WorldWideScience

Sample records for program laboratory operated

  1. Hanford Laboratories Operation monthly activities report, September 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-10-15

    This is the monthly report for the Hanford Laboratories Operation, September, 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, 4000 program research and development, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation are discussed.

  2. Hanford Laboratories Operation monthly activities report, December 1961

    Energy Technology Data Exchange (ETDEWEB)

    1962-01-15

    The monthly report for the Hanford Laboratories Operation, May 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, programming, laboratory auxiliaries operation, and technical administration operation are discussed.

  3. Hanford Laboratories Operation monthly activities report, November 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-12-15

    The monthly report for the Hanford Laboratories Operation, November 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, programming, laboratory auxiliaries operation, and technical administration operation are discussed.

  4. Hanford Laboratories Operation monthly activities report, June 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-07-15

    This is the monthly report for the Hanford Laboratories Operation, June, 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics, instrumentation research, employee relations, operations research, synthesis operation, programming, radiation protection, and laboratory auxiliaries operation are discussed.

  5. Hanford Laboratories Operation monthly activities report, June 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-07-15

    The monthly report for the Hanford Laboratories Operation, June 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, programming, laboratory auxiliaries operation, and professional placement and relations practices are discussed.

  6. Hanford Laboratories Operation monthly activities report, April 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-05-15

    This is the monthly report for the Hanford Laboratories Operation, April, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities. Biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation programming, radiation protection, and laboratory auxiliaries operation are discussed.

  7. Hanford Laboratories Operation monthly activities report, July 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-08-15

    This is the monthly report for the Hanford Laboratories Operation, July, 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation area discussed.

  8. Hanford Laboratories Operation monthly activities report, May 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-06-15

    This is the monthly report for the Hanford Laboratories Operation, May, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation area discussed.

  9. Hanford Laboratories Operation monthly activities report, May 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-06-15

    This is the monthly report for the Hanford Laboratories Operation, May 1958. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, operations research and synthesis operation, programming, radiation protection, and laboratory auxiliaries operation area discussed.

  10. Laboratory Cooperative Program: an assessment

    International Nuclear Information System (INIS)

    1979-11-01

    The Laboratory Cooperative Program (Lab Coop Program) was initiated by the US AEC over 20 years ago to promote the transfer of technical information from the national laboratories to the academic community utilizing the facilities and staff capabilities of the labs. Under the AEC, ERDA and DOE, the goals of the program have broadened gradually. Therefore, the program was examined to determine the extent to which it contributes to the current objectives of the DOE and to develop recommendations for any program changes. The assessment of the Lab Coop Program was based on a combination of review of program activity data and publications, review of general information regarding laboratory operations, and extensive interviews. The major findings of this evaluation were that: the program lacks a clear statement of purpose; program plans, priorities, and procedures are not explicit and operations tend to follow historical patterns; and the program is generally accepted as beneficial, but its benefits are difficult to quantify. It is recommended that the focus of the Lab Coop Program be limited and clearly defined, that performance plans be developed and measured against accomplishments, and that a national informational effort be initiated

  11. Hanford Laboratories Operation monthly activities report, August 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-09-15

    This is the monthly report of the Hanford Laboratories Operation, August 1958. Reactor fuels, chemistry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, employee relations, plutonium recycling, programming, radiation protection, laboratory auxiliaries operation, and inventions are discussed.

  12. Hanford Laboratories Operation monthly activities report, February 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-03-15

    The monthly report for the Hanford Laboratories Operation, February 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, and programming are discussed.

  13. Hanford Laboratories Operation monthly activities report, September 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-10-15

    The monthly report for the Hanford Laboratories Operation, September 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, operations research and synthesis operation, and programming are discussed.

  14. Program of experiments for the operating phase of the Underground Research Laboratory

    International Nuclear Information System (INIS)

    Simmons, G.R.; Bilinsky, D.M.; Davison, C.C.; Gray, M.N.; Kjartanson, B.H.; Martin, C.D.; Peters, D.A.; Lang, P.A.

    1992-09-01

    The Underground Research Laboratory (URL) is one of the major research and development facilities that AECL Research has constructed in support of the Canadian Nuclear Fuel Waste Management Program. The URL is a unique geotechnical research facility constructed in previously undisturbed plutonic rock, which was well characterized before construction. The site evaluation and construction phases of the URL project have been completed and the operating phase is beginning. A program of operating phase experiments that address AECL's objectives for in situ testing has been selected. These experiments were subjected to an external peer review and a subsequent review by the URL Experiment Committee in 1989. The comments from the external peer review were incorporated into the experiment plans, and the revised experiments were accepted by the URL Experiment Committee. Summaries of both reviews are presented. The schedule for implementing the experiments and the quality assurance to be applied during implementation are also summarized. (Author) (9 refs., 11 figs.)

  15. Hanford Laboratories Operation monthly activities report, May 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-06-15

    This is the monthly report for the Hanford Laboratories Operation, May, 1962. Reactor fuels, chemistry, dosimetry, separation process, reactor technology employee relations, operations research and synthesis operation, programming, and radiation protection are discussed.

  16. Hanford Laboratories Operation monthly activities report, June 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-07-16

    This is the monthly report for the Hanford Laboratories Operation June 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  17. Hanford Laboratories Operation monthly activities report, July 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-08-15

    This is the monthly report for the Hanford Laboratories Operation July 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  18. Hanford Laboratories Operation monthly activities report, October 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-11-15

    This is the monthly report for the Hanford Laboratories Operation October 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  19. Hanford Laboratories Operation monthly activities report, August 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-09-14

    This is the monthly report for the Hanford Laboratories Operation August 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  20. Hanford Laboratories Operation monthly activities report, March 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-04-16

    This is the monthly report for the Hanford Laboratories Operation March 1962. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  1. Hanford Laboratories Operation monthly activities report, October 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-11-15

    This is the monthly report for the Hanford Laboratories Operation October 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  2. Hanford Laboratories Operation monthly activities report, August 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-09-15

    This is the monthly report for the Hanford Laboratories Operation August 1961. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  3. Laboratory quality assurance and its role in the safeguards analytical laboratory evaluation (SALE) program

    International Nuclear Information System (INIS)

    Delvin, W.L.; Pietri, C.E.

    1981-07-01

    Since the late 1960's, strong emphasis has been given to quality assurance in the nuclear industry, particularly to that part involved in nuclear reactors. This emphasis has had impact on the analytical chemistry laboratory because of the importance of analytical measurements in the certification and acceptance of materials used in the fabrication and construction of reactor components. Laboratory quality assurance, in which the principles of quality assurance are applied to laboratory operations, has a significant role to play in processing, fabrication, and construction programs of the nuclear industry. That role impacts not only process control and material certification, but also safeguards and nuclear materials accountability. The implementation of laboratory quality assurance is done through a program plan that specifies how the principles of quality assurance are to be applied. Laboratory quality assurance identifies weaknesses and deficiencies in laboratory operations and provides confidence in the reliability of laboratory results. Such confidence in laboratory measurements is essential to the proper evaluation of laboratories participating in the Safeguards Analytical Laboratory Evaluation (SALE) Program

  4. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training.

  5. Qualification requirements and training programs for nonreactor nuclear facility personnel in the Operations Division of the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Preston, E.L.; Culbert, W.H.; Baldwin, M.E.; McCormack, K.E.; Rivera, A.L.; Setaro, J.A.

    1985-11-01

    This document describes the program for training, retraining, and qualification of nonreactor nuclear operators in the Operations Division of the Oak Ridge National Laboratory. The objective of the program is to provide the Operators and Supervisors of nuclear facilities the knowledge and skills needed to perform assigned duties in a safe and efficient manner and to comply with US Department of Energy Order 5480.1A Chapter V. This order requires DOE nuclear facilities to maintain formal training programs for their operating staff and documentation of that training

  6. Laboratory services series: a lubrication program

    Energy Technology Data Exchange (ETDEWEB)

    Bowen, H.B.; Miller, T.L.

    1976-05-01

    The diversity of equipment and operating conditions at a major national research and development laboratory requires a systematic, effective lubrication program. The various phases of this program and the techniques employed in formulating and administering this program are discussed under the following topics: Equipment Identification, Lubrication Requirements, Assortment of Lubricants, Personnel, and Scheduling.

  7. Laboratory services series: a lubrication program

    International Nuclear Information System (INIS)

    Bowen, H.B.; Miller, T.L.

    1976-05-01

    The diversity of equipment and operating conditions at a major national research and development laboratory requires a systematic, effective lubrication program. The various phases of this program and the techniques employed in formulating and administering this program are discussed under the following topics: Equipment Identification, Lubrication Requirements, Assortment of Lubricants, Personnel, and Scheduling

  8. Saxton Transportation Operations Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Saxton Transportation Operations Laboratory (Saxton Laboratory) is a state-of-the-art facility for conducting transportation operations research. The laboratory...

  9. Environmental analytical laboratory setup operation and QA/QC

    International Nuclear Information System (INIS)

    Hsu, J.P.; Boyd, J.A.; DeViney, S.

    1991-01-01

    Environmental analysis requires precise and timely measurements. The required precise measurement is ensured with quality control and timeliness through an efficient operation. The efficiency of the operation also ensures cost-competitiveness. Environmental analysis plays a very important role in the environmental protection program. Due to the possible litigation involvement, most environmental analyses follow stringent criteria, such as the U.S. EPA Contract Laboratory Program procedures with analytical results documented in an orderly manner. The documentation demonstrates that all quality control steps are followed and facilitates data evaluation to determine the quality and usefulness of the data. Furthermore, the tedious documents concerning sample checking, chain-of-custody, standard or surrogate preparation, daily refrigerator and oven temperature monitoring, analytical and extraction logbooks, standard operation procedures, etc., also are an important part of the laboratory documentation. Quality control for environmental analysis is becoming more stringent, required documentation is becoming more detailed and turnaround time is shorter. However, the business is becoming more cost-competitive and it appears that this trend will continue. In this paper, we discuss what should be done to deal this high quality, fast-paced and tedious environmental analysis process at a competitive cost. The success of environmental analysis is people. The knowledge and experience of the staff are the key to a successful environmental analysis program. In order to be successful in this new area, the ability to develop new methods is crucial. In addition, the laboratory information system, laboratory automation and quality assurance/quality control (QA/QC) are major factors for laboratory success. This paper concentrates on these areas

  10. Laboratory interface in support of Environmental Restoration Programs

    International Nuclear Information System (INIS)

    Pardue, G.J. Jr.

    1994-01-01

    A vital part of quality environmental data resides in the communication between the project and the analytical laboratory. It is essential that the project clearly identify its objectives to the laboratory and that the laboratory understands the scope and limitations of the analytical process. Successful completion of an environmental project must include an aggressive program between project managers and subcontracted Lyrical laboratories. All to often, individuals and organizations tend to deflect errors and failures observed in environmental toward open-quotes the other guyclose quotes. The engineering firm will blame the laboratory, the laboratory will blame the field operation, the field operation will blame the engineering, and everyone will blame the customer for not understanding the true variables in the environmental arena. It is the contention of the authors, that the majority of failures derive from a lack of communication and misunderstanding. Several initiatives can be taken to improve communication and understanding between the various pieces of the environmental data quality puzzle. This presentation attempts to outline mechanisms to improve communication between the environmental project and the analytical laboratory with the intent of continuous quality improvement. Concepts include: project specific laboratory statements of work which focus on project and program requirements; project specific analytical laboratory readiness reviews (project kick-off meetings); laboratory team workshops; project/program performance tracking and self assessment and promotion of team success

  11. Applying the National Industrial Security Program (NISP) in the laboratory environment

    International Nuclear Information System (INIS)

    Bruckner, D.G.

    1995-01-01

    With continuing changes in the world safeguards and security environment the effectiveness of many laboratory operations depends on correctly assessing the risk to its programs and developing protection technologies, research and concepts of operations being employed by the scientific community. This paper explores the opportunities afforded by the National Industrial Security Program (NISP) to uniformly and simply protect Laboratory security assets, sensitive and classified information and matter, during all aspects of a laboratory program. The developments in information systems, program security, physical security and access controls suggest an industrial security approach. This paper's overall objective is to indicate that the Laboratory environment is particularly well suited to take advantage being pursued by NISP and the performance objectives of the new DOE orders

  12. Laboratory Directed Research and Development Program FY 2006 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2007-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the US Departmental of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2006. The associated FY 2006 ORNL LDRD Self-Assessment (ORNL/PPA-2007/2) provides financial data about the FY 2006 projects and an internal evaluation of the program's management process.

  13. Laboratory directed research and development program FY 1999

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2000-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY99.

  14. Laboratory Directed Research and Development Program FY 2001

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2002-03-15

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. This is the annual report on Laboratory Directed Research and Development (LDRD) program for FY01.

  15. LOFT Augmented Operator Capability Program

    International Nuclear Information System (INIS)

    Hollenbeck, D.A.; Krantz, E.A.; Hunt, G.L.; Meyer, O.R.

    1980-01-01

    The outline of the LOFT Augmented Operator Capability Program is presented. This program utilizes the LOFT (Loss-of-Fluid Test) reactor facility which is located at the Idaho National Engineering Laboratory and the LOFT operational transient experiment series as a test bed for methods of enhancing the reactor operator's capability for safer operation. The design of an Operational Diagnotics and Display System is presented which was backfit to the existing data acquisition computers. Basic color-graphic displays of the process schematic and trend type are presented. In addition, displays were developed and are presented which represent safety state vector information. A task analysis method was applied to LOFT reactor operating procedures to test its usefulness in defining the operator's information needs and workload

  16. LDRD 2016 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2017-03-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2C dated October 22, 2015. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2016, as required. In FY 2016, the BNL LDRD Program funded 48 projects, 21 of which were new starts, at a total cost of $11.5M. The investments that BNL makes in its LDRD program support the Laboratory’s strategic goals. BNL has identified four Critical Outcomes that define the Laboratory’s scientific future and that will enable it to realize its overall vision. Two operational Critical Outcomes address essential operational support for that future: renewal of the BNL campus; and safe, efficient laboratory operations.

  17. Laboratory Directed Research and Development Program FY2016 Annual Summary of Completed Projects

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-03-30

    ORNL FY 2016 Annual Summary of Laboratory Directed Research and Development Program (LDRD) Completed Projects. The Laboratory Directed Research and Development (LDRD) program at ORNL operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (October 22, 2015), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. The LDRD program funds are obtained through a charge to all Laboratory programs. ORNL reports its status to DOE in March of each year.

  18. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    2009-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services Environmental programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia

  19. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2012-03-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 436.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site first received ISO 14001 certification in September 2006 and recertification in 2009. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy and Water Resource Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has

  20. Sandia National Laboratories, California Environmental Management System Program Manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004and Department of Energy (DOE) Order 450.1. Sandia National Laboratories, California (SNL/CA) has maintained functional environmental programs to assist with regulatory compliance for more than 30 years. During 2005, these existing programs were rolled into a formal environmental management system (EMS) that expands beyond the traditional compliance focus to managing and improving environmental performance and stewardship practices for all site activities. An EMS is a set of inter-related elements that represent a continuing cycle of planning, implementing, evaluating, and improving processes and actions undertaken to achieve environmental policy and goals. The SNL/CA EMS Program conforms to the International Standard for Environmental Management Systems, ISO 14001:2004 (ISO 2004). The site received ISO 14001 certification in September 2006. SNL/CA's EMS Program is applicable to the Sandia, Livermore site only. Although SNL/CA operates as one organizational division of the overall Sandia National Laboratories, the EMS Program is site-specific, with site-specific objectives and targets. SNL/CA (Division 8000) benefits from the organizational structure as it provides corporate level policies, procedures, and standards, and established processes that connect to and support elements of the SNL/CA EMS Program. Additionally, SNL/CA's EMS Program benefits from two corporate functional programs (Facilities Energy Management and Fleet Services programs) that maintain responsibility for energy management and fleet services for all Sandia locations. Each EMS element is further enhanced with site-specific processes and standards. Division 8000 has several groups operating at Sandia National Laboratories

  1. ORNLs Laboratory Directed Research and Development Program FY 2010 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2011-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2010. The associated FY 2010 ORNL LDRD Self-Assessment (ORNL/PPA-2011/2) provides financial data and an internal evaluation of the program’s management process.

  2. ORNLs Laboratory Directed Research and Development Program FY 2009 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2010-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2009. The associated FY 2009 ORNL LDRD Self-Assessment (ORNL/PPA-2010/2) provides financial data and an internal evaluation of the program’s management process.

  3. ORNLs Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-03-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries all ORNL LDRD research activities supported during FY 2008. The associated FY 2008 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program’s management process.

  4. ORNLs Laboratory Directed Research and Development Program FY 2013 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2013. The associated FY 2013 ORNL LDRD Self-Assessment (ORNL/PPA-2014/2) provides financial data and an internal evaluation of the program’s management process.

  5. ORNLs Laboratory Directed Research and Development Program FY 2012 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the US Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2012. The associated FY 2012 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  6. ORNLs Laboratory Directed Research and Development Program FY 2011 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2012-03-01

    The Laboratory Directed Research and Development (LDRD) program at Oak Ridge National Laboratory (ORNL) reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries of all ORNL LDRD research activities supported during FY 2011. The associated FY 2011 ORNL LDRD Self-Assessment (ORNL/PPA-2012/2) provides financial data and an internal evaluation of the program’s management process.

  7. Operating and Assurance Program Plan. Revision 4

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The LBL Operating and Assurance Program (OAP) is a management system and a set of requirements designed to maintain the level of performance necessary to achieve LBL`s programmatic and administrative objectives effectively and safely through the application of quality assurance and related conduct of operations and maintenance management principles. Implement an LBL management philosophy that supports and encourages continual improvement in performance and quality at the Laboratory. Provide an integrated approach to compliance with applicable regulatory requirements and DOE orders. The OAP is intended to meet the requirements of DOE Order 5700.6C, Quality Assurance. The Program also contains management system elements of DOE Orders 5480.19, Conduct of Operations Requirements for DOE Facilities; 5480.25, Safety of Accelerator Facilities; and 4330.4A, Maintenance Management Program, and is meant to integrate these elements into the overall LBL approach to Laboratory management. The requirements of this program apply to LBL employees and organizations, and to contractors and facility users as managed by their LBL sponsors. They are also applicable to external vendors and suppliers as specified in procurement documents and contracts.

  8. Implementation of Good Clinical Laboratory Practice (GCLP) guidelines within the External Quality Assurance Program Oversight Laboratory (EQAPOL).

    Science.gov (United States)

    Todd, Christopher A; Sanchez, Ana M; Garcia, Ambrosia; Denny, Thomas N; Sarzotti-Kelsoe, Marcella

    2014-07-01

    The EQAPOL contract was awarded to Duke University to develop and manage global proficiency testing programs for flow cytometry-, ELISpot-, and Luminex bead-based assays (cytokine analytes), as well as create a genetically diverse panel of HIV-1 viral cultures to be made available to National Institutes of Health (NIH) researchers. As a part of this contract, EQAPOL was required to operate under Good Clinical Laboratory Practices (GCLP) that are traditionally used for laboratories conducting endpoint assays for human clinical trials. EQAPOL adapted these guidelines to the management of proficiency testing programs while simultaneously incorporating aspects of ISO/IEC 17043 which are specifically designed for external proficiency management. Over the first two years of the contract, the EQAPOL Oversight Laboratories received training, developed standard operating procedures and quality management practices, implemented strict quality control procedures for equipment, reagents, and documentation, and received audits from the EQAPOL Central Quality Assurance Unit. GCLP programs, such as EQAPOL, strengthen a laboratory's ability to perform critical assays and provide quality assessments of future potential vaccines. © 2013.

  9. Laboratory Directed Research and Development Program FY 2006

    Energy Technology Data Exchange (ETDEWEB)

    Hansen (Ed.), Todd

    2007-03-08

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness.

  10. IPEP: Laboratory performance evaluation reports for management of DOE EM programs

    International Nuclear Information System (INIS)

    Hensley, J.E.; Lindahl, P.C.; Streets, W.E.

    1995-01-01

    Environmental restoration program/project managers at DOE's Office of Environmental Management (EM) are making important decisions based on analytical data generated by contracted laboratories. The Analytical Services Division, EM-263, is developing the Integrated Performance Evaluation Program (IPEP) to assess the performance of those laboratories, based on results from Performance Evaluation (PE) programs. The IPEP reports will be used by the laboratories to foster self-assessment and improvement. In addition, IPEP will produce PE reports for three levels of EM management (Operations/Project Offices, Area Program Offices, and Deputy Assistant Secretary Office). These reports will be used to assess whether contracted analytical laboratories have the capability to produce environmental data of the quality necessary for making environmental restoration and waste management decisions

  11. Rockwell International's Critical Mass Laboratory Program at the Rocky Flats Plant

    International Nuclear Information System (INIS)

    McCarthy, J.D.

    1984-01-01

    The primary mission of the laboratory is to provide data in support of plant operations. To fulfill this task, the facility has unique capabilities for perfoming general purpose critical mass experiment. The critical mass laboratory performed over 1000 critical measurements, primarily with plutonium metal and uranium metal, oxide and solution; it worked also on the NRC program (high-enriched uranium measurements). Presently the laboratory staff prepares for a series of critical measurements on a poisoned tube tank; the laboratory intends to continue to pursue basic plant support programs in the future

  12. NVLAP calibration laboratory program

    Energy Technology Data Exchange (ETDEWEB)

    Cigler, J.L.

    1993-12-31

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST).

  13. NVLAP calibration laboratory program

    International Nuclear Information System (INIS)

    Cigler, J.L.

    1993-01-01

    This paper presents an overview of the progress up to April 1993 in the development of the Calibration Laboratories Accreditation Program within the framework of the National Voluntary Laboratory Accreditation Program (NVLAP) at the National Institute of Standards and Technology (NIST)

  14. Laboratory directed research and development program FY 2003

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd

    2004-03-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. In FY03, Berkeley Lab was authorized by DOE to establish a funding ceiling for the LDRD program of $15.0 M, which equates to about 3.2% of Berkeley Lab's FY03 projected operating and capital equipment budgets. This funding level was provided to develop new scientific ideas and opportunities and allow the Berkeley Lab Director an opportunity to initiate new directions. Budget constraints limited available resources, however, so only $10.1 M was expended for operating and $0.6 M for capital equipment (2.4% of actual Berkeley Lab FY03 costs). In FY03, scientists submitted 168 proposals, requesting over $24.2 M in operating funding. Eighty-two projects were funded, with awards ranging from $45 K to $500 K. These projects are summarized in Table 1.

  15. CRCPD`S laboratory accrediation program

    Energy Technology Data Exchange (ETDEWEB)

    Dukes, P.M. [South Carolina Department of Health and Environmental Control, Columbia, SC (United States)

    1993-12-31

    The Conference of Radiation Control Program Directors, or CRCPD, first became involved in a calibration laboratory accreditation program about 17 years ago. Since that time, the CRCPD has formed a Committee on Ionizing Measurements which writes criteria for the accreditation of laboratories, and performs the accreditation review process. To become accredited, a laboratory must agree to an administrative review, and an onsite review, and participate in measurement quality assurance (MQA) testing with the National Institute of Standards and Technology (NIST). The CRCPD currently has four accredited laboratories. All the laboratories are working with the Conference in promoting the improvement of MQA in radiation control programs.

  16. Current waste-management practices and operations at Oak Ridge National Laboratory, 1982

    Energy Technology Data Exchange (ETDEWEB)

    Eisenhower, B.M.; Oakes, T.W.; Coobs, J.H.; Weeter, D.W.

    1982-09-01

    The need for efficient management of industrial chemical wastes, especially those considered hazardous or radioactive, is receiving increased attention in the United States. During the past five years, several federal laws have addressed the establishment of stronger programs for the control of hazardous and residual wastes. At a facility such as Oak Ridge National Laboratory (ORNL), an efficient waste management program is an absolute necessity to ensure protection of human health and compliance with regulatory requirements addressing the treatment and disposal of hazardous, nonhazardous, and radioactive wastes. This report highlights the major regulatory requirements under which the Laboratory must operate and their impact on ORNL facilities. Individual waste streams, estimates of quantities of waste, and current waste management operations are discussed.

  17. Current waste-management practices and operations at Oak Ridge National Laboratory, 1982

    International Nuclear Information System (INIS)

    Eisenhower, B.M.; Oakes, T.W.; Coobs, J.H.; Weeter, D.W.

    1982-09-01

    The need for efficient management of industrial chemical wastes, especially those considered hazardous or radioactive, is receiving increased attention in the United States. During the past five years, several federal laws have addressed the establishment of stronger programs for the control of hazardous and residual wastes. At a facility such as Oak Ridge National Laboratory (ORNL), an efficient waste management program is an absolute necessity to ensure protection of human health and compliance with regulatory requirements addressing the treatment and disposal of hazardous, nonhazardous, and radioactive wastes. This report highlights the major regulatory requirements under which the Laboratory must operate and their impact on ORNL facilities. Individual waste streams, estimates of quantities of waste, and current waste management operations are discussed

  18. Health Physics Society program for accreditation of calibration laboratories

    International Nuclear Information System (INIS)

    West, L.; Masse, F.X.; Swinth, K.L.

    1988-01-01

    The Health Physics Society has instituted a new program for accreditation of organizations that calibrate radiation survey instruments. The purpose of the program is to provide radiation protection professionals with an expanded means of direct and indirect access to national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. Secondary accredited laboratories are expected to provide a regional support basis. Tertiary accredited laboratories are expected to operate on a more local basis and provide readily available expertise to end users. The accreditation process is an effort to provide better measurement assurance for surveys of radiation fields. The status of the accreditation program, general criteria, gamma-ray calibration criteria, and x-ray calibration criteria are reviewed

  19. Environmental assessment related to the operation of Argonne National Laboratory, Argonne, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    1982-08-01

    In order to evaluate the environmental impacts of Argonne National Laboratory (ANL) operations, this assessment includes a descriptive section which is intended to provide sufficient detail to allow the various impacts to be viewed in proper perspective. In particular, details are provided on site characteristics, current programs, characterization of the existing site environment, and in-place environmental monitoring programs. In addition, specific facilities and operations that could conceivably impact the environment are described at length. 77 refs., 16 figs., 47 tabs.

  20. Laboratory Directed Research and Development Program FY2004

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd C.

    2005-03-22

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Goals that are codified in DOE's September 2003 Strategic Plan, with a primary focus on Advancing Scientific Understanding. For that goal, the Fiscal Year (FY) 2004 LDRD projects support every one of the eight strategies described in the plan. In addition, LDRD efforts support the goals of Investing in America's Energy Future (six of the fourteen strategies), Resolving the Environmental Legacy (four of the eight strategies), and Meeting National Security Challenges (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD supports Office of Science strategic plans, including the 20 year Scientific Facilities Plan and the draft Office of Science Strategic Plan. The research also

  1. Spacecraft contamination programs within the Air Force Systems Command Laboratories

    Science.gov (United States)

    Murad, Edmond

    1990-01-01

    Spacecraft contamination programs exist in five independent AFSC organizations: Geophysics Laboratory (GL), Arnold Engineering and Development Center (AEDC), Rome Air Development Center (RADC/OSCE), Wright Research and Development Center (MLBT), Armament Laboratory (ATL/SAI), and Space Systems Division (SSD/OL-AW). In addition, a sizable program exists at Aerospace Corp. These programs are complementary, each effort addressing a specific area of expertise: GL's effort is aimed at addressing the effects of on-orbit contamination; AEDC's effort is aimed at ground simulation and measurement of optical contamination; RADC's effort addresses the accumulation, measurement, and removal of contamination on large optics; MLBT's effort is aimed at understanding the effect of contamination on materials; ATL's effort is aimed at understanding the effect of plume contamination on systems; SSD's effort is confined to the integration of some contamination experiments sponsored by SSD/CLT; and Aerospace Corp.'s effort is aimed at supporting the needs of the using System Program Offices (SPO) in specific areas, such as contamination during ground handling, ascent phase, laboratory measurements aimed at understanding on-orbit contamination, and mass loss and mass gain in on-orbit operations. These programs are described in some detail, with emphasis on GL's program.

  2. Laboratory Directed Research and Development Program FY 2007 Annual Report

    International Nuclear Information System (INIS)

    Sjoreen, Terrence P.

    2008-01-01

    The Oak Ridge National LaboratoryLaboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R and D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R and D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating exploration of forefront science

  3. Laboratory Directed Research and Development Program FY 2007 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2008-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2B, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report includes summaries for all ORNL LDRD research activities supported during FY 2007. The associated FY 2007 ORNL LDRD Self-Assessment (ORNL/PPA-2008/2) provides financial data and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching mission to advance the national, economic, and energy security of the United States and promote scientific and technological innovation in support of that mission. As a national resource, the Laboratory also applies its capabilities and skills to specific needs of other federal agencies and customers through the DOE Work for Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at http://www.ornl.gov/. LDRD is a relatively small but vital DOE program that allows ORNL, as well as other DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the Laboratory; (2) enhancing the Laboratory's ability to address future DOE missions; (3) fostering creativity and stimulating

  4. The impact of laboratory quality assurance standards on laboratory operational performance

    Directory of Open Access Journals (Sweden)

    E Ratseou

    2014-01-01

    Full Text Available It has become a trend for companies to implement and be certified to various quality management systems so as to improve consistency, reliability, and quality of product delivery to customers. The most common quality management systems adopted are the ISO 9000 series of standards for manufacturing and services related organisations, with ISO 17025 and Good Laboratory Practices (GLP standards adopted specifically by laboratories as quality assurance initiatives. There are various reports on the impact of the ISO 9000 series on organisational performance but no studies or reports have been done on the performance of laboratory standards. Therefore this article reports on a study conducted to investigate the impact of ISO 17025 and GLP on the operational performance of both commercial and non-commercial laboratories. A qualitative research study was conducted to examine the impact standards on the aspects of health and safety, supplier selection and performance, human resources, customer satisfaction and profitability of the laboratory. The data collected suggest that there is no difference in laboratory operational performance with or without the standards. In other words it appears that the basic fundamental requirements inherent with laboratories are sufficient to perform both operationally and optimally. This leads to the view that standards are implemented as a customer requirement and not as an operational requirement.

  5. Response Matrix Method Development Program at Savannah River Laboratory

    International Nuclear Information System (INIS)

    Sicilian, J.M.

    1976-01-01

    The Response Matrix Method Development Program at Savannah River Laboratory (SRL) has concentrated on the development of an effective system of computer codes for the analysis of Savannah River Plant (SRP) reactors. The most significant contribution of this program to date has been the verification of the accuracy of diffusion theory codes as used for routine analysis of SRP reactor operation. This paper documents the two steps carried out in achieving this verification: confirmation of the accuracy of the response matrix technique through comparison with experiment and Monte Carlo calculations; and establishment of agreement between diffusion theory and response matrix codes in situations which realistically approximate actual operating conditions

  6. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliance with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit

  7. 1986 environmental monitoring program report for the Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Rope, S.K.

    1987-05-01

    This report presents onsite and offsite data collected in 1986 for the routine environmental monitoring program conducted by the Radiological and Environmental Sciences Laboratory (RESL) of the Department of Energy (DOE) at the Idaho National Engineering Laboratory (INEL) Site. The purpose of this routine program is to monitor radioactive and nonradioactive materials resulting from INEL Site operations which may reach the surrounding offsite environment and population. This report is prepared in accordance with the DOE requirements in draft DOE Order 5484.1 and is not intended to cover the numerous special environmental research programs being conducted at the INEL by RESL and others

  8. Standard guide for establishing a quality assurance program for analytical chemistry laboratories within the nuclear industry

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2006-01-01

    1.1 This guide covers the establishment of a quality assurance (QA) program for analytical chemistry laboratories within the nuclear industry. Reference to key elements of ANSI/ISO/ASQC Q9001, Quality Systems, provides guidance to the functional aspects of analytical laboratory operation. When implemented as recommended, the practices presented in this guide will provide a comprehensive QA program for the laboratory. The practices are grouped by functions, which constitute the basic elements of a laboratory QA program. 1.2 The essential, basic elements of a laboratory QA program appear in the following order: Section Organization 5 Quality Assurance Program 6 Training and Qualification 7 Procedures 8 Laboratory Records 9 Control of Records 10 Control of Procurement 11 Control of Measuring Equipment and Materials 12 Control of Measurements 13 Deficiencies and Corrective Actions 14

  9. Laboratory Directed Research and Development Program FY 2005 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2006-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2005 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2005 ORNL LDRD Self-Assessment (ORNL/PPA-2006/2) provides financial data about the FY 2005 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  10. Laboratory Directed Research and Development Program FY 2004 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Sjoreen, Terrence P [ORNL

    2005-04-01

    The Oak Ridge National Laboratory (ORNL) Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) in March of each year. The program operates under the authority of DOE Order 413.2A, 'Laboratory Directed Research and Development' (January 8, 2001), which establishes DOE's requirements for the program while providing the Laboratory Director broad flexibility for program implementation. LDRD funds are obtained through a charge to all Laboratory programs. This report describes all ORNL LDRD research activities supported during FY 2004 and includes final reports for completed projects and shorter progress reports for projects that were active, but not completed, during this period. The FY 2004 ORNL LDRD Self-Assessment (ORNL/PPA-2005/2) provides financial data about the FY 2004 projects and an internal evaluation of the program's management process. ORNL is a DOE multiprogram science, technology, and energy laboratory with distinctive capabilities in materials science and engineering, neutron science and technology, energy production and end-use technologies, biological and environmental science, and scientific computing. With these capabilities ORNL conducts basic and applied research and development (R&D) to support DOE's overarching national security mission, which encompasses science, energy resources, environmental quality, and national nuclear security. As a national resource, the Laboratory also applies its capabilities and skills to the specific needs of other federal agencies and customers through the DOE Work For Others (WFO) program. Information about the Laboratory and its programs is available on the Internet at . LDRD is a relatively small but vital DOE program that allows ORNL, as well as other multiprogram DOE laboratories, to select a limited number of R&D projects for the purpose of: (1) maintaining the scientific and technical vitality of the

  11. Oak Ridge National Laboratory Radiation Control Program - Partners in Site Restoration

    International Nuclear Information System (INIS)

    Jones, S. L.; Stafford, M. W.

    2002-01-01

    In 1998, the U.S. Department of Energy (DOE) awarded the Management and Integration (M and I) contract for all five of the Oak Ridge Operations (ORO) facilities to Bechtel Jacobs Company LLC (BJC). At Oak Ridge National Laboratory (ORNL), a world renowned national laboratory and research and development facility, the BJC mission involves executing the DOE Environmental Management (EM) program. In addition to BJC's M and I contract, UT-Battelle, LLC, a not-for-profit company, is the Management and Operating (M and O) contractor for DOE on the ORNL site. As part of ORNL's EM program, legacy inactive facilities (i.e., reactors, nuclear material research facilities, burial grounds, and underground storage tanks) are transferred to BJC and are designated as remediation, decontamination and decommissioning (D and D), or long-term surveillance and maintenance (S and M) facilities. Facilities operated by both UT-Battelle and BJC are interspersed throughout the site and are usually in close proximity. Both UT-Battelle and BJC have DOE-approved Radiation Protection Programs established in accordance with 10 CFR 835. The BJC Radiological Control (RADCON) Program adapts to the M and I framework and is comprised of a combination of subcontracted program responsibilities with BJC oversight. This paper focuses on the successes and challenges of executing the BJC RADCON Program for BJC's ORNL Project through a joint M and I contractor relationship, while maintaining a positive working relationship and partnership with UT-Battelle's Radiation Protection organization

  12. ABACC's laboratory intercomparison program

    International Nuclear Information System (INIS)

    Almeida, Gevaldo L. de; Esteban, Adolfo; Almeida, Silvio G. de; Araujo, Radier M. de; Rocha, Zildete

    1996-01-01

    A Laboratory Intercomparison Program involving Brazilian and Argentine laboratories, with the special participation of New Brunswick Laboratory - DOE and IAEA Seibersdorf Safeguards Laboratory, was implanted by ABACC having as main purpose to qualify a network to provide analytical services to this Agency on its role as administrator of the Common System of Accountability and Control of Nuclear Materials. For the first round robin of this Program, 15 laboratories were invited to perform elemental analysis on UO 2 samples, by using any desired method. Thirteen confirmed the participation and 10 reported the results. After an evaluation of the results by using a Two-Way Variance Analysis applied to a nested error model, it was found that 5 of them deviate less than 0.1% from the reference value established for the UO 2 uranium contents, being thus situated within the limits adopted for the target values, while the remaining ones reach a maximal deviation of 0.44%. The outcome of this evaluation, was sent to the laboratories, providing them with a feedback to improve their performance by applying corrective actions to the detected sources of errors or bias related to the methods techniques and procedures. (author)

  13. Policies and practices pertaining to the selection, qualification requirements, and training programs for nuclear-reactor operating personnel at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Culbert, W.H.

    1985-10-01

    This document describes the policies and practices of the Oak Ridge National Laboratory (ORNL) regarding the selection of and training requirements for reactor operating personnel at the Laboratory's nuclear-reactor facilities. The training programs, both for initial certification and for requalification, are described and provide the guidelines for ensuring that ORNL's research reactors are operated in a safe and reliable manner by qualified personnel. This document gives an overview of the reactor facilities and addresses the various qualifications, training, testing, and requalification requirements stipulated in DOE Order 5480.1A, Chapter VI (Safety of DOE-Owned Reactors); it is intended to be in compliance with this DOE Order, as applicable to ORNL facilities. Included also are examples of the documentation maintained amenable for audit.

  14. Program MASTERCALC: an interactive computer program for radioanalytical computations. Description and operating instructions

    International Nuclear Information System (INIS)

    Goode, W.

    1980-10-01

    MASTERCALC is a computer program written to support radioanalytical computations in the Los Alamos Scientific Laboratory (LASL) Environmental Surveillance Group. Included in the program are routines for gross alpha and beta, 3 H, gross gamma, 90 Sr and alpha spectroscopic determinations. A description of MASTERCALC is presented and its source listing is included. Operating instructions and example computing sessions are given for each type of analysis

  15. Waste Management Operations Program

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    The major function of the Program is to operate the Laboratory's systems and facilities for collecting and disposing of radioactive gaseous, liquid, and solid wastes. This includes collection and shallow land burial of about 2000 m 3 of β-γ contaminated waste and retrievable storage of about 60 m 3 of transuranium contaminated waste annually; ion-exchange treatment and release to the environment of about 450 x 10 3 m 3 of slightly contaminated water; volume reduction by evaporation of about 5000 m 3 of intermediate-level liquid waste followed by hydrofracture injection of the concentrate; and scrubbing and/or filtration of the gases from radioactive operations prior to release to the atmosphere. In addition, this year disposal of about 350,000 gal of radioactive sludge from the old (no longer in service) gunite tanks began. Operations are in conformance with rules and regulations presently applicable to ORNL. This Program is responsible for planning and for development activities for upgrading the facilities, equipment, and procedures for waste disposal to ensure ORNL work incorporates the latest technology. Major (line-item) new facilities are provided as well as substantial (GPP) upgrading of old facilities. These activities as well as the technical and engineering support to handle them are discussed

  16. Laboratory Animal Sciences Program (LASP)

    Data.gov (United States)

    Federal Laboratory Consortium — The Laboratory Animal Sciences Program (LASP) is a comprehensive resource for scientists performing animal-based research to gain a better understanding of cancer,...

  17. Safety program of the Oak Ridge National Laboratory: a different approach

    International Nuclear Information System (INIS)

    Burger, G.H.

    1981-01-01

    The uniqueness and therefore different approach to Oak Ridge National Laboratory's safety program is not a result of elimination of the usual industrial safety organization, but results from the three organizations which supplement it and the areas of safety concerns that they cover. While industrial safety is primarily concerned with day-to-day routine worker activities (wearing of safety glasses and hard hats, adherence to electrical safety work procedures, proper safety lockout and tagout of equipment for maintenance activities, etc.), the other organizations, the Office of Operational Safety, Division Safety Officers and Radiation Control Officers, and the Laboratory director's Review Committees, are concerned with themuch broader spectrum of the total work environment. These organizations are concerned not only with the day-to-day worker activities but the design and conduction of all operations from a process viewpoint. The emphasis of these groups is assuring first that operations, experiments, facilities, etc., are designed properly and then secondly operated properly to assure safety of the operators, Laboratory population, and the public. Responsibilities of the three safety organizations constituting operational or process safety are described and discussed

  18. Oak Ridge National Laboratory's isotope enrichment program

    International Nuclear Information System (INIS)

    Tracy, J.G.; Aaron, W.C.

    1997-01-01

    The Isotope Enrichment Program (IEP) at Oak Ridge National Laboratory (ORNL) is responsible for the production and distribution of ∼225 enriched stable isotopes from 50 multi-isotopic elements. In addition, ORNL distributes enriched actinide isotopes and provides extensive physical- and chemical-form processing of enriched isotopes to meet customer requirements. For more than 50 yr, ORNL has been a major provider of enriched isotopes and isotope-related services to research, medical, and industrial institutions throughout the world. Consolidation of the Isotope Distribution Office (IDO), the Isotope Research Materials Laboratory (IRML), and the stable isotope inventories in the Isotope Enrichment Facility (IEF) have improved operational efficiencies and customer services. Recent changes in the IEP have included adopting policies for long-term contracts, which offer program stability and pricing advantages for the customer, and prorated service charges, which greatly improve pricing to the small research users. The former U.S. Department of Energy (DOE) Loan Program has been converted to a lease program, which makes large-quantity or very expensive isotopes available for nondestructive research at a nominal cost. Current efforts are being pursued to improve and expand the isotope separation capabilities as well as the extensive chemical- and physical-form processing that now exists. The IEF's quality management system is ISO 9002 registered and accredited in the United States, Canada, and Europe

  19. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    Energy Technology Data Exchange (ETDEWEB)

    Martin, P.R.

    1993-12-31

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards.

  20. Secondary calibration laboratory for ionizing radiation laboratory accreitation program National Institute of Standards and Technology National Voluntary Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    Martin, P.R.

    1993-01-01

    This paper presents an overview of the procedures and requirements for accreditation under the Secondary Calibration Laboratory for Ionizing Radiation Program (SCLIR LAP). The requirements for a quality system, proficiency testing and the onsite assessment are discussed. The purpose of the accreditation program is to establish a network of secondary calibration laboratories that can provide calibrations traceable to the primary national standards

  1. Site operator program final report for fiscal years 1992 through 1996

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Bassett, R.R. [Sandia National Labs., Albuquerque, NM (United States); Birasco, S. [Los Angeles Dept. of Water and Power, CA (United States)] [and others

    1998-01-01

    The Site Operator Program was an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed at the Idaho National Engineering and Environmental Laboratory. The Program`s goals included the field evaluation of electric vehicles in real-world applications and environments; the support of electric vehicle technology advancement; the development of infrastructure elements necessary to support significant electric vehicle use; and increasing the awareness and acceptance of electric vehicles. This report covers Program activities from 1992 to 1996. The Site Operator Program ended in September 1996, when it was superseded by the Field Operations Program. Electric vehicle testing included baseline performance testing, which was performed in conjunction with EV America. The baseline performance parameters included acceleration, braking, range, energy efficiency, and charging time. The Program collected fleet operations data on electric vehicles operated by the Program`s thirteen partners, comprising electric utilities, universities, and federal agencies. The Program`s partners had over 250 electric vehicles, from vehicle converters and original equipment manufacturers, in their operating fleets. Test results are available via the World Wide Web site at http://ev.inel.gov/sop.

  2. Onsite assessments for the Department of Energy Laboratory Accreditation Program

    International Nuclear Information System (INIS)

    McMahan, K.L.

    1992-01-01

    For Department of Energy (DOE) facilities, compliance with DOE Order 5480.11 became a requirement in January 1989. One of the requirements of this Order is that personal external dosimetry programs be accredited under the Department of Energy's Laboratory Accreditation Program (DOELAP) in Personnel Dosimetry. The accreditation process, from the facility's perspective, is two-fold: dosimeters must meet performance criteria in radiation categories appropriate for each facility, and personnel administering and carrying out the program must demonstrate good operating practices. The DOELAP onsite assessment is designed to provide an independent evaluation of the latter

  3. A Laboratory Safety Program at Delaware.

    Science.gov (United States)

    Whitmyre, George; Sandler, Stanley I.

    1986-01-01

    Describes a laboratory safety program at the University of Delaware. Includes a history of the program's development, along with standard safety training and inspections now being implemented. Outlines a two-day laboratory safety course given to all graduate students and staff in chemical engineering. (TW)

  4. HPS instrument calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Masse, F.X; Eisenhower, E.H.; Swinth, K.L.

    1993-12-31

    The purpose of this paper is to provide an accurate overview of the development and structure of the program established by the Health Physics Society (HPS) for accrediting instrument calibration laboratories relative to their ability to accurately calibrate portable health physics instrumentation. The purpose of the program is to provide radiation protection professionals more meaningful direct and indirect access to the National Institute of Standards and Technology (NIST) national standards, thus introducing a means for improving the uniformity, accuracy, and quality of ionizing radiation field measurements. The process is designed to recognize and document the continuing capability of each accredited laboratory to accurately perform instrument calibration. There is no intent to monitor the laboratory to the extent that each calibration can be guaranteed by the program; this responsibility rests solely with the accredited laboratory.

  5. Recent operating experiences and programs at EBR-II

    International Nuclear Information System (INIS)

    Lentz, G.L.

    1984-01-01

    Experimental Breeder Reactor No. II (EBR-II) is a pool-type, unmoderated, sodium-cooled reactor with a design power of 62.5 MWt and an electrical generation capability of 20 MW. It has been operated by Argonne National Laboratory for the US government for almost 20 years. During that time, it has operated safely and has demonstrated stable operating characteristics, high availability, and excellent performance of its sodium components. The 20 years of operating experience of EBR-II is a valuable resource to the nuclear community for the development and design of future LMFBR's. Since past operating experience has been extensively reported, this report will focus on recent programs and events

  6. Achieving High Reliability Operations Through Multi-Program Integration

    Energy Technology Data Exchange (ETDEWEB)

    Holly M. Ashley; Ronald K. Farris; Robert E. Richards

    2009-04-01

    Over the last 20 years the Idaho National Laboratory (INL) has adopted a number of operations and safety-related programs which has each periodically taken its turn in the limelight. As new programs have come along there has been natural competition for resources, focus and commitment. In the last few years, the INL has made real progress in integrating all these programs and are starting to realize important synergies. Contributing to this integration are both collaborative individuals and an emerging shared vision and goal of the INL fully maturing in its high reliability operations. This goal is so powerful because the concept of high reliability operations (and the resulting organizations) is a masterful amalgam and orchestrator of the best of all the participating programs (i.e. conduct of operations, behavior based safety, human performance, voluntary protection, quality assurance, and integrated safety management). This paper is a brief recounting of the lessons learned, thus far, at the INL in bringing previously competing programs into harmony under the goal (umbrella) of seeking to perform regularly as a high reliability organization. In addition to a brief diagram-illustrated historical review, the authors will share the INL’s primary successes (things already effectively stopped or started) and the gaps yet to be bridged.

  7. Clinton P. Anderson Meson Physics Facility and its operational safety program

    International Nuclear Information System (INIS)

    Putnam, T.M.

    1975-01-01

    The Clinton P. Anderson Meson Physics Facility (LAMPF) at the Los Alamos Scientific Laboratory consists of/ (1) a medium-energy, high-intensity linear proton accelerator; (2) experimental areas designed to support a multidisciplined program of research and practical applications; and (3) support facilities for accelerator operations and the experimental program. The high-intensity primary and secondary beams at LAMPF and the varied research program create many interesting and challenging problems for the Health Physics staff. A brief overview of LAMPF is presented, and the Operational Safety Program is discussed, with emphasis on the radiological safety and health physics aspects

  8. Operator programs and operator processes

    NARCIS (Netherlands)

    Bergstra, J.A.; Walters, P.

    2003-01-01

    We define a notion of program which is not a computer program but an operator program: a detailed description of actions performed and decisions taken by a human operator (computer user) performing a task to achieve a goal in a simple setting consisting of that user, one or more computers and a

  9. Sandia National Laboratories: Careers: Special Programs

    Science.gov (United States)

    Program Master's Fellowship Program Wounded Warrior Career Development Program Careers Special Programs Special career opportunities for select individuals Join Sandia's workforce while receiving support and Laboratories' Affirmative Action Plan. Learn more about MFP. Wounded Warrior Career Development Program U.S

  10. Hanford Laboratories operation monthly activities report, November 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-12-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for November 1957.

  11. Hanford Laboratories operation monthly activities report, November 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-12-21

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operations research, inventions, visits, and personnel status are discussed. This report is for November, 1956.

  12. Hanford Laboratories Operation monthly activities report, October 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-11-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for October 1958.

  13. Hanford Laboratories operation monthly activities report, January 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-02-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for January 1957.

  14. Hanford Laboratories Operation monthly activities report, October 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-11-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for October 1957.

  15. Hanford Laboratories Operation monthly activities report, September 1956

    Energy Technology Data Exchange (ETDEWEB)

    1956-10-19

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for September 1956.

  16. Hanford Laboratories Operation monthly activities report, March 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-04-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for March 1960.

  17. Hanford Laboratories operation monthly activities report, February 1958

    Energy Technology Data Exchange (ETDEWEB)

    1958-03-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for February 1958.

  18. Hanford Laboratories Operation monthly activities report, December 1957

    Energy Technology Data Exchange (ETDEWEB)

    1958-01-15

    This is the monthly report for the Hanford Laboratories Operation. Metallurgy, reactor fuels, physics and instrumentation, reactor technology, chemistry, separation processes, biology, financial activities, employee relations, laboratories auxiliaries, radiation protection, operation research, inventions, visits, and personnel status are discussed. This report is for December 1957.

  19. Laboratory Directed Research and Development Program FY 2008 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    editor, Todd C Hansen

    2009-02-23

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under

  20. Laboratory Directed Research and Development Program FY 2008 Annual Report

    International Nuclear Information System (INIS)

    Hansen, Todd C.

    2009-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2008 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). The LDRD program supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the

  1. Zero-gravity cloud physics laboratory: Experiment program definition and preliminary laboratory concept studies

    Science.gov (United States)

    Eaton, L. R.; Greco, E. V.

    1973-01-01

    The experiment program definition and preliminary laboratory concept studies on the zero G cloud physics laboratory are reported. This program involves the definition and development of an atmospheric cloud physics laboratory and the selection and delineations of a set of candidate experiments that must utilize the unique environment of zero gravity or near zero gravity.

  2. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ACTIVITIES FOR FY2002.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2002-12-31

    Brookhaven National (BNL) Laboratory is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, under contract with the U. S. Department of Energy. BNL's total annual budget has averaged about $450 million. There are about 3,000 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 4 1 3.2A, ''Laboratory Directed Research and Development,'' January 8, 2001, and the LDRD Annual Report guidance, updated February 12, 1999. The LDRD Program obtains its funds through the Laboratory overhead pool and operates under the authority of DOE Order 413.2A. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology

  3. Laboratory directed research and development program, FY 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory`s forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory`s core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices.

  4. Laboratory automation in a functional programming language.

    Science.gov (United States)

    Runciman, Colin; Clare, Amanda; Harkness, Rob

    2014-12-01

    After some years of use in academic and research settings, functional languages are starting to enter the mainstream as an alternative to more conventional programming languages. This article explores one way to use Haskell, a functional programming language, in the development of control programs for laboratory automation systems. We give code for an example system, discuss some programming concepts that we need for this example, and demonstrate how the use of functional programming allows us to express and verify properties of the resulting code. © 2014 Society for Laboratory Automation and Screening.

  5. Assurance program for remedial action (APRA) microcomputer-operated bibliography management system

    International Nuclear Information System (INIS)

    Stenner, R.D.; Washburn, D.K.; Denham, D.H.

    1985-10-01

    Pacific Northwest Laboratory (PNL) provided technical assistance to the Office of Operational Safety (OOS) in developing their Assurance Program for Remedial Action (APRA). The APRA Bibliography Management System (BMS), a microcomputer-operated system designed to file, locate and retrieve project-specific bibliographic data, was developed to manage the documentation associated with APRA. The BMS uses APRABASE, a PNL-developed computer program written in dBASE II language, which is designed to operate using the commercially available dBASE II database software. The paper describes the APRABASE computer program, its associated subprograms, and the dBASE II APRA file. Although the BMS was designed to manage APRA-associated documents, it could be easily adapted for use in handling bibliographic data associated with any project

  6. Assurance Program for Remedial Action (APRA) microcomputer-operated bibliography management system

    International Nuclear Information System (INIS)

    Stenner, R.D.; Washburn, D.K.; Denham, D.H.

    1986-01-01

    Pacific Northwest Laboratory (PNL) provided technical assistance to the Office of Operational Safety (OOS) in developing their Assurance Program for Remedial Action (APRA). The APRA Bibliography Management System (BMS), a microcomputer-operated system designed to file, locate and retrieve project-specific bibliographic data, was developed to manage the documentation associated with APRA. The BMS uses APRABASE, a PNL-developed computer program written in dBASE II/sup (b)/ language, which is designed to operate using the commercially available dBASE II database software. This paper describes the APRABASE computer program, its associated subprograms, and the dBASE II APRA file. Although the BMS was designed to manage APRA-associated documents, it could be easily adapted for use in handling bibliographic data associated with any project

  7. Lawrence Berkeley Laboratory Affirmative Action Program. Revised

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    The Lawrence Berkeley Laboratory`s Affirmative Action Program (AAP) serves as a working document that describes current policies, practices, and results in the area of affirmative action. It represents the Laboratory`s framework for an affirmative approach to increasing the representation of people of color and women in segments of our work force where they have been underrepresented and taking action to increase the employment of persons with disabilities and special disabled and Vietnam era veterans. The AAP describes the hierarchy of responsibility for Laboratory affirmative action, the mechanisms that exist for full Laboratory participation in the AAP, the policies and procedures governing recruitment at all levels, the Laboratory`s plan for monitoring, reporting, and evaluating affirmative action progress, and a description of special affirmative action programs and plans the Laboratory has used and will use in its efforts to increase the representation and retention of groups historically underrepresented in our work force.

  8. Supplement analysis for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore. Volume 2: Comment response document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-03-01

    The US Department of Energy (DOE), prepared a draft Supplement Analysis (SA) for Continued Operation of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL-L), in accordance with DOE`s requirements for implementation of the National Environmental Policy Act of 1969 (NEPA) (10 Code of Federal Regulations [CFR] Part 1021.314). It considers whether the Final Environmental Impact Statement and Environmental Impact Report for Continued Operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore (1992 EIS/EIR) should be supplement3ed, whether a new environmental impact statement (EIS) should be prepared, or no further NEPA documentation is required. The SA examines the current project and program plans and proposals for LLNL and SNL-L, operations to identify new or modified projects or operations or new information for the period from 1998 to 2002 that was not considered in the 1992 EIS/EIR. When such changes, modifications, and information are identified, they are examined to determine whether they could be considered substantial or significant in reference to the 1992 proposed action and the 1993 Record of Decision (ROD). DOE released the draft SA to the public to obtain stakeholder comments and to consider those comments in the preparation of the final SA. DOE distributed copies of the draft SA to those who were known to have an interest in LLNL or SNL-L activities in addition to those who requested a copy. In response to comments received, DOE prepared this Comment Response Document.

  9. Graphical programming at Sandia National Laboratories

    International Nuclear Information System (INIS)

    McDonald, M.J.; Palmquist, R.D.; Desjarlais, L.

    1993-09-01

    Sandia has developed an advanced operational control system approach, called Graphical Programming, to design, program, and operate robotic systems. The Graphical Programming approach produces robot systems that are faster to develop and use, safer in operation, and cheaper overall than altemative teleoperation or autonomous robot control systems. Graphical Programming also provides an efficient and easy-to-use interface to traditional robot systems for use in setup and programming tasks. This paper provides an overview of the Graphical Programming approach and lists key features of Graphical Programming systems. Graphical Programming uses 3-D visualization and simulation software with intuitive operator interfaces for the programming and control of complex robotic systems. Graphical Programming Supervisor software modules allow an operator to command and simulate complex tasks in a graphic preview mode and, when acceptable, command the actual robots and monitor their motions with the graphic system. Graphical Programming Supervisors maintain registration with the real world and allow the robot to perform tasks that cannot be accurately represented with models alone by using a combination of model and sensor-based control

  10. Productivity of Veterans Health Administration laboratories: a College of American Pathologists Laboratory Management Index Program (LMIP) study.

    Science.gov (United States)

    Valenstein, Paul N; Wang, Edward; O'Donohue, Tom

    2003-12-01

    The Veterans Health Administration (VA) operates the largest integrated laboratory network in the United States. To assess whether the unique characteristics of VA laboratories impact efficiency of operations, we compared the productivity of VA and non-VA facilities. Financial and activity data were prospectively collected from 124 VA and 131 non-VA laboratories enrolled in the College of American Pathologists Laboratory Management Index Program (LMIP) during 2002. In addition, secular trends in 5 productivity ratios were calculated for VA and non-VA laboratories enrolled in LMIP from 1997 through 2002. Veterans Health Administration and non-VA facilities did not differ significantly in size. Inpatients accounted for a lower percentage of testing at VA facilities than non-VA facilities (21.7% vs 37.3%; P benefits; P depreciation, and maintenance than their non-VA counterparts (all P <.001), resulting in lower overall cost per on-site test result (2.64 dollars vs 3.40 dollars; P <.001). Cost per referred (sent-out) test did not differ significantly between the 2 groups. Analysis of 6-year trends showed significant increases in both VA (P <.001) and non-VA (P =.02) labor productivity (on-site tests/total FTE). Expenses at VA laboratories for labor per test, consumables per test, overall expense per test, and overall laboratory expense per discharge decreased significantly during the 6-year period (P <.001), while in non-VA facilities the corresponding ratios showed no significant change. Overall productivity of VA laboratories is superior to that of non-VA facilities enrolled in LMIP. The principal advantages enjoyed by the VA are higher-than-average labor productivity (tests/FTE) and lower-than-average consumable expenses.

  11. Laboratory directed research and development program, FY 1996

    International Nuclear Information System (INIS)

    1997-02-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab) Laboratory Directed Research and Development Program FY 1996 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the projects supported and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The Berkeley Lab LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for Berkeley Lab scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances the Laboratory's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. Areas eligible for support include: (1) Work in forefront areas of science and technology that enrich Laboratory research and development capability; (2) Advanced study of new hypotheses, new experiments, and innovative approaches to develop new concepts or knowledge; (3) Experiments directed toward proof of principle for initial hypothesis testing or verification; and (4) Conception and preliminary technical analysis to explore possible instrumentation, experimental facilities, or new devices

  12. High-dose secondary calibration laboratory accreditation program

    Energy Technology Data Exchange (ETDEWEB)

    Humphreys, J.C. [National Institute of Standards and Technology, Gaithersburg, MD (United States)

    1993-12-31

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program.

  13. High-dose secondary calibration laboratory accreditation program

    International Nuclear Information System (INIS)

    Humphreys, J.C.

    1993-01-01

    There is a need for high-dose secondary calibration laboratories to serve the multi-billion dollar radiation processing industry. This need is driven by the desires of industry for less costly calibrations and faster calibration-cycle response time. Services needed include calibration irradiations of routine processing dosimeters and the supply of reference standard transfer dosimeters for irradiation in the production processing facility. In order to provide measurement quality assurance and to demonstrate consistency with national standards, the high-dose secondary laboratories would be accredited by means of an expansion of an existing National Voluntary Laboratory Accreditation Program. A laboratory performance criteria document is under development to implement the new program

  14. Laboratory Directed Research and Development Program

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new fundable'' R D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  15. Hanford Laboratories Operation monthly activities report, August 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-09-15

    This is the monthly report for the Hanford Laboratories Operation, August, 1959. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, visits, biology operation, physics and instrumentation research, employee relations, and operations research and synthesis operation are discussed.

  16. The DOE Laboratory Accreditation Program 8 years later

    International Nuclear Information System (INIS)

    Cummings, R.; Kershisnik, R.; Taylor, T.; Grothaus, G.; Loesch, R.M.

    1994-01-01

    The DOE Laboratory Accreditation Program was implemented in 1986. Currently, the program is conducting its seventeenth performance testing session for whole body personnel dosimeters. All but two DOE laboratories have gained accreditation for their whole body personnel dosimetry systems. Several test situations which were anticipated in the early stages of DOELAP have not materialized. In addition, the testing standard for whole body personnel dosimetry systems is under review and revision. In the near future, the accreditation programs for extremity dosimetry and bioassay will be implemented. This presentation summarizes the status and anticipated direction of the DOE whole body and extremity dosimetry and bioassay laboratory accreditation program

  17. Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:It is the mission of the Aviation Shipboard Operations Modeling and Simulation (ASOMS) Laboratory to provide a means by which to virtually duplicate products...

  18. Laboratory quality assurance

    International Nuclear Information System (INIS)

    Delvin, W.L.

    1977-01-01

    The elements (principles) of quality assurance can be applied to the operation of the analytical chemistry laboratory to provide an effective tool for indicating the competence of the laboratory and for helping to upgrade competence if necessary. When used, those elements establish the planned and systematic actions necessary to provide adequate confidence in each analytical result reported by the laboratory (the definition of laboratory quality assurance). The elements, as used at the Hanford Engineering Development Laboratory (HEDL), are discussed and they are qualification of analysts, written methods, sample receiving and storage, quality control, audit, and documentation. To establish a laboratory quality assurance program, a laboratory QA program plan is prepared to specify how the elements are to be implemented into laboratory operation. Benefits that can be obtained from using laboratory quality assurance are given. Experience at HEDL has shown that laboratory quality assurance is not a burden, but it is a useful and valuable tool for the analytical chemistry laboratory

  19. Laboratory Directed Research ampersand Development Program

    International Nuclear Information System (INIS)

    Ogeka, G.J.; Romano, A.J.

    1993-12-01

    At Brookhaven National Laboratory the Laboratory Directed Research and Development (LDRD) Program is a discretionary research and development tool critical in maintaining the scientific excellence and vitality of the laboratory. It is also a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor in achieving and maintaining staff excellence, and a means to address national needs, within the overall mission of the Department of Energy and Brookhaven National Laboratory. This report summarizes research which was funded by this program during fiscal year 1993. The research fell in a number of broad technical and scientific categories: new directions for energy technologies; global change; radiation therapies and imaging; genetic studies; new directions for the development and utilization of BNL facilities; miscellaneous projects. Two million dollars in funding supported 28 projects which were spread throughout all BNL scientific departments

  20. Development and operation of a quality assurance system for deviations from standard operating procedures in a clinical cell therapy laboratory.

    Science.gov (United States)

    McKenna, D; Kadidlo, D; Sumstad, D; McCullough, J

    2003-01-01

    Errors and accidents, or deviations from standard operating procedures, other policy, or regulations must be documented and reviewed, with corrective actions taken to assure quality performance in a cellular therapy laboratory. Though expectations and guidance for deviation management exist, a description of the framework for the development of such a program is lacking in the literature. Here we describe our deviation management program, which uses a Microsoft Access database and Microsoft Excel to analyze deviations and notable events, facilitating quality assurance (QA) functions and ongoing process improvement. Data is stored in a Microsoft Access database with an assignment to one of six deviation type categories. Deviation events are evaluated for potential impact on patient and product, and impact scores for each are determined using a 0- 4 grading scale. An immediate investigation occurs, and corrective actions are taken to prevent future similar events from taking place. Additionally, deviation data is collectively analyzed on a quarterly basis using Microsoft Excel, to identify recurring events or developing trends. Between January 1, 2001 and December 31, 2001 over 2500 products were processed at our laboratory. During this time period, 335 deviations and notable events occurred, affecting 385 products and/or patients. Deviations within the 'technical error' category were most common (37%). Thirteen percent of deviations had a patient and/or a product impact score > or = 2, a score indicating, at a minimum, potentially affected patient outcome or moderate effect upon product quality. Real-time analysis and quarterly review of deviations using our deviation management program allows for identification and correction of deviations. Monitoring of deviation trends allows for process improvement and overall successful functioning of the QA program in the cell therapy laboratory. Our deviation management program could serve as a model for other laboratories in

  1. Argonne National Laboratory: Laboratory Directed Research and Development FY 1993 program activities. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1993-12-23

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R&D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle`` assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory LDRD Plan for FY 1993.

  2. Monsanto Mound Laboratory tritium waste control technology development program

    International Nuclear Information System (INIS)

    Bixel, J.C.; Kershner, C.J.; Rhinehammer, T.B.

    1975-01-01

    Over the past four years, implementation of tritium waste control programs has resulted in a 30-fold reduction in the gaseous tritium effluents from Mound Laboratory. However, to reduce tritium waste levels to the ''as low as practicable'' guideline poses problems that are beyond ready solution with state-of-the-art tritium control technology. To meet this advanced technology need, a tritium waste control technology program was initiated. Although the initial thrust of the work under this program was oriented toward development of gaseous effluent treatment systems, its natural evolution has been toward the liquid waste problem. It is thought that, of all the possible approaches to disposal of tritiated liquid wastes, recovery offers the greatest advantages. End products of the recovery processes would be water detritiated to a level below the Radioactivity Concentration Guide (RCG) or detritiated to a level that would permit safe recycle in a closed loop operation and enriched tritium. The detritiated water effluent could be either recycled in a closed loop operation such as in a fuel reprocessing plant or safely released to the biosphere, and the recovered tritium could be recycled for use in fusion reactor studies or other applications

  3. Semiconductor laser joint study program with Rome Laboratory

    Science.gov (United States)

    Schaff, William J.; Okeefe, Sean S.; Eastman, Lester F.

    1994-09-01

    A program to jointly study vertical-cavity surface emitting lasers (VCSEL) for high speed vertical optical interconnects (VOI) has been conducted under an ES&E between Rome Laboratory and Cornell University. Lasers were designed, grown, and fabricated at Cornell University. A VCSEL measurement laboratory has been designed, built, and utilized at Rome Laboratory. High quality VCSEL material was grown and characterized by fabricating conventional lateral cavity lasers that emitted at the design wavelength of 1.04 microns. The VCSEL's emit at 1.06 microns. Threshold currents of 16 mA at 4.8 volts were obtained for 30 microns diameter devices. Output powers of 5 mW were measured. This is 500 times higher power than from the light emitting diodes employed previously for vertical optical interconnects. A new form of compositional grading using a cosinusoidal function has been developed and is very successful for reducing diode series resistance for high speed interconnection applications. A flip-chip diamond package compatible with high speed operation of 16 VCSEL elements has been designed and characterized. A flip-chip device binding effort at Rome Laboratory was also designed and initiated. This report presents details of the one-year effort, including process recipes and results.

  4. Mercury Deposition Network Site Operator Training for the System Blank and Blind Audit Programs

    Science.gov (United States)

    Wetherbee, Gregory A.; Lehmann, Christopher M.B.

    2008-01-01

    The U.S. Geological Survey operates the external quality assurance project for the National Atmospheric Deposition Program/Mercury Deposition Network. The project includes the system blank and blind audit programs for assessment of total mercury concentration data quality for wet-deposition samples. This presentation was prepared to train new site operators and to refresh experienced site operators to successfully process and submit system blank and blind audit samples for chemical analysis. Analytical results are used to estimate chemical stability and contamination levels of National Atmospheric Deposition Program/Mercury Deposition Network samples and to evaluate laboratory variability and bias.

  5. Components of laboratory accreditation.

    Science.gov (United States)

    Royal, P D

    1995-12-01

    Accreditation or certification is a recognition given to an operation or product that has been evaluated against a standard; be it regulatory or voluntary. The purpose of accreditation is to provide the consumer with a level of confidence in the quality of operation (process) and the product of an organization. Environmental Protection Agency/OCM has proposed the development of an accreditation program under National Environmental Laboratory Accreditation Program for Good Laboratory Practice (GLP) laboratories as a supplement to the current program. This proposal was the result of the Inspector General Office reports that identified weaknesses in the current operation. Several accreditation programs can be evaluated and common components identified when proposing a structure for accrediting a GLP system. An understanding of these components is useful in building that structure. Internationally accepted accreditation programs provide a template for building a U.S. GLP accreditation program. This presentation will discuss the traditional structure of accreditation as presented in the Organization of Economic Cooperative Development/GLP program, ISO-9000 Accreditation and ISO/IEC Guide 25 Standard, and the Canadian Association for Environmental Analytical Laboratories, which has a biological component. Most accreditation programs are managed by a recognized third party, either privately or with government oversight. Common components often include a formal review of required credentials to evaluate organizational structure, a site visit to evaluate the facility, and a performance evaluation to assess technical competence. Laboratory performance is measured against written standards and scored. A formal report is then sent to the laboratory indicating accreditation status. Usually, there is a scheduled reevaluation built into the program. Fee structures vary considerably and will need to be examined closely when building a GLP program.

  6. 21 CFR 111.110 - What quality control operations are required for laboratory operations associated with the...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 2 2010-04-01 2010-04-01 false What quality control operations are required for laboratory operations associated with the production and process control system? 111.110 Section 111.110 Food... § 111.110 What quality control operations are required for laboratory operations associated with the...

  7. Note on some quasielastic neutron scattering analysis programs on the Rutherford Laboratory IBM 360/195

    International Nuclear Information System (INIS)

    Richardson, R.M.

    1979-12-01

    A suite of programs for analysing neutron scattering data from time-of-flight spectrometers has been implemented on the Rutherford Laboratory IBM 360/195 computer system. The programs are intended for near inelastic and quasielastic data and operate by convoluting the measured instrumental resolution function with a model scattering function before fitting to the measured sample scattering law. (author)

  8. Safety in the Chemical Laboratory: Safety in the Chemistry Laboratories: A Specific Program.

    Science.gov (United States)

    Corkern, Walter H.; Munchausen, Linda L.

    1983-01-01

    Describes a safety program adopted by Southeastern Louisiana University. Students are given detailed instructions on laboratory safety during the first laboratory period and a test which must be completely correct before they are allowed to return to the laboratory. Test questions, list of safety rules, and a laboratory accident report form are…

  9. Operating program for an automatic alpha-beta counting system-FAG

    Energy Technology Data Exchange (ETDEWEB)

    German, U; Levinson, L; Shemesh, Y; Peled, O; Weistein, M [Israel Atomic Energy Commission, Beersheba (Israel). Nuclear Research Center-Negev

    1996-12-01

    An alpha and beta counting system - FAG, for planchette samples is operated at the Health Physics department`s laboratory of the NRCN. The system consists of a proportional detector of 8`` diameter operated in coincidence with a guard detector, an automatic sample changer (FAG-FHT770E) and electronics (FAG- FHT1100 digital counter and controller). The original operation mode of the system was based on manual tasks handled by the FHT1100 electronics. Pin option for a basic computer keyboard operation was available too. A computer with appropriate 110 card was connected to the system and a new operating program was developed which enables full automatic control of the various components. The program includes activity calculations and statistical checks as well as data management. The program which was developed enables computer control of all components of the system, based on bi-directional communication. The computer software controls the FHT1100 electronics using the R5232 protocol and the sample changer by an additional 110 card Contec Inodel PIO-48W(PC). The computer controls the whole operation of the system: change of samples, high voltage change, start, stop etc. It handles in the appropriate order the different commands and operates the electronic and mechanic components accordingly (authors).

  10. Operating program for an automatic alpha-beta counting system-FAG

    International Nuclear Information System (INIS)

    German, U.; Levinson, L.; Shemesh, Y.; Peled, O.; Weistein, M.

    1996-01-01

    An alpha and beta counting system - FAG, for planchette samples is operated at the Health Physics department's laboratory of the NRCN. The system consists of a proportional detector of 8'' diameter operated in coincidence with a guard detector, an automatic sample changer (FAG-FHT770E) and electronics (FAG- FHT1100 digital counter and controller). The original operation mode of the system was based on manual tasks handled by the FHT1100 electronics. Pin option for a basic computer keyboard operation was available too. A computer with appropriate 110 card was connected to the system and a new operating program was developed which enables full automatic control of the various components. The program includes activity calculations and statistical checks as well as data management. The program which was developed enables computer control of all components of the system, based on bi-directional communication. The computer software controls the FHT1100 electronics using the R5232 protocol and the sample changer by an additional 110 card Contec Inodel PIO-48W(PC). The computer controls the whole operation of the system: change of samples, high voltage change, start, stop etc. It handles in the appropriate order the different commands and operates the electronic and mechanic components accordingly (authors)

  11. Quality assurance program in the External dosimetry laboratory of the CPHR

    International Nuclear Information System (INIS)

    Molina P, D.; Pernas S, R.; Martinez H, E.; Cardenas H, J.

    2006-01-01

    From 1999 the Laboratory of External Dosimetry of the Radiation Protection and Hygiene Center comes applying in its service of personal dosimetry a Program of Quality Assurance. This program was designed according to the recommendations of national and international organizations as the National Assuring Office of the Republic of Cuba (ONARC), the International Standards Organization (ISO), the International Electro technique Commission (IEC) and the International Atomic Energy Agency (IAEA). In this work it is presented in a summarized way the operation of this Program of Quality Assurance which includes the administration and conservation of the results and the documentation of the service, the controls that are carried out to the equipment, the acceptance tests that are applied to the equipment and new dosemeters, the shipment and prosecution of the dosemeters, the evaluation, storage and conservation of the doses, the report of the results, the traceability and reproducibility of the measurements, the attention to the reclamations and the clients complaints and the internal and external audits to those that it undergoes periodically the laboratory. (Author)

  12. The Rwanda Field Epidemiology and Laboratory Training Program ...

    African Journals Online (AJOL)

    The Rwanda Field Epidemiology and Laboratory Training Program (RFELTP) is a 2-year public health leadership development training program that provides applied epidemiology and public health laboratory training while the trainees provide public health service to the Ministry of Health. RFELTP is hosted at the National ...

  13. Summary of LLNL's accomplishments for the FY93 Waste Processing Operations Program

    International Nuclear Information System (INIS)

    Grasz, E.; Domning, E.; Heggins, D.; Huber, L.; Hurd, R.; Martz, H.; Roberson, P.; Wilhelmsen, K.

    1994-04-01

    Under the US Department of Energy's (DOE's) Office of Technology Development (OTD)-Robotic Technology Development Program (RTDP), the Waste Processing Operations (WPO) Program was initiated in FY92 to address the development of automated material handling and automated chemical and physical processing systems for mixed wastes. The Program's mission was to develop a strategy for the treatment of all DOE mixed, low-level, and transuranic wastes. As part of this mission, DOE's Mixed Waste Integrated Program (MWIP) was charged with the development of innovative waste treatment technologies to surmount shortcomings of existing baseline systems. Current technology advancements and applications results from cooperation of private industry, educational institutions, and several national laboratories operated for DOE. This summary document presents the LLNL Environmental Restoration and Waste Management (ER and WM) Automation and Robotics Section's contributions in support of DOE's FY93 WPO Program. This document further describes the technological developments that were integrated in the 1993 Mixed Waste Operations (MWO) Demonstration held at SRTC in November 1993

  14. 1983 Environmental monitoring program report for Idaho National Engineering Laboratory Site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Dickson, R.L.

    1984-05-01

    The results of the various monitoring programs for 1983 indicated that radioactivity from the Idaho National Engineering Laboratory (INEL) Site operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. This report describes the air, water, and foodstuff samples routinely collected at the INEL boundary locations and at locations distant from the INEL Site. 11 figures, 14 tables

  15. Role of secondary standard dosimetry laboratory in radiation protection program

    International Nuclear Information System (INIS)

    Rahman, Sohaila; Ali, Noriah Mohd.

    2008-01-01

    Full text: The radiation dosimetry program is an important element of operational radiation protection. Dosimetry data enable workers and radiation protection professionals to evaluate and control work practices to eliminate unnecessary exposure to ionizing radiation. The usefulness of the data produced however depends on its quality and traceability. The emphasis of the global dosimetry program is focused through the IAEA/WHO network of secondary standard dosimetry laboratories (SSDLs), which aims for the determination of SI quantities through proper traceable calibration of radiation protection equipment. The responsibility of SSDL-NUCLEAR MALAYSIA to guarantee a reliable dosimetry service, which is traceable to international standards, is elucidated. It acts as the basis for harmonized occupational radiation monitoring in Malaysia.

  16. Review of laboratory programs for women Points-of-Contact Committee

    Energy Technology Data Exchange (ETDEWEB)

    Duke, D.; Magrini, K. [comps.] [National Renewable Energy Lab., Golden, CO (United States); McLane, V. [comp.] [Brookhaven National Lab., Upton, NY (United States); Wieda, K. [comp.] [Pacific Northwest Lab., Richland, WA (United States)

    1995-06-01

    The mission of the DOE Review of Laboratory Programs for Women is to: provide DOE and its Laboratories with effective strategies, targeting women, for establishing aggressive outreach programs which improve the access of women to careers in science, engineering, and mathematics. Ensure that the Department and its Laboratories are exemplary places of employment by providing programs which enhance opportunity, remove barriers, and assist women in achieving full professional development. A survey of the DOE facilities was undertaken by the Points-of-Contact for the DOE Review of Laboratory Programs for Women in order to gather data to be used as a baseline against which to measure future progress. We plan to look at current programs already in place and evaluate them with a view to deciding which programs are most effective, and selecting model programs suitable for implementation at other facilities. The survey focused on four areas: statistical data, laboratory policy, formal and informal programs which affect the quality of life in the work environment, and career development and advancement, and educational programs. Although this report focuses on women, the problems discussed affect all DOE facility employees.

  17. The New Brunswick Laboratory Safeguards Measurement Evaluation Program

    International Nuclear Information System (INIS)

    Cacic, C.G.; Trahey, N.M.; Zook, A.C.

    1987-01-01

    The New Brunswick Laboratory (NBL) has been tasked by the U.S. Department of Energy (DOE) Office of Safeguards and Security (OSS) to assess and evaluate the adequacy of measurement technology as applied to materials accounting in DOE nuclear facilities. The Safeguards Measurement Evaluation (SME) Program was developed as a means to monitor and evaluate the quality and effectiveness of accounting measurements by site, material balance area (MBA), or unit process. Phase I of the SME Program, initiated during 1985, involved evaluation of the primary accountability measurement methods at six DOE Defense Programs facilities: Savannah River Plant, Portsmouth Gaseous Diffusion Plant, Y-12 Plant, Rocky Flats Plant, Rockwell Hanford Operations, and NBL. Samples of uranyl nitrate solution, dried plutonium nitrates, and plutonium oxides were shipped to the participants for assay and isotopic abundance measurements. Resulting data are presented and evaluated as indicators of current state-of-the-practice accountability measurement methodology, deficiencies in materials accounting practices, and areas for possible assistance in upgrading measurement capabilities. Continuing expansion of the SME Program to include materials which are representative of specific accountability measurement points within the DOE complex is discussed

  18. An overview of the waste characterization program at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Hardy, D.G.

    1990-05-01

    A comprehensive Waste Characterization Program (WCP) is in place at Chalk River Laboratories to support disposal projects. The WCP is responsible for: 1) specifying the manifests for waste shipments; 2) developing and maintaining central databases for waste inventories and analytical data; and 3) developing the technologies and procedures to characterize the radiological and the physical/chemical properties of wastes. WCP work is being performed under the umbrella of a newly developed waste management Quality Assurance (QA) program. This paper gives an overview of the WCP with an emphasis on the requirements for determining radionuclide inventories in wastes, for implementing record-keeping systems, and for maintaining a QA program for disposal operations

  19. Overcoming decommissioning challenges through client/laboratory co-operation

    International Nuclear Information System (INIS)

    Wharton, Mike; Gray, Lesley

    2007-01-01

    Available in abstract form only. Full text of publication follows: Accelerated decommissioning projects of the type underway at the former gaseous diffusion plant at BNG Capenhurst, UK, involve characterisation and radiochemical fingerprinting of a variety of unusual materials derived from legacy wastes. The project management and technical challenges that can occur during such a program can be successfully surmounted if a close working relationship between the client and the analytical laboratory is achieved. The Capenhurst Integrated Decommissioning Program (IDP) is an example of how such co-operation can reduce costs and time scales by providing the analytical laboratory with key sample and technical information prior to the shipping of the samples to the lab. This ensures that challenges associated with unusual sample matrices can be anticipated and dealt with at an early stage in the project. Gamma spectrometry is the most common analytical technique when analysing samples for radioactive content as it is non-destructive, relatively inexpensive and fast. However, accurate measurement generally requires samples of a known density to be counted in calibrated geometries. This becomes a challenge as many legacy wastes comprise materials of uneven geometry and/or varying density, as has been the case during the Capenhurst IDP. Liaising with the client to ensure a representative sub-sample of the material is taken on-site, and a series of additional checks when analysing the sample ensure that accurate results are obtained even for non-routine materials. Often it is only one or two radionuclides that dominate the radioactive inventory for legacy wastes. (authors)

  20. SURFSCAN: Program to operate a LASER profilometer. Yucca Mountain Site Characterization Project

    International Nuclear Information System (INIS)

    Hardy, R.D.

    1995-09-01

    This paper is written to document the SURFSCAN program. A large section of the code is devoted to error recovery. The heavy emphasis on error recovery allows unattended operation for extended periods. By combining error recovery with the use of control files, SURFSCAN has been operated for periods of several days with no operator intervention. At this time, the Surface Profilometer is a useful and productive tool in the Rock Mechanics Laboratory at Sandia National Laboratories/New Mexico. In the Rock Mechanics Laboratory we have been conducting studies of the normal and shear mechanical behavior of fractures and the flow of fluid through fractured rock formations. To estimate these properties, we need to know the average aperture size and surface texture of a fracture. These data may be obtained from surface profiles of mating pieces of rock. By scanning corresponding regions on two mating surfaces, the aperture size may be easily determined

  1. Strategy for future laboratory rock mechanics programs

    International Nuclear Information System (INIS)

    Butcher, B.M.; Jones, A.K.

    1985-01-01

    A strategy for future experimental rock mechanics laboratory programs at Sandia National Laboratories is described. This strategy is motivated by the need for long range planning of rock mechanics programs addressing the stability of complex underground structures, changes in in situ stress states during resource recovery and underground explosion technology. It is based on: (1) recent advances in underground structure stability analysis which make three-dimensional calculations feasible, and (2) new developments in load path control of laboratory stress-strain tests which permit duplication of stress and strain histories in critical parts of a structure, as determined by numerical analysis. The major constraint in the strategy is the assumption that there are no in situ joint features or sample size effects which might prevent simulation of in situ response in the laboratory. 3 refs., 5 figs

  2. Hanford Laboratories Operation monthly activities report, October 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-11-15

    This is the monthly report for the Hanford Laboratories Operation, October 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  3. Hanford Laboratories Operation monthly activities report, July 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-08-15

    This is the monthly report for the Hanford Laboratories Operation, July, 1959. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  4. Hanford Laboratories Operation monthly activities report, March 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-04-15

    This is the monthly report for the Hanford Laboratories Operation, April 1961. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  5. Hanford Laboratories Operation monthly activities report, February 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-03-15

    This is the monthly report for the Hanford Laboratories Operation, February, 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  6. Hanford Laboratories Operation monthly activities report, September 1960

    Energy Technology Data Exchange (ETDEWEB)

    1960-10-15

    This is the monthly report for the Hanford Laboratories Operation, October, 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  7. Hanford Laboratories Operation monthly activities report, May 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-06-15

    This is the monthly report for the Hanford Laboratories Operation, May, 1957. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  8. Hanford Laboratories Operation monthly activities report, November 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-12-15

    This is the monthly report for the Hanford Laboratories Operation, November 1959. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  9. Hanford Laboratories Operation monthly activities report, March 1957

    Energy Technology Data Exchange (ETDEWEB)

    Albaugh, E.W.

    1957-04-15

    This is the monthly report of the Hanford Laboratories Operation, March, 1957. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  10. Hanford Laboratories Operation monthly activities report, February 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-03-15

    This is the monthly report for the Hanford Laboratories Operation, February 1961. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  11. Hanford Laboratories Operation monthly activities report, September 1959

    Energy Technology Data Exchange (ETDEWEB)

    1959-10-15

    This is the monthly report for the Hanford Laboratories Operation, October 1959. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  12. Hanford Laboratories Operation monthly activities report, June 1957

    Energy Technology Data Exchange (ETDEWEB)

    1957-07-15

    This is the monthly report for the Hanford Laboratories Operation, July 1957. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  13. Hanford Laboratories Operation monthly activities report, July 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-08-15

    This is the monthly report for the Hanford Laboratories Operation, July 1969. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  14. Hanford Laboratories Operation monthly activities report, January 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-02-15

    This is the monthly report for the Hanford Laboratories Operation, January 1961. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  15. Hanford Laboratories Operation monthly activities report, December 1962

    Energy Technology Data Exchange (ETDEWEB)

    1963-01-15

    This is the monthly report for the Hanford Laboratories Operation, December 1962. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  16. Hanford Laboratories Operation monthly activities report, April 1961

    Energy Technology Data Exchange (ETDEWEB)

    1961-05-15

    This is the monthly report for the Hanford Laboratories Operation, April 1961. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  17. Hanford Laboratories Operation monthly activities report, December 1959

    Energy Technology Data Exchange (ETDEWEB)

    1960-01-15

    This is the monthly report for the Hanford Laboratories Operation, January 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  18. Hanford Laboratories Operation monthly activities report, November 1960

    Energy Technology Data Exchange (ETDEWEB)

    Sale, W.

    1960-12-15

    This is the monthly report for the Hanford Laboratories Operation, November 1960. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  19. Hanford Laboratories Operation monthly activities report, November 1962

    Energy Technology Data Exchange (ETDEWEB)

    1962-12-14

    This is the monthly report for the Hanford Laboratories Operation, November 1962. Metallurgy, reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, visits, biology operation, physics and instrumentation research, and employee relations are discussed.

  20. Laboratory operation during radiation emergency

    International Nuclear Information System (INIS)

    Bunata, M.; Prouza, Z.; Tecl, J.

    2009-01-01

    During radiation emergency, a special operation mode of laboratories of the Radiation Monitoring Network (hereinafter RMN) is expected. The principal factors differing the emergency mode from the normal one are the following: - significantly higher amount of analyzed samples; - high activities of the majority of the samples; - higher risk of personal and equipment contamination; - higher working and psychological demands on laboratory staff. The assuring of the radiation protection requirements of laboratory staff has to be the primary objective, nevertheless the risk of equipment contamination and of samples cross- contamination of course have to be as well taken into consideration. The presentation describes the experience of the RMN Central Laboratory of the National Radiation Protection Institute in Prague (SURO) which was obtained during realization of field tests, in which a radioactive matter was released. These tests allow us to evaluate the source term or radioactivity dispersal balance based on various detection methods with the aim to estimate exposure of the afflicted persons. Tests provided to simulate emergency working conditions in Central Laboratory - high number of contaminated samples, which have to be analyzed in a short time (short half-time of used radionuclide 99m Tc) using sophisticated laboratory techniques (gamma spectrometers, aerosols collectors, etc.). The testing shows the availability of the SURO laboratory to work during the radiation emergency and to participate on its determination. The suitable settings and the ideal number of staff have been found. The average analysis time was approximately 1 minute per sample and the sample results were available just a few minutes after the counting. Moreover, the settings avoided any danger and kept both the crew and the samples safe and secure from contamination. (authors)

  1. Laboratory operation during radiation emergency

    International Nuclear Information System (INIS)

    Bunata, M.; Tecl, J.; Prouza, Z.

    2008-01-01

    During radiation emergency, a special operation mode of laboratories of the Radiation Monitoring Network (hereinafter RMN) is expected. The principal factors differing the emergency mode from the normal one are the following: - significantly higher amount of analyzed samples; - high activities of the majority of the samples; - higher risk of personal and equipment contamination; - higher working and psychological demands on laboratory staff. The assuring of the radiation protection requirements of laboratory staff has to be the primary objective, nevertheless the risk of equipment contamination and of samples cross- contamination of course have to be as well taken into consideration. The presentation describes the experience of the RMN Central Laboratory of the National Radiation Protection Institute in Prague (SURO) which was obtained during realization of field tests, in which a radioactive matter was released. These tests allow us to evaluate the source term or radioactivity dispersal balance based on various detection methods with the aim to estimate exposure of the afflicted persons. Tests provided to simulate emergency working conditions in Central Laboratory -high number of contaminated samples, which have to be analyzed in a short time (short half-time of used radionuclide 99m Tc) using sophisticated laboratory techniques (gamma spectrometers, aerosols collectors, etc.). The testing shows the availability of the SURO laboratory to work during the radiation emergency and to participate on its determination. The suitable settings and the ideal number of staff have been found. The average analysis time was approximately 1 minute per sample and the sample results were available just a few minutes after the counting. Moreover, the settings avoided any danger and kept both the crew and the samples safe and secure from contamination. (authors)

  2. Transportable Xenon Laboratory (TXL-1) Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, Robert C.; Stewart, Timothy L.; Willett, Jesse A.; Woods, Vincent T.

    2011-03-07

    The Transportable Xenon Laboratory Operations Manual is a guide to set up and shut down TXL, a fully contained laboratory made up of instruments to identify and measure concentrations of the radioactive isotopes of xenon by taking air samples and analyzing them. The TXL is housed in a standard-sized shipping container. TXL can be shipped to and function in any country in the world.

  3. An operational health physics quality assurance program

    International Nuclear Information System (INIS)

    Costigan, S.A.; McAtee, J.L. III; Somers, W.M.; Huchton, R.L.

    1996-01-01

    DOE Order 5700.6C, Quality Assurance, stipulates QA requirements for all DOE activities. This order is now codified as 10CFR830.120, Nuclear Safety Management, Quality Assurance Requirements, which is applicable to DOE nuclear facilities. A Quality Assurance Management Plan (QAMP) was developed by the Health Physics Operations Group (ESH-1) at Los Alamos National Laboratory (LANL). The goal of the ESH-1 QAMP is to ensure that operational radiation protection activities meet the criteria outlined in DOE Order 5700.6C, DOE-ER-STD-6001-92 and 10CFR830.120. The ten required elements are QA Program, Personal Training and Qualifications, Quality Improvement, Documents and Records, Work Processes, Design, Procurement, Inspection and Acceptance Testing, Management Assessment and Independent Assessment. The QAMP has been useful for the development of QAMPs at nuclear facilities and has helped ensure uniformity of institutional requirements where Health Physics services are deployed to facilities. To implement a subset of QAMP requirements, a Quality Assurance Self-Evaluation Program (QASE) was established. This program provides a novel self-audit mechanism for the formal identification and correction of non-conforming items related to Operational Health Physics. Additionally, the QASE is a useful management tool for Radiological Control Technician Supervisors and staff and provides a tracking mechanism for ongoing problem areas. Data have been Collected for two calendar years on a number of concerns that fall into four general categories: radiological posting and labeling, instrumentation, monitoring requirements, and radiological documents/records

  4. Spent fuel storage cask testing and operational experience at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Eslinger, L.E.; Schmitt, R.C.

    1989-01-01

    Spent-fuel storage cask research, development, and demonstration activities are being performed for the U.S. Department of Energy's (DOE's) Office of Civilian Radioactive Waste Management (OCRWM) as a part of the storage cask testing program. The cask testing program at federal sites and other locations supports the Nuclear Waste Policy Act (NWPA) and DOE objectives for cooperative demonstrations with the cask vendors and utilities for development of at-reactor dry cask storage capabilities for spent nuclear fuel assemblies. One research and development program for the storage cask performance testing of metal storage cask was initiated through a cooperative agreement between Virginia Power and DOE in 1984. The performance testing was conducted for the DOE and the Electric Power Research Institute by the Pacific Northwest laboratory, operated for DOE by Battelle Memorial Institute, and the Idaho National Engineering Laboratory (INEL), operated for DOE by EG ampersand G Idaho, Inc. In 1988 a cooperative agreement was entered into by DOE with Pacific Sierra Nuclear Associates (PSN) for performance testing of the PSN concrete Ventilated Storage Cask. Another closely related activity involving INEL is a transportable storage cask project identified as the Nuclear Fuel Services Spent-Fuel Shipping/Storage Cask Demonstration Project. The purpose of this project is to demonstrate the feasibility of packing, transporting, and storing commercial spent fuel in dual-purpose transport/storage casks

  5. Laboratory Directed Research and Development Program FY98

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, T. [ed.; Chartock, M.

    1999-02-05

    The Ernest Orlando Lawrence Berkeley National Laboratory (LBNL or Berkeley Lab) Laboratory Directed Research and Development Program FY 1998 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the Laboratory Directed Research and Development (LDRD) program planning and documentation process that includes an annual planning cycle, projection selection, implementation, and review. The LBNL LDRD program is a critical tool for directing the Laboratory's forefront scientific research capabilities toward vital, excellent, and emerging scientific challenges. The program provides the resources for LBNL scientists to make rapid and significant contributions to critical national science and technology problems. The LDRD program also advances LBNL's core competencies, foundations, and scientific capability, and permits exploration of exciting new opportunities. All projects are work in forefront areas of science and technology. Areas eligible for support include the following: Advanced study of hypotheses, concepts, or innovative approaches to scientific or technical problems; Experiments and analyses directed toward ''proof of principle'' or early determination of the utility of new scientific ideas, technical concepts, or devices; and Conception and preliminary technical analyses of experimental facilities or devices.

  6. Field manual for ground water reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1977-01-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, groundwater sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  7. Environmental surveillance program of the Lawrence Berkeley Laboratory

    International Nuclear Information System (INIS)

    Thomas, R.H.

    1976-04-01

    The major radiological environmental impact of the Lawrence Berkeley Laboratory is due to the operation of four particle accelerators. Potential sources of population exposure at the Laboratory are discussed. The major source of population exposure due to accelerator operation arises from the prompt radiation field which consists principally of neutrons and photons. Release of small quantities of radionuclides is also a potential source of population exposure but is usually an order of magnitude less significant. Accelerator produced radiation levels at the Laboratory boundary are comparable with the magnitudes of the fluctuations found in the natural background radiation. Environmental monitoring of accelerator-produced radiation and of radionuclides is carried on throughout the Laboratory, at the Laboratory perimeter, and in the regions surrounding the Laboratory. The techniques used are described. The models used to calculate population exposure are described and discussed

  8. Operational evaluation of rapid diagnostic testing for Ebola Virus Disease in Guinean laboratories.

    Directory of Open Access Journals (Sweden)

    Amanda VanSteelandt

    Full Text Available Rapid Diagnostic Tests (RDTs for Ebola Virus Disease (EVD at the point of care have the potential to increase access and acceptability of EVD testing and the speed of patient isolation and secure burials for suspect cases. A pilot program for EVD RDTs in high risk areas of Guinea was introduced in October 2015. This paper presents concordance data between EVD RDTs and PCR testing in the field as well as an assessment of the acceptability, feasibility, and quality assurance of the RDT program.Concordance data were compiled from laboratory surveillance databases. The operational measures of the laboratory-based EVD RDT program were evaluated at all 34 sentinel sites in Guinea through: (1 a technical questionnaire filled by the lab technicians who performed the RDTs, (2 a checklist filled by the evaluator during the site visits, and (3 direct observation of the lab technicians performing the quality control test. Acceptability of the EVD RDT was good for technicians, patients, and families although many technicians (69.8% expressed concern for their safety while performing the test. The feasibility of the program was good based on average technician knowledge scores (6.6 out of 8 but basic infrastructure, equipment, and supplies were lacking. There was much room for improvement in quality assurance of the program.The implementation of new diagnostics in weak laboratory systems requires general training in quality assurance, biosafety and communication with patients in addition to specific training for the new test. Corresponding capacity building in terms of basic equipment and a long-term commitment to transfer supervision and quality improvement to national public health staff are necessary for successful implementation.

  9. FTIR Laboratory in Support of the PV Program

    International Nuclear Information System (INIS)

    Keyes, B. M.; Gedvilas, L. M.; Bhattacharya, R.; Xu, Y.; Li, X.; Wang, Q.

    2005-01-01

    The Fourier Transform Infrared Spectroscopy (FTIR) Laboratory supports the Solar Energy Technologies Program through the measurement and characterization of solar energy-related materials and devices. The FTIR technique is a fast, accurate, and reliable method for studying molecular structure and composition. This ability to identify atomic species and their bonding environment is a powerful combination that finds use in many research and development efforts. A brief overview of the technical approach used is contained in Section 2 of this report. Because of its versatility and accessibility, the FTIR Laboratory is a valuable contributor to the Solar Energy Technologies Program. The laboratory provides support for, and collaborates with, several in-house programs as well as our industry and university partners. By the end of FY 2004, the FTIR Laboratory performed over 1100 measurements on PV-related materials. These contributions resulted in conference and workshop presentations and several peer-reviewed publications. A brief summary of a few of these efforts is contained in Section 3 of this report

  10. Math and science education programs from the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    1991-01-01

    This booklet reviews math and science education programs at the Idaho National Engineering Laboratory (INEL). The programs can be categorized into six groups: teacher programs; science laboratories for students; student programs; education outreach programs; INEL Public Affairs Office; and programs for college faculty and students

  11. Quality assurance on the Idaho National Engineering Laboratory Buried Waste Program

    International Nuclear Information System (INIS)

    Rasmussen, T.L.

    1989-01-01

    This paper discusses the clean-up of an Idaho National Engineering Laboratory (INEL) site utilized for disposal of transuranic contaminated waste from 1954 until 1970. The author presents requirements of the environmental protection statutes that have generated quality assurance requirements in addition to those historically implemented as a part of facility design, construction and operation. A hierarchy of program guidance quality documentation and procedures is discussed. Data qualification and computer database management are identified as requirements

  12. Laboratory Information Systems Management and Operations.

    Science.gov (United States)

    Cucoranu, Ioan C

    2015-06-01

    The main mission of a laboratory information system (LIS) is to manage workflow and deliver accurate results for clinical management. Successful selection and implementation of an anatomic pathology LIS is not complete unless it is complemented by specialized information technology support and maintenance. LIS is required to remain continuously operational with minimal or no downtime and the LIS team has to ensure that all operations are compliant with the mandated rules and regulations. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Idaho National Engineering Laboratory decontamination and decommissioning robotics development program

    International Nuclear Information System (INIS)

    McKay, M.D.

    1993-04-01

    As part of the Idaho National Engineering Laboratory (INEL) Robotics Technology Development Program (RTDP) Decontamination ampersand Decommissioning (D ampersand D) robotics program, a task was designed to integrate the plasma arc cutting technology being developed under the Waste Facility Operations (WFO) robotics program into D ampersand D cutting applications. The plasma arc cutting technology is based upon the use of a high energy plasma torch to cut metallic objects. Traditionally, D ampersand D workers removing equipment and processes from a facility have used plasma arc cutting to accomplish this task. The worker is required to don a protective suit to shield from the high electromagnetic energy released from the cutting operation. Additionally, the worker is required to don protective clothing to shield against the radioactive materials and contamination. This protective clothing can become restrictive and cumbersome to work in. Because some of the work areas contain high levels of radiation, the worker is not allowed to dwell in the environment for sustained periods of time. To help alleviate some of the burdens required to accomplish this task, reduce or eliminate the safety hazardous to the worker, and reduce the overall cost of remediation, a program was established though the Office of Technology Development (OTD) to design and develop a robotic system capable of performing cutting operations using a plasma arc torch. Several D ampersand D tasks were identified having potential for use of the plasma arc cutting technology. The tasks listed below were chosen to represent common D ampersand D type activities where the plasma arc cutting technology can be applied

  14. Pressure Swing Adsorption in the Unit Operations Laboratory

    Science.gov (United States)

    Ganley, Jason

    2018-01-01

    This paper describes a student laboratory in the Unit Operations Laboratory at the Colorado School of Mines: air separation by pressure swing adsorption. The flexibility of the system enables students to study the production of enriched nitrogen or oxygen streams. Automatic data acquisition permits the study of cycle steps and performance.…

  15. Field manual for stream sediment reconnaissance. Savannah River Laboratory National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Ferguson, R.B.; Price, V.; Baucom, E.I.

    1976-07-01

    A manual is presented that is intended to direct and coordinate field operations, site selection, stream sediment sample collection, water sample collection, and information codes for the Savannah River Laboratory (SRL) contribution to the National Uranium Resource Evaluation (NURE) program. The manual provides public relations information for field sampling teams as well as technical direction

  16. LABORATORY DIRECTED RESEARCH AND DEVELOPMENT PROGRAM ASSESSMENT FOR FY 2006.

    Energy Technology Data Exchange (ETDEWEB)

    FOX,K.J.

    2006-01-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's total annual budget has averaged about $460 million. There are about 2,500 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, ''Laboratory Directed Research and Development,'' April 19,2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy National Nuclear Security Administration Laboratories dated June 13,2006. The goals and' objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new ''fundable'' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research ''which could lead to new programs, projects, and directions'' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new

  17. Laboratory Directed Research and Development Program Assessment for FY 2007

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.; Fox, K.J.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2007 spending was $515 million. There are approximately 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. As one of the premier scientific laboratories of the DOE, BNL must continuously foster groundbreaking scientific research. At Brookhaven National Laboratory one such method is through its LDRD Program. This discretionary research and development tool is critical in maintaining the scientific excellence and long-term vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community and foster new science and technology ideas, which

  18. Evaluation of the Virtual Physiology of Exercise Laboratory Program

    Science.gov (United States)

    Dobson, John L.

    2009-01-01

    The Virtual Physiology of Exercise Laboratory (VPEL) program was created to simulate the test design, data collection, and analysis phases of selected exercise physiology laboratories. The VPEL program consists of four modules: (1) cardiovascular, (2) maximal O[subscript 2] consumption [Vo[subscript 2max], (3) lactate and ventilatory thresholds,…

  19. BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF

    International Nuclear Information System (INIS)

    INSTRUMENTATION DIVISION STAFF

    1999-01-01

    To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations

  20. BROOKHAVEN NATIONAL LABORATORY INSTRUMENTATION DIVISION, R AND D PROGRAMS, FACILITIES, STAFF.

    Energy Technology Data Exchange (ETDEWEB)

    INSTRUMENTATION DIVISION STAFF

    1999-06-01

    To develop state-of-the-art instrumentation required for experimental research programs at BNL, and to maintain the expertise and facilities in specialized high technology areas essential for this work. Development of facilities is motivated by present BNL research programs and anticipated future directions of BNL research. The Division's research efforts also have a significant impact on programs throughout the world that rely on state-of-the-art radiation detectors and readout electronics. Our staff scientists are encouraged to: Become involved in challenging problems in collaborations with other scientists; Offer unique expertise in solving problems; and Develop new devices and instruments when not commercially available. Scientists from other BNL Departments are encouraged to bring problems and ideas directly to the Division staff members with the appropriate expertise. Division staff is encouraged to become involved with research problems in other Departments to advance the application of new ideas in instrumentation. The Division Head integrates these efforts when they evolve into larger projects, within available staff and budget resources, and defines the priorities and direction with concurrence of appropriate Laboratory program leaders. The Division Head also ensures that these efforts are accompanied by strict adherence to all ES and H regulatory mandates and policies of the Laboratory. The responsibility for safety and environmental protection is integrated with supervision of particular facilities and conduct of operations.

  1. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Heaton, H.T. II; Taylor, A.R. Jr. [Center for Devices and Radiological Health, Rockville, MD (United States)

    1993-12-31

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory.

  2. Development of a quality assurance program for ionizing radiation secondary calibration laboratories

    International Nuclear Information System (INIS)

    Heaton, H.T. II; Taylor, A.R. Jr.

    1993-01-01

    For calibration laboratories, routine calibrations of instruments meeting stated accuracy goals are important. One method of achieving the accuracy goals is to establish and follow a quality assurance program designed to monitor all aspects of the calibration program and to provide the appropriate feedback mechanism if adjustments are needed. In the United States there are a number of organizations with laboratory accreditation programs. All existing accreditation programs require that the laboratory implement a quality assurance program with essentially the same elements in all of these programs. Collectively, these elements have been designated as a Measurement Quality Assurance (MQA) program. This paper will briefly discuss the interrelationship of the elements of an MQA program. Using the Center for Devices and Radiological Health (CDRH) X-ray Calibration Laboratory (XCL) as an example, it will focus on setting up a quality control program for the equipment in a Secondary Calibration Laboratory

  3. Compliance program for 40 CFR 61, Subpart H at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    McNamara, E.A.

    1997-01-01

    Effective on March 15, 1990, the Environmental Protection Agency established regulations controlling the emission of radionuclides to the air from Department of Energy facilities to limit the dose to the public to 10 mrem/yr. These regulations are detailed in 40 CFR 61, Subpart H, open-quotes National Emission Standards for Emissions of Radionuclides Other Than Radon from Department of Energy Facilitiesclose quotes. Part of these regulations require the operation of sampling systems on stacks meeting certain requirements. Although Los Alamos National Laboratory has a long history of stack sampling, the systems in place at the time the regulation became effective did not meet the specific design requirements of the new regulation. In addition, certain specific program elements did not exist or were not adequately documented. The Los Alamos National Laboratory has undertaken a major effort to upgrade its compliance program to meet the requirements of USEPA. This effort involved: developing new and technically superior sampling methods and obtaining approval from the Environmental Protection Agency for their use; negotiating specific methodologies with the Environmental Protection Agency to implement certain requirements of the regulation: implementing a complete, quality assured, compliance program; and upgrading sampling systems. After several years of effort, Los Alamos National Laboratory now meets all requirements of the USEPA

  4. Liquid Effluent Monitoring Program at the Pacific Northwest Laboratory

    International Nuclear Information System (INIS)

    Ballinger, M.Y.

    1995-05-01

    Pacific Northwest Laboratory (PNL) is conducting a program to monitor the waste water from PNL-operated research and development facilities on the Hanford Site. The purpose of the program is to collect data to assess administrative controls and to determine whether discharges to the process sewer meet sewer criteria. Samples have been collected on a regular basis from the major PNL facilities on the Hanford Site since March 1994. A broad range of analyses has been performed to determine the primary constituents in the liquid effluent. The sampling program is briefly summarized in the paper. Continuous monitoring of pH, conductivity, and flow also provides data on the liquid effluent streams. In addition to sampling and monitoring, the program is evaluating the dynamics of the waste stream with dye studies and is evaluating the use of newer technologies for potential deployment in future sampling/monitoring efforts. Information collected to date has been valuable in determining sources of constituents that may be higher than the Waste Acceptance Criteria (WAC) for the Treated Effluent Disposal Facility (TEDF). This facility treats the waste streams before discharge to the Columbia River

  5. 48 CFR 970.1504-1-3 - Special considerations: Laboratory management and operation.

    Science.gov (United States)

    2010-10-01

    ...: Laboratory management and operation. 970.1504-1-3 Section 970.1504-1-3 Federal Acquisition Regulations System DEPARTMENT OF ENERGY AGENCY SUPPLEMENTARY REGULATIONS DOE MANAGEMENT AND OPERATING CONTRACTS Contracting by Negotiation 970.1504-1-3 Special considerations: Laboratory management and operation. (a) For the management...

  6. Laboratory Directed Research and Development Program Assessment for FY 2008

    Energy Technology Data Exchange (ETDEWEB)

    Looney, J P; Fox, K J

    2008-03-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary Laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal Year 2008 spending was $531.6 million. There are approximately 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. To be a premier scientific Laboratory, BNL must continuously foster groundbreaking scientific research and renew its research agenda. The competition for LDRD funds stimulates Laboratory scientists to think in new and creative ways, which becomes a major factor in achieving and maintaining research excellence and a means to address National needs within the overall mission of the DOE and BNL. By fostering high-risk, exploratory research, the LDRD program helps

  7. Laboratory Directed Research and Development Program: FY 2015 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    SLAC,

    2016-04-04

    The Department of Energy (DOE) and the SLAC National Accelerator Laboratory (SLAC) encourage innovation, creativity, originality and quality to maintain the Laboratory’s research activities and staff at the forefront of science and technology. To further advance its scientific research capabilities, the Laboratory allocates a portion of its funds for the Laboratory Directed Research and Development (LDRD) program. With DOE guidance, the LDRD program enables SLAC scientists to make rapid and significant contributions that seed new strategies for solving important national science and technology problems. The LDRD program is conducted using existing research facilities.

  8. Laboratory Directed Research and Development Program. Annual report

    Energy Technology Data Exchange (ETDEWEB)

    Ogeka, G.J.

    1991-12-01

    Today, new ideas and opportunities, fostering the advancement of technology, are occurring at an ever-increasing rate. It, therefore, seems appropriate that a vehicle be available which fosters the development of these new ideas and technologies, promotes the early exploration and exploitation of creative and innovative concepts, and which develops new ``fundable`` R&D projects and programs. At Brookhaven National Laboratory (BNL), one such method is through its Laboratory Directed Research and Development (LDRD) Program. This discretionary research and development tool is critical in maintaining the scientific excellence and vitality of the Laboratory. Additionally, it is a means to stimulate the scientific community, fostering new science and technology ideas, which is the major factor achieving and maintaining staff excellence, and a means to address national needs, with the overall mission of the Department of Energy (DOE) and the Brookhaven National Laboratory. The Project Summaries with their accomplishments described in this report reflect the above. Aside from leading to new fundable or promising programs and producing especially noteworthy research, they have resulted in numerous publications in various professional and scientific journals, and presentations at meetings and forums.

  9. Operator interface programs for KSTAR operation

    International Nuclear Information System (INIS)

    Lee, Sangil; Park, Mikyung; Park, Jinseop; Na, Hoonkyun; Kwon, M.

    2013-01-01

    Beginning the first plasma discharging experiment of KSTAR since 2008, KSTAR performed the third plasma discharging experiment by 2010. During the experiment of three times, KSTAR OPerator Interface (OPI) programs have been developed for KSTAR operation by itself. OPI programs used in KSTAR were implemented by KSTAR widget plug-in Toolkit (KWT). The KWT means the plug-in library implemented by Qt-based user interface development software. The main purpose of developing the KWT library is to implement full automation libraries having interface with the automated EPICS channel access (CA) guaranteeing the flexibility for requirements of operators. In addition, it has advantages in minimizing human code error and maximizing utilization of the limited human resource. According to the increasing of control systems, a number of OPI servers connected to one EPICS gateway server caused the connection problem and increased the amount of the network data packets. To solve these problems, an algorithm of “CachedChannelAccess” for shared memory base was implemented into an inner logic of the KWT library. KSTAR control system monitoring (CSM) program is one of applications developed by using KWT library. The function of CSM program is to notify alarm to operators by checking health status of every server's network health status and resource (cpu, memory, network packets, disk usage rate and system/user defined process) usage state. Another application is a post-shot sequencing program which is activated after every shot is completed. This application is to display major plasma parameters and diagnostic data in chart form, to save this data to database, and to transfer a chart image file to a web server. This paper describes the technical details how to develop OPI applications which have high productivity using Qt on the EPICS-based control system

  10. Operator interface programs for KSTAR operation

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sangil, E-mail: leesi@nfri.re.kr; Park, Mikyung, E-mail: mkpark@nfri.re.kr; Park, Jinseop, E-mail: linupark@nfri.re.kr; Na, Hoonkyun, E-mail: hkna@nfri.re.kr; Kwon, M., E-mail: kwonm@nfri.re.kr

    2013-11-15

    Beginning the first plasma discharging experiment of KSTAR since 2008, KSTAR performed the third plasma discharging experiment by 2010. During the experiment of three times, KSTAR OPerator Interface (OPI) programs have been developed for KSTAR operation by itself. OPI programs used in KSTAR were implemented by KSTAR widget plug-in Toolkit (KWT). The KWT means the plug-in library implemented by Qt-based user interface development software. The main purpose of developing the KWT library is to implement full automation libraries having interface with the automated EPICS channel access (CA) guaranteeing the flexibility for requirements of operators. In addition, it has advantages in minimizing human code error and maximizing utilization of the limited human resource. According to the increasing of control systems, a number of OPI servers connected to one EPICS gateway server caused the connection problem and increased the amount of the network data packets. To solve these problems, an algorithm of “CachedChannelAccess” for shared memory base was implemented into an inner logic of the KWT library. KSTAR control system monitoring (CSM) program is one of applications developed by using KWT library. The function of CSM program is to notify alarm to operators by checking health status of every server's network health status and resource (cpu, memory, network packets, disk usage rate and system/user defined process) usage state. Another application is a post-shot sequencing program which is activated after every shot is completed. This application is to display major plasma parameters and diagnostic data in chart form, to save this data to database, and to transfer a chart image file to a web server. This paper describes the technical details how to develop OPI applications which have high productivity using Qt on the EPICS-based control system.

  11. Laboratory Directed Research and Development Program Assessment for FY 2014

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report fulfills that requirement.

  12. Laboratory Directed Research and Development Program Activities for FY 2008.

    Energy Technology Data Exchange (ETDEWEB)

    Looney,J.P.; Fox, K.

    2009-04-01

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that maintains a primary mission focus the physical sciences, energy sciences, and life sciences, with additional expertise in environmental sciences, energy technologies, and national security. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2008 budget was $531.6 million. There are about 2,800 employees, and another 4,300 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development,' April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Developlnent at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. Accordingly, this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2008. BNL expended $12 million during Fiscal Year 2008 in support of 69 projects. The program has two categories, the annual Open Call LDRDs and Strategic LDRDs, which combine to meet the overall objectives of the LDRD Program. Proposals are solicited annually for review and approval concurrent with the next fiscal year, October 1. For the open call for proposals, an LDRD Selection Committee, comprised of the Associate Laboratory Directors (ALDs) for the Scientific Directorates, an equal number of scientists recommended by the Brookhaven Council, plus the Assistant Laboratory Director for Policy and Strategic Planning, review the proposals submitted in response to the solicitation. The Open Can LDRD category emphasizes innovative research concepts

  13. 1985 Environmental Monitoring Program report for the Idaho National Engineering Laboratory site

    International Nuclear Information System (INIS)

    Hoff, D.L.; Chew, E.W.; Rope, S.K.

    1986-05-01

    The results of the various monitoring programs for 1985 indicated that radioactivity from the Idaho National Engineering Laboratory (INEL) Site operations could not be distinguished from worldwide fallout and natural radioactivity in the region surrounding the Site. Although some radioactive materials were discharged during Site operations, concentrations and doses to the surrounding population were of no health consequence and were far less than State of Idaho and Federal health protection guidelines. This report describes the air, water, and foodstuff samples routinely collected at the INEL boundary locations and at locations distant from the INEL Site. It compares and evaluates the sample results, discussing implications, if any. Included for the first time this year are data from air and water samples routinely collected from onsite locations. The report also summarizes significant environmental activities at the INEL Site during 1985, nonradioactive and radioactive effluent monitoring at the Site, and the US Geological Survey (USGS) groundwater monitoring program

  14. Establishing a national biological laboratory safety and security monitoring program.

    Science.gov (United States)

    Blaine, James W

    2012-12-01

    The growing concern over the potential use of biological agents as weapons and the continuing work of the Biological Weapons Convention has promoted an interest in establishing national biological laboratory biosafety and biosecurity monitoring programs. The challenges and issues that should be considered by governments, or organizations, embarking on the creation of a biological laboratory biosafety and biosecurity monitoring program are discussed in this article. The discussion focuses on the following questions: Is there critical infrastructure support available? What should be the program focus? Who should be monitored? Who should do the monitoring? How extensive should the monitoring be? What standards and requirements should be used? What are the consequences if a laboratory does not meet the requirements or is not willing to comply? Would the program achieve the results intended? What are the program costs? The success of a monitoring program can depend on how the government, or organization, responds to these questions.

  15. Hydrologic resources management program and underground test area operable unit fy 1997

    Energy Technology Data Exchange (ETDEWEB)

    Smith, D. F., LLNL

    1998-05-01

    This report present the results of FY 1997 technical studies conducted by the Lawrence Livermore National Laboratory (LLNL) as part of the Hydrology and Radionuclide Migration Program (HRMP) and Underground Test Area Operable Unit (UGTA). The HRMP is sponsored by the US Department of Energy to assess the environmental (radiochemical and hydrologic) consequences of underground nuclear weapons testing at the Nevada Test Site.

  16. Environmental Molecular Sciences Laboratory Operations System: Version 4.0 - system requirements specification

    Energy Technology Data Exchange (ETDEWEB)

    Kashporenko, D.

    1996-07-01

    This document is intended to provide an operations standard for the Environmental Molecular Sciences Laboratory OPerations System (EMSL OPS). It is directed toward three primary audiences: (1) Environmental Molecular Sciences Laboratory (EMSL) facility and operations personnel; (2) laboratory line managers and staff; and (3) researchers, equipment operators, and laboratory users. It is also a statement of system requirements for software developers of EMSL OPS. The need for a finely tuned, superior research environment as provided by the US Department of Energy`s (DOE) Environmental Molecular Sciences Laboratory has never been greater. The abrupt end of the Cold War and the realignment of national priorities caused major US and competing overseas laboratories to reposition themselves in a highly competitive research marketplace. For a new laboratory such as the EMSL, this means coming into existence in a rapidly changing external environment. For any major laboratory, these changes create funding uncertainties and increasing global competition along with concomitant demands for higher standards of research product quality and innovation. While more laboratories are chasing fewer funding dollars, research ideas and proposals, especially for molecular-level research in the materials and biological sciences, are burgeoning. In such an economically constrained atmosphere, reduced costs, improved productivity, and strategic research project portfolio building become essential to establish and maintain any distinct competitive advantage. For EMSL, this environment and these demands require clear operational objectives, specific goals, and a well-crafted strategy. Specific goals will evolve and change with the evolution of the nature and definition of DOE`s environmental research needs. Hence, EMSL OPS is designed to facilitate migration of these changes with ease into every pertinent job function, creating a facile {open_quotes}learning organization.{close_quotes}

  17. Laboratory waste minimization during the operation startup phase

    International Nuclear Information System (INIS)

    Morrison, J.A.

    1995-05-01

    The Waste Sampling and Characterization Facility (WSCF) Laboratory was opened for occupancy in October, 1994. It is the first of its kind on the Hanford Site, a low level lab located in an area of high level radiological material. The mission of the facility is to analyze process samples from two on-line effluent treatment plants. One of these plants is operating and the other is due to begin operations by the end of 1995. The VSCF also performs air sampling analysis for routine radiological surveillance filter papers drawn from around the Hanford Site. Because this type of laboratory had not been in operation before, there was only speculation about the types and amounts of waste that would be generated. The laboratory personnel assigned to WSCF were assembled from existing labs on the Hanford Site and from outside the Hanford Site community. For some, it was a first time experience working on a site where a twenty mile drive is sometimes required to visit another building. For others, it was a change in the way business is conducted using state-of-the-art equipment, a new building, and a chance to approach issues as a team from the beginning. It is how this team came together and the issues that were discussed, sometimes uncomfortably, that lead to the current success. The outcome of this process is discussed in this paper

  18. 2016 Fermilab Laboratory Directed Research & Development Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Wester, W. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2016-05-25

    Fermilab is executing Laboratory Directed Research and Development (LDRD) as outlined by order DOE O 413.2B in order to enhance and realize the mission of the laboratory in a manner that also supports the laboratory’s strategic objectives and the mission of the Department of Energy. LDRD funds enable scientific creativity, allow for exploration of “high risk, high payoff” research, and allow for the demonstration of new ideas, technical concepts, and devices. LDRD also has an objective of maintaining and enhancing the scientific and technical vitality of Fermilab. LDRD is able to fund employee-initiated proposals that address the current strategic objectives and better position Fermilab for future mission needs. The request for such funds is made in consideration of the investment needs, affordability, and directives from DOE and Congress. Review procedures of the proposals will insure that those proposals which most address the strategic goals of the DOE and the Laboratory or which best position Fermilab for the future will be recommended to the Laboratory Director who has responsibility for approval. The execution of each approved project will be the responsibility of the Principal Investigator, PI, who will follow existing Laboratory guidelines to ensure compliance with safety, environmental, and quality assurance practices. A Laboratory Director-appointed LDRD Coordinator will work with Committees, Laboratory Management, other Fermilab Staff, and the PI’s to oversee the implementation of policies and procedures of LDRD and provide the management and execution of this Annual Program Plan. FY16 represents third fiscal year in which LDRD has existed at Fermilab. The number of preliminary proposals (117) submitted in response to the LDRD Call for Proposals indicates very strong interest of the program within the Fermilab community. The first two Calls have resulted in thirteen active LDRD projects – and it is expected that between five and seven new

  19. Invocation of Grid operations in the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Bartyński, T.; Malawski, M.; Bubak, M.; Bubak, M.; Turała, M.; Wiatr, K.

    2008-01-01

    This paper presents invocation of grid operations within the ViroLab Virtual Laboratory. Virtual laboratory enables users to develop and execute experiments that access computational resources on the Grid exposed via various middleware technologies. An abstraction over the Grid environment is

  20. Laboratory Directed Research and Development Program Activities for FY 2007.

    Energy Technology Data Exchange (ETDEWEB)

    Newman,L.

    2007-12-31

    Brookhaven National Laboratory (BNL) is a multidisciplinary laboratory that carries out basic and applied research in the physical, biomedical, and environmental sciences, and in selected energy technologies. It is managed by Brookhaven Science Associates, LLC, (BSA) under contract with the U. S. Department of Energy (DOE). BNL's Fiscal year 2007 budget was $515 million. There are about 2,600 employees, and another 4,500 guest scientists and students who come each year to use the Laboratory's facilities and work with the staff. The BNL Laboratory Directed Research and Development (LDRD) Program reports its status to the U.S. Department of Energy (DOE) annually in March, as required by DOE Order 413.2B, 'Laboratory Directed Research and Development', April 19, 2006, and the Roles, Responsibilities, and Guidelines for Laboratory Directed Research and Development at the Department of Energy/National Nuclear Security Administration Laboratories dated June 13, 2006. In accordance this is our Annual Report in which we describe the Purpose, Approach, Technical Progress and Results, and Specific Accomplishments of all LDRD projects that received funding during Fiscal Year 2007. The goals and objectives of BNL's LDRD Program can be inferred from the Program's stated purposes. These are to (1) encourage and support the development of new ideas and technology, (2) promote the early exploration and exploitation of creative and innovative concepts, and (3) develop new 'fundable' R&D projects and programs. The emphasis is clearly articulated by BNL to be on supporting exploratory research 'which could lead to new programs, projects, and directions' for the Laboratory. We explicitly indicate that research conducted under the LDRD Program should be highly innovative, and an element of high risk as to success is acceptable. In the solicitation for new proposals for Fiscal Year 2007 we especially requested innovative new projects in

  1. DOE standard: The Department of Energy Laboratory Accreditation Program for radiobioassay

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP) for Radiobioassay, for use by the US Department of Energy (DOE) and DOE Contractor radiobioassay programs. This standard is intended to be used in conjunction with the general administrative technical standard that describes the overall DOELAP accreditation process--DOE-STD-1111-98, Department of Energy Laboratory Accreditation Program Administration. This technical standard pertains to radiobioassay service laboratories that provide either direct or indirect (in vivo or in vitro) radiobioassay measurements in support of internal dosimetry programs at DOE facilities or for DOE and DOE contractors. Similar technical standards have been developed for other DOELAP dosimetry programs. This program consists of providing an accreditation to DOE radiobioassay programs based on successful completion of a performance-testing process and an on-site evaluation by technical experts. This standard describes the technical requirements and processes specific to the DOELAP Radiobioassay Accreditation Program as required by 10 CFR 835 and as specified generically in DOE-STD-1111-98

  2. 50 CFR 253.18 - Program operating guidelines.

    Science.gov (United States)

    2010-10-01

    ... 50 Wildlife and Fisheries 7 2010-10-01 2010-10-01 false Program operating guidelines. 253.18 Section 253.18 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC... Guarantee Program § 253.18 Program operating guidelines. The Division may issue Program operating guidelines...

  3. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Office of the Director

    2010-04-09

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In

  4. Argonne National Laboratory annual report of Laboratory Directed Research and Development Program Activities FY 2009

    International Nuclear Information System (INIS)

    2010-01-01

    I am pleased to submit Argonne National Laboratory's Annual Report on its Laboratory Directed Research and Development (LDRD) activities for fiscal year 2009. Fiscal year 2009 saw a heightened focus by DOE and the nation on the need to develop new sources of energy. Argonne scientists are investigating many different sources of energy, including nuclear, solar, and biofuels, as well as ways to store, use, and transmit energy more safely, cleanly, and efficiently. DOE selected Argonne as the site for two new Energy Frontier Research Centers (EFRCs) - the Institute for Atom-Efficient Chemical Transformations and the Center for Electrical Energy Storage - and funded two other EFRCs to which Argonne is a major partner. The award of at least two of the EFRCs can be directly linked to early LDRD-funded efforts. LDRD has historically seeded important programs and facilities at the lab. Two of these facilities, the Advanced Photon Source and the Center for Nanoscale Materials, are now vital contributors to today's LDRD Program. New and enhanced capabilities, many of which relied on LDRD in their early stages, now help the laboratory pursue its evolving strategic goals. LDRD has, since its inception, been an invaluable resource for positioning the Laboratory to anticipate, and thus be prepared to contribute to, the future science and technology needs of DOE and the nation. During times of change, LDRD becomes all the more vital for facilitating the necessary adjustments while maintaining and enhancing the capabilities of our staff and facilities. Although I am new to the role of Laboratory Director, my immediate prior service as Deputy Laboratory Director for Programs afforded me continuous involvement in the LDRD program and its management. Therefore, I can attest that Argonne's program adhered closely to the requirements of DOE Order 413.2b and associated guidelines governing LDRD. Our LDRD program management continually strives to be more efficient. In addition to

  5. An operational waste minimization chargeback system at Sandia National Laboratories, New Mexico

    International Nuclear Information System (INIS)

    Horak, K.; Peek, D.W.; Stermer, D.; Dailleboust, L.; Reilly, H.

    1993-01-01

    Sandia National Laboratories, New Mexico, (SNL/NM) has made a commitment to achieve significant reductions in the amount of hazardous wastes generated throughout its operations. The success of the SNL/NM Waste Minimization/Pollution Prevention Program depends primarily on: (1) adequate program funding, and (2) comprehensive collection and dissemination of information pertaining to SNL/NM's waste. This paper describes the chargeback system that SNL/NM has chosen for funding the implementation of the Waste Minimization/Pollution Prevention program, as well as the waste reporting system that follows naturally from the chargeback system. Both the chargeback and reporting systems have been fully implemented. The details of implementation are discussed, including: the physical means by which waste is managed and data collected; the database systems which have been linked; the flow of data through both human hands and electronic systems; the quality assurance of that data; and the waste report format now in use. Also discussed are intended improvements in the system that are currently planned for the coming years

  6. The Los Alamos National Laboratory Environmental Restoration Program

    International Nuclear Information System (INIS)

    Krueger, J.W.

    1990-01-01

    The LANL Environmental Restoration (ER) Program Office, established in October 1989, is faced with the challenge of assessing and cleaning up nearly 1,8000 potentially hazardous waste sites according to an aggressive corrective action schedule that the Environmental Protection Agency (EPA) mandated on May 23, 1990, in a Resource, Conservation, and Recovery Act (RCRA) Part B Permit. To maximize program efficiency, the ER Program Office will implement a unique management approach designed to maximize the use of laboratory technical expertise. The Installation Work Plan, which provides a blueprint for the program, has been submitted to EPA for review and approval. A work plan for characterization of Technical Area 21, an early plutonium processing facility, is also nearing completion. The feasibility of an expedited cleanup of the Laboratory's worst hazardous waste release has been modelled using a computer code originally developed by LANL to assist the nuclear weapons testing program. A sophisticated Geographic Information System has been implemented to assist in data management and presentation, and the design of a Mixed Waste Disposal Facility is underway. 6 refs., 2 figs

  7. Flow Induced Vibration Program at Argonne National Laboratory

    International Nuclear Information System (INIS)

    1984-01-01

    Argonne National Laboratory has had a Flow Induced Vibration Program since 1967; the Program currently resides in the Laboratory's Components Technology Division. Throughout its existence, the overall objective of the program has been to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities have been funded by the US Atomic Energy Commission (AEC), Energy Research and Development Administration (ERDA), and Department of Energy (DOE). Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology (ECUT) Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, Office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components has been funded by the Clinch River Breeder Reactor Plant (CRBRP) Project Office. Work has also been performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse

  8. BASIC program to compute uranium density and void volume fraction in laboratory-scale uranium silicide aluminum dispersion plate-type fuel

    International Nuclear Information System (INIS)

    Ugajin, Mitsuhiro

    1991-05-01

    BASIC program simple and easy to operate has been developed to compute uranium density and void volume fraction for laboratory-scale uranium silicide aluminum dispersion plate-type fuel, so called miniplate. An example of the result of calculation is given in order to demonstrate how the calculated void fraction correlates with the microstructural distribution of the void in a miniplate prepared in our laboratory. The program is also able to constitute data base on important parameters for miniplates from experimentally-determined values of density, weight of each constituent and dimensions of miniplates. Utility programs pertinent to the development of the BASIC program are also given which run in the popular MS-DOS environment. All the source lists are attached and brief description for each program is made. (author)

  9. Flow Induced Vibration Program at Argonne National Laboratory

    Science.gov (United States)

    1984-01-01

    The Argonne National Laboratory's Flow Induced Vibration Program, currently residing in the Laboratory's Components Technology Division is discussed. Throughout its existence, the overall objective of the program was to develop and apply new and/or improved methods of analysis and testing for the design evaluation of nuclear reactor plant components and heat exchange equipment from the standpoint of flow induced vibration. Historically, the majority of the program activities were funded by the US Atomic Energy Commission, the Energy Research and Development Administration, and the Department of Energy. Current DOE funding is from the Breeder Mechanical Component Development Division, Office of Breeder Technology Projects; Energy Conversion and Utilization Technology Program, Office of Energy Systems Research; and Division of Engineering, Mathematical and Geosciences, office of Basic Energy Sciences. Testing of Clinch River Breeder Reactor upper plenum components was funded by the Clinch River Breeder Reactor Plant Project Office. Work was also performed under contract with Foster Wheeler, General Electric, Duke Power Company, US Nuclear Regulatory Commission, and Westinghouse.

  10. Integrated formal operations plan

    Energy Technology Data Exchange (ETDEWEB)

    Cort, G.; Dearholt, W.; Donahue, S.; Frank, J.; Perkins, B.; Tyler, R.; Wrye, J.

    1994-01-05

    The concept of formal operations (that is, a collection of business practices to assure effective, accountable operations) has vexed the Laboratory for many years. To date most attempts at developing such programs have been based upon rigid, compliance-based interpretations of a veritable mountain of Department of Energy (DOE) orders, directives, notices, and standards. These DOE dictates seldom take the broad view but focus on highly specialized programs isolated from the overall context of formal operations. The result is a confusing array of specific, and often contradictory, requirements that produce a patchwork of overlapping niche programs. This unnecessary duplication wastes precious resources, dramatically increases the complexity of our work processes, and communicates a sense of confusion to our customers and regulators. Coupled with the artificial divisions that have historically existed among the Laboratory`s formal operations organizations (quality assurance, configuration management, records management, training, etc.), this approach has produced layers of increasingly vague and complex formal operations plans, each of which interprets its parent and adds additional requirements of its own. Organizational gridlock ensues whenever an activity attempts to implement these bureaucratic monstrosities. The integrated formal operations plan presented is to establish a set of requirements that must be met by an integrated formal operations program, assign responsibilities for implementation and operation of the program, and specify criteria against which the performance of the program will be measured. The accountable line manager specifies the items, processes, and information (the controlled elements) to which the formal operations program specified applies. The formal operations program is implemented using a graded approach based on the level of importance of the various controlled elements and the scope of the activities in which they are involved.

  11. Oak Ridge National Laboratory program plan for certification of nonradioactive hazardous waste

    International Nuclear Information System (INIS)

    1996-05-01

    This document describes Oak Ridge National Laboratory's (ORNL) Program for Certification of Nonradioactive Hazardous Waste (Program). The Program establishes the criteria that will be used by all ORNL divisions, offices, and programs for unrestricted release of hazardous waste to off-site commercial facilities. The certification process meets the requirements given in the Performance Objective for Certification of Non-Radioactive Hazardous Waste. The Program Plan has two main elements: (A) Establishing Radioactive Materials Management Areas (RMMAs). At ORNL, RMMAs are (1) Contamination Areas, High Contamination Areas, and Airborne Radioactivity Areas, (2) Radiological Buffer Areas established for contamination control, and (3) areas posted to prevent loss of control of activated items. (B) Certifying that hazardous waste originating in an RMMA is suitable for commercial treatment, storage, or disposal by process knowledge, surface contamination surveys, sampling and analysis, or a combination of these techniques. If process knowledge is insufficient, the hazardous waste must undergo sampling and analysis in addition to surface contamination surveys. This Program will reduce the impact to current ORNL operations by using current radiological area boundaries and existing plans and procedures to the greatest extent possible. New or revised procedures will be developed as necessary to implement this Program

  12. Sandia National Laboratories, California Environmental Management System program manual.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2013-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  13. Sandia National Laboratories, California Environmental Management System program manual

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2014-04-01

    The Sandia National Laboratories, California (SNL/CA) Environmental Management System (EMS) Program Manual documents the elements of the site EMS Program. The SNL/CA EMS Program conforms to the International Standard on Environmental Management Systems, ISO 14001:2004 and Department of Energy (DOE) Order 436.1.

  14. Sandia National Laboratories, California Waste Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2010-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  15. Transportable Heavy Duty Emissions Testing Laboratory and Research Program

    Energy Technology Data Exchange (ETDEWEB)

    David Lyons

    2008-03-31

    The objective of this program was to quantify the emissions from heavy-duty vehicles operating on alternative fuels or advanced fuel blends, often with novel engine technology or aftertreatment. In the first year of the program West Virginia University (WVU) researchers determined that a transportable chassis dynamometer emissions measurement approach was required so that fleets of trucks and buses did not need to be ferried across the nation to a fixed facility. A Transportable Heavy-Duty Vehicle Emissions Testing Laboratory (Translab) was designed, constructed and verified. This laboratory consisted of a chassis dynamometer semi-trailer and an analytic trailer housing a full scale exhaust dilution tunnel and sampling system which mimicked closely the system described in the Code of Federal Regulations for engine certification. The Translab was first used to quantify emissions from natural gas and methanol fueled transit buses, and a second Translab unit was constructed to satisfy research demand. Subsequent emissions measurement was performed on trucks and buses using ethanol, Fischer-Tropsch fuel, and biodiesel. A medium-duty chassis dynamometer was also designed and constructed to facilitate research on delivery vehicles in the 10,000 to 20,000lb range. The Translab participated in major programs to evaluate low-sulfur diesel in conjunction with passively regenerating exhaust particulate filtration technology, and substantial reductions in particulate matter were recorded. The researchers also participated in programs to evaluate emissions from advanced natural gas engines with closed loop feedback control. These natural gas engines showed substantially reduced levels of oxides of nitrogen. For all of the trucks and buses characterized, the levels of carbon monoxide, oxides of nitrogen, hydrocarbons, carbon dioxide and particulate matter were quantified, and in many cases non-regulated species such as aldehydes were also sampled. Particle size was also

  16. Laboratory Directed Research and Development FY-15 Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-03-01

    The Laboratory Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2B, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2015.

  17. Mobile Energy Laboratory energy-efficiency testing programs

    International Nuclear Information System (INIS)

    Parker, G.B.; Currie, J.W.

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies

  18. Mobile Energy Laboratory energy-efficiency testing programs

    Energy Technology Data Exchange (ETDEWEB)

    Parker, G B; Currie, J W

    1992-03-01

    This report summarizes energy-efficiency testing activities applying the Mobile Energy Laboratory (MEL) testing capabilities during the third and fourth quarters of fiscal year (FY) 1991. The MELs, developed by the US Department of Energy (DOE) Federal Energy Management Program (FEMP), are administered by Pacific Northwest Laboratory (PNL) and the Naval Energy and Environmental Support Activity (NEESA) for energy testing and energy conservation program support functions at federal facilities. The using agencies principally fund MEL applications, while DOE/FEMP funds program administration and capability enhancement activities. This report fulfills the requirements established in Section 8 of the MEL Use Plan (PNL-6861) for semi-annual reporting on energy-efficiency testing activities using the MEL capabilities. The MEL Use Committee, formally established in 1989, developed the MEL Use Plan and meets semi-annually to establish priorities for energy-efficient testing applications using the MEL capabilities. The MEL Use Committee is composed of one representative each of the US Department of Energy, US Army, US Air Force, US Navy, and other federal agencies.

  19. Environmental Audit at Santa Barbara Operations, Special Technologies Laboratory, Remote Sensing Laboratory, North Las Vegas Facilities

    International Nuclear Information System (INIS)

    1991-03-01

    This report documents the results of the Environmental Audit of selected facilities under the jurisdiction of the DOE Nevada Operations Office (NV) that are operated by EG and G Energy Measurements, Incorporated (EG and G/EM). The facilities included in this Audit are those of Santa Barbara Operation (SBO) at Goleta, California; the Special Technologies Laboratory (STL) at Santa Barbara, California; and Las Vegas Area Operations (LVAO) including the Remote Sensing Laboratory (RSL) at Nellis Air Force Base in Nevada, and the North Las Vegas Facilities (NLVF) at North Las Vegas, Nevada. The Environmental Audit was conducted by the US Department of Energy's (DOE) Office of Environmental Audit, commencing on January 28, 1991 and ending on February 15, 1991. The scope of the Audit was comprehensive, addressing environmental activities in the technical areas of air, surface water/drinking water, groundwater, waste management, toxic and chemical materials, quality assurance, radiation, inactive waste sites, and environmental management. Also assessed was compliance with applicable Federal, state, and local regulations and requirements; internal operating requirements; DOE Orders; and best management practices. 8 tabs

  20. Operating plan FY 1998

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    This document is the first edition of Argonne`s new Operating Plan. The Operating Plan complements the strategic planning in the Laboratory`s Institutional Plan by focusing on activities that are being pursued in the immediate fiscal year, FY 1998. It reflects planning that has been done to date, and it will serve in the future as a resource and a benchmark for understanding the Laboratory`s performance. The heart of the Institutional Plan is the set of major research initiatives that the Laboratory is proposing to implement in future years. In contrast, this Operating Plan focuses on Argonne`s ongoing R&D programs, along with cost-saving measures and other improvements being implemented in Laboratory support operations.

  1. The role of the EPA radiation quality assurance program in the measurement quality assurance accreditation program for radioassay laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Grady, T.M. [Environmental Monitoring Systems Laboratory, Las Vegas, NV (United States)

    1993-12-31

    As the nature and extent of radiological contamination becomes better documented and more public, radioanalytical laboratories are faced with a constantly expanding variety of new and difficult analytical requirements. Concurrent with those requirements is the responsibility to provide customers, regulatory officials, or the public with defensible data produced in an environment of verifiable, controlled quality. To meet that need, a quality assurance accreditation program for radioassay laboratories has been proposed by the American National Standards Institute (ANSI). The standard will provide the organizational framework and functional requirements needed to assure the quality of laboratory outputs. Under the proposed program, the U.S. Environmental Protection Agency`s (EPA`s) Laboratory Intercomparison Program plays a key role as a reference laboratory. The current and proposed roles of the EPA Intercomparison Program are discussed, as are the functional relationships between EPA, the accreditating organization, and the service and monitoring laboratories.

  2. Laboratory directed research and development. FY 1991 program activities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1991-11-15

    The purposes of Argonne`s Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory`s R&D capabilities, and further the development of its strategic initiatives. Among the aims of the projects supported by the Program are establishment of engineering ``proof-of-principle``; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these project are closely associated with major strategic thrusts of the Laboratory as described in Argonne`s Five Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne. Areas of emphasis are (1) advanced accelerator and detector technology, (2) x-ray techniques in biological and physical sciences, (3) advanced reactor technology, (4) materials science, computational science, biological sciences and environmental sciences. Individual reports summarizing the purpose, approach, and results of projects are presented.

  3. The safeguards on-site laboratory at Sellafield. Five years operational experience

    Energy Technology Data Exchange (ETDEWEB)

    Duinslaeger, L.; Belle, P. van; Mayer, K.; Casteleyn, K.; Abousahl, S.; Daures, P.; Eberle, H.; Enright, T.; Guiot, A.; Hild, M.; Horta Domenech, J.; Lajarge, P.; Laurent, P.; Le Terrier, A.; Lynch, B.; Marucci, M.; Millet, S.; Ottmar, H.; Richir, P.; Street, S.; Vallet, P.; Zuleger, E. [European Commission, Karlsruhe (Germany). Inst. for Transuranium Elements

    2004-06-01

    The start of operation of the large reprocessing facilities led Euratom Safeguards to a new approach for verification analysis of samples taken at the facility: the installation of on-site laboratories. The availability of analytical capabilities for independent verification measurements at the site of these facilities offers obvious advantages in view of timeliness of results. The 'On-Site Laboratory' (OSL) at the BNFL Sellafield site was the first ever and entered into operation in 1999. For almost five years, the Institute for Transuranium Elements (ITU) has been operating the laboratory under routine conditions. During this period, more than one thousand safeguards samples were analysed. The experience gained in the management, logistics and operation of the OSL allow a critical review based on a significant period in time. This includes also aspects of training of staff, maintenance of equipment, flow of information, and improvements in the efficiency. The analytical issues are of key importance: based on the operational experience, the measurement methods were adapted (changing boundary conditions), the distribution of samples according to material type changed (start up of MOS fabrication plant), and the cutback in resources triggered a further streamlining of the analytical efforts. (orig.)

  4. Environmental assessment for construction and operation of a Human Genome Laboratory at Lawrence Berkeley Laboratory, Berkeley, California

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-01

    Lawrence Berkeley Laboratory (LBL) proposes to construct and operate a new laboratory for consolidation of current and future activities of the Human Genome Center (HGC). This document addresses the potential direct, indirect, and cumulative environmental and human-health effects from the proposed facility construction and operation. This document was prepared in accordance the National Environmental Policy Act of 1969 (United States Codes 42 USC 4321-4347) (NEPA) and the US Department of Energy`s (DOE) Final Rule for NEPA Implementing Procedures [Code of Federal Regulations 10CFR 1021].

  5. Environmental Measurements Laboratory program review, December 1983

    International Nuclear Information System (INIS)

    Volchok, H.L.; de Planque, G.

    1984-03-01

    This volume contains all of the written material that was submitted to the panel of Reviewers in advance of a Program Review conducted by the US Department of Energy, Office of Health and Environmental Research at the Environmental Measurements Laboratory (EML) December 7-9, 1983. In addition to a general introduction there are nineteen papers grouped into the five broad program categories covering all of the scientific and engineering projects of the Laboratory: Natural Radioactivity and Radiation, Anthropogenic Radioactivity and Radiation, Non-nuclear, Quality Assurance, and Development and Support. These short articles, for the most part, focus on the rationale for EML's involvement in each project, emphasizing their relevance to the EML and Department of Energy missions. Project results and their interpretation were presented at the Review and can be found in the material referenced in this volume

  6. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development Program Activities for FY 1994

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-02-25

    The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel concepts, enhance the Laboratory's R and D capabilities, and further the development of its strategic initiatives. Projects are selected from proposals for creative and innovative R and D studies which are not yet eligible for timely support through normal programmatic channels. Among the aims of the projects supported by the Program are establishment of engineering proof-of-principle; assessment of design feasibility for prospective facilities; development of an instrumental prototype, method, or system; or discovery in fundamental science. Several of these projects are closely associated with major strategic thrusts of the Laboratory as described in Argonne's Five-Year Institutional Plan, although the scientific implications of the achieved results extend well beyond Laboratory plans and objectives. The projects supported by the Program are distributed across the major programmatic areas at Argonne as indicated in the Laboratory's LDRD Plan for FY 1994. Project summaries of research in the following areas are included: (1) Advanced Accelerator and Detector Technology; (2) X-ray Techniques for Research in Biological and Physical Science; (3) Nuclear Technology; (4) Materials Science and Technology; (5) Computational Science and Technology; (6) Biological Sciences; (7) Environmental Sciences: (8) Environmental Control and Waste Management Technology; and (9) Novel Concepts in Other Areas.

  7. Low-level radioactive waste disposal operations at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Stanford, A.R.

    1997-01-01

    Los Alamos National Laboratory (LANL) generates Low-Level Radioactive Waste (LLW) from various activities: research and development, sampling and storage of TRU wastes, decommissioning and decontamination of facilities, and from LANL's major role in stockpile stewardship. The Laboratory has its own active LLW disposal facility located at Technical Area 54, Area G. This paper will identify the current operations of the facility and the issues pertaining to operating a disposal facility in today's compliance and cost-effective environment

  8. [Standardization in laboratory hematology by participating in external quality assurance programs].

    Science.gov (United States)

    Nazor, Aida; Siftar, Zoran; Flegar-Mestrić, Zlata

    2011-09-01

    Since 1985, Department of Clinical Chemistry and Laboratory Medicine, Merkur University Hospital, Zagreb, has been participating in the International External Quality Assessment Scheme for Hematology (IEQAS-H) organized by the World Health Organization (WHO). Owing to very good results, in 1987 the Department received a certificate of participation in this control scheme. Department has been cooperating in the external quality assessment program in laboratory hematology which has been continuously performed in Croatia since 1986 by the Committee for External Quality Assessment Schemes under the auspices of the Croatian Society of Medical Biochemists and School of Pharmacy and Biochemistry, University of Zagreb. Nowadays, 186 medical biochemical laboratories are included in the National External Quality Assessment program, which is performed three times per year. Our Department has participated in the international projects of the European Committee for External Quality Assurance Programs in Laboratory Medicine (EQALM).

  9. Chemical laboratory hazardous waste management at a DOE multiprogram national laboratory

    International Nuclear Information System (INIS)

    Turner, P.J.

    1990-03-01

    Pacific Northwest Laboratory (PNL), a United States Department of Energy (DOE) Multiprogram Energy Laboratory, is establishing a program for management of diverse small-quantity laboratory waste generated on site. Although the main emphasis of this program is ''cradle-to-grave'' tracking and treatment of hazardous chemical waste and mixed waste, low-level radioactive and transuranic (TRU) waste is also being included. With the program in operation, more than 95% of all regulated waste will be treated or destroyed on site. The cost savings will return the original investment in under six years and decrease the liability to PNL and DOE -- a benefit with a potentially greater economic value. Tracking of hazardous waste will be mediated by a computer-based inventory and tracking system. The system will track all hazardous materials from receipt through final disposition, whether the material is destroyed or treated for disposal. It will allow user access to handling and hazards information as well as provide an updated inventory by location, user, and hazard type. Storage and treatment of waste will be performed by at least four facilities, made operational in three phases. 6 figs

  10. Hanford Laboratories monthly activities report, March 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-04-15

    The monthly report for the Hanford Laboratories Operation, March 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics operation, and programming operations are discussed.

  11. Technical review of the Sandia Laboratories' Particle Beam Fusion Program

    International Nuclear Information System (INIS)

    1979-01-01

    This report considers the technical aspects of Sandia Laboratories' Particle Beam Fusion Program and examines the program's initial goals, the progress made to date towards reaching those goals, and the future plans or methods of reaching those original or modified goals. A summary of Sandia Laboratories' effort, which seeks to demonstrate that high voltage pulsed power generated high-current electron or light ion beams can be used to ignite a deuterium or tritium pellet, is provided. A brief review and assessment of the Sandia Pulse Power Program is given. Several critical issues and summaries of the committee members' opinions are discussed

  12. Status Report of the Inter-Laboratory Task Force on Remote Operation

    International Nuclear Information System (INIS)

    Phinney, Nan

    2001-01-01

    The next generation of particle accelerators will be major projects which may require a new mode of international and inter-laboratory collaboration. They are likely to be too costly to be funded by a single nation and too large to be built by a single laboratory. The tremendous technical challenge of a new facility requires a critical mass of highly qualified and experienced physicists and engineers. These experts are presently distributed among the major accelerator centers around the world and it is believed important to maintain and develop this broad base of expertise. The successful accelerator technology development of recent decades depended on extensive exchange of people with complementary technical skills. Therefore, it is desirable and probably necessary that several accelerator laboratories will participate in any future project. A consequence of a multi-laboratory project is that the accelerator will be located a considerable distance from most of the contributing institutions which design, build and operate it. These considerations led the International Committee for Future Accelerators to initiate a study on the general and technical implications of such a collaboration. Two task forces were formed in February 2000 to conduct this study and they were asked to prepare a report on a time scale of one year. The task force on Remote Operation included members from most of the major accelerator laboratories around the world with expertise on accelerator operation, controls software, communication technologies, hardware design and maintenance. The task force members gathered information from the experts at their own institutions and from available experience in other fields, particularly astronomy. The task force on Remote Operations began by developing a model for an international multi-laboratory collaboration to construct and operate an accelerator facility. This model is described in section 3. While it is clear that there are numerous alternative

  13. Savannah River Laboratory's operating experience with glass melters

    International Nuclear Information System (INIS)

    Brown, F.H.; Randall, C.T.; Cosper, M.B.; Moseley, J.P.

    1982-01-01

    The Department of Energy, with recommendations from the Du Pont Company, is proposing that a Defense Waste Processing Facility be constructed at the Savannah River Plant to immobilize radioactive The immobilization process is designed around the solidification of waste sludge in borosilicate glass. The Savannah River Laboratory, who is responsible for the solidification process development program, has completed an experimental program with one large-scale glass melter and just started up another melter. Experimental data indicate that process requirements can easily be met with the current design. 7 figures

  14. The manned space-laboratories control centre - MSCC. Operational functions and its implementation

    Science.gov (United States)

    Brogl, H.; Kehr, J.; Wlaka, M.

    This paper describes the functions of the MSCC during the operations of the Columbus Attached Laboratory and the Free Flying Laboratory as part of the In-Orbit-Infrastructure Ground Segment. For the Attached Laboratory, MSCC payload operations coordination for European experiments within the Attached Laboratory and elsewhere on the Space Station Freedom will be explained. The Free Flying Laboratory will be operated and maintained exclusively from the MSCC during its 30 years lifetime. Several operational scenarios will demonstrate the role of the MSCC during routine - and servicing operations: of main importance are the servicing activities of the Attached Laboratory and the Free Flyer at the Space Station as well as servicing of the Free Flyer by the European Space Plane Hermes. The MSCC will have complex operational-, communications-and management interfaces with the IOI Ground Segment, the Space Station User community and with the international partners. Columbus User Support Centres will be established in many European member states, which have to be coordinated by the MSCC to ensure the proper reception of the scientific data and to provide them with quick access to their experiments in space. For operations planning and execution of experiments in the Attached Laboratory, a close cooperation with the Space Station control authorities in the USA will be established. The paper will show the development of the MSCC being initially used for the upcoming Spacelab Mission D-2 (MSCC Phase-1) and later upgraded to a Columbus dedicated control centre (MSCC Phase-2). For the initial construction phase the establishing of MSCC requirements, the philosophie used for the definition of the 'basic infrastructure' and key features of the installed facilities will be addressed. Resulting from Columbus and D-2 requirements, the sizing of the building with respect to controlrooms, conference rooms, office spare and simulation high-bay areas will be discussed. The defined 'basic

  15. Hanford Laboratories monthly activities report, January 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-02-15

    This is the monthly report for the Hanford Laboratories Operation January 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  16. Hanford Laboratories monthly activities report, March 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-04-15

    This is the monthly report for the Hanford Laboratories Operation March 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, operations research and synthesis, programming, and radiation protection operation are discussed.

  17. Hanford Laboratories monthly activities report, April, 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-05-15

    This is the monthly report for the Hanford Laboratories Operation, April, 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics operation, programming, and radiation protection operation discussed.

  18. State Energy Program Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Office of Building Technology, State and Community Programs

    1999-03-17

    The State Energy Program Operations Manual is a reference tool for the states and the program officials at the U.S. Department of Energy's Office of Building Technology, State and Community Programs and Regional Support Offices as well as State Energy Offices. The Manual contains information needed to apply for and administer the State Energy Program, including program history, application rules and requirements, and program administration and monitoring requirements.

  19. Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories.

    Science.gov (United States)

    Homer, Lesley C; Alderman, T Scott; Blair, Heather Ann; Brocard, Anne-Sophie; Broussard, Elaine E; Ellis, Robert P; Frerotte, Jay; Low, Eleanor W; McCarthy, Travis R; McCormick, Jessica M; Newton, JeT'Aime M; Rogers, Francine C; Schlimgen, Ryan; Stabenow, Jennifer M; Stedman, Diann; Warfield, Cheryl; Ntiforo, Corrie A; Whetstone, Carol T; Zimmerman, Domenica; Barkley, Emmett

    2013-03-01

    The Guidelines for Biosafety Training Programs for Workers Assigned to BSL-3 Research Laboratories were developed by biosafety professionals who oversee training programs for the 2 national biocontainment laboratories (NBLs) and the 13 regional biocontainment laboratories (RBLs) that participate in the National Institute of Allergy and Infectious Diseases (NIAID) NBL/RBL Network. These guidelines provide a general training framework for biosafety level 3 (BSL-3) high-containment laboratories, identify key training concepts, and outline training methodologies designed to standardize base knowledge, understanding, and technical competence of laboratory personnel working in high-containment laboratories. Emphasis is placed on building a culture of risk assessment-based safety through competency training designed to enhance understanding and recognition of potential biological hazards as well as methods for controlling these hazards. These guidelines may be of value to other institutions and academic research laboratories that are developing biosafety training programs for BSL-3 research.

  20. Hanford Laboratories monthly activities report, December 1963

    Energy Technology Data Exchange (ETDEWEB)

    1964-01-15

    The monthly report for the Hanford Laboratories Operation, December 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operations are discussed.

  1. Hanford Laboratories monthly activities report, May 1963

    Energy Technology Data Exchange (ETDEWEB)

    1963-06-14

    The monthly report for the Hanford Laboratories Operation, May 1963. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operation are discussed.

  2. Hanford Laboratories monthly activities report, August 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-09-15

    The monthly report for the Hanford Laboratories Operation, August 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, and physics and instrumentation research, and applied mathematics, and programming operations are discussed.

  3. Sandia National Laboratories support of the Iraq Nuclear Facility Dismantlement and Disposal Program.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John Russell; Danneels, Jeffrey John

    2009-03-01

    Because of past military operations, lack of upkeep and looting there are now enormous radioactive waste problems in Iraq. These waste problems include destroyed nuclear facilities, uncharacterized radioactive wastes, liquid radioactive waste in underground tanks, wastes related to the production of yellow cake, sealed radioactive sources, activated metals and contaminated metals that must be constantly guarded. Iraq currently lacks the trained personnel, regulatory and physical infrastructure to safely and securely manage these facilities and wastes. In 2005 the International Atomic Energy Agency (IAEA) agreed to organize an international cooperative program to assist Iraq with these issues. Soon after, the Iraq Nuclear Facility Dismantlement and Disposal Program (the NDs Program) was initiated by the U.S. Department of State (DOS) to support the IAEA and assist the Government of Iraq (GOI) in eliminating the threats from poorly controlled radioactive materials. The Iraq NDs Program is providing support for the IAEA plus training, consultation and limited equipment to the GOI. The GOI owns the problems and will be responsible for implementation of the Iraq NDs Program. Sandia National Laboratories (Sandia) is a part of the DOS's team implementing the Iraq NDs Program. This report documents Sandia's support of the Iraq NDs Program, which has developed into three principal work streams: (1) training and technical consultation; (2) introducing Iraqis to modern decommissioning and waste management practices; and (3) supporting the IAEA, as they assist the GOI. Examples of each of these work streams include: (1) presentation of a three-day training workshop on 'Practical Concepts for Safe Disposal of Low-Level Radioactive Waste in Arid Settings;' (2) leading GOI representatives on a tour of two operating low level radioactive waste disposal facilities in the U.S.; and (3) supporting the IAEA's Technical Meeting with the GOI from April 21

  4. Requirements for the authorization of operation os a calibration laboratory of gamma-ray monitors

    International Nuclear Information System (INIS)

    Silva, Raimundo Dias da; Kibrit, Eduardo

    2011-01-01

    This paper describes the process for obtaining the authorization of operation of a laboratory designed to calibrate area and personal monitors with gamma radiation, by using a sealed Cs-137 source. The regulations of Comissao Nacional de Energia Nuclear (CNEN) are deeply analysed and discussed. The authorization for construction, the authorization for modification of items important to safety, the authorization for the acquisition and handling of radiation sources, the authorization for operating, and the authorization for withdrawal of operation of the laboratory are also discussed. The paper also describes the technical and managerial requirements necessary to operate a gamma radiation calibration laboratory in Brazil. . (author)

  5. Operating experience feedback program at Olkiluoto NPP

    International Nuclear Information System (INIS)

    Kosonen, Mikko

    2002-01-01

    Recent review and development of the operating experience feedback program will be described. The development of the program has been based on several reviews by outside organizations. Main conclusions from these review reports and from the self assessment of safety performance, safety problems and safety culture on the basis of the operational events made by ASSET-method will be described. An approach to gather and analyze small events - so-called near misses - will be described. The operating experience program has been divided into internal and external operating experience. ASSET-methodology and a computer program assisting the analysis are used for the internal operating experience events. Noteworthy incidents occurred during outage are analyzed also by ASSET-method. Screening and pre analysis of the external operating experience relies on co-operation with ERFATOM, an organization of Nordic utilities for the exchange of nuclear industry experience. A short presentation on the performance of the Olkiluoto units will conclude the presentation. (author)

  6. Sandia Laboratories environment and safety programs

    International Nuclear Information System (INIS)

    Zak, B.D.; McGrath, P.E.; Trauth, C.A. Jr.

    1975-01-01

    Sandia, one of ERDA's largest laboratories, is primarily known for its extensive work in the nuclear weapons field. In recent years, however, Sandia's role has expanded to embrace sizeable programs in the energy, resource recovery, and the environment and safety fields. In this latter area, Sandia has programs which address nuclear, fossil fuel, and general environment and safety issues. Here we survey ongoing activities and describe in more detail aa few projects of particular interest. These range from a study of the impact of sealed disposal of radioactive wastes, through reactor safety and fossil fuel plume chemistry, to investigations of the composition and dynamics of the stratosphere

  7. Fuel cells for transportation program: FY1997 national laboratory annual report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The Department of Energy (DOE) Fuel Cells for Transportation Program is structured to effectively implement the research and development (R and D) required for highly efficient, low or zero emission fuel cell power systems to be a viable replacement for the internal combustion engine in automobiles. The Program is part of the Partnership for a New Generation of Vehicles (PNGV), a government-industry initiative aimed at development of an 80 mile-per-gallon vehicle. This Annual Report summarizes the technical accomplishments of the laboratories during 1997. Participants include: Argonne National Laboratory (ANL), Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL), Los Alamos National Laboratory (LANL), Oak Ridge National Laboratory (ORNL), Pacific Northwest National Laboratory (PNNL), and the National Renewable Energy Laboratory (NREL). During 1997, the laboratory R and D included one project on solid oxide fuel cells; this project has since been terminated to focus Department resources on PEM fuel cells. The technical component of this report is divided into five key areas: fuel cell stack research and development; fuel processing; fuel cell modeling, testing, and evaluation; direct methanol PEM fuel cells; and solid oxide fuel cells.

  8. A survey of the high energy physics program at Brookhaven National Laboratory

    International Nuclear Information System (INIS)

    Hahn, H.; Rau, R.R.; Wanderer, P.

    1977-01-01

    About fifteen years ago the Alternating Gradient Synchrotron (AGS) at Brookhaven National Laboratory began operating for high energy particle physics experiments. A wealth of important results has been published, capped by four discoveries which have changed the field dramatically. These discoveries are: the muon neutrino, γsub(μ); the strangeness minus three Ω - baryon; CP violation in K 0 decay; and recently the totally unpredicted J/psi particle. The experimental program has broadened, matured and increased in scope following a large improvement program at the AGS. Major developments included: replacement of the original 50 MeV linear accelerator injector by a modern 200 MeV linac; construction of two new experimental areas, one for neutrino experiments and the other for counter-spark chamber electronics experiments, with the philosophy that nearly all circulating protons would be extracted from the machine and directed onto targets external to the machine; raising the circulating proton intensity to a maximum of 10 13 protons, and installation of a new magnet supply allowing a cycle of 2.4 seconds with a 1 second flat-top, or a 40% duty cycle. The paper also describes a crucial function of any particle physics laboratory, the plans and research directed toward new facilities to make available new regions for particle physics research. (Auth.)

  9. The planning of future research program of underground laboratories in overseas

    International Nuclear Information System (INIS)

    Honma, Nobuyuki; Tanai, Kenji; Hasegawa, Hiroshi

    2002-02-01

    The objectives of this study is to identify the research issues, which are to be conducted in the future underground research laboratory, about operation and logistics systems for the planning of future research and development program. The research programs and experiments, etc. were investigated for the geological disposal projects in overseas sedimentary rocks and coastal geological environments aiming to reflect in the future underground research facility plan in Japan. In the investigation, information on the engineered-barrier performance, design and construction of underground facilities, tunnel support, transportation and emplacement, and backfilling technology, etc. were collected. Based on these informations, the purpose, the content, and the result of each investigations and tests were arranged. The strategy and the aim in the entire underground research facility, and the flow of investigations and tests, etc. were also arranged from the purpose, the relations and the sequence of each investigation and experiment, and the usage of results, etc. (author)

  10. Hanford Laboratories monthly activities report, January 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-02-14

    This is the monthly report for the Hanford Laboratories Operation, January 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  11. Hanford Laboratories monthly activities report, May 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-06-15

    This is the monthly report for the Hanford Laboratories Operation, May 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  12. Hanford Laboratories monthly activities report, July 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-08-14

    This is the monthly report for the Hanford Laboratories Operation, July 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  13. Hanford Laboratories monthly activities report, April 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-05-15

    This is the monthly report for the Hanford Laboratories Operation, April 1964. Reactor fuels, chemistry, dosimetry, separation processes, reactor technology, financial activities, biology operation, physics and instrumentation research, applied mathematics, programming operation, and radiation protection are discussed.

  14. Definition of Life Sciences laboratories for shuttle/Spacelab. Volume 1: Executive summary

    Science.gov (United States)

    1975-01-01

    Research requirements and the laboratories needed to support a Life Sciences research program during the shuttle/Spacelab era were investigated. A common operational research equipment inventory was developed to support a comprehensive but flexible Life Sciences program. Candidate laboratories and operational schedules were defined and evaluated in terms of accomodation with the Spacelab and overall program planning. Results provide a firm foundation for the initiation of a life science program for the shuttle era.

  15. Designing Mission Operations for the Gravity Recovery and Interior Laboratory Mission

    Science.gov (United States)

    Havens, Glen G.; Beerer, Joseph G.

    2012-01-01

    NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission, to understand the internal structure and thermal evolution of the Moon, offered unique challenges to mission operations. From launch through end of mission, the twin GRAIL orbiters had to be operated in parallel. The journey to the Moon and into the low science orbit involved numerous maneuvers, planned on tight timelines, to ultimately place the orbiters into the required formation-flying configuration necessary. The baseline GRAIL mission is short, only 9 months in duration, but progressed quickly through seven very unique mission phases. Compressed into this short mission timeline, operations activities and maneuvers for both orbiters had to be planned and coordinated carefully. To prepare for these challenges, development of the GRAIL Mission Operations System began in 2008. Based on high heritage multi-mission operations developed by NASA's Jet Propulsion Laboratory and Lockheed Martin, the GRAIL mission operations system was adapted to meet the unique challenges posed by the GRAIL mission design. This paper describes GRAIL's system engineering development process for defining GRAIL's operations scenarios and generating requirements, tracing the evolution from operations concept through final design, implementation, and validation.

  16. Operations Program Plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1990-09-01

    This document, Revision 4 of the Operations Program Plan, has been developed as the seven-year master plan for operating of the Waste Isolation Pilot Plant (WIPP). Subjects covered include public and technical communications; regulatory and environmental programs; startup engineering; radiation handling, surface operations, and underground operations; waste certification and waste handling; transportation development; geotechnical engineering; experimental operations; engineering program; general maintenance; security program; safety, radiation, and regulatory assurance; quality assurance program; training program; administration activities; management systems program; and decommissioning. 243 refs., 19 figs., 25 tabs. (SM)

  17. LDRD 2012 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, William [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2012-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY2012, as required. In FY2012, the BNL LDRD Program funded 52 projects, 14 of which were new starts, at a total cost of $10,061,292.

  18. LDRD 2014 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, Diane [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-01

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2014, as required. In FY 2014, the BNL LDRD Program funded 40 projects, 8 of which were new starts, at a total cost of $9.6M.

  19. LDRD 2015 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Hatton, D. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-12-31

    Each year, Brookhaven National Laboratory (BNL) is required to provide a program description and overview of its Laboratory Directed Research and Development Program (LDRD) to the Department of Energy (DOE) in accordance with DOE Order 413.2B dated April 19, 2006. This report provides a detailed look at the scientific and technical activities for each of the LDRD projects funded by BNL in FY 2015, as required. In FY 2015, the BNL LDRD Program funded 43 projects, 12 of which were new starts, at a total cost of $9.5M.

  20. Associated Western Universities summer participant program at the Lawrence Livermore National Laboratory, Summer 1997

    Energy Technology Data Exchange (ETDEWEB)

    Williams, B.

    1997-08-01

    The Associated Western Universities, Inc. (AWU) supports a student summer program at Lawrence Livermore National Laboratory (LLNL). This program is structured so that honors undergraduate students may participate in the Laboratory`s research program under direct supervision of senior Laboratory scientists. Included in this report is a list of the AWU participants for the summer of 1997. All students are required to submit original reports of their summer activities in a format of their own choosing. These unaltered student reports constitute the major portion of this report.

  1. US Department of Energy Laboratory Accredition Program (DOELAP) for personnel dosimetry systems

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, F.M.; Carlson, R.D.; Loesch, R.M.

    1993-12-31

    Accreditation of personnel dosimetry systems is required for laboratories that conduct personnel dosimetry for the U.S. Department of Energy (DOE). Accreditation is a two-step process which requires the participant to pass a proficiency test and an onsite assessment. The DOE Laboratory Accreditation Program (DOELAP) is a measurement quality assurance program for DOE laboratories. Currently, the DOELAP addresses only dosimetry systems used to assess the whole body dose to personnel. A pilot extremity DOELAP has been completed and routine testing is expected to begin in January 1994. It is expected that participation in the extremity program will be a regulatory requirement by January 1996.

  2. SSCL magnet systems quality program implementation for laboratory and industry

    International Nuclear Information System (INIS)

    Warner, D.G.; Bever, D.L.

    1992-01-01

    The development and delivery of reliable and producible magnets for the Superconducting Super Collider Laboratory (SSCL) require the teamwork of a large and diverse workforce composed of personnel with backgrounds in laboratory research, defense, and energy. The SSCL Magnet Quality Program is being implemented with focus on three definitive objectives: (1) communication of requirements, (2) teamwork, and (3) verification. Examination of the SSCL Magnet Systems Division's (MSD) current and planned approach to implementation of the SSCL Magnet Quality Program utilizing these objectives is discussed

  3. Sandia National Laboratories, California Hazardous Materials Management Program annual report.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2011-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This program annual report describes the activities undertaken during the calender past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  4. Remote Operation and Maintenance Demonstration Facility at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Burgess, T.W.

    1986-01-01

    The Remote Operation and Maintenance Demonstration (ROMD) Facility at the Oak Ridge National Laboratory has been developed by the Consolidated Fuel Reprocessing Program to demonstrate remote handling concepts on advanced nuclear fuel reprocessing equipment and for other programs of national interest. The ROMD facility is a large-volume high-bay area that encloses a complete, technologically advanced remote maintenance system and full-scale development reprocessing equipment. The maintenance system consists of a full complement of teleoperated manipulators, manipulator transport systems, and overhead hoists that provide the capability of performing a large variety of remote handling tasks. This system has been used to demonstrate remote manipulation techniques for the US Department of Energy (DOE), the Power Reactor and Nuclear Fuels Development Corporation of Japan, the US Navy, and the National Aeronautics and Space Administration. Extensive tests of manipulative systems and remote maintainability of process equipment have been performed. This paper describes the ROMD facility and key remote maintenance equipment and presents a summary of major experimental activities. 7 refs., 6 figs

  5. Assessment of environments for Mars Science Laboratory entry, descent, and surface operations

    Science.gov (United States)

    Vasavada, Ashwin R.; Chen, Allen; Barnes, Jeffrey R.; Burkhart, P. Daniel; Cantor, Bruce A.; Dwyer-Cianciolo, Alicia M.; Fergason, Robini L.; Hinson, David P.; Justh, Hilary L.; Kass, David M.; Lewis, Stephen R.; Mischna, Michael A.; Murphy, James R.; Rafkin, Scot C.R.; Tyler, Daniel; Withers, Paul G.

    2012-01-01

    The Mars Science Laboratory mission aims to land a car-sized rover on Mars' surface and operate it for at least one Mars year in order to assess whether its field area was ever capable of supporting microbial life. Here we describe the approach used to identify, characterize, and assess environmental risks to the landing and rover surface operations. Novel entry, descent, and landing approaches will be used to accurately deliver the 900-kg rover, including the ability to sense and "fly out" deviations from a best-estimate atmospheric state. A joint engineering and science team developed methods to estimate the range of potential atmospheric states at the time of arrival and to quantitatively assess the spacecraft's performance and risk given its particular sensitivities to atmospheric conditions. Numerical models are used to calculate the atmospheric parameters, with observations used to define model cases, tune model parameters, and validate results. This joint program has resulted in a spacecraft capable of accessing, with minimal risk, the four finalist sites chosen for their scientific merit. The capability to operate the landed rover over the latitude range of candidate landing sites, and for all seasons, was verified against an analysis of surface environmental conditions described here. These results, from orbital and model data sets, also drive engineering simulations of the rover's thermal state that are used to plan surface operations.

  6. 1998 Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    L. V. Street

    1999-09-01

    This report describes the calendar year 1998 compliance monitoring and environmental surveillance activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Drinking Water, Effluent, Storm Water, Groundwater Monitoring, and Environmental Surveillance Programs. This report compares the 1998 results to program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the monitoring and surveillance activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standards, and to ensure protection of public health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends, which would indicate a loss of control or unplanned releases from facility operations. The INEEL complied with permits and applicable regulations, with the exception of nitrogen samples in a disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond. Data collected by the Environmental Monitoring Program demonstrate that the public health and environment were protected.

  7. Optimizing Biorefinery Design and Operations via Linear Programming Models

    Energy Technology Data Exchange (ETDEWEB)

    Talmadge, Michael; Batan, Liaw; Lamers, Patrick; Hartley, Damon; Biddy, Mary; Tao, Ling; Tan, Eric

    2017-03-28

    The ability to assess and optimize economics of biomass resource utilization for the production of fuels, chemicals and power is essential for the ultimate success of a bioenergy industry. The team of authors, consisting of members from the National Renewable Energy Laboratory (NREL) and the Idaho National Laboratory (INL), has developed simple biorefinery linear programming (LP) models to enable the optimization of theoretical or existing biorefineries. The goal of this analysis is to demonstrate how such models can benefit the developing biorefining industry. It focuses on a theoretical multi-pathway, thermochemical biorefinery configuration and demonstrates how the biorefinery can use LP models for operations planning and optimization in comparable ways to the petroleum refining industry. Using LP modeling tools developed under U.S. Department of Energy's Bioenergy Technologies Office (DOE-BETO) funded efforts, the authors investigate optimization challenges for the theoretical biorefineries such as (1) optimal feedstock slate based on available biomass and prices, (2) breakeven price analysis for available feedstocks, (3) impact analysis for changes in feedstock costs and product prices, (4) optimal biorefinery operations during unit shutdowns / turnarounds, and (5) incentives for increased processing capacity. These biorefinery examples are comparable to crude oil purchasing and operational optimization studies that petroleum refiners perform routinely using LPs and other optimization models. It is important to note that the analyses presented in this article are strictly theoretical and they are not based on current energy market prices. The pricing structure assigned for this demonstrative analysis is consistent with $4 per gallon gasoline, which clearly assumes an economic environment that would favor the construction and operation of biorefineries. The analysis approach and examples provide valuable insights into the usefulness of analysis tools for

  8. Status Report of the Inter-Laboratory Task Force on Remote Operation

    Energy Technology Data Exchange (ETDEWEB)

    Phinney, Nan

    2001-12-13

    The next generation of particle accelerators will be major projects which may require a new mode of international and inter-laboratory collaboration. They are likely to be too costly to be funded by a single nation and too large to be built by a single laboratory. The tremendous technical challenge of a new facility requires a critical mass of highly qualified and experienced physicists and engineers. These experts are presently distributed among the major accelerator centers around the world and it is believed important to maintain and develop this broad base of expertise. The successful accelerator technology development of recent decades depended on extensive exchange of people with complementary technical skills. Therefore, it is desirable and probably necessary that several accelerator laboratories will participate in any future project. A consequence of a multi-laboratory project is that the accelerator will be located a considerable distance from most of the contributing institutions which design, build and operate it. These considerations led the International Committee for Future Accelerators to initiate a study on the general and technical implications of such a collaboration. Two task forces were formed in February 2000 to conduct this study and they were asked to prepare a report on a time scale of one year. The task force on Remote Operation included members from most of the major accelerator laboratories around the world with expertise on accelerator operation, controls software, communication technologies, hardware design and maintenance. The task force members gathered information from the experts at their own institutions and from available experience in other fields, particularly astronomy.

  9. Surface radiological free release program for the Battelle Columbus Laboratory Decommissioning Project

    International Nuclear Information System (INIS)

    Horton, C.N.

    1995-01-01

    This paper was prepared for the Second Residual Radioactivity and Recycling Criteria Workshop and discusses decommissioning and decontamination activities at the Battelle Columbus Laboratories Decommissioning Project (BCLDP). The BCLDP is a joint effort between the Department of Energy (DOE) and Battelle Columbus Operations to decontaminate fifteen Battelle-owned buildings contaminated with DOE radioactive materials. The privately owned buildings located across the street from The Ohio State University campus became contaminated with natural uranium and thorium during nuclear research activities. BCLDP waste management is supported by an extensive radiological free-release program. Miscellaneous materials and building surfaces have been free-released from the BCLDP. The free-release program has substantially reduced radioactive waste volumes and supported waste minimization. Free release for unrestricted use has challenged regulators and NRC licensees since the development of early surface-release criteria. This paper discusses the surface radiological free-release program incorporated by the BCLDP and the historical development of the surface radiological free-release criteria. Concerns regarding radiological free-release criteria are also presented. (author)

  10. Final Environmental Impact Statement/Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR technical appendices which provide technical support for the analyses in Volume 1 and also provide additional information and references

  11. A prequalifying program for evaluating the analytical performance of commercial laboratories

    International Nuclear Information System (INIS)

    Reith, C.C.; Bishop, C.T.

    1987-01-01

    Soil and water samples were spiked with known activities of radionuclides and sent to seven commercial laboratories that had expressed an interest in analyzing environmental samples for the Waste Isolation Pilot Plant (WIPP). This Prequalifying Program was part of the selection process for an analytical subcontractor for a three-year program of baseline radiological surveillance around the WIPP site. Both media were spiked at three different activity levels with several transuranic radionuclides, as well as tritium, fission products, and activation products. Laboratory performance was evaluated by calculating relative error for each radionuclide in each sample, assigning grade values, and compiling grades into report cards for each candidate. Results for the five laboratories completing the Prequalifying Program were pooled to reveal differing degrees of difficulty among the treatments and radionuclides. Interlaboratory comparisons revealed systematic errors in the performance of one candidate. The final report cards contained clear differences among overall grades for the five laboratories, enabling analytical performance to be used as a quantitative criterion in the selection of an analytical subcontractor. (author)

  12. A Moveable Feast--A Progressive Approach to the Unit Operations Laboratory

    Science.gov (United States)

    Conner, Wm. Curtis, Jr.; Hammond, Karl D.; Laurence, Robert L.

    2011-01-01

    The authors describe an alternative format for the senior laboratory in which students are allowed--indeed, expected--to communicate with previous groups and build on their results. The effect is a unit operations laboratory in which students are empowered to propose the experiments they wish to do and in which the cumulative experience of the…

  13. NVLAP activities at Department of Defense calibration laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Schaeffer, D.M. [Defense Nuclear Agency, Alexandria, VA (United States)

    1993-12-31

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts.

  14. NVLAP activities at Department of Defense calibration laboratories

    International Nuclear Information System (INIS)

    Schaeffer, D.M.

    1993-01-01

    There are 367 active radiological instrument calibration laboratories within the U.S. Department of Defense (DoD). Each of the four services in DoD manages, operates, and certifies the technical proficiency and competency of those laboratories under their cognizance. Each service has designated secondary calibration laboratories to trace all calibration source standards to the National Institute of Standards and Technology. Individual service radiological calibration programs and capabilities, present and future, are described, as well as the measurement quality assurance (MQA) processes for their traceability. National Voluntary Laboratory Accreditation Program (NVLAP) programs for dosimetry systems are briefly summarized. Planned NVLAP accreditation of secondary laboratories is discussed in the context of current technical challenges and future efforts

  15. Combining program visualization with programming workspace to assist students for completing programming laboratory task

    Directory of Open Access Journals (Sweden)

    Elvina Elvina

    2018-06-01

    Full Text Available Numerous Program Visualization tools (PVs have been developed for assisting novice students to understand their source code further. However, none of them are practical to be used in the context of completing programming laboratory task; students are required to keep switching between PV and programming workspace when they need to know how their code works. This paper combines PV with programming workspace to handle such issue. Resulted tool (which is named PITON has 13 features extracted from PythonTutor, PyCharm, and student’s feedbacks about PythonTutor. According to think-aloud and user study, PITON is more practical to be used than a combination of PythonTutor and PyCharm. Further, its features are considerably helpful; students rated these features as useful and frequently used.

  16. [Laboratory medicine in the obligatory postgraduate clinical training system--common clinical training program in the department of laboratory medicine in our prefectural medical university hospital].

    Science.gov (United States)

    Okamoto, Yasuyuki

    2003-04-01

    I propose a postgraduate common clinical training program to be provided by the department of laboratory medicine in our prefectural medical university hospital. The program has three purposes: first, mastering basic laboratory tests; second, developing the skills necessary to accurately interpret laboratory data; third, learning specific techniques in the field of laboratory medicine. For the first purpose, it is important that medical trainees perform testing of their own patients at bedside or in the central clinical laboratory. When testing at the central clinical laboratory, instruction by expert laboratory technicians is helpful. The teaching doctors in the department of laboratory medicine are asked to advise the trainees on the interpretation of data. Consultation will be received via interview or e-mail. In addition, the trainees can participate in various conferences, seminars, and meetings held at the central clinical laboratory. Finally, in order to learn specific techniques in the field of laboratory medicine, several special courses lasting a few months will be prepared. I think this program should be closely linked to the training program in internal medicine.

  17. National Research Council Research Associateships Program with Methane Hydrates Fellowships Program/National Energy Technology Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Basques, Eric O. [National Academy of Sciences, Washington, DC (United States)

    2014-03-20

    This report summarizes work carried out over the period from July 5, 2005-January 31, 2014. The work was carried out by the National Research Council Research Associateships Program of the National Academies, under the US Department of Energy's National Energy Technology Laboratory (NETL) program. This Technical Report consists of a description of activity from 2005 through 2014, broken out within yearly timeframes, for NRC/NETL Associateships researchers at NETL laboratories which includes individual tenure reports from Associates over this time period. The report also includes individual tenure reports from associates over this time period. The report also includes descriptions of program promotion efforts, a breakdown of the review competitions, awards offered, and Associate's activities during their tenure.

  18. Treatability study operational testing program and implementation plan for the Gunite and Associated Tanks at Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1996-03-01

    This Treatability Study (TS) Operational Testing Program and Implementation Plan identifies operational testing to be performed to: (1) Demonstrate the technical feasibility of methods proposed for the removal of radiochemical sludge heels from the underground storage tanks located at Oak Ridge National Laboratory (ORNL), known as the Gunite and Associated Tanks (GAAT) Operable Unit (OU). (The bulk of the radiochemical waste, which was previously stored in the tanks, was removed during the 1980s, and only a sludge heel remains.) (2) Reduce the uncertainty in meeting the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) requirements for the GAAT OU. (3) Minimize the overall costs to accomplish the first two objectives. An initial Feasibility Study (FS) effort identified uncertainties in the evaluation of various alternatives for addressing the remediation of the GAAT OU. To support future decision making, the US. Department of Energy is performing a TS to identify cost-effective remediation approaches for the GAAT OU by providing information to reduce cost and technical uncertainty and better define acceptable remediation strategies. The testing activities will be initially conducted in a nonradioactive environment at the Tanks Technology Cold Test Facility (TTCTF) at ORNL. This will permit the design and initial performance testing and training activities to be completed while minimizing the risk, employee exposure, and costs associated with the testing effort. The component design and functional testing and initial system performance testing will be completed in the TTCTF. After the component and initial system performance testing have been completed, the operations testing will continue in the North Tank Farm (NTF). This testing has an associated higher cost and risk, but is necessary to provide results for actual waste heel removal

  19. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    Science.gov (United States)

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  20. Laboratory Directed Research and Development Program. FY 1993

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory`s core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology. (GHH)

  1. Laboratory and field studies related to the Hydrologic Resources Management Program. Progress report, October 1, 1993--September 30, 1994

    International Nuclear Information System (INIS)

    Thompson, J.L.

    1995-03-01

    This report describes the work done at Los Alamos in FY 1994 for the Hydrologic Resources Management Program, a multi-organization project funded by the US Department of Energy/Nevada Operations Office. The authors participated in cooperative collaborations with University of California (UC), Berkeley, the Yucca Mountain Project, the Underground Test Area Operable Unit, and other participating organizations within the Hydrologic Resources Management Program (HRMP). They provided operational support to the Nevada Test Site (NTS) organizations by testing a water-evaporation system, championing the use of high-sensitivity logging equipment during drillbacks, and participating in the planning and execution of drilling operations at two nuclear test sites. Los Alamos personnel cooperated in preparing a proposal to drill beside and under a nuclear test located in unsaturated media. The authors gave assistance in laboratory work related to colloid migration and actinide sorption. In conjunction with personnel from the Lawrence Livermore Laboratory, they collected water samples from 10 wells at the NTS that are known to contain radionuclides. Their analyses of these samples suggest that radionuclides may not be moving away from cavity zones at appreciable rates. Recent field sampling shows clearly the need to purge wells of materials introduced during drilling and illustrates the inconsistency between water samples taken by bailing and those taken by pumping. 36 refs

  2. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2011.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  3. Argonne National Laboratory Annual Report of Laboratory Directed Research and Development program activities FY 2010.

    Energy Technology Data Exchange (ETDEWEB)

    (Office of The Director)

    2012-04-25

    As a national laboratory Argonne concentrates on scientific and technological challenges that can only be addressed through a sustained, interdisciplinary focus at a national scale. Argonne's eight major initiatives, as enumerated in its strategic plan, are Hard X-ray Sciences, Leadership Computing, Materials and Molecular Design and Discovery, Energy Storage, Alternative Energy and Efficiency, Nuclear Energy, Biological and Environmental Systems, and National Security. The purposes of Argonne's Laboratory Directed Research and Development (LDRD) Program are to encourage the development of novel technical concepts, enhance the Laboratory's research and development (R and D) capabilities, and pursue its strategic goals. projects are selected from proposals for creative and innovative R and D studies that require advance exploration before they are considered to be sufficiently developed to obtain support through normal programmatic channels. Among the aims of the projects supported by the LDRD Program are the following: establishment of engineering proof of principle, assessment of design feasibility for prospective facilities, development of instrumentation or computational methods or systems, and discoveries in fundamental science and exploratory development.

  4. Laboratory for Nuclear Science. High Energy Physics Program

    Energy Technology Data Exchange (ETDEWEB)

    Milner, Richard [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2014-07-30

    High energy and nuclear physics research at MIT is conducted within the Laboratory for Nuclear Science (LNS). Almost half of the faculty in the MIT Physics Department carry out research in LNS at the theoretical and experimental frontiers of subatomic physics. Since 2004, the U.S. Department of Energy has funded the high energy physics research program through grant DE-FG02-05ER41360 (other grants and cooperative agreements provided decades of support prior to 2004). The Director of LNS serves as PI. The grant supports the research of four groups within LNS as “tasks” within the umbrella grant. Brief descriptions of each group are given here. A more detailed report from each task follows in later sections. Although grant DE-FG02-05ER41360 has ended, DOE continues to fund LNS high energy physics research through five separate grants (a research grant for each of the four groups, as well as a grant for AMS Operations). We are pleased to continue this longstanding partnership.

  5. Operational and engineering developments in the management of low-level radioactive waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Kendall, E.W.; McKinney, J.D.; Wehmann, G.

    1979-01-01

    The Radioactive Waste Management Complex (RWMC) of the Idaho National Engineering Laboratory is a site for shallow land disposal and storage of solid radioactive waste. It is currently operated for ERDA by EG and G Idaho, Inc. The facility has accepted radioactive waste since July 1952. Both transuranic and non-transuranic wastes are handled at the complex. This document describes the operational and engineering developments in waste handling and storage practices that have been developed during the 25 years of waste handling operations. Emphasis is placed on above-ground transuranic waste storage, subsurface transuranic waste retrieval, and beta/gamma compaction disposal. The proposed future programs for the RWMC including a Molten Salt Combustion Facility and Production Scale Retrieval Project are described

  6. Adaptation of Professional Skills in the Unit Operations Laboratory

    Science.gov (United States)

    Rende, Deniz; Rende, Sevinc; Baysal, Nihat

    2012-01-01

    We introduce the design of three consecutive unit operations laboratory (UOL) courses that retain the academic rigor of the course while incorporating skills essential for professional careers, such as ability to propose ideas, develop practical solutions, participate in teamwork, meet deadlines, establish communication between technical support…

  7. Construction and operation of the Howard T. Ricketts Laboratory.

    Energy Technology Data Exchange (ETDEWEB)

    Van Lonkhuyzen, R.; Stull, L.; Butler, J.; Chang, Y.; Allison, T.; O' Rourke, D.

    2006-01-01

    The National Institutes of Health (NIH) has proposed to partially fund the construction of the Howard T. Ricketts (HTR) regional biocontainment laboratory (RBL) by the University of Chicago at the U.S. Department of Energy's (DOE's) Argonne National Laboratory in Argonne, Illinois. The HTR Laboratory (HTRL) would be constructed, owned, and operated by the University of Chicago on land leased to it by DOE. The preferred project site is located north of Eastwood Drive and west of Outer Circle Road and is near the biological sciences building. This environmental assessment addresses the potential environmental effects resulting from construction and operation of the proposed facility. The proposed project involves the construction of a research facility with a footprint up to approximately 44,000 ft{sup 2} (4,088 m{sup 2}). The proposed building would house research laboratories, including Biosafety Level 2 and 3 biocontainment space, animal research facilities, administrative offices, and building support areas. The NIH has identified a need for new facilities to support research on potential bioterrorism agents and emerging and re-emerging infectious diseases, to protect the nation from such threats to public health. This research requires specialized laboratory facilities that are designed, managed, and operated to protect laboratory workers and the surrounding community from accidental exposure to agents. The proposed HTRL would provide needed biocontainment space to researchers and promote the advancement of knowledge in the disciplines of biodefense and emerging and re-emerging infectious diseases. Several alternatives were considered for the location of the proposed facility, as well as a no action alternative. The preferred alternative includes the construction of a research facility, up to 44,000 ft{sup 2} (4,088 m{sup 2}), at Argonne National Laboratory, a secure government location. Potential impacts to natural and cultural resources have been

  8. The Effects of International Operations on the Relationship Between Manufacturing Improvement Programs and Operational Performance

    DEFF Research Database (Denmark)

    Matyusz, Zsolt; Demeter, Krisztina; Boer, Harry

    The link between manufacturing programs and operational performance, and the effects of company internal and external factors on that relationship, are well studied in the literature, both theoretically and empirically. However, previous studies rarely took into account how the scope of operations...... of the business unit affects the relationship between manufacturing programs and performances. We investigate the scope of operations from the manufacturing perspective (i.e. companies that manufacture in only one country have narrow scope of operations, while companies that manufacture in more than one country...... have broad scope of operations). We apply structural equation modelling (SEM) using PLS path modelling to investigate the effect of scope of operations on the relationship between manufacturing improvement programs and operational performance. Manufacturing improvement programs are programs like...

  9. Report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1980-03-01

    Activities of the Division of Research Reactor Operation in fiscal 1978 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  10. Report on operation utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1982-03-01

    Activities of the Division of Research Reactor Operation in fiscal 1980 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  11. Report on operation, utilization and technical development of Research Reactors and Hot Laboratory

    International Nuclear Information System (INIS)

    1984-10-01

    Activities of the Division of Research Reactor Operation in fiscal 1981 are described. The division is responsible for operation and maintenance of JRR-2, JRR-3, JRR-4 and Hot Laboratory. In the above connection, various other works are performed, including technical management of fuel and coolant, radiation control, irradiation technique, etc. In Hot Laboratory, postirradiation examinations of fuels and materials are made, and also development of examination methods. (author)

  12. Operational experience at RCD and FCD laboratories during various ventilation conditions

    International Nuclear Information System (INIS)

    Murali, S.; Ashok Kumar, P.; Thanamani, M.; Rath, D.P.; Sapkal, J.A.; Raman, Anand

    2007-01-01

    Radiochemistry and Fuel Chemistry wing of Radiological Laboratory facility has various radio-chemical operations on isotopes of plutonium and trans-plutonium elements, carried out under containment and safe operational conditions. The ventilation provided to the facility is a Once - through system. The ventilation system is designed with separate headers for laboratory and glove box exhausts. There is scheduled periodic shut down of ventilation system for maintenance during non-occupancy hours/week ends. The buildup of natural α - emitters activity due to ventilation shut down, observed to be prevailing on stack air sample filter papers after the ventilation startup, is studied. The paper describes the operational experience gained over a period during ventilation shut down and suggests the course of remedial action for reducing the internal exposure due to build up of natural α - emitters and their progenies. (author)

  13. Lawrence Livermore National Laboratory laser-fusion program

    International Nuclear Information System (INIS)

    Ahlstrom, H.G.

    1982-01-01

    The goals of the Laser-Fusion Program at Lawrence Livermore National Laboratory are to produce well-diagnosed, high-gain, laser-driven fusion explosions in the laboratory and to exploit this capability for both military applications and for civilian energy production. In the past year we have made significant progress both theoretically and experimentally in our understanding of the laser interaction with both directly coupled and radiation-driven implosion targets and their implosion dynamics. We have made significant developments in fabricating the target structures. Data from the target experiments are producing important near-term physics results. We have also continued to develop attractive reactor concepts which illustrate ICF's potential as an energy producer

  14. The SRS analytical laboratories strategic plan

    International Nuclear Information System (INIS)

    Hiland, D.E.

    1993-01-01

    There is an acute shortage of Savannah River Site (SRS) analytical laboratory capacity to support key Department of Energy (DOE) environmental restoration and waste management (EM) programs while making the transition from traditional defense program (DP) missions as a result of the cessation of the Cold War. This motivated Westinghouse Savannah River Company (WSRC) to develop an open-quotes Analytical Laboratories Strategic Planclose quotes (ALSP) in order to provide appropriate input to SRS operating plans and justification for proposed analytical laboratory projects. The methodology used to develop this plan is applicable to all types of strategic planning

  15. 42 CFR 51.21 - Contracts for program operations.

    Science.gov (United States)

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Contracts for program operations. 51.21 Section 51... APPLICABLE TO THE PROTECTION AND ADVOCACY FOR INDIVIDUALS WITH MENTAL ILLNESS PROGRAM Program Administration and Priorities § 51.21 Contracts for program operations. (a) An eligible P&A system should work...

  16. LBNL Laboratory Directed Research and Development Program FY2016

    Energy Technology Data Exchange (ETDEWEB)

    Ho, D.

    2017-03-01

    The Berkeley Lab Laboratory Directed Research and Development Program FY2016 report is compiled from annual reports submitted by principal investigators following the close of the fiscal year. This report describes the supported projects and summarizes their accomplishments. It constitutes a part of the LDRD program planning and documentation process that includes an annual planning cycle, project selection, implementation and review.

  17. Implementation challenges of a motor operated valve program

    International Nuclear Information System (INIS)

    Ferguson, T.L.

    1995-01-01

    Electric motor operated valves (MOVs) have become a global focus of attention for Nuclear Power Plant (NPP) operators due to reported operability problems in the last decade. Many NPPs have or are in the process of setting up maintenance programs to address MOV operability issues. Bruce B is in the initial stages of implementing such a program. This paper outlines some of the challenges that have been encountered and how they are being approached to establish an effective program. (author)

  18. Laboratory Directed Research and Development FY 2000

    International Nuclear Information System (INIS)

    Hansen, Todd; Levy, Karin

    2001-01-01

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000

  19. 1992 Environmental monitoring report, Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.; Cox, W.; Hwang, H.; Irwin, M.; Jones, A.; Matz, B.; Molley, K.; Rhodes, W.; Stermer, D.; Wolff, T.

    1993-09-01

    This 1992 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, envirorunental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0034 millirem. The total population within a 50-mile radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.019 person-rem during 1992 from the laboratories' operations. As in the previous year, the 1992 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment

  20. Laboratory services series: a master-slave manipulator maintenance program

    International Nuclear Information System (INIS)

    Jenness, R.G.; Hicks, R.E.; Wicker, C.D.

    1976-12-01

    The volume of master slave manipulator maintenance at Oak Ridge National Laboratory has necessitated the establishment of a repair facility and organization of a specially trained group of craftsmen. Emphasis on cell containment requires the use of manipulator boots and development of precise procedures for accomplishing the maintenance of 287 installed units. A very satisfactory computer programmed maintenance system has been established at the Laboratory to provide an economical approach to preventive maintenance

  1. Sandia National Laboratories California Waste Management Program Annual Report April 2011

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2011-04-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System Program Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  2. Instrument calls and real-time code for laboratory automation

    International Nuclear Information System (INIS)

    Taber, L.; Ames, H.S.; Yamauchi, R.K.; Barton, G.W. Jr.

    1978-01-01

    These programs are the result of a joint Lawrence Livermore Laboratory and Environmental Protection Agency project to automate water quality laboratories. They form the interface between the analytical instruments and the BASIC language programs for data reduction and analysis. They operate on Data General NOVA 840's at Cincinnati and Chicago and on a Data General ECLIPSE C330 at Livermore. The operating system consists of unmodified RDOS, Data General's disk operating system, and Data General's multiuser BASIC modified to provide the instrument CALLs and other functions described. Instruments automated at various laboratories include Technicon AutoAnalyzers, atomic absorption spectrophotometers, total organic carbon analyzers, an emission spectrometer, an electronic balance, sample changers, and an optical spectrophotometer. Other instruments may be automated using these same CALLs, or new CALLs may be written as described

  3. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains copies of the written comments and transcripts of individual statements at the public hearing and the responses to them

  4. Operating procedures for the manufacture of radioactive SYNROC in the actinide laboratory

    International Nuclear Information System (INIS)

    Western, K.F.

    1986-03-01

    The purpose of this manual is to acquaint the operator with the procedures required to manufacture SYNROC-containing radioactive materials in the SYNROC actinide laboratory, Lucas Heights Research Laboratories. The actinide-doped SYNROC production facility is a series of four interconnected glove boxes and one free-standing glove box. The samples of radioactive SYNROC produced in the actinide laboratory are used to carry out physical testing of the product at various laboratories on site, e.g. leach testing, auto-radiographic examination, electron-microscopc examination, atomic absorption spectrophotometry and analysis

  5. Hanford Laboratories monthly activities report, February 1964

    Energy Technology Data Exchange (ETDEWEB)

    1964-03-16

    This is the monthly report for the Hanford Laboratories Operation, February, 1964. Reactor fuels, chemistry, dosimetry, separation process, reactor technology financial activities, biology operation, physics and instrumentation research, employee relations, applied mathematics, programming, and radiation protection are discussed.

  6. Site environmental report for 2004 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. (Sandia National Laboratories, Livermore, CA)

    2005-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2004 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2004. General site and environmental program information is also included.

  7. Site Environmental Report for 2007: Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States). Environmental Management Dept.

    2008-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2007 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2007. General site and environmental program information is also included.

  8. Site environmental report for 2008 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2009-04-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2008 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2008. General site and environmental program information is also included.

  9. Site environmental report for 2006 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2007-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2006 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2006. General site and environmental program information is also included.

  10. Site environmental report for 2005 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2006-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2005 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2005. General site and environmental program information is also included.

  11. Site environmental report for 2003 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2004-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's (DOE) National Nuclear Security Administration. The DOE Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2003 was prepared in accordance with DOE Order 231.1A. The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2003. General site and environmental program information is also included.

  12. Los Alamos National Laboratory 1995 self assessment report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-30

    The Los Alamos National Laboratory (LANL) Safeguards and Security (S and S) Assurance Program (AP) is designed to ensure the adequacy and effectiveness of the LANL S and S program. The Assurance Program provides a mechanism for discovering deficiencies, determining causes, conducting risk assessments, implementing corrective actions, and documenting the assessment process. Selection of organizations for self assessments is based on the criteria established in the LANL S and S Assurance Program. For FY 1995, 12 organizations were selected for self assessments, these organizations are identified fin the schedule at Appendix A. The S and S topical areas selected for review in each organization varied depending on their security interests and included: Program Planning and Management (PPM); Protection Program Operations (PPO); Material Control and Accountability (MC and A); Computer and Communications Security (COMPSEC and COMSEC); Information Security (INFOSEC); Personnel Security (PERSEC); and Operational Security (OPSEC). The objective was to ascertain the effectiveness of S and S programs in each organization, its formality of operations, and its integration with the overall Laboratory S and S program. The goal was to meet both the DOE self-assessment requirements and the UC performance criteria and document the results.

  13. Los Alamos National Laboratory 1995 self assessment report

    International Nuclear Information System (INIS)

    1995-01-01

    The Los Alamos National Laboratory (LANL) Safeguards and Security (S and S) Assurance Program (AP) is designed to ensure the adequacy and effectiveness of the LANL S and S program. The Assurance Program provides a mechanism for discovering deficiencies, determining causes, conducting risk assessments, implementing corrective actions, and documenting the assessment process. Selection of organizations for self assessments is based on the criteria established in the LANL S and S Assurance Program. For FY 1995, 12 organizations were selected for self assessments, these organizations are identified fin the schedule at Appendix A. The S and S topical areas selected for review in each organization varied depending on their security interests and included: Program Planning and Management (PPM); Protection Program Operations (PPO); Material Control and Accountability (MC and A); Computer and Communications Security (COMPSEC and COMSEC); Information Security (INFOSEC); Personnel Security (PERSEC); and Operational Security (OPSEC). The objective was to ascertain the effectiveness of S and S programs in each organization, its formality of operations, and its integration with the overall Laboratory S and S program. The goal was to meet both the DOE self-assessment requirements and the UC performance criteria and document the results

  14. Laboratory Directed Research and Development Program

    International Nuclear Information System (INIS)

    1994-02-01

    This report is compiled from annual reports submitted by principal investigators following the close of fiscal year 1993. This report describes the projects supported and summarizes their accomplishments. The program advances the Laboratory's core competencies, foundations, scientific capability, and permits exploration of exciting new opportunities. Reports are given from the following divisions: Accelerator and Fusion Research, Chemical Sciences, Earth Sciences, Energy and Environment, Engineering, Environment -- Health and Safety, Information and Computing Sciences, Life Sciences, Materials Sciences, Nuclear Science, Physics, and Structural Biology

  15. LDRD 2013 Annual Report: Laboratory Directed Research and Development Program Activities

    Energy Technology Data Exchange (ETDEWEB)

    Bookless, W. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2013-12-31

    This LDRD project establishes a research program led by Jingguang Chen, who has started a new position as a Joint Appointee between BNL and Columbia University as of FY2013. Under this project, Dr. Chen will establish a new program in catalysis science at BNL and Columbia University. The LDRD program will provide initial research funding to start research at both BNL and Columbia. At BNL, Dr. Chen will initiate laboratory research, including hiring research staff, and will collaborate with the existing BNL catalysis and electrocatalysis research groups. At Columbia, a subcontract to Dr. Chen will provide startup funding for his laboratory research, including initial graduate student costs. The research efforts will be linked under a common Catalysis Program in Sustainable Fuels. The overall impact of this project will be to strengthen the BNL catalysis science program through new linked research thrusts and the addition of an internationally distinguished catalysis scientist.

  16. In-Process Analysis Program for the Isolock sampler at the Gunite and Associated Tanks, Oak Ridge National Laboratory, Oak Ridge, Tennessee

    International Nuclear Information System (INIS)

    1998-05-01

    The In-Process Analysis Program documents the requirements for handling, transporting, and analyzing waste slurry samples gathered by the Bristol Isolock slurry sampler from the Gunite and Associated Tanks at Oak Ridge National Laboratory in Oak Ridge, Tennessee. Composite samples will be gathered during sludge retrieval operations, labeled, transported to the appropriate laboratory, and analyzed for physical and radiological characteristics. Analysis results will be used to support occupational exposure issues, basic process control management issues, and prediction of radionuclide flow

  17. Superconductor development program at Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Cornish, D.N.

    1978-01-01

    Winding of a Nb--Ti test coil at the Lawrence Livermore Laboratory is nearly complete. The conductor in this coil operates in a maximum field of 7.5 T and provides the 2-T field required by the Mirror Fusion Test Facility. Nb 3 Sn multifilamentary conductors, made using the ''bronze'' technique, appear capable of providing the higher fields needed by commercial reactors

  18. Project Quality Assurance Plan for research and development services provided by Oak Ridge National Laboratory in support of the Westinghouse Materials Company of Ohio Operable Unit 1 Stabilization Development and Treatability Studies Program

    Energy Technology Data Exchange (ETDEWEB)

    Gilliam, T.M.

    1991-05-01

    This Project Quality Assurance Plan (PQAP) sets forth the quality assurance (QA) requirements that are applied to those elements of the Westinghouse Materials Company of Ohio (WMCO) Operable Unit 1 support at Oak Ridge National Laboratory (ORNL) project that involve research and development (R D) performed at ORNL. This is in compliance with the applicable criteria of 10 CFR Part 50, Appendix B, ANSI/ASME NQA-1, as specified by Department of Energy (DOE) Oak Ridge Operations (ORO) Order 5700.6B. For this application, NQA-1 is the core QA Program requirements document. QA policy, normally found in the requirements document, is contained herein. The requirements of this PQAP apply to project activities that affect the quality and reliability/credibility of research, development, and investigative data and documentation. These activities include the functions of attaining quality objectives and assuring that an appropriate QA program scope is established. The scope of activities affecting quality includes organization; personnel training and qualifications; design control; procurement; material handling and storage; operating procedures; testing, surveillance, and auditing; R D investigative activities and documentation; deficiencies; corrective actions; and QA record keeping. 12 figs.

  19. An overview of the waste characterization program at Chalk River Nuclear Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Hardy, D.G.

    1988-01-01

    In the last five years, Chalk River Nuclear Laboratories (CRNL) placed 17,000 m 3 of wastes into storage (excluding contaminated soil and fill). Almost half of the waste was generated off-site. CRNL is now developing IRUS, an Intrusion Resistant Underground Structure, and the IST, an Improved Sand Trench, to replace storage with safe, permanent disposal. IRUS will be used to dispose of wastes with radiologically hazardous lifetimes between 150 and 500 years duration and the IST will be used for wastes with radiologically hazardous lifetimes of less than 150 years. A comprehensive Waste Characterization Program (WCP) is in place to support disposal projects. The WCP is responsible for (1) specifying the manifests for waste shipments; (2) developing and maintaining central databases for waste inventories and analytical data; and (3) developing the technologies and procedures to characterize the radiological and the physical/chemical properties of wastes. WCP work is being performed under the umbrella of a newly developed waste management quality assurance (QA) program. This paper gives an overview of the WCP with an emphasis on the requirements for determining radionuclide inventories in wastes, for implementing record-keeping systems and for maintaining a QA program for disposal operations

  20. Sandia National Laboratories, California Waste Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Waste Management Program. It functions as supporting documentation to the SNL/CA Environmental Management System rogram Manual. This annual program report describes the activities undertaken during the past year, and activities planned in future years to implement the Waste Management (WM) Program, one of six programs that supports environmental management at SNL/CA.

  1. Department of Energy Operation Quality Assurance Program for the Waste Isolation Pilot Plant (WIPP) Project (Carlsbad, New Mexico)

    International Nuclear Information System (INIS)

    1987-12-01

    The purpose of this plan is to describe the Quality Assurance (QA)reverse arrow Program to be established and implemented by the US Department of Energy (DOE) Waste Isolation Pilot Plant (WIPP) Project Office (WPO) and by the Project Participants: the Scientific Advisor (Sandia National Laboratory) and the Management and Operating Contractor (Westinghouse Electric Corporation). This plan addresses the Pre-Operational and Operational phases of the WIPP Project not addressed under the construction phase. This plan also requires the QA Programs for DOE and Project Participants to be structured so as to comply with this plan and ANSI-ASME NQA-1. The prime responsibility for Operational Quality Assurance rests with the DOE WIPP Project Office and is implemented through the combined efforts of the Scientific Advisor and the Management and Operating Contractor. Overviews of selected operational and testing activities will be are conducted in accordance with prescribed requirements and that adequate documentation of these activities is maintained. 4 figs

  2. Laboratory-Directed Research and Development 2016 Summary Annual Report

    International Nuclear Information System (INIS)

    Pillai, Rekha Sukamar; Jacobson, Julie Ann

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, 'Laboratory Directed Research and Development' (April 19, 2006), which establishes DOE's requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world's energy future and secure our critical infrastructure. Operating since 1949, INL is the nation's leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL's research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy, enable clean

  3. 47 CFR 76.1710 - Operator interests in video programming.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 4 2010-10-01 2010-10-01 false Operator interests in video programming. 76....1710 Operator interests in video programming. (a) Cable operators are required to maintain records in... interests in all video programming services as well as information regarding their carriage of such...

  4. Waste certification program plan for Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Kornegay, F.C.

    1996-09-01

    This document defines the waste certification program being developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in U.S. Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls) waste. Program activities will be conducted according to ORNL Level 1 document requirements

  5. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    International Nuclear Information System (INIS)

    Cohen, Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-01-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O ampersand M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O ampersand M Improvement Program. O ampersand M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O ampersand M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O ampersand M costs was achieved. Based on the lessons learned, an optimum solar- field O ampersand M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O ampersand M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts

  6. Final Report on the Operation and Maintenance Improvement Program for Concentrating Solar Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Cohen Gilbert E.; Kearney, David W.; Kolb, Gregory J.

    1999-06-01

    This report describes the results of a six-year, $6.3 million project to reduce operation and maintenance (O&M) costs at power plants employing concentrating solar power (CSP) technology. Sandia National Laboratories teamed with KJC Operating Company to implement the O&M Improvement Program. O&M technologies developed during the course of the program were demonstrated at the 150-MW Kramer Junction solar power park located in Boron, California. Improvements were made in the following areas: (a) efficiency of solar energy collection, (b) O&M information management, (c) reliability of solar field flow loop hardware, (d) plant operating strategy, and (e) cost reduction associated with environmental issues. A 37% reduction in annual O&M costs was achieved. Based on the lessons learned, an optimum solar- field O&M plan for future CSP plants is presented. Parabolic trough solar technology is employed at Kramer Junction. However, many of the O&M improvements described in the report are also applicable to CSP plants based on solar power tower or dish/engine concepts.

  7. Los Alamos National Laboratory transuranic waste characterization and certification program - an overview of capabilities and capacity

    International Nuclear Information System (INIS)

    Rogers, P.S.Z.; Sinkule, B.J.; Janecky, D.R.; Gavett, M.A.

    1997-01-01

    The Los Alamos National Laboratory (LANL) has full capability to characterize transuranic (TRU) waste for shipment to and disposal at the Waste Isolation Pilot Plant (WIPP) for its projected opening. LANL TRU waste management operations also include facilities to repackage both drums of waste found not to be certifiable for WIPP and oversized boxes of waste that must be size reduced for shipment to WIPP. All characterization activities and repackaging are carried out under a quality assurance program designed to meet Carlsbad Area Office (CAO) requirements. The flow of waste containers through characterization operations, the facilities used for characterization, and the electronic data management system used for data package preparation and certification of TRU waste at LANL are described

  8. Fermi National Acceleator Laboratory Annual Program Review 1992

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A.; Jovanovic, Drasko; Pordes, Stephen [Fermilab

    1992-01-01

    This book is submitted as a written adjunct to the Annual DOE High Energy Physics Program Review of Fermilab, scheduled this year for March 31 - April 2, 1992. In it are described the functions and activities of the various Laboratory areas plus statements of plans and goals for the coming year.

  9. Fermi National Accelerator Laboratory Annual Program Review 1991

    Energy Technology Data Exchange (ETDEWEB)

    Appel, Jeffrey A. [Fermilab; Jovanovic, Drasko [Fermilab; Pordes, Stephen [Fermilab

    1991-01-01

    This book is submitted as a written adjunct to the Annual DOE High Energy Physics Program Review of Fermilab, scheduled this year for April 10-12, 1991. In it are described the functions and activities of the various Laboratory areas plus statements of plans and goals for the coming year.

  10. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    This Environmental Impact Statement/Environmental Impact Report (EIS/EIR) is prepared pursuant to the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA). This document analyzes the potential environmental impacts of the proposed action: continued operation, including near-term (within 5 to 10 years) proposed projects, of Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories, Livermore (SNL, Livermore). Additionally, this document analyzes a no action alternative involving continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative to reduce adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. This document assesses the environmental impacts of the Laboratories' operations on air and water quality, geological and ecological systems, occupational and public health risks, prehistoric and historic resources, endangered species, floodplains and wetlands, socioeconomic resources, hazardous waste management, site contamination, and other environmental issues. The EIS/EIR is divided into five volumes and two companion reports. This volume contains the Final EIS/EIR, which in part relies on the detailed information in the appendices, and comprehensively discusses the proposed action, the alternatives, and the existing conditions and impacts of the proposed action and the alternatives

  11. Operative Landscape at Canadian Neurosurgery Residency Programs.

    Science.gov (United States)

    Tso, Michael K; Dakson, Ayoub; Ahmed, Syed Uzair; Bigder, Mark; Elliott, Cameron; Guha, Daipayan; Iorio-Morin, Christian; Kameda-Smith, Michelle; Lavergne, Pascal; Makarenko, Serge; Taccone, Michael S; Wang, Bill; Winkler-Schwartz, Alexander; Sankar, Tejas; Christie, Sean D

    2017-07-01

    Background Currently, the literature lacks reliable data regarding operative case volumes at Canadian neurosurgery residency programs. Our objective was to provide a snapshot of the operative landscape in Canadian neurosurgical training using the trainee-led Canadian Neurosurgery Research Collaborative. Anonymized administrative operative data were gathered from each neurosurgery residency program from January 1, 2014, to December 31, 2014. Procedures were broadly classified into cranial, spine, peripheral nerve, and miscellaneous procedures. A number of prespecified subspecialty procedures were recorded. We defined the resident case index as the ratio of the total number of operations to the total number of neurosurgery residents in that program. Resident number included both Canadian medical and international medical graduates, and included residents on the neurosurgery service, off-service, or on leave for research or other personal reasons. Overall, there was an average of 1845 operative cases per neurosurgery residency program. The mean numbers of cranial, spine, peripheral nerve, and miscellaneous procedures were 725, 466, 48, and 193, respectively. The nationwide mean resident case indices for cranial, spine, peripheral nerve, and total procedures were 90, 58, 5, and 196, respectively. There was some variation in the resident case indices for specific subspecialty procedures, with some training programs not performing carotid endarterectomy or endoscopic transsphenoidal procedures. This study presents the breadth of neurosurgical training within Canadian neurosurgery residency programs. These results may help inform the implementation of neurosurgery training as the Royal College of Physicians and Surgeons residency training transitions to a competence-by-design curriculum.

  12. Tiger Team assessment of the Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL. This volume contains appendices.

  13. Tiger Team assessment of the Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    1990-06-01

    This report documents the results of the Department of Energy's (DOE's) Tiger Team Assessment conducted at Brookhaven National Laboratory (BNL) in Upton, New York, between March 26 and April 27, 1990. The BNL is a multiprogram laboratory operated by the Associated Universities, Inc., (AUI) for DOE. The purpose of the assessment was to provide the status of environment, safety, and health (ES H) programs at the Laboratory. The scope of the assessment included a review of management systems and operating procedures and records; observations of facility operations; and interviews at the facilities. Subteams in four areas performed the review: ES H, Occupational Safety and Health, and Management and Organization. The assessment was comprehensive, covering all areas of ES H activities and waste management operations. Compliance with applicable Federal, State, and local regulations; applicable DOE Orders; and internal BNL requirements was assessed. In addition, the assessment included an evaluation of the adequacy and effectiveness of the DOE and the site contractor, Associated Universities, Inc. (AUI), management, organization, and administration of the ES H programs at BNL.

  14. Modular space station, phase B extension. Program operations plan

    Science.gov (United States)

    1971-01-01

    An organized approach is defined for establishing the most significant requirements pertaining to mission operations, information management, and computer program design and development for the modular space station program. The operations plan pertains to the space station and experiment module program elements and to the ground elements required for mission management and mission support operations.

  15. Current status of the waste identification program at AECL's Chalk River Laboratories

    International Nuclear Information System (INIS)

    Csullog, G.W.; Edwards, N.W.; TerHuurne, M.A.

    1998-01-01

    The management of routine operating waste by Waste Management and Decommissioning (WM and D) at Atomic Energy of Canada Limited's (AECL) Chalk River Laboratories (CRL) is supported by the Waste Identification (WI) Program. The principal purpose of the WI Program is to minimize the cost and the effort associated with waste characterization and waste tracking, which are needed to optimize waste handling, storage and disposal. The major steps in the WI Program are: (1) identify and characterize the processes that generate the routine radioactive wastes accepted by WM and D - radioisotope production, radioisotope use, reactor operation, fuel fabrication, et cetera (2) identify and characterize the routine blocks of waste generated by each process or activity - the initial characterization is based on inference (process knowledge) (3) prepare customized, template data sheets for each routine waste block - templates contain information such as package type, waste material, waste type, solidifying agent, the average non-radiological contaminant inventory, the average radiological contaminant inventory, and the waste class (4) ensure generators 'use the right piece of paper with the right waste' when they transfer waste to WM and D - that is they use the correct template data sheets to transfer routine wastes, by: identifying and marking waste collection points in the generator's facility; ensuring that generators implement effective waste collection/segregation procedures; implementing standard procedures to transfer waste to WM and D; and, auditing waste collection and segregation within a generator's facility (5) determine any additional waste block characterization requirements (is anything needed beyond the original characterization by process knowledge?) This paper describes the WI Program, it provides an example of its implementation, and it summarizes the current status of its implementation for both CRL and non-CRL waste generators. (author)

  16. Incinerator development program for processing transuranic waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Hedahl, T.G.

    1982-01-01

    In the fall of 1981, two short-term tests were conducted on a controlled air and a rotary kiln incinerator to assess their potential for processing transuranic (TRU) contaminated waste at the Idaho National Engineering Laboratory (INEL). The primary purpose of the test program was a proof-of-principle verification that the incinerators could achieve near-complete combustion of the combustible portion of the waste, while mixed with high percentages of noncombustible and metal waste materials. Other important test objectives were to obtain system design information including off-gas and end-product characteristics and incinerator operating parameters. Approximately 7200 kg of simulated (non-TRU) waste from the INEL were processed during the two tests

  17. CDC’s Newborn Screening Program - Role of Laboratories

    Centers for Disease Control (CDC) Podcasts

    When newborn screening started in the U.S. 50 years ago, many questioned whether it was even possible to test every baby born in every state. Today, all states screen babies for at least 29 disorders that can be detected through laboratory testing. In this podcast, Dr. Carla Cuthbert talks about CDC’s Newborn Screening Quality Assurance Program and the role laboratories play in keeping babies healthy.

  18. Laboratory Directed Research and Development FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, Todd; Levy, Karin

    2001-02-27

    The Ernest Orlando Lawrence Berkeley National Laboratory (Berkeley Lab or LBNL) is a multi-program national research facility operated by the University of California for the Department of Energy (DOE). As an integral element of DOE's National Laboratory System, Berkeley Lab supports DOE's missions in fundamental science, energy resources, and environmental quality. Berkeley Lab programs advance four distinct goals for DOE and the nation: (1) To perform leading multidisciplinary research in the computing sciences, physical sciences, energy sciences, biosciences, and general sciences in a manner that ensures employee and public safety and protection of the environment. (2) To develop and operate unique national experimental facilities for qualified investigators. (3) To educate and train future generations of scientists and engineers to promote national science and education goals. (4) To transfer knowledge and technological innovations and to foster productive relationships among Berkeley Lab's research programs, universities, and industry in order to promote national economic competitiveness. Annual report on Laboratory Directed Research and Development for FY2000.

  19. Final Environmental Impact Statement and Environmental Impact Report for continued operation of Lawrence Livermore National Laboratory and Sandia National Laboratories, Livermore

    International Nuclear Information System (INIS)

    1992-08-01

    The US Department of Energy (DOE) and the Regents of the University of California (UC) propose the continued operation, including near-term proposed projects, of the Lawrence Livermore National Laboratory (LLNL). In addition, DOE proposes the continued operation, including near-term proposed projects, of Sandia National Laboratories, Livermore (SNL, Livermore). Continued operation plus proposed projects at the two Laboratories is needed so that the research and development missions established by Congress and the President can continue to be supported. As provided and encouraged by the National Environmental Policy Act (NEPA) and the California Environmental Quality Act (CEQA), DOE and UC have prepared this document as a joint Environmental Impact Statement (EIS) and Environmental Impact Report (EIR) to analyze the impacts of the proposed action. In addition, this document discusses a no action alternative for continuing operations at FY 1992 funding levels without further growth, a modification of operations alternative focused on specific adverse environmental impacts of operations or facilities, and a shutdown and decommissioning alternative. This document also examines the alternative of UC discontinuing its management of LLNL after the current contract expires on September 30, 1992. The environmental documentation process provides information to the public, government agencies, and decision makers about the environmental impacts of implementing the proposed and alternative actions. In addition, this environmental documentation identifies alternatives and possible ways to reduce or prevent environmental impacts. A list of the issues raised through the EIS/EIR scoping process is presented

  20. Laboratories for the 21st Century: An Introduction to Low-Energy Design (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2008-08-01

    This booklet is an introduction to several new strategies for designing, developing, and retrofitting energy-efficient laboratories. It is the result of a collaboration among staff at the U.S. Environmental Protection Agency (EPA), the U.S. Department of Energy's (DOE's) Federal Energy Management Program (FEMP), several national laboratories, and their contractors. They are collaborating to meet the goals of a joint EPA-DOE initiative, 'Laboratories for the 21st Century,' which was established to help government and private-sector laboratory designers, engineers, owners, and operators work together to increase operating efficiency and reduce costs. This booklet describes many energy-efficient strategies that can be done during laboratory planning and programming; design; engineering; and commissioning, operation, and maintenance. There is also a discussion of on-site power generation and clean sources of electricity from renewable energy.

  1. Web Environment for Programming and Control of a Mobile Robot in a Remote Laboratory

    Science.gov (United States)

    dos Santos Lopes, Maísa Soares; Gomes, Iago Pacheco; Trindade, Roque M. P.; da Silva, Alzira F.; de C. Lima, Antonio C.

    2017-01-01

    Remote robotics laboratories have been successfully used for engineering education. However, few of them use mobile robots to to teach computer science. This article describes a mobile robot Control and Programming Environment (CPE) and its pedagogical applications. The system comprises a remote laboratory for robotics, an online programming tool,…

  2. GridSpace Engine of the ViroLab Virtual Laboratory

    NARCIS (Netherlands)

    Ciepiela, E.; Kocot, J.; Gubala, T.; Malawski, M.; Kasztelnik, M.; Bubak, M.; Bubak, M.; Turała, M.; Wiatr, K.

    2008-01-01

    GridSpace Engine is the central operational unit of the ViroLab Virtual Laboratory. This specific runtime environment enables access to computational and data resources by coordinating execution of experiments written in the Ruby programming language extended with virtual laboratory capabilities.

  3. Mozambique field epidemiology and laboratory training program: a pathway for strengthening human resources in applied epidemiology.

    Science.gov (United States)

    Baltazar, Cynthia Semá; Taibo, Cátia; Sacarlal, Jahit; Gujral, Lorna; Salomão, Cristolde; Doyle, Timothy

    2017-01-01

    In the last decades, Mozambique has been undergoing demographic, epidemiological, economic and social transitions, which have all had a notable impact on the National Health System. New challenges have emerged, causing a need to expand the preparation and response to emerging disease threats and public health emergencies. We describe the structure and function of the Mozambique Field Epidemiology Training Program (MZ-FELTP) and the main outputs achieved during the first 6 years of program implementation (consisting of 3 cohorts). We also outline the contribution of the program to the National Health System and assess the retention of the graduates. The MZ-FELTP is a post-graduate in-service training program, based on the acquisition of skills, within two tracks: applied epidemiology and laboratory management. The program was established in 2010, with the objective of strengthening capacity in applied epidemiology and laboratory management, so that events of public health importance can be detected and investigated in a timely and effective manner. The program is in its seventh year, having successfully trained 36 health professionals in the advanced course. During the first six years of the program, more than 40 outbreaks were investigated, 37 surveillance system evaluations were conducted and 39 descriptive data analyses were performed. Surveillance activities were implemented for mass events and emergency situations. In addition, more than 100 oral and poster presentations were given by trainees at national and international conferences. The MZ-FELTP has helped provide the Ministry of Health with the human and technical resources and operational capacity, to rapidly and effectively respond to major public health challenges in the country. The continuous involvement of key stakeholders is necessary for the continuation, expansion and ongoing sustainability of the program.

  4. Annual report on operation, utilization and technical development of research reactors and hot laboratory

    International Nuclear Information System (INIS)

    1990-09-01

    This report describes the activities of the Department of Research Reactor Operation in fiscal year of 1989. It also presents some technical topics on the reactor operation and utilization in details. The Department is responsible for operation of the research reactors, JRR-2 and JRR-4, and the Hot Laboratory. The research reactor JRR-3 was reconstructed to enhance the performance for utilization. The first criticality was achieved on March 22, 1989, and it subsequently went into operation. In connection with the reactor operation, the various research and development activities in the area of fuel management, water chemistry, radiation monitoring and material irradiation have been made. In the Hot Laboratory, post-irradiation examinations of fuels and materials have been carried out along with the development of related techniques. (author)

  5. Institutional training programs for research personnel conducted by laboratory-animal veterinarians.

    Science.gov (United States)

    Dyson, Melissa C; Rush, Howard G

    2012-01-01

    Research institutions are required by federal law and national standards to ensure that individuals involved in animal research are appropriately trained in techniques and procedures used on animals. Meeting these requirements necessitates the support of institutional authorities; policies for the documentation and enforcement of training; resources to support and provide training programs; and high-quality, effective educational material. Because of their expertise, laboratory-animal veterinarians play an essential role in the design, implementation, and provision of educational programs for faculty, staff, and students in biomedical research. At large research institutions, provision of a training program for animal care and use personnel can be challenging because of the animal-research enterprise's size and scope. At the University of Michigan (UM), approximately 3,500 individuals have direct contact with animals used in research. We describe a comprehensive educational program for animal care and use personnel designed and provided by laboratory-animal veterinarians at UM and discuss the challenges associated with its implementation.

  6. Status of an operating reliability program

    International Nuclear Information System (INIS)

    Johnson, R.A.

    1985-01-01

    This paper deals with productivity improvement programs (PIP) for nuclear generating plants. The PIP was implemented in 1979 as a joint effort between Commonwealth Edison's (CECo's) operating nuclear stations and the Station Nuclear Engineering Department. Goals were set to reduce nonproductivity by 10% over a 5 year period. This goal was accomplished December 31, 1983. Topics of discussion are program method, problem analysis and resolution, program results, program improvements, and proposed additions to the PIP. The program is providing CECo with greater electrical generating productivity

  7. The Replacement Operation for CCP Programs

    NARCIS (Netherlands)

    Bertolino, Marco; Etalle, Sandro; Palamidessi, Catuscia

    1999-01-01

    The Replacement is a very powerful transformation operation which - both within the functional paradigm as well as within the logic programming one - can micic the most common transformation operations such as unfold, fold, switching, distribution. Because of this flexibility , it can be incorrect

  8. The Replacement Operation for CCP Programs

    NARCIS (Netherlands)

    Bertolino, Marco; Bossi, Annalisa; Etalle, Sandro; Palamidessi, Catuscia

    2000-01-01

    The Replacement is a very powerful transformation operation which - both within the functional paradigm as well as within the logic programming one - can micic the most common transformation operations such as unfold, fold, switching, distribution. Because of this flexibility , it can be incorrect

  9. 78 FR 7477 - Multistate Corridor Operations and Management Program

    Science.gov (United States)

    2013-02-01

    ... in the Multistate Corridor Operations and Management Program authorized by the Safe, Accountable... projects to improve multimodal transportation system management and operations. This notice seeks... Multistate Corridor Operations and Management (MCOM) programs and projects. The purpose of these investments...

  10. 1997 LMITCO Environmental Monitoring Program Report for the Idaho National Engineering and Environmental Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Andersen, B.; Street, L.; Wilhelmsen, R.

    1998-09-01

    This report describes the calendar year 1997 environmental surveillance and compliance monitoring activities of the Lockheed Martin Idaho Technologies Company Environmental Monitoring Program performed at the Idaho National Engineering and Environmental Laboratory. This report includes results of sampling performed by the Radiological Environmental Surveillance, Site Environmental Surveillance, Drinking Water, Effluent Monitoring, Storm Water Monitoring, Groundwater Monitoring, and Special Request Monitoring Programs and compares 1997 data with program-specific regulatory guidelines and past data to evaluate trends. The primary purposes of the surveillance and monitoring activities are to evaluate environmental conditions, to provide and interpret data, to verify compliance with applicable regulations or standard, and to ensure protection of human health and the environment. Surveillance of environmental media did not identify any previously unknown environmental problems or trends indicating a loss of control or unplanned releases from facility operations. With the exception of one nitrogen sample in the disposal pond effluent stream and iron and total coliform bacteria in groundwater downgradient from one disposal pond, compliance with permits and applicable regulations was achieved. Data collected by the Environmental Monitoring Program demonstrate that public health and the environment were protected.

  11. Low Energy Accelerator Laboratory Technical Area 53, Los Alamos National Laboratory. Environmental assessment

    International Nuclear Information System (INIS)

    1995-04-01

    This Environmental Assessment (EA) analyzes the potential environmental impacts that would be expected to occur if the Department of Energy (DOE) were to construct and operate a small research and development laboratory building at Technical Area (TA) 53 at the Los Alamos National Laboratory (LANL), Los Alamos, New Mexico. DOE proposes to construct a small building to be called the Low Energy Accelerator Laboratory (LEAL), at a previously cleared, bladed, and leveled quarter-acre site next to other facilities housing linear accelerator research activities at TA-53. Operations proposed for LEAL would consist of bench-scale research, development, and testing of the initial section of linear particle accelerators. This initial section consists of various components that are collectively called an injector system. The anticipated life span of the proposed development program would be about 15 years

  12. A reliability program approach to operational safety

    International Nuclear Information System (INIS)

    Mueller, C.J.; Bezella, W.A.

    1985-01-01

    A Reliability Program (RP) model based on proven reliability techniques is being formulated for potential application in the nuclear power industry. Methods employed under NASA and military direction, commercial airline and related FAA programs were surveyed and a review of current nuclear risk-dominant issues conducted. The need for a reliability approach to address dependent system failures, operating and emergency procedures and human performance, and develop a plant-specific performance data base for safety decision making is demonstrated. Current research has concentrated on developing a Reliability Program approach for the operating phase of a nuclear plant's lifecycle. The approach incorporates performance monitoring and evaluation activities with dedicated tasks that integrate these activities with operation, surveillance, and maintenance of the plant. The detection, root-cause evaluation and before-the-fact correction of incipient or actual systems failures as a mechanism for maintaining plant safety is a major objective of the Reliability Program. (orig./HP)

  13. Enhancements to the Idaho National Engineering Laboratory motor-operated valve assessment software

    International Nuclear Information System (INIS)

    Holbrook, M.R.; Watkins, J.C.

    1994-01-01

    In January 1991, the U.S. Nuclear Regulatory Commission (USNRC) commenced Part 1 inspections to review licensee's motor-operated valve (MOV) programs that were developed to address Generic Letter 89-10, open-quotes Safety-Related Motor-Operated Valve Testing and Surveillanceclose quotes. In support, of this effort, the Isolation Valve Assessment (IVA) software, Version 3.10, was developed by the Idaho National Engineering Laboratory (INEL) to enable rapid in-depth review of MOV sizing and torque switch setting calculations. In 1994, the USNRC commenced Part 2 inspections, which involve a more in-depth review of MOV in situ testing relative to design-basis assumptions. The purpose of this paper is to describe the latest INEL and industry research that has been incorporated into Version 4.00 of the IVA software to support the latest round of inspections. Major improvements include (a) using dynamic and static test results to determine MOV performance parameters and validate design-basis engineering assumptions, (b) determining the stem/stem-nut coefficient of friction using new research-based techniques, (c) adding the ability to evaluate globe valves, and (d) incorporating new methods to account for the effects of high ambient temperature on the output torque of alternating current (ac) motors

  14. Comprehensive resurvey program to prevent radiological incidents at a national laboratory

    International Nuclear Information System (INIS)

    Lipton, W.V.; Hunckler, C.A.

    1978-01-01

    A comprehensive resurvey program in a general purpose research building at Argonne National Laboratory is being implemented. The program was designed to prevent radiological incidents by increasing the awareness of Health Physics personnel of radiological hazards, initiating corrective actions, and providing information for improving routine survey schedules, and for establishing manpower requirements. The following aspects of the program are described: scheduling, surveys, records, follow-up, and statistics

  15. Maintenance program guidelines for programmatic equipment

    International Nuclear Information System (INIS)

    1994-11-01

    The Division Directors at Lawrence Berkeley Laboratory are responsible for implementing a maintenance program for research equipment (also referred to as programmatic equipment) assigned to them. The program must allow maintenance to be accomplished in a manner that promotes operational safety, environmental protection and compliance, and cost effectiveness; that preserves the intended functions of the facilities and equipment; and that supports the programmatic mission of the Laboratory. Programmatic equipment -- such as accelerators, lasers, radiation detection equipment, and glove boxes -- is dedicated specifically to research. Installed equipment, by contrast, includes the mechanical and electrical systems installed as part of basic building construction, equipment essential to the normal functioning of the facility and its intended use. Examples of installed equipment are heating, ventilating, and air conditioning systems; elevators; and communications systems. The LBL Operating and Assurance Program Plan (PUB-3111, Revision 4) requires that a maintenance program be prepared for programmatic equipment and defines the basic maintenance program elements. Such a program of regular, documented maintenance is vital to the safety and quality of research activities. As a part of that support, this document offers guidance to Laboratory organizations for developing their maintenance programs. It clarifies the maintenance requirements of the Operating and Assurance Program (OAP) and presents an approach that, while not the only possibility, can be expected to produce an effective maintenance program for research equipment belonging to the Laboratory's organizations

  16. Sandia National Laboratories, California Hazardous Materials Management Program annual report : February 2009.

    Energy Technology Data Exchange (ETDEWEB)

    Brynildson, Mark E.

    2009-02-01

    The annual program report provides detailed information about all aspects of the Sandia National Laboratories, California (SNL/CA) Hazardous Materials Management Program. It functions as supporting documentation to the SNL/CA Environmental anagement ystem Program Manual. This program annual report describes the activities undertaken during the past year, and activities planned in future years to implement the Hazardous Materials Management Program, one of six programs that supports environmental management at SNL/CA.

  17. A Manual of Simplified Laboratory Methods for Operators of Wastewater Treatment Facilities.

    Science.gov (United States)

    Westerhold, Arnold F., Ed.; Bennett, Ernest C., Ed.

    This manual is designed to provide the small wastewater treatment plant operator, as well as the new or inexperienced operator, with simplified methods for laboratory analysis of water and wastewater. It is emphasized that this manual is not a replacement for standard methods but a guide for plants with insufficient equipment to perform analyses…

  18. Laboratory-Directed Research and Development 2016 Summary Annual Report

    Energy Technology Data Exchange (ETDEWEB)

    Pillai, Rekha Sukamar [Idaho National Lab. (INL), Idaho Falls, ID (United States); Jacobson, Julie Ann [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2017-01-01

    The Laboratory-Directed Research and Development (LDRD) Program at Idaho National Laboratory (INL) reports its status to the U.S. Department of Energy (DOE) by March of each year. The program operates under the authority of DOE Order 413.2C, “Laboratory Directed Research and Development” (April 19, 2006), which establishes DOE’s requirements for the program while providing the laboratory director broad flexibility for program implementation. LDRD funds are obtained through a charge to all INL programs. This report includes summaries of all INL LDRD research activities supported during Fiscal Year (FY) 2016. INL is the lead laboratory for the DOE Office of Nuclear Energy (DOE-NE). The INL mission is to discover, demonstrate, and secure innovative nuclear energy solutions, other clean energy options, and critical infrastructure with a vision to change the world’s energy future and secure our critical infrastructure. Operating since 1949, INL is the nation’s leading research, development, and demonstration center for nuclear energy, including nuclear nonproliferation and physical and cyber-based protection of energy systems and critical infrastructure, as well as integrated energy systems research, development, demonstration, and deployment. INL has been managed and operated by Battelle Energy Alliance, LLC (a wholly owned company of Battelle) for DOE since 2005. Battelle Energy Alliance, LLC, is a partnership between Battelle, BWX Technologies, Inc., AECOM, the Electric Power Research Institute, the National University Consortium (Massachusetts Institute of Technology, Ohio State University, North Carolina State University, University of New Mexico, and Oregon State University), and the Idaho university collaborators (i.e., University of Idaho, Idaho State University, and Boise State University). Since its creation, INL’s research and development (R&D) portfolio has broadened with targeted programs supporting national missions to advance nuclear energy

  19. 76 FR 65561 - Multistate Corridor Operations and Management Program

    Science.gov (United States)

    2011-10-21

    ... participation in the Multistate Corridor Operations and Management (MCOM) Program authorized by the Safe... transportation system management and operations. This notice seeks applications for available fiscal year (FY... system management and operations. Since the MCOM program is funded by the DOT Intelligent Transportation...

  20. Improvement of the quality control program of the clinical dosimeters calibration laboratory of the IPEN/CNEN-SP

    Energy Technology Data Exchange (ETDEWEB)

    Damatto, Willian B.; Potiens, Maria da Penha A.; Vivolo, Vitor, E-mail: wbdamatto@ipen.br, E-mail: mppotiens@ipen.br, E-mail: vivolo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    A set of clinical dosimeters (thimble ionization chamber coupled to an electrometer) commonly used in radiotherapy in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analysis parameters for the dosimeters behaviour were established, specifying their sensitivities and operating characteristics. Applied tests were: repeatability, reproducibility and current leakage. Thus it was possible to determine the most common defects found in these equipment and the actions that could be taken to prevent it (clinical dosimeters quality control programs). The behaviour of 167 dosimeters was analyzed and in this study, 62 of them have been tested. The main problem detected during calibration tests was current leakage, i.e. electronic noise. The tests were applied to the routine measurements at the Calibration Laboratory implementing an ideal calibration procedure. New calibration criteria were established following international recommendations. Therefore, it was made the improvement of the quality control programme of the clinical dosimeters calibration laboratory, benefiting the users of such equipment with better consistent calibration measurements. (author)

  1. Improvement of the quality control program of the clinical dosimeters calibration laboratory of the IPEN/CNEN-SP

    International Nuclear Information System (INIS)

    Damatto, Willian B.; Potiens, Maria da Penha A.; Vivolo, Vitor

    2013-01-01

    A set of clinical dosimeters (thimble ionization chamber coupled to an electrometer) commonly used in radiotherapy in Brazil and sent to the Calibration Laboratory of IPEN were under several tests and analysis parameters for the dosimeters behaviour were established, specifying their sensitivities and operating characteristics. Applied tests were: repeatability, reproducibility and current leakage. Thus it was possible to determine the most common defects found in these equipment and the actions that could be taken to prevent it (clinical dosimeters quality control programs). The behaviour of 167 dosimeters was analyzed and in this study, 62 of them have been tested. The main problem detected during calibration tests was current leakage, i.e. electronic noise. The tests were applied to the routine measurements at the Calibration Laboratory implementing an ideal calibration procedure. New calibration criteria were established following international recommendations. Therefore, it was made the improvement of the quality control programme of the clinical dosimeters calibration laboratory, benefiting the users of such equipment with better consistent calibration measurements. (author)

  2. Reactor operations, inspection and maintenance. PNGS Calibration Program

    International Nuclear Information System (INIS)

    Lopez, E.

    1997-01-01

    The PNGS Calibration Program is being implemented as a response to various concerns identified in recent PEER evaluations and AECB audits. Identified areas of concern were the approach to instrument calibration of Special Safety Systems (SSS). The implementation of a calibration program is a significant improvement in operating practices. A systematic and comprehensive approach to calibration of instrumentation will improve the quality of operation of the plant with a positive contribution to PNGS safety of operation and economic objectives. This paper describes the strategy to implement the proposed calibration program and describes its calibration data requirements. (DM)

  3. NucLab Marcoule. A laboratory facility dedicated to support dismantling operations

    International Nuclear Information System (INIS)

    Dugne, O.; Houssin, A.; Pierre, D.; Bec-Espitalier, L.

    2013-06-01

    Formerly dedicated to plutonium production support, NucLab was renovated to perform a wide range of analyses for dismantling, plant operation and process development activities mainly on Marcoule site but also outside (Veurey, Fontenay aux Roses). The Laboratory is under a CEA AREVA partnership as a CEA entity operated by AREVA employees. It provides services to several industrial operators (nuclear process and power plant) in the fields of analytical chemistry, radioactivity measurements, in situ nuclear measurements, decontamination processes and industrial chemistry processes, waste treatments to meet the following analysis requirements. NucLab today is able to support research, production and dismantling activities in all part of dismantling operations. (authors)

  4. Fermi National Accelerator Laboratory Annual Program Review 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-01-01

    This book is submitted as a written adjunct to the 1993 Annual DOE High Energy Physics Program Review of Fermilab, scheduled for March 31-April 3. In it are described the functions and activities of the various Laboratory Divisions and Sections plus statements of plans and goals for the coming year. The Review Committee, as this goes to press, consists of·

  5. Site Environmental Report for Calendar Year 2009. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ning [The Boeing Company, Canoga Park, CA (United States); Rutherford, Phil [The Boeing Company, Canoga Park, CA (United States); Amar, Ravnesh [The Boeing Company, Canoga Park, CA (United States)

    2010-09-01

    This Annual Site Environmental Report (ASER) for 2009 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2009 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  6. Site Environmental Report for Calendar Year 2010. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ning [The Boeing Company, Canoga Park, CA (United States); Rutherford, Phil [The Boeing Company, Canoga Park, CA (United States); Amar, Ravnesh [The Boeing Company, Canoga Park, CA (United States)

    2011-09-01

    This Annual Site Environmental Report (ASER) for 2010 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2010 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  7. Lawrence Livermore Laboratory's beryllium control program for high-explosive test firing bunkers and tables

    International Nuclear Information System (INIS)

    Johnson, J.S.

    1978-01-01

    This detailed report on Lawrence Livermore Laboratory's control program to minimize beryllium levels in Laboratory workplaces includes an outline of beryllium surface, soil, and air levels and an 11-y summary of sampling results from two high-use, high-explosive test firing bunkers. These sampling data and other studies demonstrate that the beryllium control program is funcioning effectively

  8. Conceptual plan: Two-Phase Flow Laboratory Program for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Howarth, S.M.

    1993-07-01

    The Salado Two-Phase Flow Laboratory Program was established to address concerns regarding two-phase flow properties and to provide WIPP-specific, geologically consistent experimental data to develop more appropriate correlations for Salado rock to replace those currently used in Performance Assessment models. Researchers in Sandia's Fluid Flow and Transport Department originally identified and emphasized the need for laboratory measurements of Salado threshold pressure and relative permeability. The program expanded to include the measurement of capillary pressure, rock compressibility, porosity, and intrinsic permeability and the assessment of core damage. Sensitivity analyses identified the anhydrite interbed layers as the most likely path for the dissipation of waste-generated gas from waste-storage rooms because of their relatively high permeability. Due to this the program will initially focus on the anhydrite interbed material. The program may expand to include similar rock and flow measurements on other WIPP materials including impure halite, pure halite, and backfill and seal materials. This conceptual plan presents the scope, objectives, and historical documentation of the development of the Salado Two-Phase Flow Program through January 1993. Potential laboratory techniques for assessing core damage and measuring porosity, rock compressibility, capillary and threshold pressure, permeability as a function of stress, and relative permeability are discussed. Details of actual test designs, test procedures, and data analysis are not included in this report, but will be included in the Salado Two-Phase Flow Laboratory Program Test Plan pending the results of experimental and other scoping activities in FY93

  9. Mission Control Operations: Employing a New High Performance Design for Communications Links Supporting Exploration Programs

    Science.gov (United States)

    Jackson, Dan E., Jr.

    2015-01-01

    The planetary exploration programs demand a totally new examination of data multiplexing, digital communications protocols and data transmission principles for both ground and spacecraft operations. Highly adaptive communications devices on-board and on the ground must provide the greatest possible transmitted data density between deployed crew personnel, spacecraft and ground control teams. Regarding these requirements, this proposal borrows from research into quantum mechanical computing by applying the concept of a qubit, a single bit that represents 16 states, to radio frequency (RF) communications link design for exploration programs. This concept of placing multiple character values into a single data bit can easily make the evolutionary steps needed to meet exploration mission demands. To move the qubit from the quantum mechanical research laboratory into long distance RF data transmission, this proposal utilizes polarization modulation of the RF carrier signal to represent numbers from zero to fifteen. It introduces the concept of a binary-to-hexadecimal converter that quickly chops any data stream into 16-bit words and connects variously polarized feedhorns to a single-frequency radio transmitter. Further, the concept relies on development of a receiver that uses low-noise amplifiers and an antenna array to quickly assess carrier polarity and perform hexadecimal to binary conversion. Early testbed experiments using the International Space Station (ISS) as an operations laboratory can be implemented to provide the most cost-effective return for research investment. The improvement in signal-to-noise ratio while supporting greater baseband data rates that could be achieved through this concept justifies its consideration for long-distance exploration programs.

  10. A national clinical quality program for Veterans Affairs catheterization laboratories (from the Veterans Affairs clinical assessment, reporting, and tracking program).

    Science.gov (United States)

    Maddox, Thomas M; Plomondon, Mary E; Petrich, Megan; Tsai, Thomas T; Gethoffer, Hans; Noonan, Gregory; Gillespie, Brian; Box, Tamara; Fihn, Stephen D; Jesse, Robert L; Rumsfeld, John S

    2014-12-01

    A "learning health care system", as outlined in a recent Institute of Medicine report, harnesses real-time clinical data to continuously measure and improve clinical care. However, most current efforts to understand and improve the quality of care rely on retrospective chart abstractions complied long after the provision of clinical care. To align more closely with the goals of a learning health care system, we present the novel design and initial results of the Veterans Affairs (VA) Clinical Assessment, Reporting, and Tracking (CART) program-a national clinical quality program for VA cardiac catheterization laboratories that harnesses real-time clinical data to support clinical care and quality-monitoring efforts. Integrated within the VA electronic health record, the CART program uses a specialized software platform to collect real-time patient and procedural data for all VA patients undergoing coronary procedures in VA catheterization laboratories. The program began in 2005 and currently contains data on 434,967 catheterization laboratory procedures, including 272,097 coronary angiograms and 86,481 percutaneous coronary interventions, performed by 801 clinicians on 246,967 patients. We present the initial data from the CART program and describe 3 quality-monitoring programs that use its unique characteristics-procedural and complications feedback to individual labs, coronary device surveillance, and major adverse event peer review. The VA CART program is a novel approach to electronic health record design that supports clinical care, quality, and safety in VA catheterization laboratories. Its approach holds promise in achieving the goals of a learning health care system. Published by Elsevier Inc.

  11. 76 FR 72029 - Multistate Corridor Operations and Management Program

    Science.gov (United States)

    2011-11-21

    ... in the FHWA Multistate Corridor Operations and Management Program as authorized in 23 U.S.C. 511... Multistate Corridor Operations and Management Program as authorized in 23 U.S.C. 511. This notice clarifies... DEPARTMENT OF TRANSPORTATION Federal Highway Administration Multistate Corridor Operations and...

  12. Site Environmental Report for Calendar Year 2011. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ning [The Boeing Company, Canoga Park, CA (United States); Rutherford, Phil [The Boeing Company, Canoga Park, CA (United States); Dassler, David [The Boeing Company, Canoga Park, CA (United States)

    2012-09-01

    This Annual Site Environmental Report (ASER) for 2011 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2011 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  13. Site Environmental Report For Calendar Year 2012. DOE Operations at The Boeing Company Santa Susana Field Laboratory, Area IV

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ning [The Boeing Company, Canoga Park, CA (United States); Rutherford, Phil [The Boeing Company, Canoga Park, CA (United States); Dassler, David [The Boeing Company, Canoga Park, CA (United States)

    2013-09-01

    This Annual Site Environmental Report (ASER) for 2012 describes the environmental conditions related to work performed for the Department of Energy (DOE) at Area IV of Boeing’s Santa Susana Field Laboratory (SSFL). The Energy Technology Engineering Center (ETEC), a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program for the calendar year 2012 continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  14. Atlantic Richfield Hanford Company chemical operator training program

    International Nuclear Information System (INIS)

    Zumhoff, R.G.

    1975-01-01

    Formal training and testing of Chemical Operators at Hanford were initiated as part of a negotiated union settlement in 1966. Consequently, it was agreed that 25 percent of the chemical operator force would receive a higher rated job (Lead Nuclear Chemical Operator) provided they satisfactorily completed a training program including testing. The training and testing program was developed in two parts. The first covered subjects of a general nature and was applicable to an operator's duties no matter what the assignment. Part II was more specifically oriented to the presently assigned work area. Renewed interest in retraining and requalification of all chemical operators was taken in 1971. This evolved from a Company concern that a program be developed to assure the fact that operators were qualified to do their assigned jobs, and an Atomic Energy Commission request for an outline of a retraining and requalification program for chemical operators. Building upon the experience gained in the LNCO (Lead Nuclear Chemical Operator) program, the two part format is retained. The use of video tapes is used to complement the manuals. An arrangement where an operator can view a lecture-type presentation is provided in seven plant locations. A small studio for in-house production of the video tapes is available to the training Specialists. A script is developed from a training manual by condensing the information into 20-minute presentations. A prime objective of each tape is to highlight the safety and control aspects that accompany operator responsibilities in each of these areas. Testing is also handled on a two part basis; one test covers the fundamentals and a separate test is designed for each of the plant subjects. A walk-through examination is also performed for the plant portion. Operators are required to be requalified on emergency procedures on an annual basis and at two-year intervals in the other areas. (U.S.)

  15. Site Environmental Report for 2012 Sandia National Laboratories California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2013-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Field Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2012 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2012. General site and environmental program information is also included.

  16. Evaluating the effectiveness of an online medical laboratory technician program.

    Science.gov (United States)

    Hansen-Suchy, Kara

    2011-01-01

    The purpose of this study was to analyze the effectiveness of an online medical laboratory technician program in the academic preparation and development of laboratory professionals. A semi-quantitative comparative research design was used. Several factors were considered in this evaluation. Academic outcomes between online and campus medical laboratory technician (MLT) students was determined by comparing overall and categorical scores on certification exams as well as first time pass rate. Certification exam scores and first time pass rates were also compared to national norms when possible to do so. Demographic data, including age and experience were compared. Additionally, learning styles were assessed to determine if there was a correlation to overall GPA and MLT GPA and if learning styles could be used to predict successful completion of an online Associates of Applied Science. The research was conducted at an academic university located in the mountain west United States. Participants consisted of online and campus students enrolled in a Medical Laboratory Technician program that graduated with their Associate of Applied Science degree between the years 2007-2009. Results of these years were also compared to graduates from 2004-2006 in the same program. Certification performance and first time pass rates were the major outcomes measured. Age and experience were correlated. Online learning styles and GPA were also compared to successful degree completion. The researcher found no significant difference in certification performance with regard to total and categorical scores, and first time pass rates between campus and online MLT students. Online students were slightly older and had more experience working in a laboratory in some capacity. Correlation studies showed significant positive correlation between learning styles, GPA, and successful completion of an Associate of Applied Science degree. When registry scores were compared to the prior cohort of online

  17. USAF Summer Research Program - 1995 High School Apprenticeship Program Final Reports, Volume 14, Rome Laboratory

    National Research Council Canada - National Science Library

    Moore, Gary

    1995-01-01

    The United States Air Force High School Apprenticeship Program's (USAF HSAP) purpose is to place outstanding high school students whose interests are in the areas of mathematics, engineering, and science to work in a laboratory environment...

  18. Applications of Short Message Service and WAP in Operating Remotely Triggered Laboratories

    Directory of Open Access Journals (Sweden)

    Ananda Maiti

    2011-11-01

    Full Text Available Mobile devices are becoming more powerful, reliable and common every year. Hence we can use mobile devices for conducting laboratory sessions in distance education. This paper discusses issues of integrating Short Message Service (SMS to operate instruments of hardware-based remotely triggered laboratories. Components of the system include searching an experiment, performing experiment, result handling, error handling and method of exchanging information. It is designed using the National Instruments (NI Laboratory Virtual Instrument Engineering Workbench (LabVIEW development system and web services. The scheme will enable students to conduct hardware experiments with mobile devices using SMS from anywhere and anytime.

  19. FY-2007 PNNL Voluntary Protection Program (VPP) Program Evaluation

    International Nuclear Information System (INIS)

    Wright, Patrick A.; Fisher, Julie A.; Goheen, Steven C.; Isern, Nancy G.; Madson, Vernon J.; Meicenheimer, Russell L.; Pugh, Ray; Schneirla, Keri A.; Shockey, Loretta L.; Tinker, Mike R.

    2008-01-01

    This document reports the results of the FY-2007 PNNL VPP Program Evaluation, which is a self-assessment of the operational and programmatic performance of the Laboratory related to worker safety and health. The report was compiled by a team of worker representatives and safety professionals who evaluated the Laboratory's worker safety and health programs on the basis of DOE-VPP criteria. The principle elements of DOE's VPP program are: Management Leadership, Employee Involvement, Worksite Analysis, Hazard Prevention and Control, and Safety and Health Training.

  20. 1993 Site environmental report Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Culp, T.A.; Cheng, C.F.; Cox, W.; Durand, N.; Irwin, M.; Jones, A.; Lauffer, F.; Lincoln, M.; McClellan, Y.; Molley, K.

    1994-11-01

    This 1993 report contains monitoring data from routine radiological and nonradiological environmental surveillance activities. Summaries of significant environmental compliance programs in progress, such as National Environmental Policy Act documentation, environmental permits, environmental restoration, and various waste management programs for Sandia National Laboratories in Albuquerque, New Mexico, are included. The maximum offsite dose impact was calculated to be 0.0016 millirem. The total population within a 50-mile (80 kilometer) radius of Sandia National Laboratories/New Mexico received an estimated collective dose of 0.027 person-rem during 1993 from the laboratories operations, As in the previous year, the 1993 operations at Sandia National Laboratories/New Mexico had no discernible impact on the general public or on the environment. This report is prepared for the U.S. Department of Energy in compliance with DOE Order 5400.1

  1. Integrated initial training program for a CEGB operations engineer

    International Nuclear Information System (INIS)

    Tompsett, P.A.

    1987-01-01

    This paper considers the overall training programs undertaken by a newly appointed Operations Engineer at one of the Central Electricity Generating Board's (CEGB) Advanced Gas Cooled Reactor (AGR) nuclear power stations. The training program is designed to equip him with the skills and knowledge necessary for him to discharge his duties safely and effectively. In order to assist the learning process and achieve and integrated program, aspects of reactor technology and operation, initially the subject of theoretical presentations at the CEGB's Nuclear Power Training Center (NPTC) are reinforced by either simulation and/or practical experience on site. In the later stages plant-specific simulators, operated by trained tutors, are incorporated into the training program to provide the trainee with practical experience of plant operation. The trainee's performance is assessed throughout the program to provide feedback to the trainee, the trainers and station management

  2. Measurement quality assurance for radioassay laboratories

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, D.E. [Yankee Atomic Environmental Laboratory, Boston, MA (United States)

    1993-12-31

    Until recently, the quality of U.S. radioassay laboratory services has been evaluated by a limited number of governmental measurement assurance programs (MAPs). The major programs have been limited to the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the U.S. Nuclear Regulatory Commission (NRC). In 1988, an industry MAP was established for the nuclear power utility industry through the U.S. Council for Energy Awareness/National Institute of Standards and Technology (USCEA/NIST). This program functions as both a MAP for utility laboratories and/or their commercial contractor laboratories, and as a traceability program for the U.S. radioactive source manufacturers and the utility laboratories. Each of these generic MAPs has been initiated and is maintained to serve the specific needs of the sponsoring agency or organization. As a result, there is diversification in their approach, scope, requirements, and degree of traceability to NIST. In 1987, a writing committee was formed under the American National Standards Institute (ANSI) N42.2 committee to develop a standard to serve as the basis document for the creation of a national measurement quality assurance (MQA) program for radioassay laboratories in the U.S. The standard is entitled, {open_quotes}Measurement Quality Assurance For Radioassay Laboratories.{open_quotes} The document was developed to serve as a guide for MQA programs maintained for the specialized sectors of the radioassay community, such as bioassay, routine environmental monitoring, environmental restoration and waste management, radiopharmaceuticals, and nuclear facilities. It was the intent of the writing committee to develop a guidance document that could be utilized to establish a laboratory`s specific data quality objectives (DQOs) that govern the operational requirements of the radioassay process, including mandated protocols and recommendations.

  3. U.S./Russian Laboratory-to-Laboratory MPC ampersand A Program at the VNIITF Institute, Chelyabinsk-70

    International Nuclear Information System (INIS)

    Teryohin, V.; Tzygankov, G.; Blasy, J.

    1995-07-01

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the U.S./Russian Laboratory -to- Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will bi augmented with Russian and US technologies. The integrated MPC ampersand A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF

  4. U.S./Russian laboratory-to-laboratory MPC and A program at the VNIITF Institute, Chelyabinsk-70

    International Nuclear Information System (INIS)

    Teryohin, V.; Tzygankov, G.; Blasy, J.

    1996-01-01

    The All Russian Institute of Technical Physics (VNIITF) is one of the major sites in the nuclear weapons complex in Russia. The site contains a number of research facilities which use nuclear material as well as facilities active in disassembly and disposition of nuclear weapons. Chelyabinsk-70 (C-70) also has ties to the major nuclear materials production facilities in the Urals region of Russia. Under the US/Russian Laboratory-to-Laboratory cooperative program, enhanced safeguards systems are being implemented, initially at a reactor test area that contains two pulse reactors and a nuclear material storage facility. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. Under the Lab-to-Lab program, the existing systems will be augmented with Russian and US technologies. The integrated MPC and A system for the test facilities will be demonstrated to US and Russian audiences when completed and follow-on work at additional C-70 facilities will be identified. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories in support of VNIITF

  5. A NEW MUTATION OPERATOR IN GENETIC PROGRAMMING

    Directory of Open Access Journals (Sweden)

    Anuradha Purohit

    2013-01-01

    Full Text Available This paper proposes a new type of mutation operator, FEDS (Fitness, Elitism, Depth, and Size mutation in genetic programming. The concept behind the new mutation operator is inspired from already introduced FEDS crossover operator to handle the problem of code bloating. FEDS mutation operates by using local elitism replacement in combination with depth limit and size of the trees to reduce bloat with a subsequent improvement in the performance of trees (program structures. We have designed a multiclass classifier for some benchmark datasets to test the performance of proposed mutation. The results show that when the initial run uses FEDS crossover and the concluding run uses FEDS mutation, then not only is the final result significantly improved but there is reduction in bloat also.

  6. Canadian fuel development program and recent operational experience

    International Nuclear Information System (INIS)

    Cox, D.S.; Kohn, E.; Lau, J.H.K.; Dicke, G.J.; Macici, N.N.; Sancton, R.W.

    1995-01-01

    This paper provides an overview of the current Canadian CANDU fuel R and D programs and operational experience. The details of operational experience for fuel in Canadian reactors are summarized for the period 1991-1994; excellent fuel performance has been sustained, with steady-state bundle defect rates currently as low as 0.02%. The status of introducing long 37-element bundles, and bundles with rounded bearing pads is reviewed. These minor changes in fuel design have been selectively introduced in response to operational constraints (end-plate cracking and pressure-tube fretting) at Ontario Hydro's Bruce-B and Darlington stations. The R and D programs are generating a more complete understanding of CANDU fuel behaviour, while the CANDU Owners Group (COG) Fuel Technology Program is being re-aligned to a more exclusive focus on the needs of operating stations. Technical highlights and realized benefits from the COG program are summarized. Re-organization of AECL to provide a one-company focus, with an outward looking view to new CANDU markets, has strengthened R and D in advanced fuel cycles. Progress in AECL's key fuel cycle programs is also summarized. (author)

  7. National Renewable Energy Laboratory program on lightning risk and wind turbine generator protection

    Energy Technology Data Exchange (ETDEWEB)

    Muljadi, E. [National Renewable Energy Lab., Golden, CO (United States); McNiff, B. [McNiff Light Industry, Blue Hill, ME (United States)

    1997-12-31

    In the early development of wind turbine generators (WTG) in the United States, wind farms were primarily located in California where lightning activity is the lowest in the United States. As such, lightning protection for wind turbines was not considered to be a major issue for designers or wind farm operators. However, wind turbine installations are expanding into the Midwest, Southwest and other regions of the United States where lightning activity is significantly more intense and lightning damage to wind turbines is more common. There is a growing need, therefore, to better understand lightning activity on wind farms and to improve wind turbine lightning protection systems. In support of the U.S. Department of Energy/Electric Power Research Institute (DOE/EPRI) Utility Wind Turbine Verification Program (TVP), the National Renewable Energy Laboratory (NREL) has recently begun to take steps to determine the extent of damage due to lightning and the effectiveness of various lightning protection techniques for wind power plants. Working through the TVP program, NREL will also perform outreach and education to (1) help manufacturers to provide equipment that is adequately designed to survive lightning, (2) make sure that operators are aware of effective safety procedures, and (3) help site designers and wind farm developers take the risk of lightning into account as effectively as possible.

  8. Shielded analytical laboratory activities supporting waste isolation programs

    International Nuclear Information System (INIS)

    McCown, J.J.

    1985-08-01

    The Shielded Analytical Laboratory (SAL) is a six cell manipulator-equipped facility which was built in 1962 as an addition to the 325 Radiochemistry Bldg. in the 300 Area at Hanford. The facility provides the capability for handling a wide variety of radioactive materials and performing chemical dissolutions, separations and analyses on nuclear fuels, components, waste forms and materials from R and D programs

  9. Comparability between NQA-1 and the QA programs for analytical laboratories within the nuclear industry and EPA hazardous waste laboratories

    International Nuclear Information System (INIS)

    English, S.L.; Dahl, D.R.

    1989-01-01

    There is increasing cooperation between the Department of Energy (DOE), Department of Defense (DOD), and the Environmental Protection Agency (EPA) in the activities associated with monitoring and clean-up of hazardous wastes. Pacific Northwest Laboratory (PNL) examined the quality assurance/quality control programs that the EPA requires of the private sector when performing routine analyses of hazardous wastes to confirm how or if the requirements correspond with PNL's QA program based upon NQA-1. This paper presents the similarities and differences between NQA-1 and the QA program identified in ASTM-C1009-83, Establishing a QA Program for Analytical Chemistry Laboratories within the Nuclear Industry; EPA QAMS-005/80, Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans, which is referenced in Statements of Work for CERCLA analytical activities; and Chapter 1 of SW-846, which is used in analyses of RCRA samples. The EPA QA programs for hazardous waste analyses are easily encompassed within an already established NQA-1 QA program. A few new terms are introduced and there is an increased emphasis upon the QC/verification, but there are many of the same basic concepts in all the programs

  10. Pre-Employment Laboratory Education. Child Care Guidebook.

    Science.gov (United States)

    Texas Tech Univ., Lubbock. Home Economics Instructional Materials Center.

    This guidebook is designed for use in teaching students enrolled in secondary pre-employment laboratory education (PELE) child care programs. The first of two major sections includes an overview for teachers in planning, conducting, and evaluating a child care program. Specific topics discussed in section 1 include (1) the school-operated center,…

  11. Proceedings of the 5. DOE review of laboratory programs for women

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    The Fifth DOE Review of Laboratory Programs for Women was held at Brookhaven National Laboratory, May 6--8, 1996, and was co-sponsored by Princeton Plasma Physics Laboratory. The 1996 Review was organized as a Professional Workshop, that is, there were Invited Talks, plus Oral and Poster Presentations from the participants. These sessions were organized around the Focus Topics selected for the Review. The Focus Topics were: school-lab programs, college programs, positive image of women, cultural audits, employee development, employee mentoring, networking, dependent care, and alternate work schedules. On Monday evening, Toni Joseph gave an informal talk to the participants. She stressed the importance of submitting the Action Items for the respective facilities, and assured them that they would be looked at by the Office of Energy Research. On Tuesday morning, the DOE Points-of-Contact (POC) presented an overview of the past Reviews to give some background on the present DOE Review, and discussed plans for the future. The Review concluded with Focus Sessions, one for each Focus Topic. Each of these sessions was charged with producing a report on the session topic. The Focus Group Reports are included in the Proceedings, along with abstracts to the invited talks, oral presentations and poster presentations.

  12. FY-2007 PNNL Voluntary Protection Program (VPP) Program Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Patrick A.; Fisher, Julie A.; Goheen, Steven C.; Isern, Nancy G.; Madson, Vernon J.; Meicenheimer, Russell L.; Pugh, Ray; Schneirla, Keri A.; Shockey, Loretta L.; Tinker, Mike R.

    2008-08-15

    This document reports the results of the FY-2007 PNNL VPP Program Evaluation, which is a self-assessment of the operational and programmatic performance of the Laboratory related to worker safety and health. The report was compiled by a team of worker representatives and safety professionals who evaluated the Laboratory's worker safety and health programs on the basis of DOE-VPP criteria. The principle elements of DOE's VPP program are: Management Leadership, Employee Involvement, Worksite Analysis, Hazard Prevention and Control, and Safety and Health Training.

  13. Gallium Safety in the Laboratory

    International Nuclear Information System (INIS)

    Cadwallader, L.C.

    2003-01-01

    A university laboratory experiment for the US Department of Energy magnetic fusion research program required a simulant for liquid lithium. The simulant choices were narrowed to liquid gallium and galinstan (Ga-In-Sn) alloy. Safety information on liquid gallium and galinstan were compiled, and the choice was made to use galinstan. A laboratory safety walkthrough was performed in the fall of 2002 to support the galinstan experiment. The experiment has been operating successfully since early 2002

  14. Environmental impact report addendum for the continued operation of Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    Weston, R. F.

    1996-01-01

    An environmental impact statement/environmental impact report (ES/EIR) for the continued operation and management of Lawrence Livermore National Laboratory (LLNL) was prepared jointly by the U.S. Department of Energy (DOE) and the University of California (UC). The scope of the document included near-term (within 5-10 years) proposed projects. The UC Board of Regents, as state lead agency under the California Environmental Quality Act (CEQA), certified and adopted the EIR by issuing a Notice of Determination on November 20, 1992. The DOE, as the lead federal agency under the National Environmental Policy Act (NEPA), adopted a Record of Decision for the ES on January 27, 1993 (58 Federal Register [FR] 6268). The DOE proposed action was to continue operation of the facility, including near-term proposed projects. The specific project evaluated by UC was extension of the contract between UC and DOE for UC's continued operation and management of LLNL (both sites) from October 1, 1992, through September 30, 1997. The 1992 ES/EIR analyzed impacts through the year 2002. The 1992 ES/EIR comprehensively evaluated the potential environmental impacts of operation and management of LLNL within the near-term future. Activities evaluated included programmatic enhancements and modifications of facilities and programs at the LLNL Livermore site and at LLNL's Experimental Test Site (Site 300) in support of research and development missions 2048 established for LLNL by Congress and the President. The evaluation also considered the impacts of infrastructure and building maintenance, minor modifications to buildings, general landscaping, road maintenance, and similar routine support activities

  15. The production control laboratories of the plutonium extraction Plant at Marcoule. Six years operating experience: 1957 - 1963

    International Nuclear Information System (INIS)

    Fontaine, A.

    1964-01-01

    In this paper, the author attempts to sum up the conditions prevailing, after six years of operation, in the Laboratories of the Plutonium Extraction Plant. The origins and objectives are briefly reviewed, the technology and staff recruitment policy are examined, and progress made is shown. The methods used as well as the scope of application and limits imposed at the present state are considered. Past achievements and further possibilities in the next future are examined. An attempt has been made to bring out the outlooks for the more distant future and to investigate the conditions required for the successful carrying out of the program. (author) [fr

  16. DOE standard: The Department of Energy Laboratory Accreditation Program administration

    International Nuclear Information System (INIS)

    1998-12-01

    This technical standard describes the US Department of Energy Laboratory Accreditation Program (DOELAP), organizational responsibilities, and the accreditation process. DOELAP evaluates and accredits personnel dosimetry and radiobioassay programs used for worker monitoring and protection at DOE and DOE contractor sites and facilities as required in Title 10, Code of Federal Regulations, Part 835, Occupational Radiation Protection. The purpose of this technical standard is to establish procedures for administering DOELAP and acquiring accreditation

  17. Development and implementation of the waste diversion program at MDS Nordion's Cobalt Operations Facility

    International Nuclear Information System (INIS)

    Wasiak, T.

    2004-01-01

    Historically, the MDS Nordion (MDSN) Cobalt Operations Facility sent solid waste for disposal to Atomic Energy of Canada Ltd.'s Chalk River Laboratories (AECL-CRL). A large portion of this waste was not contaminated. Because this non-contaminated waste originated in the 'active area' of the MDSN facility, it was routinely disposed of as low-level active waste. In 2002, MDSN undertook an initiative to develop and implement a more sophisticated and more economical waste management program. The Waste Diversion Program (WDP) ensures continued environmental and public protection, and reduces the demand on Canada's limited capacity for storage of radioactive material and the associated operating costs. The goal of the WDP is to reduce the volume of waste currently being shipped to AECL-CRL's Waste Management Operation as low-level active waste. The presentation discusses key elements of both the development and the implementation of WDP. It focuses on the following areas: the regulatory environment surrounding the waste disposal issues in Canada and abroad. Methods used by MDSN for determination of radionuclides, which could be present in the facility. Choice of equipment and calculation of individual alarm levels for each identified radionuclide. Key elements of the practical implementation of the program. CNSC Regulatory approval process. The bottom line - dollars and cents. The primary objective of the WDP is to ensure that only waste, which meets regulatory requirements, is diverted from the solid active waste stream. This has been successfully accomplished in MDSN's Cobalt Operations Facility. The objective of the presentation is to share the knowledge and experience obtained in the development process, and thus provide a guideline for other nuclear facilities interested in establishing similar proactive and cost effective programs. (author)

  18. [Construction and operation status of management system of laboratories of schistosomiasis control institutions in Hubei Province].

    Science.gov (United States)

    Zhao-Hui, Zheng; Jun, Qin; Li, Chen; Hong, Zhu; Li, Tang; Zu-Wu, Tu; Ming-Xing, Zeng; Qian, Sun; Shun-Xiang, Cai

    2016-10-09

    To analyze the construction and operation status of management system of laboratories of schistosomiasis control institutions in Hubei Province, so as to provide the reference for the standardized detection and management of schistosomiasis laboratories. According to the laboratory standard of schistosomiasis at provincial, municipal and county levels, the management system construction and operation status of 60 schistosomiasis control institutions was assessed by the acceptance examination method from 2013 to 2015. The management system was already occupied over all the laboratories of schistosomiasis control institutions and was officially running. There were 588 non-conformities and the inconsistency rate was 19.60%. The non-conformity rate of the management system of laboratory quality control was 38.10% (224 cases) and the non-conformity rate of requirements of instrument and equipment was 23.81% (140 cases). The management system has played an important role in the standardized management of schistosomiasis laboratories.

  19. Waste certification program plan for Oak Ridge National Laboratory. Revision 2

    International Nuclear Information System (INIS)

    1997-09-01

    This document defines the waste certification program (WCP) developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the WCP is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements for mixed (both radioactive and hazardous) and hazardous ncluding polychlorinated biphenyls (PCB) waste. Program activities will be conducted according to ORNL Level 1 document requirements

  20. Annual Site Environmental Report, Department of Energy Operations at the Energy Technology Engineering Center – Area IV, Santa Susana Field Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Frazee, Brad [North Wind, Inc., Idaho Falls, ID (United States); Hay, Scott [North Wind, Inc., Idaho Falls, ID (United States); Wondolleck, John [North Wind, Inc., Idaho Falls, ID (United States); Sorrels, Earl [North Wind, Inc., Idaho Falls, ID (United States); Rutherford, Phil [North Wind, Inc., Idaho Falls, ID (United States); Dassler, David [North Wind, Inc., Idaho Falls, ID (United States); Jones, John [North Wind, Inc., Idaho Falls, ID (United States)

    2015-05-01

    This Annual Site Environmental Report (ASER) for 2014 describes the environmental conditions related to work performed for the DOE at Area IV of the Santa Susana Field Laboratory (SSFL). The ETEC, a government-owned, company-operated test facility, was located in Area IV. The operations in Area IV included development, fabrication, operation and disassembly of nuclear reactors, reactor fuel, and other radioactive materials. Other activities in the area involved the operation of large-scale liquid metal facilities that were used for testing non-nuclear liquid metal fast breeder reactor components. All nuclear work was terminated in 1988, and all subsequent radiological work has been directed toward environmental restoration and decontamination and decommissioning (D&D) of the former nuclear facilities and their associated sites. Liquid metal research and development ended in 2002. Since May 2007, the D&D operations in Area IV have been suspended by the DOE, but the environmental monitoring and characterization programs have continued. Results of the radiological monitoring program continue to indicate that there are no significant releases of radioactive material from Area IV of SSFL. All potential exposure pathways are sampled and/or monitored, including air, soil, surface water, groundwater, direct radiation, transfer of property (land, structures, waste), and recycling.

  1. USA/FBR program status FFTF operations startup experience

    International Nuclear Information System (INIS)

    Moffitt, W.C.; Izatt, R.D.

    1981-06-01

    This paper gives highlights of the major Operations evaluations and operational results of the startup acceptance testing program and initiation of normal operating cycles for experiment irradiation in the FFTF. 33 figures

  2. Measurement quality assurance for radioassay laboratories

    International Nuclear Information System (INIS)

    McCurdy, D.E.

    1993-01-01

    Until recently, the quality of U.S. radioassay laboratory services has been evaluated by a limited number of governmental measurement assurance programs (MAPs). The major programs have been limited to the U.S. Department of Energy (DOE), the U.S. Environmental Protection Agency (EPA) and the U.S. Nuclear Regulatory Commission (NRC). In 1988, an industry MAP was established for the nuclear power utility industry through the U.S. Council for Energy Awareness/National Institute of Standards and Technology (USCEA/NIST). This program functions as both a MAP for utility laboratories and/or their commercial contractor laboratories, and as a traceability program for the U.S. radioactive source manufacturers and the utility laboratories. Each of these generic MAPs has been initiated and is maintained to serve the specific needs of the sponsoring agency or organization. As a result, there is diversification in their approach, scope, requirements, and degree of traceability to NIST. In 1987, a writing committee was formed under the American National Standards Institute (ANSI) N42.2 committee to develop a standard to serve as the basis document for the creation of a national measurement quality assurance (MQA) program for radioassay laboratories in the U.S. The standard is entitled, open-quotes Measurement Quality Assurance For Radioassay Laboratories.open-quotes The document was developed to serve as a guide for MQA programs maintained for the specialized sectors of the radioassay community, such as bioassay, routine environmental monitoring, environmental restoration and waste management, radiopharmaceuticals, and nuclear facilities. It was the intent of the writing committee to develop a guidance document that could be utilized to establish a laboratory's specific data quality objectives (DQOs) that govern the operational requirements of the radioassay process, including mandated protocols and recommendations

  3. The value of assessments in Lawrence Livermore National Laboratory's Waste Certification Programs

    International Nuclear Information System (INIS)

    Ryan, E.M.

    1995-05-01

    This paper will discuss the value of assessments in Lawrence Livermore National Laboratory's Waste Certification Programs by: introducing the organization and purpose of the LLNL Waste Certification Programs for transuranic, low-level, and hazardous waste; examining the differences in internal assessment/audit requirements for these programs; discussing the values and costs of assessments in a waste certification program; presenting practical recommendations to maximize the value of your assessment programs; and presenting improvements in LLNL's waste certification processes that resulted from assessments

  4. US/Russian laboratory-to-laboratory MPC ampersand A Program at the VNIITF Institute, Chelyabinsk-70 May 1996

    International Nuclear Information System (INIS)

    Tsygankov, G.; Churikov, Y.; Teryokhin, V.

    1996-01-01

    The AR Russian Institute of Technical Physics (VNIITF), also called Chelyabinsk-70, is one of two Russian federal nuclear centers established to design, test and support nuclear weapons throughout their life cycle. The site contains research facilities which use nuclear materials, two experimental plants which manufacture prototype samples for nuclear weapons, and a site for various ground tests. Chelyabinsk-70 also has cooperative relationships with the major nuclear materials production facilities in the Urals region of Russia. Chelyabinsk-70 has been participating in the US/Russian Laboratory-to-laboratory cooperative program for approximately one year. Six US Department of Energy Laboratories are carrying out a program of cooperation with VNIITF to improve the capabilities and facilities for nuclear materials protection, control, and accounting (MPC ampersand A) at VNIITF. A Safeguards Effectiveness Evaluation Workshop was conducted at VNIITF in July, 1995. Enhanced safeguards systems are being implemented, initially at a reactor test area that contains three pulse reactors. Significant improvements to physical security and access control systems are under way. C-70 is developing an extensive computerized system that integrates the physical security alarm station with elements of the nuclear material control system. The existing systems will be augmented with Russian and US technologies. This paper will describe the on-going activities and describe the cooperative effort between the Lawrence Livermore, Los Alamos, Sandia, Oak Ridge, Pacific Northwest, and Brookhaven US Department of Energy National Laboratories and VNIITF

  5. Efficiency in pathology laboratories: a survey of operations management in NHS bacteriology.

    Science.gov (United States)

    Szczepura, A K

    1991-01-01

    In recent years pathology laboratory services in the U.K. have experienced large increases in demand. But the extent to which U.K. laboratories have introduced controls to limit unnecessary procedures within the laboratory was previously unclear. This paper presents the results of a survey of all 343 NHS bacteriology laboratories which records the extent to which such operations management controls are now in place. The survey shows large differences between laboratories. Quality controls over inputs, the use of screening tests as a culture substitute, the use of direct susceptibility testing, controls over routine antibiotic susceptibility testing, and controls over reporting of results all vary widely. The survey also records the prevalence of hospital antibiotic policies, the extent to which laboratories produce antibiograms for user clinicians, the degree of computerisation in data handling, and the degree of automation in processing specimens. Finally, the survey uncovers a large variation between NHS labs in the percentage of bacteriology samples which prove positive and lead to antibiotic susceptibility tests being carried out.

  6. Los Alamos National Laboratory Science Education Program. Annual progress report, October 1, 1995--September 30, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Gill, D.H.

    1997-01-01

    The National Teacher Enhancement program (NTEP) is a three-year, multi-laboratory effort funded by the National Science Foundation and the Department of Energy to improve elementary school science programs. The Los Alamos National Laboratory targets teachers in northern New Mexico. FY96, the third year of the program, involved 11 teams of elementary school teachers (grades 4-6) in a three-week summer session, four two-day workshops during the school year and an on-going planning and implementation process. The teams included twenty-one teachers from 11 schools. Participants earned a possible six semester hours of graduate credit for the summer institute and two hours for the academic year workshops from the University of New Mexico. The Laboratory expertise in the earth and environmental science provided the tie between the Laboratory initiatives and program content, and allowed for the design of real world problems.

  7. NET-ZERO ENERGY BUILDING OPERATOR TRAINING PROGRAM (NZEBOT)

    Energy Technology Data Exchange (ETDEWEB)

    Brizendine, Anthony; Byars, Nan; Sleiti, Ahmad; Gehrig, Bruce; Lu, Na

    2012-12-31

    The primary objective of the Net-Zero Energy Building Operator Training Program (NZEBOT) was to develop certificate level training programs for commercial building owners, managers and operators, principally in the areas of energy / sustainability management. The expected outcome of the project was a multi-faceted mechanism for developing the skill-based competency of building operators, owners, architects/engineers, construction professionals, tenants, brokers and other interested groups in energy efficient building technologies and best practices. The training program draws heavily on DOE supported and developed materials available in the existing literature, as well as existing, modified, and newly developed curricula from the Department of Engineering Technology & Construction Management (ETCM) at the University of North Carolina at Charlotte (UNC-Charlotte). The project goal is to develop a certificate level training curriculum for commercial energy and sustainability managers and building operators that: 1) Increases the skill-based competency of building professionals in energy efficient building technologies and best practices, and 2) Increases the workforce pool of expertise in energy management and conservation techniques. The curriculum developed in this project can subsequently be used to establish a sustainable energy training program that can contribute to the creation of new “green” job opportunities in North Carolina and throughout the Southeast region, and workforce training that leads to overall reductions in commercial building energy consumption. Three energy training / education programs were developed to achieve the stated goal, namely: 1. Building Energy/Sustainability Management (BESM) Certificate Program for Building Managers and Operators (40 hours); 2. Energy Efficient Building Technologies (EEBT) Certificate Program (16 hours); and 3. Energy Efficent Buildings (EEB) Seminar (4 hours). Training Program 1 incorporates the following

  8. The central gamma spectrometry laboratory of the GSF Institute of Radiation Protection

    International Nuclear Information System (INIS)

    Ruckerbauer, F.; Dietl, F.; Winkler, R.

    1997-01-01

    Since the middle of 1995 the WG Radioecology is operating the central gamma spectrometry laboratory of the GSF-Institute of Radiation Protection. The main scope of the laboratory is the gamma spectrometric analysis of samples within the research program of the institute and within joint programs with other institutes of the GSF research center. In the present report set-up and technical data of the measuring equipment, the central operating and data evaluation system and measures for quality assurance are described. At that time 18 semiconductor detectors are available for gamma spectrometric sample analysis which is standardized with respect to operation, evaluation algorithms, nuclide data, data safety and documentation. (orig.) [de

  9. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs.

  10. Biomedical and environmental sciences programs at the Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Richmond, C.R.; Johnson, C.A.

    1988-02-01

    This progress report summarizes the research and development activities conducted in the Biomedical and Environmental Sciences Programs of Oak Ridge National Laboratory. The report is structured to provide descriptions of current activities and accomplishments in each of the major organizational units. Following the accounts of research programs, is a list of publications and awards to its members. 6 figs., 14 tabs

  11. Relaxed Operational Semantics of Concurrent Programming Languages

    Directory of Open Access Journals (Sweden)

    Gustavo Petri

    2012-08-01

    Full Text Available We propose a novel, operational framework to formally describe the semantics of concurrent programs running within the context of a relaxed memory model. Our framework features a "temporary store" where the memory operations issued by the threads are recorded, in program order. A memory model then specifies the conditions under which a pending operation from this sequence is allowed to be globally performed, possibly out of order. The memory model also involves a "write grain," accounting for architectures where a thread may read a write that is not yet globally visible. Our formal model is supported by a software simulator, allowing us to run litmus tests in our semantics.

  12. Laboratory Directed Research and Development Program FY2011

    Energy Technology Data Exchange (ETDEWEB)

    none, none

    2012-04-27

    Berkeley Lab's research and the Laboratory Directed Research and Development (LDRD) program support DOE's Strategic Themes that are codified in DOE's 2006 Strategic Plan (DOE/CF-0010), with a primary focus on Scientific Discovery and Innovation. For that strategic theme, the Fiscal Year (FY) 2011 LDRD projects support each one of the three goals through multiple strategies described in the plan. In addition, LDRD efforts support the four goals of Energy Security, the two goals of Environmental Responsibility, and Nuclear Security (unclassified fundamental research that supports stockpile safety and nonproliferation programs). Going forward in FY 2012, the LDRD program also supports the Goals codified in the new DOE Strategic Plan of May, 2011. The LDRD program also supports Office of Science strategic plans, including the 20-year Scientific Facilities Plan and the Office of Science Strategic Plan. The research also supports the strategic directions periodically under consideration and review by the Office of Science Program Offices, such as LDRD projects germane to new research facility concepts and new fundamental science directions. Brief summares of projects and accomplishments for the period for each division are included.

  13. CDC’s Newborn Screening Program - Role of Laboratories

    Centers for Disease Control (CDC) Podcasts

    2013-09-03

    When newborn screening started in the U.S. 50 years ago, many questioned whether it was even possible to test every baby born in every state. Today, all states screen babies for at least 29 disorders that can be detected through laboratory testing. In this podcast, Dr. Carla Cuthbert talks about CDC’s Newborn Screening Quality Assurance Program and the role laboratories play in keeping babies healthy.  Created: 9/3/2013 by National Center for Environmental Health (NCEH).   Date Released: 9/3/2013.

  14. Allied-General operator training program

    International Nuclear Information System (INIS)

    Ayers, A.L.; Ebel, P.E.

    1975-01-01

    All operators at Allied-General Nuclear Services are initially trained in the basic concepts of radiation and radiation protection, they are drilled in the basic technical tools needed for further training, they are instructed in the design and operation of the Barnwell Nuclear Fuel Plant, and they are introduced to the actual operations via operating procedures. This all occurs during the Before-the-Baseline training phase and then the operators move on Beyond-the-Baseline. There they physically learn how to do their job at their own pace using checklists as a guide. All operators are then internally certified. Progression is based on demonstrated ability and those that qualify go on to jobs requiring NRC licenses. Upon internal certification, retraining commences immediately and will continue in its four month, one year, and two year cycles. Current feedback from the various classes that have completed the courses and are now in the retraining program indicates that this combination of initial technical training, on-the-job training, and retraining will produce and maintain effective, safe, and efficient operators

  15. Year 2000 assessment report, Los Alamos National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Weir, D.

    1998-04-21

    The purpose of this report is to advise managers on the status of Year 2000 readiness at the Laboratory and provide a summary of critical issues to be addressed in order to ensure that the Year 2000 date rollover will not disrupt Laboratory Operations. The Laboratory`s Year 2000 council members are in the first phase of Year 2000 plans: gathering data and assessing the status of their divisions or programs. This first snapshot of the Laboratory Year 2000 readiness assessment is expected to grow and change over time as more refined assessments, plans, and schedules are developed and as more information becomes available. Here are findings to date: (1) Embedded systems` status not known. (2) Preliminary cost estimates for Year 2000 repairs, testing, and implementation are estimated to be at least $5.9 million, not including embedded systems. (3) The Laboratory is required to make unavoidable purchases of Year 2000-compliant products. (4) The Year 2000 short-term issue forces some long-term transition plans to be set aside. (5) The Laboratory is at risk for the following consequences if they can`t demonstrate an active Year 2000 program: risk of system failures; potential funding freezes by the OMB and DOE; legal liabilities; and risk to the UC contract. (6) The deadline for this project is immutable. (7) DOE is continually increasing reporting requirements, expanding from only DOE mission-essential to all operations. (7) DOE audit criticizes the Laboratory`s mission-essential systems planning.

  16. Earthquake engineering programs at the Lawrence Livermore Laboratory

    International Nuclear Information System (INIS)

    Tokarz, F.J.

    1980-01-01

    Information is presented concerning assessments of current seismic design methods; systematic evaluation program for older operating reactors; seismic vulnerability of fuel reprocessing facilities; and advisability of seismic scram

  17. PNNL FY2005 DOE Voluntary Protection Program (VPP) Program Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Patrick A.; Madson, Vernon J.; Isern, Nancy G.; Haney, Janice M.; Fisher, Julie A.; Goheen, Steven C.; Gulley, Susan E.; Reck, John J.; Collins, Drue A.; Tinker, Mike R.; Walker, Landon A.; Wynn, Clifford L.

    2005-01-31

    This document reports the results of the FY 2005 PNNL VPP Program Evaluation, which is a self-assessment of the operational and programmatic performance of the Laboratory related to worker safety and health. The report was compiled by a team of worker representatives and safety professionals who evaluated the Laboratory's worker safety and health programs on the basis of DOE-VPP criteria. The principle elements of DOE's VPP program are: Management Leadership, Employee Involvement, Worksite Analysis, Hazard Prevention and Control, and Safety and Health Training.

  18. Laboratory Directed Research and Development Annual Report FY 2017

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O.

    2018-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  19. Laboratory Directed Research and Development Annual Report FY 2016

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Kelly O. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-03-30

    A national laboratory must establish and maintain an environment in which creativity and innovation are encouraged and supported in order to fulfill its missions and remain viable in the long term. As such, multiprogram laboratories are given discretion to allocate a percentage of their operating budgets to support research and development projects that align to PNNL’s and DOE’s missions and support the missions of other federal agencies, including DHS, DOD, and others. DOE Order 413.2C sets forth DOE’s Laboratory Directed Research and Development (LDRD) policy and guidelines for DOE multiprogram laboratories, and it authorizes the national laboratories to allocate up to 6 percent of their operating budgets to fund the program. LDRD is innovative research and development, selected by the Laboratory Director or his/her designee, for the purpose of maintaining the scientific and technological vitality of the Laboratory. The projects supported by LDRD funding all have demonstrable ties to DOE/DHS missions and may also be relevant to the missions of other federal agencies that sponsor work at the Laboratory. The program plays a key role in attracting the best and brightest scientific staff, which is needed to serve the highest priority DOE mission objectives. Individual project reports comprise the bulk of this LDRD report. The Laboratory focuses its LDRD research on scientific assets that often address more than one scientific discipline.

  20. 1985 Effluent and environmental monitoring report for the Bettis Atomic Power Laboratory

    International Nuclear Information System (INIS)

    1985-01-01

    The results of the radiological and non-radiological environmental monitoring programs for 1985 at the Bettis Laboratory are presented. The results obtained from the monitoring programs demonstrate that the existing procedures ensure that all environmental releases during 1985 were in accordance with applicable State and Federal regulations. Evaluation of the environmental data indicates that operation of the Laboratory continued to have no adverse effect on the quality of the environment. Furthermore, a conservative assessment of radiation exposure to the general public as a result of Laboratory operations demonstrated that the dose received by any member of the public was well below the most restrictive dose limits prescribed by the Environmental Protection Agency and the Department of Energy

  1. NNSA Laboratory Directed Research and Development Program 2008 Symposium--Focus on Energy Security

    Energy Technology Data Exchange (ETDEWEB)

    Kotta, P R; Sketchley, J A

    2008-08-20

    The Laboratory Directed Research and Development (LDRD) Program was authorized by Congress in 1991 to fund leading-edge research and development central to the national laboratories core missions. LDRD anticipates and engages in projects on the forefront of science and engineering at the Department of Energy (DOE) national laboratories, and has a long history of addressing pressing national security needs at the National Nuclear Security Administration (NNSA) laboratories. LDRD has been a scientific success story, where projects continue to win national recognition for excellence through prestigious awards, papers published and cited in peer-reviewed journals, mainstream media coverage, and patents granted. The LDRD Program is also a powerful means to attract and retain top researchers from around the world, to foster collaborations with other prominent scientific and technological institutions, and to leverage some of the world's most technologically advanced assets. This enables the LDRD Program to invest in high-risk and potentially high-payoff research that creates innovative technical solutions for some of our nation's most difficult challenges. Worldwide energy demand is growing at an alarming rate, as developing nations continue to expand their industrial and economic base on the back of limited global resources. The resulting international conflicts and environmental consequences pose serious challenges not only to this nation, but to the international community as well. The NNSA and its national security laboratories have been increasingly called upon to devote their scientific and technological capabilities to help address issues that are not limited solely to the historic nuclear weapons core mission, but are more expansive and encompass a spectrum of national security missions, including energy security. This year's symposium highlights some of the exciting areas of research in alternative fuels and technology, nuclear power, carbon

  2. Glovebox glove change program at Technical Area 55, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Olivas, J.D.; Burkett, B.O.; Weier, D.R.

    1992-01-01

    A formal glovebox glove change program is planned for the the gloveboxes in technical area 55 at the Los Alamos National laboratory. The program will increase worker safety by reducing the chance of having worn out gloves in service. The Los Alamos program is based on a similar successful program at the Rocky Flats Plant in Golden, Colorado. Glove change frequencies at Rocky Flats were determined statistically, and are based on environmental factors the glovebox gloves are subjected to

  3. Regional Test Center Operations Manual

    Energy Technology Data Exchange (ETDEWEB)

    Stein, Joshua [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Burnham, Laurie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-07-01

    The U.S. DOE Regional Test Center for Solar Technologies program was established to validate photovoltaic (PV) technologies installed in a range of different climates. The program is funded by the Energy Department's SunShot Initiative. The initiative seeks to make solar energy cost competitive with other forms of electricity by the end of the decade. Sandia National Laboratory currently manages four different sites across the country. The National Renewable Energy Laboratory manages a fifth site in Colorado. The entire PV portfolio currently includes 20 industry partners and almost 500 kW of installed systems. The program follows a defined process that outlines tasks, milestones, agreements, and deliverables. The process is broken out into four main parts: 1) planning and design, 2) installation, 3) operations, and 4) decommissioning. This operations manual defines the various elements of each part.

  4. Site environmental report for 2009 : Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2010-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office oversees operations at the site, using Sandia Corporation as a management and operating contractor. This Site Environmental Report for 2009 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2009. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2009. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2009. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  5. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    International Nuclear Information System (INIS)

    Bissani, M; O'Kelly, D S

    2006-01-01

    operated infrequently for radioisotope production. Because the two irradiation programs compete by utilizing the same core locations, the issues should be resolved at a high level. (c) Cobalt-60 production uses the most valuable irradiation location in the ETRR-2 (the high neutron density flux-trap), but there seems to be no potential customer for the Co-60. Further, the low number of hours the reactor is operated per week precludes ever producing a marketable specific activity of Co-60. Accordingly, Co-60 production should be reevaluated. (d) ETRR-2 staff would benefit from additional training to successfully design new experiment facilities and utilize existing facilities more effectively. This training can include IAEA Fellowships, as well as topical DOE Sister Laboratory visits to gain experience using equipment and research tools at other research reactor facilities

  6. Joint Assessment of ETRR-2 Research Reactor Operations Program, Capabilities, and Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Bissani, M; O' Kelly, D S

    2006-05-08

    provide color-enhanced gemstones but is operated infrequently for radioisotope production. Because the two irradiation programs compete by utilizing the same core locations, the issues should be resolved at a high level. (c) Cobalt-60 production uses the most valuable irradiation location in the ETRR-2 (the high neutron density flux-trap), but there seems to be no potential customer for the Co-60. Further, the low number of hours the reactor is operated per week precludes ever producing a marketable specific activity of Co-60. Accordingly, Co-60 production should be reevaluated. (d) ETRR-2 staff would benefit from additional training to successfully design new experiment facilities and utilize existing facilities more effectively. This training can include IAEA Fellowships, as well as topical DOE Sister Laboratory visits to gain experience using equipment and research tools at other research reactor facilities.

  7. Decentralization of operating reactor licensing reviews: NRR Pilot Program

    International Nuclear Information System (INIS)

    Hannon, J.N.

    1984-07-01

    This report, which has incorporated comments received from the Commission and ACRS, describes the program for decentralization of selected operating reactor licensing technical review activities. The 2-year pilot program will be reviewed to verify that safety is enhanced as anticipated by the incorporation of prescribed management techniques and application of resources. If the program fails to operate as designed, it will be terminated

  8. Final report, Ames Mobile Laboratory Project: The development and operation of instrumentation in a mobile laboratory for in situ, real-time screening and characterization of soils using the laser ablation sampling technique

    International Nuclear Information System (INIS)

    Anderson, M.S.; Braymen, S.D.

    1995-01-01

    The main focus of the Ames Laboratory's Technology Integration Program, TIP, from May 1991 through December 1994 was the development, fabrication, and demonstration of a mobile instrumentation laboratory incorporating rapid in situ sampling systems for safe, rapid, and cost effective soil screening/characterization. The Mobile Demonstration Laboratory for Environmental Screening Technologies, MDLEST, containing the analysis instrumentation, along with surface and subsurface sampling probe prototypes employing the laser ablation sampling technique were chosen to satisfy the particular surface and subsurface soil characterization needs of the various Department of Energy facilities for determining the extent of heavy metal and radionuclide contamination. The MDLEST, a 44 foot long 5th wheel trailer, is easily configured for the analysis instrumentation and sampling system required for the particular site work. This mobile laboratory contains all of the utilities needed to satisfy the operating requirements of the various instrumentation installed. These utilities include, an electric generator, a chilled water system, process gases, a heating/air conditioning system, and computer monitoring and automatic operating systems. Once the MDLEST arrives at the job site, the instrumentation is aligned and calibration is completed, sampling and analysis operations begin. The sample is acquired, analyzed and the results reported in as little as 10 minutes. The surface sampling probe is used in two modes to acquire samples for analysis. It is either set directly on the ground over the site to be sampled, in situ sampling, or in a special fixture used for calibrating the sampling analysis system with standard soil samples, having the samples brought to the MDLEST. The surface sampling probe was used to in situ sample a flat concrete surface (nondestructively) with the ablated sample being analyzed by the instrumentation in the MDLEST

  9. Environmental Sciences Division Toxicology Laboratory standard operating procedures

    International Nuclear Information System (INIS)

    Kszos, L.A.; Stewart, A.J.; Wicker, L.F.; Logsdon, G.M.

    1989-09-01

    This document was developed to provide the personnel working in the Environmental Sciences Division's Toxicology Laboratory with documented methods for conducting toxicity tests. The document consists of two parts. The first part includes the standard operating procedures (SOPs) that are used by the laboratory in conducting toxicity tests. The second part includes reference procedures from the US Environmental Protection Agency document entitled Short-Term Methods for Estimating the Chronic Toxicity of Effluents and Receiving Waters to Freshwater Organisms, upon which the Toxicology Laboratory's SOPs are based. Five of the SOPs include procedures for preparing Ceriodaphnia survival and reproduction test. These SOPs include procedures for preparing Ceriodaphnia food (SOP-3), maintaining Ceriodaphnia cultures (SOP-4), conducting the toxicity test (SOP-13), analyzing the test data (SOP-13), and conducting a Ceriodaphnia reference test (SOP-15). Five additional SOPs relate specifically to the fathead minnow (Pimephales promelas) larval survival and growth test: methods for preparing fathead minnow larvae food (SOP-5), maintaining fathead minnow cultures (SOP-6), conducting the toxicity test (SOP-9), analyzing the test data (SOP-12), and conducting a fathead minnow reference test (DOP-14). The six remaining SOPs describe methods that are used with either or both tests: preparation of control/dilution water (SOP-1), washing of glassware (SOP-2), collection and handling of samples (SOP-7), preparation of samples (SOP-8), performance of chemical analyses (SOP-11), and data logging and care of technical notebooks (SOP-16)

  10. Ontario hydro's aqueous discharge monitoring program

    International Nuclear Information System (INIS)

    Mehdi, S.H.; Booth, M.R.; Massey, R.; Herrmann, O.

    1992-01-01

    The Province of Ontario has legislated a comprehensive monitoring program for waterborne trace contaminants called MISA - Municipal Industrial Strategy for Abatement. The electric power sector regulation applies to all generating stations (Thermal, Nuclear, Hydraulic). The program commenced in June, 1990. The current phase of the regulation requires the operators of the plants to measure the detailed composition of the direct discharges to water for a one year period. Samples are to be taken from about 350 identified streams at frequencies varying from continuous and daily to quarterly. The data from this program will be used to determine the scope of the ongoing monitoring program and control. This paper discusses the preparation and planning, commissioning, training and early operations phase of the MISA program. In response, the central Analytical Laboratory and Environmental staff worked to develop a sampling and analytical approach which uses the plant laboratories, the central analytical laboratory and a variety of external laboratories. The approach considered analytical frequency, sample stability, presence of radioactivity, suitability of staff, laboratory qualifications, need for long term internal capabilities, availability of equipment, difficulty of analysis, relationship to other work and problems, capital and operating costs. The complexity of the sampling program required the development of a computer based schedule to ensure that all required samples were taken as required with phase shifts between major sampling events at different plants to prevent swamping the capability of the central or external laboratories. New equipment has been purchased and installed at each plant to collect 24 hour composite samples. Analytical equipment has been purchased for each plant for analysis of perishable analytes or of samples requiring daily or thrice weekly analysis. Training programs and surveys have been implemented to assure production of valid data

  11. Brookhaven National Laboratory site environmental report for calendar year 1994

    Energy Technology Data Exchange (ETDEWEB)

    Naidu, J.R.; Royce, B.A. [eds.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory`s operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory.

  12. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    Energy Technology Data Exchange (ETDEWEB)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory.

  13. Astrophysical research at Lawrence Livermore Laboratory, proposal for a formal program

    International Nuclear Information System (INIS)

    Lokke, W.A.; Tarter, C.B.

    1979-12-01

    Basic research is often characterized as self-directed, moving on its own timescale, spurred by the unexpected. An effective, organized basic astrophysics research program does not have to be a contradiction in terms. A broadly chartered, long-range LLL Astrophysics Research Program, created and recognized by LLL management, can benefit the general scientific community, stimulate the staff, maintain important capability, and enrich the Laboratory

  14. Sandia Laboratories technical capabilities: auxiliary capabilities

    International Nuclear Information System (INIS)

    1978-09-01

    The primary responsibility of the environmental health function is the evaluation and control of hazardous materials and conditions. The evaluation and control of toxic materials, nonionizing radiation such as laser beams and microwaves, and ionizing radiation such as from radiation machines and radioactive sources, are examples of the activities of environmental health programs. A chemical laboratory is operated for the analysis of toxic and radioactive substances and for the bioassay program to provide an index of internal exposure of personnel to toxic and radioactive materials. Instrumentation support and development is provided for environmental health activities. A dosimetry program is maintained to measure personnel exposure to external ionizing radiation. A radiation counting laboratory is maintained. Reentry safety control and effluent documentation support are provided for underground nuclear tests at the Nevada Test Site. A radiation training program is provided for laboratory personnel which covers all areas of radiation protection, from working with radioactive materials to radiation-producing machines. The information science activity functions within the framework of Sandia Laboratories' technical libraries. Information science is oriented toward the efficient dissemination of information to technical and administrative personnel. Computerized systems are used to collect, process and circulate books, reports, and other literature. Current-awareness, reference, translation, and literature-search services are also provided

  15. LANL continuity of operations plan

    Energy Technology Data Exchange (ETDEWEB)

    Senutovitch, Diane M [Los Alamos National Laboratory

    2010-12-22

    The Los Alamos National Laboratory (LANL) is a premier national security research institution, delivering scientific and engineering solutions for the nation's most crucial and complex problems. Our primary responsibility is to ensure the safety, security, and reliability of the nation's nuclear stockpile. LANL emphasizes worker safety, effective operational safeguards and security, and environmental stewardship, outstanding science remains the foundation of work at the Laboratory. In addition to supporting the Laboratory's core national security mission, our work advances bioscience, chemistry, computer science, earth and environmental sciences, materials science, and physics disciplines. To accomplish LANL's mission, we must ensure that the Laboratory EFs continue to be performed during a continuity event, including localized acts of nature, accidents, technological or attack-related emergencies, and pandemic or epidemic events. The LANL Continuity of Operations (COOP) Plan documents the overall LANL COOP Program and provides the operational framework to implement continuity policies, requirements, and responsibilities at LANL, as required by DOE 0 150.1, Continuity Programs, May 2008. LANL must maintain its ability to perform the nation's PMEFs, which are: (1) maintain the safety and security of nuclear materials in the DOE Complex at fixed sites and in transit; (2) respond to a nuclear incident, both domestically and internationally, caused by terrorist activity, natural disaster, or accident, including mobilizing the resources to support these efforts; and (3) support the nation's energy infrastructure. This plan supports Continuity of Operations for Los Alamos National Laboratory (LANL). This plan issues LANL policy as directed by the DOE 0 150.1, Continuity Programs, and provides direction for the orderly continuation of LANL EFs for 30 days of closure or 60 days for a pandemic/epidemic event. Initiation of COOP operations may

  16. Electric and Hybrid Vehicle Program, Site Operator Program. Quarterly progress report, January--March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States); Bassett, R.R. [Sandia National Labs., Albuquerque, NM (United States); Briasco, S. [Los Angeles City Dept. of Water and Power, CA (United States)] [and others

    1996-08-01

    Goals of the site operator program include field evaluation of electric vehicles (EVs) in real-world applications and environments, advancement of electric vehicle technologies, development of infrastructure elements necessary to support significant EV use, and increasing the awareness and acceptance of EVs by the public. The site operator program currently consists of 11 participants under contract and two other organizations with data-sharing agreements with the program. The participants (electric utilities, academic institutions, Federal agencies) are geographically dispersed within US and their vehicles see a broad spectrum of service conditions. Current EV inventories of the site operators exceeds 250 vehicles. Several national organizations have joined DOE to further the introduction and awareness of EVs, including: (1) EVAmerica (a utility program) and DOE conduct performance and evaluation tests to support market development for EVs; (2) DOE, DOT, the Electric Transportation Coalition, and the Electric Vehicle Association of the Americas are conducting a series of workshops to encourage urban groups in Clean Cities (a DOE program) to initiate the policies and infrastructure development necessary to support large-scale demonstrations, and ultimately the mass market use, of EVs. Current focus of the program is collection and dissemination of EV operations and performance data to aid in the evaluation of real- world EV use. This report contains several sections with vehicle evaluation as a focus: EV testing results, energy economics of EVs, and site operators activities.

  17. Operations program plan: Revision 3

    International Nuclear Information System (INIS)

    1988-07-01

    This document, the Operations Program Plan (OPP), has been developed as the seven-year master plan for operation of WIPP. The OPP was authorized by the Albuquerque Field Office of the Department of Energy (DOE-AL) and that organization's WIPP Project Office (DOE-WPO) in Carlsbad, New Mexico. The OPP is the directive from the DOE-WPO Project Manager as to how the WIPP is to be managed, operated, and administered. As the top tier management document for WIPP, the OPP establishes organizational responsibilities and an organizational structure for the Waste Isolation Division (WID) of Westinghouse Electric Corporation. The OPP sets policy and tone for conducting WIPP operations; it requires and specifically authorizes implementing documents (e.g., manuals). It has also proven instrumental in the budgeting and planning process, most particularly in expediting the preparation of specific budgets and detailed schedules for each of the numerous work packages. The OPP is also used to communicate information about WIPP operations

  18. Formal training program for nuclear material custodians at Hanford Engineering Development Laboratory

    International Nuclear Information System (INIS)

    Scott, D.D.

    1979-01-01

    Hanford Engineering Development Laboratory (HEDL) has established a formal training program for nuclear material (NM) custodians. The program, designed to familiarize the custodian with the fundamental concepts of proper nuclear materials control and accountability, is conducted on a semiannual basis. The program is prepared and presented by the Safeguards and Materials Management Section of HEDL and covers 14 subjects on accountability, documentation, transportation, custodian responsibilities, and the safeguarding of nuclear material

  19. Electronic laboratory quality assurance program: A method of enhancing the prosthodontic curriculum and addressing accreditation standards.

    Science.gov (United States)

    Moghadam, Marjan; Jahangiri, Leila

    2015-08-01

    An electronic quality assurance (eQA) program was developed to replace a paper-based system and to address standards introduced by the Commission on Dental Accreditation (CODA) and to improve educational outcomes. This eQA program provides feedback to predoctoral dental students on prosthodontic laboratory steps at New York University College of Dentistry. The purpose of this study was to compare the eQA program of performing laboratory quality assurance with the former paper-based format. Fourth-year predoctoral dental students (n=334) who experienced both the paper-based and the electronic version of the quality assurance program were surveyed about their experiences. Additionally, data extracted from the eQA program were analyzed to identify areas of weakness in the curriculum. The study findings revealed that 73.8% of the students preferred the eQA program to the paper-based version. The average number of treatments that did not pass quality assurance standards was 119.5 per month. This indicated a 6.34% laboratory failure rate. Further analysis of these data revealed that 62.1% of the errors were related to fixed prosthodontic treatment, 27.9% to partial removable dental prostheses, and 10% to complete removable dental prostheses in the first 18 months of program implementation. The eQA program was favored by dental students who have experienced both electronic and paper-based versions of the system. Error type analysis can yield the ability to create customized faculty standardization sessions and refine the didactic and clinical teaching of the predoctoral students. This program was also able to link patient care activity with the student's laboratory activities, thus addressing the latest requirements of the CODA regarding the competence of graduates in evaluating laboratory work related to their patient care. Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  20. Operational budgeting using fuzzy goal programming

    OpenAIRE

    Saeed Mohammadi; Kamran Feizi; Ali Khatami Firouz Abadi

    2013-01-01

    Having an efficient budget normally has different advantages such as measuring the performance of various organizations, setting appropriate targets and promoting managers based on their achievements. However, any budgeting planning requires prediction of different cost components. There are various methods for budgeting planning such as incremental budgeting, program budgeting, zero based budgeting and performance budgeting. In this paper, we present a fuzzy goal programming to estimate oper...

  1. Oak Ridge National Laboratory Transuranic Waste Certification Program

    International Nuclear Information System (INIS)

    Smith, J.H.; Bates, L.D.; Box, W.D.; Aaron, W.S.; Setaro, J.A.

    1988-08-01

    The US Department of Energy (DOE) has requested that all DOE facilities handling defense transuranic (TRU) waste develop and implement a program whereby all TRU waste will be contained, stored, and shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in the DOE certification documents WIPP-DOE-069, 114, 120, 137, 157, and 158. The program described in this report describes how Oak Ridge National Laboratory (ORNL) intends to comply with these requirements and the techniques and procedures used to ensure that ORNL TRU wastes are certifiable for shipment to WIPP. This document describes the program for certification of newly generated (NG) contact-handled transuranic (CH-TRU) waste. Previsions have been made for addenda, which will extend the coverage of this document to include certification of stored CH-TRU and NG and stored remote-handled transuranic (RH-TRU) waste, as necessary. 24 refs., 11 figs., 4 tabs

  2. PIGMI program at the Los Alamos Scientific Laboratory

    International Nuclear Information System (INIS)

    Stovall, J.E.

    1980-09-01

    The PIGMI Program has completed 3-1/2 yr of a project to develop the technology for the optimal pion generator for medical irradiations (PIGMI). The major accomplishments under the program include completion of the injector beam measurements; completion of the 440-MHz radio-frequency (rf) power source; assembly and test of the alternating phase focusing accelerator section; development of the rf-quadrupole (RFQ) beam-dynamics program, PARMTEQ; design, fabrication, assembly, and test of the RFQ accelerator; final decision on low-energy configuration for PIGMI; assembly of the drift-tube linac section of the PIGMI Prototype; completion of sample set of permanent magnet quadrupoles; optimization of the disk-and-washer (DAW) cavity geometry; fabrication of model cavities of the DAW; final decision on DAW support geometry; acquisition of additional laboratory space for the DAW power test; partial assembly of the 1320-MHz rf power source for the DAW test; and pion channel design studies

  3. Automated Scheduling of Personnel to Staff Operations for the Mars Science Laboratory

    Science.gov (United States)

    Knight, Russell; Mishkin, Andrew; Allbaugh, Alicia

    2014-01-01

    Leveraging previous work on scheduling personnel for space mission operations, we have adapted ASPEN (Activity Scheduling and Planning Environment) [1] to the domain of scheduling personnel for operations of the Mars Science Laboratory. Automated scheduling of personnel is not new. We compare our representations to a sampling of employee scheduling systems available with respect to desired features. We described the constraints required by MSL personnel schedulers and how each is handled by the scheduling algorithm.

  4. Nuclear decontamination and decommissioning operations at the Idaho National Engineering and Environmental Laboratory (INEEL)

    International Nuclear Information System (INIS)

    Meservey, R.H.; Kenoyer, D.J.; Frazee, B.J.

    1997-01-01

    The Idaho National engineering and Environmental Laboratory (INEEL) is home of the largest concentration of nuclear reactors in the world. In addition to the reactors, many fuel reprocessing, laboratory, and other nuclear support facilities have been operated at the INEEL. Many have already been decontaminated and decommissioned (D and D) and many more are in the planning stages for such activities. A full time D and D program has been in existence at the INEEL for the past 20 years. Starting with a long range plan for D and D of all surplus contaminated facilities at the INEEL, and ending with the verification of the free release of those facilities after decommissioning, all aspects of D and D activities are covered. Topics covered in this paper include the INEEL D and D Long Range Plan, the D and D Porject Managers Handbook, the use of ASTM Standard Guides in decommissioning operations, and the INEEL D and D Technology Logic Diagrams. The identification and preparation of safety plans, environmental documentation, and operational procedures will also be covered in the presentation. The selection and use of advanced technologies to improve safety, reduce costs, and shorten D and D schedules is very important to the nuclear industry. In addition to a discussion of the D and D Technology Logic Diagrams, a discussion of new and improved technologies in use at the INEEL and other department of energy facilities will be presented. This will include brief discussions of work being performed at three Department of Energy Large Scale D and D Technology Demonstration projects. These include technology demonstrations at a Test Reactor, Uranium Fabrication Plant, and a large Production Reactor. Unique technologies which have been developed and tested at the INEEL will also be covered in the presentation. These include the biological decontamination of concrete, a laser enhanced zero added waste cutting, abraiding, and drilling technology, and the development of an

  5. The Tanzania experience: clinical laboratory testing harmonization and equipment standardization at different levels of a tiered health laboratory system.

    Science.gov (United States)

    Massambu, Charles; Mwangi, Christina

    2009-06-01

    The rapid scale-up of the care and treatment programs in Tanzania during the preceding 4 years has greatly increased the demand for quality laboratory services for diagnosis of HIV and monitoring patients during antiretroviral therapy. Laboratory services were not in a position to cope with this demand owing to poor infrastructure, lack of human resources, erratic and/or lack of reagent supply and commodities, and slow manual technologies. With the limited human resources in the laboratory and the need for scaling up the care and treatment program, it became necessary to install automated equipment and train personnel for the increased volume of testing and new tests across all laboratory levels. With the numerous partners procuring equipment, the possibility of a multitude of equipment platforms with attendant challenges for procurement of reagents, maintenance of equipment, and quality assurance arose. Tanzania, therefore, had to harmonize laboratory tests and standardize laboratory equipment at different levels of the laboratory network. The process of harmonization of tests and standardization of equipment included assessment of laboratories, review of guidelines, development of a national laboratory operational plan, and stakeholder advocacy. This document outlines this process.

  6. Fermi National Accelerator Laboratory Annual Program Review 2000

    Energy Technology Data Exchange (ETDEWEB)

    2000-03-01

    This book is submitted as one written part of the 2000 Annual DOE High Energy Physics Program Review of Fermilab, scheduled March 22-24, 2000. In it are Director's Overview, some experimental highlights, discussions of several projects, and descriptions of the functions and activities of the four laboratory divisions. This book should be read in conjunction with the 2000 Fermilab Workbook and the review presentations (both in formal sessions and at the poster session).

  7. Variability of ethics education in laboratory medicine training programs: results of an international survey.

    Science.gov (United States)

    Bruns, David E; Burtis, Carl A; Gronowski, Ann M; McQueen, Matthew J; Newman, Anthony; Jonsson, Jon J

    2015-03-10

    Ethical considerations are increasingly important in medicine. We aimed to determine the mode and extent of teaching of ethics in training programs in clinical chemistry and laboratory medicine. We developed an on-line survey of teaching in areas of ethics relevant to laboratory medicine. Reponses were invited from directors of training programs who were recruited via email to leaders of national organizations. The survey was completed by 80 directors from 24 countries who directed 113 programs. The largest numbers of respondents directed postdoctoral training of scientists (42%) or physicians (33%), post-masters degree programs (33%), and PhD programs (29%). Most programs (82%) were 2years or longer in duration. Formal training was offered in research ethics by 39%, medical ethics by 31%, professional ethics by 24% and business ethics by 9%. The number of reported hours of formal training varied widely, e.g., from 0 to >15h/year for research ethics and from 0 to >15h for medical ethics. Ethics training was required and/or tested in 75% of programs that offered training. A majority (54%) of respondents reported plans to add or enhance training in ethics; many indicated a desire for online resources related to ethics, especially resources with self-assessment tools. Formal teaching of ethics is absent from many training programs in clinical chemistry and laboratory medicine, with heterogeneity in the extent and methods of ethics training among the programs that provide the training. A perceived need exists for online training tools, especially tools with self-assessment components. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Oak Ridge National Laboratory Institutional Plan, FY 1997--FY 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-10-01

    Three major initiatives are described, which are proposed to strengthen ORNL`s ability to support the missions of the Department: neutron science, functional genomics, and distributed computing at teraflop speeds. The laboratory missions, strategic plan, scientific and technical programs, enterprise activities, laboratory operations, and resource projections are also described.

  9. Waste certification program plan for Oak Ridge National Laboratory. Revision 1

    International Nuclear Information System (INIS)

    Orrin, R.C.

    1997-05-01

    This document defines the waste certification program developed for implementation at Oak Ridge National Laboratory (ORNL). The document describes the program structure, logic, and methodology for certification of ORNL wastes. The purpose of the waste certification program is to provide assurance that wastes are properly characterized and that the Waste Acceptance Criteria (WAC) for receiving facilities are met. The program meets the waste certification requirements outlined in US Department of Energy (DOE) Order 5820.2A, Radioactive Waste Management, and ensures that 40 CFR documentation requirements for waste characterization are met for mixed (both radioactive and hazardous) and hazardous (including polychlorinated biphenyls) waste. Program activities will be conducted according to ORNL Level 1 document requirements

  10. Project Management Plan/Progress Report UT/GTKS Training Program Development for Commercial Building Operators

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2013-03-31

    Universidad del Turabo (UT), in a collaborative effort with Global Turn Key Services, Inc. (GTKS), proposed to develop a training program and a commercialization plan for the development of Commercial Building Operators (CBOs). The CBOs will operate energy efficient buildings to help maintain existing buildings up to their optimal energy performance level, and ensure that net-zero-energy buildings continuously operate at design specifications, thus helping achieve progress towards meeting BTP Strategic Goals of creating technologies and design approaches that enable net-zero-energy buildings at low incremental costs by 2025. The proposed objectives were then: (1) Develop a Commercial Building Operator (CBO) training program and accreditation that will in turn provide a certification to participants recognized by Accreditation Boards such as the North American Board of Certified Energy Practitioners (NABCEP) and Leadership in Energy & Environmental Designs (LEED). (2) Develop and implement a commercialization and sustainability plan that details marketing, deployment, financial characterization, job placement, and other goals required for long-term sustainability of the project after the funding period. (3) After program development and deployment, provide potential candidates with the knowledge and skill sets to obtain employment in the commercial building green energy (net-zero-energy building) job market. The developed CBO training program will focus on providing skills for participants, such as displaced and unemployed workers, to enter the commercial building green energy (net-zeroenergy building) job market. This course was designed to allow a participant with minimal to no experience in commercial building green technology to obtain the required skill sets to enter the job market in as little as 12 weeks of intensive multi-faceted learning. After completion of the course, the CBO staff concluded the participant will meet minimum established accreditation

  11. Buried Transuranic Waste Studies Program at the Idaho National Engineering Laboratory: Annual technology assessment and progress report

    International Nuclear Information System (INIS)

    Low, J.O.; Allman, D.W.; Shaw, P.G.; Sill, C.W.

    1987-01-01

    In-situ grouting, an improved-confinement technology that could be applied to the Idaho National Engineering Laboratory (INEL) shallow-land-buried transuranic (TRU) waste, is being investigated by EG and G Idaho, Inc. In situ grouting has been demonstrated as the culmination of a two-year engineering feasibility test at the INEL. In situ stabilization and hydrologic isolation of a simulated buried TRU waste trench at an arid site were performed using an experimental dynamic compaction in situ grouting process developed by Rockwell Hanford Operations (RHO). A series of laboratory evaluations relative to the grout permeation characteristics of microfine particulate cements with INEL-type soil was performed prior to the grouting operations. In addition, an extensive pre-grouting hydrologic assessment of the test trench was performed to support the performance assessment analysis. Laboratory testing of various chemical materials yielded a suitable hydrologic tracer for use in the hydrologic monitoring phase of the experiment. Various plutonium transport laboratory evaluations were performed to assess the plutonium retention capabilities of a microfine grout/INEL-soil waste product similar to that expected to result if the grout is injected in situ into the INEL test trench. The test trench will be hydrologically assessed in FY 1987 to determine if the RHO grouting system attained the performance acceptance criteria of the experiment. The report includes a technology assessment of buried waste technologies developed by other DOE sites. Field demonstrations at ORNL and Hanford are reported under this technology assessment. Also included is information on activities related to buried waste management at the INEL. These include environmental surveillance of the Radioactive Waste Management Complex and the Subsurface Migration Studies Program

  12. Brookhaven National Laboratory site environmental report for calendar year 1994

    International Nuclear Information System (INIS)

    Naidu, J.R.; Royce, B.A.

    1995-05-01

    This report documents the results of the Environmental Monitoring Program at Brookhaven National Laboratory and presents summary information about environmental compliance for 1994. To evaluate the effect of Brookhaven National Laboratory's operations on the local environment, measurements of direct radiation, and a variety of radionuclides and chemical compounds in ambient air, soil, sewage effluent, surface water, groundwater, fauna and vegetation were made at the Brookhaven National Laboratory site and at sites adjacent to the Laboratory

  13. Summary of research for the Inertial Confinement Fusion Program at Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Cartwright, D.C.

    1985-03-01

    The information presented in this report is a summary of the status of the Inertial Confinement Fusion (ICF) program at the Los Alamos National Laboratory as of February 1985. This report contains material on the existing high-power CO 2 laser driver (Antares), the program to determine the potential of KrF as an ICF driver, heavy-ion accelerators as drivers for ICF, target fabrication for ICF, and a summary of our understanding of laser-plasma interactions. A classified companion report contains material on our current understanding of capsule physics and lists the contributions to the Laboratory's weapons programs made by the ICF program. The information collected in these two volumes is meant to serve as a report on the status of some of the technological components of the Los Alamos ICF program rather than a detailed review of specific technical issues

  14. Environmental Assessment for the vacuum process laboratory (VPL) relocation at the Lawrence Livermore National Laboratory

    International Nuclear Information System (INIS)

    1992-04-01

    This Environmental Assessment (EA) evaluates the potential environmental impacts of relocating a vacuum process laboratory (VPL) from Building 321 to Building 2231 at Lawrence Livermore National Laboratory (LLNL). The VPL provides the latest technology in the field of vacuum deposition of coatings onto various substrates for several weapons-related and energy-related programs at LLNL. Operations within the VPL at LLNL will not be expanded nor reduced by the relocation. No significant environmental impacts are expected as a result of the relocation of the VPL

  15. Third annual US Department of Energy review of laboratory programs for women

    Energy Technology Data Exchange (ETDEWEB)

    Perkins, L.; Engle, J.; Hassil, C. [eds.] [Oak Ridge Inst. for Science and Education, TN (United States)

    1993-12-31

    The Third Annual DOE Review of Laboratory Programs for Women was held May 11-13, 1993 at the Oak Ridge Institute for Science and Education (ORISE). The participants and organizers are men and women dedicted to highlighting programs that encourage women at all academic levels to consider career options in science, mathematics, and engineering. Cohosted by ORISE and the Oak Ridge National Laboratory (ORNL), the review was organized by an Oversight Committee whose goal was to develop an agenda and bring together concerned, skilled, and committed parties to discuss issues, make recommendations, and set objectives for the entire DOE community. Reports from each of six working groups are presented, including recommendations, objectives, descriptions, participants, and references.

  16. A measurement evaluation program to support nuclear material control and accountability measurements in Brazilian laboratories

    International Nuclear Information System (INIS)

    Dias, Fabio C.; Mason, Peter

    2013-01-01

    A measurement evaluation program (MEP) is one of a number of valuable tools that analytical chemists can use to ensure that the data produced in the laboratory are fit for their intended purpose and consistent with expected performance values at a given time. As such, participation in a MEP is an important indicator of the quality of analytical data, and is recognized as such by independent regulatory and/or accreditation bodies. With the intent to implement such a program in Brazil, in November 2012 the Nuclear Energy Commission of Brazil (CNEN), with support from the Department of Energy of the United States' (US-DOE International Safeguards and Engagement Program), decided to initiate a technical cooperation project aiming at organizing a Safeguards Measurement Evaluation Program (SMEP) for Brazilian facilities. The project, entitled Action Sheet 23, was formalized under the terms of the Agreement between the US-DOE and the CNEN concerning research and development in nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for International Safeguards Applications. The work, jointly performed by the CNEN's Safeguards Laboratory (LASAL) and the New Brunswick Laboratory (NBL), has the objective to strengthen the traceability of accountability measurements and ensure adequate quality of safeguards measurements for facilities within Brazil, utilizing test samples characterized and provided by NBL. Recommendations to participants included measurement frequency, number of results per sample and format for reporting results using ISO methods for calculating and expressing measurement uncertainties. In this paper, we discuss the main steps taken by CNEN and NBL aiming at implementing such a program and the expected results, in particular the impact of uncertainty estimation on the evaluation of performance of each participant laboratory. The program is considered by Brazilian safeguards authorities

  17. A measurement evaluation program to support nuclear material control and accountability measurements in Brazilian laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Dias, Fabio C., E-mail: fabio@ird.gov.br [Comissao Nacional de Energia Nuclear (CNEN-RJ), Rio de Janeiro, RJ (Brazil); Mason, Peter, E-mail: peter.mason@ch.doe.gov [New Brunswick Laboratory (DOE/NBL), Argonne, IL (United States)

    2013-07-01

    A measurement evaluation program (MEP) is one of a number of valuable tools that analytical chemists can use to ensure that the data produced in the laboratory are fit for their intended purpose and consistent with expected performance values at a given time. As such, participation in a MEP is an important indicator of the quality of analytical data, and is recognized as such by independent regulatory and/or accreditation bodies. With the intent to implement such a program in Brazil, in November 2012 the Nuclear Energy Commission of Brazil (CNEN), with support from the Department of Energy of the United States' (US-DOE International Safeguards and Engagement Program), decided to initiate a technical cooperation project aiming at organizing a Safeguards Measurement Evaluation Program (SMEP) for Brazilian facilities. The project, entitled Action Sheet 23, was formalized under the terms of the Agreement between the US-DOE and the CNEN concerning research and development in nuclear material control, accountancy, verification, physical protection, and advanced containment and surveillance technologies for International Safeguards Applications. The work, jointly performed by the CNEN's Safeguards Laboratory (LASAL) and the New Brunswick Laboratory (NBL), has the objective to strengthen the traceability of accountability measurements and ensure adequate quality of safeguards measurements for facilities within Brazil, utilizing test samples characterized and provided by NBL. Recommendations to participants included measurement frequency, number of results per sample and format for reporting results using ISO methods for calculating and expressing measurement uncertainties. In this paper, we discuss the main steps taken by CNEN and NBL aiming at implementing such a program and the expected results, in particular the impact of uncertainty estimation on the evaluation of performance of each participant laboratory. The program is considered by Brazilian safeguards

  18. Laboratory microfusion capability study

    International Nuclear Information System (INIS)

    1993-05-01

    The purpose of this study is to elucidate the issues involved in developing a Laboratory Microfusion Capability (LMC) which is the major objective of the Inertial Confinement Fusion (ICF) program within the purview of the Department of Energy's Defense Programs. The study was initiated to support a number of DOE management needs: to provide insight for the evolution of the ICF program; to afford guidance to the ICF laboratories in planning their research and development programs; to inform Congress and others of the details and implications of the LMC; to identify criteria for selection of a concept for the Laboratory Microfusion Facility and to develop a coordinated plan for the realization of an LMC. As originally proposed, the LMC study was divided into two phases. The first phase identifies the purpose and potential utility of the LMC, the regime of its performance parameters, driver independent design issues and requirements, its development goals and requirements, and associated technical, management, staffing, environmental, and other developmental and operational issues. The second phase addresses driver-dependent issues such as specific design, range of performance capabilities, and cost. The study includes four driver options; the neodymium-glass solid state laser, the krypton fluoride excimer gas laser, the light-ion accelerator, and the heavy-ion induction linear accelerator. The results of the Phase II study are described in the present report

  19. Water Quality & Pollutant Source Monitoring: Field and Laboratory Procedures. Training Manual.

    Science.gov (United States)

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    This training manual presents material on techniques and instrumentation used to develop data in field monitoring programs and related laboratory operations concerned with water quality and pollution monitoring. Topics include: collection and handling of samples; bacteriological, biological, and chemical field and laboratory methods; field…

  20. ORNL Pocket Meter Program: internal operating procedures

    International Nuclear Information System (INIS)

    Berger, C.D.; Miller, J.H.; Dunsmore, M.R.

    1984-12-01

    The ORNL Pocket Meter Program is designed for auditing the approximate photon radiation exposure of Oak Ridge National Laboratory (ORNL) radiation workers. Although pocket meters are considered to be a secondary personnel dosimetry system at ORNL, they are valuable indicators of unplanned exposures if proper procedures are followed for testing, calibrating, deploying, wearing, processing, and recording data. 4 figures, 1 table

  1. Site environmental report for 2011. Sandia National Laboratories, California

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L. [Sandia National Lab. (SNL-CA), Livermore, CA (United States)

    2012-05-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractoroperated laboratory. Sandia Corporation, a wholly-owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the Department of Energy’s National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2011 was prepared in accordance with DOE Order 231.1B, Environment, Safety and Health Reporting (DOE 2011d). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2011. General site and environmental program information is also included.

  2. Implementation of the CNEN's safeguards laboratory

    International Nuclear Information System (INIS)

    Almeida, S.G. de

    1986-01-01

    The International Safeguards Agreements between Brazil and others countries has been concluded with the participation of the International Atomic Energy Agency (AIEA), and involve the Physical Protection and Control of Nuclear Material activities, which set up the National Safeguards System. The Safeguards Laboratory was constructed to the implementation and maintenance of this National Safeguards System, under responsability of CNEN's Safeguards Division, in order to carry out measurements of nuclear materials under safeguards. Technical requirements applied to the construction, setting up and operation of the laboratory are showed. The first results refer to the implementation of safeguards methods and techniques, as well as its participation within international scientific and technical co-operation programs in the safeguards area, through of them we wait its credencement by the AIEA as Regional Safeguards Laboratory for every countries of the Latin America. (Author) [pt

  3. Laboratory services series: a safety program for service groups in a national research and development laboratory (1965--1974)

    International Nuclear Information System (INIS)

    Winget, R.H.

    1975-11-01

    The experiences of a ten-year period of developing a safety program for craft and labor groups supporting a major laboratory are summarized with tabulations of types of injuries or accidents, improvements noted over the decade, and educational and safety recognition efforts

  4. Argonne Laboratory Computing Resource Center - FY2004 Report.

    Energy Technology Data Exchange (ETDEWEB)

    Bair, R.

    2005-04-14

    In the spring of 2002, Argonne National Laboratory founded the Laboratory Computing Resource Center, and in April 2003 LCRC began full operations with Argonne's first teraflops computing cluster. The LCRC's driving mission is to enable and promote computational science and engineering across the Laboratory, primarily by operating computing facilities and supporting application use and development. This report describes the scientific activities, computing facilities, and usage in the first eighteen months of LCRC operation. In this short time LCRC has had broad impact on programs across the Laboratory. The LCRC computing facility, Jazz, is available to the entire Laboratory community. In addition, the LCRC staff provides training in high-performance computing and guidance on application usage, code porting, and algorithm development. All Argonne personnel and collaborators are encouraged to take advantage of this computing resource and to provide input into the vision and plans for computing and computational analysis at Argonne. Steering for LCRC comes from the Computational Science Advisory Committee, composed of computing experts from many Laboratory divisions. The CSAC Allocations Committee makes decisions on individual project allocations for Jazz.

  5. 222-S Laboratory Quality Assurance Plan. Revision 1

    International Nuclear Information System (INIS)

    Meznarich, H.K.

    1995-01-01

    This Quality Assurance Plan provides,quality assurance (QA) guidance, regulatory QA requirements (e.g., 10 CFR 830.120), and quality control (QC) specifications for analytical service. This document follows the U.S Department of Energy (DOE) issued Hanford Analytical Services Quality Assurance Plan (HASQAP). In addition, this document meets the objectives of the Quality Assurance Program provided in the WHC-CM-4-2, Section 2.1. Quality assurance elements required in the Guidelines and Specifications for Preparing Quality Assurance Program Plans (QAMS-004) and Interim Guidelines and Specifications for Preparing Quality Assurance Project Plans (QAMS-005) from the US Environmental Protection Agency (EPA) are covered throughout this document. A quality assurance index is provided in the Appendix A. This document also provides and/or identifies the procedural information that governs laboratory operations. The personnel of the 222-S Laboratory and the Standards Laboratory including managers, analysts, QA/QC staff, auditors, and support staff shall use this document as guidance and instructions for their operational and quality assurance activities. Other organizations that conduct activities described in this document for the 222-S Laboratory shall follow this QA/QC document

  6. Annual Site Environmental Report Sandia National Laboratories, Albuquerque, New Mexico, Calendar year 2007

    Energy Technology Data Exchange (ETDEWEB)

    Agogino, Karen [National Nuclear Security Administration (NNSA), Washington, DC (United States); Sanchez, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2008-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor-operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA Sandia Site Office (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2007. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1, Environmental Protection Program (DOE 2007a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  7. Cleanup of a Department of Energy Nonreactor Nuclear Facility: Experience at the Los Alamos National Laboratory High Pressure Tritium Laboratory

    International Nuclear Information System (INIS)

    Horak, H.L.

    1995-01-01

    On October 25, 1990, Los Alamos National Laboratory (LANL) ceased programmatic operations at the High Pressure Tritium Laboratory (HPTL). Since that time, LANL has been preparing the facility for transfer into the Department of Energy's (DOE's) Decontamination and Decommissioning Program. LANL staff now has considerable operational experience with the cleanup of a 40-year-old facility used exclusively to conduct experiments in the use of tritium, the radioactive isotope of hydrogen. Tritium and its compounds have permeated the HPTL structure and equipment, have affected operations and procedures, and now dominate efforts at cleanup and disposal. At the time of shutdown, the HPTL still had a tritium inventory of over 100 grams in a variety of forms and containers

  8. The French underground research laboratory program, contribution to the feasibility and safety studies of geological disposal

    International Nuclear Information System (INIS)

    Hoorelbeke, J.M.; Niezborala, J.M.; Ben Slimane, K.

    2001-01-01

    The paper presents the content of the research program to be performed during the construction and the operation of the National Agency for Radioactive Waste Management's (ANDRA) underground laboratory, located in the east of France. The general architecture of the program is presented. Emphasis is put on an iterative process, the purpose of which is mainly to: Prepare site behavior models before starting each phase of the field work (bore hole drilling, shaft sinking, construction of underground galleries, specific experiments); Test and check each model through actual observations and measurements; Adjust the models to take into account the results of the former phase and predict the results expected during the following one. All these models, after validation, will be exploited during the assessment of the safety related performance of the components of the potential repository as well as the whole facility; Obtain necessary data related to the feasibility study of the disposal facility (mechanical design, thermal design, etc.,) and its safety assessment. The relationship between the experimental program, the conceptual design program and the safety evaluation program is explained in order to reach the project objectives which is the final document set to be provided to French authorities in 2006 according to the French law of December 1991. (author)

  9. Guide for Operational Configuration Management Program including the adjunct programs of design reconstitution and material condition and aging management

    International Nuclear Information System (INIS)

    1993-11-01

    This standard presents program criteria and implementation guidance for an operational configuration management program for DOE nuclear and non-nuclear facilities in the operational phase. Portions of this standard are also useful for other DOE processes, activities, and programs. This Part 1 contains foreword, glossary, acronyms, bibliography, and Chapter 1 on operational configuration management program principles. Appendices are included on configuration management program interfaces, and background material and concepts for operational configuration management

  10. Remote sensing in operational range management programs in Western Canada

    Science.gov (United States)

    Thompson, M. D.

    1977-01-01

    A pilot program carried out in Western Canada to test remote sensing under semi-operational conditions and display its applicability to operational range management programs was described. Four agencies were involved in the program, two in Alberta and two in Manitoba. Each had different objectives and needs for remote sensing within its range management programs, and each was generally unfamiliar with remote sensing techniques and their applications. Personnel with experience and expertise in the remote sensing and range management fields worked with the agency personnel through every phase of the pilot program. Results indicate that these agencies have found remote sensing to be a cost effective tool and will begin to utilize remote sensing in their operational work during ensuing seasons.

  11. Enterprise SRS: Leveraging Ongoing Operations to Advance National Programs - 13108

    International Nuclear Information System (INIS)

    Marra, J.E.; Murray, A.M.; McGuire, P.W.; Wheeler, V.B.

    2013-01-01

    The SRS is re-purposing its vast array of assets to solve future national issues regarding environmental stewardship, national security, and clean energy. The vehicle for this transformation is Enterprise SRS which presents a new, strategic view of SRS as a united endeavor for 'all things nuclear' as opposed to a group of distinct and separate entities with individual missions and organizations. Key among the Enterprise SRS strategic initiatives is the integration of research into facilities in conjunction with ongoing missions to provide researchers from other national laboratories, academic institutions, and commercial entities the opportunity to demonstrate their technologies in a relevant environment and scale prior to deployment. To manage that integration of research demonstrations into site facilities, The DOE Savannah River Operations Office, Savannah River Nuclear Solutions, and the Savannah River National Laboratory (SRNL) have established the Center for Applied Nuclear Materials Processing and Engineering Research (CANMPER). The key objective of this initiative is to bridge the gap between promising transformational nuclear materials management advancements and large-scale deployment of the technology by leveraging SRS assets (e.g. facilities, staff, and property) for those critical engineering-scale demonstrations necessary to assure the successful deployment of new technologies. CANMPER will coordinate the demonstration of R and D technologies and serve as the interface between the engineering-scale demonstration and the R and D programs, essentially providing cradle-to-grave support to the R and D team during the demonstration. While the initial focus of CANMPER will be on the effective use of SRS assets for these demonstrations, CANMPER also will work with research teams to identify opportunities to perform R and D demonstrations at other facilities. Unique to this approach is the fact that these SRS assets will continue to accomplish DOE's critical

  12. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    OpenAIRE

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated ...

  13. Optimal Operation of Radial Distribution Systems Using Extended Dynamic Programming

    DEFF Research Database (Denmark)

    Lopez, Juan Camilo; Vergara, Pedro P.; Lyra, Christiano

    2018-01-01

    An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation o...... approach is illustrated using real-scale systems and comparisons with commercial programming solvers. Finally, generalizations to consider other EDS operation problems are also discussed.......An extended dynamic programming (EDP) approach is developed to optimize the ac steady-state operation of radial electrical distribution systems (EDS). Based on the optimality principle of the recursive Hamilton-Jacobi-Bellman equations, the proposed EDP approach determines the optimal operation...... of the EDS by setting the values of the controllable variables at each time period. A suitable definition for the stages of the problem makes it possible to represent the optimal ac power flow of radial EDS as a dynamic programming problem, wherein the 'curse of dimensionality' is a minor concern, since...

  14. Site Environmental Report for 2010 Sandia National Laboratories, California.

    Energy Technology Data Exchange (ETDEWEB)

    Larsen, Barbara L.

    2011-06-01

    Sandia National Laboratories, California (SNL/CA) is a government-owned/contractor-operated laboratory. Sandia Corporation, a Lockheed Martin Company, manages and operates the laboratory for the Department of Energy's National Nuclear Security Administration (NNSA). The NNSA Sandia Site Office administers the contract and oversees contractor operations at the site. This Site Environmental Report for 2010 was prepared in accordance with DOE Order 231.1A (DOE 2004a). The report provides a summary of environmental monitoring information and compliance activities that occurred at SNL/CA during calendar year 2010. General site and environmental program information is also included. The Site Environmental Report is divided into ten chapters. Chapter 1, the Executive Summary, highlights compliance and monitoring results obtained in 2010. Chapter 2 provides a brief introduction to SNL/CA and the existing environment found on site. Chapter 3 summarizes SNL/CA's compliance activities with the major environmental requirements applicable to site operations. Chapter 4 presents information on environmental management, performance measures, and environmental programs. Chapter 5 presents the results of monitoring and surveillance activities in 2010. Chapter 6 discusses quality assurance. Chapters 7 through 9 provide supporting information for the report and Chapter 10 is the report distribution list.

  15. Operational Efficiency and Productivity Improvement Initiatives in a Large Cardiac Catheterization Laboratory.

    Science.gov (United States)

    Reed, Grant W; Hantz, Scott; Cunningham, Rebecca; Krishnaswamy, Amar; Ellis, Stephen G; Khot, Umesh; Rak, Joe; Kapadia, Samir R

    2018-02-26

    This study sought to report outcomes from an efficiency improvement project in a large cardiac cath lab. Operational inefficiencies are common in the cath lab, yet solutions are challenging. A detailed report describing and providing solutions for these inefficiencies may be valuable in guiding improvements in productivity. In this observational study, the authors report metrics of efficiency before and after a cath lab quality improvement program in June 2014. Main outcomes included lab room start times, room turnaround times, laboratory use, and employee satisfaction. Time series analysis was used to assess trend over time. Chi-square testing and analysis of variance were used to assess change before and after the initiative. The principal changes included implementation of a pyramidal nursing schedule, increased use of an electronic scheduling system, and increased utilization of a preparation and recovery area. Comparing before with after the program, start times improved an average of 17 min, and on-time starts improved from 61.8% to 81.7% (p = 0.0024). Turnaround times improved from 20.5 min to 16.4 min (trend p productivity. This knowledge may be helpful in assisting other cath labs in similar efficiency improvement initiatives. Copyright © 2018 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  16. Evaluating the effectiveness of a laboratory-based professional development program for science educators

    Science.gov (United States)

    Amolins, Michael Wayne

    The development of effective science educators has been a long-standing goal of the American education system. Numerous studies have suggested a breadth of professional development programs that have sought to utilize constructivist principles in order to orchestrate movement toward student-led, inquiry-based instruction. Very few, however, have addressed a missing link between the modern scientific laboratory and the traditional science classroom. While several laboratory-based training programs have begun to emerge in recent years, the skills necessary to translate this information into the classroom are rarely addressed. The result is that participants are often left without an outlet or the confidence to integrate these into their lessons. The purpose of this study was to examine the effectiveness of a laboratory-based professional development program focused on classroom integration and reformed science teaching principles. This was measured by the ability to invigorate its seven participants in order to achieve higher levels of success and fulfillment in the classroom. These participants all taught at public high schools in South Dakota, including both rural and urban locations, and taught a variety of courses. Participants were selected for this study through their participation in the Sanford Research/USD Science Educator Research Fellowship Program. Through the use of previously collected data acquired by Sanford Research, this study attempted to detail the convergence of three assessments in order to demonstrate the growth and development of its participants. First, pre- and post-program surveys were completed in order to display the personal and professional growth of its participants. Second, pre- and post-program classroom observations employing the Reformed Teaching Observation Protocol allowed for the assessment of pedagogical modifications being integrated by each participant, as well as the success of such modifications in constructively

  17. Electric and Hybrid Vehicle Program: Site Operation Program. Quarterly progress report, July--September 1995

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.; Bassett, R.R.; Briasco, S. [and others

    1995-12-01

    The Site Operator Program has evolved substantially since its inception in response to the Electric Vehicle Research and Demonstration Act of 1976. In its original form, a commercialization effort was intended but this was not feasible for lack of vehicle suppliers and infrastructure. Nonetheless, with DOE sponsorship and technical participation, a few results (primarily operating experience and data) were forthcoming. The current Program comprises eleven sites and over 200 vehicles, of which about 50 are latest generation vehicles. DOE partially funds the Program participant expenditures and the INEL receives operating and maintenance data for the DOE-owned, and participant-owned or monitored vehicles, as well as Program reports. As noted elsewhere in this report, participants represent several widely differing categories: electric utilities, academic institutions, and federal agencies. While both the utilities and the academic institutions tend to establish beneficial relationships with the industrial community.

  18. Sequim Marine Research Laboratory routine environmental measurements during CY-1977

    International Nuclear Information System (INIS)

    Fix, J.J.; Blumer, P.J.

    1978-06-01

    Beginning in 1976, a routine environmental program was established at the Marine Research Laboratory (MRL) at Sequim, Washington. The program is intended to demonstrate the negligible impact of current MRL operations on the surrounding environs and to provide baseline data through which any cumulative impact could be detected. The sampling frequency is greater during the first 2 years of the program to provide sufficient initial information to allow reliable estimates of observed radionuclide concentrations and to construct a long-term sampling program. The program is designed, primarily, to determine levels of radioactivity present in selected biota in Sequim Bay. The biota were selected because of their presence near the laboratory and their capacity to concentrate trace elements. Other samples were obtained to determine the radionuclides in Sequim Bay and laboratory drinking water, as well as the ambient radiation exposure levels and surface deposition of fallout radionuclides for the laboratory area. Appendix A provides a summary of the analytical methods used. The present document includes data obtained during CY 1977 in addition to CY-1976 data published previously

  19. Technical qualification requirements and training programs for radiation protection personnel at Oak Ridge National Laboratory

    International Nuclear Information System (INIS)

    Copenhaver, E.D.; Houser, B.S.; Butler, H.M. Jr.; Bogard, J.S.; Fair, M.F.; Haynes, C.E.; Parzyck, D.C.

    1986-04-01

    This document deals with the policies and practices of the Environmental and Occupational Safety Division (EOSD) at the Oak Ridge National Laboratory (ORNL) in regard to the selection, training, qualification, and requalification of radiation protection staff assigned to reactor and nonreactor nuclear facilities. Included are personnel at facilities that: (1) operate reactors or particle accelerators; (2) produce, process, or store radioactive liquid or solid waste; (3) conduct separations operations; (4) engage in research with radioactive materials and radiation sources; and (5) conduct irradiated materials inspection, fuel fabrication, deconamination, or recovery operations. The EOSD personnel also have environmental surveillance and operational and industrial safety responsibilities related to the total Laboratory

  20. Quality assurance program plan for low-level waste at the WSCF Laboratory

    International Nuclear Information System (INIS)

    Morrison, J.A.

    1994-01-01

    The purpose of this document is to provide guidance for the implementation of the Quality Assurance Program Plan (QAPP) for the management of low-level waste at the Waste Sampling and Characterization Facility (WSCF) Laboratory Complex as required by WHC-CM-4-2, Quality Assurance Manual, which is based on Quality Assurance Program Requirements for Nuclear Facilities, NQA-1 (ASME)

  1. The Livermore Free-Electron Laser Program Magnet Test Laboratory

    International Nuclear Information System (INIS)

    Burns, M.J.; Kulke, B.; Deis, G.A.; Frye, R.W.; Kallman, J.S.; Ollis, C.W.; Tyler, G.C.; Van Maren, R.D.; Weiss, W.C.

    1987-01-01

    The Lawrence Livermore National Laboratory (LLNL) Free-Electron Laser Program Magnet Test Laboratory supports the ongoing development of the Induction Linac Free Electron Laser (IFEL) and uses magnetic field measurement systems that are useful in the testing of long periodic magnetic structures, electron-beam transport magnets, and spectrometer magnets. The major systems described include two computer-controlled, three-axis Hall probe-and-search coil transports with computer-controlled data acquisition; a unique, automated-search coil system used to detect very small inaccuracies in wiggler fields; a nuclear magnetic resonance (NMR)-based Hall probe-calibration facility; and a high-current DC ion source using heavy ions of variable momentum to model the transport of high-energy electrons. Additionally, a high-precision electron-beam-position monitor for use within long wigglers that has a positional resolution of less than 100 μm is under development in the laboratory and will be discussed briefly. Data transfer to LLNL's central computing facility and on-line graphics enable us to analyze large data sets quickly. 3 refs

  2. The organization of ALARA program at a DOE facility

    International Nuclear Information System (INIS)

    Setaro, J.A.

    1992-01-01

    The organization of an ALARA Program at a DOE Facility (Oak Ridge National Laboratory), it's relationship with laboratory management, facility operators, and the radiation protection program is described. The use of chartered ALARA committees at two distinct levels is discussed

  3. High Temperature Materials Laboratory third annual report

    Energy Technology Data Exchange (ETDEWEB)

    Tennery, V.J.; Foust, F.M.

    1990-12-01

    The High Temperature Materials Laboratory has completed its third year of operation as a designated DOE User Facility at the Oak Ridge National Laboratory. Growth of the user program is evidenced by the number of outside institutions who have executed user agreements since the facility began operation in 1987. A total of 88 nonproprietary agreements (40 university and 48 industry) and 20 proprietary agreements (1 university, 19 industry) are now in effect. Sixty-eight nonproprietary research proposals (39 from university, 28 from industry, and 1 other government facility) and 8 proprietary proposals were considered during this reporting period. Research projects active in FY 1990 are summarized.

  4. Multiyear Program Plan for the High Temperature Materials Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Arvid E. Pasto

    2000-03-17

    Recently, the U.S. Department of Energy's (DOE) Office of Heavy Vehicle Technologies (OHVT) prepared a Technology Roadmap describing the challenges facing development of higher fuel efficiency, less polluting sport utility vehicles, vans, and commercial trucks. Based on this roadmap, a multiyear program plan (MYPP) was also developed, in which approaches to solving the numerous challenges are enumerated. Additional planning has been performed by DOE and national laboratory staff, on approaches to solving the numerous challenges faced by heavy vehicle system improvements. Workshops and planning documents have been developed concerning advanced aerodynamics, frictional and other parasitic losses, and thermal management. Similarly, the Heavy Vehicle Propulsion Materials Program has developed its own multiyear program plan. The High Temperature Materials Laboratory, a major user facility sponsored by OHVT, has now developed its program plan, described herein. Information was gathered via participation in the development of OHVT's overall Technology Roadmap and MYPP, through personal contacts within the materials-user community, and from attendance at conferences and expositions. Major materials issues for the heavy vehicle industry currently center on trying to increase efficiency of (diesel) engines while at the same time reducing emissions (particularly NO{sub x} and particulates). These requirements dictate the use of increasingly stronger, higher-temperature capable and more corrosion-resistant materials of construction, as well as advanced catalysts, particulate traps, and other pollution-control devices. Exhaust gas recirculation (EGR) is a technique which will certainly be applied to diesel engines in the near future, and its use represents a formidable challenge, as will be described later. Energy-efficient, low cost materials processing methods and surface treatments to improve wear, fracture, and corrosion resistance are also required.

  5. Laboratory QA/QC improvements for small drinking water systems at Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Turner, R.D.

    1995-12-01

    The Savannah River Site (SRS), a 310 square mile facility located near Aiken, S.C., is operated by Westinghouse Savannah River Company for the US Department of Energy. SRS has 28 separate drinking water systems with average daily demands ranging from 0.0002 to 0.5 MGD. All systems utilize treated groundwater. Until recently, the water laboratories for each system operated independently. As a result, equipment, reagents, chemicals, procedures, personnel, and quality control practices differed from location to location. Due to this inconsistency, and a lack of extensive laboratory OA/QC practices at some locations, SRS auditors were not confident in the accuracy of daily water quality analyses results. The Site`s Water Services Department addressed these concerns by developing and implementing a practical laboratory QA/QC program. Basic changes were made which can be readily adopted by most small drinking water systems. Key features of the program include: Standardized and upgraded laboratory instrumentation and equipment; standardized analytical procedures based on vendor manuals and site requirements; periodic accuracy checks for all instrumentation; creation of a centralized laboratory to perform metals digestions and chlorine colorimeter accuracy checks; off-site and on-site operator training; proper storage, inventory and shelf life monitoring for reagents and chemicals. This program has enhanced the credibility and accuracy of SRS drinking water system analyses results.

  6. Community-Operated Environmental Surveillance Program

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the environmental surveillance activities with which citizens living near the Hanford Site have been participating. Local teachers have been managing and operating three special radiological air sampling stations located in Richland, Basin City, and Franklin County, Washington. Other expansion efforts of this program are also described.

  7. Community-Operated Environmental Surveillance Program

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the environmental surveillance activities with which citizens living near the Hanford Site have been participating. Local teachers have been managing and operating three special radiological air sampling stations located in Richland, Basin City, and Franklin County, Washington. Other expansion efforts of this program are also described

  8. Nuclear plant aging research program

    International Nuclear Information System (INIS)

    Eissenberg, D.M.

    1987-01-01

    The U.S. Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, has established the Nuclear Plant Aging Research (NPAR) program in its Division of Engineering Technology. Principal contractors for this program include Oak Ridge National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, and Pacific Northwest Laboratory. The program goals are: to identify and characterize time-dependent degradation (aging) of nuclear plant safety-related electrical and mechanical components which could lead to loss of safety function; to identify and recommend methods for detecting and trending aging effects prior to loss of safety function so that timely maintenance can be implemented; and to recommend maintenance practices for mitigating the effects of aging. Research activities include prioritization of system and component aging in nuclear plants, characterization of aging degradation of specific components including identification of functional indicators useful for trending degradation, and testing of practical methods and devices for measuring the functional indicators. Aging assessments have been completed on electric motors, snubbers, motor-operated valves, and check valves. Testing of trending methods and devices for motor-operated valves and check valves is in progress

  9. Limiting conditions for operation relaxation program

    International Nuclear Information System (INIS)

    Merz, J.F.

    1985-01-01

    The purpose of this effort was to assess the impact of system maintenance unavailability on plant risk to provide technical justification for the relaxation of system limiting conditions for operation from three to seven days. The primary goal of the relaxation program is to allow for more thorough equipment maintenance. A potential increase in out-of-service time for a particular outage caused by the performance of more effective repairs will be counterbalanced by a probable decrease in the frequency in the outage rate of a component. Benefits resulting from an increase in allowed outage time include: (a) a potential reduction in total system out-of-service time, (b) a minimization of challenges to plant systems, and (c) a reduction in the number of emergency technical specification change requests. This program therefore offers an opportunity to more effectively manage plant maintenance and operation

  10. FORTRAN computer programs to process Savannah River Laboratory hydrogeochemical and stream-sediment reconnaissance data

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; D'Andrea, R.F. Jr.

    1980-03-01

    FORTRAN computer programs have been written to read, edit, and reformat the hydrogeochemical and stream-sediment reconnaissance data produced by Savannah River Laboratory for the National Uranium Resource Evaluation program. The data are presorted by Savannah River Laboratory into stream sediment, ground water, and stream water for each 1 0 x 2 0 quadrangle. Extraneous information is eliminated, and missing analyses are assigned a specific value (-99999.0). Negative analyses are below the detection limit; the absolute value of a negative analysis is assumed to be the detection limit

  11. IV Training program for the staff of the laboratory for the RA reactor exploitation; IV Programi obuke osoblja Laboratorije za eksploataciju reaktora RA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-07-01

    All the staff members of the laboratory for RA reactor exploitation are obliged to learn the following: fundamental properties of the RA reactor, the role and functionality of the reactor components, basic and auxiliary reactor systems, basics of radioactivity, measures for preventing contamination. The personnel working in shifts must be acquainted with the regulations and instructions for reactor operation. Training programs for reactor operators, mechanics, electricians, instrumentators and dosimetrysts are described separately. Svi saradnici Laboratorije za eksploataciju reaktora RA moraju poznavati sledece oblasti: Osnovne karakeristike reaktora RA, princip rada, ulogu i funkcionisanje komponenti reaktora, osnovnih i pomocnih sistema reaktora; osnovne pojmove o radioaktivnom zracenju, mere za sprecavanje kontaminacije. Osoblje koje radi u smenama mora dodatno poznavati propise i uputstva za rad reaktora. Posebno je naveden program obuke operatora reaktora, mehanicara, electricara, instrumentatora, dozimetrista.

  12. Safety analysis report upgrade program at the Plutonium Facility, Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Pan, P.Y.

    1993-01-01

    Plutonium research and development activities have resided at the Los Alamos National Laboratory (LANL) since 1943. The function of the Plutonium Facility (PF-4) has been to perform basic special nuclear materials research and development and to support national defense and energy programs. The original Final Safety Analysis Report (FSAR) for PF-4 was approved by DOE in 1978. This FSAR analyzed design-basis and bounding accidents. In 1986, DOE/AL published DOE/AL Order 5481.1B, ''Safety Analysis and Review System'', as a requirement for preparation and review of safety analyses. To meet the new DOE requirements, the Facilities Management Group of the Nuclear Material Technology Division submitted a draft FSAR to DOE for approval in April 1991. This draft FSAR analyzed the new configurations and used a limited-scope probabilistic risk analysis for accident analysis. During the DOE review of the draft FSAR, DOE Order 5480.23 ''Nuclear Safety Analysis Reports'', was promulgated and was later officially released in April 1992. The new order significantly expands the scope, preparation, and maintenance efforts beyond those required in DOE/AL Order 5481.1B by requiring: description of institutional and human-factor safety programs; clear definitions of all facility-specific safety commitments; more comprehensive and detailed hazard assessment; use of new safety analysis methods; and annual updates of FSARs. This paper describes the safety analysis report (SAR) upgrade program at the Plutonium Facility in LANL. The SAR upgrade program is established to meet the requirements in DOE Order 5480.23. Described in this paper are the SAR background, authorization basis for operations, hazard classification, and technical program elements

  13. Review of radiation safety in the cardiac catheterization laboratory

    International Nuclear Information System (INIS)

    Johnson, L.W.; Moore, R.J.; Balter, S.

    1992-01-01

    With the increasing use of coronary arteriography and interventional procedures, radiation exposure to patients and personnel working in cardiac catheterization laboratories has increased. Proper technique to minimize both patient and operator exposure is necessary. A practical approach to radiation safety in the cardiac catheterization laboratory is presented. This discussion should be useful to facilities with well-established radiation safety programs as well as facilities that require restructuring to cope with the radiation environment in a modern cardiac catheterization laboratory

  14. Independent auto evaluation of an operative radiological protection program

    International Nuclear Information System (INIS)

    Medrano L, M.A.; Rodriguez C, C.C.; Linares R, D.; Zarate M, N.; Zempoalteca B, R.

    2006-01-01

    The program of operative radiological protection of a nuclear power plant consists of multiple procedures and associate tasks that have as purpose the radiological protection of the workers of the power station. It is for this reason that the constant evaluation of the one it programs it is an important tool in the identification of their weaknesses (and strengths), so they can be assisted appropriately. In this work the main elements of the program of independent auto evaluation of the program of operative radiological protection of the Laguna Verde Central that has been developed and implemented by the National Institute of Nuclear Research are described. (Author)

  15. Calendar Year 2009 Annual Site Environmental Report for Sandia National Laboratories, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bailey-White, Brenda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Bonaguidi, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Brown, Mendy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Byrd, Caroline [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Cabble, Kevin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Castillo, Dave [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Coplen, Amy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Curran, Kelsey [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Deola, Regina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Duran, Leroy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eckstein, Joanna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Evelo, Stacie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Fitzgerald, Tanja [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); French, Chris [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gerard, Morgan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gonzales, Linda [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Gorman, Susan [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jackson, Timothy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jarry, Jeff [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Adrian [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lauffer, Franz [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mauser, Joseph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mayeux, Lucie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); McCord, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Miller, Mark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Oborny, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Perini, Robin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Puissant, Pamela [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reiser, Anita [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Roma, Charles [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Salinas, Stephanie [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Skelly, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Ullrich, Rebecca [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wagner, Katrina [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wrons, Ralph [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2010-09-30

    Sandia National Laboratories, New Mexico (SNL/NM) is a government-owned/contractor operated facility. Sandia Corporation (Sandia), a wholly owned subsidiary of Lockheed Martin Corporation (LMC), manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Site O ffice (SSO) administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s environmental protection and monitoring programs through December 31, 2009. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention (P2), environmental restoration (ER), oil and chemical spill prevention, and implementation of the National Environmental Policy Act (NEPA). Environmental monitoring and surveillance programs are required by DOE Order 450.1A, Environmental Protection Program (DOE 2008a) and DOE Manual 231.1-1A, Environment, Safety, and Health Reporting (DOE 2007).

  16. X-ray safety at the Los Alamos National Laboratory

    International Nuclear Information System (INIS)

    Gutierrez, J.A.

    1986-11-01

    An organized and structured safety program for x-ray generating devices was initiated in October, 1979. An X-ray Device Control Office was established to manage the program that currently oversees the activities of 201 x-ray generating devices and to provide SOP reviews, perform shielding calculations, and provide training for both the operators and health physics x-ray device surveyors. The new program also establishes controls for procurement of new equipment, requires the writing of Standard Operating Procedures, requires training for operators and provides routine and non-routine safety inspections of x-ray generating devices. Prior to this program going into effect, the Laboratory had recorded nine documented x-ray related exposure accidents. Since then, there have been none. Program elements and experiences of interest to other x-ray device users are discussed. 3 refs

  17. Routine environmental audit of Ames Laboratory, Ames, Iowa

    International Nuclear Information System (INIS)

    1994-09-01

    This document contains the findings identified during the routine environmental audit of Ames Laboratory, Ames, Iowa, conducted September 12--23, 1994. The audit included a review of all Ames Laboratory operations and facilities supporting DOE-sponsored activities. The audit's objective is to advise the Secretary of Energy, through the Assistant Secretary for Environment, Safety and Health, as to the adequacy of the environmental protection programs established at Ames Laboratory to ensure the protection of the environment, and compliance with Federal, state, and DOE requirements

  18. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Griffith, Stacy [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation’s sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  19. Calendar Year 2013 Annual Site Environmental Report for Sandia National Laboratories, Albuquerque, New Mexico

    International Nuclear Information System (INIS)

    Griffith, Stacy

    2014-01-01

    Sandia National Laboratories, New Mexico is a government-owned/contractor-operated facility. Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, manages and operates the laboratory for the U.S. Department of Energy (DOE), National Nuclear Security Administration (NNSA). The DOE/NNSA, Sandia Field Office administers the contract and oversees contractor operations at the site. This annual report summarizes data and the compliance status of Sandia Corporation's sustainability, environmental protection, and monitoring programs through December 31, 2013. Major environmental programs include air quality, water quality, groundwater protection, terrestrial surveillance, waste management, pollution prevention, environmental restoration, oil and chemical spill prevention, and implementation of the National Environmental Policy Act. Environmental monitoring and surveillance programs are required by DOE Order 231.1B, Environment, Safety, and Health Reporting (DOE 2012).

  20. Emergency operating procedure upgrade program and audit results

    International Nuclear Information System (INIS)

    Graham, P.D.

    1989-01-01

    This paper describes the method and results of upgrading the River Bend station boiling water reactor 6 emergency operating procedures (EOPs). The upgrade program replaced difficult-to-implement narrative procedures with well-developed flowcharts. The flowcharts eliminate a number of human factors problems, are user friendly, provide for easy implementation, and provide technical information in a clear, concise format. Positive results were seen immediately. The operating crews found the flowcharts to be clear, understandable, and usable. Simulator training and EOP implementation became something that the operators no longer dreaded, and their confidence in their ability to control emergency situations was greatly improved. The paper provides a summary of the EOP upgrade program