ecological systems often exhibit resilient states that are maintained through negative feedbacks. In ponderosa pine forests, fire historically represented the negative feedback mechanism that maintained ecosystem resilience; fire exclusion reduced that resilience, predisposing the transition to an alternative ecosystem state upon reintroduction of fire. We evaluated the effects of reintroduced frequent wildfire in unlogged, fire-excluded, ponderosa pine forest in the Bob Marshall Wilderness, Montana, USA. Initial reintroduction of fire in 2003 reduced tree density and consumed surface fuels, but also stimulated establishment of a dense cohort of lodgepole pine, maintaining a trajectory toward an alternative state. Resumption of a frequent fire regime by a second fire in 2011 restored a low-density forest dominated by large-diameter ponderosa pine by eliminating many regenerating lodgepole pines and by continuing to remove surface fuels and small-diameter lodgepole pine and Douglas-fir that established during the fire suppression era. Our data demonstrate that some unlogged, fire-excluded, ponderosa pine forests possess latent resilience to reintroduced fire. A passive model of simply allowing lightning-ignited fires to burn appears to be a viable approach to restoration of such forests.

  4. Estimating cubic volume of small diameter tree-length logs from ponderosa and lodgepole pine.

    Science.gov (United States)

    Marlin E. Plank; James M. Cahill

    1984-01-01

    A sample of 351 ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and 509 lodgepole pine (Pinus contorta Dougl. ex Loud.) logs were used to evaluate the performance of three commonly used formulas for estimating cubic volume. Smalian's formula, Bruce's formula, and Huber's formula were tested to determine which...

  5. SEASONAL PATTERNS OF FINE ROOT PRODUCTION AND TURNOVER IN PONDEROSA PINE STANDS OF DIFFERENT AGES

    Science.gov (United States)

    Root minirhizotron tubes were installed in two ponderosa pine (Pinus ponderosa Laws.) stands around three different tree age classes (16, 45, and > 250 yr old) to examine root spatial distribution in relation to canopy size and tree distribution, and to determine if rates of fine...

  6. Mountain Pine Beetle Host Selection Between Lodgepole and Ponderosa Pines in the Southern Rocky Mountains.

    Science.gov (United States)

    West, Daniel R; Briggs, Jennifer S; Jacobi, William R; Negrón, José F

    2016-02-01

    Recent evidence of range expansion and host transition by mountain pine beetle (Dendroctonus ponderosae Hopkins; MPB) has suggested that MPB may not primarily breed in their natal host, but will switch hosts to an alternate tree species. As MPB populations expanded in lodgepole pine forests in the southern Rocky Mountains, we investigated the potential for movement into adjacent ponderosa pine forests. We conducted field and laboratory experiments to evaluate four aspects of MPB population dynamics and host selection behavior in the two hosts: emergence timing, sex ratios, host choice, and reproductive success. We found that peak MPB emergence from both hosts occurred simultaneously between late July and early August, and the sex ratio of emerging beetles did not differ between hosts. In two direct tests of MPB host selection, we identified a strong preference by MPB for ponderosa versus lodgepole pine. At field sites, we captured naturally emerging beetles from both natal hosts in choice arenas containing logs of both species. In the laboratory, we offered sections of bark and phloem from both species to individual insects in bioassays. In both tests, insects infested ponderosa over lodgepole pine at a ratio of almost 2:1, regardless of natal host species. Reproductive success (offspring/female) was similar in colonized logs of both hosts. Overall, our findings suggest that MPB may exhibit equally high rates of infestation and fecundity in an alternate host under favorable conditions. © The Authors 2015. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  7. Studies on Solid Wood. IV. Comparison of Nordic Pine Trees

    DEFF Research Database (Denmark)

    Bjørkmann, Anders

    2002-01-01

    The methods developed previously for measuring stiffness, creep, and axial compression of solid wood have been used for a comparative study of three specimens of pine (Pinus silvestris), collected at different latitudes in Scandinavia (North Sweden, South Finland and Denmark). Axial samples taken...

  8. The Pine Ridge-Mayo National Aeronautics and Space Administration Telemedicine Project: Program Activities and Participant Reactions

    Science.gov (United States)

    Kottke, T. E.; Little Finger, L.; Trapp, M. A.; Panser, L. A.; Novotny, P. J.

    1996-01-01

    OBJECTIVE: To determine the response of participants to the Pine Ridge-Mayo National Aeronautics and Space Administration telemedicine project. DESIGN: We describe a 3-month demonstration project of medical education and clinical consultations conducted by means of satellite transmission. Postparticipation questionnaires and a postproject survey were used to assess the success of the activity. MATERIAL AND METHODS: Patients and employees at the Pine Ridge Indian Health Service Hospital in southwestern South Dakota and employees at Mayo Clinic Rochester participated in a telemedicine project, after which they completed exit surveys and a postproject questionnaire to ascertain the acceptability of this mode of health care. RESULTS: Almost all Pine Ridge and Mayo Clinic participants viewed the project as beneficial. The educational sessions received favorable evaluations, and almost two-thirds of the patients who completed evaluations thought the consultation had contributed to their medical care. More than 90% of the respondents from Pine Ridge and more than 85% of the respondents from Mayo Clinic Rochester said that they would recommend participation in this project to others. More than 90% of respondents from Pine Ridge and 80% of Mayo respondents agreed with the statement that the project should continue. CONCLUSION: These data suggest that a program of clinical consultation services, professional education, and patient education available by telemedicine might be viewed as beneficial.

  9. Conserving genetic diversity in Ponderosa Pine ecosystem restoration

    Science.gov (United States)

    L.E. DeWald

    2017-01-01

    Restoration treatments in the ponderosa pine (Pinus ponderosa P. & C. Lawson) ecosystems of the southwestern United States often include removing over 80 percent of post-EuroAmerican settlement-aged trees to create healthier forest structural conditions. These types of stand density reductions can have negative effects on genetic diversity. Allozyme analyses...

  10. Particulate pollutants are capable to ‘degrade’ epicuticular waxes and to decrease the drought tolerance of Scots pine (Pinus sylvestris L.)

    International Nuclear Information System (INIS)

    Burkhardt, Juergen; Pariyar, Shyam

    2014-01-01

    Air pollution causes the amorphous appearance of epicuticular waxes in conifers, usually called wax ‘degradation’ or ‘erosion’, which is often correlated with tree damage symptoms, e.g., winter desiccation. Previous investigations concentrated on wax chemistry, with little success. Here, we address the hypothesis that both ‘wax degradation’ and decreasing drought tolerance of trees may result from physical factors following the deposition of salt particles onto the needles. Pine seedlings were sprayed with dry aerosols or 50 mM solutions of different salts. The needles underwent humidity changes within an environmental scanning electron microscope, causing salt expansion on the surface and into the epistomatal chambers. The development of amorphous wax appearance by deliquescent salts covering tubular wax fibrils was demonstrated. The minimum epidermal conductance of the sprayed pine seedlings increased. Aerosol deposition potentially ‘degrades’ waxes and decreases tree drought tolerance. These effects have not been adequately considered thus far in air pollution research. Highlights: • Demonstrated capability of particles to produce ‘wax degradation’. • Dynamics of particles on pine needles, shown by videos. • Salt particles sprayed on pine needles increased minimum epidermal conductance g min . • Results strongly suggest direct link between air pollution and drought tolerance. • Linkage between different types of forest decline is suggested. -- ‘Wax degradation’ on pine needles and increased minimum epidermal conductance (i.e. uncontrollable water loss) were created by particles, suggesting a link between air pollution and tree drought tolerance

  11. Temporal variation of tritium concentration in tree-ring cellulose over the past 50 years

    International Nuclear Information System (INIS)

    Yamada, Y.; Yasuike, K.; Komura, K.

    2004-01-01

    Concentration of organically-bound tritium in the tree-ring cellulose of a pine tree grown in Shika-machi, Ishikawa prefecture, Japan (37.1degN, 136.5degE), was measured during the ring-years from 1949 to 1999. The results were compared with those of a pine tree grown in Tatsunokuchi-machi, Ishikawa prefecture, Japan (36.4degN, 136.5degE). The annual variation of tritium in tree rings demonstrated two differences between the Shika-machi tree and the Tatsunokuchi-machi tree. No secondary peak appeared in the period after the maximum peak of 1963 for the Shika-machi tree, while two peaks appeared in 1966 and 1970 for the Tatsunokuchi-machi tree. In addition, the height of the 1963 peak was 30% higher for the Shika-machi tree than for the Tatsunokuchi-machi tree. These differences are considered to be caused by the influence that the underground water in the root zone of the Tatsunokuchi-machi tree was strongly affected by water which was transported to the tree site from mountain regions as compared to the Shika-machi tree. (author)

  12. Changes in the rumen bacterial microbiome of cattle exposed to ponderosa pine needles.

    Science.gov (United States)

    Welch, K D; Stonecipher, C A; Gardner, D R; Cook, D; Pfister, J A

    2017-05-01

    Consumption of ponderosa pine needles, as well as needles and bark from a number of other trees, can cause abortions in cattle. The abortifacient compounds in these trees are labdane resin acids, including isocupressic acid and agathic acid. Previous research has demonstrated that cattle conditioned to pine needles metabolize the labdane resin acids more quickly than naïve cattle. The results from that study indicated that changes had occurred in the rumen of conditioned cattle. Therefore, in this study, the changes that occurred in the rumen bacterial microflora of cattle during exposure to ponderosa pine needles were evaluated. Cattle were dosed with ground pine needles twice daily for 7 d. Rumen samples were collected on d 0, 3, 7, and 14 (7 d after treatment stopped) and ruminal bacterial microbiome analyses were performed. There were 372 different genera of bacteria identified in the rumen samples. Principal coordinate analysis indicated that there was a significant difference in the rumen bacterial composition between the time points. There were 18 genera that increased in abundance from d 0 to d 7. Twenty three genera decreased in abundance from d 0 to d 7. The results from this study demonstrated that exposure of cattle to pine needles caused a clear shift in the rumen microbiome composition. In general, this shift lasted less than 1 wk post exposure, which indicates that any prophylactic treatment to manipulate the ruminal metabolism of the abortifacient compounds in pine needles would need to be continuously administered to maintain the necessary microbial composition in the rumen.

  13. Effects of first thinning on growth of loblolly pine plantations in the West Coastal Plain

    Science.gov (United States)

    Dean W. Coble; Jason B. Grogan

    2016-01-01

    The purpose of this research is to analyze thinning response in basal area and height growth of residual loblolly pine trees growing in plantations located in the West Gulf Coastal Plain. Thinning is a well-known silvicultural practice that increases the growing space available to desirable trees by removing competing trees.

  14. Development and preventative effect against pine wilt disease of a novel liquid formulation of emamectin benzoate.

    Science.gov (United States)

    Takai, Kazuya; Suzuki, Toshio; Kawazu, Kazuyoshi

    2003-03-01

    Injection of the poorly water-soluble emamectin benzoate (EB) into pine trunks required the development of an efficient liquid formulation. For injection into big trees in forests a good rate of injection and a high active content were required. Tests on the viscosity and EB-solubilizing ability of 14 various solubilizers in diethylene glycol monobutyl ether (DGMBE) led to the selection of Sorpol SM-100PM as the solubilizer of the formulation. Relationships between the solubilizing ability and amounts of Sorpol SM-100PM and DGMBE relative to that of EB, and between the concentration of the latter and the viscosity or the injection rate of the formulation led to a novel 40 g litre(-1) emamectin benzoate formulation (Shot Wan Liquid Formulation), which was composed of EB (40), Sorpol SM-100PM (120), DGMBE (160) and distilled water (50 g litre(-1)) in methanol. Injection of this formulation at a dose of 10 g EB per unit volume of pine tree prevented over 90% of the trees from wilting caused by pine wood nematode, and this preventative effect continued for 3 years. Neither discolouration of the leaves nor injury around the injection hole on the trees was observed after injection of the formulation.

  15. Assessing forest vulnerability to climate warming using a process-based model of tree growth: bad prospects for rear-edges.

    Science.gov (United States)

    Sánchez-Salguero, Raúl; Camarero, Jesus Julio; Gutiérrez, Emilia; González Rouco, Fidel; Gazol, Antonio; Sangüesa-Barreda, Gabriel; Andreu-Hayles, Laia; Linares, Juan Carlos; Seftigen, Kristina

    2017-07-01

    Growth models can be used to assess forest vulnerability to climate warming. If global warming amplifies water deficit in drought-prone areas, tree populations located at the driest and southernmost distribution limits (rear-edges) should be particularly threatened. Here, we address these statements by analyzing and projecting growth responses to climate of three major tree species (silver fir, Abies alba; Scots pine, Pinus sylvestris; and mountain pine, Pinus uncinata) in mountainous areas of NE Spain. This region is subjected to Mediterranean continental conditions, it encompasses wide climatic, topographic and environmental gradients, and, more importantly, it includes rear-edges of the continuous distributions of these tree species. We used tree-ring width data from a network of 110 forests in combination with the process-based Vaganov-Shashkin-Lite growth model and climate-growth analyses to forecast changes in tree growth during the 21st century. Climatic projections were based on four ensembles CO 2 emission scenarios. Warm and dry conditions during the growing season constrain silver fir and Scots pine growth, particularly at the species rear-edge. By contrast, growth of high-elevation mountain pine forests is enhanced by climate warming. The emission scenario (RCP 8.5) corresponding to the most pronounced warming (+1.4 to 4.8 °C) forecasted mean growth reductions of -10.7% and -16.4% in silver fir and Scots pine, respectively, after 2050. This indicates that rising temperatures could amplify drought stress and thus constrain the growth of silver fir and Scots pine rear-edge populations growing at xeric sites. Contrastingly, mountain pine growth is expected to increase by +12.5% due to a longer and warmer growing season. The projections of growth reduction in silver fir and Scots pine portend dieback and a contraction of their species distribution areas through potential local extinctions of the most vulnerable driest rear-edge stands. Our modeling

  16. Ectomycorrhizal community structure of different genotypes of Scots pine under forest nursery conditions.

    Science.gov (United States)

    Leski, Tomasz; Aucina, Algis; Skridaila, Audrius; Pietras, Marcin; Riepsas, Edvardas; Rudawska, Maria

    2010-10-01

    In this paper, we report the effect of Scots pine genotypes on ectomycorrhizal (ECM) community and growth, survival, and foliar nutrient composition of 2-year-old seedlings grown in forest bare-root nursery conditions in Lithuania. The Scots pine seeds originated from five stands from Latvia (P1), Lithuania (P2 and P3), Belarus (P4), and Poland (P5). Based on molecular identification, seven ECM fungal taxa were identified: Suillus luteus and Suillus variegatus (within the Suilloid type), Wilcoxina mikolae, Tuber sp., Thelephora terrestris, Cenococcum geophilum, and Russuloid type. The fungal species richness varied between five and seven morphotypes, depending on seed origin. The average species richness and relative abundance of most ECM morphotypes differed significantly depending on pine origin. The most essential finding of our study is the shift in dominance from an ascomycetous fungus like W. mikolae in P2 and P4 seedlings to basidiomycetous Suilloid species like S. luteus and S. variegatus in P1 and P5 seedlings. Significant differences between Scots pine origin were also found in seedling height, root dry weight, survival, and concentration of C, K, Ca, and Mg in the needles. The Spearman rank correlation coefficient revealed that survival and nutritional status of pine seedlings were positively correlated with abundance of Suilloid mycorrhizas and negatively linked with W. mikolae abundance. However, stepwise multiple regression analysis showed that only survival and magnesium content in pine needles were significantly correlated with abundance of ECM fungi, and Suilloid mycorrhizas were a main significant predictor. Our results may have implications for understanding the physiological and genetic relationship between the host tree and fungi and should be considered in management decisions in forestry and ECM fungus inoculation programs.

  17. Key mechanisms of metabolic changes in mountain pine and larch under drought in the Swiss National Park

    Science.gov (United States)

    Churakova, Olga; Bigler, Christof; Bryukhanova, Marina; Siegwolf, Rolf

    2014-05-01

    Forests are of great ecological, economic and social importance worldwide. In many regions they have been recently affected by water deficits during summer droughts due to increasing temperatures and shortage of precipitation (Allen et al. 2010). Climate models predict that drought frequency will continue to increase during the 21st century and beyond (CH 2011). Since the foundation of the Swiss National Park (SNP) in 1914 these forests have not been managed any more, which allows to study natural processes in these forest ecosystems. Since the 1990s, annual and spring temperatures increased in the SNP up to 0.5 ºC and 1.02 ºC, respectively, and average summer temperature increased up to 0.6 ºC. Annual precipitation decreased by 81 mm compared to the mean values (927 mm) from 1917 to 1989. Therefore, detailed studies of drought effects on the physiological functioning of trees over the last decades are needed. Recently, mortality processes of mountain pines were observed in the Swiss National Park (Bigler, Rigling 2013). It is of great interest to investigate and compare the physiological responses of mountain pine and larch to drought and to understand the mechanisms behind the mortality processes. The goal of our study is to investigate the key mechanisms of tree physiological responses to drought in the SNP using state-of-the-art methods of classical dendrochronology, tree physiology, stable isotope, and compound-specific isotope analyses. Long-term responses of mountain pine and larch trees from north- and south-facing sites to drought will be inferred from tree-ring width data. Based on climatic data a drought index will be calculated and reconstructed back in time. New chronologies for stable carbon and oxygen isotope ratios derived from both pine and larch tree-ring cellulose will provide retrospective insight into the long-term whole-plant physiological control of gas exchange derived from estimates of stomatal conductance, photosynthetic rate and

  18. Attraction of Tomicus yunnanensis (Coleoptera: Scolytidae to Yunnan Pine Logs with and without Periderm or Phloem: An Effective Monitoring Bait

    Directory of Open Access Journals (Sweden)

    Rong Chun Lu

    2012-01-01

    Full Text Available The Yunnan pine shoot beetle, Tomicus yunnanensis Kirkendall and Faccoli (Coleoptera: Scolytinae is an important pest of Yunnan pine (Pinus yunnanensis Franch in China. Experiments with host log baits were done to develop a pest monitoring system using host tree kairomone. Five Yunnan pine logs (each 10–15 cm diam. × 30-cm long in a trap-log bundle were treated by peeling periderm (outer bark off to expose the phloem, and half of each log was covered with sticky adhesive to capture any attracted adult beetles. Significantly, more beetles were attracted and caught on the periderm-peeled logs (ca 30 beetles/m2 log surface/day than on untreated control logs with adhesive (ca 2.5/m2/day. No significant differences were observed between catches on logs taken from lower or upper halves of Yunnan pines. T. yunnanensis flies mostly during the afternoon according to trap catches throughout the day. Attraction to the periderm-peeled logs decreased considerably when they were peeled further to remove the phloem, indicating phloem volatiles play a role in selection of the host by the beetle. The readily-available log baits appear useful for monitoring pine shoot beetle populations in integrated pest management programs.

  19. Dispersal ecology of lodgepole pine (Pinus contorta Dougl.) in its native environment as related to Swedish forestry

    Science.gov (United States)

    Despain, D.G.

    2001-01-01

    Lodgepole pine (Pinus contorta Dougl.) covers extensive areas of the mountains of western North America. It has evolved into four subspecies, each adapted to slightly different environmental conditions. All are adapted to reproduce following fire. Subspecies latifolia is the most extensive and economically important in North America. Serotiny is common in this subspecies, but trees bearing nonserotinous cones can be found in most stands, sometimes constituting more that 70% of the trees. Cone crops are produced yearly and seed loss to seed predators, insects and diseases are minimal. Germination and establishment occurs across a broad range of conditions allowing lodgepole pine to grow on poor sites as well as highly productive sites. These characteristics give lodgepole pine the ability to be highly invasive in new areas of suitable habitat.

  20. A stable-isotope tree-ring timescale of the Late Glacial/Holocene boundary

    International Nuclear Information System (INIS)

    Becker, Bernd; Kromer, Bernd; Trimborn, Peter

    1991-01-01

    Late Glacial and Holocene tree-ring chronologies, like deep-sea sediments or polar ice cores, contain information about past environments. Changes in tree-ring growth rates can be related to past climate anomalies and changes in the isotope composition of tree-ring cellulose reflect changes in the composition of the atmosphere and the hydrosphere. We have established a 9,928-year absolutely dated dendrochronological record of Holocene oak (Quercus robur, Quercus petraea)-and a 1,604-year floating Late Glacial and Early Holocene chronology of pine (Pinus sylvestris) from subfossil tree remnants deposited in alluvial terraces of south central European rivers. The pine sequence provides records of dendro-dated 14 C, 13 C and 2 H patterns for the late Younger Dryas and the entire Preboreal (10,100-9,000 yr BP). Through the use of dendrochronology, radiocarbon age calibration and stable isotope analysis, we suggest that the Late Glacial/Holocene transition may be identified and dated by 13 C and 2 H tree-ring chronologies. (author)

  1. Hidden in Plain sight: synthetic pheromone misleads beetles, protects trees

    Science.gov (United States)

    Paul Meznarich; Robert Progar

    2015-01-01

    In the last decade, pine forests throughout much of the western United States have been ravaged by the mountain pine beetle (Dendroctonus ponderosae). This bark beetle is native to the United States and has been responsible for massive tree kills in the past. The current outbreak, however, has been notably severe and wide ranging and the effects have been more dramatic...

  2. Applied chemical ecology of the mountain pine beetle

    Science.gov (United States)

    Robert A. Progar; Nancy Gillette; Christopher J. Fettig; Kathryn Hrinkevich

    2014-01-01

    Mountain pine beetle, Dendroctonus ponderosae Hopkins, is a primary agent of forest disturbance in western North America. Episodic outbreaks occur at the convergence of favorable forest age and size class structure and climate patterns. Recent outbreaks have exceeded the historic range of variability of D. ponderosae-caused tree mortality affecting ecosystem goods and...

  3. Effect of dietary protein level and quebracho tannin on consumption of pine needles (Pinus ponderosa) by beef cows

    Science.gov (United States)

    Ponderosa pine trees occupy over 15 million hectares of rangeland in western North America. Pregnant cows often consume pine needles (PN), and subsequently abort. The protein-to-energy ratio may be important in the ability of cattle to tolerate dietary terpenes. Tannins often co-occur with terpenes ...

  4. Damage of the forest tree layer exposed to the acute gamma- irradiation in different phenophases

    International Nuclear Information System (INIS)

    Karaban', R.T.; Mishenkov, N.N.; Spirin, D.A.; Prister, B.S.; Aleksakhin, R.M.

    1980-01-01

    A programme of radioecological investigations using a specially designed powerful accurate source of gamma radiation (32 kCi 137 Cs) has been initiated in our country to study the consequences of the acute forest irradiation. The irradiation has been carried out twice - in autumn (September, 1973) and in spring (May, 1977). Pine and birch sections of the forest 26-30 years old have been subjected to irradiation. Exposures during autumn and spring irradiation constitute 16 and 8 days, respectively. Forest irradiation has been carried out so as to form isodose sections of considerable square to have a sufficient amount of tress in every isodose section. Pine-trees that perished due to the effect of ionizing radiation have been counted. Presented are the data on pine trees that perished depending on the dose absorbed and new pine shoots one year old (shoots of 1978) depending on the dose in the second year after spring irradiation. The data on the damage of shoots and buds used as the indices of pine radiation damage have been used to forecast that LD 100 for the period of acute effects (4-5 years) in the case of spring irradiation is approximately 1.5-2 krad, i.e. the spring effect on pine trees is 2-2.7 times more radiosensitive, than in autumn. The supposition is made that doses absorbed (about 1-2 krad) are minimum lethal doses for coniferous forests when irradiating them in most radiosensitive phases

  5. Population variation in drought resistance and its relationship with adaptive and physiological seedling traits in Turkish red pine (Pinus brutia Ten.)

    OpenAIRE

    KANDEMİR, GAYE; ÖNDE, SERTAÇ; TEMEL, FATİH; KAYA, ZEKİ

    2017-01-01

    Variation in drought resistance and its relationship with adaptive and physiological traits in forest trees are important in choosing suitable seed sources for reforestation and afforestation programs. A common garden experiment using 240 half-sib families originating from coastal and inland populations of Turkish red pine (Pinus brutia) in Turkey was set up with three replicates. The aims were to determine variation of drought damage, height growth, and phenology among populations and to ...

  6. Depositional characteristics of atmospheric polybrominated diphenyl ethers on tree barks

    Directory of Open Access Journals (Sweden)

    Man Young Chun

    2014-07-01

    Full Text Available Objectives This study was conducted to determine the depositional characteristics of several tree barks, including Ginkgo (Ginkgo biloba, Pine (Pinus densiflora, Platanus (Platanus, and Metasequoia (Metasequoia glyptostroboides. These were used as passive air sampler (PAS of atmospheric polybrominated diphenyl ethers (PBDEs. Methods Tree barks were sampled from the same site. PBDEs were analyzed by highresolution gas chromatography/high-resolution mass spectrometer, and the lipid content was measured using the gravimetric method by n-hexane extraction. Results Gingko contained the highest lipid content (7.82 mg/g dry, whereas pine (4.85 mg/g dry, Platanus (3.61 mg/g dry, and Metasequoia (0.97 mg/g dry had relatively lower content. The highest total PBDEs concentration was observed in Metasequoia (83,159.0 pg/g dry, followed by Ginkgo (53,538.4 pg/g dry, Pine (20,266.4 pg/g dry, and Platanus (12,572.0 pg/g dry. There were poor correlations between lipid content and total PBDE concentrations in tree barks (R2=0.1011, p =0.682. Among the PBDE congeners, BDE 206, 207 and 209 were highly brominated PBDEs that are sorbed to particulates in ambient air, which accounted for 90.5% (84.3-95.6% of the concentration and were therefore identified as the main PBDE congener. The concentrations of particulate PBDEs deposited on tree barks were dependent on morphological characteristics such as surface area or roughness of barks. Conclusions Therefore, when using the tree barks as the PAS of the atmospheric PBDEs, samples belonging to same tree species should be collected to reduce errors and to obtain reliable data.

  7. From a tree to a stand in Finnish boreal forests - biomass estimation and comparison of methods

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunjiang

    2009-07-01

    There is an increasing need to compare the results obtained with different methods of estimation of tree biomass in order to reduce the uncertainty in the assessment of forest biomass carbon. In this study, tree biomass was investigated in a 30-year-old Scots pine (Pinus sylvestris) (Young-Stand) and a 130-year-old mixed Norway spruce (Picea abies)-Scots pine stand (Mature-Stand) located in southern Finland (61deg50' N, 24deg22' E). In particular, a comparison of the results of different estimation methods was conducted to assess the reliability and suitability of their applications. For the trees in Mature-Stand, annual stem biomass increment fluctuated following a sigmoid equation, and the fitting curves reached a maximum level (from about 1 kg yr-1 for understorey spruce to 7 kg yr-1 for dominant pine) when the trees were 100 years old). Tree biomass was estimated to be about 70 Mg ha-1 in Young-Stand and about 220 Mg ha-1 in Mature-Stand. In the region (58.00-62.13 degN, 14-34 degE, <= 300 m a.s.l.) surrounding the study stands, the tree biomass accumulation in Norway spruce and Scots pine stands followed a sigmoid equation with stand age, with a maximum of 230 Mg ha-1 at the age of 140 years. In Mature-Stand, lichen biomass on the trees was 1.63 Mg ha-1 with more than half of the biomass occurring on dead branches, and the standing crop of litter lichen on the ground was about 0.09 Mg ha-1. There were substantial differences among the results estimated by different methods in the stands. These results imply that a possible estimation error should be taken into account when calculating tree biomass in a stand with an indirect approach. (orig.)

  8. Establishment of trees on minesoils during drought and wet years

    International Nuclear Information System (INIS)

    Larson, M.M.; Kost, D.A.; Vimmerstedt, J.P.

    1995-01-01

    In two studies, green ash (Fraxinus pennsylvania) and white pine (Pinus strobus) were planted on three minesoils (graded topsoil, ripped topsoil, and gray cast overburden). Mixtures of grasses and/or legumes were seeded at different times in relation to tree planting. In the first study, tree planting was followed by several week of drought; in the second, precipitation was above average for the first two growing seasons following planting. In the drought year, survival of green ash was influenced by minesoil type, herbaceous mixture, and herbaceous seeding time in relation to tree planting. Among minesoils, mean survival was highest (87%) on cast overburden. Seeding grasses the fall before planting resulted in poor ash survival (40% to 47%) compared with seeding at time of planting (82% to 85%). Ash survived well (81% to 94%) on legume-seeded plots. When tree planting was followed by two wet seasons, survival at 4 and 5 yr ranged from very good to excellent in all treatments. Total height of ash trees on cast overburden averaged 31% less than that of trees on topsoil, and 29% greater on legume-seeded subplots than trees on grass subplots, although herbaceous biomass was greater on legume subplots. The three minesoils proved unsuitable for white pine. 17 refs., 7 tabs

  9. The variability of Scots pine from Piekielna Góra as expressed by morphological and anatomical traits of needles

    Directory of Open Access Journals (Sweden)

    Maria A. Bobowicz

    2014-01-01

    Full Text Available Two-year old needles were collected from 30 standing Scots pine trees on Piekielna Góra. These needles were analysed in respect to 13 morphological and anatomical traits. The data so obtained was subjected to a whole range of multi-trait analytical methods in an attempt to determine the variability among the randomly chosen trees. Multivariate analysis of variance and canonical analysis were done as well as calculation of Mahalanobis distances between each pair of trees and their significance was tested by the Hotelling T2 statistics. Aminimum spanning tree was constructed on the basis of the shortest Mahalanobis distances, while a dendrogram (cluster analysis was compiled on the basis of Euclidean distances. It was found that in spite of the fact that the studied population sample of pines did not form internal, significantly differentiated groups, the variability among particular trees was large and depended on the given trait. The number of resin canals best differentiated the studied trees, while the Marcet coefficient did not significantly differentia­te any pair of trees.

  10. Butt rot defect and potential hazard in lodgepole pine on selected California recreational areas

    Science.gov (United States)

    Lee A. Paine

    1966-01-01

    Within the area sampled, potentially hazardous lodgepole pine were common on recreational sites. The incidence of decayed and mechanically weak trees was correlated with fire damage. Two-thirds of fire-scarred trees were decayed; one-third were rated potentially hazardous. Fire scars occurred roughly in proportion to level of plot recreational use.

  11. PROGRAM HTVOL: The Determination of Tree Crown Volume by Layers

    Science.gov (United States)

    Joseph C. Mawson; Jack Ward Thomas; Richard M. DeGraaf

    1976-01-01

    A FORTRAN IV computer program calculates, from a few field measurements, the volume of tree crowns. This volume is in layers of a specified thickness of trees or large shrubs. Each tree is assigned one of 15 solid forms, formed by using one of five side shapes (a circle, an ellipse, a neiloid, a triangle, or a parabolalike shape), and one of three bottom shapes (a...

  12. Survival and sprouting responses of Chihuahua Pine after the Rodeo-Chediski Fire on the Mogollon Rim, Arizona

    Science.gov (United States)

    Kenneth H. Baumgartner; Peter Z. Fule

    2007-01-01

    Chihuahua pines (Pinus leiophylla Schiede and Deppe var. chihuahuana Engelmann) were surveyed on 11 study plots on the Mogollon Rim in east central Arizona to compare characteristics of trees that sprouted from the base or root collar after the Rodeo-Chediski fire with those of trees that did not sprout. The differences in trees...

  13. Plentern mit Kiefern--Ergebnisse aus den USA [Plentering with pines--results from the United States

    Science.gov (United States)

    James M. Guldin; Don C. Bragg; Andreas Zingg

    2017-01-01

    Until now, scientifically reliable data on plentering of light-demanding tree species in Europe have been lacking. This gap is filled with long-term trials from the USA, among others with southern yellow pines. In the southern state of Arkansas, two plots of 16 hectares were installed in 1936, in the context of a large-scale trial of mixed loblolly pine (...

  14. Forest Modeling of Jack Pine Trees for BOREAS

    Science.gov (United States)

    Moghhadam, Mahta; Saatchi, Sasan

    1994-01-01

    As a part of the intensive field campaign for the Boreal forest ecosystem-atmosphere research (BOREAS) project in August 1993, the NASA/JPL AIRSAR covered an area of about 100 km by 100 km near the Prince Albert National Park in Saskatchewan, Canada. At the same time, ground-truth measurements were made in several stands which have been selected as the primary study sites, as well as in some auxiliary sites. This paper focuses on an area including Jack Pine stands in the Nipawin area near the park.

  15. Selection of tree roosts by male Indiana bats during the autumn swarm in the Ozark Highlands, USA

    Science.gov (United States)

    Roger W. Perry; Stephen C. Brandebura; Thomas S. Risch

    2016-01-01

    We identified 162 roosts for 36 male Indiana bats (Myotis sodalis) across 3 study areas in the Ozarks of northern Arkansas, USA, during the autumn swarm (late Aug to late Oct, 2005 and 2006). Bats utilized 14 tree species; snags of shortleaf pine (Pinus echinata) were the most utilized (30% of roosts) and pines were selected over hardwoods. Diameter of trees and snags...

  16. Disentangling the climate-driven bimodal growth pattern in coastal and continental Mediterranean pine stands.

    Science.gov (United States)

    Pacheco, Arturo; Camarero, J Julio; Ribas, Montse; Gazol, Antonio; Gutierrez, E; Carrer, Marco

    2018-02-15

    Mediterranean climate promotes two distinct growth peaks separated by summer quiescence in trees. This bimodal pattern has been associated to favourable growing conditions during spring and autumn when mild temperatures and soil-water availability enhance cambial activity. Climatic models predict progressive warming and drying for the Mediterranean Basin, which could shorten or shift the spring and autumn growing seasons. We explored this idea by comparing two sites with different Mediterranean climate types (continental/dry and coastal/wet) and studied how climate drives the bimodal growth pattern in Aleppo pine (Pinus halepensis). Specifically we investigated the intra-annual changes in wood anatomy and the corresponding formation of density fluctuations (IADF). Trees on both sites were analyzed by dendrometer monitoring and by developing chronologies of wood anatomical traits. Radial-increment dynamics followed a similar bimodal pattern in both sites but coastal trees showed higher increments during the spring and autumn growth peaks, especially in autumn. The summer rest of cambium activity occurs almost one month earlier in the coastal than in the inland site. Lumen area and cell-wall thickness were significantly smaller in the continental site, while the increment rate of cell-wall thickness during an IADF event was much higher in the coastal pines. The accumulated soil moisture deficit was the main climatic constraint of tracheid enlargement in continental pines. Intra-annual density fluctuations were more frequent in the coastal trees where wood anatomy features recover to average values after such events, meanwhile inland trees presented a much lower recovery rate. Growth bimodality and the formation of density fluctuations were linked, but mild climate of the coastal site allows a longer growing season, which explains why trees in this area showed higher and more variable growth rates. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Survey of foliar monoterpenes across the range of jack pine reveal three widespread chemotypes: implications to host expansion of invasive mountain pine beetle

    Directory of Open Access Journals (Sweden)

    Spencer eTaft

    2015-05-01

    Full Text Available The secondary compounds of pines (Pinus can strongly affect the physiology, ecology and behaviors of the bark beetles (Coleoptera: Curculionidae, Scolytinae that feed on sub-cortical tissues of hosts. Jack pine (Pinus banksiana has a wide natural distribution range in North America (Canada and USA and thus variations in its secondary compounds, particularly monoterpenes, could affect the host expansion of invasive mountain pine beetle (Dendroctonus ponderosae, which has recently expanded its range into the novel jack pine boreal forest. We investigated monoterpene composition of 601 jack pine trees from natural and provenance forest stands representing 63 populations from Alberta to the Atlantic coast. Throughout its range, jack pine exhibited three chemotypes characterized by high proportions of α-pinene, β-pinene, or limonene. The frequency with which the α-pinene and β-pinene chemotypes occurred at individual sites was correlated to climatic variables, such as continentality and mean annual precipitation, as were the individual α-pinene and β-pinene concentrations. However, other monoterpenes were generally not correlated to climatic variables or geographic distribution. Finally, while the enantiomeric ratios of β-pinene and limonene remained constant across jack pine’s distribution, (‒:(+-α-pinene exhibited two separate trends, thereby delineating two α-pinene phenotypes, both of which occurred across jack pine’s range. These significant variations in jack pine monoterpene composition may have cascading effects on the continued eastward spread and success of D. ponderosae in the Canadian boreal forest.

  18. Effects of silvicultural treatment on the stability of black pine plantations.

    Directory of Open Access Journals (Sweden)

    Paolo Cantiani

    2010-12-01

    Full Text Available Black pine plantations have been established at the purpose of recovering a forest cover to marginal soils, mostly throughout the Apennines range in Italy, since the end of the eighteenth century and up to the mid 1900. Both the decay of forest cover and soil erosion were the outcome of the long-lasting overuse through the intensive forest exploitation practices, grazing of the forest floor and wildfires, occurring since many centuries ago. The primary function of pine reafforestation was therefore to re-establish a first cover with a pioneer species, preparatory to future mixed forest types based on the natural reintroduction of broadleaves originally living in the same areas, mainly deciduous oaks and beech in the upper part. These goals have been partly met over the wide reafforestation area; the key functions of pine stands are today the protection against soil erosion and the hydrological regulation of catchments. The pine stands have been assuming today also a scenic role because they have been incorporated in the landscape physiognomy. A series of thinning up to the regeneration phase had been planned by foresters since the design of these plantations, but many stands have grown unthinned and fully stocked for a long time, this condition contributing a less mechanical stability of trees. Alternative forms of regeneration in grown-up stands have been and are being tested to improve both the natural and artificial establishment of indigenous species, but thinnings remain, even if a tardy measure, the main practice enforceable to these pine forests. The results of experimental trials undertaken in the black pine forest stand located in Pratomagno casentinese (Arezzo are being reported in the paper. The study started in 1978 and the following theses were tested (A heavy thinning from below; (B moderate thinning from below; (C control. Three thinnings were carried out in 1978, 1999 and 2009 at the ages of 24, 45 and 55. The action over time of

  19. Elevational shifts in thermal suitability for mountain pine beetle population growth in a changing climate

    Science.gov (United States)

    Barbara J. Bentz; Jacob P. Duncan; James A. Powell

    2016-01-01

    Future forests are being shaped by changing climate and disturbances. Climate change is causing large-scale forest declines globally, in addition to distributional shifts of many tree species. Because environmental cues dictate insect seasonality and population success, climate change is also influencing tree-killing bark beetles. The mountain pine beetle,...

  20. Seasonal changes in above- and belowground carbohydrate concentrations of ponderosa pine along a pollution gradient

    Science.gov (United States)

    Nancy E. Grulke; Chris P. Andersen; William E. Hogsett

    2001-01-01

    Seasonal patterns of carbohydrate concentration in coarse and fine roots, stem or bole, and foliage of ponderosa pine (Pinus ponderosa Laws) were described across five treeage classes from seedlings to mature trees at an atmospherically clean site. Relative to all other tree-age classes, seedlings exhibited greater tissue carbohydrate concentration...

  1. Effects of introgression on the genetic population structure of two ecologically and economically important conifer species: lodgepole pine (Pinus contorta var. latifolia) and jack pine (Pinus banksiana).

    Science.gov (United States)

    Cullingham, Catherine I; Cooke, Janice E K; Coltman, David W

    2013-10-01

    Forest trees exhibit a remarkable range of adaptations to their environment, but as a result of frequent and long-distance gene flow, populations are often only weakly differentiated. Lodgepole and jack pine hybridize in western Canada, which adds the opportunity for introgression through hybridization to contribute to population structure and (or) adaptive variation. Access to large sample size, high density SNP datasets for these species would improve our ability to resolve population structure, parameterize introgression, and separate the influence of demography from adaptation. To accomplish this, 454 transcriptome reads for lodgepole and jack pine were assembled using Newbler and MIRA, the assemblies mined for SNPs, and 1536 SNPs were selected for typing on lodgepole pine, jack pine, and their hybrids (N = 536). We identified population structure using both Bayesian clustering and discriminate analysis of principle components. Introgressed SNP loci were identified and their influence on observed population structure was assessed. We found that introgressed loci resulted in increased differentiation both within lodgepole and jack pine populations. These findings are timely given the recent mountain pine beetle population expansion in the hybrid zone, and will facilitate future studies of adaptive traits in these ecologically important species.

  2. Soil Preferences in Germination and Survival of Limber Pine in the Great Basin White Mountains

    Directory of Open Access Journals (Sweden)

    Brian V. Smithers

    2017-11-01

    Full Text Available In the Great Basin, limber pine is a sub-alpine tree species that is colonizing newly available habitat above treeline in greater numbers than treeline-dominating Great Basin bristlecone pine, especially on dolomite soil, where few plants are able to grow and where limber pine adults are rare. To examine the role of soil type on germination and establishment of limber pine, I sowed limber pine seeds in containers of the three main White Mountains soil types in one location while measuring soil moisture and temperature. I found that dolomite soil retains water longer, and has higher soil water content, than quartzite and granite soils and has the coolest maximum growing season temperatures. Limber pine germination and survival were highest in dolomite soil relative to quartzite and granite where limber pine adults are more common. While adult limber pines are rare on dolomite soils, young limber pines appear to prefer them. This indicates that limber pine either has only recently been able to survive in treeline climate on dolomite or that bristlecone pine has some long-term competitive advantage on dolomite making limber pine, a species with 1500 year old individuals, an early succession species in Great Basin sub-alpine forests.

  3. Climate Drives Episodic Conifer Establishment after Fire in Dry Ponderosa Pine Forests of the Colorado Front Range, USA

    Directory of Open Access Journals (Sweden)

    Monica T. Rother

    2017-05-01

    Full Text Available In recent years, warming climate and increased fire activity have raised concern about post-fire recovery of western U.S. forests. We assessed relationships between climate variability and tree establishment after fire in dry ponderosa pine forests of the Colorado Front Range. We harvested and aged over 400 post-fire juvenile ponderosa pine (Pinus ponderosa and Douglas-fir (Pseudotsuga menziesii trees using an improved tree-ring based approach that yielded annually-resolved dates and then assessed relationships between climate variability and pulses of tree establishment. We found that tree establishment was largely concentrated in years of above-average moisture availability in the growing season, including higher amounts of precipitation and more positive values of the Palmer Drought Severity Index. Under continued climate change, drier conditions associated with warming temperatures may limit forest recovery after fire, which could result in lower stand densities or shifts to non-forested vegetation in some areas.

  4. Direct evaluation of fault trees using object-oriented programming techniques

    Science.gov (United States)

    Patterson-Hine, F. A.; Koen, B. V.

    1989-01-01

    Object-oriented programming techniques are used in an algorithm for the direct evaluation of fault trees. The algorithm combines a simple bottom-up procedure for trees without repeated events with a top-down recursive procedure for trees with repeated events. The object-oriented approach results in a dynamic modularization of the tree at each step in the reduction process. The algorithm reduces the number of recursive calls required to solve trees with repeated events and calculates intermediate results as well as the solution of the top event. The intermediate results can be reused if part of the tree is modified. An example is presented in which the results of the algorithm implemented with conventional techniques are compared to those of the object-oriented approach.

  5. Pinyon pine mortality alters communities of ground-dwelling arthropods

    Science.gov (United States)

    Robert J. Delph; Michael J. Clifford; Neil S. Cobb; Paulette L. Ford; Sandra L. Brantley

    2014-01-01

    We documented the effect of drought-induced mortality of pinyon pine (Pinus edulis Engelm.) on communities of ground-dwelling arthropods. Tree mortality alters microhabitats utilized by ground-dwelling arthropods by increasing solar radiation, dead woody debris, and understory vegetation. Our major objectives were to determine (1) whether there were changes in...

  6. Emissions of BVOC from lodgepole pine in response to mountain pine beetle attack in high and low mortality forest stands

    Directory of Open Access Journals (Sweden)

    T. R. Duhl

    2013-01-01

    Full Text Available In this screening study, biogenic volatile organic compound (BVOC emissions from intact branches of lodgepole pine (Pinus contorta trees were measured from trees at two forested sites that have been impacted differently by the mountain pine beetle (MPB, with one having higher mortality and the other with lower mortality. Differences in the amounts and chemical diversity of BVOC between the two sites and from apparently healthy trees versus trees in different stages of MPB attack are presented, as well as (for one site observed seasonal variability in emissions. A brief comparison is made of geological and climatic characteristics as well as prior disturbances (both natural and man-made at each site. Trees sampled at the site experiencing high MPB-related tree mortality had lower chemodiversity in terms of monoterpene (MT emission profiles, while profiles were more diverse at the lower-mortality site. Also at the higher-mortality site, MPB-infested trees in various stages of decline had lower emissions of sesquiterpenes (SQTs compared to healthy trees, while at the site with lower mortality, MPB-survivors had significantly higher SQT emissions during part of the growing season when compared to both uninfested and newly infested trees. SQT profiles differed between the two sites and, like monoterpene and oxygenated VOC profiles, varied through the season. For the low-mortality site in which repeated measurements were made over the course of the early summer–late fall, higher chemical diversity was observed in early- compared to late-season measurements for all compound classes investigated (MT, oxygenated VOC, and SQT, with the amount of change appearing to correlate to the MPB status of the trees studied. Emissions of 2-methyl-3-buten-2-ol (MBO had a distinct seasonal signal but were not much different between healthy or infested trees, except in trees with dead needles, from which emissions of this compound were negligible, and in late

  7. Climate sensitivity of Mediterranean pine growth reveals distinct east-west dipole

    Czech Academy of Sciences Publication Activity Database

    Seim, A.; Treydte, K.; Trouet, V.; Frank, D.; Fonti, P.; Tegel, W.; Panayotov, M.; Fernandez-Donado, L.; Krusic, P.; Büntgen, Ulf

    2015-01-01

    Roč. 35, č. 9 (2015), s. 2503-2513 ISSN 0899-8418 R&D Projects: GA MŠk(CZ) EE2.3.20.0248 Institutional support: RVO:67179843 Keywords : tree-ring width * scots pine * wood formation * ice core * variability * drought * precipitation * reconstructions * circulation * dynamics * climate dynamics * dendroclimatology * drought response * Mediterranean east-west dipole * palaeoclimatology * Pinus spp * principal component analysis * tree-ring width Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.609, year: 2015

  8. Cambial injury in lodgepole pine (Pinus contorta): mountain pine beetle vs fire.

    Science.gov (United States)

    Arbellay, Estelle; Daniels, Lori D; Mansfield, Shawn D; Chang, Alice S

    2017-12-01

    Both mountain pine beetle (MPB) Dendroctonus ponderosae Hopkins and fire leave scars with similar appearance on lodgepole pine Pinus contorta Dougl. ex Loud. var. latifolia Engelm. that have never been compared microscopically, despite the pressing need to determine the respective effects of MPB and fire injury on tree physiology. We analysed changes in wood formation in naturally caused scars on lodgepole pine, and tested the hypotheses that (i) MPB and fire injury elicit distinct anomalies in lodgepole pine wood and (ii) anomalies differ in magnitude and/or duration between MPB and fire. Mountain pine beetle and fire injury reduced radial growth in the first year post-injury. Otherwise, radial growth and wood density increased over more than 10 years in both MPB and fire scars. We found that the general increase in radial growth was of greater magnitude (up to 27%) and of longer duration (up to 5 years) in fire scars compared with MPB scars, as shown in earlywood width. We also observed that the increase in latewood density was of greater magnitude (by 12%) in MPB scars, but of longer duration (by 4 years) in fire scars. Crystallinity decreased following MPB and fire injury, while microfibril angle increased. These changes in fibre traits were of longer duration (up to 4 years) in MPB scars compared with fire scars, as shown in microfibril angle. We found no significant changes in carbon and nitrogen concentrations. In conclusion, we stress that reduced competition and resistance to cavitation play an important role alongside cambial injury in influencing the type and severity of changes. In addition, more research is needed to validate the thresholds introduced in this study. Our findings serve as a foundation for new protocols to distinguish between bark beetle and fire disturbance, which is essential for improving our knowledge of historical bark beetle and fire regimes, and their interactions. © The Author 2017. Published by Oxford University Press. All

  9. Susceptibility of parent and interspecific Fl hybrid pine trees to tip moth damage in a coastal North Carolina planting

    Science.gov (United States)

    Maxine T. Highsmith; John Frampton; David 0' Malley; James Richmond; Martesa Webb

    2001-01-01

    Tip moth damage arnong families of parent pine species and their interspecific F1 hybrids was quantitatively assessed in a coastal planting in North Carolina. Three slash pine (Pinus elliotti var. elliotti Engelm.), two loblolly pine (Pinus taeda L.), and four interspecific F1 hybrid pine families were used. The...

  10. Seasonal Pattern of Decomposition and N, P, and C Dynamics in Leaf litter in a Mongolian Oak Forest and a Korean Pine Plantation

    Directory of Open Access Journals (Sweden)

    Jaeeun Sohng

    2014-10-01

    Full Text Available Distinct seasons and diverse tree species characterize temperate deciduous forests in NE Asia, but large areas of deciduous forests have been converted to conifer plantations. This study was conducted to understand the effects of seasons and tree species on leaf litter decomposition in a temperate forest. Using the litterbag method, the decomposition rate and nitrogen, phosphorous, and carbon dynamics of Mongolian oak (Quercus mongolica, Korean pine (Pinus koraiensis, and their mixed leaf litter were compared for 24 months in a Mongolian oak stand, an adjacent Korean pine plantation, and a Mongolian oak—Korean pine mixed stand. The decomposition rates of all the leaf litter types followed a pattern of distinct seasonal changes: most leaf litter decomposition occurred during the summer. Tree species was less influential on the leaf litter decomposition. The decomposition rates among different leaf litter types within the same stand were not significantly different, indicating no mixed litter effect. The immobilization of leaf litter N and P lasted for 14 months. Mongolian oak leaf litter and Korean pine leaf litter showed different N and P contents and dynamics during the decomposition, and soil P2O5 was highest in the Korean pine plantation, suggesting effects of plantation on soil nutrient budget.

  11. Optimum Vegetation Conditions for Successful Establishment of Planted Eastern White Pine (Pinus strobus L.

    Directory of Open Access Journals (Sweden)

    Douglas G. Pitt

    2016-08-01

    Full Text Available The 10th-growing season performance of planted eastern white pine (Pinus strobus L. seedlings was evaluated in response to herbaceous and woody vegetation control treatments within a clearcut and two variants of the uniform shelterwood regeneration system (single vs. multiple future removal cuts. Herbaceous vegetation control involved the suppression of grasses, forbs, ferns and low shrubs for the first 2 or 4 growing seasons after planting. Deciduous woody vegetation control treatments, conducted in combination with the herbaceous treatments within a response-surface design, involved the permanent removal of all tall shrubs and deciduous trees at the time of planting, at the end of the 2nd or 5th growing seasons, or not at all. In general, the average size of planted pine was related positively to the duration of herbaceous vegetation control and negatively to delays in woody control. White pine weevil (Pissodes strobi Peck altered these trends, reducing the height of pine on plots with little or no overtopping deciduous woody vegetation or mature tree cover. Where natural pine regeneration occurred on these plots, growth was similar but subordinate to the planted pine. Data from the three sites indicate that at least 60% of planted pine may be expected to reach an age-10 height target of 2.5 m when overtopping cover (residual overstory + regenerating deciduous is managed at approximately 65% ± 10%, and total herbaceous cover is suppressed to levels not exceeding 50% in the first five years. On productive sites, this combination may be difficult to achieve in a clearcut, and requires fairly rigorous vegetation management in shelterwood regeneration systems. Currently, synthetic herbicides offer the only affordable and effective means of achieving such vegetation control.

  12. Metal cycling within mountain pine beetle impacted watersheds of Keystone Gulch, Colorado

    Science.gov (United States)

    Heil, E. M.; Navarre-Sitchler, A.; Wanty, R. B.

    2016-12-01

    Metal cycling in mountain watersheds may be altered due to rapid landscape changes. Previous studies have examined the impact of deforestation and wildfires, on the fate and transport of metals in watersheds. However, we have only begun to understand changes in metal cycling in watersheds impacted by the mountain pine beetle. Warming climates and extended droughts have enabled pine beetles to impact larger areas. In these areas tree death occurs an average of three years after the initial infestation. In this short period of time the trees stop transpiring, defoliate, and die. The rapid deposition of pine needles to the forest floor, and subsequent decomposition of the needles, increases organic carbon (OC) availability and release metals that are stored in the impacted watersheds. Consequently, both OC and metal fluxes into and through the beetle-infested watersheds may be larger than those in non-infested watersheds. Four watersheds along Keystone Gulch Rd., located in Keystone, CO, were chosen for soil, water, and needle sampling because of their similar bedrock, drainage area, tree density and type, aspect, and their varying degree of pine beetle infestation. Sequential extractions using simulated rainwater, MgCl2, and pyrophosphate (representing soil pore water, exchangeable fraction, and organically bound metals) were performed on the Keystone Gulch soil samples to develop a better understanding of the distribution of metals in soils. Samples were classified by degree of beetle impact within and between the watersheds. The most obvious differences in the soil extractions between the four watersheds were observed for aluminum and iron and to a slightly lesser extent copper and zinc. In general, aluminum, iron, and zinc concentrations were higher while copper concentrations were lower in soils from less beetle-impacted watersheds. Metal concentrations in stream waters will be evaluated in the context of metal mobility through and out of the watershed.

  13. Sensitivity of tree ring growth to local and large-scale climate variability in a region of Southeastern Brazil

    Science.gov (United States)

    Venegas-González, Alejandro; Chagas, Matheus Peres; Anholetto Júnior, Claudio Roberto; Alvares, Clayton Alcarde; Roig, Fidel Alejandro; Tomazello Filho, Mario

    2016-01-01

    We explored the relationship between tree growth in two tropical species and local and large-scale climate variability in Southeastern Brazil. Tree ring width chronologies of Tectona grandis (teak) and Pinus caribaea (Caribbean pine) trees were compared with local (Water Requirement Satisfaction Index—WRSI, Standardized Precipitation Index—SPI, and Palmer Drought Severity Index—PDSI) and large-scale climate indices that analyze the equatorial pacific sea surface temperature (Trans-Niño Index-TNI and Niño-3.4-N3.4) and atmospheric circulation variations in the Southern Hemisphere (Antarctic Oscillation-AAO). Teak trees showed positive correlation with three indices in the current summer and fall. A significant correlation between WRSI index and Caribbean pine was observed in the dry season preceding tree ring formation. The influence of large-scale climate patterns was observed only for TNI and AAO, where there was a radial growth reduction in months preceding the growing season with positive values of the TNI in teak trees and radial growth increase (decrease) during December (March) to February (May) of the previous (current) growing season with positive phase of the AAO in teak (Caribbean pine) trees. The development of a new dendroclimatological study in Southeastern Brazil sheds light to local and large-scale climate influence on tree growth in recent decades, contributing in future climate change studies.

  14. The longevity of large pine snags in eastern Texas

    Science.gov (United States)

    Richard N. Conner; Daniel Saenz

    2005-01-01

    Habitat for cavity-nesting wildlife is closely tied to the availability of standing dead trees (snags). Large snags (>40 cm dbh) are particularly important because they provide cavity- excavation substrate for both large and small cavity excavators. Historically in the southern United States, common belief has been that the utility of pine (Pinus...

  15. Carbon allocation to young loblolly pine roots and stems

    Science.gov (United States)

    Paul P. Kormanik; Shi-Jean S. Sung; Clanton C. Black; Stanley J. Zarnoch

    1995-01-01

    This study of root biomass with loblolly pine was designed with the following objectives: (1) to measure the root biomass for a range of individual trees between the ages of 3 and 10 years on different artificial and natural forest sites and (2) to relate the root biomass to aboveground biomass components.

  16. Tree planting in Haiti: How to plant and care for your nursery grown seedlings

    Science.gov (United States)

    Kyrstan Hubbel; Yvonne Barkley; Jeremiah R. Pinto; R. Kasten Dumroese; Sabine Deristin; Raymond Joseph; Randy Brooks; Anthony S. Davis

    2016-01-01

    Seedlings need the right amounts of sunlight, water and nutrients to live and grow into healthy trees. Different types of trees have different requirements, so seedlings will need planting sites that meet all of their requirements. For example, pine trees need full sun, a moderate amount of water and a certain combination of nutrients to grow into healthy trees. If you...

  17. Temporal effects of prescribed burning on terpene production in Mediterranean pines.

    Science.gov (United States)

    Valor, Teresa; Ormeño, Elena; Casals, Pere

    2017-12-01

    Prescribed burning is used to reduce fuel hazard but underburning can damage standing trees. The effect of burning on needle terpene storage, a proxy for secondary metabolism, in fire-damaged pines is poorly understood despite the protection terpenes confer against biotic and abiotic stressors. We investigated variation in needle terpene storage after burning in three Mediterranean pine species featuring different adaptations to fire regimes. In two pure-stands of Pinus halepensis Mill. and two mixed-stands of Pinus sylvestris L. and Pinus nigra ssp. salzmanni (Dunal) Franco, we compared 24 h and 1 year post-burning concentrations with pre-burning concentrations in 20 trees per species, and evaluated the relative contribution of tree fire severity and physiological condition (δ13C and N concentration) on temporal terpene dynamics (for mono- sesqui- and diterpenes). Twenty-four hours post-burning, monoterpene concentrations were slightly higher in P. halepensis than at pre-burning, while values were similar in P. sylvestris. Differently, in the more fire-resistant P. nigra monoterpene concentrations were lower at 24 h, compared with pre-burning. One year post-burning, concentrations were always lower compared with pre- or 24 h post-burning, regardless of the terpene group. Mono- and sesquiterpene variations were negatively related to pre-burning δ13C, while diterpene variations were associated with fire-induced changes in needle δ13C and N concentration. At both post-burning times, mono- and diterpene concentrations increased significantly with crown scorch volume in all species. Differences in post-burning terpene contents as a function of the pine species' sensitivity to fire suggest that terpenic metabolites could have adaptive importance in fire-prone ecosystems in terms of flammability or defence against biotic agents post-burning. One year post-burning, our results suggest that in a context of fire-induced resource availability, pines likely prioritize

  18. Antibiotics Do Not Control Blister Rust in Eastern White Pine Seedlings

    Science.gov (United States)

    William R. Phelps; Ray Weber

    1968-01-01

    To prevent blister rust infections in Eastern white pine seedlings, the antibiotics, cycloheximide (acti-dione) and Phytoactin, were tested in root dips, root slurries, and foliar drenches before planting and after planting the trees. None of the methods and materials tested was effective.

  19. Stability Analysis and Optimal Control Strategy for Prevention of Pine Wilt Disease

    Directory of Open Access Journals (Sweden)

    Kwang Sung Lee

    2014-01-01

    Full Text Available We propose a mathematical model of pine wilt disease (PWD which is caused by pine sawyer beetles carrying the pinewood nematode (PWN. We calculate the basic reproduction number R0 and investigate the stability of a disease-free and endemic equilibrium in a given mathematical model. We show that the stability of the equilibrium in the proposed model can be controlled through the basic reproduction number R0. We then discuss effective optimal control strategies for the proposed PWD mathematical model. We demonstrate the existence of a control problem, and then we apply both analytical and numerical techniques to demonstrate effective control methods to prevent the transmission of the PWD. In order to do this, we apply two control strategies: tree-injection of nematicide and the eradication of adult beetles through aerial pesticide spraying. Optimal prevention strategies can be determined by solving the corresponding optimality system. Numerical simulations of the optimal control problem using a set of reasonable parameter values suggest that reducing the number of pine sawyer beetles is more effective than the tree-injection strategy for controlling the spread of PWD.

  20. Return of the giants: Restoring white pine ecosystems by breeding and aggressive planting of blister rust-resistant white pines

    Science.gov (United States)

    Lauren Fins; James Byler; Dennis Ferguson; Al Harvey; Mary Francis Mahalovich; Geral I. McDonald; Dan Miller; John Schwandt; Art Zack

    2001-01-01

    In 1883, when the Northern Pacific Railroad made its way through northern Idaho, western white pines dominated the moist, mid-elevation, mixed-species forests of the Inland Northwest between 2,000 and 6,000 feet. These majestic trees often lived to 350 years but could reach the ripe old ages of 400 and even 500 years. They were an integral part of the most productive...

  1. Plant biomass carbon store after water-level drawdown of pine mires

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R; Laine, J [Helsinki Univ. (Finland). Dept. of Ecology

    1997-12-31

    Tall-sedge pine fen is the site type most commonly drained in Finland. In their natural undrained condition sites of this type are rather wet with sparse, Scots pine dominated forest growing on hummocks and with large lawns dominated by sedges, usually Carex rostrata and/or C. lasiocarpa. Most of the primary production takes place in the field and ground layers. The major pathway for carbon accumulation in the system is via Sphagna and sedge roots, carbon accumulation by the tree stand being very slow. After drainage the situation changes radically as the sedges die out and the tree stand growth increases considerably. The aim of this study is to produce means of estimating the post-drainage dynamics of the plant biomass carbon store. The study is based on the assumption that sites similar before drainage will change in a similar manner following drainage. (5 refs.)

  2. Plant biomass carbon store after water-level drawdown of pine mires

    Energy Technology Data Exchange (ETDEWEB)

    Laiho, R.; Laine, J. [Helsinki Univ. (Finland). Dept. of Ecology

    1996-12-31

    Tall-sedge pine fen is the site type most commonly drained in Finland. In their natural undrained condition sites of this type are rather wet with sparse, Scots pine dominated forest growing on hummocks and with large lawns dominated by sedges, usually Carex rostrata and/or C. lasiocarpa. Most of the primary production takes place in the field and ground layers. The major pathway for carbon accumulation in the system is via Sphagna and sedge roots, carbon accumulation by the tree stand being very slow. After drainage the situation changes radically as the sedges die out and the tree stand growth increases considerably. The aim of this study is to produce means of estimating the post-drainage dynamics of the plant biomass carbon store. The study is based on the assumption that sites similar before drainage will change in a similar manner following drainage. (5 refs.)

  3. Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease.

    Science.gov (United States)

    Proença, Diogo Neves; Francisco, Romeu; Santos, Clara Vieira; Lopes, André; Fonseca, Luís; Abrantes, Isabel M O; Morais, Paula V

    2010-12-09

    The pinewood nematode (PWN), Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD), however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one gram-positive strain (Actinobacteria) belonged to the gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD.

  4. Review of the severe accident risk reduction program (SARRP) containment event trees

    International Nuclear Information System (INIS)

    1986-05-01

    A part of the Severe Accident Risk Reduction Program, researchers at Sandia National Laboratories have constructed a group of containment event trees to be used in the analysis of key accident sequences for light water reactors (LWR) during postulated severe accidents. The ultimate goal of the program is to provide to the NRC staff a current assessment of the risk from severe reactor accidents for a group of five light water reactors. This review specifically focuses on the development and construction of the containment event trees and the results for containment failure probability, modes and timing. The report first gives the background on the program, the review criteria, and a summary of the observations, findings and recommendations. secondly, the individual reviews of each committee member on the event trees is presented. Finally, a review is provided on the computer model used to construct and evaluate the event trees

  5. Tree rings and radiocarbon calibration

    International Nuclear Information System (INIS)

    Barbetti, M.

    1999-01-01

    Only a few kinds of trees in Australia and Southeast Asia are known to have growth rings that are both distinct and annual. Those that do are therefore extremely important to climatic and isotope studies. In western Tasmania, extensive work with Huon pine (Lagarostrobos franklinii) has shown that many living trees are more than 1,000 years old, and that their ring widths are sensitive to temperature, rainfall and cloud cover (Buckley et al. 1997). At the Stanley River there is a forest of living (and recently felled) trees which we have sampled and measured. There are also thousands of subfossil Huon pine logs, buried at depths less than 5 metres in an area of floodplain extending over a distance of more than a kilometre with a width of tens of metres. Some of these logs have been buried for 50,000 years or more, but most of them belong to the period between 15,000 years and the present. In previous expeditions in the 1980s and 1990s, we excavated and sampled about 350 logs (Barbetti et al. 1995; Nanson et al. 1995). By measuring the ring-width patterns, and matching them between logs and living trees, we have constructed a tree-ring dated chronology from 571 BC to AD 1992. We have also built a 4254-ring floating chronology (placed by radiocarbon at ca. 3580 to 7830 years ago), and an earlier 1268-ring chronology (ca. 7,580 to 8,850 years ago). There are many individuals, or pairs of logs which match and together span several centuries, at 9,000 years ago and beyond

  6. Does raking basal duff affect tree growth rates or mortality?

    Science.gov (United States)

    Erin Noonan-Wright; Sharon M. Hood; Danny R. Cluck

    2010-01-01

    Mortality and reduced growth rates due to raking accumulated basal duff were evaluated for old, large-diameter ponderosa and Jeffrey pine trees on the Lassen National Forest, California. No fire treatments were included to isolate the effect of raking from fire. Trees were monitored annually for 5 years after the raking treatment for mortality and then cored to measure...

  7. Behavior and sensitivity of an optimal tree diameter growth model under data uncertainty

    Science.gov (United States)

    Don C. Bragg

    2005-01-01

    Using loblolly pine, shortleaf pine, white oak, and northern red oak as examples, this paper considers the behavior of potential relative increment (PRI) models of optimal tree diameter growth under data uncertainity. Recommendations on intial sample size and the PRI iteractive curve fitting process are provided. Combining different state inventories prior to PRI model...

  8. Environmental impact analysis (EIA) concerning lodgepole pine forestry in Sweden; Miljoekonsekvensbeskrivning (MKB) av skogsbruk med contortatall i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bengt; Rosvall, Ola [Forestry Research Inst. of Sweden, Uppsala (Sweden); Engelmark, Ola [Centrum foer ekologisk haallbarhet, Umeaa (Sweden); Sjoeberg, Kjell [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Animal Ecology

    1999-07-01

    This report presents an analysis of the ecological consequences of forestry with Canadian lodgepole pine introduced into Sweden. The report includes a compilation of present knowledge in the area, research priorities, and proposed measures for dealing with the negative environmental consequences that could arise. The point of departure of the analysis is a description of the properties of lodgepole pine, including species-specific characteristics of the tree, and changes in stand environment and silvicultural management practices that can be expected. The report describes the dispersal capacity of lodgepole pine in its new Swedish environment and the effects of host-parasite interactions. Thereafter, ecological effects on the capacity of the soil for sustainable production and on biological diversity at various scales (tree, stand, landscape) are analysed. Lodgepole pine forestry is also considered in relation to current laws and regulations as well as national and international environmental goals. At the end of the report, a strategy is proposed for handling the inevitable uncertainties associated with the introduction of exotic species 111 refs, 14 figs.

  9. Environmental impact analysis (EIA) concerning lodgepole pine forestry in Sweden; Miljoekonsekvensbeskrivning (MKB) av skogsbruk med contortatall i Sverige

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Bengt; Rosvall, Ola [Forestry Research Inst. of Sweden, Uppsala (Sweden); Engelmark, Ola [Centrum foer ekologisk haallbarhet, Umeaa (Sweden); Sjoeberg, Kjell [Swedish Univ. of Agricultural Sciences, Umeaa (Sweden). Dept. of Animal Ecology

    1999-08-01

    This report presents an analysis of the ecological consequences of forestry with Canadian lodgepole pine introduced into Sweden. The report includes a compilation of present knowledge in the area, research priorities, and proposed measures for dealing with the negative environmental consequences that could arise. The point of departure of the analysis is a description of the properties of lodgepole pine, including species-specific characteristics of the tree, and changes in stand environment and silvicultural management practices that can be expected. The report describes the dispersal capacity of lodgepole pine in its new Swedish environment and the effects of host-parasite interactions. Thereafter, ecological effects on the capacity of the soil for sustainable production and on biological diversity at various scales (tree, stand, landscape) are analysed. Lodgepole pine forestry is also considered in relation to current laws and regulations as well as national and international environmental goals. At the end of the report, a strategy is proposed for handling the inevitable uncertainties associated with the introduction of exotic species 111 refs, 14 figs

  10. Reptile assemblage response to restoration of fire-suppressed longleaf pine sandhills.

    Science.gov (United States)

    Steen, David A; Smith, Lora L; Conner, L M; Litt, Andrea R; Provencher, Louis; Hiers, J Kevin; Pokswinski, Scott; Guyer, Craig

    2013-01-01

    Measuring the effects of ecological restoration on wildlife assemblages requires study on broad temporal and spatial scales. Longleaf pine (Pinus palustris) forests are imperiled due to fire suppression and subsequent invasion by hardwood trees. We employed a landscape-scale, randomized-block design to identify how reptile assemblages initially responded to restoration treatments including removal of hardwood trees via mechanical methods (felling and girdling), application of herbicides, or prescribed burning alone. Then, we examined reptile assemblages after all sites experienced more than a decade of prescribed burning at two- to thee-year return intervals. Data were collected concurrently at reference sites chosen to represent target conditions for restoration. Reptile assemblages changed most rapidly in response to prescribed burning, but reptile assemblages at all sites, including reference sites, were generally indistinguishable by the end of the study. Thus, we suggest that prescribed burning in longleaf pine forests over long time periods is an effective strategy for restoring reptile assemblages to the reference condition. Application of herbicides or mechanical removal of hardwood trees provided no apparent benefit to reptiles beyond what was achieved by prescribed fire alone.

  11. Resistance to wildfire and early regeneration in natural broadleaved forest and pine plantation

    Science.gov (United States)

    Proença, Vânia; Pereira, Henrique M.; Vicente, Luís

    2010-11-01

    The response of an ecosystem to disturbance reflects its stability, which is determined by two components: resistance and resilience. We addressed both components in a study of early post-fire response of natural broadleaved forest ( Quercus robur, Ilex aquifolium) and pine plantation ( Pinus pinaster, Pinus sylvestris) to a wildfire that burned over 6000 ha in NW Portugal. Fire resistance was assessed from fire severity, tree mortality and sapling persistence. Understory fire resistance was similar between forests: fire severity at the surface level was moderate to low, and sapling persistence was low. At the canopy level, fire severity was generally low in broadleaved forest but heterogeneous in pine forest, and mean tree mortality was significantly higher in pine forest. Forest resilience was assessed by the comparison of the understory composition, species diversity and seedling abundance in unburned and burned plots in each forest type. Unburned broadleaved communities were dominated by perennial herbs (e.g., Arrhenatherum elatius) and woody species (e.g., Hedera hibernica, Erica arborea), all able to regenerate vegetatively. Unburned pine communities presented a higher abundance of shrubs, and most dominant species relied on post-fire seeding, with some species also being able to regenerate vegetatively (e.g., Ulex minor, Daboecia cantabrica). There were no differences in diversity measures in broadleaved forest, but burned communities in pine forest shared less species and were less rich and diverse than unburned communities. Seedling abundance was similar in burned and unburned plots in both forests. The slower reestablishment of understory pine communities is probably explained by the slower recovery rate of dominant species. These findings are ecologically relevant: the higher resistance and resilience of native broadleaved forest implies a higher stability in the maintenance of forest processes and the delivery of ecosystem services.

  12. Performance of genomic prediction within and across generations in maritime pine

    NARCIS (Netherlands)

    Bartholomé, Jérôme; Heerwaarden, Van Joost; Isik, Fikret; Boury, Christophe; Vidal, Marjorie; Plomion, Christophe; Bouffier, Laurent

    2016-01-01

    Background: Genomic selection (GS) is a promising approach for decreasing breeding cycle length in forest trees. Assessment of progeny performance and of the prediction accuracy of GS models over generations is therefore a key issue. Results: A reference population of maritime pine (Pinus

  13. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Directory of Open Access Journals (Sweden)

    Michelle C Agne

    Full Text Available Lodgepole pine (Pinus contorta forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its

  14. Effects of dwarf mistletoe on stand structure of lodgepole pine forests 21-28 years post-mountain pine beetle epidemic in central Oregon.

    Science.gov (United States)

    Agne, Michelle C; Shaw, David C; Woolley, Travis J; Queijeiro-Bolaños, Mónica E

    2014-01-01

    Lodgepole pine (Pinus contorta) forests are widely distributed throughout North America and are subject to mountain pine beetle (Dendroctonus ponderosae) epidemics, which have caused mortality over millions of hectares of mature trees in recent decades. Mountain pine beetle is known to influence stand structure, and has the ability to impact many forest processes. Dwarf mistletoe (Arceuthobium americanum) also influences stand structure and occurs frequently in post-mountain pine beetle epidemic lodgepole pine forests. Few studies have incorporated both disturbances simultaneously although they co-occur frequently on the landscape. The aim of this study is to investigate the stand structure of lodgepole pine forests 21-28 years after a mountain pine beetle epidemic with varying levels of dwarf mistletoe infection in the Deschutes National Forest in central Oregon. We compared stand density, stand basal area, canopy volume, proportion of the stand in dominant/codominant, intermediate, and suppressed cohorts, average height and average diameter of each cohort, across the range of dwarf mistletoe ratings to address differences in stand structure. We found strong evidence of a decrease in canopy volume, suppressed cohort height, and dominant/codominant cohort diameter with increasing stand-level dwarf mistletoe rating. There was strong evidence that as dwarf mistletoe rating increases, proportion of the stand in the dominant/codominant cohort decreases while proportion of the stand in the suppressed cohort increases. Structural differences associated with variable dwarf mistletoe severity create heterogeneity in this forest type and may have a significant influence on stand productivity and the resistance and resilience of these stands to future biotic and abiotic disturbances. Our findings show that it is imperative to incorporate dwarf mistletoe when studying stand productivity and ecosystem recovery processes in lodgepole pine forests because of its potential to

  15. Lateglacial environmental variability from Swiss tree rings

    DEFF Research Database (Denmark)

    Schaub, Matthias; Büntgen, Ulf; Kaiser, Klaus Felix

    2008-01-01

    Evidence of annually resolved environmental variations during the Allerød interstadial is presented using 81 fossil Scots pine tree-ring series from Gaenziloo and Landikon, near Zurich, Switzerland. The absolute age of the trees ranges between 11,920 and 10,610 14C BP, which was determined by wig...... and the gray-scale varve record from the Cariaco basin. Even though the amplitudes are not yet fully understood, similarities on decadal-to-centennial scales are apparent....

  16. Varying rotation lengths in northern production forests: Implications for habitats provided by retention and production trees.

    Science.gov (United States)

    Felton, Adam; Sonesson, Johan; Nilsson, Urban; Lämås, Tomas; Lundmark, Tomas; Nordin, Annika; Ranius, Thomas; Roberge, Jean-Michel

    2017-04-01

    Because of the limited spatial extent and comprehensiveness of protected areas, an increasing emphasis is being placed on conserving habitats which promote biodiversity within production forest. For this reason, alternative silvicultural programs need to be evaluated with respect to their implications for forest biodiversity, especially if these programs are likely to be adopted. Here we simulated the effect of varied rotation length and associated thinning regimes on habitat availability in Scots pine and Norway spruce production forests, with high and low productivity. Shorter rotation lengths reduced the contribution made by production trees (trees grown for industrial use) to the availability of key habitat features, while concurrently increasing the contribution from retention trees. The contribution of production trees to habitat features was larger for high productivity sites, than for low productivity sites. We conclude that shortened rotation lengths result in losses of the availability of habitat features that are key for biodiversity conservation and that increased retention practices may only partially compensate for this. Ensuring that conservation efforts better reflect the inherent variation in stand rotation lengths would help improve the maintenance of key forest habitats in production forests.

  17. 75 FR 10457 - Andrew Pickens Ranger District; South Carolina; AP Loblolly Pine Removal and Restoration Project

    Science.gov (United States)

    2010-03-08

    ... relatively low tree densities of 25-60% forest cover with understories that are dominated by native grasses... trees exist in the overstory of most of these stands and hardwood sprouts and saplings abound in the... in pine plantations. Other stands are sparse due to poor planting success or to past logging that did...

  18. Irrigation and fertilization effects on Nantucket Pine Tip Moth (Lepidoptera: Tortricidae) Damage levels and pupal weight in an intensively-managed pine plantation.

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, David, R.; Nowak, John, T.; Fettig, Christopher, J.

    2003-10-01

    The widespread application of intensive forest management practices throughout the southeastern U.S. has increased loblolly pine, Pinus taeda L., yields and shortened conventional rotation lengths. Fluctuations in Nantucket pine tip moth, Rhyacionia frustrana (Comstock), population density and subsequent damage levels have been linked to variations in management intensity. We examined the effects of two practices, irrigation and fertilization, on R. frustrana damage levels and pupal weights in an intensively-managed P. taeda plantation in South Carolina. Trees received intensive weed control and one of the following treatments; irrigation only. fertilization only, irrigation + fertilization, or control. Mean whole-tree tip moth damage levels ranged from <1 to 48% during this study. Damage levels differed significantly among treatments in two tip moth generations in 2001, but not 2000. Pupal weight was significantly heavier in fertilization compared to the irrigation treatment in 2000, but no significant differences were observed in 2001. Tree diameter. height. and aboveground volume were significantly greater in the irrigation + fertilization than in the irrigation treatment after two growing seasons. Our data suggest that intensive management practices that include irrigation and fertilization do not consistently increase R. frustrana damage levels and pupal weights as is commonly believed. However, tip moth suppression efforts in areas adjacent to our study may have partially reduced the potential impacts of R. frustrana on this experiment.

  19. Heritability and Seasonal Changes in Viscosity of Slash Pine Oleoresin

    Science.gov (United States)

    Robert D. McReynolds

    1971-01-01

    Oleoresin viscosity was measured in slash pine (Pinus elliottii var. elliottii) trees of known genetic origin over a 1-year period. A strong broad-sense heritability of this trait was found. Seasonal variation followed a definite pattern, with the highest viscosities occurring in early spring and a gradual decline occurring in...

  20. Post-glacial phylogeography and evolution of a wide-ranging highly-exploited keystone forest tree, eastern white pine (Pinus strobus) in North America: single refugium, multiple routes.

    Science.gov (United States)

    Zinck, John W R; Rajora, Om P

    2016-03-02

    Knowledge of the historical distribution and postglacial phylogeography and evolution of a species is important to better understand its current distribution and population structure and potential fate in the future, especially under climate change conditions, and conservation of its genetic resources. We have addressed this issue in a wide-ranging and heavily exploited keystone forest tree species of eastern North America, eastern white pine (Pinus strobus). We examined the range-wide population genetic structure, tested various hypothetical population history and evolutionary scenarios and inferred the location of glacial refugium and post-glacial recolonization routes. Our hypothesis was that eastern white pine survived in a single glacial refugium and expanded through multiple post-glacial recolonization routes. We studied the range-wide genetic diversity and population structure of 33 eastern white pine populations using 12 nuclear and 3 chloroplast microsatellite DNA markers. We used Approximate Bayesian Computation approach to test various evolutionary scenarios. We observed high levels of genetic diversity, and significant genetic differentiation (F ST = 0.104) and population structure among eastern white pine populations across its range. A south to north trend of declining genetic diversity existed, consistent with repeated founder effects during post-glaciation migration northwards. We observed broad consensus from nuclear and chloroplast genetic markers supporting the presence of two main post-glacial recolonization routes that originated from a single southern refugium in the mid-Atlantic plain. One route gave rise to populations at the western margin of the species' range in Minnesota and western Ontario. The second route gave rise to central-eastern populations, which branched into two subgroups: central and eastern. We observed minimal sharing of chloroplast haplotypes between recolonization routes but there was evidence of admixture between the

  1. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    Energy Technology Data Exchange (ETDEWEB)

    Sweet, M. J., E-mail: m.sweet@derby.ac.uk [University of Derby, Environmental Sustainability Research Centre, College of Life and Natural Sciences (United Kingdom); Singleton, I. [Newcastle University, School of Biology (United Kingdom)

    2015-11-15

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP.

  2. Soil contamination with silver nanoparticles reduces Bishop pine growth and ectomycorrhizal diversity on pine roots

    International Nuclear Information System (INIS)

    Sweet, M. J.; Singleton, I.

    2015-01-01

    Soil contamination by silver nanoparticles (AgNP) is of potential environmental concern but little work has been carried out on the effect of such contamination on ectomycorrhizal fungi (EMF). EMF are essential to forest ecosystem functions as they are known to enhance growth of trees by nutrient transfer. In this study, soil was experimentally contaminated with AgNP (0, 350 and 790 mg Ag/kg) and planted with Bishop pine seedlings. The effect of AgNP was subsequently measured, assessing variation in pine growth and ectomycorrhizal diversity associated with the root system. After only 1 month, the highest AgNP level had significantly reduced the root length of pine seedlings, which in turn had a small effect on above ground plant biomass. However, after 4 months growth, both AgNP levels utilised had significantly reduced both pine root and shoot biomass. For example, even the lower levels of AgNP (350 mg Ag/kg) soil, reduced fresh root biomass by approximately 57 %. The root systems of the plants grown in AgNP-contaminated soils lacked the lateral and fine root development seen in the control plants (no AgNP). Although, only five different genera of EMF were found on roots of the control plants, only one genus Laccaria was found on roots of plants grown in soil containing 350 mg AgNP/kg. At the higher levels of AgNP contamination, no EMF were observed. Furthermore, extractable silver was found in soils containing AgNP, indicating potential dissolution of silver ions (Ag+) from the solid AgNP

  3. From a tree to a stand in Finnish boreal forests: biomass estimation and comparison of methods

    OpenAIRE

    Liu, Chunjiang

    2009-01-01

    There is an increasing need to compare the results obtained with different methods of estimation of tree biomass in order to reduce the uncertainty in the assessment of forest biomass carbon. In this study, tree biomass was investigated in a 30-year-old Scots pine (Pinus sylvestris) (Young-Stand) and a 130-year-old mixed Norway spruce (Picea abies)-Scots pine stand (Mature-Stand) located in southern Finland (61º50' N, 24º22' E). In particular, a comparison of the results of different estimati...

  4. A Range-Wide Experiment to Investigate Nutrient and Soil Moisture Interactions in Loblolly Pine Plantations

    Directory of Open Access Journals (Sweden)

    Rodney E. Will

    2015-06-01

    Full Text Available The future climate of the southeastern USA is predicted to be warmer, drier and more variable in rainfall, which may increase drought frequency and intensity. Loblolly pine (Pinus taeda is the most important commercial tree species in the world and is planted on ~11 million ha within its native range in the southeastern USA. A regional study was installed to evaluate effects of decreased rainfall and nutrient additions on loblolly pine plantation productivity and physiology. Four locations were established to capture the range-wide variability of soil and climate. Treatments were initiated in 2012 and consisted of a factorial combination of throughfall reduction (approximate 30% reduction and fertilization (complete suite of nutrients. Tree and stand growth were measured at each site. Results after two growing seasons indicate a positive but variable response of fertilization on stand volume increment at all four sites and a negative effect of throughfall reduction at two sites. Data will be used to produce robust process model parameterizations useful for simulating loblolly pine growth and function under future, novel climate and management scenarios. The resulting improved models will provide support for developing management strategies to increase pine plantation productivity and carbon sequestration under a changing climate.

  5. Lodgepole pine in the Blue Mountains of northeastern Oregon.

    Science.gov (United States)

    James M. Trappe; Robert W. Harris

    1958-01-01

    Lodgepole pine (Pinus contorta) is a major species in northeastern Oregon. The lodgepole type covers nearly 400,000 acres in the Blue and Wallowa Mountains, and individual trees are scattered over many of the remaining six million forested acres in this area (2). The type blankets large areas in watersheds in a region where spring floods and summer...

  6. Common environmental factors explain both ectomycorrhizal species diversity and pine regeneration variability in a post-fire Mediterranean forest.

    Science.gov (United States)

    Buscardo, Erika; Freitas, Helena; Pereira, João Santos; De Angelis, Paolo

    2011-08-01

    Natural seedling regeneration and establishment after stand replacing wildfires is influenced by a series of environmental and biological constraints. In this study, we characterized the diversity and structure of the ectomycorrhizal (ECM) fungal community associated with post-fire naturally regenerated maritime pine saplings, and individuate the environmental factors responsible for fungal species distribution. We also identify the main environmental factors responsible for maritime pine regeneration variability and assessed the relation between saplings performance and ECM fungal diversity indices. Fungal species were identified by direct sequencing of internal transcribed spacer regions. Five years after the disturbance event, a total of 30 taxa colonized the pine saplings. The ECM fungal community was dominated by ruderal species of the genus Rhizopogon (present in almost half of the samples). Almost one third of the identified ECM fungal species belonged to the family Thelephoraceae. Typical k-selected species like Amanita pantherina, Boletus aestivalis, Lactarius chrysorrheus, and Russula densifolia were found on pine saplings collected in proximity of unburnt pine trees, in correspondence with low erosion extents. Pine regeneration varied throughout the study areas and was enhanced at higher elevations, in correspondence with moderate slopes, shallower soils, and a reduced cover of ericaceous shrubs and bare ground. These conditions were found in close proximity to patches of pine trees that survived the disturbance event and were previously characterized by a higher pre-fire pine biomass. Even though no correlations were found between saplings performance and ECM fungal diversity indices, common environmental factors (i.e., ericaceous shrub cover, extent of erosion, slope, and soil depth) were responsible for shaping the ECM fungal distribution and for describing most of the explained regeneration variability.

  7. Exploiting Genetic Variation of Fiber Components and Morphology in Juvenile Loblolly Pine

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Hou-Min; Kadia, John F.; Li, Bailian; Sederoff, Ron

    2005-06-30

    straightness were found with cellulose content, fiber length and coarseness, suggesting that selection on growth or stem straightness would results in favorable response in chemical wood traits. We have developed a series of methods for application of functional genomics to understanding the molecular basis of traits important to tree breeding for improved chemical and physical properties of wood. Two types of technologies were used, microarray analysis of gene expression, and profiling of soluble metabolites from wood forming tissues. We were able to correlate wood property phenotypes with expression of specific genes and with the abundance of specific metabolites using a new database and appropriate statistical tools. These results implicate a series of candidate genes for cellulose content, lignin content, hemicellulose content and specific extractible metabolites. Future work should integrate such studies in mapping populations and genetic maps to make more precise associations of traits with gene locations in order to increase the predictive power of molecular markers, and to distinguish between different candidate genes associated by linkage or by function. This study has found that loblolly pine families differed significantly for cellulose yield, fiber length, fiber coarseness, and less for lignin content. The implication for forest industry is that genetic testing and selection for these traits is possible and practical. With sufficient genetic variation, we could improve cellulose yield, fiber length, fiber coarseness, and reduce lignin content in Loblolly pine. With the continued progress in molecular research, some candidate genes may be used for selecting cellulose content, lignin content, hemicellulose content and specific extractible metabolites. This would accelerate current breeding and testing program significantly, and produce pine plantations with not only high productivity, but desirable wood properties as well.

  8. Increased needle nitrogen contents did not improve shoot photosynthetic performance of mature nitrogen-poor Scots pine trees

    Directory of Open Access Journals (Sweden)

    Lasse Tarvainen

    2016-07-01

    Full Text Available Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N availability. However, few studies have provided a detailed account of how carbon (C acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modelling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar P deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute towards lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises

  9. Increased Needle Nitrogen Contents Did Not Improve Shoot Photosynthetic Performance of Mature Nitrogen-Poor Scots Pine Trees.

    Science.gov (United States)

    Tarvainen, Lasse; Lutz, Martina; Räntfors, Mats; Näsholm, Torgny; Wallin, Göran

    2016-01-01

    Numerous studies have shown that temperate and boreal forests are limited by nitrogen (N) availability. However, few studies have provided a detailed account of how carbon (C) acquisition of such forests reacts to increasing N supply. We combined measurements of needle-scale biochemical photosynthetic capacities and continuous observations of shoot-scale photosynthetic performance from several canopy positions with simple mechanistic modeling to evaluate the photosynthetic responses of mature N-poor boreal Pinus sylvestris to N fertilization. The measurements were carried out in August 2013 on 90-year-old pine trees growing at Rosinedalsheden research site in northern Sweden. In spite of a nearly doubling of needle N content in response to the fertilization, no effect on the long-term shoot-scale C uptake was recorded. This lack of N-effect was due to strong light limitation of photosynthesis in all investigated canopy positions. The effect of greater N availability on needle photosynthetic capacities was also constrained by development of foliar phosphorus (P) deficiency following N addition. Thus, P deficiency and accumulation of N in arginine appeared to contribute toward lower shoot-scale nitrogen-use efficiency in the fertilized trees, thereby additionally constraining tree-scale responses to increasing N availability. On the whole our study suggests that the C uptake response of the studied N-poor boreal P. sylvestris stand to enhanced N availability is constrained by the efficiency with which the additional N is utilized. This efficiency, in turn, depends on the ability of the trees to use the greater N availability for additional light capture. For stands that have not reached canopy closure, increase in leaf area following N fertilization would be the most effective way for improving light capture and C uptake while for mature stands an increased leaf area may have a rather limited effect on light capture owing to increased self-shading. This raises the

  10. Tree species traits influence soil physical, chemical, and biological properties in high elevation forests.

    Directory of Open Access Journals (Sweden)

    Edward Ayres

    Full Text Available BACKGROUND: Previous studies have shown that plants often have species-specific effects on soil properties. In high elevation forests in the Southern Rocky Mountains, North America, areas that are dominated by a single tree species are often adjacent to areas dominated by another tree species. Here, we assessed soil properties beneath adjacent stands of trembling aspen, lodgepole pine, and Engelmann spruce, which are dominant tree species in this region and are distributed widely in North America. We hypothesized that soil properties would differ among stands dominated by different tree species and expected that aspen stands would have higher soil temperatures due to their open structure, which, combined with higher quality litter, would result in increased soil respiration rates, nitrogen availability, and microbial biomass, and differences in soil faunal community composition. METHODOLOGY/PRINCIPAL FINDINGS: We assessed soil physical, chemical, and biological properties at four sites where stands of aspen, pine, and spruce occurred in close proximity to one-another in the San Juan Mountains, Colorado. Leaf litter quality differed among the tree species, with the highest nitrogen (N concentration and lowest lignin:N in aspen litter. Nitrogen concentration was similar in pine and spruce litter, but lignin:N was highest in pine litter. Soil temperature and moisture were highest in aspen stands, which, in combination with higher litter quality, probably contributed to faster soil respiration rates from stands of aspen. Soil carbon and N content, ammonium concentration, and microbial biomass did not differ among tree species, but nitrate concentration was highest in aspen soil and lowest in spruce soil. In addition, soil fungal, bacterial, and nematode community composition and rotifer, collembolan, and mesostigmatid mite abundance differed among the tree species, while the total abundance of nematodes, tardigrades, oribatid mites, and prostigmatid

  11. Foliar leaching, translocation, and biogenic emission of 35S in radiolabeled loblolly pines

    International Nuclear Information System (INIS)

    Garten, C.T. Jr.

    1990-01-01

    Foliar leaching, basipetal (downward) translocation, and biogenic emission of sulfur (S), as traced by 35 S, were examined in a field study of loblolly pines. Four trees were radiolabeled by injection with amounts of 35 S in the 6-8 MBq range, and concentrations in needle fall, stemflow, throughfall, and aboveground biomass were measured over a period of 15-20 wk after injection. The contribution of dry deposition to sulfate-sulfur (SO 4 2- -S) concentrations in net throughfall (throughfall SO 4 2- -S concentration minus that in incident precipitation) beneath all four trees was > 90%. Calculations indicated that about half of the summertime SO 2 dry deposition flux to the loblolly pines was fixed in the canopy and not subsequently leached by rainfall. Based on mass balance calculations, 35 S losses through biogenic emissions from girdled trees were inferred to be 25-28% of the amount injected. Estimates based on chamber methods and mass balance calculations indicated a range in daily biogenic S emission of 0.1-10 μg/g dry needles. Translocation of 35 S to roots in nongirdled trees was estimated to be between 14 and 25% of the injection. It is hypothesized that biogenic emission and basipetal translocation of S (and not foliar leaching) are important mechanisms by which forest trees physiologically adapt to excess S in the environment

  12. Summer Roost Tree Selection by Eastern Red, Seminole, and Evening Bats in the Upper Coastal Plain of South Carolina

    Energy Technology Data Exchange (ETDEWEB)

    Menzel, M.A.; Carter, T.C.; Ford, W.M.; Chapman, B.R.; Ozier, J.

    2000-01-01

    Radiotraction of six eastern red bats, six seminole bats and twenty-four evening bats to 55, 61, and 65 day roosts during 1996 to 1997 in the Upper Coastal Plain of South Carolina. For each species, testing was done for differences between used roost trees and randomly located trees. Also tested for differences between habitat characteristics surrounding roost trees and randomly located trees. Eastern Red and Seminole bats generally roosted in canopies of hardwood and pine while clinging to foilage and small branches. Evening bats roosted in cavities or under exfoliating bark in pines and dead snags. Forest management strategies named within the study should be beneficial for providing roosts in the Upper Coastal Plain of South Carolina.

  13. Mountain Pine Beetle Fecundity and Offspring Size Differ Among Lodgepole Pine and Whitebark Pine Hosts

    OpenAIRE

    Gross, Donovan

    2008-01-01

    Whitebark pine (Pinus albicaulis Engelmann) is a treeline species in the central Rocky Mountains. Its occupation of high elevations previously protected whitebark pine from long-term mountain pine beetle outbreaks. The mountain pine beetle, however, is currently reaching outbreaks of record magnitude in high-elevation whitebark pine. We used a factorial laboratory experiment to compare mountain pine beetle (Dendroctonus ponderosae Hopkins) life history characteristics between a typical host, ...

  14. The role of defoliation and root rot pathogen infection in driving the mode of drought-related physiological decline in Scots pine (Pinus sylvestris L.).

    Science.gov (United States)

    Aguadé, D; Poyatos, R; Gómez, M; Oliva, J; Martínez-Vilalta, J

    2015-03-01

    Drought-related tree die-off episodes have been observed in all vegetated continents. Despite much research effort, however, the multiple interactions between carbon starvation, hydraulic failure and biotic agents in driving tree mortality under field conditions are still not well understood. We analysed the seasonal variability of non-structural carbohydrates (NSCs) in four organs (leaves, branches, trunk and roots), the vulnerability to embolism in roots and branches, native embolism (percentage loss of hydraulic conductivity (PLC)) in branches and the presence of root rot pathogens in defoliated and non-defoliated individuals in a declining Scots pine (Pinus sylvestris L.) population in the NE Iberian Peninsula in 2012, which included a particularly dry and warm summer. No differences were observed between defoliated and non-defoliated pines in hydraulic parameters, except for a higher vulnerability to embolism at pressures below -2 MPa in roots of defoliated pines. No differences were found between defoliation classes in branch PLC. Total NSC (TNSC, soluble sugars plus starch) values decreased during drought, particularly in leaves. Defoliation reduced TNSC levels across tree organs, especially just before (June) and during (August) drought. Root rot infection by the fungal pathogen Onnia P. Karst spp. was detected but it did not appear to be associated to tree defoliation. However, Onnia infection was associated with reduced leaf-specific hydraulic conductivity and sapwood depth, and thus contributed to hydraulic impairment, especially in defoliated pines. Infection was also associated with virtually depleted root starch reserves during and after drought in defoliated pines. Moreover, defoliated and infected trees tended to show lower basal area increment. Overall, our results show the intertwined nature of physiological mechanisms leading to drought-induced mortality and the inherent difficulty of isolating their contribution under field conditions. © The

  15. Accumulation of cesium-137 and strontium-90 in ponderosa pine and monterey pine seedlings

    International Nuclear Information System (INIS)

    Entry, J.A.; Rygiewicz, P.T.; Emmingham, W.H.

    1993-01-01

    Because ponderosa pine Pinus ponderosa and Monterey pone (P. radiata D Don) have exceptionally fast growth rates and their abscised needles are not readily dispersed by wind, these species may be valuable for removing radioisotopes from contaminated soils. Ponderosa and Monterey pine seedlings were tested for their ability to accumulate 137 Cs and 90 Sr-characteristic radioisotopes of nuclear fallout-from contaminated soil. Seedlings were grown for 3 mo in 165 cm 3 sphagnum peat moss/perlite (1:1 V/V) in a growth chamber. In Exp. 1, seedling accumulation of 137 Cs and 90 Sr after 1 mo of exposure was measured. In Exp. 2, seedling accumulation of the radioisotopes during different-length exposures was measured. Seedling accumulation of 137 CS and 90 Sr at different concentrations of the radioisotopes in the growth medium was measured in Exp. 3. Ponderosa pine accumulated 6.3% of the 137 Cs and I.5% of the 90 Sr present in the growth medium after 1 mo; Monterey pine accumulated 8.3% of the 137 Cs and 4.5% of the 90 Sr. Accumulation of 137 Cs and 90 Sr by both coniferous species was curvilinearly related to duration of exposure. Accumulation of 137 Cs and 90 Sr by both species increased with increasing concentration in the growth medium and correlated curvilinearly with radioisotope concentration in the growth medium. Large areas throughout the world are contaminated with 137 Cs and 90 Sr as a result of nuclear weapons testing or atomic reactor accidents. The ability of trees to sequester and store 137 Cs and 90 Sr introduces the possibility of using reforestation to remediate contaminated soils

  16. Evaluation of the degree of resistance of maternal scots pine trees and their progeny to the action of SO/sub 2/, O/sub 3/ and a mixture of these gases

    Energy Technology Data Exchange (ETDEWEB)

    Bialobok, S; Karolewski, P

    1978-01-01

    Detached shoots of trees and 10 months old seedlings from seed collected from these trees, from 17 clones of Scots pine, had been subjected to the action of sulfur dioxide, ozone and a mixture of these gases. The plants were exposed to the gases in chambers specially adapted for the purpose. The concentrations of gases used and the durations of exposition permitted a considerable differentiation of the degree of needle injury observed on individual trees. On the basis of the experiments conducted a comparison was made of the injuries to needles of mother trees and to their seedling progenies made by the various gas treatments. A significant positive correlation was observed between the injuries in mothers and in the progenies due to SO/sub 2/ and O/sub 3/ acting alone. Comparison of the injuries observed on single needles and on needle pairs in fascicles allowed us to conclude that the latter were more sensitive to the action of SO/sub 2/ while with ozone the opposite is true. 22 references, 4 figures, 5 tables.

  17. Pinus saw timber tree optimisation in South Africa: a comparison of ...

    African Journals Online (AJOL)

    Both Cut to Length (CTL) and Full Tree/Tree Length (FT/TL) ground-based systems are used to harvest pine in South Africa. The fully mechanised CTL system is the most recently introduced system in South Africa. One of the reasons for the limited use of CTL harvesting systems in South Africa is the perceived inability of the ...

  18. Simulation of the biomass dynamics of Masson pine forest under different management

    Institute of Scientific and Technical Information of China (English)

    ZHANG Gui-lian; WANG Kai-yun; LIU Xin-wei; PENG Shao-lin

    2006-01-01

    TREE submodel affiliated with TREEDYN was used to simulate biomass dynamics of Masson pine (Pinus massoniana) forest under different managements (including thinning, clear cutting, combining thinning with clear cutting). The purpose was to represent biomass dynamics involved in its development, which can provide scientific arguments for management of Masson pine forest. The results showed the scenario that 10% or 20% of biomass of the previous year was thinned every five years from 15 to 40 years made total biomass of pine forest increase slowly and it took more time to reach a mature community; If clear cutting and thinning were combined, the case C (clear cutting at 20 years of forest age, thinning 50% of remaining biomass at 30 years of forest age, and thinning 50% of remaining biomass again at 40 years of forest age) was the best scenario which can accelerate speed of development of Masson pine forest and gained better economic values.

  19. The usability of tree barks as long term biomonitors of atmospheric radionuclide deposition

    Energy Technology Data Exchange (ETDEWEB)

    Belivermis, Murat, E-mail: belmurat@istanbul.edu.t [Istanbul University, Faculty of Science, Department of Biology, 34134 Vezneciler, Istanbul (Turkey); Kilic, Onder, E-mail: okilic@istanbul.edu.t [Istanbul University, Faculty of Science, Department of Biology, 34134 Vezneciler, Istanbul (Turkey); Cotuk, Yavuz, E-mail: cotukyav@istanbul.edu.t [Istanbul University, Faculty of Science, Department of Biology, 34134 Vezneciler, Istanbul (Turkey); Topcuoglu, Sayhan, E-mail: sayhantopcuoglu@yahoo.co [Istanbul University, Faculty of Science, Department of Biology, 34134 Vezneciler, Istanbul (Turkey); Kalayci, Guelsah, E-mail: gulsahkalayci@yahoo.co [Istanbul University, Faculty of Science, Department of Biology, 34134 Vezneciler, Istanbul (Turkey); Pestreli, Didem, E-mail: didempestreli@hotmail.co [Istanbul University, Faculty of Science, Department of Biology, 34134 Vezneciler, Istanbul (Turkey)

    2010-12-15

    In view of the lower radionuclide activities of moss and lichen, tree barks can be used as biomonitors of radioactive contamination, regardless of the contribution of soil uptake. The present study was conducted to determine the activity concentrations of {sup 137}Cs, {sup 40}K, {sup 232}Th and {sup 238}U in the barks of pine (Pinus nigra) and oak (Quercus petraea) trees collected from the Thrace region in Turkey. By considering the previous studies carried out in the same region, it is noticed that among lichen, moss, oak bark and pine bark, oak bark is the best accumulator of {sup 137}Cs and natural radionuclides.

  20. De novo assembly of maritime pine transcriptome: implications for forest breeding and biotechnology.

    Science.gov (United States)

    Canales, Javier; Bautista, Rocio; Label, Philippe; Gómez-Maldonado, Josefa; Lesur, Isabelle; Fernández-Pozo, Noe; Rueda-López, Marina; Guerrero-Fernández, Dario; Castro-Rodríguez, Vanessa; Benzekri, Hicham; Cañas, Rafael A; Guevara, María-Angeles; Rodrigues, Andreia; Seoane, Pedro; Teyssier, Caroline; Morel, Alexandre; Ehrenmann, François; Le Provost, Grégoire; Lalanne, Céline; Noirot, Céline; Klopp, Christophe; Reymond, Isabelle; García-Gutiérrez, Angel; Trontin, Jean-François; Lelu-Walter, Marie-Anne; Miguel, Celia; Cervera, María Teresa; Cantón, Francisco R; Plomion, Christophe; Harvengt, Luc; Avila, Concepción; Gonzalo Claros, M; Cánovas, Francisco M

    2014-04-01

    Maritime pine (Pinus pinasterAit.) is a widely distributed conifer species in Southwestern Europe and one of the most advanced models for conifer research. In the current work, comprehensive characterization of the maritime pine transcriptome was performed using a combination of two different next-generation sequencing platforms, 454 and Illumina. De novo assembly of the transcriptome provided a catalogue of 26 020 unique transcripts in maritime pine trees and a collection of 9641 full-length cDNAs. Quality of the transcriptome assembly was validated by RT-PCR amplification of selected transcripts for structural and regulatory genes. Transcription factors and enzyme-encoding transcripts were annotated. Furthermore, the available sequencing data permitted the identification of polymorphisms and the establishment of robust single nucleotide polymorphism (SNP) and simple-sequence repeat (SSR) databases for genotyping applications and integration of translational genomics in maritime pine breeding programmes. All our data are freely available at SustainpineDB, the P. pinaster expressional database. Results reported here on the maritime pine transcriptome represent a valuable resource for future basic and applied studies on this ecological and economically important pine species. © 2013 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  1. Impact of initial spacing on yield per acre and wood quality of unthinned loblolly pine at age 21

    Science.gov (United States)

    Alexander, III Clark; Richard F. Daniels; Lewis Jordan; Laurie Schimleck

    2010-01-01

    The market for southern pine first thinnings is soft. Thus, forest managers are planting at wider spacings, and using weed control and fertilization to grow chipping-saw and sawtimber trees in shorter rotations. A 21-year-old unthinned spacing study was sampled to determine the effect of initial spacing on wood quality and yield per acre of planted loblolly pine (

  2. The effects of planting density and cultural intensity on loblolly pine crown characteristics at age twelve

    Science.gov (United States)

    Madison Akers; Michael Kane; Robert Teskey; Richard Daniels; Dehai Zhao; Santosh Subedi

    2012-01-01

    Twelve-year old loblolly pine (Pinus taeda L.) stands were analyzed for the effects of planting density and cultural intensity on tree and crown attributes. Four study installations were located in the Piedmont and Upper Coastal Plain regions of the U.S. South. The treatments included six planting densities (740, 1480, 2220, 2960, 3700, 4440 trees...

  3. Monitoring limber pine health in the Rocky Mountains and North Dakota

    Science.gov (United States)

    Kelly Burns; Jim Blodgett; Marcus Jackson; Brian Howell; William Jacobi; Anna Schoettle; Anne Marie Casper; Jennifer Klutsch

    2012-01-01

    Limber pine (Pinus flexilis James) is an ecologically and culturally important, yet little studied, tree species within the Western United States. Its distribution extends from Alberta and southeastern British Colombia to New Mexico, Arizona, and southeastern California with isolated populations in North Dakota, South Dakota, Nebraska, eastern Oregon...

  4. Loblolly pine grown under elevated CO2 affects early instar pine sawfly performance.

    Science.gov (United States)

    Williams, R S; Lincoln, D E; Thomas, R B

    1994-06-01

    Seedlings of loblolly pine Pinus taeda (L.), were grown in open-topped field chambers under three CO 2 regimes: ambient, 150 μl l -1 CO 2 above ambient, and 300 μl l -1 CO 2 above ambient. A fourth, non-chambered ambient treatment was included to assess chamber effects. Needles were used in 96 h feeding trials to determine the performance of young, second instar larvae of loblolly pine's principal leaf herbivore, red-headed pine sawfly, Neodiprion lecontei (Fitch). The relative consumption rate of larvae significantly increased on plants grown under elevated CO 2 , and needles grown in the highest CO 2 regime were consumed 21% more rapidly than needles grown in ambient CO 2 . Both the significant decline in leaf nitrogen content and the substantial increase in leaf starch content contributed to a significant increase in the starch:nitrogen ratio in plants grown in elevated CO 2 . Insect consumption rate was negatively related to leaf nitrogen content and positively related to the starch:nitrogen ratio. Of the four volatile leaf monoterpenes measured, only β-pinene exhibited a significant CO 2 effect and declined in plants grown in elevated CO 2 . Although consumption changed, the relative growth rates of larvae were not different among CO 2 treatments. Despite lower nitrogen consumption rates by larvae feeding on the plants grown in elevated CO 2 , nitrogen accumulation rates were the same for all treatments due to a significant increase in nitrogen utilization efficiency. The ability of this insect to respond at an early, potentially susceptible larval stage to poorer food quality and declining levels of a leaf monoterpene suggest that changes in needle quality within pines in future elevated-CO 2 atmospheres may not especially affect young insects and that tree-feeding sawflies may respond in a manner similar to herb-feeding lepidopterans.

  5. Tree Mortality Undercuts Ability of Tree-Planting Programs to Provide Benefits: Results of a Three-City Study

    Directory of Open Access Journals (Sweden)

    Sarah Widney

    2016-03-01

    Full Text Available Trees provide numerous benefits for urban residents, including reduced energy usage, improved air quality, stormwater management, carbon sequestration, and increased property values. Quantifying these benefits can help justify the costs of planting trees. In this paper, we use i-Tree Streets to quantify the benefits of street trees planted by nonprofits in three U.S. cities (Detroit, Michigan; Indianapolis, Indiana, and Philadelphia, Pennsylvania from 2009 to 2011. We also use both measured and modeled survival and growth rates to “grow” the tree populations 5 and 10 years into the future to project the future benefits of the trees under different survival and growth scenarios. The 4059 re-inventoried trees (2864 of which are living currently provide almost $40,000 (USD in estimated annual benefits ($9–$20/tree depending on the city, the majority (75% of which are increased property values. The trees can be expected to provide increasing annual benefits during the 10 years after planting if the annual survival rate is higher than the 93% annual survival measured during the establishment period. However, our projections show that with continued 93% or lower annual survival, the increase in annual benefits from tree growth will not be able to make up for the loss of benefits as trees die. This means that estimated total annual benefits from a cohort of planted trees will decrease between the 5-year projection and the 10-year projection. The results of this study indicate that without early intervention to ensure survival of planted street trees, tree mortality may be significantly undercutting the ability of tree-planting programs to provide benefits to neighborhood residents.

  6. Instrumenting the Conifers: A Look at Daily Tree Growth and Locally Observed Environmental Conditions Across Four Mountain Sites in the Central Great Basin, USA

    Science.gov (United States)

    Strachan, S.; Biondi, F.; Johnson, B. G.

    2012-12-01

    Tree growth is often used as a proxy for past environmental conditions or as an indicator of developing trends. Reconstructions of drought, precipitation, temperature, and other phenomena derived from tree-growth indices abound in scientific literature aimed at informing policy makers. Observations of tree recruitment or death in treeline populations are frequently tied to climatic fluctuation in cause-effect hypotheses. Very often these hypotheses are based on statistical relationships between annual-to-seasonal tree growth measurements and some environmental parameter measured or modeled off-site. Observation of daily tree growth in conjunction with in-situ environmental measurements at similar timescales takes us one step closer to quantifying the uncertainty in reconstruction or predictive studies. In four separate sites in two different mountain ranges in the central Great Basin, co-located observations of conifer growth activity and local atmospheric and soils conditions have been initiated. Species include Pinus longaeva (Great Basin bristlecone pine), Pinus flexilis (limber pine), Picea engelmannii (Engelmann spruce), Pinus monophylla (singleleaf pinyon pine), Pinus ponderosa (ponderosa pine), Abies concolor (white fir), and Pseudotsuga menziesii (Douglas-fir). Measurements of sub-hourly tree radial length change and sap flow activity are compared with a suite of in-situ observations including air temperature, precipitation, photosynthetically-active radiation (PAR), relative humidity, soil temperature, and soil moisture/water content. Subalpine study site located at 3360 m elevation in the Snake Range, Nevada

  7. Monoterpene persistence in the sapwood and heartwood of longleaf pine stumps: assessment of differences in composition and stability under field conditions

    Science.gov (United States)

    Thomas L. Eberhardt; Philip M. Sheridan; Jolie M. Mahfouz

    2009-01-01

    Monoterpenes in exudates, phloem and sapwood have received considerable attention relative to the active defenses of pine trees. However, little is known about the composition and function of the heartwood monoterpenes. To address this deficiency, monoterpene contents and relative compositions were determined for sapwood and heartwood samples from longleaf pine (Pinus...

  8. Diversity of bacteria associated with Bursaphelenchus xylophilus and other nematodes isolated from Pinus pinaster trees with pine wilt disease.

    Directory of Open Access Journals (Sweden)

    Diogo Neves Proença

    Full Text Available The pinewood nematode (PWN, Bursaphelenchus xylophilus, has been thought to be the only causal agent of pine wilt disease (PWD, however, since bacteria have been suggested to play a role in PWD, it is important to know the diversity of the microbial community associated to it. This study aimed to assess the microbial community associated with B. xylophilus and with other nematodes isolated from pine trees, Pinus pinaster, with PWD from three different affected forest areas in Portugal. One hundred and twenty three bacteria strains were isolated from PWN and other nematodes collected from 14 P. pinaster. The bacteria strains were identified by comparative analysis of the 16S rRNA gene partial sequence. All except one gram-positive strain (Actinobacteria belonged to the gram-negative Beta and Gammaproteobacteria. Most isolates belonged to the genus Pseudomonas, Burkholderia and to the family Enterobacteriaceae. Species isolated in higher percentage were Pseudomonas lutea, Yersinia intermedia and Burkholderia tuberum. The major bacterial population associated to the nematodes differed according to the forest area and none of the isolated bacterial species was found in all different forest areas. For each of the sampled areas, 60 to 100% of the isolates produced siderophores and at least 40% produced lipases. The ability to produce siderophores and lipases by most isolates enables these bacteria to have a role in plant physiological response. This research showed a high diversity of the microbial community associated with B. xylophilus and other nematodes isolated from P. pinaster with PWD.

  9. Molecular dissection of white pine genetic resistance to Cronartium ribicola

    Science.gov (United States)

    Jun-Jun Liu; Richard Sniezko

    2011-01-01

    Pinus monticola (Dougl. ex D. Don.) maintains a complex defence system that detects white pine blister rust pathogen (Cronartium ribicola J.C.Fisch.) and activates resistance responses. A thorough understanding of how it functions at the molecular level would provide us new strategies for creating forest trees with durable disease resistance. Our research focuses on...

  10. Effects of gamma radiation and storage on cooked pine seed (Araucaria angustifollia)

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Lucia A.C.S.; Modolo, Debora M.; Martinez, Patricia; Piero, Edson A. di; Bigide, Priscila; Arthur, Valter, E-mail: lcasilva@cena.usp.br, E-mail: arthur@cena.usp.br [Centro de Energia Nuclear na Agricultura (CENA/USP), Laboratorio de Radiobiologia e Ambiente, Piracicaba, SP (Brazil); Harder, Marcia N.C.; Arthur, Paula B. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2011-07-01

    The Araucaria angustifolia, is known as the Pinheiro-do-Parana Brazilian pine, Pine, Pine Tree Monkey, emerges as the main representative of the Rain Forest, also known as Araucaria Forest, part of the Atlantic Forest biome (Decree Law 750/1993). Despite being appreciated nutritious food, the gear has been widely used in Brazilian cook as other seeds, and its consumption in the more usual way roasted or boiled, however, certain foods have been developed, such as flour, pine seeds, artisan produced only due to poor commercial expression. Because of this, the aim of this work was to study the effect of storage under vacuum and gamma radiation on samples cooked pinion. Pine seeds after cooking were stored in vacuum packaging and polypropylene irradiated with 0 (control), 0.5, 1.0 and 3.0 kGy. Later they were stored at a temperature of 6 degree C. Analyzes were performed to characterize physical (weight, temperature, percentage of losses) and proximate composition (Humidity, fat, protein, ash and weight loss) of A. angustifolia (Bert.) pine seed after three months of storage. The results indicated that there was no significant difference between treatments at protein parameter. About the other parameters there was an increase humidity and decrease with ash and fat with the treatments. (author)

  11. Effects of gamma radiation and storage on cooked pine seed (Araucaria angustifollia)

    International Nuclear Information System (INIS)

    Silva, Lucia A.C.S.; Modolo, Debora M.; Martinez, Patricia; Piero, Edson A. di; Bigide, Priscila; Arthur, Valter; Harder, Marcia N.C.; Arthur, Paula B.

    2011-01-01

    The Araucaria angustifolia, is known as the Pinheiro-do-Parana Brazilian pine, Pine, Pine Tree Monkey, emerges as the main representative of the Rain Forest, also known as Araucaria Forest, part of the Atlantic Forest biome (Decree Law 750/1993). Despite being appreciated nutritious food, the gear has been widely used in Brazilian cook as other seeds, and its consumption in the more usual way roasted or boiled, however, certain foods have been developed, such as flour, pine seeds, artisan produced only due to poor commercial expression. Because of this, the aim of this work was to study the effect of storage under vacuum and gamma radiation on samples cooked pinion. Pine seeds after cooking were stored in vacuum packaging and polypropylene irradiated with 0 (control), 0.5, 1.0 and 3.0 kGy. Later they were stored at a temperature of 6 degree C. Analyzes were performed to characterize physical (weight, temperature, percentage of losses) and proximate composition (Humidity, fat, protein, ash and weight loss) of A. angustifolia (Bert.) pine seed after three months of storage. The results indicated that there was no significant difference between treatments at protein parameter. About the other parameters there was an increase humidity and decrease with ash and fat with the treatments. (author)

  12. MFAULT: a computer program for analyzing fault trees

    International Nuclear Information System (INIS)

    Pelto, P.J.; Purcell, W.L.

    1977-11-01

    A description and user instructions are presented for MFAULT, a FORTRAN computer program for fault tree analysis. MFAULT identifies the cut sets of a fault tree, calculates their probabilities, and screens the cut sets on the basis of specified cut-offs on probability and/or cut set length. MFAULT is based on an efficient upward-working algorithm for cut set identification. The probability calculations are based on the assumption of small probabilities and constant hazard rates (i.e., exponential failure distributions). Cut sets consisting of repairable components (basic events) only, non-repairable components only, or mixtures of both types can be evaluated. Components can be on-line or standby. Unavailability contributions from pre-existing failures, failures on demand, and testing and maintenance down-time can be handled. MFAULT can analyze fault trees with AND gates, OR gates, inhibit gates, on switches (houses) and off switches. The code is presently capable of finding up to ten event cut sets from a fault tree with up to 512 basic events and 400 gates. It is operational on the CONTROL DATA CYBER 74 computer. 11 figures

  13. Identification of major backscattering sources in trees and shrubs at 10 GHz

    Science.gov (United States)

    Zoughi, R.; Wu, L. K.; Moore, R. K.

    1986-01-01

    A short-range very-fine-resolution FM-CW radar scatterometer has been used to identify the primary contributors to 10-GHz radar backscatter from pine, pin oak, American sycamore and sugar maple trees, and from creeping juniper shrubs. This system provided a range resolution of 11 cm and gave a 16-cm diameter illumination area at the target range of about 4 m. For a pine tree, the needles caused the strongest backscatter as well as the strongest attenuation in the radar signal. Cones, although insignificant contributors to the total backscatter, were more important for backscattering than for attenuation. For the rest of the trees, leaves were the strongest cause of backscattering and attenuation. However, in the absence of leaves, the petioles, small twigs, and branches gave relatively strong backscatter. For American sycamore and sugar maple trees, the fruits did not affect the total backscatter unless they were packed in clusters. For creeping juniper the backscattered energy and attenuation in the radar signal were mainly due to the top two layers of the evergreen scales. The contribution of the tree trunks was not determined.

  14. Harvesting costs and production rates for seed-tree removal in young-growth, mixed-conifer stands

    Science.gov (United States)

    Philip M. McDonald

    1969-01-01

    Ponderosa pine seed trees left from a previous cutting on the Challenge Experimental Forest, California, were removed in October 1963. Logging costs and production rates were compared with those for a seed-tree cutting on an area nearby. Production rates for seed-tree removal greatly exceeded those for the operation as a whole. Skidding production increased by 38...

  15. Effects of drought and irrigation on ecosystem functioning in a mature Scots pine forest

    Science.gov (United States)

    Dobbertin, Matthias; Brunner, Ivano; Egli, Simon; Eilmann, Britta; Graf Pannatier, Eisabeth; Schleppi, Patrick; Zingg, Andreas; Rigling, Andreas

    2010-05-01

    Climate change is expected to increase temperature and reduce summer precipitation in Switzerland. To study the expected effects of increased drought in mature forests two different approaches are in general possible: water can be partially or completely removed from the ecosystems via above- or below-canopy roofs or water can be added to already drought-prone ecosystems. Both methods have advantages and disadvantages. In our study water was added to a mature 90-year old Scots pine (Pinus sylvestris L.) forest with a few singe pubescent oaks (Quercus pubescens Willd.), located in the valley bottom of the driest region of Switzerland (Valais). In Valais, Scots pines are declining, usually with increased mortality rates following drought years. It was therefore of special interest to study here how water addition is changing forest ecosystem functioning. The irrigation experiment started in the summer of 2003. Out of eight 0.1 ha experimental plots, four were randomly selected for irrigation, the other four left as a control. Irrigation occurred during rainless nights between April and October, doubling the annual rainfall amount from 650 to 1300 mm. Irrigation water, taken from a near-by irrigation channel, added some nutrients to the plots, but nutrients which were deficient on the site, e.g. nitrogen and phosphorus, were not altered. Tree diameter, tree height and crown width were assessed before the start of the irrigation in winter 2002/2003 and after 7 years of the experiment in 2009/2010. Tree crown transparency (lack of foliage) and leaf area index (LAI) were annually assessed. Additionally, tree mortality was annually evaluated. Mycorrhizal fruit bodies were identified and counted at weekly intervals from 2003 until 2007. Root samples were taken in 2004 and 2005. In 2004 and 2005 wood formation of thirteen trees was analysed in weekly or biweekly intervals using the pinning method. These trees were felled in 2006 for stem, shoot and needle growth analysis

  16. Forest litter stocks in Korean pine-broad-leaved forests of the southern Sikhote Alin

    Directory of Open Access Journals (Sweden)

    A. V. Ivanov

    2015-10-01

    Full Text Available The article presents the data on the forest litter of the Korean pine-broad-leaved forests of the South of Primorsky krai. The focus of the research is plantations dominated by Korean pine; areas of the main tree species with ages of 50, 80, 130 and 200 years were selected. The dynamics of the forest litter stock in the pine and broadleaved forests of different ages according to the measurement results for the season in 2014 is stated. In the studied plantation, the forest litter stock varies between 9.7–20.3 t ha-1. The greatest value of the forest litter stock is recorded in old-growth cedar forest (200 years. Relatively high power and the stock of litter are typical for young Korean pine forest that can explain the lower speed of the litter properties change against the dynamics of taxation indicators of the forest stand. The difference between the amount of the litter in the 200-year-old and remaining pine trees are statistically significant at p = 0.05. The dependence of the litter power on the age is not revealed. The coefficient of the forest litter decomposition ranges from 2.55–10.60 that characterizes the high speed of its rotting. The highest coefficient of the litter decomposition has an old-growing pine forest. The schedule of seasonal humidity fluctuations of the forest litter on the chosen plot is made; with increasing cedar forest age, the volumetric moisture content of the forest litter increases; volumetric moisture content on the plots remain relatively unchanged during the season. The area of the Korean pine forests of Primorsky State Academy of Agriculture is 6835 ha. The amount of carbon stock in the forest litter is 38.7 thousand tons C. in this area, while the system of regional assessment of the forest carbon balance estimates this index as 24.3 tons С. The data obtained can be used to adjust the coefficients of regional assessment of the forest carbon balance for cedar forests of Primorsky krai.

  17. Effects of wildfire on densities of secondary cavity-nesting birds in ponderosa pine forests of northern Arizona

    Science.gov (United States)

    Jill K. Dwyer; William M. Block

    2000-01-01

    Many catastrophic wildfires burned throughout forests in Arizona during the spring and summer of 1996 owing to severely dry conditions. One result of these fires was a loss of preexisting tree cavities for reproduction. In ponderosa pine (Pinus ponderosa) forests most cavities are found in dead trees; therefore, snags are a very important habitat...

  18. Woodland: dynamics of average diameters of coniferous tree stands of the principal forest types

    Directory of Open Access Journals (Sweden)

    R. A. Ziganshin

    2016-08-01

    Full Text Available The analysis of age dynamics of average diameters of deciduous tree stands of different forest types at Highland Khamar-Daban (natural woodland in South-East Baikal Lake region has been done. The aggregate data of average tree, the analysis of age dynamics of average diameters of a deciduous tree stands of stand diameters by age classes, as well as tree stand current periodic and overall average increment are presented and discussed in the paper. Forest management appraisal is done. The most representative forest types have been selected to be analyzed. There were nine of them including three Siberian stone pine Pinus sibirica Du Tour stands, three Siberian fir Abies sibirica Ledeb. stands, one Siberian spruce Picea obovata Ledeb. stand, and two dwarf Siberian pine Pinus pumila (Pallas Regel stands. The whole high-altitude range of mountain taiga has been evaluated. Mathematical and statistic indicators have been calculated for every forest type. Stone pine stands are the largest. Dynamics of mean diameters of forest stands have been examined by dominant species for every forest type. Quite a number of interesting facts have been elicited. Generally, all species have maximal values of periodic annual increment that is typical for young stands, but further decrease of increment is going on differently and connects to the different lifetime of wood species. It is curious that annual increment of the dwarf Siberian pine stands almost does not decrease with aging. As for mean annual increment, it is more stable than periodic annual increment. From the fifth age class (age of stand approaching maturity mean annual increment of cedar stands varies from 0.20 to 0.24 cm per year; from 0.12–0.15 to 0.18–0.21 cm per year – in fir stands; from 0.18 to 0.24 cm per year – in spruce stands; and from 0.02–0.03 to 0.05–0.06 cm per year – in draft pine stands. Mean annual increment of dwarf Siberian pine increases with aging and increment of other

  19. Extensions of Dynamic Programming: Decision Trees, Combinatorial Optimization, and Data Mining

    KAUST Repository

    Hussain, Shahid

    2016-01-01

    This thesis is devoted to the development of extensions of dynamic programming to the study of decision trees. The considered extensions allow us to make multi-stage optimization of decision trees relative to a sequence of cost functions, to count the number of optimal trees, and to study relationships: cost vs cost and cost vs uncertainty for decision trees by construction of the set of Pareto-optimal points for the corresponding bi-criteria optimization problem. The applications include study of totally optimal (simultaneously optimal relative to a number of cost functions) decision trees for Boolean functions, improvement of bounds on complexity of decision trees for diagnosis of circuits, study of time and memory trade-off for corner point detection, study of decision rules derived from decision trees, creation of new procedure (multi-pruning) for construction of classifiers, and comparison of heuristics for decision tree construction. Part of these extensions (multi-stage optimization) was generalized to well-known combinatorial optimization problems: matrix chain multiplication, binary search trees, global sequence alignment, and optimal paths in directed graphs.

  20. Extensions of Dynamic Programming: Decision Trees, Combinatorial Optimization, and Data Mining

    KAUST Repository

    Hussain, Shahid

    2016-07-10

    This thesis is devoted to the development of extensions of dynamic programming to the study of decision trees. The considered extensions allow us to make multi-stage optimization of decision trees relative to a sequence of cost functions, to count the number of optimal trees, and to study relationships: cost vs cost and cost vs uncertainty for decision trees by construction of the set of Pareto-optimal points for the corresponding bi-criteria optimization problem. The applications include study of totally optimal (simultaneously optimal relative to a number of cost functions) decision trees for Boolean functions, improvement of bounds on complexity of decision trees for diagnosis of circuits, study of time and memory trade-off for corner point detection, study of decision rules derived from decision trees, creation of new procedure (multi-pruning) for construction of classifiers, and comparison of heuristics for decision tree construction. Part of these extensions (multi-stage optimization) was generalized to well-known combinatorial optimization problems: matrix chain multiplication, binary search trees, global sequence alignment, and optimal paths in directed graphs.