WorldWideScience

Sample records for program fields precipitation

  1. Le Conte's sparrows breeding in Conservation Reserve Program fields: precipitation and patterns of population change

    Science.gov (United States)

    Igl, Lawrence D.; Johnson, Douglas H.

    1999-01-01

    ). Like populations of many grassland breeding birds in North America (Fretwell 1986, Igl and Johnson 1997), Le Conte's Sparrow populations exhibit numerical highs and lows depending on local moisture conditions (Peabody 1901, Stewart 1975, Knapton 1979, Zimmer 1979, Madden 1996). This observation, however, is based largely on anecdotal evidence or short-term observations. Long-term studies of Le Conte's Sparrow populations are limited. Le Conte's Sparrow is poorly represented on the North American Breeding Bird Survey (BBS) because of small sample sizes, poor coverage in the northern portion of its breeding range, and the species' furtive behavior (Sauer et al. 1995). Moreover, dramatic fluctuations in Le Conte's Sparrow abundance tend to obscure the species' long-term population trends on the BBS (Sauer et al. 1995). In this paper we examine long-term population changes of Le Conte's Sparrows breeding in perennial grassland fields enrolled in the Conservation Reserve Program (CRP) on the northern Great Plains. We discuss patterns of population change of Le Conte's Sparrows associated with changes in precipitation and moisture conditions.

  2. Hotplate precipitation gauge calibrations and field measurements

    Directory of Open Access Journals (Sweden)

    N. Zelasko

    2018-01-01

    Full Text Available First introduced in 2003, approximately 70 Yankee Environmental Systems (YES hotplate precipitation gauges have been purchased by researchers and operational meteorologists. A version of the YES hotplate is described in Rasmussen et al. (2011; R11. Presented here is testing of a newer version of the hotplate; this device is equipped with longwave and shortwave radiation sensors. Hotplate surface temperature, coefficients describing natural and forced convective sensible energy transfer, and radiative properties (longwave emissivity and shortwave reflectance are reported for two of the new-version YES hotplates. These parameters are applied in a new algorithm and are used to derive liquid-equivalent accumulations (snowfall and rainfall, and these accumulations are compared to values derived by the internal algorithm used in the YES hotplates (hotplate-derived accumulations. In contrast with R11, the new algorithm accounts for radiative terms in a hotplate's energy budget, applies an energy conversion factor which does not differ from a theoretical energy conversion factor, and applies a surface area that is correct for the YES hotplate. Radiative effects are shown to be relatively unimportant for the precipitation events analyzed. In addition, this work documents a 10 % difference between the hotplate-derived and new-algorithm-derived accumulations. This difference seems consistent with R11's application of a hotplate surface area that deviates from the actual surface area of the YES hotplate and with R11's recommendation for an energy conversion factor that differs from that calculated using thermodynamic theory.

  3. Programme for terrestrial monitoring of nature. Monitoring of chemical precipitation connected to the field research areas, 1994; Program for terrestrisk naturovervaaking. Overvaaking av nedboerkjemi i tilknytning til feltforskningsomraadene, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Toerseth, K.; Hermansen, O.

    1995-06-01

    The report relates to the Norwegian programme for terrestrial monitoring covering precipitation sampling and chemical analysis from seven experimental fields. Weekly precipitation samples are analysed for all main ions together with monthly samples for different trace elements. 7 figs., 4 tabs.

  4. Integrated Precipitation and Hydrology Experiment (IPHEx)/Orographic Precipitation Processes Study Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Barros, A. P. [Duke Univ., Durham, NC (United States); Petersen, W. [National Aeronautics and Space Administration (NASA), Washington, DC (United States); Wilson, A. M. [Duke Univ., Durham, NC (United States)

    2016-04-01

    Three Microwave Radiometers (two 3-channel and one 2-channel) were deployed in the Southern Appalachian Mountains in western North Carolina as part of the Integrated Precipitation and Hydrology Experiment (IPHEx), which was the first National Aeronautics and Space Administration (NASA) Global Precipitation Mission (GPM) Ground Validation (GV) field campaign after the launch of the GPM Core Satellite (Barros et al. 2014). The radiometers were used along with other instrumentation to estimate the liquid water content of low-level clouds and fog. Specifically, data from the radiometers were collected to help, with other instrumentation, to characterize fog formation, evolution, and dissipation in the region (by monitoring the liquid water path in the column) and observe the effect of that fog on the precipitation regime. Data were collected at three locations in the Southern Appalachians, specifically western North Carolina: a valley in the inner mountain region, a valley in the open mountain pass region, and a ridge in the inner region. This project contributes to the U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility mission by providing in situ observations designed to improve the understanding of clouds and precipitation processes in complex terrain. The end goal is to use this improved understanding of physical processes to improve remote-sensing algorithms and representations of orographic precipitation microphysics in climate and earth system models.

  5. ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Leung, L Ruby [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Cloud-Aerosol-Precipitation Experiment (ACAPEX) field campaign contributes to CalWater 2015, a multi-agency field campaign that aims to improve understanding of atmospheric rivers and aerosol sources and transport that influence cloud and precipitation processes. The ultimate goal is to reduce uncertainties in weather predictions and climate projections of droughts and floods in California. With the DOE G-1 aircraft and ARM Mobile Facility 2 (AMF2) well equipped for making aerosol and cloud measurements, ACAPEX focuses specifically on understanding how aerosols from local pollution and long-range transport affect the amount and phase of precipitation associated with atmospheric rivers. ACAPEX took place between January 12, 2015 and March 8, 2015 as part of CalWater 2015, which included four aircraft (DOE G-1, National Oceanic and Atmospheric Administration [NOAA] G-IV and P-3, and National Aeronautics and Space Administration [NASA] ER-2), the NOAA research ship Ron Brown, carrying onboard the AMF2, National Science Foundation (NSF)-sponsored aerosol and precipitation measurements at Bodega Bay, and the California Department of Water Resources extreme precipitation network.

  6. Improved nowcasting of precipitation based on convective analysis fields

    Directory of Open Access Journals (Sweden)

    T. Haiden

    2007-04-01

    Full Text Available The high-resolution analysis and nowcasting system INCA (Integrated Nowcasting through Comprehensive Analysis developed at the Austrian national weather service provides three-dimensional fields of temperature, humidity, and wind on an hourly basis, and two-dimensional fields of precipitation rate in 15 min intervals. The system operates on a horizontal resolution of 1 km and a vertical resolution of 100–200 m. It combines surface station data, remote sensing data (radar, satellite, forecast fields of the numerical weather prediction model ALADIN, and high-resolution topographic data. An important application of the INCA system is nowcasting of convective precipitation. Based on fine-scale temperature, humidity, and wind analyses a number of convective analysis fields are routinely generated. These fields include convective boundary layer (CBL flow convergence and specific humidity, lifted condensation level (LCL, convective available potential energy (CAPE, convective inhibition (CIN, and various convective stability indices. Based on the verification of areal precipitation nowcasts it is shown that the pure translational forecast of convective cells can be improved by using a decision algorithm which is based on a subset of the above fields, combined with satellite products.

  7. Precipitation and Hydrology Experiment Counter-Flow Spectrometer and Impactor Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Poellot, Michael [University of North Dakota

    2016-03-01

    The U.S. Department of Energy (DOE)’s Atmospheric Radiation Measurement (ARM) Climate Research Facility Aerial Facility (ARM AAF) counter-flow spectrometer and impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Integrated Precipitation and Hydrology Experiment (IPHEX). The field campaign took place during May and June of 2014 over North Carolina and its coastal waters as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement validation campaign. The CSI was added to the Citation instrument suite to support the involvement of Jay Mace through the NASA Advanced Composition Explorer (ACE) satellite program and flights of the NASA ER-2 aircraft, which is a civilian version of the Air Force’s U2-S reconnaissance platform. The ACE program funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the Atmospheric System Research program sponsored by DOE.

  8. A copula-based downscaling methodology of RCM precipitation fields

    Science.gov (United States)

    Lorenz, Manuel

    2016-04-01

    Many hydrological studies require long term precipitation time series at a fine spatial resolution. While regional climate models are nowadays capable of simulating reasonable high-resolution precipitation fields, the long computing time makes the generation of such long term time series often infeasible for practical purposes. We introduce a comparatively fast stochastic approach to simulate precipitation fields which resemble the spatial dependencies and density distributions of the dynamic model. Nested RCM simulations at two different spatial resolutions serve as a training set to derive the statistics which will then be used in a random path simulation where fine scale precipitation values are simulated from a multivariate Gaussian Copula. The chosen RCM is the Weather Research and Forecasting Model (WRF). Simulated daily precipitation fields of the RCM are based on ERA-Interim reanalysis data from 1971 to 2000 and are available at a spatial resolution of 42 km (Europe) and 7 km (Germany). In order to evaluate the method, the stochastic algorithm is applied to the nested German domain and the resulting spatial dependencies and density distributions are compared to the original 30 years long 7 km WRF simulations. Preliminary evaluations based on QQ-plots for one year indicate that the distributions of the downscaled values are very similar to the original values for most cells. In this presentation, a detailed overview of the stochastic downscaling algorithm and the evaluation of the long term simulations are given. Additionally, an outlook for a 5 km and 1 km downscaling experiment for urban hydrology studies is presented.

  9. Convection electric field effects on outer radiation belt electron precipitation

    Science.gov (United States)

    Gelpi, C.; Benbrook, J. R.; Sheldon, W. R.

    1986-01-01

    A model is presented for the possible diurnal modulation of outer radiation belt electron precipitation by considering the effect of the convection electric field on geomagnetically trapped electrons. The modulation flux is the flux due to electrons in the drift loss cone, i.e., those which drift into the bounce loss cone. The electron flux in the drift loss cone is related to the time allowable for diffusion from the stably trapped population to the drift loss cone for precipitation at a specific geographic location. This time, which is termed the maximum L-shell lifetime, is obtained by computing electron trajectories, using a realistic magnetic field model and a simple model for the electric field. The maximum L-shell lifetimes are taken to be the times between successive entries into the bounce loss cone. Conservation of the first two adiabatic invariants, as electrons are slowly energized by the convection electric field, leads to variations in pitch angle, maximum L-shell lifetimes, and, consequently, to changes in the electron flux in the drift loss cone. These results are compared with observations of precipitating electrons made with sounding rocket payloads.

  10. An application programming interface for extreme precipitation and hazard products

    Science.gov (United States)

    Kirschbaum, D.; Stanley, T.; Cappelaere, P. G.; Reed, J.; Lammers, M.

    2016-12-01

    Remote sensing data provides situational awareness of extreme events and hazards over large areas in a way that is impossible to achieve with in situ data. However, more valuable than raw data is actionable information based on user needs. This information can take the form of derived products, extraction of a subset of variables in a larger data matrix, or data processing for a specific goal. These products can then stream to the end users, who can use these data to improve local to global decision making. This presentation will outline both the science and methodology of two new data products and tools that can provide relevant climate and hazard data for response and support. The Global Precipitation Measurement (GPM) mission provides near real-time information on rain and snow around the world every thirty minutes. Through a new applications programing interface (API), this data can be freely accessed by consumers to visualize, analyze, and communicate where, when and how much rain is falling worldwide. The second tool is a global landslide model that provides situational awareness of potential landslide activity in near real-time, utilizing several remotely sensed data products. This hazard information is also provided through an API and is being ingested by the emergency response community, international aid organizations, and others around the world. This presentation will highlight lessons learned through the development, implementation, and communication of these products and tools with the goal of enabling better and more effective decision making.

  11. Statistical simulation of ensembles of precipitation fields for data assimilation applications

    Science.gov (United States)

    Haese, Barbara; Hörning, Sebastian; Chwala, Christian; Bárdossy, András; Schalge, Bernd; Kunstmann, Harald

    2017-04-01

    The simulation of the hydrological cycle by models is an indispensable tool for a variety of environmental challenges such as climate prediction, water resources management, or flood forecasting. One of the crucial variables within the hydrological system, and accordingly one of the main drivers for terrestrial hydrological processes, is precipitation. A correct reproduction of the spatio-temporal distribution of precipitation is crucial for the quality and performance of hydrological applications. In our approach we stochastically generate precipitation fields conditioned on various precipitation observations. Rain gauges provide high-quality information for a specific measurement point, but their spatial representativeness is often rare. Microwave links, e. g. from commercial cellular operators, on the other hand can be used to estimate line integrals of near-surface rainfall information. They provide a very dense observational system compared to rain gauges. A further prevalent source of precipitation information are weather radars, which provide rainfall pattern informations. In our approach we derive precipitation fields, which are conditioned on combinations of these different observation types. As method to generate precipitation fields we use the random mixing method. Following this method a precipitation field is received as a linear combination of unconditional spatial random fields, where the spatial dependence structure is described by copulas. The weights of the linear combination are chosen in the way that the observations and the spatial structure of precipitation are reproduced. One main advantage of the random mixing method is the opportunity to consider linear and non-linear constraints. For a demonstration of the method we use virtual observations generated from a virtual reality of the Neckar catchment. These virtual observations mimic advantages and disadvantages of real observations. This virtual data set allows us to evaluate simulated

  12. Mesoscale storm and dry period parameters from hourly precipitation data: program documentation

    Energy Technology Data Exchange (ETDEWEB)

    Thorp, J.M.

    1984-09-01

    Wet deposition of airborne chemical pollutants occurs primarily from precipitation. Precipitation rate, amount, duration, and location are important meteorological factors to be considered when attempting to understand the relationship of precipitation to pollutant deposition. The Pacific Northwest Laboratory (PNL) has conducted studies and experiments in numerous locations to collect data that can be incorporated into theories and models that attempt to describe the complex relationship between precipitation occurrence and chemical wet desposition. Model development often requires the use of average rather than random condition as input. To provide mean values of storm parameters, the task, Climatological Analysis of Mesoscale Storms, was created as a facet of the Environmental Protection Agency's related-service project, Precipitation Scavenging Module Development. Within this task computer programs have been developed at PNL which incorporate hourly precipitation data from National Weather Service stations to calculate mean values and frequency distributions of precipitation periods and of the interspersed dry periods. These programs have been written with a degree of flexibiity that will allow user modification for applications to different, but similar, analyses. This report describes in detail the rationale and operation of the two computer programs which produce the tables of average and frequency distributions of storm and dry period parameters from the precipitation data. A listing of the programs and examples of the generated output are included in the appendices. 3 references, 3 figures, 6 tables.

  13. Copula-based assimilation of radar and gauge information to derive bias-corrected precipitation fields

    Directory of Open Access Journals (Sweden)

    S. Vogl

    2012-07-01

    Full Text Available This study addresses the problem of combining radar information and gauge measurements. Gauge measurements are the best available source of absolute rainfall intensity albeit their spatial availability is limited. Precipitation information obtained by radar mimics well the spatial patterns but is biased for their absolute values.

    In this study copula models are used to describe the dependence structure between gauge observations and rainfall derived from radar reflectivity at the corresponding grid cells. After appropriate time series transformation to generate "iid" variates, only the positive pairs (radar >0, gauge >0 of the residuals are considered. As not each grid cell can be assigned to one gauge, the integration of point information, i.e. gauge rainfall intensities, is achieved by considering the structure and the strength of dependence between the radar pixels and all the gauges within the radar image. Two different approaches, namely Maximum Theta and Multiple Theta, are presented. They finally allow for generating precipitation fields that mimic the spatial patterns of the radar fields and correct them for biases in their absolute rainfall intensities. The performance of the approach, which can be seen as a bias-correction for radar fields, is demonstrated for the Bavarian Alps. The bias-corrected rainfall fields are compared to a field of interpolated gauge values (ordinary kriging and are validated with available gauge measurements. The simulated precipitation fields are compared to an operationally corrected radar precipitation field (RADOLAN. The copula-based approach performs similarly well as indicated by different validation measures and successfully corrects for errors in the radar precipitation.

  14. Use of precipitate formation technology to increase oil recovery under Tarasovskoye field conditions

    Science.gov (United States)

    Almukhametova, E. M.; Gizetdinov, I. A.; Kilmamatova, E. T.; Akimov, A. V.; Kalinina, S. V.; Fatkullin, I. F.

    2017-10-01

    The article presents data about using the technology of precipitate formation on the basis of sodium sulfate under conditions of the Tarasovskoye field, located in the Yamalo-Nenets Autonomous District. This technology consists in a sequential injection into the formation of sodium sulfate and calcium chloride, which leads to the formation of a precipitate of calcium sulfate, which eventually blocks flushed zones and water-saturated zones, thereby enabling intensification of oil-saturated areas development. Injection of precipitation systems was carried out in injection well № 775, the focus of which includes 6 producing wells. The daily production rate of the test production wells after the event has increased more than 2 times. In addition, the authors noted the positive results of changes in formation characteristics: a decrease in permeability, pressure conductivity factor and hydraulic conductivity in a water-saturated zone.

  15. Field Experiment to Stimulate Microbial Urease Activity in Groundwater for in situ Calcite Precipitation

    Science.gov (United States)

    Fujita, Y.; Taylor, J. L.; Tyler, T. L.; Banta, A. B.; Reysenbach, A. L.; Delwiche, M. E.; McLing, T. L.; Colwell, F. S.; Smith, R. W.

    2003-12-01

    Groundwater contamination by radionuclides and metals from past weapons processing activities is a significant problem for the United States Department of Energy. Removal of these pollutants from the subsurface can be prohibitively expensive and result in worker exposure, and therefore in situ containment and stabilization is an attractive remediation alternative. One potential approach for the immobilization of certain radionuclides and metals (e.g., 90Sr, 60Co, Pb, Cd) is to induce geochemical conditions that promote co-precipitation in calcite. Many aquifers in the arid western US are calcite-saturated, and calcite precipitated under an engineered remediation scheme in such aquifers should remain stable even after return to ambient conditions. We have proposed that an effective way to promote calcite precipitation is to utilize native microorganisms that hydrolyze urea. Urea hydrolysis results in carbonate and ammonium production, and an increase in pH. The increased carbonate alkalinity favors calcite precipitation, and the ammonium serves the additional role of promoting desorption of sorbed metal ions from the aquifer matrix by ion exchange. The desorbed metals are then accessible to co-precipitation in calcite, which can be a longer-term immobilization mechanism than sorption. The ability to hydrolyze urea is common among environmental microorganisms, and we have shown in the laboratory that microbial urea hydrolysis can be linked to calcite precipitation and co-precipitation of the trace metal strontium. As a next step in the development of our remediation approach, we aimed to demonstrate that we can stimulate the native microbial community to express urease in the field. In 2002 we conducted a preliminary field trial of our approach, using a well in the Eastern Snake River Plain Aquifer in Idaho Falls, Idaho, USA. A dilute molasses solution (0.00075%) was injected to promote overall biological growth, and then urea (50 mM) was added to the aquifer

  16. Calcite precipitation dominates the electrical signatures of zero valent iron columns under simulated field conditions

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yuxin; Versteeg, R.; Slater, L.; LaBrecque, D.

    2009-06-01

    Calcium carbonate is a secondary mineral precipitate influencing zero valent iron (ZVI) barrier reactivity and hydraulic performance. We conducted column experiments to investigate electrical signatures resulting from concurrent CaCO{sub 3} and iron oxides precipitation under simulated field geochemical conditions. We identified CaCO{sub 3} as a major mineral phase throughout the columns, with magnetite present primarily close to the influent based on XRD analysis. Electrical measurements revealed decreases in conductivity and polarization of both columns, suggesting that electrically insulating CaCO{sub 3} dominates the electrical response despite the presence of electrically conductive iron oxides. SEM/EDX imaging suggests that the electrical signal reflects the geometrical arrangement of the mineral phases. CaCO{sub 3} forms insulating films on ZVI/magnetite surfaces, restricting charge transfer between the pore electrolyte and ZVI particles, as well as across interconnected ZVI particles. As surface reactivity also depends on the ability of the surface to engage in redox reactions via charge transfer, electrical measurements may provide a minimally invasive technology for monitoring reactivity loss due to CaCO{sub 3} precipitation. Comparison between laboratory and field data shows consistent changes in electrical signatures due to iron corrosion and secondary mineral precipitation.

  17. Characterization of sintering dust collected in the various fields of the electrostatic precipitator.

    Science.gov (United States)

    Lanzerstorfer, Christof; Steiner, Dominik

    2016-01-01

    Sinter plant off-gas is usually de-dusted by electrostatic precipitators. Compliance with the dust emission limits is often difficult because of the high specific resistivity of the emitted dust. Mechanical properties of the dust are also relevant for the electrostatic precipitator design. Dust samples from the four consecutive electrostatic precipitator fields were characterized in this study. Most measured parameters showed a considerable variation in the various dust samples. The particle size of the dust as well as its bulk density continuously decreased from the first field to the fourth field. The flowability of the dusts was generally bad and decreased from the first to the last field. In contrast, the wall friction angles with structural steel were quite constant at approximately 30°. The Fe content was lower in the dust from the last two fields while the concentration of K, Na, Cl(-) and [Formula: see text] was significantly higher. At the same time the particle density was lower. The maximum specific dust resistivity for the first field and second field dust was approximately 3 × 10(11) Ω cm and no signs for the occurrence of back corona were detected. For the dusts from the last two fields the maximum value was approximately 2 × 10(12) Ω cm. Back corona was observed in the temperature range from 120°C to 210°C. In this area the dust resistivity values were higher than 4 × 10(11) Ω cm.

  18. Magnetic Field Effects on CaCO3 Precipitation Process in Hard Water

    Directory of Open Access Journals (Sweden)

    Nelson Saksono

    2010-10-01

    Full Text Available Magnetic treatment is applied as physical water treatment for scale prevention especially CaCO3, from hard water in piping equipment by reducing its hardness.Na2CO3 and CaCl2 solution sample was used in to investigate the magnetic fields influence on the formation of particle of CaCO3. By changing the strength of magnetic fields, exposure time and concentration of samples solution, this study presents quantitative results of total scale deposit, total precipitated CaCO3 and morphology of the deposit. This research was run by comparing magnetically and non-magnetically treated  samples. The results showed an increase of deposits formation rate and total number of precipitated CaCO3 of magnetically treated samples. The increase of concentration solution sample will also raised the deposit under magnetic  field. Microscope images showed a greater number but smaller size of CaCO3 deposits form in magnetically treated samples, and aggregation during the processes. X-ray diffraction (XRD analysis showed that magnetically samples were dominated by calcite. But, there was a significant decrease of calcite’s peak intensities from magnetized  samples that indicated the decrease of the amount of calcite and an increase of total amorphous of deposits. This result  showed that magnetization of hard water leaded to the decreasing of ion Ca2+ due to the increasing of total CaCO3 precipitation process.

  19. The impact of mineral fertilization and atmospheric precipitation on yield of field crops on family farms

    Directory of Open Access Journals (Sweden)

    Munćan Mihajlo

    2016-01-01

    Full Text Available The field crop production, as the most important branch of plant production of the Republic of Serbia, in the period 2002-2011, was carried out on an average of over 2.7 million hectares, 82.7% of which took place on the individual farms/family holdings. Hence, the subject of research in this paper covers yields of major field crops realized on family farms in the region of Vojvodina in the period 1972-2011. The main objective of the research is to study the interdependence of utilization of mineral fertilizers and atmospheric precipitation during the vegetation period and realized yields of major field crops on family farms in the observed period. The regression analysis was applied in order to verify dependencies and determine the form of dependence of achieved yields from examined variables. The results showed that the main limiting factors for obtaining high and stable yields of field crops is inadequate use of fertilizers and the lack of precipitation during the vegetation period.

  20. Precipitation and Release of Solar Energetic Particles from the Solar Coronal Magnetic Field

    Science.gov (United States)

    Zhang, Ming; Zhao, Lulu

    2017-09-01

    Most solar energetic particles (SEPs) are produced in the corona. They propagate through complex coronal magnetic fields subject to scattering and diffusion across the averaged field lines by turbulence. We examine the behaviors of particle transport using a stochastic 3D focused transport simulation in a potential field source surface model of coronal magnetic field. The model is applied to an SEP event on 2010 February 7. We study three scenarios of particle injection at (I) the compact solar flare site, (II) the coronal mass ejection (CME) shock, and (III) the EUV wave near the surface. The majority of particles injected on open field lines are able to escape the corona. We found that none of our models can explain the observations of wide longitudinal SEP spread without perpendicular diffusion. If the perpendicular diffusion is about 10% of what is derived from the random walk of field lines at the rate of supergranular diffusion, particles injected at the compact solar flare site can spread to a wide range of longitude and latitude, very similar to the behavior of particles injected at a large CME shock. Stronger pitch-angle scattering results in a little more lateral spread by holding the particles in the corona for longer periods of time. Some injected particles eventually end up precipitating onto the solar surface. Even with a very small perpendicular diffusion, the pattern of the particle precipitation can be quite complicated depending on the detailed small-scale coronal magnetic field structures, which could be seen with future sensitive gamma-ray telescopes.

  1. Field: A Program for Simulating Ultrasound Systems

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt

    1997-01-01

    A program for the simulation of ultrasound systems is presented.It is based on the Tupholme-Stepanishen method, and is fastbecause of the use of a far-field approximation. Any kind oftransducer geometry and excitation can be simulated, and bothpulse-echo and continuous wave fields can be calculated...... it possible to simulate all types of ultrasound imaging systems....

  2. Micromechanics of transformation fields in ageing linear viscoelastic composites: effects of phase dissolution or precipitation

    Science.gov (United States)

    Honorio, Tulio

    2017-11-01

    Transformation fields, in an affine formulation characterizing mechanical behavior, describe a variety of physical phenomena regardless their origin. Different composites, notably geomaterials, present a viscoelastic behavior, which is, in some cases of industrial interest, ageing, i.e. it evolves independently with respect to time and loading time. Here, a general formulation of the micromechanics of prestressed or prestrained composites in Ageing Linear Viscoelasticity (ALV) is presented. Emphasis is put on the estimation of effective transformation fields in ALV. The result generalizes Ageing Linear Thermo- and Poro-Viscoelasticity and it can be used in approaches coping with a phase transformation. Additionally, the results are extended to the case of locally transforming materials due to non-coupled dissolution and/or precipitation of a given (elastic or viscoelastic) phase. The estimations of locally transforming composites can be made with respect to different morphologies. As an application, estimations of the coefficient of thermal expansion of a hydrating alite paste are presented.

  3. Quantifying the stress fields due to a delta-hydride precipitate in alpha-Zr matrix

    Energy Technology Data Exchange (ETDEWEB)

    Tummala, Hareesh [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Capolungo, Laurent [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Tome, Carlos N. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-19

    This report is a preliminary study on δ-hydride precipitate in zirconium alloy performed using 3D discrete dislocation dynamics simulations. The ability of dislocations in modifying the largely anisotropic stress fields developed by the hydride particle in a matrix phase is addressed for a specific dimension of the hydride. The influential role of probable dislocation nucleation at the hydride-matrix interface is reported. Dislocation nucleation around a hydride was found to decrease the shear stress (S13) and also increase the normal stresses inside the hydride. We derive conclusions on the formation of stacks of hydrides in zirconium alloys. The contribution of mechanical fields due to dislocations was found to have a non-negligible effect on such process.

  4. Climate-change signals in national atmospheric deposition program precipitation data

    Science.gov (United States)

    Wetherbee, Gregory A.; Mast, M. Alisa

    2016-01-01

    National Atmospheric Deposition Program (NADP)/National Trends Network precipitation type, snow-season duration, and annual timing of selected chemical wet-deposition maxima vary with latitude and longitude within a 35-year (1979–2013) data record for the contiguous United States and Alaska. From the NADP data collected within the region bounded by 35.6645°–48.782° north latitude and 124°–68° west longitude, similarities in latitudinal and longitudinal patterns of changing snow-season duration, fraction of annual precipitation recorded as snow, and the timing of chemical wet-deposition maxima, suggest that the chemical climate of the atmosphere is linked to physical changes in climate. Total annual precipitation depth has increased 4–6 % while snow season duration has decreased from approximately 7 to 21 days across most of the USA, except in higher elevation regions where it has increased by as much as 21 days. Snow-season precipitation is increasingly comprised of snow, but annually total precipitation is increasingly comprised of liquid precipitation. Meanwhile, maximum ammonium deposition occurs as much as 27 days earlier, and the maximum nitrate: sulfate concentration ratio in wet-deposition occurs approximately 10–21 days earlier in the year. The maximum crustal (calcium + magnesium + potassium) cation deposition occurs 2–35 days earlier in the year. The data suggest that these shifts in the timing of atmospheric wet deposition are linked to a warming climate, but the ecological consequences are uncertain.

  5. Comparing bias correction methods for high-resolution COSMO-CLM daily precipitation fields

    Science.gov (United States)

    Gutjahr, O.; Heinemann, G.

    2012-04-01

    Regional climate models (RCMs) are approaching to the 1km scale. This is necessary, since impact models, like hydrological or species distribution models, forced with the output of RCMs need input data on this high resolution in order to capture adequately the behaviour of the system on small scales and the extreme statistics. However, RCMs are still subject to systematic biases when compared to observations. Especially precipitation is often affected with large and non-linear bias. Since extreme values are critical to any impact model, a special care must be established for the tails of the distributions. Within the "Global-Change"-project of the Research Initiative Rhineland-Palatinate (http://www.uni-trier.de/index.php?id=40193&L=2), a new parametric bias correction method has been developed, which includes an extension for extreme values. Daily precipitation fields from COSMO-CLM (version 4.8.11) model output for the time period 1991-2000 and 2091-2100 were then bias corrected. This new method is compared to existing parametric and non-parametric methods in order to answer the question whether an extension with an extreme value distribution for the tail is necessary. Additionally, the effect of the bias correction on the climate signal is investigated, which should be the same after the corrections. As observations, 128 precipitation stations (DWD/LUWG) were used. Both parametric bias correction methods are able to correct the precipitation fields and are thus valid replacements for the empirical method but the extension with an extreme value distribution is an improvement, especially concerning estimated return values, which were underestimated in the uncorrected model and did not show any similarity to observations. Without an extension for extreme values, the pattern of the climate change signal deviates largely from the original and reveals another source of uncertainty. The comparison of the methods demonstrates the importance of special treatment of the

  6. Field Operations Program Activities Status Report

    Energy Technology Data Exchange (ETDEWEB)

    J. E. Francfort; D. V. O' Hara; L. A. Slezak

    1999-05-01

    The Field Operations Program is an electric vehicle testing and evaluation program sponsored by US Department of Energy and managed by the Idaho National Engineering and Environmental Laboratory. The Program's goals are to evaluate electric vehicles in real-world applications and environments, support electric vehicle technology advancement, develop infrastructure elements necessary to support significant electric vehicle use, support increased use of electric vehicles in federal fleets, and increase overall awareness and acceptance of electric vehicles. This report covers Program activities from fiscal year 1997 through mid-fiscal year 1999. The Field Operations Program succeeded the Site Operator Program, which ended in September 1996. Electric vehicle testing conducted by the Program includes baseline performance testing (EV America testing), accelerated reliability (life-cycle) testing, and fleet testing. The baseline performance parameters include accelerations, braking, range, energy efficiency, and charging time. The Program collects accelerated reliability and fleet operations data on electric vehicles operated by the Program's Qualified Vehicle Testing (QVT) partners. The Program's QVT partners have over 3 million miles of electric vehicle operating experience.

  7. Updated operational protocols for the U.S. Geological Survey Precipitation Chemistry Quality Assurance Project in support of the National Atmospheric Deposition Program

    Science.gov (United States)

    Wetherbee, Gregory A.; Martin, RoseAnn

    2017-02-06

    The U.S. Geological Survey Branch of Quality Systems operates the Precipitation Chemistry Quality Assurance Project (PCQA) for the National Atmospheric Deposition Program/National Trends Network (NADP/NTN) and National Atmospheric Deposition Program/Mercury Deposition Network (NADP/MDN). Since 1978, various programs have been implemented by the PCQA to estimate data variability and bias contributed by changing protocols, equipment, and sample submission schemes within NADP networks. These programs independently measure the field and laboratory components which contribute to the overall variability of NADP wet-deposition chemistry and precipitation depth measurements. The PCQA evaluates the quality of analyte-specific chemical analyses from the two, currently (2016) contracted NADP laboratories, Central Analytical Laboratory and Mercury Analytical Laboratory, by comparing laboratory performance among participating national and international laboratories. Sample contamination and stability are evaluated for NTN and MDN by using externally field-processed blank samples provided by the Branch of Quality Systems. A colocated sampler program evaluates the overall variability of NTN measurements and bias between dissimilar precipitation gages and sample collectors.This report documents historical PCQA operations and general procedures for each of the external quality-assurance programs from 2007 to 2016.

  8. Dartmouth College Earth Sciences Mobile Field Program

    Science.gov (United States)

    Meyer, E. E.; Osterberg, E. C.; Dade, W. B.; Sonder, L. J.; Renshaw, C. E.; Kelly, M. A.; Hawley, R. L.; Chipman, J. W.; Mikucki, J.; Posmentier, E. S.; Moore, J. R.

    2011-12-01

    For the last 50 years the Department of Earth Sciences at Dartmouth College has offered a term-long, undergraduate field program, informally called "the Stretch". A student typically enrolls during fall quarter of his or her junior year soon after choosing a major or minor. The program thus provides valuable field context for courses that a student will take during the remainder of his or her undergraduate career. Unlike many traditional field camps that focus on one particular region, the Stretch is a mobile program that currently travels through Western North America, from the Canadian Rockies to the Grand Canyon. The program spans two and a half months, during which time undergraduates, graduate TAs, and faculty live, work, and learn collaboratively. Dartmouth College faculty members sequentially teach individual 1- to 2-week segments that focus on their interests and expertise; currently, there are a total of eight segments led by eleven faculty members. Consequently, topics are diverse and include economic geology, geobiology, geomorphology, glaciology, glacial geology, geophysics, hydrogeology, paleontology, stratigraphy, structure and tectonics, and volcanology. The field localities are equally varied, including the alpine glaciers of western Alberta, the national parks of Montana, Wyoming and Utah, the eastern Sierra Nevada, the southern Great Basin, and highlight such classic geological field locales as Sheep Mountain in Wyoming's Bighorn Basin, Death Valley, and the Grand Canyon. Overall, the program aims to: 1) give students a broad perspective on the timing and nature of the processes that resulted in the landscape and underlying geology of western North America; and 2) introduce students to a wide variety of geological environments, field techniques, and research equipment. Students emerge from the program with wide-ranging exposure to active research questions as well as a working knowledge of core field skills in the earth sciences. Stretch students

  9. Precipitation-runoff relations and water-quality characteristics at edge-of-field stations, Discovery Farms and Pioneer Farm, Wisconsin, 2003-8

    Science.gov (United States)

    Stuntebeck, Todd D.; Komiskey, Matthew J.; Peppler, Marie C.; Owens, David W.; Frame, Dennis R.

    2011-01-01

    A cooperative study between the U.S. Geological Survey, the University of Wisconsin (UW)-Madison Discovery Farms program (Discovery Farms), and the UW-Platteville Pioneer Farm program (Pioneer Farm) was developed to identify typical ranges and magnitudes, temporal distributions, and principal factors affecting concentrations and yields of sediment, nutrients, and other selected constituents in runoff from agricultural fields. Hydrologic and water-quality data were collected year-round at 23 edge-of-field monitoring stations on 5 privately owned Discovery Farms and on Pioneer Farm during water years 2003-8. The studied farms represented landscapes, soils, and farming systems typical of livestock farms throughout southern Wisconsin. Each farm employed a variety of soil, nutrient, and water-conservation practices to help minimize sediment and nutrient losses from fields and to improve crop productivity. This report summarizes the precipitation-runoff relations and water-quality characteristics measured in edge-of-field runoff for 26 "farm years" (aggregate years of averaged station data from all 6 farms for varying monitoring periods). A relatively wide range of constituents typically found in agricultural runoff were measured: suspended sediment, phosphorus (total, particulate, dissolved reactive, and total dissolved), and nitrogen (total, nitrate plus nitrite, organic, ammonium, total Kjeldahl and total Kjeldahl-dissolved), chloride, total solids, total suspended solids, total volatile suspended solids, and total dissolved solids. Mean annual precipitation was 32.8 inches for the study period, about 3 percent less than the 30-year mean. Overall mean annual runoff was 2.55 inches per year (about 8 percent of precipitation) and the distribution was nearly equal between periods of frozen ground (54 percent) and unfrozen ground (46 percent). Mean monthly runoff was highest during two periods: February to March and May to June. Ninety percent of annual runoff occurred

  10. Combined MW-IR Precipitation Evolving Technique (PET of convective rain fields

    Directory of Open Access Journals (Sweden)

    F. Di Paola

    2012-11-01

    Full Text Available This paper describes a new multi-sensor approach for convective rain cell continuous monitoring based on rainfall derived from Passive Microwave (PM remote sensing from the Low Earth Orbit (LEO satellite coupled with Infrared (IR remote sensing Brightness Temperature (TB from the Geosynchronous (GEO orbit satellite. The proposed technique, which we call Precipitation Evolving Technique (PET, propagates forward in time and space the last available rain-rate (RR maps derived from Advanced Microwave Sounding Units (AMSU and Microwave Humidity Sounder (MHS observations by using IR TB maps of water vapor (6.2 μm and thermal-IR (10.8 μm channels from a Spinning Enhanced Visible and Infrared Imager (SEVIRI radiometer. PET is based on two different modules, the first for morphing and tracking rain cells and the second for dynamic calibration IR-RR. The Morphing module uses two consecutive IR data to identify the motion vector to be applied to the rain field so as to propagate it in time and space, whilst the Calibration module computes the dynamic relationship between IR and RR in order to take into account genesis, extinction or size variation of rain cells. Finally, a combination of the Morphing and Calibration output provides a rainfall map at IR space and time scale, and the whole procedure is reiterated by using the last RR map output until a new MW-based rainfall is available. The PET results have been analyzed with respect to two different PM-RR retrieval algorithms for seven case studies referring to different rainfall convective events. The qualitative, dichotomous and continuous assessments show an overall ability of this technique to propagate rain field at least for 2–3 h propagation time.

  11. Cloud Modeling Using Field Project Data for the Study of Precipitation Processes

    Science.gov (United States)

    Tao, W.-K.; Shie, C.-H.; Lang, S.; Simpson, J.

    2003-01-01

    of the measurements relative to cloud development is crucial (i.e., prior to cloud triggering). Microphysical measurements (i.e., the cloud number concentration and size distribution) can also be used in this second approach but are of secondary importance with cloud ensemble modeling. In this paper, data collected during TRMM field campaigns (FCs; i.e., SCSMEX, LBA and KWAJEX) which were aimed at validating TRMM products (i.e., rainfall and the vertical distribution of latent heating) will be used to examine the impact of errors in the initial conditions (e.g.., soundings an large-scale forcing) on simulated rainfall distributions and brightness. Rainfall and precipitations simulated from a CRM will also be compared with those estimated by a schocastic model.

  12. Cooperative field test program for wind systems

    Energy Technology Data Exchange (ETDEWEB)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  13. The influence of annealing in the ferrite-plus-austenite phase field on the stability of vanadium carbide precipitates

    Science.gov (United States)

    Locci, I. E.; Michal, G. M.

    1989-01-01

    The effect of rapid excursions into the ferrite-plus-austenite two-phase field on V4C3 precipitates formed by tempering in the ferrite phases was investigated. Heat treatments were first performed to produce a starting microstructure of fine vanadium carbide particles precipitated in a ferrite matrix, and the microstructure was then subjected to various short-time heat treatment cycles that transformed part of the matrix to austenite. TEM was used to determine the effects of the matrix change on the size, morphology, and distribution of the vanadium carbide particles.

  14. Multi-proxy reconstructions of May–September precipitation field in China over the past 500 years

    Directory of Open Access Journals (Sweden)

    F. Shi

    2017-12-01

    Full Text Available The dominant modes of variability of precipitation for the whole of China over the past millennium and the mechanism governing their spatial structure remain unclear. This is mainly due to insufficient high-resolution proxy records of precipitation in western China. Numerous tree-ring chronologies have recently been archived in publicly available databases through PAGES2k activities, and these provide an opportunity to refine precipitation field reconstructions for China. Based on 479 proxy records, including 371 tree-ring width chronologies, a tree-ring isotope chronology, and 107 drought/flood indices, we reconstruct the precipitation field for China for the past half millennium using the optimal information extraction method. A total of 3631 of 4189 grid points in the reconstruction field passed the cross-validation process, accounting for 86.68 % of the total number of grid points. The first leading mode of variability of the reconstruction shows coherent variations over most of China. The second mode is a north–south dipole in eastern China characterized by variations of the same sign in western China and northern China (except for Xinjiang province. It is likely controlled by the El Niño–Southern Oscillation (ENSO variability. The third mode is a sandwich triple mode in eastern China including variations of the same sign in western China and central China. The last two modes are reproduced by most of the six coupled climate models' last millennium simulations performed in the framework of the Paleoclimate Modelling Intercomparison Project Phase III (PMIP3. In particular, the link of the second mode with ENSO is confirmed by the models. However, there is a mismatch between models and proxy reconstructions in the time development of different modes. This mismatch suggests the important role of internal variability in the reconstructed precipitation mode variations of the past 500 years.

  15. A Monte Carlo model of crustal field influences on solar energetic particle precipitation into the Martian atmosphere

    Science.gov (United States)

    Jolitz, R. D.; Dong, C. F.; Lee, C. O.; Lillis, R. J.; Brain, D. A.; Curry, S. M.; Bougher, S.; Parkinson, C. D.; Jakosky, B. M.

    2017-05-01

    Solar energetic particles (SEPs) can precipitate directly into the atmospheres of weakly magnetized planets, causing increased ionization, heating, and altered neutral chemistry. However, strong localized crustal magnetism at Mars can deflect energetic charged particles and reduce precipitation. In order to quantify these effects, we have developed a model of proton transport and energy deposition in spatially varying magnetic fields, called Atmospheric Scattering of Protons and Energetic Neutrals. We benchmark the model's particle tracing algorithm, collisional physics, and heating rates, comparing against previously published work in the latter two cases. We find that energetic nonrelativistic protons precipitating in proximity to a crustal field anomaly will primarily deposit energy at either their stopping altitude or magnetic reflection altitude. We compared atmospheric ionization in the presence and absence of crustal magnetic fields at 50°S and 182°E during the peak flux of the 29 October 2003 "Halloween storm" SEP event. The presence of crustal magnetic fields reduced total ionization by 30% but caused ionization to occur over a wider geographic area.

  16. Studies of the magnetic field intensity on the synthesis of chitosan-coated magnetite nanocomposites by co-precipitation method

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wei; Jia Shaoyi; Wu Qian; Wu Songhai; Ran Jingyu [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Liu Yong, E-mail: che_824@126.com [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Hou Jingwei [Petrochemical Research Institute of PetroChina, Beijing, 100195 (China)

    2012-02-01

    Chitosan-coated magnetite nanocomposites (Fe{sub 3}O{sub 4}/CS) were prepared under different external magnetic field by co-precipitation method. The effects of the magnetic field intensity on phase composition, morphology and magnetic properties of the Fe{sub 3}O{sub 4}/CS nanocomposites were investigated by X-ray diffractometer (XRD), Fourier transform infrared analysis (FT-IR), transmission electron microscopy (TEM), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM). The results showed that the intensity of the magnetic field in the co-precipitation reaction process did not result in the phase composition change of the magnetic chitosan but improved the crystallinity of magnetite. The morphology of Fe{sub 3}O{sub 4}/CS nanocomposites was greatly changed by the magnetic field. It was varied from random spherical particles to chain-like cluster structure and rod-like cluster structure with the magnetic field intensity increased in the synthetic process. The VSM results indicated that all the products had excellent superparamagnetic properties regardless of the presence or the absence of the magnetic field, and the saturation magnetization values of the Fe{sub 3}O{sub 4}/CS nanocomposites were significantly improved by the magnetic field. - Highlights: Black-Right-Pointing-Pointer Fe{sub 3}O{sub 4}/chitosan nanocomposites were synthesized under the different external magnetic fields. Black-Right-Pointing-Pointer Magnetite assembled along the direction of lines of magnetic force in the co-precipitation process. Black-Right-Pointing-Pointer Fe{sub 3}O{sub 4}/chitosan presented chain-like cluster structures at 0.25 T and rod-like cluster structures at 0.35 T.

  17. Gridded precipitation fields at high temporal and spatial resolution for operational flood forecasting in the Rhine basin

    Science.gov (United States)

    van Osnabrugge, Bart; Weerts, Albrecht; Uijlenhoet, Remko

    2017-04-01

    Gridded areal precipitation, as one of the most important hydrometeorological input variables for initial state estimation in operational hydrological forecasting, is available in the form of raster data sets (e.g. HYRAS and EOBS) for the River Rhine basin. These datasets are compiled off-line on a daily time step using station data with the highest possible spatial density. However, such a product is not available operationally and at an hourly discretisation. Therefore, we constructed an hourly gridded precipitation dataset at 1.44 km2 resolution for the Rhine basin for the period from 1998 to present using a REGNIE-like interpolation procedure (Weerts et al., 2008) using a low and a high density rain gauge network. The datasets were validated against daily HYRAS (Rauthe, 2013) and EOBS (Haylock, 2008) data. The main goal of the operational procedure is to emulate the HYRAS dataset as good as possible, as the daily HYRAS dataset is used in the off-line calibration of the hydrological model. Our main findings are that even with low station density, the spatial patterns found in the HYRAS data set are well reproduced. With low station density (years 1999-2006) our dataset underestimates precipitation compared to HYRAS and EOBS, notably during the winter. However, interpolation based on the same set of stations overestimates precipitation compared to EOBS for the years 2006-2014. This discrepancy disappears when switching to the high station density. We also analyze the robustness of the hourly precipitation fields by comparing with stations not used during interpolation. Specific issues regarding the data when creating the gridded precipitation fields will be highlighted. Finally, the datasets are used to drive an hourly and daily gridded WFLOW_HBV model of the Rhine at the same spatial resolution. Haylock, M.R., N. Hofstra, A.M.G. Klein Tank, E.J. Klok, P.D. Jones and M. New. 2008: A European daily high-resolution gridded dataset of surface temperature and

  18. The Hubble Space Telescope Frontier Fields Program

    Science.gov (United States)

    Koekemoer, Anton M.; Mack, Jennifer; Lotz, Jennifer M.; Borncamp, David; Khandrika, Harish G.; Lucas, Ray A.; Martlin, Catherine; Porterfield, Blair; Sunnquist, Ben; Anderson, Jay; Avila, Roberto J.; Barker, Elizabeth A.; Grogin, Norman A.; Gunning, Heather C.; Hilbert, Bryan; Ogaz, Sara; Robberto, Massimo; Sembach, Kenneth; Flanagan, Kathryn; Mountain, Matt

    2017-08-01

    The Hubble Space Telescope Frontier Fields program is a large Director's Discretionary program of 840 orbits, to obtain ultra-deep observations of six strong lensing clusters of galaxies, together with parallel deep blank fields, making use of the strong lensing amplification by these clusters of distant background galaxies to detect the faintest galaxies currently observable in the high-redshift universe. The entire program has now completed successfully for all 6 clusters, namely Abell 2744, Abell S1063, Abell 370, MACS J0416.1-2403, MACS J0717.5+3745 and MACS J1149.5+2223,. Each of these was observed over two epochs, to a total depth of 140 orbits on the main cluster and an associated parallel field, obtaining images in ACS (F435W, F606W, F814W) and WFC3/IR (F105W, F125W, F140W, F160W) on both the main cluster and the parallel field in all cases. Full sets of high-level science products have been generated for all these clusters by the team at STScI, including cumulative-depth data releases during each epoch, as well as full-depth releases after the completion of each epoch. These products include all the full-depth distortion-corrected drizzled mosaics and associated products for each cluster, which are science-ready to facilitate the construction of lensing models as well as enabling a wide range of other science projects. Many improvements beyond default calibration for ACS and WFC3/IR are implemented in these data products, including corrections for persistence, time-variable sky, and low-level dark current residuals, as well as improvements in astrometric alignment to achieve milliarcsecond-level accuracy. The full set of resulting high-level science products and mosaics are publicly delivered to the community via the Mikulski Archive for Space Telescopes (MAST) to enable the widest scientific use of these data, as well as ensuring a public legacy dataset of the highest possible quality that is of lasting value to the entire community.

  19. National Acid Precipitation Assessment Program Report to Congress: An Integrated Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Uhart, M.; et al,

    2005-08-01

    Under Title IX of the 1990 Clean Air Act Amendments, Congress reauthorized the National Acid Precipitation Assessment Program (NAPAP) to continue coordinating acid rain research and monitoring, as it had done during the previous decade, and to provide Congress with periodic reports. In particular, Congress asked NAPAP to assess all available data and information to answer two questions: (1) What are the costs, benefits, and effectiveness of Title IV? This question addresses the costs and economic impacts of complying with the Acid Rain Program as well as benefit analyses associated with the various human health and welfare effects, including reduced visibility, damages to materials and cultural resources, and effects on ecosystems. (2) What reductions in deposition rates are needed to prevent adverse ecological effects? This complex questions addresses ecological systems and the deposition levels at which they experience harmful effects. The results of the assessment of the effects of Title IV and of the relationship between acid deposition rates and ecological effects were to be reported to Congress quadrennially, beginning with the 1996 report to Congress. The objective of this Report is to address the two main questions posed by Congress and fully communicate the results of the assessment to decision-makers. Given the primary audience, most of this report is not written as a technical document, although information supporting the conclusions is provided along with references.

  20. The influence of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Putro, Triswantoro, E-mail: tris@physics.its.ac.id; Endarko, E-mail: endarko@physics.its.ac.id [Physics Department, Faculty of Mathematics and Natural Science Institut Teknologi Sepuluh Nopember (ITS), Surabaya 60111 (Indonesia)

    2016-04-19

    The influences of electron discharge and magnetic field on calcium carbonate (CaCO{sub 3}) precipitation in water have been successfully investigated. The study used three pairs of magnetic field 0.1 T whilst the electron discharge was generated from television flyback transformer type BW00607 and stainless steel SUS 304 as an electrode. The water sample with an initial condition of 230 mg/L placed in the reactor with flow rate 375 mL/minutes, result showed that the electron discharge can be reduced contain of calcium carbonate the water sample around 17.39% within 2 hours. Meanwhile for the same long period of treatment and flow rate, around 56.69% from initial condition of 520 mg/L of calcium carbonate in the water sample can be achieved by three pairs of magnetic field 0.1 T. When the combination of three pairs of magnetic field 0.1 T and the electron discharge used for treatment, the result showed that the combination of electron discharge and magnetic field methods can be used to precipitate calcium carbonate in the water sample 300 mg/L around 76.66% for 2 hours of treatment. The study then investigated the influence of the polar position of the magnetic field on calcium carbonate precipitation. Two positions of magnetic field were tested namely the system with alternated polar magnetics and the system without inversion of the polar magnetics. The influence of the polar position showed that the percentage reduction in levels of calcium carbonate in the water sample (360 mg/L) is significant different. Result showed that the system without inversion of the polar magnetics is generally lower than the system with alternated polar magnetics, with reduction level at 30.55 and 57.69%, respectively.

  1. Utilizing satellite precipitation estimates for streamflow forecasting via adjustment of mean field bias in precipitation data and assimilation of streamflow observations

    Science.gov (United States)

    Lee, Haksu; Zhang, Yu; Seo, Dong-Jun; Xie, Pingping

    2015-10-01

    This study explores mitigating bias in satellite quantitative precipitation estimates (SQPE) and improving hydrologic predictions at ungauged locations via adjustment of the mean field bias (MFB) in SQPE and data assimilation (DA) of streamflow observations in a distributed hydrologic model. In this study, a variational procedure is used to adjust MFB in Climate Prediction Center MORPHing (CMORPH) SQPE and assimilate streamflow observations at the outlet of Elk River Basin in Missouri into the distributed Sacramento Soil Moisture Accounting (SAC-SMA) and kinematic wave routing models. The benefits of assimilation are assessed by comparing the streamflow predictions with or without DA at both the outlet and an upstream location, and by comparing the soil moisture grids forced by CMORPH SQPE against those forced by higher-quality multisensor quantitative precipitation estimates (MQPE) from National Weather Service. Special attention is given to the dependence of the efficacy of DA on the quality and latency of the SQPE, and the impact of dynamic correction of MFB in the SQPE via DA. The results show that adjusting MFB in CMORPH SQPE in addition to assimilating outlet flow reduces 66% of the bias in the CMORPH SQPE analysis and the RMSE of 12-h streamflow predictions by 81% at the outlet and 34-62% at interior locations of the catchment. Compared to applying a temporally invariant MFB for the entire storm, the DA-based, dynamic MFB correction reduces the RMSE of 6-h streamflow prediction by 63% at the outlet and 39-69% at interior locations. It is also shown that the accuracy of streamflow prediction deteriorates if the delineation of the precipitation area by CMORPH SQPE is significantly different, as measured by the Hausdorff distance, from that by MQPE. When compared with adjusting MFB in the CMORPH SQPE over the entire assimilation window, adjusting the MFB for all but the latest 18 h (i.e., the latency of CMORPH SQPE) within the assimilation window reduces the

  2. Effect of magnetic field strength on M6C carbide precipitation behavior in W6Mo5Cr4V3 high speed steel during tempering

    Science.gov (United States)

    Wu, Y.; Zhang, Z. W.; Li, H. H.; Zhao, X.

    2017-05-01

    Effect of high magnetic field strength on M6C carbide precipitation morphology in W6Mo5Cr4V3 high speed steel was investigated. Results showed that at low and medium tempering temperatures, the high magnetic field significantly affects the precipitation morphology of M6C carbides and shows strong spheroidization. This effect increases with the enhancement of the magnetic field strength. At high tempering temperature, the high magnetic field has no obvious effect on M6C carbide precipitation behavior.

  3. Effects of precipitation changes on aboveground net primary production and soil respiration in a switchgrass field

    Science.gov (United States)

    This study attempted to test whether switchgrass aboveground net primary production (ANPP) responds to precipitation (PPT) changes in a double asymmetry pattern as framed by Knapp et al. (2016), and whether it is held true for other ecosystem processes such as soil respiration (SR). Data were colle...

  4. The Ethiopian Field Epidemiology and Laboratory Training Program ...

    African Journals Online (AJOL)

    Residents of the program spend about 25% of their time undergoing didactic training and the 75% in the field working at program field bases established with the ... to public health emergencies, using health data to make recommendations and undertaking other field Epidemiology related activities on setting health policy.

  5. Stabilization and destabilization effects of the electric field on stochastic precipitate pattern

    NARCIS (Netherlands)

    Lagzi, István; Izsak, F.

    2004-01-01

    Stabilization and destabilization effects of an applied electric field on the Liesegang pattern formation in low concentration gradient were studied with numerical model simulations. In the absence of an electric field pattern formation exhibits increasingly stochastic behaviour as the initial

  6. Phase-Field Modeling of Sigma-Phase Precipitation in 25Cr7Ni4Mo Duplex Stainless Steel

    Science.gov (United States)

    Malik, Amer; Odqvist, Joakim; Höglund, Lars; Hertzman, Staffan; Ågren, John

    2017-10-01

    Phase-field modeling is used to simulate the formation of sigma phase in a model alloy mimicking a commercial super duplex stainless steel (SDSS) alloy, in order to study precipitation and growth of sigma phase under linear continuous cooling. The so-called Warren-Boettinger-McFadden (WBM) model is used to build the basis of the multiphase and multicomponent phase-field model. The thermodynamic inconsistency at the multiple junctions associated with the multiphase formulation of the WBM model is resolved by means of a numerical Cut-off algorithm. To make realistic simulations, all the kinetic and the thermodynamic quantities are derived from the CALPHAD databases at each numerical time step, using Thermo-Calc and TQ-Interface. The credibility of the phase-field model is verified by comparing the results from the phase-field simulations with the corresponding DICTRA simulations and also with the empirical data. 2D phase-field simulations are performed for three different cooling rates in two different initial microstructures. A simple model for the nucleation of sigma phase is also implemented in the first case. Simulation results show that the precipitation of sigma phase is characterized by the accumulation of Cr and Mo at the austenite-ferrite and the ferrite-ferrite boundaries. Moreover, it is observed that a slow cooling rate promotes the growth of sigma phase, while a higher cooling rate restricts it, eventually preserving the duplex structure in the SDSS alloy. Results from the phase-field simulations are also compared quantitatively with the experiments, performed on a commercial 2507 SDSS alloy. It is found that overall, the predicted morphological features of the transformation and the composition profiles show good conformity with the empirical data.

  7. Scoping a field experiment: error diagnostics of TRMM precipitation radar estimates in complex terrain as a basis for IPHEx2014

    Science.gov (United States)

    Duan, Y.; Wilson, A. M.; Barros, A. P.

    2015-03-01

    A diagnostic analysis of the space-time structure of error in quantitative precipitation estimates (QPEs) from the precipitation radar (PR) on the Tropical Rainfall Measurement Mission (TRMM) satellite is presented here in preparation for the Integrated Precipitation and Hydrology Experiment (IPHEx) in 2014. IPHEx is the first NASA ground-validation field campaign after the launch of the Global Precipitation Measurement (GPM) satellite. In anticipation of GPM, a science-grade high-density raingauge network was deployed at mid to high elevations in the southern Appalachian Mountains, USA, since 2007. This network allows for direct comparison between ground-based measurements from raingauges and satellite-based QPE (specifically, PR 2A25 Version 7 using 5 years of data 2008-2013). Case studies were conducted to characterize the vertical profiles of reflectivity and rain rate retrievals associated with large discrepancies with respect to ground measurements. The spatial and temporal distribution of detection errors (false alarm, FA; missed detection, MD) and magnitude errors (underestimation, UND; overestimation, OVR) for stratiform and convective precipitation are examined in detail toward elucidating the physical basis of retrieval error. The diagnostic error analysis reveals that detection errors are linked to persistent stratiform light rainfall in the southern Appalachians, which explains the high occurrence of FAs throughout the year, as well as the diurnal MD maximum at midday in the cold season (fall and winter) and especially in the inner region. Although UND dominates the error budget, underestimation of heavy rainfall conditions accounts for less than 20% of the total, consistent with regional hydrometeorology. The 2A25 V7 product underestimates low-level orographic enhancement of rainfall associated with fog, cap clouds and cloud to cloud feeder-seeder interactions over ridges, and overestimates light rainfall in the valleys by large amounts, though this

  8. Field verification program for small wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Windward Engineering, LLC

    2003-11-30

    In 1999 Windward Engineering (Windward) was awarded a Cooperative Agreement under the Field Verification Program with the Department of Energy (DOE) to install two Whisper H40 wind turbines, one at the NREL National Wind Technology Center (NWTC) and one at a test site near Spanish Fork, Utah. After installation, the turbine at the NWTC was to be operated, maintained, and monitored by NREL while the turbine in Spanish Fork was to be administered by Windward. Under this award DOE and Windward defined the primary objectives of the project as follows: (1) Determine and demonstrate the reliability and energy production of a furling wind turbine at a site where furling will be a very frequent event and extreme gusts can be expected during the duration of the tests. (2) Make engineering measurements and conduct limited computer modeling of the furling behavior to improve the industry understanding of the mechanics and nature of furling. We believe the project has achieved these objectives. The turbine has operated for approximately three and a half years. We have collected detailed engineering data approximately 75 percent of that time. Some of these data were used in an ADAMS model validation that highlighted the accuracies and inaccuracies of the computer modeling for a passively furling wind turbine. We also presented three papers at the American Wind Energy Association (AWEA) Windpower conferences in 2001, 2002, and 2003. These papers addressed the following three topics: (a) general overview of the project [1], (b) furling operation during extreme wind events [2], and (c) extrapolation of extreme (design) loads [3]. We believe these papers have given new insight into the mechanics and nature of furling and have set the stage for future research. In this final report we will highlight some of the more interesting aspects of the project as well as summarize the data for the entire project. We will also present information on the installation of the turbines as well as

  9. The Ethiopian Field Epidemiology and Laboratory Training Program ...

    African Journals Online (AJOL)

    The Ethiopian Field Epidemiology and Laboratory Training Program: strengthening public health systems and building human resource capacity. ... responding to public health emergencies, using health data to make recommendations and undertaking other field Epidemiology related activities on setting health policy.

  10. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    Full Text Available

    Abstract. Simultaneous DMSP F7 and Viking satellite measurements of the dawnside high-latitude auroral energy electron and ion precipitation show that the region of the low and middle altitude auroral precipitation consists of three characteristic plasma regimes. The recommendation of the IAGA Working Group IIF/III4 at the IAGA Assembly in Boulder, July 1995 to decouple the nomenclature of ionospheric populations from magnetospheric population is used for their notation. The most equatorial regime is the Diffuse Auroral Zone (DAZ of diffuse spatially unstructured precipitating electrons. It is generated by the plasma injection to the inner magnetosphere in the nightside and the subsequent drift plasma to the dawnside around the Earth. Precipitating particles have a hard spectrum with typical energies of electrons and ions of more than 3 keV. In the DAZ, the ion pitch-angle distribution is anisotropic, with the peak near 90°. The next part is the Auroral Oval (AO, a structured electron regime which closely resembles the poleward portion of the night-side auroral oval. The typical electron energy is several keV, and the ion energy is up to 10 keV. Ion distributions are pre-dominantly isotropic. In some cases, this plasma regime may be absent in the pre-noon sector. Poleward of the Auroral Oval, there is the Soft Small Scale Luminosity (SSSL regime. It is caused by structured electron and ion precipitation with typical electron energy of about 0.3 keV and ion energy of about 1 keV. The connection of these low-altitude regimes with plasma domains of the distant magnetosphere is discussed. For mapping of the plasma regimes to the equatorial plane of the magnetosphere, the empirical model by Tsyganenko (1995 and the conceptual model by Alexeev et al. (1996 are used. The DAZ is mapped along the magnetic field lines to the Remnant Layer (RL, which is located in the outer radiation belt region; the zone of structured

  11. Structure of the auroral precipitation region in the dawn sector: relationship to convection reversal boundaries and field-aligned currents

    Directory of Open Access Journals (Sweden)

    Y. I. Feldstein

    2001-05-01

    Full Text Available Abstract. Simultaneous DMSP F7 and Viking satellite measurements of the dawnside high-latitude auroral energy electron and ion precipitation show that the region of the low and middle altitude auroral precipitation consists of three characteristic plasma regimes. The recommendation of the IAGA Working Group IIF/III4 at the IAGA Assembly in Boulder, July 1995 to decouple the nomenclature of ionospheric populations from magnetospheric population is used for their notation. The most equatorial regime is the Diffuse Auroral Zone (DAZ of diffuse spatially unstructured precipitating electrons. It is generated by the plasma injection to the inner magnetosphere in the nightside and the subsequent drift plasma to the dawnside around the Earth. Precipitating particles have a hard spectrum with typical energies of electrons and ions of more than 3 keV. In the DAZ, the ion pitch-angle distribution is anisotropic, with the peak near 90°. The next part is the Auroral Oval (AO, a structured electron regime which closely resembles the poleward portion of the night-side auroral oval. The typical electron energy is several keV, and the ion energy is up to 10 keV. Ion distributions are pre-dominantly isotropic. In some cases, this plasma regime may be absent in the pre-noon sector. Poleward of the Auroral Oval, there is the Soft Small Scale Luminosity (SSSL regime. It is caused by structured electron and ion precipitation with typical electron energy of about 0.3 keV and ion energy of about 1 keV. The connection of these low-altitude regimes with plasma domains of the distant magnetosphere is discussed. For mapping of the plasma regimes to the equatorial plane of the magnetosphere, the empirical model by Tsyganenko (1995 and the conceptual model by Alexeev et al. (1996 are used. The DAZ is mapped along the magnetic field lines to the Remnant Layer (RL, which is located in the outer radiation belt region; the zone of structured electrons and isotropic ion

  12. Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells.

    Science.gov (United States)

    An, Jingkun; Li, Nan; Wan, Lili; Zhou, Lean; Du, Qing; Li, Tian; Wang, Xin

    2017-10-15

    As a promising design for the real application of microbial fuel cells (MFCs) in wastewater treatment, activated carbon (AC) air-cathode is suffering from a serious power decay after long-term operation. However, the decay mechanism is still not clear because of the complex nature of contaminations. Different from previous reports, we found that local alkalinization and natural evaporation had an ignorable effect on cathode performance (∼2% decay on current densities), while electric field induced salt precipitation (∼53%) and biofouling (∼37%) were dominant according to the charge transfer resistance, which decreased power desities by 36% from 1286 ± 30 to 822 ± 23 mW m -2 in 6 months. Biofouling can be removed by scrapping, however, electric field induced salt precipitation under biofilm still clogged 37% of specific area in catalyst layer, which was even seen to penetrate through the gas diffusion layer. Our findings provided a new insight of AC air-cathode performance decay, providing important information for the improvement of cathodic longevity in the future. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Effects of alkaloid-rich extract from Mitragyna speciosa (Korth.) Havil. on naloxone-precipitated morphine withdrawal symptoms and local field potential in the nucleus accumbens of mice.

    Science.gov (United States)

    Cheaha, Dania; Reakkamnuan, Chayaporn; Nukitram, Jakkrit; Chittrakarn, Somsmorn; Phukpattaranont, Pimpimol; Keawpradub, Niwat; Kumarnsit, Ekkasit

    2017-08-17

    Mitragyna speciosa (Korth.) Havil. (M. speciosa) is among the most well-known plants used in ethnic practice of Southeast Asia. It has gained increasing attention as a plant with potential to substitute morphine in addiction treatment program. However, its action on the central nervous system is controversial. This study investigated the effects of M. speciosa alkaloid extract on naloxone-precipitated morphine withdrawal and neural signaling in the nucleus accumbens (NAc, brain reward center) of mice. The effects of M. speciosa alkaloid extract and mitragynine, a pure major constituent, on naloxone-precipitated morphine withdrawal were examined. Male Swiss Albino (ICR) mice were rendered dependent on morphine before injection with naloxone, a nonspecific opioid antagonist, to induce morphine withdrawal symptoms. The intensity of naloxone-precipitated morphine withdrawal was assessed from jumping behavior and diarrhea induced during a period of morphine withdrawal. To test possible addictive effect of M. speciosa alkaloid extract, mice were implanted with intracranial electrode into the NAc for local field potential (LFP) recording. Following M. speciosa alkaloid extract (80mg/kg) and morphine (15mg/kg) treatment, LFP power spectra and spontaneous motor activity were analyzed in comparison to control levels. One-way ANOVA and multiple comparisons revealed that M. speciosa alkaloid extract (80 and 100mg/kg) significantly decreased the number of jumping behavior induced by morphine withdrawal whereas mitragynine did not. Additionally, M. speciosa alkaloid extract significantly decreased dry and wet fecal excretions induced by morphine withdrawal. LFP analysis revealed that morphine significantly decreased alpha (9.7-12Hz) and increased low gamma (30.3-44.9Hz) and high gamma (60.5-95.7Hz) powers in the NAc whereas M. speciosa alkaloid extract did not. Spontaneous motor activity was significantly increased by morphine but not M. speciosa alkaloid extract. Taken together

  14. Design of the Precipitation Process for Ni-Al Alloys with Optimal Mechanical Properties: A Phase-Field Study

    Science.gov (United States)

    Ta, Na; Zhang, Lijun; Du, Yong

    2014-04-01

    An attempt to design the heat treatment schedule for binary Ni-Al alloys with optimal mechanical properties was made in the present work. A series of quantitative three-dimensional (3-D) phase-field simulations of microstructure evolution in Ni-Al alloys during the precipitation process were first performed using MICRESS (MICRostructure Evolution Simulation Software) package developed in the formalism of the multi-phase field model. The coupling to CALPHAD (CALculation of PHAse Diagram) thermodynamic and atomic mobility databases was realized via TQ interface. Moreover, the temperature-dependent lattice misfits and elastic constants were utilized for simulation. The effect of the alloy composition and aging temperature on microstructure evolution was extensively studied with the aid of statistical analysis. After that, an evaluation function was proposed for evaluating the optimal heat treatment schedule by choosing the phase fraction, grain size, and shape factor of γ' precipitate as the evaluation indicators. Based on 50 groups of phase-field-simulated and experimental microstructure information, as well as the proposed evaluation function, the optimal alloy composition, aging temperature, and aging time for binary Ni-Al alloy with optimal mechanical properties were finally chosen. The successful application in the present Ni-Al alloys indicates that it is possible to design the optimal alloy composition and heat treatment for other binary and even multicomponent alloys with optimal mechanical properties based on the evaluation function and the sufficient microstructure information. Additionally, the combination of the present method and the key experiments can definitely accelerate the material design and improve the efficiency and accuracy.

  15. National Program on High Field Accelerator Magnet R&D

    Energy Technology Data Exchange (ETDEWEB)

    Apollinari, G. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Cooley, L. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Zlobin, A. V. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Caspi, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gourlay, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Prestemon, S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Larbalestier, D. [National High Magnetic Field Laboratory, Tallahassee, FL (United States); Gupta, R. [Brookhaven National Lab. (BNL), Upton, NY (United States); Wanderer, P. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2014-09-26

    A National High-Field Magnet (HFM) Program is proposed as a thrust of the updated DOE-HEP General Accelerator R&D Program. The program responds to Recommendation 24 of the 2014 Particle Physics Project Prioritization Panel (P5) Report.

  16. Stochastic bias correction of dynamically downscaled precipitation fields for Germany through Copula-based integration of gridded observation data

    Directory of Open Access Journals (Sweden)

    G. Mao

    2015-04-01

    Full Text Available Dynamically downscaled precipitation fields from regional climate models (RCMs often cannot be used directly for regional climate studies. Due to their inherent biases, i.e., systematic over- or underestimations compared to observations, several correction approaches have been developed. Most of the bias correction procedures such as the quantile mapping approach employ a transfer function that is based on the statistical differences between RCM output and observations. Apart from such transfer function-based statistical correction algorithms, a stochastic bias correction technique, based on the concept of Copula theory, is developed here and applied to correct precipitation fields from the Weather Research and Forecasting (WRF model. For dynamically downscaled precipitation fields we used high-resolution (7 km, daily WRF simulations for Germany driven by ERA40 reanalysis data for 1971–2000. The REGNIE (REGionalisierung der NIEderschlagshöhen data set from the German Weather Service (DWD is used as gridded observation data (1 km, daily and aggregated to 7 km for this application. The 30-year time series are split into a calibration (1971–1985 and validation (1986–2000 period of equal length. Based on the estimated dependence structure (described by the Copula function between WRF and REGNIE data and the identified respective marginal distributions in the calibration period, separately analyzed for the different seasons, conditional distribution functions are derived for each time step in the validation period. This finally allows to get additional information about the range of the statistically possible bias-corrected values. The results show that the Copula-based approach efficiently corrects most of the errors in WRF derived precipitation for all seasons. It is also found that the Copula-based correction performs better for wet bias correction than for dry bias correction. In autumn and winter, the correction introduced a small dry

  17. Stochastic bias correction of dynamically downscaled precipitation fields for Germany through Copula-based integration of gridded observation data

    Science.gov (United States)

    Mao, G.; Vogl, S.; Laux, P.; Wagner, S.; Kunstmann, H.

    2015-04-01

    Dynamically downscaled precipitation fields from regional climate models (RCMs) often cannot be used directly for regional climate studies. Due to their inherent biases, i.e., systematic over- or underestimations compared to observations, several correction approaches have been developed. Most of the bias correction procedures such as the quantile mapping approach employ a transfer function that is based on the statistical differences between RCM output and observations. Apart from such transfer function-based statistical correction algorithms, a stochastic bias correction technique, based on the concept of Copula theory, is developed here and applied to correct precipitation fields from the Weather Research and Forecasting (WRF) model. For dynamically downscaled precipitation fields we used high-resolution (7 km, daily) WRF simulations for Germany driven by ERA40 reanalysis data for 1971-2000. The REGNIE (REGionalisierung der NIEderschlagshöhen) data set from the German Weather Service (DWD) is used as gridded observation data (1 km, daily) and aggregated to 7 km for this application. The 30-year time series are split into a calibration (1971-1985) and validation (1986-2000) period of equal length. Based on the estimated dependence structure (described by the Copula function) between WRF and REGNIE data and the identified respective marginal distributions in the calibration period, separately analyzed for the different seasons, conditional distribution functions are derived for each time step in the validation period. This finally allows to get additional information about the range of the statistically possible bias-corrected values. The results show that the Copula-based approach efficiently corrects most of the errors in WRF derived precipitation for all seasons. It is also found that the Copula-based correction performs better for wet bias correction than for dry bias correction. In autumn and winter, the correction introduced a small dry bias in the

  18. Mean field diffusion models for precipitation in crystalline GaAs including surface tension and bulk stresses

    Energy Technology Data Exchange (ETDEWEB)

    Dreyer, Wolfgang [Weierstrass-Institut fuer Angewandte Analysis und Stochastik (WIAS) im Forschungsverbund Berlin e.V. (Germany); Kimmerle, Sven-Joachim [Humboldt-Univ. Berlin (Germany). Dept. of Mathematics

    2009-07-01

    Based on a thermodynamically consistent model for precipitation in gallium arsenide crystals including surface tension and bulk stresses by Dreyer and Duderstadt, we propose different mathematical models to describe the size evolution of liquid droplets in a crystalline solid. The first class of models treats the diffusion-controlled regime of interface motion, while the second class is concerned with the interface-controlled regime of interface motion. Our models take care of conservation of mass and substance. We consider homogenised models, where different length scales of the experimental situation have been exploited in order to simplify the equations. These homogenised models generalise the well-known Lifshitz-Slyozov-Wagner model for Ostwald ripening. Mean field models capture the main properties of our system and are well adapted for numerics and further analysis. Numerical evidence suggests in which case which one of the two regimes might be appropriate to the experimental situation. (orig.)

  19. Retrofit of waste-to-energy facilities equipped with electrostatic precipitators. Volume II: Field and laboratory reports, Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Rigo, H.G. [Rigo & Rigo Associates, Inc., Berea, OH (US); Chandler, A.J. [A.J. Chandler & Associates, Ltd., Toronto, Ontario (Canada)

    1996-04-01

    Volume II (part 2 of 2) of ''Retrofit of Waste-to-energy Facilities Equipped with Electrostatic Precipitators'' contains the field and laboratory reports, including: (1) field reports, (2) analytic laboratory reports, (3) chain of custody forms, and (4) TCLP laboratory reports.

  20. The general observation period 2007 within the priority program on quantitative precipitation forecasting: Concept and first results

    Directory of Open Access Journals (Sweden)

    Susanne Crewell

    2008-12-01

    Full Text Available In the year 2007 a General Observation Period (GOP has been performed within the German Priority Program on Quantitative Precipitation Forecasting (PQP. By optimizing the use of existing instrumentation a large data set of in-situ and remote sensing instruments with special focus on water cycle variables was gathered over the full year cycle. The area of interest covered central Europe with increasing focus towards the Black Forest where the Convective and Orographically-induced Precipitation Study (COPS took place from June to August 2007. Thus the GOP includes a variety of precipitation systems in order to relate the COPS results to a larger spatial scale. For a timely use of the data, forecasts of the numerical weather prediction models COSMO-EU and COSMO-DE of the German Meteorological Service were tailored to match the observations and perform model evaluation in a near real-time environment. The ultimate goal is to identify and distinguish between different kinds of model deficits and to improve process understanding.

  1. Detecting Microbially Induced Calcite Precipitation in a Model Well-Bore Using Downhole Low-Field NMR.

    Science.gov (United States)

    Kirkland, Catherine M; Zanetti, Sam; Grunewald, Elliot; Walsh, David O; Codd, Sarah L; Phillips, Adrienne J

    2017-02-07

    Microbially induced calcite precipitation (MICP) has been widely researched recently due to its relevance for subsurface engineering applications including sealing leakage pathways and permeability modification. These applications of MICP are inherently difficult to monitor nondestructively in time and space. Nuclear magnetic resonance (NMR) can characterize the pore size distributions, porosity, and permeability of subsurface formations. This investigation used a low-field NMR well-logging probe to monitor MICP in a sand-filled bioreactor, measuring NMR signal amplitude and T2 relaxation over an 8 day experimental period. Following inoculation with the ureolytic bacteria, Sporosarcina pasteurii, and pulsed injections of urea and calcium substrate, the NMR measured water content in the reactor decreased to 76% of its initial value. T2 relaxation distributions bifurcated from a single mode centered about approximately 650 ms into a fast decaying population (T2 less than 10 ms) and a larger population with T2 greater than 1000 ms. The combination of changes in pore volume and surface minerology accounts for the changes in the T2 distributions. Destructive sampling confirmed final porosity was approximately 88% of the original value. These results indicate the low-field NMR well-logging probe is sensitive to the physical and chemical changes caused by MICP in a laboratory bioreactor.

  2. Field-of-view characteristics and resolution matching for the Global Precipitation Measurement (GPM) Microwave Imager (GMI)

    Science.gov (United States)

    Petty, Grant W.; Bennartz, Ralf

    2017-03-01

    Representative parameters of the scan geometry are empirically determined for the Global Precipitation Measurement (GPM) Microwave Imager (GMI). Effective fields of view (EFOVs) are computed for the GMI's 13 channels, taking into account the blurring effect of the measurement interval on the instantaneous fields of view (IFOVs). Using a Backus-Gilbert procedure, coefficients are derived that yield an approximate spatial match between synthetic EFOVs of different channels, using the 18.7 GHz channels as a target and with due consideration of the tradeoff between the quality of the fit and noise amplification and edge effects. Modest improvement in resolution is achieved for the 10.65 GHz channels, albeit with slight ringing in the vicinity of coastlines and other sharp brightness temperature gradients. For all other channels, resolution is coarsened to approximate the 18.7 GHz EFOV. It is shown that the resolution matching procedure reduces nonlinear correlations between channels in the presence of coastlines as well as enables the more efficient separation of large brightness temperature variations due to coastlines from the much smaller variations due to other geophysical variables. As a byproduct of this work, we report accurate EFOV resolutions as well as a self-consistent set of parameters for modeling the scan geometry of the GMI.

  3. Freedom within Limits: Program Structure and Field Instructor Autonomy

    Science.gov (United States)

    Brondyk, Susan Vander Veen

    2009-01-01

    Field instruction remains a mainstay in most teacher education programs, but there is little empirical evidence as to its effectiveness--whether it contributes to better teachers or influences student achievement. Research says even less about how field instructors learn to do their work. The aim of this study is to describe and explain field…

  4. Track & Field: Special Olympics Sports Skills Instructional Program.

    Science.gov (United States)

    Joseph P. Kennedy, Jr. Foundation, Washington, DC.

    One of five guidelines in the Sports Skills Instructional Program, the booklet addresses ways to teach track and field to mentally retarded persons. The approach is designed to use volunteers as instructors. An overview considers such topics as clothing, equipment, and field preparation. The long term goal of acquiring basic fundamental skills,…

  5. First field-based observations of δ2H and δ18O values of precipitation and other water bodies in the Mongolian Gobi desert

    Science.gov (United States)

    Burnik Šturm, Martina; Ganbaatar, Oyunsaikhan; Voigt, Christian C.; Kaczensky, Petra

    2017-04-01

    Hydrogen (δ2H) and oxygen (δ18O) isotope values of water are widely used to track the global hydrological cycle and the global δ2H and δ18O patterns of precipitation are increasingly used in studies on animal migration, forensics, food authentication and traceability studies. However, δ2H and δ18O values of precipitation spanning one or more years are available for only a few 100 locations worldwide and for many remote areas such as Mongolia data are still scarce. We obtained the first field-based δ2H and δ18O isotope data of event-based precipitation, rivers and other water bodies in the extreme environment of the Dzungarian Gobi desert in SW Mongolia, covering a period of 16 months (1). Our study area is located over 450 km north-east from the nearest IAEA GNIP station (Fukang station, China) from which it is separated by a mountain range at the international border between China and Mongolia. Isotope values of the collected event-based precipitation showed and extreme range and a high seasonal variability with higher and more variable values in summer and lower in winter. The high variability could not be explained by different origin of air masses alone (i.e. NW polar winds over Russia or westerlies over Central Asia; analyzed using back-trajectory HYSPLIT model), but is likely a result of a combination of different processes affecting the isotope values of precipitation in this area. The calculated field-based local meteoric water line (LMWL, δ2H=(7.42±0.16)δ18O-(23.87±3.27)) showed isotopic characteristics of precipitation in an arid region. We observed a slight discrepancy between the filed based and modelled (Online Isotope in Precipitation Calculator, OIPC) LMWL which highlighted the difficulty of modelling the δ2H and δ18O values for areas with extreme climatic conditions and thus emphasized the importance of collecting long-term field-based data. The collected isotopic data of precipitation and other water bodies provide a basis for future

  6. Comparison and modeling of effects of normal and reduced precipitation supply in field experiment with spring barley

    Science.gov (United States)

    Pohanková, Eva; Orság, Matěj; Fischer, Milan; Hlavinka, Petr

    2015-04-01

    This paper evaluates two-year (2013 and 2014) results of field experiments with spring barley (cultivar Bojos) under reduced precipitation supply. The field experiments were carried out at the experimental station in Domanínek (Czech Republic; 49°31,470'N, 16°14,400'E, altitude 530 m a.s.l.) and conducted by Institute of Agrosystems and bioclimatology at Mendel Univerzity in Brno in cooperation with Global Change Research Centre AS CR. The field experiments consisted of small plots in two variants and three repetitions. The first variant was uncovered the second was partially covered to exclude rain through out the whole vegetation season. For the partial covering of the plot, a material which transmits solar radiation and diverts rainwater away from the percentage coverage of the plots was used. In 2013, the covered area of the experimental plot was 30%, and in 2014, it was 70%. The main aim was to determine whether there are any differences in the spring barley's development, growth and yield in the uncovered and the partially covered plots, and a comparison of the results. Firstly, differences of key parameters (seasonal dynamics of the leaf area index and above ground biomass, soil water content, yield components and yields) compared; secondly, the results of the field experiments served as input data for the crop growth model DAISY. Subsequently, the crop growth model' ability to simulate crop growth and crop development which were affected by the drought stress was explored. The results were assessed using the following statistical indexes: root mean square error (RMSE) and mean bias error (MBE). This study was funded by project "Building up a multidisciplinary scientific team focused on drought" No. CZ.1.07/2.3.00/20.0248, NAZV-JPI - project supported by Czech National Agency of Agricultural Research No. QJ1310123 "Crop modelling as a tool for increasing the production potential and food security of the Czech Republic under Climate Change" and project LD

  7. TEST PROGRAM FOR ALUMINA REMOVAL AND SODIUM HYDROXIDE REGENERATION FROM HANFORD WASTE BY LITHIUM HYDROTALCITE PRECIPITATION

    Energy Technology Data Exchange (ETDEWEB)

    SAMS TL; GEINESSE D

    2011-01-28

    This test program sets a multi-phased development path to support the development of the Lithium Hydrotalcite process, in order to raise its Technology Readiness Level from 3 to 6, based on tasks ranging from laboratory scale scientific research to integrated pilot facilities.

  8. U.S. field testing programs and results

    Energy Technology Data Exchange (ETDEWEB)

    Wicks, G.G.

    2000-06-09

    The United States has been active in four major international in-situ or field testing programs over the past two decades, involving the burial of simulated high-level waste forms and package components. These programs are designed to supplement laboratory testing studies in order to obtain the most complete and realistic picture possible of waste glass behavior under realistic repository-relevant conditions.

  9. A program to study the Earth's magnetic field

    Science.gov (United States)

    GP President-Elect Ron Merrill has appointed a steering committee to develop a new initiative for a program to study the earth's magnetic field. In addition to Merrill, who will serve as chair, and Kenneth Verosub (University of California, Davis) who will be vice-chair, the committee includes George Backus (Scripps Institution of Oceanography, La Jolla, Calif.), Ned Benton (University of Colorado, Boulder), Rob Coe (University of California, Santa Cruz), and Dennis Kent (Lamont-Doherty Geological Observatory, Palisades, N.Y.). The objective of the new program would be to develop a better description of the behavior of the geomagnetic field on all time scales and to use this description to increase our understanding of the physical processes that govern the generation of the geomagnetic field. The program would have three areas of emphasis: the present and recent field and its secular variation, the paleo-field and its variation on various time scales, and the core processes that produce the field.

  10. Biochar effects on uptake of cadmium and lead by wheat in relation to annual precipitation: a 3-year field study.

    Science.gov (United States)

    Sui, Fengfeng; Zuo, Jing; Chen, De; Li, Lianqing; Pan, Genxing; Crowley, David E

    2018-02-01

    Biochar has been widely studied for its ability to reduce plant uptake of heavy metals by lowering metal bioavailabilities through adsorption and pH-driven fixation reactions. However, the long-term effect of biochar on heavy metal bioavailabilities in alkaline soils under natural redox condition is rarely studied. Here, we report a study examining the effects of biochar on bioavailability and partitioning of cadmium (Cd) and lead (Pb) among different soil fractions over 3 years in a field study with wheat (Triticum aestivum L.). Plots were established on two similar soils having low and high levels of contamination, both of which were amended in the first year with wheat straw biochar at 0, 20, and 40 t ha -1 . Precipitation patterns varied greatly over the study period, with 2014 having record drought, which was followed by 2 years having extreme flooding events. Results showed a significant increase in grain yield and reductions in Cd and Pb concentrations in wheat grain in the biochar-amended soils in 2014. In contrast, bioavailable (exchangeable) heavy metal concentrations and plant uptake of Cd and Pb were significantly higher in the subsequent very wet years in 2015 and 2016, where the effects of biochar were much more variable and had an overall lesser effect on reducing heavy metal uptake. The results suggest that fluctuations in soil pH and redox caused by periodic drought and flood cycles strongly drive metal cycling through mobilization and immobilization of metals associated with different mineral phases. Under these conditions, biochar may have reduced efficacy for reducing heavy metal uptake in wheat.

  11. A lab in the field: high-frequency analysis of water quality and stable isotopes in stream water and precipitation

    Science.gov (United States)

    von Freyberg, Jana; Studer, Bjørn; Kirchner, James W.

    2017-03-01

    High-frequency measurements of solutes and isotopes (18O and 2H) in rainfall and streamflow can shed important light on catchment flow pathways and travel times, but the workload and sample storage artifacts involved in collecting, transporting, and analyzing thousands of bottled samples severely constrain catchment studies in which conventional sampling methods are employed. However, recent developments towards more compact and robust analyzers have now made it possible to measure chemistry and water isotopes in the field at sub-hourly frequencies over extended periods. Here, we present laboratory and field tests of a membrane-vaporization continuous water sampler coupled to a cavity ring-down spectrometer for real-time measurements of δ18O and δ2H combined with a dual-channel ion chromatograph (IC) for the synchronous analysis of major cations and anions. The precision of the isotope analyzer was typically better than 0.03 ‰ for δ18O and 0.17 ‰ for δ2H in 10 min average readings taken at intervals of 30 min. Carryover effects were less than 1.2 % between isotopically contrasting water samples for 30 min sampling intervals, and instrument drift could be corrected through periodic analysis of secondary reference standards. The precision of the ion chromatograph was typically ˜ 0.1-1 ppm or better, with relative standard deviations of ˜ 1 % or better for most major ions in stream water, which is sufficient to detect subtle biogeochemical signals in catchment runoff. We installed the coupled isotope analyzer/IC system in an uninsulated hut next to a stream of a small catchment and analyzed stream water and precipitation samples every 30 min over 28 days. These high-frequency measurements facilitated a detailed comparison of event-water fractions via endmember mixing analysis with both chemical and isotope tracers. For two events with relatively dry antecedent moisture conditions, the event-water fractions were pre-event endmember used in hydrograph

  12. Field evaluation of a new particle concentrator- electrostatic precipitator system for measuring chemical and toxicological properties of particulate matter

    Directory of Open Access Journals (Sweden)

    Pakbin Payam

    2008-11-01

    Full Text Available Abstract Background A newly designed electrostatic precipitator (ESP in tandem with Versatile Aerosol Concentration Enrichment System (VACES was developed by the University of Southern California to collect ambient aerosols on substrates appropriate for chemical and toxicological analysis. The laboratory evaluation of this sampler is described in a previous paper. The main objective of this study was to evaluate the performance of the new VACES-ESP system in the field by comparing the chemical characteristics of the PM collected in the ESP to those of reference samplers operating in parallel. Results The field campaign was carried out in the period from August, 2007 to March, 2008 in a typical urban environment near downtown Los Angeles. Each sampling set was restricted to 2–3 hours to minimize possible sampling artifacts in the ESP. The results showed that particle penetration increases and ozone concentration decreases with increasing sampling flow rate, with highest particle penetration observed between 100 nm and 300 nm. A reference filter sampler was deployed in parallel to the ESP to collect concentration-enriched aerosols, and a MOUDI sampler was used to collect ambient aerosols. Chemical analysis results showed very good agreement between the ESP and MOUDI samplers in the concentrations of trace elements and inorganic ions. The overall organic compound content of PM collected by the ESP, including polycyclic aromatic hydrocarbons (PAHs, hopanes, steranes, and alkanes, was in good agreement with that of the reference sampler, with an average ESP -to -reference concentration ratio of 1.07 (± 0.38. While majority of organic compound ratios were close to 1, some of the semi-volatile organic species had slightly deviated ratios from 1, indicating the possibility of some sampling artifacts in the ESP due to reactions of PM with ozone and radicals generated from corona discharge, although positive and negative sampling artifacts in the

  13. Field evaluation of a new particle concentrator- electrostatic precipitator system for measuring chemical and toxicological properties of particulate matter

    Science.gov (United States)

    Ning, Zhi; Sillanpää, Markus; Pakbin, Payam; Sioutas, Constantinos

    2008-01-01

    Background A newly designed electrostatic precipitator (ESP) in tandem with Versatile Aerosol Concentration Enrichment System (VACES) was developed by the University of Southern California to collect ambient aerosols on substrates appropriate for chemical and toxicological analysis. The laboratory evaluation of this sampler is described in a previous paper. The main objective of this study was to evaluate the performance of the new VACES-ESP system in the field by comparing the chemical characteristics of the PM collected in the ESP to those of reference samplers operating in parallel. Results The field campaign was carried out in the period from August, 2007 to March, 2008 in a typical urban environment near downtown Los Angeles. Each sampling set was restricted to 2–3 hours to minimize possible sampling artifacts in the ESP. The results showed that particle penetration increases and ozone concentration decreases with increasing sampling flow rate, with highest particle penetration observed between 100 nm and 300 nm. A reference filter sampler was deployed in parallel to the ESP to collect concentration-enriched aerosols, and a MOUDI sampler was used to collect ambient aerosols. Chemical analysis results showed very good agreement between the ESP and MOUDI samplers in the concentrations of trace elements and inorganic ions. The overall organic compound content of PM collected by the ESP, including polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes, and alkanes, was in good agreement with that of the reference sampler, with an average ESP -to -reference concentration ratio of 1.07 (± 0.38). While majority of organic compound ratios were close to 1, some of the semi-volatile organic species had slightly deviated ratios from 1, indicating the possibility of some sampling artifacts in the ESP due to reactions of PM with ozone and radicals generated from corona discharge, although positive and negative sampling artifacts in the reference filter sampler

  14. Folding Digital Mapping into a Traditional Field Camp Program

    Science.gov (United States)

    Kelley, D. F.

    2011-12-01

    Louisiana State University runs a field camp with a permanent fixed-base which has continually operated since 1928 in the Front Range just to the south of Colorado Springs, CO. The field camp program which offers a 6-credit hour course in Field Geology follows a very traditional structure. The first week is spent collecting data for the construction of a detailed stratigraphic column of the local geology. The second week is spent learning the skills of geologic mapping, while the third applies these skills to a more geologically complicated mapping area. The final three weeks of the field camp program are spent studying and mapping igneous and metamorphic rocks as well as conducting a regional stratigraphic correlation exercise. Historically there has been a lack of technology involved in this program. All mapping has been done in the field without the use of any digital equipment and all products have been made in the office without the use of computers. In the summer of 2011 the use of GPS units, and GIS software were introduced to the program. The exercise that was chosen for this incorporation of technology was one in which metamorphic rocks are mapped within Golden Gate Canyon State Park in Colorado. This same mapping exercise was carried out during the 2010 field camp session with no GPS or GIS use. The students in both groups had the similar geologic backgrounds, similar grade point averages, and similar overall performances at field camp. However, the group that used digital mapping techniques mapped the field area more quickly and reportedly with greater ease. Additionally, the students who used GPS and GIS included more detailed rock descriptions with their final maps indicating that they spent less time in the field focusing on mapping contacts between units. The outcome was a better overall product. The use of GPS units also indirectly caused the students to produce better field maps. In addition to greater ease in mapping, the use of GIS software to

  15. 1994 Fernald field characterization demonstration program data report

    Energy Technology Data Exchange (ETDEWEB)

    Rautman, C.A. [Sandia National Labs., Albuquerque, NM (United States); Cromer, M.V. [Spectra Research Inst., Albuquerque, NM (United States); Newman, G.C. [GRAM, Inc., Albuquerque, NM (United States); Beiso, D.A. [Los Alamos Technical Associates, Inc., NM (United States)

    1995-12-01

    The 1994 Fernald field characterization demonstration program, hosted by Fernald Environmental Management Project, was established to investigate technologies that are applicable to the characterization and remediation of soils contaminated with uranium. An important part of this effort was evaluating field-screening tools potentially capable of acquiring high-resolution information on uranium contamination distribution in surface soils. Further-more, the information needed to be obtained in a cost- and time-efficient manner. Seven advanced field-screening technologies were demonstrated at a uranium-contaminated site at Fernald, located 29 kilometers northwest of Cincinnati, Ohio. The seven technologies tested were: (1) alpha-track detectors, (2) a high-energy beta scintillometer, (3) electret ionization chambers, (4) and (5) two variants of gamma-ray spectrometry, (6) laser ablation-inductively coupled plasma-atomic emission spectroscopy, and (7) long-range alpha detection. The goals of this field demonstration were to evaluate the capabilities of the detectors and to demonstrate their utility within the US Department of Energy`s Environmental Restoration Program. Identical field studies were conducted using four industry-standard characterization tools: (1) a sodium-iodide scintillometer, (2) a low-energy FIDLER scintillometer, (3) a field-portable x-ray fluorescence detector, and (4) standard soil sampling coupled with laboratory analysis. Another important aspect of this program was the application of a cost/risk decision model to guide characterization of the site. This document is a compilation of raw data submitted by the technologies and converted total uranium data from the 1994 Fernald field characterization demonstration.

  16. Environmental Field Surveys, EMF Rapid Program, Engineering Project No.3

    Energy Technology Data Exchange (ETDEWEB)

    Enertech Consultants

    1996-04-01

    The EMF Research and Public Information Dissemination Program (RAPID) includes several engineering research in the area of exposure assessment and source characterization. RAPID engineering project No. 3: ''Environmental Field Surveys'' was performed to obtain information on the levels and characteristics of different environments, for which only limited data were available, especially in comparison to magnetic field data for the residential environment and for electric utility facilities, such as power lines and substations. This project was also to provide information on the contribution of various field sources in the surveyed environments. Magnetic field surveys were performed at four sites for each of five environments: schools, hospitals, office buildings, machine shops, and grocery stores. Of the twenty sites surveyed, 11 were located in the San Francisco Bay Area and 9 in Massachusetts. The surveys used a protocol based on magnetic field measurements and observation of activity patterns, designed to provide estimates of magnetic field exposure by type of people and by type of sources. The magnetic field surveys conducted by this project produced a large amount of data which will form a part of the EMF measurement database Field and exposure data were obtained separately for ''area exposure'' and ''at exposure points''. An exposure point is a location where persons engage in fixed, site specific activities near a local source that creates a significant increase in the area field. The area field is produced by ''area sources'', whose location and field distribution is in general not related to the location of the people in the area.

  17. Electric Field Measurements During the Genesis and Rapid Intensification Processes (GRIP) Field Program

    Science.gov (United States)

    Bateman, Monte G.; Blakeslee, Richard J.; Mach, Douglas M.

    2010-01-01

    During the Genesis and Rapid Intensification Processes (GRIP) field program, a system of 6 electric field mills was flown on one of NASA's Global Hawk aircraft. We placed several mills on the aircraft to enable us to measure the vector electric field. We created a distributed, ethernet-connected system so that each sensor has its own embedded Linux system, complete with web server. This makes our current generation system fully "sensor web enabled." The Global Hawk has several unique qualities, but relevant to quality storm electric field measurements are high altitude (20 km) and long duration (20-30 hours) flights. There are several aircraft participating in the GRIP program, and coordinated measurements are happening. Lightning and electric field measurements will be used to study the relationships between lightning and other storm characteristics. It has been long understood that lightning can be used as a marker for strong convective activity. Past research and field programs suggest that lightning flash rate may serve as an indicator and precursor for rapid intensification change in tropical cyclones and hurricanes. We have the opportunity to sample hurricanes for many hours at a time and observe intensification (or de-intensification) periods. The electrical properties of hurricanes during such periods are not well known. American

  18. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    OpenAIRE

    Philipp Otter; Pradyut Malakar; Bana Bihari Jana; Thomas Grischek; Florian Benz; Alexander Goldmaier; Ulrike Feistel; Joydev Jana; Susmita Lahiri; Juan Antonio Alvarez

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the finding...

  19. Effect of high magnetic field on carbide precipitation in W{sub 6}Mo{sub 5}Cr{sub 4}V{sub 3} high-speed steel during low-temperature tempering

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Yan [Northeastern Univ., Shenyang (China). Research Inst.; Li, Hui-Hui; Zhang, Zhi-Wei; Tong, Lu; Zhao, Xiang [Northeastern Univ., Shenyang (China). Key Lab. for Anisotropy and Texture of Materials (Ministry of Education)

    2016-04-15

    The effect of a high magnetic field on carbide precipitation in W{sub 6}Mo{sub 5}Cr{sub 4}V{sub 3} high-speed steel during low-temperature tempering was investigated. The applied high magnetic field promoted the precipitation of M{sub 6}C-type carbides at boundaries and in the grain interior, but maximum spheroidization and refinement occurred for those carbides precipitated at boundaries. Compared with M{sub 6}C-type carbides, the effect of high magnetic field on the precipitation behavior of MC-type carbides is much weaker. The high magnetic field hindered M{sub 2}C-type carbide precipitation by affecting the Gibbs free energy and increased the microhardness of W{sub 6}Mo{sub 5}Cr{sub 4}V{sub 3} high-speed steel at low tempering temperature.

  20. Effect of Soil Moisture on the Response of Soil Respiration to Open-Field Experimental Warming and Precipitation Manipulation

    Directory of Open Access Journals (Sweden)

    Guanlin Li

    2017-02-01

    Full Text Available Soil respiration (RS, Soil CO2 efflux is the second largest carbon (C flux in global terrestrial ecosystems, and thus, plays an important role in global and regional C cycling; moreover, it acts as a feedback mechanism between C cycling and global climate change. RS is highly responsive to temperature and moisture, factors that are closely related to climate warming and changes in precipitation regimes. Here, we examined the direct and interactive effects of climate change drivers on RS of Pinus densiflora Sieb. et Zucc. seedlings in a multifactor climate change experiment involving atmospheric temperature warming (+3 °C and precipitation manipulations (−30% and +30%. Our results indicated that atmospheric temperature warming induced significant changes in RS (p < 0.05, enhancing RS by an average of 54.6% and 59.7% in the control and elevated precipitation plots, respectively, whereas atmospheric temperature warming reduced RS by 19.4% in plots subjected to lower rates of precipitation. However, the warming effect on RS was influenced by soil moisture. On the basis of these findings, we suggest that atmospheric temperature warming significantly influenced RS, but the warming effect on RS may be weakened by warming-induced soil drying in water-limited environments.

  1. WPA Precipitation Tabulations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly precipitation data tabulated under the Work Projects Administration (WPA), a New Deal program created to reduce unemployment during the Great Depression....

  2. The Lamont-Doherty Secondary School Field Research Program

    Science.gov (United States)

    Newton, R.; Vincent, S.; Shaw, A.

    2007-12-01

    Three years ago the Lamont Doherty Earth Observatory instituted an educational outreach program with several New York City high schools. The schools all serve lower-income students (greater than 90 percent Title 1 eligible), and are focused on the STEM disciplines as potentially "leveling" areas, where motivated students can make up ground if properly supported. The program enlists high school teachers and several of their students to work alongside Lamont scientists on funded research programs that have a local (NYC/Hudson Valley) field and/or laboratory measurement component. The program runs full-time for 6 weeks in the summer and continues through laboratory visits and enhanced curriculum during the school year. Preliminary results are positive: teachers report that the program has deepened their curriculum; heightened their enthusiasm; and expanded their view of their students' potential. Nearly all of the participating students are college bound, and several are working their way through their freshmen year in college as laboratory technicians. In addition, the participating teachers and students have been able to collect large numbers of samples in the Hudson estuary, contributing concretely to funded research there. Lessons learned and best practices will be discussed for expanding such partnerships, with a focus on issues faced by partnerships between research scientists and public school science programs in urban areas.

  3. About the contrast of δ' precipitates in bulk Al-Cu-Li alloys in reflection mode with a field-emission scanning electron microscope at low accelerating voltage.

    Science.gov (United States)

    Brodusch, Nicolas; Voisard, Frédéric; Gauvin, Raynald

    2017-11-01

    Characterising the impact of lithium additions in the precipitation sequence in Al-Li-Cu alloys is important to control the strengthening of the final material. Since now, transmission electron microscopy (TEM) at high beam voltage has been the technique of choice to monitor the size and spatial distribution of δ' precipitates (Al3 Li). Here we report on the imaging of the δ' phase in such alloys using backscattered electrons (BSE) and low accelerating voltage in a high-resolution field-emission scanning electron microscope. By applying low-energy Ar+ ion milling to the surface after mechanical polishing (MP), the MP-induced corroded layers were efficiently removed and permitted the δ's to be visible with a limited impact on the observed microstructure. The resulting BSE contrast between the δ's and the Al matrix was compared with that obtained using Monte Carlo modelling. The artefacts possibly resulting from the sample preparation procedure were reviewed and discussed and permitted to confirm that these precipitates were effectively the metastable δ's. The method described in this report necessitates less intensive sample preparation than that required for TEM and provides a much larger field of view and an easily interpretable contrast compared to the transmission techniques. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  4. Seasonal effects in the ionosphere-thermosphere response to the precipitation and field-aligned current variations in the cusp region

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    1998-10-01

    Full Text Available The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earth's upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer Hemisphere obtained from DE-2 data for IMF

  5. Cooperative field test program for wind systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bollmeier, W.S. II; Dodge, D.M.

    1992-03-01

    The objectives of the Federal Wind Energy Program, managed by the US Department of Energy (DOE), are (1) to assist industry and utilities in achieving a multi-regional US market penetration of wind systems, and (2) to establish the United States as the world leader in the development of advanced wind turbine technology. In 1984, the program conducted a series of planning workshops with representatives from the wind energy industry to obtain input on the Five-Year Research Plan then being prepared by DOE. One specific suggestion that came out of these meetings was that the federal program should conduct cooperative research tests with industry to enhance the technology transfer process. It was also felt that the active involvement of industry in DOE-funded research would improve the state of the art of wind turbine technology. DOE established the Cooperative Field Test Program (CFTP) in response to that suggestion. This program was one of the first in DOE to feature joint industry-government research test teams working toward common objectives.

  6. High field magnet program at Brookhaven National Laboratory

    CERN Document Server

    Ghosh, A; Muratore, J; Parker, B; Sampson, W; Wanderer, P J; Willen, E

    2000-01-01

    The magnet program at Brookhaven National Laboratory (BNL) is focussed on superconducting magnets for particle accelerators. The effort includes magnet production at the laboratory and in industry, magnet R&D, and test facilities for magnets and superconductors. Nearly 2000 magnets-dipoles, quadrupoles, sextupoles and correctors for the arc and insertion regions-were produced for the Relativistic Heavy Ion Collider (RHIC), which is being commissioned. Currently, production of helical dipoles for the polarized proton program at RHIC, insertion region dipoles for the Large Hadron Collider (LHC) at CERN, and an insertion magnet system for the Hadron-Elektron-Ring- Analage (HERA) collider at Deutsches Elektronen-Synchrotron (DESY) is underway. The R&D effort is exploring dipoles with fields above 10 T for use in post-LHC colliders. Brittle superconductors-Nb/sub 3/Sn or HTS-are being used for these magnets. The superconductor test facility measures short-sample currents and other characteristics of sample...

  7. Urban Dispersion Program Overview and MID05 Field Study Summary

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Flaherty, Julia E.

    2007-07-31

    The Urban Dispersion Program (UDP) was a 4-year project (2004–2007) funded by the U.S. Department of Homeland Security with additional support from the Defense Threat Reduction Agency. The U.S. Environmental Protection Agency (EPA) also contributed to UDP through funding a human-exposure component of the New York City (NYC) field studies in addition to supporting an EPA scientist in conducting modeling studies of NYC. The primary goal of UDP was to improve the scientific understanding of the flow and diffusion of airborne contaminants through and around the deep street canyons of NYC. The overall UDP project manager and lead scientist was Dr. Jerry Allwine of Pacific Northwest National Laboratory. UDP had several accomplishments that included conducting two tracer and meteorological field studies in Midtown Manhattan.

  8. Spatial reconstruction of semi-quantitative precipitation fields over Africa during the nineteenth century from documentary evidence and gauge data

    Science.gov (United States)

    Nicholson, Sharon E.; Klotter, Douglas; Dezfuli, Amin K.

    2012-07-01

    The article presents a newly created precipitation data set for the African continent and describes the methodology used in its creation. It is based on a combination of proxy data and rain gauge records. The data set is semi-quantitative, with a "wetness" index of - 3 to + 3 to describe the quality of the rainy season. It covers the period AD 1801 to 1900 and includes data for 90 geographical regions of the continent. The results underscore a multi-decadal period of aridity early in the nineteenth century.

  9. Potential of high-resolution detection and retrieval of precipitation fields from X-band spaceborne synthetic aperture radar over land

    Directory of Open Access Journals (Sweden)

    F. S. Marzano

    2011-03-01

    Full Text Available X-band Synthetic Aperture Radars (X-SARs, able to image the Earth's surface at metric resolution, may provide a unique opportunity to measure rainfall over land with spatial resolution of about few hundred meters, due to the atmospheric moving-target degradation effects. This capability has become very appealing due to the recent launch of several X-SAR satellites, even though several remote sensing issues are still open. This work is devoted to: (i explore the potential of X-band high-resolution detection and retrieval of rainfall fields from space using X-SAR signal backscattering amplitude and interferometric phase; (ii evaluate the effects of spatial resolution degradation by precipitation and inhomogeneous beam filling when comparing to other satellite-based sensors. Our X-SAR analysis of precipitation effects has been carried out using both a TerraSAR-X (TSX case study of Hurricane "Gustav" in 2008 over Mississippi (USA and a COSMO-SkyMed (CSK X-SAR case study of orographic rainfall over Central Italy in 2009. For the TSX case study the near-surface rain rate has been retrieved from the normalized radar cross section by means of a modified regression empirical algorithm (MREA. A relatively simple method to account for the geometric effect of X-SAR observation on estimated rainfall rate and first-order volumetric effects has been developed and applied. The TSX-retrieved rain fields have been compared to those estimated from the Next Generation Weather Radar (NEXRAD in Mobile (AL, USA. The rainfall detection capability of X-SAR has been tested on the CSK case study using the repeat-pass coherence response and qualitatively comparing its signature with ground-based Mt. Midia C-band radar in central Italy. A numerical simulator to represent the effect of the spatial resolution and the antenna pattern of TRMM satellite Precipitation Radar (PR and Microwave Imager (TMI, using high-resolution TSX-retrieved rain images, has been also set up in

  10. Field Assessment of Energy Audit Tools for Retrofit Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J. [Univ. of Minnesota, St. Paul, MN (United States); Bohac, D. [Univ. of Minnesota, St. Paul, MN (United States); Nelson, C. [Univ. of Minnesota, St. Paul, MN (United States); Smith, I. [Univ. of Minnesota, St. Paul, MN (United States)

    2013-07-01

    This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home’s energy performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Rating systems based on energy performance models, the focus of this report, can establish a home’s achievable energy efficiency potential and provide a quantitative assessment of energy savings after retrofits are completed, although their accuracy needs to be verified by actual measurement or billing data. Ratings can also show homeowners where they stand compared to their neighbors, thus creating social pressure to conform to or surpass others. This project field-tested three different building performance models of varying complexity, in order to assess their value as rating systems in the context of a residential retrofit program: Home Energy Score, SIMPLE, and REM/Rate.

  11. Field Assessment of Energy Audit Tools for Retrofit Programs

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, J.; Bohac, D.; Nelson, C.; Smith, I.

    2013-07-01

    This project focused on the use of home energy ratings as a tool to promote energy retrofits in existing homes. A home energy rating provides a quantitative appraisal of a home's asset performance, usually compared to a benchmark such as the average energy use of similar homes in the same region. Home rating systems can help motivate homeowners in several ways. Ratings can clearly communicate a home's achievable energy efficiency potential, provide a quantitative assessment of energy savings after retrofits are completed, and show homeowners how they rate compared to their neighbors, thus creating an incentive to conform to a social standard. An important consideration is how rating tools for the retrofit market will integrate with existing home energy service programs. For residential programs that target energy savings only, home visits should be focused on key efficiency measures for that home. In order to gain wide adoption, a rating tool must be easily integrated into the field process, demonstrate consistency and reasonable accuracy to earn the trust of home energy technicians, and have a low monetary cost and time hurdle for homeowners. Along with the Home Energy Score, this project also evaluated the energy modeling performance of SIMPLE and REM/Rate.

  12. Seasonal effects in the ionosphere-thermosphere response to the precipitation and field-aligned current variations in the cusp region

    Directory of Open Access Journals (Sweden)

    A. A. Namgaladze

    Full Text Available The seasonal effects in the thermosphere and ionosphere responses to the precipitating electron flux and field-aligned current variations, of the order of an hour in duration, in the summer and winter cusp regions have been investigated using the global numerical model of the Earth's upper atmosphere. Two variants of the calculations have been performed both for the IMF By < 0. In the first variant, the model input data for the summer and winter precipitating fluxes and field-aligned currents have been taken as geomagnetically symmetric and equal to those used earlier in the calculations for the equinoctial conditions. It has been found that both ionospheric and thermospheric disturbances are more intensive in the winter cusp region due to the lower conductivity of the winter polar cap ionosphere and correspondingly larger electric field variations leading to the larger Joule heating effects in the ion and neutral gas temperature, ion drag effects in the thermospheric winds and ion drift effects in the F2-region electron concentration. In the second variant, the calculations have been performed for the events of 28–29 January, 1992 when precipitations were weaker but the magnetospheric convection was stronger than in the first variant. Geomagnetically asymmetric input data for the summer and winter precipitating fluxes and field-aligned currents have been taken from the patterns derived by combining data obtained from the satellite, radar and ground magnetometer observations for these events. Calculated patterns of the ionospheric convection and thermospheric circulation have been compared with observations and it has been established that calculated patterns of the ionospheric convection for both winter and summer hemispheres are in a good agreement with the observations. Calculated patterns of the thermospheric circulation are in a good agreement with the average circulation for the Southern (summer Hemisphere obtained

  13. Precipitous Birth

    Directory of Open Access Journals (Sweden)

    Jennifer Yee

    2017-09-01

    Full Text Available Audience: This scenario was developed to educate emergency medicine residents on the management of a precipitous birth in the emergency department (ED. The case is also appropriate for teaching of medical students and advanced practice providers, as well as reviewing the principles of crisis resource management, teamwork, and communication. Introduction: Patients with precipitous birth require providers to manage two patients simultaneously with limited time and resources. Crisis resource management skills will be tested once baby is delivered, and the neonate will require assessment for potential neonatal resuscitation. Objectives: At the conclusion of the simulation session, learners will be able to manage women who have precipitous deliveries, as well as perform neonatal assessment and management. Method: This session was conducted using high-fidelity simulation, followed by a debriefing session and lecture on precipitous birth management and neonatal evaluation.

  14. CalWater Field Studies Designed to Quantify the Roles of Atmospheric Rivers and Aerosols in Modulating U.S. West Coast Precipitation in a Changing Climate

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, F. M.; Prather, K. A.; Cayan, D.; Spackman, J. R.; DeMott, P.; Dettinger, M.; Fairall, C.; Leung, R.; Rosenfeld, D.; Rutledge, S.; Waliser, D.; White, A. B.; Cordeira, J.; Martin, A.; Helly, J.; Intrieri, J.

    2016-07-01

    The variability of precipitation and water supply along the U.S. West Coast creates major challenges to the region’s economy and environment, as evidenced by the recent California drought. This variability is strongly influenced by atmospheric rivers (AR), which deliver much of the precipitation along the U.S. West Coast and can cause flooding, and by aerosols (from local sources and transported from remote continents and oceans) that modulate clouds and precipitation. A better understanding of these processes is needed to reduce uncertainties in weather predictions and climate projections of droughts and floods, both now and under changing climate conditions.To address these gaps a group of meteorologists, hydrologists, climate scientists, atmospheric chemists, and oceanographers have created an interdisciplinary research effort, with support from multiple agencies. From 2009-2011 a series of field campaigns (CalWater 1) collected atmospheric chemistry, cloud microphysics and meteorological measurements in California and associated modeling and diagnostic studies were carried out. Based on remaining gaps, a vision was developed to extend these studies offshore over the Eastern North Pacific and to enhance land based measurements from 2014-2018 (CalWater 2). The data set and selected results from CalWater 1 are summarized here. The goals of CalWater-2, and measurements to date, are then described. CalWater is producing new findings and exploring new technologies to evaluate and improve global climate models and their regional performance and to develop tools supporting water and hydropower management. These advances also have potential to enhance hazard mitigation by improving near-term weather prediction and subseasonal and seasonal outlooks.

  15. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration-A Long Term Field Test Conducted in West Bengal.

    Science.gov (United States)

    Otter, Philipp; Malakar, Pradyut; Jana, Bana Bihari; Grischek, Thomas; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-10-02

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved-without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  16. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Science.gov (United States)

    Malakar, Pradyut; Jana, Bana Bihari; Benz, Florian; Goldmaier, Alexander; Feistel, Ulrike; Jana, Joydev; Lahiri, Susmita; Alvarez, Juan Antonio

    2017-01-01

    Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V) occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L), iron (5.5 ± 0.8 mg/L), manganese (1.5 ± 0.4 mg/L), phosphate (2.4 ± 1.3 mg/L) and ammonium (1.4 ± 0.5 mg/L) concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L), >99% for iron (0.03 ± 0.03 mg/L), 96% for manganese (0.06 ± 0.05 mg/L), 72% for phosphate (0.7 ± 0.3 mg/L) and 84% for ammonium (0.18 ± 0.12 mg/L) were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas. PMID:28974053

  17. TCA precipitation.

    Science.gov (United States)

    Koontz, Laura

    2014-01-01

    Trichloroacetic acid (TCA) precipitation of proteins is commonly used to concentrate protein samples or remove contaminants, including salts and detergents, prior to downstream applications such as SDS-PAGE or 2D-gels. TCA precipitation denatures the protein, so it should not be used if the protein must remain in its folded state (e.g., if you want to measure a biochemical activity of the protein). © 2014 Elsevier Inc. All rights reserved.

  18. STRONTIUM PRECIPITATION

    Science.gov (United States)

    McKenzie, T.R.

    1960-09-13

    A process is given for improving the precipitation of strontium from an aqueous phosphoric-acid-containing solution with nickel or cobalt ferrocyanide by simultaneously precipitating strontium or calcium phosphate. This is accomplished by adding to the ferrocyanide-containing solution calcium or strontium nitrate in a quantity to yield a concentration of from 0.004 to 0.03 and adjusting the pH of the solution to a value of above 8.

  19. Advanced Utility Mercury-Sorbent Field-Testing Program

    Energy Technology Data Exchange (ETDEWEB)

    Ronald Landreth

    2007-12-31

    This report summarizes the work conducted from September 1, 2003 through December 31, 2007 on the project entitled Advanced Utility Mercury-Sorbent Field-Testing Program. The project covers the testing at the Detroit Edison St. Clair Plant and the Duke Power Cliffside and Buck Stations. The St. Clair Plant used a blend of subbituminous and bituminous coal and controlled the particulate emissions by means of a cold-side ESP. The Duke Power Stations used bituminous coals and controlled their particulate emissions by means of hot-side ESPs. The testing at the Detroit Edison St. Clair Plant demonstrated that mercury sorbents could be used to achieve high mercury removal rates with low injection rates at facilities that burn subbituminous coal. A mercury removal rate of 94% was achieved at an injection rate of 3 lb/MMacf over the thirty day long-term test. Prior to this test, it was believed that the mercury in flue gas of this type would be the most difficult to capture. This is not the case. The testing at the two Duke Power Stations proved that carbon- based mercury sorbents can be used to control the mercury emissions from boilers with hot-side ESPs. It was known that plain PACs did not have any mercury capacity at elevated temperatures but that brominated B-PAC did. The mercury removal rate varies with the operation but it appears that mercury removal rates equal to or greater than 50% are achievable in facilities equipped with hot-side ESPs. As part of the program, both sorbent injection equipment and sorbent production equipment was acquired and operated. This equipment performed very well during this program. In addition, mercury instruments were acquired for this program. These instruments worked well in the flue gas at the St. Clair Plant but not as well in the flue gas at the Duke Power Stations. It is believed that the difference in the amount of oxidized mercury, more at Duke Power, was the difference in instrument performance. Much of the equipment was

  20. Monochlorinated to Octachlorinated Polychlorinated Dibenzo-p-dioxin and Dibenzofuran Emissions in Sintering Fly Ash from Multiple-Field Electrostatic Precipitators.

    Science.gov (United States)

    Wang, Mengjing; Li, Qianqian; Liu, Wenbin; Fang, Mingliang; Han, Ying

    2018-02-20

    Polychlorinated dibenzo-p-dioxin and dibenzofuran (PCDD/F) emissions in fly ash from multiple-field electrostatic precipitators in different sized sintering plants were studied. The monochlorinated-trichlorinated and tetrachlorinated-octachlorinated PCDD/F concentrations were higher for small plants (90 m 2 ) than for medium (91-180 m 2 ) and large (>180 m 2 ) plants. The PCDD/F concentrations and less-chlorinated PCDD/F contributions to the total PCDD/F concentrations increased as the fly ash particle size decreased moving through the precipitator stages; the abundance of monochlorinated-trichlorinated PCDD/F congeners and homologues also increased. The ash particle size and surface area can be directly used to indicate monochlorinated-trichlorinated PCDD/Fs and toxic equivalents (TEQs). Previously ignored PCDD/F emissions in discarded fly ash were identified. Estimated total monochlorinated-trichlorinated PCDD/F and TEQ emissions in discarded fly ash were 155 and 1.979 kg TEQ, respectively, in 2003-2014, and the ratio between annual PCDD/F emissions in discarded fly ash and flue gases has gradually increased. Reductions in monochlorinated-trichlorinated PCDD/F emitted in flue gas and fly ash in 2003-2014 were 28 and 40 kg, respectively, because of the phasing out of small-scale plants. Reductions in TEQs emitted in flue gas and fly ash in 2003-2014 were 7476 and 180 g TEQ, respectively.

  1. The Global Precipitation Climatology Project (GPCP) Combined Precipitation Dataset

    Science.gov (United States)

    Huffman, George J.; Adler, Robert F.; Arkin, Philip; Chang, Alfred; Ferraro, Ralph; Gruber, Arnold; Janowiak, John; McNab, Alan; Rudolf, Bruno; Schneider, Udo

    1997-01-01

    The Global Precipitation Climatology Project (GPCP) has released the GPCP Version 1 Combined Precipitation Data Set, a global, monthly precipitation dataset covering the period July 1987 through December 1995. The primary product in the dataset is a merged analysis incorporating precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit -satellite infrared data, and rain gauge observations. The dataset also contains the individual input fields, a combination of the microwave and infrared satellite estimates, and error estimates for each field. The data are provided on 2.5 deg x 2.5 deg latitude-longitude global grids. Preliminary analyses show general agreement with prior studies of global precipitation and extends prior studies of El Nino-Southern Oscillation precipitation patterns. At the regional scale there are systematic differences with standard climatologies.

  2. Precipitation of T₁ and θ' Phase in Al-4Cu-1Li-0.25Mn During Age Hardening: Microstructural Investigation and Phase-Field Simulation.

    Science.gov (United States)

    Häusler, Ines; Schwarze, Christian; Bilal, Muhammad Umer; Ramirez, Daniela Valencia; Hetaba, Walid; Kamachali, Reza Darvishi; Skrotzki, Birgit

    2017-01-28

    Experimental and phase field studies of age hardening response of a high purity Al-4Cu-1Li-0.25Mn-alloy (mass %) during isothermal aging are conducted. In the experiments, two hardening phases are identified: the tetragonal θ' (Al₂Cu) phase and the hexagonal T₁ (Al₂CuLi) phase. Both are plate shaped and of nm size. They are analyzed with respect to the development of their size, number density and volume fraction during aging by applying different analysis techniques in TEM in combination with quantitative microstructural analysis. 3D phase-field simulations of formation and growth of θ' phase are performed in which the full interfacial, chemical and elastic energy contributions are taken into account. 2D simulations of T₁ phase are also investigated using multi-component diffusion without elasticity. This is a first step toward a complex phase-field study of T₁ phase in the ternary alloy. The comparison between experimental and simulated data shows similar trends. The still unsaturated volume fraction indicates that the precipitates are in the growth stage and that the coarsening/ripening stage has not yet been reached.

  3. The INCOMPASS project field and modelling campaign: Interaction of Convective Organization and Monsoon Precipitation, Atmosphere, Surface and Sea

    Science.gov (United States)

    Turner, Andrew; Bhat, Ganapati; Evans, Jonathan; Madan, Ranju; Marsham, John; Martin, Gill; Mitra, Ashis; Mrudula, Gm; Parker, Douglas; Pattnaik, Sandeep; Rajagopal, En; Taylor, Christopher; Tripathi, Sachchida

    2017-04-01

    The INCOMPASS project uses data from a field and aircraft measurement campaign during the 2016 monsoon onset to better understand and predict monsoon rainfall. The monsoon supplies the majority of water in South Asia, however modelling and forecasting the monsoon from days to the season ahead is limited by large model errors that develop quickly. Likely problems lie in physical parametrizations such as convection, the boundary layer and land surface. At the same time, lack of detailed observations prevents more thorough understanding of monsoon circulation and its interaction with the land surface; a process governed by boundary layer and convective cloud dynamics. From May to July 2016, INCOMPASS used a modified BAe-146 jet aircraft operated by the UK Facility for Airborne Atmospheric Measurements (FAAM), for the first project of this scale in India. The India and UK team flew around 100 hours of science sorties from bases in northern and southern India. Flights from Lucknow in the northern plains took measurements to the west and southeast to allow sampling of the complete contrast from dry desert air to the humid environment over the north Bay of Bengal. These routes were repeated in the pre-monsoon and monsoon phases, measuring contrasting surface and boundary layer structures. In addition, flights from the southern base in Bengaluru measured contrasts from the Arabian Sea, across the intense rains of the Western Ghats mountains, over the rain shadow in southeast India and over the southern Bay of Bengal. Flight planning was performed with the aid of forecasts from a new UK Met Office 4km limited area model. INCOMPASS also installed a network of surface flux towers, as well as operating a cloud-base ceilometer and performing intensive radiosonde launches from a supersite in Kanpur. Here we will outline preliminary results from the field campaign including new observations of the surface, boundary layer structure and atmospheric profiles from aircraft data. We

  4. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    Directory of Open Access Journals (Sweden)

    Philipp Otter

    2017-10-01

    Full Text Available Arsenic contamination in drinking water resources is of major concern in the Ganga delta plains of West Bengal in India and Bangladesh. Here, several laboratory and field studies on arsenic removal from drinking water resources were conducted in the past and the application of strong-oxidant-induced co-precipitation of arsenic on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal. The system applies an inline-electrolytic cell for in situ chlorine production using the natural chloride content of the water and by that substituting the external dosing of strong oxidants. Co-precipitation of As(V occurs on freshly formed iron hydroxide, which is removed by Manganese Greensand Plus® filtration. The test was conducted for ten months under changing source water conditions considering arsenic (187 ± 45 µg/L, iron (5.5 ± 0.8 mg/L, manganese (1.5 ± 0.4 mg/L, phosphate (2.4 ± 1.3 mg/L and ammonium (1.4 ± 0.5 mg/L concentrations. Depending on the system setting removal rates of 94% for arsenic (10 ± 4 µg/L, >99% for iron (0.03 ± 0.03 mg/L, 96% for manganese (0.06 ± 0.05 mg/L, 72% for phosphate (0.7 ± 0.3 mg/L and 84% for ammonium (0.18 ± 0.12 mg/L were achieved—without the addition of any chemicals/adsorbents. Loading densities of arsenic on iron hydroxides averaged to 31 µgAs/mgFe. As the test was performed under field conditions and the here proposed removal mechanisms work fully autonomously, it poses a technically feasible treatment alternative, especially for rural areas.

  5. Resistivity Problems in Electrostatic Precipitation

    Science.gov (United States)

    White, Harry J.

    1974-01-01

    The process of electrostatic precipitation has ever-increasing application in more efficient collection of fine particles from industrial air emissions. This article details a large number of new developments in the field. The emphasis is on high resistivity particles which are a common cause of poor precipitator performance. (LS)

  6. Assessment of the radium-barium co-precipitation and its potential influence on the solubility of Ra in the near-field

    Energy Technology Data Exchange (ETDEWEB)

    Grandia, Fidel; Merino, Joan; Bruno, Jordi (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-08-15

    Radium 226 is one of the main contributors to radiological dose in some of the scenarios contemplated in the recent SR Can safety assessment. The relative contribution of the 226Ra dose is clearly dependent on the source term value for this radionuclide, which is directly connected to its solubility behaviour. Most of the source term calculations performed for this radionuclide pessimistically assume that its solubility is controlled by the individual solubility of RaSO{sub 4}(s), the most insoluble phase under near field conditions, while the abundant information from early radiochemical research, natural system studies and anthropogenic systems would indicate that Ra(II) is mainly associated to BaSO{sub 4}(s) precipitation. In this work we have investigated the extensive literature concerning the mechanisms and processes controlling the co-precipitation/solid solution formation behaviour of the Ra(II)/Ba(II) sulphate system. We have also established the necessary thermodynamic moles to model the solubility behaviour in the vicinity of the spent fuel system. Calculations using an ATM-104 fuel at 40 MWd/kg U show that barium and radium inventories per canister progressively grow with time after deposition, most of the barium is produced in the initial 500 years. In the unlikely event of a contact of sulphate-containing groundwaters with the fuel, Ba(II) will precipitate as BaSO{sub 4}(s). The production of 226Ra reaches its peak some 300,000 years after deposition. This substantial time gap indicates that most of the BaSO{sub 4}(s) will be present when and if radium is released from the fuel, even if some Ra(II) and Ba(II) will be released contemporaneously. Two potential scenarios have been addressed from the mechanistic point of view. In the event of a simultaneous release of Ra with Ba, the former will be readily incorporated into the precipitating BaSO{sub 4} to build a Ra Ba sulphate solid solution. All the existing evidence indicates, that in this case, the

  7. Central African Field Epidemiology and Laboratory Training Program

    African Journals Online (AJOL)

    Although the program is still in its infancy, the residents have already responded to six outbreak investigations in the region, evaluated 18 public health surveillance systems and public health programs, and completed 18 management projects. Through these various activities, information is shared to understand similarities ...

  8. The Tanzania Field Epidemiology and Laboratory Training Program ...

    African Journals Online (AJOL)

    TFELTP was involved in the country assessment of the revised International Health Regulations (IHR) core capabilities, development of the Tanzania IHR plan, and ... that the program must address include development of a full range of in-country teaching capacity for the program, as well as a career path for graduates.

  9. Precipitation-Based ENSO Indices

    Science.gov (United States)

    Adler, Robert; Curtis, Scott

    1998-01-01

    In this study gridded observed precipitation data sets are used to construct rainfall-based ENSO indices. The monthly El Nino and La Nina Indices (EI and LI) measure the steepest zonal gradient of precipitation anomalies between the equatorial Pacific and the Maritime Continent. This is accomplished by spatially averaging precipitation anomalies using a spatial boxcar filter, finding the maximum and minimum averages within a Pacific and Maritime Continent domain for each month, and taking differences. EI and LI can be examined separately or combined to produce one ENSO Precipitation Index (ESPI). ESPI is well correlated with traditional sea surface temperature and pressure indices, leading Nino 3.4. One advantage precipitation indices have over more conventional indices, is describing the strength and position of the Walker circulation. Examples are given of tracking the impact of ENSO events on the tropical precipitation fields.

  10. Climatological studies on precipitation features and large-scale atmospheric fields on the heavy rainfall days in the eastern part of Japan from the Baiu to midsummer season

    Science.gov (United States)

    Matsumoto, Kengo; Kato, Kuranoshin; Otani, Kazuo

    2017-04-01

    In East Asia the significant subtropical frontal zone called the Meiyu (in China) / Baiu (in Japan) appears in early summer (just before the midsummer) and the huge rainfall is brought due to the frequent appearance of the "heavy rainfall days" (referred to as HRDs hereafter) mainly in that western part. On the other hand, large-scale fields around the front in eastern Japan is rather different from that in western Japan but the total precipitation in the eastern Japan is still considerable compared to that in the other midlatitude regions. Thus, it is also interesting to examine how the rainfall characteristics and large-scale atmospheric fields on HRDs (with more than 50 mm/day) in the eastern Japan in the mature stage of the Baiu season (16 June 15 July), together with those in midsummer (1 31 August). Based on such scientific background, further analyses were performed in this study mainly with the daily and the hourly precipitation data and the NCEP/NCAR re-analysis date from 1971 to 2010, succeeding to our previous results (e.g., EGU2015). As reported at EGU2014 and 2015, about half of HRDs at Tokyo (eastern Japan) were related to the typhoon even in the Baiu season. Interestingly, half of HRDs were characterized by the large contribution of moderate rain less than 10 mm/h. While, the precipitation on HRDs at Tokyo in midsummer was mainly brought by the intense rainfall with more than 10 mm/h, in association with the typhoons. In the present study, we examined the composite meridional structure of the rainfall area along 140E. In the pattern only associated with a typhoons in the Baiu season (Pattern A), the heavy rainfall area (more than 50 mm/day) with large contribution of the intense rain (stronger than 10 mm/h) showed rather wide meridional extension. The area was characterized by the duration of the intermittent enhancement of the rainfall. In the pattern associated with a typhoon and a front (Pattern B), while the contribution ratio of the rainfall

  11. Training Program in the Field of Addiction Medicine – An Experience of Learning While Abroad

    OpenAIRE

    Norsiah, A; Whelan, G; L Piterman

    2008-01-01

    This paper illustrates the training program in the field of Addiction Medicine designed for primary care doctors by the Department of General Practice, School of Primary Care at Monash University in Melbourne. The nine month program was based around coursework, field visits and clinical observations. There were five modules that were completed and passed, twenty six Continuous Medical Education sessions attended, twenty nine field visits on Drug & Alcohol services, forty seven clinical visits...

  12. LATTICEEASY A Program for Lattice Simulations of Scalar Fields in an Expanding Universe

    CERN Document Server

    Felder, G; Tkachev, Igor; Felder, Gary

    2008-01-01

    We describe a C++ program that we have written and made available for calculating the evolution of interacting scalar fields in an expanding universe. The program is particularly useful for the study of reheating and thermalization after inflation. The program and its full documentation are available on the Web at http://physics.stanford.edu/gfelder/latticeeasy. In this paper we provide a brief overview of what the program does and what it is useful for.

  13. On-site cell field test support program

    Science.gov (United States)

    Staniunas, J. W.; Merten, G. P.

    1982-09-01

    Utility sites for data monitoring were reviewed and selected. Each of these sites will be instrumented and its energy requirements monitored and analyzed for one year prior to the selection of 40 Kilowatt fuel cell field test sites. Analyses in support of the selection of sites for instrumentation shows that many building sectors offered considerable market potential. These sectors include nursing home, health club, restaurant, industrial, hotel/motel and apartment.

  14. Avaliação de estimativas de campos de precipitação para modelagem hidrológica distribuída Assessment of estimated precipitation fields for distributed hydrologic modeling

    Directory of Open Access Journals (Sweden)

    Adriano Rolim da Paz

    2011-03-01

    Full Text Available É crescente a disponibilidade e utilização de campos de chuva estimados por sensoriamento remoto ou calculados por modelos de circulação da atmosfera, os quais são freqüentemente utilizados como entrada para modelos hidrológicos distribuídos. A distribuição espacial dos campos de chuva estimados é altamente relevante e deve ser avaliada frente aos campos de chuva observados. Este artigo propõe um método de comparação espaço-temporal entre campos de chuva observados e estimados baseado na comparação pixel a pixel e na construção de tabelas de contingência. Duas abordagens são utilizadas: (i a análise integrada no espaço gera índices de performance que retratam a qualidade do campo de chuva estimada em reproduzir a ocorrência de chuva observada ao longo do tempo; (ii a análise integrada no tempo produz mapas dos índices de performance que resumem a destreza das estimativas de ocorrência de chuva em cada pixel. Como exemplo de aplicação, é analisada a chuva estimada na climatologia do modelo global de circulação da atmosfera CPTEC/COLA sobre a bacia do Rio Grande. Utilizando-se cinco índices de performance, o método proposto permitiu identificar variações sazonais e padrões espaciais na performance das estimativas de chuva em relação a campos de chuva derivados de observações em pluviômetros.There is an increasing availability and application of precipitation fields estimated by remote sensing or calculated by atmospheric circulation models, which are frequently used as input for distributed hydrological models. The spatial distribution of the estimated precipitation fields is extremely important and must be verified against observed precipitation fields. This paper proposes a method for spatiotemporal comparison between observed and estimated precipitation fields based on a pixel by pixel comparison and on contingency tables. Two distinct approaches are carried out: (i the spatial integrated analysis

  15. The Global Precipitation Mission

    Science.gov (United States)

    Braun, Scott; Kummerow, Christian

    2000-01-01

    The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.

  16. Magnetic field assisted programming of particle shapes and patterns.

    Science.gov (United States)

    Xu, Wenwen; Yao, Yuyu; Klassen, John S; Serpe, Michael J

    2015-09-28

    Anisotropic particles have generated an enormous amount of research interest due to their applications for drug delivery, electronic displays and as micromotors. However, up till now, there is no single protocol capable of generating particles of "patchy" composition with a variety of well-defined and predictable shapes. To address this, in this submission we dispersed magnetic nanoparticles (MNPs) in a non-magnetic fluid containing monomer and crosslinker. This solution was added to the surface of Teflon, which was submerged in the solvent 2,2,4-trimethylpentane. Under these conditions a round, stable droplet was formed on the Teflon. Upon exposure to a permanent magnet, the MNPs self-assembled into clusters with a variety shapes and sizes. The shape and size of the clusters depended on the magnetic field strength, which we controlled by systematically varying the distance between the magnet and the droplet. Interestingly, the shape of the liquid droplet was also influenced by the magnetic field. Upon polymerization, the MNP patterns and the droplet shape was preserved. We also show that very complex MNP patterns and particle shapes could be generated by controlling the distance between the drop and both a magnet above and below the droplet. In this case, the resulting patterns depended on whether the magnets were attracting or repelling each other, which was capable of changing the field lines that the MNPs align with. Overall, this approach is capable of generating particles with predictable MNP patterns and particle shapes without the use of any templates or complex synthetic steps. Furthermore, by using a sprayer (or similar approaches, e.g., ink jet printing) this technique can be easily scaled up to produce many complex anisotropic particles in a short amount of time.

  17. Establishing a Competency Field-Based Program of Reading Education: Essential Elements of Administrative Planning.

    Science.gov (United States)

    Blair, Charles W.

    1979-01-01

    Identifies essential aspects of administrative planning that must be considered when moving from a traditional reading preservice education program to a competency, field-based model of instruction. (TJ)

  18. BLAF: A Blast Field Reconstruction Program from Pressure Histories

    Science.gov (United States)

    1985-03-01

    D(41 IF(D(5)oGT*O*)AIRGAHmD(5) S IF(D(6l.GT.OdlAIRMOLDO(6J C IF INPUT IS ZERO THEN USE AIR DEFAULT VALUES DO 57 KAml ,4 S AMSTAR(KA)wU4 85 IF(D(KA*21...AND TRY APPROXIMATIONS PROVIDED BY CALLING PROGRAM DO 38 KA.1,6 38 PAR(KA)sPARG(KA) 90 39 CONTINUE 00 47 KAml ,6 47 PST(KAI-PARtKA) C NXm1 S NP*5 S...ARRIVAL TIME Xils1iz0. S X(2,11*R S X(3,1)*0. CALL F2SHCK(X,1,PARFFXFPFXXFXPFPPNBAD) IF(NBADeNE*O) RETURN 40 C POVu((PAR(3)IR.PAR(211IR.PAR(1IDIR USHa

  19. On-site fuel cell field test support program

    Science.gov (United States)

    Staniunas, J. W.; Merten, G. P.

    1982-01-01

    In order to assess the impact of grid connection on the potential market for fuel cell service, applications studies were conducted to identify the fuel cell operating modes and corresponding fuel cell sizing criteria which offer the most potential for initial commercial service. The market for grid-connected fuel cell service was quantified using United's market analysis program and computerized building data base. Electric and gas consumption data for 268 buildings was added to our surveyed building data file, bringing the total to 407 buildings. These buildings were analyzed for grid-isolated and grid-connected fuel cell service. The results of the analyses indicated that the nursing home, restaurant and health club building sectors offer significant potential for fuel cell service.

  20. Spectrally Enhanced Lighting Program Implementation for Energy Savings: Field Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, Kelly L.; Sullivan, Gregory P.; Armstrong, Peter R.; Richman, Eric E.; Matzke, Brett D.

    2006-08-22

    This report provides results from an evaluation PNNL conducted of a spectrally enhanced lighting demonstration project. PNNL performed field measurements and occupant surveys at three office buildings in California before and after lighting retrofits were made in August and December 2005. PNNL measured the following Overhead lighting electricity demand and consumption, Light levels in the workspace, Task lighting use, and Occupant ratings of satisfaction with the lighting. Existing lighting, which varied in each building, was replaced with lamps with correlated color temperature (CCT) of 5000 Kelvin, color rendering index (CRI) of 85, of varying wattages, and lower ballast factor electronic ballasts. The demonstrations were designed to decrease lighting power loads in the three buildings by 22-50 percent, depending on the existing installed lamps and ballasts. The project designers hypothesized that this reduction in electrical loads could be achieved by the change to higher CCT lamps without decreasing occupant satisfaction with the lighting.

  1. Electrostatic Precipitator (ESP) TRAINING MANUAL

    Science.gov (United States)

    The manual assists engineers in using a computer program, the ESPVI 4.0W, that models all elements of an electrostatic precipitator (ESP). The program is a product of the Electric Power Research Institute and runs in the Windows environment. Once an ESP is accurately modeled, the...

  2. The electric and magnetic fields research and public information dissemination (EMF-RAPID) program.

    Science.gov (United States)

    Moulder, J E

    2000-05-01

    In the United States, public concern that exposure to power-line fields was linked to cancer led to the establishment of a Congressionally mandated program, the Electric and Magnetic Fields Research and Public Information Dissemination (EMF-RAPID) Program. A major goal of the program was to "determine whether or not exposures to electric and magnetic fields produced by the generation, transmission, and use of electrical energy affect human health". Between 1994 and 1998, the EMF-RAPID program spent approximately $41 million on biological research. Much of the work funded by the EMF-RAPID program has not yet been published in the peer-reviewed literature. The U.S. National Institute of Environmental Health Sciences (NIEHS) asked that Radiation Research publish this special issue in an attempt to remedy this publication gap. The issue includes reviews of studies that were done to assess the biological plausibility of claims that power-frequency fields caused leukemia and breast cancer. The issue continues with two teratology studies and one immunology study. The section of the issue covering in vitro studies begins with an overview of the efforts NIEHS made to replicate a wide range of reported effects of power-frequency fields and continues with four papers reporting the absence of effects of power-frequency fields on the expression of stress-response genes and oncogenes. Other reports of in vitro studies and studies of mechanisms cover cytotoxicity, gap junction intracellular communication, calcium ion transport across the plasma membrane, and intracellular electric fields.

  3. The Natural Classroom: A Directory of Field Courses, Programs, and Expeditions in the Natural Sciences.

    Science.gov (United States)

    Edelman, Jack R.

    The purpose of this book is to increase awareness of the numerous seminars, short courses, field courses, workshops, and programs for teachers, students, naturalists, and independent scholars. These programs emphasize the natural sciences including general biology, botany, zoology, ecology, marine biology, ichthyology, microbiology, natural…

  4. How Long Should a Training Program Be? A Field Study of "Rules-of-Thumb"

    Science.gov (United States)

    Cole, Nina

    2008-01-01

    Purpose: This study aims to examine the question of how long a behavioral skills training program should be in order to result in measurable behavioral change. Design/methodology/approach: An empirical field study was conducted to compare two different lengths of time for a managerial skills training program aimed at achieving behavioral change.…

  5. Modeling transducer impulse responses for predicting calibrated pressure pulses with the ultrasound simulation program Field II

    DEFF Research Database (Denmark)

    Bæk, David; Jensen, Jørgen Arendt; Willatzen, Morten

    2010-01-01

    FIELD II is a simulation software capable of predicting the field pressure in front of transducers having any complicated geometry. A calibrated prediction with this program is, however, dependent on an exact voltage-to-surface acceleration impulse response of the transducer. Such impulse response...... is not calculated by FIELD II. This work investigates the usability of combining a one-dimensional multilayer transducer modeling principle with the FIELD II software. Multilayer here refers to a transducer composed of several material layers. Measurements of pressure and current from Pz27 piezoceramic disks...... transducer model and the FIELD II software in combination give good agreement with measurements....

  6. The SETI Interpreter Program (SIP). a Software Package for the SETI Field Tests

    Science.gov (United States)

    Olsen, E. T.; Lokshin, A.

    1983-01-01

    The SETI (Search for Extraterrestrial Intelligence) Interpreter Program (SIP) is an interactive software package designed to allow flexible off line processing of the SETI field test data on a PDP 11/44 computer. The user can write and immediately execute complex analysis programs using the compact SIP command language. The software utilized by the SETI Interpreter Program consists of FORTRAN - coded modules that are sequentially installed and executed.

  7. Rising Precipitation Extremes across Nepal

    Directory of Open Access Journals (Sweden)

    Ramchandra Karki

    2017-01-01

    Full Text Available As a mountainous country, Nepal is most susceptible to precipitation extremes and related hazards, including severe floods, landslides and droughts that cause huge losses of life and property, impact the Himalayan environment, and hinder the socioeconomic development of the country. Given that the countrywide assessment of such extremes is still lacking, we present a comprehensive picture of prevailing precipitation extremes observed across Nepal. First, we present the spatial distribution of daily extreme precipitation indices as defined by the Expert Team on Climate Change Detection, Monitoring and Indices (ETCCDMI from 210 stations over the period of 1981–2010. Then, we analyze the temporal changes in the computed extremes from 76 stations, featuring long-term continuous records for the period of 1970–2012, by applying a non-parametric Mann−Kendall test to identify the existence of a trend and Sen’s slope method to calculate the true magnitude of this trend. Further, the local trends in precipitation extremes have been tested for their field significance over the distinct physio-geographical regions of Nepal, such as the lowlands, middle mountains and hills and high mountains in the west (WL, WM and WH, respectively, and likewise, in central (CL, CM and CH and eastern (EL, EM and EH Nepal. Our results suggest that the spatial patterns of high-intensity precipitation extremes are quite different to that of annual or monsoonal precipitation. Lowlands (Terai and Siwaliks that feature relatively low precipitation and less wet days (rainy days are exposed to high-intensity precipitation extremes. Our trend analysis suggests that the pre-monsoonal precipitation is significantly increasing over the lowlands and CH, while monsoonal precipitation is increasing in WM and CH and decreasing in CM, CL and EL. On the other hand, post-monsoonal precipitation is significantly decreasing across all of Nepal while winter precipitation is decreasing

  8. Development and field test of a responsible alcohol service program. Volume 2, Server education program materials

    Science.gov (United States)

    1987-05-01

    This report describes a program of server education designed to foster the responsible service of alcohol in bars, restaurants, and other on-sale establishments. The program is administered in two phases. The first phase, three hours in length, is in...

  9. A public program to get the magnetic field of ATLAS in any point 001

    CERN Document Server

    Nikitina, T

    2003-01-01

    This note presents a fortran 90 public program which gives the magnetic field of the ATLAS detector in an arbitrary point. In the tilecal the user has the possibility to obtain a global (averaged) field or a local field (individual tiles are visible). The contribution of all coils is included. The model used for the calculation is described in note ATL-MAGNET-2001-02.

  10. Status and Update of the International Precipitation Working Group

    Science.gov (United States)

    Kucera, Paul; Lapeta, Bozena; Wang, Nai-Yu; Aonashi, Kazumasa

    2013-04-01

    A wide range of climate modeling, data assimilation, nowcasting, and hydrological applications requires satellite-based daily and sub-daily precipitation analyses along with their associated uncertainties. The International Precipitation Working Group (IPWG) was initiated as a permanent Working Group of the Coordination Group for Meteorological Satellites (CGMS) to provide a focus in the scientific community on operational and research satellite-based quantitative precipitation analysis issues and challenges. The primary challenge is to build on existing precipitation products that utilize blended active and passive microwave sensors and geostationary-based imagers to provide analyses of the precipitation field across a variety of spatial and temporal scales in near real time. Another challenge is to develop standards for validation and independent verification of precipitation measurements derived from satellite data. In support of these activities, the IPWG community convenes a workshop every two years. The most recent workshop (Sixth IPWG Workshop: IPWG6) was hosted by the Center for Weather Forecast and Climate Studies (CPTEC) at the National Institute for Space Research (INPE) headquarters, in São José dos Campos, Brasil from 15-19 October 2012. IPWG6 was attended by about 52 scientists, with 14 countries represented. There was a mix of oral presentations, posters, and working group sessions that focused on international projects and satellite programmes, IPWG programmatic activities, climatology of precipitation, precipitation datasets, algorithms, applications, validation, new technologies and NWP data. A training program was conducted in conjunction with the IPWG6 Workshop. A total of 12 participants completed the training course. The training course was entitled, "New and Emerging Technologies, Sensors, and Datasets for Precipitation" and was held on first three days (15-17 October 2012) the IPWG6 Workshop. The training focused on five topic areas that

  11. Easing the transition for queer student teachers from program to field: implications for teacher education.

    Science.gov (United States)

    Benson, Fiona J; Smith, Nathan Grant; Flanagan, Tara

    2014-01-01

    Tensions exist between what some queer student teachers experience in the university setting, their lives in schools during field placements, and upon graduation. We describe a series of workshops designed for queer student teachers and their allies that were conducted prior to field placement. Participants revealed high degrees of satisfaction with the program and increased feelings of personal and professional self-efficacy. Participants reported high levels of experienced homophobia in their academic programs; as such, the workshops were a valuable "safe space." These workshops appear to fill a significant gap for queer students and their allies in teacher preparation programs.

  12. Degrees of Difference: Gender Segregation of U.S. Doctorates by Field and Program Prestige

    Directory of Open Access Journals (Sweden)

    Kim A. Weeden

    2017-02-01

    Full Text Available Women earn nearly half of doctoral degrees in research fields, yet doctoral education in the United States remains deeply segregated by gender. We argue that in addition to the oft-noted segregation of men and women by field of study, men and women may also be segregated across programs that differ in their prestige. Using data on all doctorates awarded in the United States from 2003 to 2014, field-specific program rankings, and field-level measures of math and verbal skills, we show that (1 "net" field segregation is very high and strongly associated with field-level math skills; (2 "net" prestige segregation is weaker than field segregation but still a nontrivial form of segregation in doctoral education; (3 women are underrepresented among graduates of the highest-and to a lesser extent, the lowest-prestige programs; and (4 the strength and pattern of prestige segregation varies substantially across fields, but little of this variation is associated with field skills.

  13. Automated Critical Peak Pricing Field Tests: Program Descriptionand Results

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila; Xu, Peng

    2006-04-06

    California utilities have been exploring the use of critical peak prices (CPP) to help reduce needle peaks in customer end-use loads. CPP is a form of price-responsive demand response (DR). Recent experience has shown that customers have limited knowledge of how to operate their facilities in order to reduce their electricity costs under CPP (Quantum 2004). While the lack of knowledge about how to develop and implement DR control strategies is a barrier to participation in DR programs like CPP, another barrier is the lack of automation of DR systems. During 2003 and 2004, the PIER Demand Response Research Center (DRRC) conducted a series of tests of fully automated electric demand response (Auto-DR) at 18 facilities. Overall, the average of the site-specific average coincident demand reductions was 8% from a variety of building types and facilities. Many electricity customers have suggested that automation will help them institutionalize their electric demand savings and improve their overall response and DR repeatability. This report focuses on and discusses the specific results of the Automated Critical Peak Pricing (Auto-CPP, a specific type of Auto-DR) tests that took place during 2005, which build on the automated demand response (Auto-DR) research conducted through PIER and the DRRC in 2003 and 2004. The long-term goal of this project is to understand the technical opportunities of automating demand response and to remove technical and market impediments to large-scale implementation of automated demand response (Auto-DR) in buildings and industry. A second goal of this research is to understand and identify best practices for DR strategies and opportunities. The specific objectives of the Automated Critical Peak Pricing test were as follows: (1) Demonstrate how an automated notification system for critical peak pricing can be used in large commercial facilities for demand response (DR). (2) Evaluate effectiveness of such a system. (3) Determine how customers

  14. Transducer models in the ultrasound simulation program FIELD II and their accuracy

    DEFF Research Database (Denmark)

    Jensen, Jørgen Arendt; Bæk, David

    2010-01-01

    The FIELD II simulation program can be used for simulating any kind of linear ultrasound fields. The program is capable of describing multi-element transducers used with any kind of excitation, apodization, and focusing. The program has been widely used in both academia and by commercial ultrasound...... companies for investigation novel transducer geometries and advanced linear imaging schemes. The program models transducer geometries using a division of the transducer elements into either rectangles, triangles, or bounding lines. The precision of the simulation and the simulation time is intimately linked...... through the choice of the fundamental elements. The rectangular elements use a far-field approximation, whereas the two other methods use the full analytic solution, leading to a higher precision at the price of a slower simulation time. The talk will describe the different compromises and solutions...

  15. Implementation of visual programming methods for numerical techniques used in electromagnetic field theory

    Directory of Open Access Journals (Sweden)

    Metin Varan

    2017-08-01

    Full Text Available Field theory is one of the two sub-field theories in electrical and electronics engineering that for creates difficulties for undergraduate students. In undergraduate period, field theory has been taught under the theory of electromagnetic fields by which describes using partial differential equations and integral methods. Analytical methods for solution of field problems on the basis of a mathematical model may result the understanding difficulties for undergraduate students due to their mathematical and physical infrastructure. The analytical methods which can be applied in simple model lose their applicability to more complex models. In this case, the numerical methods are used to solve more complex equations. In this study, by preparing some field theory‘s web-based graphical user interface numerical methods of applications it has been aimed to increase learning levels of field theory problems for undergraduate and graduate students while taking in mind their computer programming capabilities.

  16. Onsite 40-kilowatt fuel cell power plant manufacturing and field test program

    Science.gov (United States)

    1985-01-01

    A joint Gas Research Institute and U.S. Department of Energy Program was initiated in 1982 to evaluate the use of fuel cell power systems for on-site energy service. Forty-six 40 kW fuel cell power plants were manufactured at the United Technologies Corporation facility in South Windsor, Connecticut, and are being delivered to host utilities and other program participants in the United States and Japan for field testing. The construction of the 46 fully-integrated power plants was completed in January 1985 within the constraints of the contract plan. The program has provided significant experience in the manufacture, acceptance testing, deployment, and support of on-site fuel cell systems. Initial field test results also show that these experimental power plants meet the performance and environmental requirements of a commercial specification. This Interim Report encompasses the design and manufacturing phases of the 40 kW Power Plant Manufacturing and Field Test program. The contract between UTC and NASA also provides UTC field engineering support to the host utilities, training programs and associated manuals for utility operating and maintenance personnel, spare parts support for a defined test period, and testing at UTC of a power plant made available from a preceding program phase. These activities are ongoing and will be reported subsequently.

  17. Application of integrated petroleum reservoir study for intervention and field development program in western onshore field, India

    Directory of Open Access Journals (Sweden)

    Vijai Kumar Baskaran

    2017-12-01

    Full Text Available In this research, an integrated reservoir study is performed in the J#Field (J-Oil Field of western onshore, India to evaluate its additional reserves expectations and implement field developments plan using waterflood pilot program. The target strata includes two formations of Paleogene, which is about 3600 ft, namely G#Fm (G-Formation of the Eocene and T#Fm (T-Formation of Oligocene, subdivided into 11 zones. Based on these results, an attempt was made to construct of an optimization plan to exploit it, taking into account that the field is producing since 1947, with a cumulative production of 183.5 MMbbl and an overall recovery factor of 28% until January 2016. On the basis of the potential evaluation and geological modeling, blocks J48 and J45 were simulated, and the remaining oil distribution characteristics in two blocks were studied after history match. The work includes the stratigraphic studies, seismic study, logging interpretation, sedimentary facies modeling, three dimensional geological modeling, simulations for waterflooding, and future field development plans.

  18. Analysis of the operating parameters of a vortex electrostatic precipitator

    Science.gov (United States)

    Lu, Congxiang; Yi, Chengwu; Yi, Rongjie; Liu, Shiwen

    2017-02-01

    A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion concentrations within the precipitator can be significantly increased. Correspondingly, the charging and coagulation rates of fine particles and particle migration velocity are significantly improved within the VEP. Since it can effectively collect fine particles and reduce precipitator size, VEPs represent a new type of electrostatic precipitator with great application potential. In this work the change curve of the external voltage, gas velocity, row spacing and effective collecting area influencing the precipitation efficiency were acquired through a single-factor experiment. Using an orthogonal regression design, attempts were made to analyze the major operating parameters influencing the collecting efficiency of fine particles, establish a multiple linear regression model and analyze the weights of factors and then acquire quantitative rules relating experimental indicators and factors. The regression model was optimized by MATLAB programming, and we then obtained the optimal factor combination which can enhance the efficiency of fine particle collection. The final optimized result is that: when gas velocity is 3.4 m s-1, the external voltage is 18 kV, row spacing is 100 mm and the effective collecting area is 1.13 m2, the rate of fine particle collection is 89.8867%. After determining and analyzing the state of the internal flow field within the VEP by particle image velocimetry (PIV), the results show that, for a particular gas velocity, a vortex zone and laminar zone are distinctly formed within the VEP, which increases the ion transport ratio as well as the charging, coagulation and collection rates of fine particles within the precipitator, thus making further improvements in the efficiency of fine particle collection.

  19. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael D. Durham

    2005-03-17

    Brayton Point Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of the impacts of future mercury regulations to Brayton Point Unit 1, including performance, estimated cost, and operation data. This unit has variable (29-75%) native mercury removal, thus it was important to understand the impacts of process variables and activated carbon on mercury capture. The team responsible for executing this program included: (1) Plant and PG&E National Energy Group corporate personnel; (2) Electric Power Research Institute (EPRI); (3) United States Department of Energy National Energy Technology Laboratory (DOE/NETL); (4) ADA-ES, Inc.; (5) NORIT Americas, Inc.; (6) Apogee Scientific, Inc.; (7) TRC Environmental Corporation; (8) URS Corporation; (9) Quinapoxet Solutions; (10) Energy and Environmental Strategies (EES); and (11) Reaction Engineering International (REI). The technical support of all of these entities came together to make this program achieve its goals. Overall, the objectives of this field test program were to determine the impact of activated carbon injection on mercury control and balance-of-plant processes on Brayton Point Unit 1. Brayton Point Unit 1 is a 250-MW unit that fires a low-sulfur eastern bituminous coal. Particulate control is achieved by two electrostatic precipitators (ESPs) in series. The full-scale tests were conducted on one-half of the flue gas stream (nominally 125 MW). Mercury control sorbents were injected in between the two ESPs. The residence time from the injection grid to the second ESP was approximately 0.5 seconds. In preparation for the full-scale tests, 12 different sorbents were evaluated in a slipstream of flue gas via a packed-bed field test apparatus for mercury adsorption. Results from these tests were used to determine the five carbon-based sorbents that were tested at full-scale. Conditions of interest

  20. Final report for DOE Grant No. DE-FG02-07ER64404 - Field Investigations of Microbially Facilitated Calcite Precipitation for Immobilization of Strontium-90 and Other Trace Metals in the Subsurface

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Robert W; Fujita, Yoshiko; Ginn, Timothy R; Hubbard, Susan S

    2012-10-12

    Subsurface radionuclide and metal contaminants throughout the U.S. Department of Energy (DOE) complex pose one of DOE's greatest challenges for long-term stewardship. One promising stabilization mechanism for divalent ions, such as the short-lived radionuclide 90Sr, is co-precipitation in calcite. We have previously found that that nutrient addition can stimulate microbial ureolytic activity that this activity accelerates calcite precipitation and co-precipitation of Sr, and that higher calcite precipitation rates can result in increased Sr partitioning. We have conducted integrated field, laboratory, and computational research to evaluate the relationships between ureolysis and calcite precipitation rates and trace metal partitioning under environmentally relevant conditions, and investigated the coupling between flow/flux manipulations and precipitate distribution. A field experimental campaign conducted at the Integrated Field Research Challenge (IFRC) site located at Rifle, CO was based on a continuous recirculation design; water extracted from a down-gradient well was amended with urea and molasses (a carbon and electron donor) and re-injected into an up-gradient well. The goal of the recirculation design and simultaneous injection of urea and molasses was to uniformly accelerate the hydrolysis of urea and calcite precipitation over the entire inter-wellbore zone. The urea-molasses recirculation phase lasted, with brief interruptions for geophysical surveys, for 12 days followed by long-term monitoring which continued for 13 months. Following the recirculation phase we found persistent increases in urease activity (as determined from 14C labeled laboratory urea hydrolysis rates) in the upper portion of the inter-wellbore zone. We also observed an initial increase (approximately 2 weeks) in urea concentration associated with injection activities followed by decreasing urea concentration and associated increases in ammonium and dissolved inorganic carbon

  1. Design and implementation of a genomics field trip program aimed at secondary school students.

    Science.gov (United States)

    McQueen, Jennifer; Wright, Jody J; Fox, Joanne A

    2012-01-01

    With the rapid pace of advancements in biological research brought about by the application of computer science and information technology, we believe the time is right for introducing genomics and bioinformatics tools and concepts to secondary school students. Our approach has been to offer a full-day field trip in our research facility where secondary school students carry out experiments at the laboratory bench and on a laptop computer. This experience offers benefits for students, teachers, and field trip instructors. In delivering a wide variety of science outreach and education programs, we have learned that a number of factors contribute to designing a successful experience for secondary school students. First, it is important to engage students with authentic and fun activities that are linked to real-world applications and/or research questions. Second, connecting with a local high school teacher to pilot programs and linking to curricula taught in secondary schools will enrich the field trip experience. Whether or not programs are linked directly to local teachers, it is important to be flexible and build in mechanisms for collecting feedback in field trip programs. Finally, graduate students can be very powerful mentors for students and should be encouraged to share their enthusiasm for science and to talk about career paths. Our experiences suggest a real need for effective science outreach programs at the secondary school level and that genomics and bioinformatics are ideal areas to explore.

  2. The neurosciences research program at MIT and the beginning of the modern field of neuroscience.

    Science.gov (United States)

    Adelman, George

    2010-01-15

    The interdisciplinary field, "neuroscience," began at MIT in 1962 with the founding of the Neurosciences Research Program (NRP) by Francis O. Schmitt and a group of US and international scientists - physical, biological, medical, and behavioral - interested in understanding the brain basis of behavior and mind. They organized and held specialist meetings of basic topics in neuroscience, and the journal and book publications over the next 20 years, based on these meetings, helped establish the new field.

  3. Electric and magnetic fields research and public information dissemination program. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Electric and Magnetic Fields (EMF) Research and Public Information Dissemination (RAPID) Program was authorized by the Energy Policy Act of 1992 (enacted October 24, 1992) to determine whether or not exposure to EMF produced by the generation, transmission, and use of electric energy affects human health. Two Federal agencies, the Department of Energy (DOE) and the National Institute of Environmental Health Sciences (NIEHS), have primary responsibility for the program, but other Federal agencies are key participants as well. This program requires that Federal appropriations be matched by contributions from non-Federal sources. The authorized level of funding for the program was $65 million over a 5-year period (fiscal years 1993-1997 inclusive). For EMF RAPID to be a fully funded program, $32.5 million over 5 years will have to be appropriated by Congress and matched by non-Federal contributions.

  4. Water Treatment Plant Operation. Volume II. A Field Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  5. Water Treatment Plant Operation. Volume I. A Field Study Training Program.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  6. Water Treatment Plant Operation Volume 2. A Field Study Training Program. Revised.

    Science.gov (United States)

    California State Univ., Sacramento. School of Engineering.

    The purpose of this water treatment field study training program is to: (1) develop new qualified water treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  7. A Decade of Field Changing Atmospheric Aerosol Research: Outcomes of EPA’s STAR Program

    Science.gov (United States)

    Conference: Gordon Research Conference in Atmospheric Chemistry, July 28 – August 2, 2013, VermontPresentation Type: PosterTitle: An Analysis of EPA’s STAR Program and a Decade of Field Changing Research in Atmospheric AerosolsAuthors: Kristina M. Wagstrom1,2, Sherri ...

  8. 75 FR 19953 - Agency Information Collection: Energy Conservation Program for Consumer Products: Survey of Field...

    Science.gov (United States)

    2010-04-16

    ... From the Federal Register Online via the Government Publishing Office DEPARTMENT OF ENERGY Agency Information Collection: Energy Conservation Program for Consumer Products: Survey of Field Energy Consumption of Residential Refrigerators, Refrigerator-Freezers, and Freezers AGENCY: U.S. Department of Energy...

  9. A spruce budworm sampling program for HUSKY HUNTER field data recorders.

    Science.gov (United States)

    Fred H. Schmidt

    1992-01-01

    A program for receiving sampling data for all immature stages of the western spruce budworm (Choristoneura occidentals Freeman) is described. Versions were designed to be used on field data recorders with either CP/M or DOS operating systems, such as the HUSKY HUNTER (Models 1, 2, and 16), but they also may be used on personal computers with compatible operating...

  10. Operation of Wastewater Treatment Plants. Volume 1. A Field Study Training Program. Third Edition. Revised.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    The purpose of this wastewater treatment field study training program is to: (1) develop new qualified wastewater treatment plant operators; (2) expand the abilities of existing operators, permitting better service both to employers and public; and (3) prepare operators for civil service and certification examinations (examinations administered by…

  11. Community Youth Program: A Model for Providing Field Experiences for Pre-Student Teachers.

    Science.gov (United States)

    Lydecker, Ann M.

    A Saturday morning youth program was developed by Gustavus Adolphus College (Minnesota) for the purpose of providing field expereinces for pre-student teaching elementary education majors. Children from the community attend enrichment classes in social studies and science, taught by teams of students from the college of education. One objective of…

  12. MAP3S precipitation chemistry network: sixth periodic summary report (1982)

    Energy Technology Data Exchange (ETDEWEB)

    Rothert, J.E.; Dana, M.T.

    1983-07-01

    This report contains complete field and chemical data from the MAP3S Precipitation Chemistry Network for the year 1982. Included is an update on network status and a summary of the USGS blind sample analysis program and laboratory sample exchanges during 1982. The statistical summary is deferred to a forthcoming publication.

  13. Improved Electronic Control for Electrostatic Precipitators

    Science.gov (United States)

    Johnston, D. F.

    1986-01-01

    Electrostatic precipitators remove particulate matter from smoke created by burning refuse. Smoke exposed to electrostatic field, and particles become electrically charged and migrate to electrically charged collecting surfaces. New microprocessor-based electronic control maintains precipitator power at maximum particulate-collection level. Control automatically senses changes in smoke composition due to variations in fuel or combustion and adjusts precipitator voltage and current accordingly. Also, sensitive yet stable fault detection provided.

  14. Field Operations Program, Toyota PRIUS Hybrid Electric Vehicle Performance Characterization Report

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, James Edward; Nguyen, N.; Phung, J.; Smith, J.; Wehrey, M.

    2001-12-01

    The U.S. Department of Energy’s Field Operations Program evaluates advanced technology vehicles in real-world applications and environments. Advanced technology vehicles include pure electric, hybrid electric, hydrogen, and other vehicles that use emerging technologies such as fuel cells. Information generated by the Program is targeted to fleet managers and others considering the deployment of advanced technology vehicles. As part of the above activities, the Field Operations Program has initiated the testing of the Toyota Prius hybrid electric vehicle (HEV), a technology increasingly being considered for use in fleet applications. This report describes the Pomona Loop testing of the Prius, providing not only initial operational and performance information, but also a better understanding of HEV testing issues. The Pomona Loop testing includes both Urban and Freeway drive cycles, each conducted at four operating scenarios that mix minimum and maximum payloads with different auxiliary (e.g., lights, air conditioning) load levels.

  15. Effective assimilation of global precipitation: simulation experiments

    Directory of Open Access Journals (Sweden)

    Guo-Yuan Lien

    2013-07-01

    Full Text Available Past attempts to assimilate precipitation by nudging or variational methods have succeeded in forcing the model precipitation to be close to the observed values. However, the model forecasts tend to lose their additional skill after a few forecast hours. In this study, a local ensemble transform Kalman filter (LETKF is used to effectively assimilate precipitation by allowing ensemble members with better precipitation to receive higher weights in the analysis. In addition, two other changes in the precipitation assimilation process are found to alleviate the problems related to the non-Gaussianity of the precipitation variable: (a transform the precipitation variable into a Gaussian distribution based on its climatological distribution (an approach that could also be used in the assimilation of other non-Gaussian observations and (b only assimilate precipitation at the location where at least some ensemble members have precipitation. Unlike many current approaches, both positive and zero rain observations are assimilated effectively. Observing system simulation experiments (OSSEs are conducted using the Simplified Parametrisations, primitivE-Equation DYnamics (SPEEDY model, a simplified but realistic general circulation model. When uniformly and globally distributed observations of precipitation are assimilated in addition to rawinsonde observations, both the analyses and the medium-range forecasts of all model variables, including precipitation, are significantly improved as compared to only assimilating rawinsonde observations. The effect of precipitation assimilation on the analyses is retained on the medium-range forecasts and is larger in the Southern Hemisphere (SH than that in the Northern Hemisphere (NH because the NH analyses are already made more accurate by the denser rawinsonde stations. These improvements are much reduced when only the moisture field is modified by the precipitation observations. Both the Gaussian transformation and

  16. Asphaltene precipitates in oil production wells

    DEFF Research Database (Denmark)

    Kleinitz, W,; Andersen, Simon Ivar

    1998-01-01

    At the beginning of production in a southern German oil field, flow blockage was observed during file initial stage of production from the oil wells. The hindrance was caused by the precipitation of asphaltenes in the proximity of the borehole and in the tubings. The precipitates were of solid...

  17. Test results of the Electric Vehicle Field-Laboratory Correspondence Program, phase 1 report

    Science.gov (United States)

    MacDowall, R. D.

    1987-12-01

    During the past decade a signficant number of vehicles, batteries, and powertrain components have been evaluated by the US Department of Energy (DOE) Electric and Hybrid Vehicle Program. These evaluation tests have been performed in dynamometer laboratories, on test tracks, and on the road under actual field operating conditions. Previous DOE-funded programs have developed several computer models which simulate electric vehicle performance over a wide range of operating conditions. This report presents the results of tests performed by EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL). The primary objective of the Electric Vehicle Field-Laboratory Correspondence Program is to significantly enhance the ability to predict field performance from laboratory test results, and to predict the behavior of vehicle systems not yet fabricated. A secondary objective of this program is to obtain real-time based data with the INEL Portable Data Acquisition system (PDAS) which can then be compared to the event-based test data acquired using the Versatile Data Acquisition System (VDAS). The VDAS-to-PDAS comparisons from these tests indicate the relative strengths and limitations of these rather different approaches to in-vehicle acquisition of engineering data. The conclusions of this first phase report indicate that the corresondence among the data acquisition systems was comparable to test-to-test repeatability, and that the energy consumption values matched closely among dynamometer, track, and tightly controlled road tests.

  18. Evolutionary programming-based univector field navigation method for past mobile robots.

    Science.gov (United States)

    Kim, Y J; Kim, J H; Kwon, D S

    2001-01-01

    Most of navigation techniques with obstacle avoidance do not consider the robot orientation at the target position. These techniques deal with the robot position only and are independent of its orientation and velocity. To solve these problems this paper proposes a novel univector field method for fast mobile robot navigation which introduces a normalized two dimensional vector field. The method provides fast moving robots with the desired posture at the target position and obstacle avoidance. To obtain the sub-optimal vector field, a function approximator is used and trained by evolutionary programming. Two kinds of vector fields are trained, one for the final posture acquisition and the other for obstacle avoidance. Computer simulations and real experiments are carried out for a fast moving mobile robot to demonstrate the effectiveness of the proposed scheme.

  19. An Experimental Study of the Rainfall Variability Within TRMM/GPM Precipitation Radar and Microwave Sensor Instantaneous Field of View During MC3E

    Science.gov (United States)

    Tokay, Ali; Petersen, Walter Arthur; Gatlin, Patrick N.; Wingo, Matt; Wolff, David B.; Carey, Lawrence D.

    2011-01-01

    Dual tipping bucket gauges were operated at 16 sites in support of ground based precipitation measurements during Mid-latitude Continental Convective Clouds Experiment (MC3E). The experiment is conducted in North Central Oklahoma from April 22 through June 6, 2011. The gauge sites were distributed around Atmospheric Radiation Measurement (ARM) Climate Research facility where the minimum and maximum separation distances ranged from 1 to 12 km. This study investigates the rainfall variability by employing the stretched exponential function. It will focus on the quantitative assessment of the partial beam of the experiment area in both convective and stratiform rain. The parameters of the exponential function will also be determined for various events. This study is unique for two reasons. First is the existing gauge setup and the second is the highly convective nature of the events with rain rates well above 100 mm/h for 20 minutes. We will compare the findings with previous studies.

  20. Uranium Mill Tailings Remedial Action Project Safety Advancement Field Effort (SAFE) Program

    Energy Technology Data Exchange (ETDEWEB)

    1994-02-01

    In 1992, the Uranium Mill Tailings Remedial Action (UMTRA) Project experienced several health and safety related incidents at active remediation project sites. As a result, the U.S. Department of Energy (DOE) directed the Technical Assistance Contractor (TAC) to establish a program increasing the DOE`s overall presence at operational remediation sites to identify and minimize risks in operations to the fullest extent possible (Attachments A and B). In response, the TAC, in cooperation with the DOE and the Remedial Action Contractor (RAC), developed the Safety Advancement Field Effort (SAFE) Program.

  1. Strengthening field education in aging through university-community agency partnership: the Practicum Partnership Program.

    Science.gov (United States)

    Lawrance, Frances P; Damron-Rodriguez, Joann; Rosenfeld, Peri; Sisco, Sarah; Volland, Patricia J

    2007-01-01

    The Practicum Partnership Program (PPP), an innovative field education model developed and implemented by six demonstration sites over four years (2000-2004), uses a structured university-community partnership, or consortium, as the foundation for designing, implementing, and evaluating internships for graduate social work students specializing in aging. This paper describes the site consortia and PPP programs, presents evaluation findings, and identifies future directions for the PPP. Student learning outcomes were positive and both students and consortia agencies reported positive PPP experiences. The PPP model underscores the value of the community agencies as equal partners in educating future geriatric social workers.

  2. Modelled Precipitation Over Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set includes the annual total precipitation from 1985 to 1999 and monthly total precipitation from January 1985 to December 1999. The data is derived from...

  3. Space-charge electrostatic precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, C.E.

    1977-05-01

    An improved electrostatic precipitator called a space charge precipitator was tested and studied. A space charge precipitator differs from a conventional model in that the fields necessary to move the particles from the gas to the collecting surfaces are provided by a cloud of charged innocuous drops, such as glycerine or water, rather than by a charged electrode system. The flow conditions, electrical equipment, and physical dimensions of the test precipitator are typical of industrial applications. Experiments using water fog at a velocity of 10 ft/sec and a residence time of 0.6 sec, for a system charged at 25 kV, show a removal of iron oxide particles of approximately 52 percent. Theoretical calculations, assuming 2 micron particles, predict a removal of 50 percent. The results with glycerine fog are comparable. Experiments at various flowrates for both water fog and glycerine fog show a trend of decreasing particle removal for increasing flowrate. An identical trend is predicted by the space charge theory. Electron micrographs verify that only particles smaller than two microns are present in the laboratory precipitator.

  4. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal

    National Research Council Canada - National Science Library

    Philipp Otter; Pradyut Malakar; Bana Bihari Jana; Thomas Grischek; Florian Benz; Alexander Goldmaier; Ulrike Feistel; Joydev Jana; Susmita Lahiri; Juan Antonio Alvarez

    2017-01-01

    ... on iron hydroxides is still considered as the most promising mechanism. This paper suggests an autonomous, solar driven arsenic removal setting and presents the findings of a long term field test conducted in West Bengal...

  5. An Application of Answer Set Programming to the Field of Second Language Acquisition

    OpenAIRE

    Inclezan, Daniela

    2013-01-01

    This paper explores the contributions of Answer Set Programming (ASP) to the study of an established theory from the field of Second Language Acquisition: Input Processing. The theory describes default strategies that learners of a second language use in extracting meaning out of a text, based on their knowledge of the second language and their background knowledge about the world. We formalized this theory in ASP, and as a result we were able to determine opportunities for refining its natur...

  6. Field Study in the Cornell University Science of Earth Systems Program

    Science.gov (United States)

    Moore, A.; Atkins, P. T.

    2006-12-01

    Cornell University has granted degrees in the Science of Earth Systems since 2000. The SES program is a multi-college and multi-disciplinary effort to integrate the study of the solid earth, atmosphere, hydrosphere and biosphere. An intensive, experiential component was added to the curriculum in 2001 with the introduction of the first Hawai'i-based field course. In 2004 the winter intersession field class was expanded to a full semester-length field program supporting the SES curriculum. The Earth and Environmental Systems (EES) Field Program on Hawai'i Island is open to well-prepared undergraduate students from any college or university. While it is designed to fulfill requirements in the SES curriculum, students from majors spanning the earth sciences, life sciences and engineering have participated, thus creating a multidisciplinary student body as well as faculty. Instruction is entirely field-based. Students learn from hands-on activities across a variety of topics, including volcanology, watershed hydrology, oceanography, biogeochemistry, and cultural and historical studies. The Big Island of Hawai'i is the world's premier field site for the study of Earth system interactions. The age progression of its five hot spot volcanoes and the island's location within the band of persistent NE trade winds combined with 4000 meters of vertical relief produce a 3-dimensional matrix of dramatic topographic, environmental, and temporal gradients that can be used in a variety of ways to study the effects of environmental change on natural and anthropogenic systems. The intensive nature of field-based learning produces outcomes different from a classroom environment. The students have been removed from their comfort zone and that this does indeed make them uncomfortable. Students must confront new modes of learning, are forced to learn independently, and from each other. The unequivocal result is that the students become more capable and independent learners. Second, the

  7. The impact of a sports vision training program in youth field hockey players.

    Science.gov (United States)

    Schwab, Sebastian; Memmert, Daniel

    2012-01-01

    The aim of this study was to investigate whether a sports vision training program improves the visual performance of youth male field hockey players, ages 12 to 16 years, after an intervention of six weeks compared to a control group with no specific sports vision training. The choice reaction time task at the D2 board (Learning Task I), the functional field of view task (Learning Task II) and the multiple object tracking (MOT) task (Transfer Task) were assessed before and after the intervention and again six weeks after the second test. Analyzes showed significant differences between the two groups for the choice reaction time task at the D2 board and the functional field of view task, with significant improvements for the intervention group and none for the control group. For the transfer task, we could not find statistically significant improvements for either group. The results of this study are discussed in terms of theoretical and practical implications. Key pointsPerceptual training with youth field hockey playersCan a sports vision training program improve the visual performance of youth male field hockey players, ages 12 to 16 years, after an intervention of six weeks compared to a control group with no specific sports vision training?The intervention was performed in the "VisuLab" as DynamicEye(®) SportsVision Training at the German Sport University Cologne.We ran a series of 3 two-factor univariate analysis of variance (ANOVA) with repeated measures on both within subject independent variables (group; measuring point) to examine the effects on central perception, peripheral perception and choice reaction time.The present study shows an improvement of certain visual abilities with the help of the sports vision training program.

  8. Piranti Lunak Pengujian Struktur Matematika Grup, Ring, Field Berbasis Osp (Open Source Program

    Directory of Open Access Journals (Sweden)

    Ngarap Im Manik

    2014-06-01

    Full Text Available This design of a computer software is a development and continuation of the software made on the previous research (2009/2010. However, this further research developed and expanded the scopes of testing more on the Siclic Group, Isomorphism Group, Semi Group, Sub Group and Abelian Group, Factor Ring, Sub Ring and Polynomial Ring; developed on the OSP (Open Source Program-based. The software was developed using the OSP-based language programming, such Java, so it is open and free to use for its users. This research succeeded to develop an open source software of Java program that can be used for testing specific mathematical Groups, such Ciclic Group, Isomorphism Group, Semi Group, Sub Group and Abelian Group, and Rings, Commutative Ring, Division Ring, Ideal Sub Ring, Ring Homomorphism, Ring Epimorphism and Fields. By the results, the software developed was able to test as same as the results from manual testing.

  9. Field Test of Advanced Duct-Sealing Technologies Within the Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Ternes, MP

    2001-12-05

    A field test of an aerosol-spray duct-sealing technology and a conventional, best-practice approach was performed in 80 homes to determine the efficacy and programmatic needs of the duct-sealing technologies as applied in the U.S. Department of Energy Weatherization Assistance Program. The field test was performed in five states: Iowa, Virginia, Washington, West Virginia, and Wyoming. The study found that, compared with the best-practice approach, the aerosol-spray technology is 50% more effective at sealing duct leaks and can potentially reduce labor time and costs for duct sealing by 70%, or almost 4 crew-hours. Further study to encourage and promote use of the aerosol-spray technology within the Weatherization Assistance Program is recommended. A pilot test of full production weatherization programs using the aerosol-spray technology is recommended to develop approaches for integrating this technology with other energy conservation measures and minimizing impacts on weatherization agency logistics. In order to allow or improve adoption of the aerosol spray technology within the Weatherization Assistance Program, issues must be addressed concerning equipment costs, use of the technology under franchise arrangements with Aeroseal, Inc. (the holders of an exclusive license to use this technology), software used to control the equipment, safety, and training. Application testing of the aerosol-spray technology in mobile homes is also recommended.

  10. THE IMPACT OF A SPORTS VISION TRAINING PROGRAM IN YOUTH FIELD HOCKEY PLAYERS

    Directory of Open Access Journals (Sweden)

    Sebastian Schwab

    2012-12-01

    Full Text Available The aim of this study was to investigate whether a sports vision training program improves the visual performance of youth male field hockey players, ages 12 to 16 years, after an intervention of six weeks compared to a control group with no specific sports vision training. The choice reaction time task at the D2 board (Learning Task I, the functional field of view task (Learning Task II and the multiple object tracking (MOT task (Transfer Task were assessed before and after the intervention and again six weeks after the second test. Analyzes showed significant differences between the two groups for the choice reaction time task at the D2 board and the functional field of view task, with significant improvements for the intervention group and none for the control group. For the transfer task, we could not find statistically significant improvements for either group. The results of this study are discussed in terms of theoretical and practical implications

  11. Mozambique field epidemiology and laboratory training program: a pathway for strengthening human resources in applied epidemiology.

    Science.gov (United States)

    Baltazar, Cynthia Semá; Taibo, Cátia; Sacarlal, Jahit; Gujral, Lorna; Salomão, Cristolde; Doyle, Timothy

    2017-01-01

    In the last decades, Mozambique has been undergoing demographic, epidemiological, economic and social transitions, which have all had a notable impact on the National Health System. New challenges have emerged, causing a need to expand the preparation and response to emerging disease threats and public health emergencies. We describe the structure and function of the Mozambique Field Epidemiology Training Program (MZ-FELTP) and the main outputs achieved during the first 6 years of program implementation (consisting of 3 cohorts). We also outline the contribution of the program to the National Health System and assess the retention of the graduates. The MZ-FELTP is a post-graduate in-service training program, based on the acquisition of skills, within two tracks: applied epidemiology and laboratory management. The program was established in 2010, with the objective of strengthening capacity in applied epidemiology and laboratory management, so that events of public health importance can be detected and investigated in a timely and effective manner. The program is in its seventh year, having successfully trained 36 health professionals in the advanced course. During the first six years of the program, more than 40 outbreaks were investigated, 37 surveillance system evaluations were conducted and 39 descriptive data analyses were performed. Surveillance activities were implemented for mass events and emergency situations. In addition, more than 100 oral and poster presentations were given by trainees at national and international conferences. The MZ-FELTP has helped provide the Ministry of Health with the human and technical resources and operational capacity, to rapidly and effectively respond to major public health challenges in the country. The continuous involvement of key stakeholders is necessary for the continuation, expansion and ongoing sustainability of the program.

  12. The Role of Living-Learning Programs in Women's Plans to Attend Graduate School in STEM Fields

    Science.gov (United States)

    Szelenyi, Katalin; Inkelas, Karen Kurotsuchi

    2011-01-01

    This paper examines the role of living-learning (L/L) programs in undergraduate women's plans to attend graduate school in STEM fields. Using data from the 2004-2007 National Study of Living Learning Programs (NSLLP), the only existing multi-institutional, longitudinal dataset examining L/L program outcomes, the findings show that women's…

  13. Silicon Carbide Defect Qubits/Quantum Memory with Field-Tuning: OSD Quantum Science and Engineering Program (QSEP)

    Science.gov (United States)

    2017-08-01

    TECHNICAL REPORT 3073 August 2017 Silicon Carbide Defect Qubits/Quantum Memory with Field-tuning: OSD Quantum Science and Engineering Program ...Higa SSC Pacific Lance Lerum Hector Romero Naval Research Enterprise Internship Program Mohammed Fahem San Diego State University Research...Quantum Science and Engineering Program ) by the Advanced Concepts and Applied Research Branch (Code 71730), the Energy and Environmental Sustainability

  14. Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitation Clouds: Results from In-Situ Observations in TRMM Field Campaigns

    Science.gov (United States)

    Heymsfield, Andrew J.; Bansemer, Aaron; Field, Paul R.; Durden, Stephen L.; Stith, Jeffrey L.; Dye, James E.; Hall, William; Grainger, Cedric A.

    2002-01-01

    In this study, we report on the evolution of particle size distributions (PSDs) and habits as measured during slow, Lagrangian-type spiral descents through deep subtropical and tropical cloud layers in Florida, Brazil, and Kwajalein, Marshall Islands, most of which were precipitating. The objective of the flight patterns was to learn more about how the PSDs evolved in the vertical and to obtain information of the vertical structure of microphysical properties. New instrumentation yielding better information on the concentrations of particles in the size (D) range between 0.2 and 2 cm, as well as improved particle imagery, produced more comprehensive observations for tropical stratiform precipitation regions and anvils than have been available previously. Collocated radar observations provided additional information on the vertical structure of the cloud layers sampled. Most of the spirals began at cloud top, with temperatures (T) as low as -50 C, and ended at cloud base or below the melting layer (ML). The PSDs broadened from cloud top towards cloud base, with the largest particles increasing in size from several millimeters at cloud top to one centimeter or larger towards cloud base. Some continued growth was noted in the upper part of the ML. Concentrations of particles less than 1 mm in size decreased with decreasing height. The result was a consistent change in the PSDs in the vertical. Similarly, systematic changes in the size dependence of the particle cross-sectional area was noted with decreasing height. Aggregation-as ascertained from both the changes in the PSDs and evolution of particle habits as observed in high detail with the cloud particle imager (CPI) probe-was responsible for these trends. The PSDs were generally well-represented by gamma distributions of the form N = N0 gamma D microns e- lambda gamma D that were fitted to the PSDs over 1-km horizontal intervals throughout the spirals. The intercept (N0 gamma), slope (lambda gamma), and dispersion

  15. Winter precipitation fields in the Southeastern Mediterranean area as seen by the Ku-band spaceborne weather radar and two C-band ground-based radars

    Science.gov (United States)

    Gabella, M.; Morin, E.; Notarpietro, R.; Michaelides, S.

    2013-01-01

    The spaceborne weather radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite can be used to adjust Ground-based Radar (GR) echoes, as a function of the range from the GR site. The adjustment is based on the average linear radar reflectivity in circular rings around the GR site, for both the GR and attenuation-corrected NearSurfZ TRMM Precipitation Radar (TPR) images. In previous studies, it was found that in winter, for the lowest elevation of the Cyprus C-band radar, the GR/TPR equivalent rain rate ratio was decreasing, on average, of approximately 8 dB per decade. In this paper, the same analysis has been applied to another C-band radar in the southeastern Mediterranean area. For the lowest elevation of the "Shacham" radar in Israel, the GR/TPR equivalent rain rate ratio is found to decrease of approximately 6 dB per decade. The average departure at the "reference", intermediate range is related to the calibration of the GR. The negative slope of the range dependence is considered to be mainly caused by an overshooting problem (increasing sampling volume of the GR with range combined with non-homogeneous beam filling and, on average, a decreasing vertical profile of radar reflectivity). To check this hypothesis, we have compared the same NearSurfZ TPR images versus GR data acquired using the second elevation. We expected these data to be affected more by overshooting, especially at distant ranges: the negative slope of the range dependence was in fact found to be more evident than in the case of the lowest GR elevation for both the Cypriot and Israeli radar.

  16. Personal Insights and Anecdotes about the Weatherization Assistance Program Process Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Treitler, Inga [Anthropology Imagination, Inc., Knoxville, TN (United States)

    2014-09-01

    The present report is based on the research conducted for the Process Field Study between March and September 2011. The Process Field Study documents how Weatherization Assistance Program (WAP) services were delivered to clients, and the quality with which those services were delivered. The assessments were conducted by visiting 19 agencies in 19 states around the country interviewing agency managers, staff, and contractors; observing program intake along, with 43 audits, 45 measure installation and 37 final inspections; and conducting debriefing interviews with clients and weatherization staff following the observation of service delivery. In this report, we turn to detailed observations of a few field interactions. The client stories from our observations illustrate some of the ways clients and crew interact to build the success of the program, but shows there will always be unanticipated obstacles to building trust and getting the program to the public. Stories of staff and crew career paths indicate that weatherization technology and techniques are being learned and used by technicians out of the new home construction industry and that their new knowledge provides them with technical tools and methods that many hope to take back into the construction industry if and when they return. This report is organized according to the four stages of weatherization: intake, audit, installation, and inspection. It contributes to our understanding of the area where policy, environment, culture, and individual decisions influence social innovation. The anecdotes reveal the realities of implementing programs for the benefit of the greater good at minimal cost and sacrifice in times of ever restricting budgets. As the authors revisited their field notes and compiled memorable narratives to communicate the essence of the weatherization experience, they identified three key takeaways that summarize the major issues. First, in WAP as in all services there will always be

  17. Radar-Derived Quantitative Precipitation Estimation Based on Precipitation Classification

    Directory of Open Access Journals (Sweden)

    Lili Yang

    2016-01-01

    Full Text Available A method for improving radar-derived quantitative precipitation estimation is proposed. Tropical vertical profiles of reflectivity (VPRs are first determined from multiple VPRs. Upon identifying a tropical VPR, the event can be further classified as either tropical-stratiform or tropical-convective rainfall by a fuzzy logic (FL algorithm. Based on the precipitation-type fields, the reflectivity values are converted into rainfall rate using a Z-R relationship. In order to evaluate the performance of this rainfall classification scheme, three experiments were conducted using three months of data and two study cases. In Experiment I, the Weather Surveillance Radar-1988 Doppler (WSR-88D default Z-R relationship was applied. In Experiment II, the precipitation regime was separated into convective and stratiform rainfall using the FL algorithm, and corresponding Z-R relationships were used. In Experiment III, the precipitation regime was separated into convective, stratiform, and tropical rainfall, and the corresponding Z-R relationships were applied. The results show that the rainfall rates obtained from all three experiments match closely with the gauge observations, although Experiment II could solve the underestimation, when compared to Experiment I. Experiment III significantly reduced this underestimation and generated the most accurate radar estimates of rain rate among the three experiments.

  18. High magnetic field MHD generator program. Final report, July 1, 1976-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Eustis, R. H.; Kruger, C. H.; Mitchner, M.; Self, S. A.; Koester, J. K.; Nakamura, T.

    1980-04-01

    A theoretical and experimental program was undertaken to investigate MHD channel phenomena which are important at high magnetic fields. The areas studied were inhomogeneity effects, boundary layers, Hall field breakdown and electrode configuration and current concentrations. In addition, a program was undertaken to study steady-state combustion disk and linear channels in an existing 6 Tesla magnet of small dimensions. The structure of the inhomogeneities in the Stanford M-2 was characterized and compared with theoretical results from a linearized perturbation analysis. General agreement was obtained and the analysis was used to compute stability regions for large size generators. The Faraday electrical connection was found to be more stable than the Hall or diagonal wall connections. Boundary layer profile measurements were compared with theoretical calculations with good agreement. Extrapolation of the calculations to pilot scale MHD channels indicates that Hartmann effects are important in the analysis of the sidewall, and Joule heating is important in calculating heat transfer and voltage drops for the electrode wall. Hall field breakdown was shown to occur both in the plasma and through the interelectrode insulator with the insulator breakdown threshold voltage lower than the plasma value. The threshold voltage was shown to depend on the interelectrode gap but was relatively independent of plasma conditions. Experiments were performed at 5.5 Tesla with both disk and linear MHD channels.

  19. Botswana water and surface energy balance research program. Part 1: Integrated approach and field campaign results

    Science.gov (United States)

    Vandegriend, A. A.; Owe, M.; Vugts, H. F.; Ramothwa, G. K.

    1992-01-01

    The Botswana water and surface energy balance research program was developed to study and evaluate the integrated use of multispectral satellite remote sensing for monitoring the hydrological status of the Earth's surface. Results of the first part of the program (Botswana 1) which ran from 1 Jan. 1988 - 31 Dec. 1990 are summarized. Botswana 1 consisted of two major, mutually related components: a surface energy balance modeling component, built around an extensive field campaign; and a passive microwave research component which consisted of a retrospective study of large scale moisture conditions and Nimbus scanning multichannel microwave radiometer microwave signatures. The integrated approach of both components in general are described and activities performed during the surface energy modeling component including the extensive field campaign are summarized. The results of the passive microwave component are summarized. The key of the field campaign was a multilevel approach, whereby measurements by various similar sensors were made at several altitudes and resolution. Data collection was performed at two adjacent sites of contrasting surface character. The following measurements were made: micrometeorological measurements, surface temperatures, soil temperatures, soil moisture, vegetation (leaf area index and biomass), satellite data, aircraft data, atmospheric soundings, stomatal resistance, and surface emissivity.

  20. Effects of acidic deposition on the erosion of carbonate stone - experimental results from the U.S. National Acid Precipitation Assessment Program (NAPAP)

    Science.gov (United States)

    Baedecker, P.A.; Reddy, M.M.; Reimann, K.J.; Sciammarella, C.A.

    1992-01-01

    One of the goals of NAPAP-sponsored research on the effects of acidic deposition on carbonate stone has been to quantify the incremental effects of wet and dry deposition of hydrogen ion, sulfur dioxide and nitrogen oxides on stone erosion. Test briquettes and slabs of freshly quarried Indiana limestone and Vermont marble have been exposed to ambient environmental conditions in a long-term exposure program. Physical measurements of the recession of test stones exposed to ambient conditions at an angle of 30?? to horizontal at the five NAPAP materials exposure sites range from ~15 to ~30?? ??m yr-1 for marble, and from ~25 to ~45 ??m yr -1 for limestone, and are approximately double the recession estimates based on the observed calcium content of run-off solutions from test slabs. The difference between the physical and chemical recession measurements is attributed to the loss of mineral grains from the stone surfaces that are not measured in the run-off experiments. The erosion due to grain loss does not appear to be influenced by rainfall acidity, however, preliminary evidence suggests that grain loss may be influenced by dry deposition of sulfur dioxide between rainfall events. Chemical analyses of the run-off solutions and associated rainfall blanks suggest that ~30% of erosion by dissolution can be attributed to the wet deposition of hydrogen ion and the dry deposition of sulfur dioxide and nitric acid between rain events. The remaining ~70% of erosion by dissolution is accounted for by the solubility of carbonate stone in rain that is in equilibrium with atmospheric carbon dioxide ('clean rain'). These results are for marble and limestone slabs exposed at an angle of 30?? from horizontal. The relative contribution of sulfur dioxide to chemical erosion is significantly enhanced for stone slabs having an inclination of 60?? or 85??. The dry deposition of alkaline particulate material has a mitigating effect at the two urban field exposure sites at Washington, DC

  1. The NASA CloudSat/GPM Light Precipitation Validation Experiment (LPVEx)

    Science.gov (United States)

    Petersen, Walter A.; L'Ecuyer, Tristan; Moisseev, Dmitri

    2011-01-01

    Ground-based measurements of cool-season precipitation at mid and high latitudes (e.g., above 45 deg N/S) suggest that a significant fraction of the total precipitation volume falls in the form of light rain, i.e., at rates less than or equal to a few mm/h. These cool-season light rainfall events often originate in situations of a low-altitude (e.g., lower than 2 km) melting level and pose a significant challenge to the fidelity of all satellite-based precipitation measurements, especially those relying on the use of multifrequency passive microwave (PMW) radiometers. As a result, significant disagreements exist between satellite estimates of rainfall accumulation poleward of 45 deg. Ongoing efforts to develop, improve, and ultimately evaluate physically-based algorithms designed to detect and accurately quantify high latitude rainfall, however, suffer from a general lack of detailed, observationally-based ground validation datasets. These datasets serve as a physically consistent framework from which to test and refine algorithm assumptions, and as a means to build the library of algorithm retrieval databases in higher latitude cold-season light precipitation regimes. These databases are especially relevant to NASA's CloudSat and Global Precipitation Measurement (GPM) ground validation programs that are collecting high-latitude precipitation measurements in meteorological systems associated with frequent coolseason light precipitation events. In an effort to improve the inventory of cool-season high-latitude light precipitation databases and advance the physical process assumptions made in satellite-based precipitation retrieval algorithm development, the CloudSat and GPM mission ground validation programs collaborated with the Finnish Meteorological Institute (FMI), the University of Helsinki (UH), and Environment Canada (EC) to conduct the Light Precipitation Validation Experiment (LPVEx). The LPVEx field campaign was designed to make detailed measurements of

  2. UNAVCO Plate Boundary Observatory 2007 Student Field Assistant Program in the Alaska Region

    Science.gov (United States)

    Marzulla, A.; Gasparich, S.; Pauk, B.; Feaux, K.; Jackson, M.

    2007-12-01

    The UNAVCO, Inc. Plate Boundary Observatory (PBO) Student Field Assistant Program strives to engage students in further study and careers in the Earth Sciences. Student Field Assistants from a variety of educational backgrounds ranging from high school graduates to master's level students spend a three to five month field season working in tandem with UNAVCO regional Field Engineers. The students work closely with senior staff to reconnaissance, install, and maintain a network of 875 permanent Global Positioning System (GPS) stations in one of the five PBO regions covering the western United States, including Alaska. Practical skills, such as power tool use, drilling, welding, firearms training, and proper field safety procedures, are taught and expected of the students. Installation and maintenance of new and existing GPS stations composes the bulk of the student's responsibilities and duties. When not in the field, students prepare gear and arrange logistics for site installations and maintenance as well as enter metadata and complete installation reports from recently constructed sites. An understanding of the operations of the GPS receivers and the scientific benefit of the network allows for an appreciation and great attention to detail during installation of the sites. Student assistance in the Alaska region during 2007 PBO AK field season was critical to the successful installation of 36 new GPS stations throughout Alaska. Significant benchmarks of the field season included installing six logistically difficult stations in Prince William Sounds, completing the Denali Fault GPS network, four new tiltmeters on Akutan Volcano, completing all installs on the Seward Peninsula as well as several new GPS stations throughout the western interior of the state. Alaska is a prominent area for much movement and deformation as the Pacific Plate subducts beneath the North American Plate resulting in an area of high volcanic activity and heightened crustal deformation. The

  3. The effect of precipitation collector design on the measured acid content of precipitation

    Science.gov (United States)

    H. A. Weibe

    1976-01-01

    In order to evaluate the effect of different types of collectors on the measured chemical constituents of monthly precipitation collections, an array of fourteen precipitation samplers of five different designs has been in operation at Woodbridge, Ontario since March 1974. The collectors are located in an open field near the city of Toronto in an area of approximately...

  4. The ABC's of Delivering A Research-Driven Adventure Learning Program From the Field

    Science.gov (United States)

    Pregont, P.; Porsild, M.

    2008-12-01

    A is for anchoring the delivery of your research to your audience in a standard-aligned curriculum. B is for BGAN Satellite Communication System assisting in delivering real-time authentic media. C is for a collaborative online learning environment to engage learners" Z is for the peaceful sleep you will get once your program is up and running! As part of Team GoNorth! (http://www.PolarHusky.com) it is our job to deliver adventure learning. We set out to do this back when the computer was a 4-foot, 50-lb box powered by a hand-crank where one would have a window of ten minutes in a 24-hour period to catch the satellite (before Al Gore created the Internet!). Every year we review the quantum leaps in what is now possible from the field and in the classroom, and over the years we have wrestled technical issues, solutions and numerous re-structures in the process of our of curriculum development. With this presentation we will provide some basic ABC's on how you can remained focused on your research, yet deliver an adventure learning program for learners to investigate real-world issues within your scientific research. Our scales are most likely different. The volume of our curriculum is an annual production of 4-500 pages to be used from Kindergarden through 12th grade around the world. The framework of our online learning environment must be able to supports millions of users at a time. "In the field" means on a a 3-4 month dogsled expedition - so sending out our live updates involve thawing out the computers and setting up the satellite communication system to work in a ground blizzard! But regardless of the scope and location of your field research, you can probably build on some of our experiences in the planning of an upcoming adventure learning program to engage learners of all or any ages in your scientific explorations!

  5. Cryopreservation of osteoblasts by use of a programmed freezer with a magnetic field.

    Science.gov (United States)

    Koseki, H; Kaku, M; Kawata, T; Kojima, S; Sumi, H; Shikata, H; Motokawa, M; Fujita, T; Ohtani, J; Tanne, K

    2013-01-01

    In order to determine a suitable condition for osteoblasts cryopreservation, murine osteoblasts were freezed by programmed freezer with a magnetic field (CAS freezer). After 7 days cryopreservation at -150°, the number of survival cells immediately after thawing and the growth rate of cultured cells for 48 hours were examined. Gene and protein expression of alkaline phosphatase (ALP), osteopontin (OPN) and bone sialoprotein (BSP) were compared between cryopreserved and non-cryopreserved groups. As a result, a plunging temperature of -30°, a hold-time at -5° for 15 minutes and a 0.1 mT of magnetic field led to the largest survival and growth rate. Moreover, there was no significant difference in ALP, OPN and BSP mRNA and protein expression between cryopreserved and control groups. From these results, it was suggested that the CAS freezer is available for osteoblast cryopreservation and bone tissue banking can be established in the future.

  6. Recommendations for Guidelines for Environment-Specific Magnetic-Field Measurements, Rapid Program Engineering Project #2

    Energy Technology Data Exchange (ETDEWEB)

    Electric Research and Management, Inc.; IIT Research Institute; Magnetic Measurements; Survey Research Center, University of California; T. Dan Bracken, Inc.

    1997-03-11

    The purpose of this project was to document widely applicable methods for characterizing the magnetic fields in a given environment, recognizing the many sources co-existing within that space. The guidelines are designed to allow the reader to follow an efficient process to (1) plan the goals and requirements of a magnetic-field study, (2) develop a study structure and protocol, and (3) document and carry out the plan. These guidelines take the reader first through the process of developing a basic study strategy, then through planning and performing the data collection. Last, the critical factors of data management, analysis reporting, and quality assurance are discussed. The guidelines are structured to allow the researcher to develop a protocol that responds to specific site and project needs. The Research and Public Information Dissemination Program (RAPID) is based on exposure to magnetic fields and the potential health effects. Therefore, the most important focus for these magnetic-field measurement guidelines is relevance to exposure. The assumed objective of an environment-specific measurement is to characterize the environment (given a set of occupants and magnetic-field sources) so that information about the exposure of the occupants may be inferred. Ideally, the researcher seeks to obtain complete or "perfect" information about these magnetic fields, so that personal exposure might also be modeled perfectly. However, complete data collection is not feasible. In fact, it has been made more difficult as the research field has moved to expand the list of field parameters measured, increasing the cost and complexity of performing a measurement and analyzing the data. The guidelines address this issue by guiding the user to design a measurement protocol that will gather the most exposure-relevant information based on the locations of people in relation to the sources. We suggest that the "microenvironment" become the base unit of area in a study, with

  7. The impact of entrainment on trade-wind precipitation over Dominica

    Science.gov (United States)

    Kirshbaum, D.; Smith, R. B.

    2010-09-01

    This paper continues our investigation into the response of trade-wind cumuli to flow over Dominica, a small but mountainous island in the Carribean sea. Whereas our previous studies focused on the dynamical impact of orographic forcing on the impinging cloud field, here we focus on the roles of entrainment and cloud microphysics. To this end, we conduct large-eddy simulations of realistic trade-wind cloud fields impinging on an idealized ridge based on the shape of Dominica. Two different open-ocean cumulus realizations are considered, one a non-precipitating case and the other a lightly precipitating case. These two flows are based on observations from field programs over the eastern Carribean Sea close to Dominica (BOMEX and RICO, respectively). The simulated clouds that develop over the island are found to be significantly wider than those over the open ocean, which weakens the dilution from entrainment within the convective cores and helps to maintain their positive buoyancy. Along with a dynamical enhancement in cloud vigor associated with the bulk lifting, this effect helps the island clouds to penetrate deeper into the trade-wind inversion and convert more liquid water to precipitation. The reduction in evaporative cooling within the cloud shafts, also the result of diminished cloud dilution, greatly increases the accretion rate of precipitation over the island. These enhancements in precipitation production result in a ten-fold increase in area-averaged rain rate over the island.

  8. Field Verification Program for Small Wind Turbines: Quarterly Report for January-March 2001; 1st Quarter, Issue No.4

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, T.; Cardinal, J.

    2001-10-30

    This newsletter provides a brief overview of the Field Verification Program for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  9. Field Verification Program for Small Wind Turbines: Quarterly Report for October-December 2000; 4th Quarter, Iss. No.3

    Energy Technology Data Exchange (ETDEWEB)

    Cardinal, J.

    2001-07-03

    This newsletter provides a brief overview of the Field Verification Program for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  10. Field Verification Program for Small Wind Turbines, Quarterly Report: 3rd Quarter, Issue No.2, July-September 2000

    Energy Technology Data Exchange (ETDEWEB)

    Cardinal. J.; Tu, P.

    2001-05-16

    This newsletter provides a brief overview of the Field Verification Program for Small Wind Turbines conducted out of the NWTC and a description of current activities. The newsletter also contains case studies of current projects.

  11. Global Precipitation Measurement Poster

    Science.gov (United States)

    Azarbarzin, Art

    2010-01-01

    This poster presents an overview of the Global Precipitation Measurement (GPM) constellation of satellites which are designed to measure the Earth's precipitation. It includes the schedule of launches for the various satellites in the constellation, and the coverage of the constellation, It also reviews the mission capabilities, and the mission science objectives.

  12. ECONOMIC IMPACT ASSESSMENT OF INTEGRATED CROP MANAGEMENT FARMER FIELD SCHOOL PROGRAM ON CORN PRODUCTION IN INDONESIA

    Directory of Open Access Journals (Sweden)

    I Ketut Kariyasa

    2014-10-01

    Full Text Available Domestic supply of corn in Indonesia has not been able to meet demand satisfactorily due to demand rising faster than supply. Therefore, Indonesia has been continuously importing corn about of 10% of the total demand. To address this problem, the Indonesian government started to implement the Farmer Field School of Integrated Crop Management (ICM-FFS program on corn production since 2009. This study aimed to assess the impact of ICM-FFS on corn productivity, comparative and competitive advantages to produce corn as well as farmer’s income. The study found that ICM-FFS program could increase corn productivity by 30.95% of non ICM-FFS farms, of which 27.94% contributed by the difference in input use, while only 3.01% contributed by technological change. ICM-FFS farms were able to increase farmer’s income by 71.03% and social welfare by 94.69% compared to non ICMFFS farms. Through this program, Indonesia had higher comparative advantage in producing corn as an import substitute. The provision of competitive input and output markets, enhanced technical assistance to improve corn productivity and quality, and increasing attention on corn ICM-FFS development could be considered as policy directions to improve the next implementation strategies of corn production in Indonesia.

  13. Next-Generation Satellite Precipitation Products for Understanding Global and Regional Water Variability

    Science.gov (United States)

    Hou, Arthur Y.

    2011-01-01

    A major challenge in understanding the space-time variability of continental water fluxes is the lack of accurate precipitation estimates over complex terrains. While satellite precipitation observations can be used to complement ground-based data to obtain improved estimates, space-based and ground-based estimates come with their own sets of uncertainties, which must be understood and characterized. Quantitative estimation of uncertainties in these products also provides a necessary foundation for merging satellite and ground-based precipitation measurements within a rigorous statistical framework. Global Precipitation Measurement (GPM) is an international satellite mission that will provide next-generation global precipitation data products for research and applications. It consists of a constellation of microwave sensors provided by NASA, JAXA, CNES, ISRO, EUMETSAT, DOD, NOAA, NPP, and JPSS. At the heart of the mission is the GPM Core Observatory provided by NASA and JAXA to be launched in 2013. The GPM Core, which will carry the first space-borne dual-frequency radar and a state-of-the-art multi-frequency radiometer, is designed to set new reference standards for precipitation measurements from space, which can then be used to unify and refine precipitation retrievals from all constellation sensors. The next-generation constellation-based satellite precipitation estimates will be characterized by intercalibrated radiometric measurements and physical-based retrievals using a common observation-derived hydrometeor database. For pre-launch algorithm development and post-launch product evaluation, NASA supports an extensive ground validation (GV) program in cooperation with domestic and international partners to improve (1) physics of remote-sensing algorithms through a series of focused field campaigns, (2) characterization of uncertainties in satellite and ground-based precipitation products over selected GV testbeds, and (3) modeling of atmospheric processes and

  14. Field Verification Program for Small Wind Turbines, Quartelry Report: 2nd Quarter, Issue No.1, October 2000

    Energy Technology Data Exchange (ETDEWEB)

    Tu, P.; Forsyth, T.

    2000-11-02

    The Field Verification Program for Small Wind Turbines quarterly report provides industry members with a description of the program, its mission, and purpose. It also provides a vehicle for participants to report performance data, activities, and issues during quarterly test periods.

  15. The Opinions of Masters Students about the Learning Program in the Field of Teaching Turkish to Foreigners

    Science.gov (United States)

    Kilinç, Hasan Huseyin

    2015-01-01

    The purpose of this study is to determine the opinions of Master students about the learning program in the field of teaching Turkish to foreigners. In the study, case study design which is one of the qualitative research methods was used. The population of the study consists of students studying in the Master program with thesis of Teaching…

  16. A Proposed Arctic Ocean Field Program During the International Polar Year 2007-2008

    Science.gov (United States)

    Persson, O. P.

    2004-05-01

    The Arctic Ocean represents a glaring void of measurements appropriate for monitoring and understanding the climate changes currently occurring in the Arctic region. We propose a field program in the central Arctic Ocean to develop and improve methods for the long-term monitoring of the Arctic atmosphere, ice, and ocean and the interactions among them, and to study physical processes crucial to the regional climate change. The approach will include developing and evaluating methods by which long-term satellite-, surface-, and ocean-based measurements of the thermodynamic and kinematic properties of the atmosphere, ice, and ocean can be integrated to measure key parameters with accuracies necessary to detect climatic change, to attribute responsibility to the processes causing this change, and to evaluate the role of anthropogenic sources in this change. Key measurements include the atmospheric circulation above and within the atmospheric boundary layer, cloud macro and microphysical properties, atmospheric aerosols and chemical constituents, all components of the energy budget of the pack ice including the oceanic heat flux, and the pack ice mass balance. Many of the techniques to be developed will likely use in-situ surface and ocean-based measurements to evaluate and improve the accuracy of the satellite-based measurements. These measurements will generally integrate existing technology, though some will require technological development as well. Many physical processes over the pack ice are different than those over the circumpolar land areas where SEARCH (Study of Environmental Arctic Change) intensive observing sites are being established. Observations at the land sites are largely influenced by processes forced by coastal gradients or by orography, and are much less influenced by the oceanic heat source omnipresent over the Arctic Ocean. The proposed pack ice field program will make measurements specific to processes important for climate models and that are

  17. Catalyzed precipitation in aluminum

    Science.gov (United States)

    Mitlin, David

    The work reported in Chapter 1 concerned the influence of Si on the precipitation of theta' (metastable Al2Cu) during the isothermal aging of Al-2Cu-1Si (wt. %). The binary alloys Al-2Cu and Al-1Si were studied for comparison. Only two precipitate phases were detected: pure Si in Al-Si and Al-Cu-Si, and theta' (metastable Al 2Cu) in Al-Cu and Al-Cu-Si. On aging the ternary, Si precipitates first, and provides heterogeneous sites to nucleate theta'. As a consequence, the density of theta' precipitates in Al-Cu-Si is much higher than in the binary Al-Cu. Also, the theta ' precipitates in the ternary alloy have lower aspect ratio (at given particle size) and lose coherence on their broad faces at a slower rate. The principal focus of Chapter 2 is to explain precipitation in Al-lat.%Si-lat%Ge. The microstructure is characterized using conventional and high resolution transmission electron microscopy, as well as energy dispersive X-ray spectroscopy. The first precipitates to come out of solid solution have a cube-cube orientation relationship with the matrix. High resolution TEM demonstrated that all the precipitates start out, and remain multiply twinned throughout the aging treatment. There is a variation in the stoichiometry of the precipitates, with the mean composition being Si-44.5at%Ge. It is also shown that in Al-Si-Ge it is not possible to achieve satisfactory hardness through a conventional heat treatment. This result is explained in terms of sluggish precipitation of the diamond-cubic Si-Ge phase coupled with particle coarsening. The purpose of Chapters 3 and 4 is to explain these properties in terms of the role that the Si-Ge additions have on modifying the conventional Al-Cu aging sequence. In both AlCu and AlCuSiGe the room temperature microstructure consists of both GP zones and theta″ precipitates. Upon aging at 190°C Al-Cu displays the well known precipitation sequence; the slow dissolution of GP zones and theta″ and the gradual formation of theta

  18. British University Certificate and Diploma Programs (All Fields Except Education, Teacher Training and Health). NAFSA Field Service Working Paper #7.

    Science.gov (United States)

    Zinman-Madoff, Elaine

    This document presents information on programs in all areas of study, with the exception of education, teacher training and health programs, offered at 38 British higher education institutions, including the University of Cambridge, Leeds, Oxford, York and the Open University. The document covers undergraduate, graduate and post-graduate…

  19. Central African Field Epidemiology and Laboratory Training Program: building and strengthening regional workforce capacity in public health.

    Science.gov (United States)

    Andze, Gervais Ondobo; Namsenmo, Abel; Illunga, Benoit Kebella; Kazambu, Ditu; Delissaint, Dieula; Kuaban, Christopher; Mbopi-Kéou, Francois-Xavier; Gabsa, Wilfred; Mulumba, Leopold; Bangamingo, Jean Pierre; Ngulefac, John; Dahlke, Melissa; Mukanga, David; Nsubuga, Peter

    2011-01-01

    The Central African Field Epidemiology and Laboratory Training Program (CAFELTP) is a 2-year public health leadership capacity building training program. It was established in October 2010 to enhance capacity for applied epidemiology and public health laboratory services in three countries: Cameroon, Central African Republic, and the Democratic Republic of Congo. The aim of the program is to develop a trained public health workforce to assure that acute public health events are detected, investigated, and responded to quickly and effectively. The program consists of 25% didactic and 75% practical training (field based activities). Although the program is still in its infancy, the residents have already responded to six outbreak investigations in the region, evaluated 18 public health surveillance systems and public health programs, and completed 18 management projects. Through these various activities, information is shared to understand similarities and differences in the region leading to new and innovative approaches in public health. The program provides opportunities for regional and international networking in field epidemiology and laboratory activities, and is particularly beneficial for countries that may not have the immediate resources to host an individual country program. Several of the trainees from the first cohort already hold leadership positions within the ministries of health and national laboratories, and will return to their assignments better equipped to face the public health challenges in the region. They bring with them knowledge, practical training, and experiences gained through the program to shape the future of the public health landscape in their countries.

  20. Literacy in Action: A Carbon-Neutral Field Program at Cornell University

    Science.gov (United States)

    Moore, A.; Derry, L.

    2010-12-01

    The Cornell Earth and Environmental Systems (EES) Field Program is a semester-length undergraduate field program located on the island of Hawai`i. The Hawaiian Islands are the world’s most dynamic natural laboratory and the premier location for Earth systems research and education. While there are compelling reasons for students and faculty to travel from the US mainland to Hawai`i, the air and ground travel that comprises the program carries a large carbon footprint. This liability is also an extraordinary educational opportunity. For the past two years EES students have been challenged to make the program carbon-neutral. They are asked to devise a set of criteria for a credible and defensible zero-CO2 footprint and then to put their plan into action. The C-neutral project consists of three elements: (1) quantifying CO2 emissions, (2) reducing emissions wherever possible, and (3) offsetting emissions that cannot be eliminated. In quantifying emissions six areas are identified: air travel, ground travel, domestic electricity, natural gas, food, and waste. Emissions reductions include all of the standard “carpool--turn it down--turn it off “ conservation behaviors, with special emphasis on food and waste; eating local and organic, shopping at re-use centers, and compost and recycling of garbage. Our program facility utilizes solar hot water and is equipped with neither heat nor air conditioning, thus domestic energy use is low. Students tabulate all of our energy use and calculate the resulting CO2 emissions for all program participants for a period of four months. The CO2 offsetting strategy is conducted in collaboration with a native ecosystem restoration project. Students participate in all aspects of forest restoration, including seed collection, germination and outplanting of native plant species and removal of invasive pest species. The initial goal of this locally-supported project was to restore degraded pasture to native forest. The EES students have

  1. Measurements of size distribution and density of a pharmaceutical fat emulsion, using field-programmed sedimentation field-flow fractionation (SdFFF).

    Science.gov (United States)

    Levin, S; Klausner, E

    1995-08-01

    The main goal was to establish that sedimentation field-flow fractionation (SdFFF), operated with power based field programming, is effective in the characterization of a commercial emulsion, Medialipide. This emulsion is used clinically for total parenteral nutrition and it is consisted of a mixture of long-chain triglycerides (LCT, soybean oil) with medium-chain triglycerides (MCT) emulsified by phospholipids. Different field programming methods were used in the analysis to establish the limits of applicability of the technique. Identical size distribution profiles were obtained under various conditions of the analysis. The density of the droplets was determined by collecting fractions from the SdFFF eluting bands, and analyzing them by photon correlation spectroscopy. The value of density of the oil droplets was changed in the SdFFF data, until best agreement with the PCS values was achieved. The value of density corresponding to the best agreement was considered as the oil density, and it was closed to the weighted average value between soybean and MCT oils. Field programming extends the capabilities of sedimentation field-flow fractionation in handling and characterizing complex and delicate samples as Medialipide.

  2. Quantum field theory and the linguistic Minimalist Program: a remarkable isomorphism

    Science.gov (United States)

    Piattelli-Palmarini, M.; Vitiello, G.

    2017-08-01

    By resorting to recent results, we show that an isomorphism exist between linguistic features of the Minimalist Program and the quantum field theory formalism of condensed matter physics. Specific linguistic features which admit a representation in terms of the many-body algebraic formalism are the unconstrained nature of recursive Merge, the operation of the Labeling Algorithm, the difference between pronounced and un-pronounced copies of elements in a sentence and the build-up of the Fibonacci sequence in the syntactic derivation of sentence structures. The collective dynamical nature of the formation process of Logical Forms leading to the individuation of the manifold of concepts and the computational self-consistency of languages are also discussed.

  3. Cryopreservation of rat MSCs by use of a programmed freezer with magnetic field.

    Science.gov (United States)

    Kojima, Shunichi; Kaku, Masato; Kawata, Toshitsugu; Sumi, Hiromi; Shikata, Hanaka; Abonti, Tahsin Raquib; Kojima, Shotoku; Fujita, Tadashi; Motokawa, Masahide; Tanne, Kazuo

    2013-12-01

    Mesenchymal stem cells (MSCs) can be used for the regeneration of various tissues and cryopreservation of MSCs is so important for regenerative medicine. The purpose of this study was to evaluate the influences of cryopreservation on MSCs by use of a programmed freezer with a magnetic field (CAS freezer). MSCs were isolated from bone marrow of rat femora. The cells were frozen by a CAS freezer with 10% dimethyl sulfoxide (Me2SO) and cryopreserved for 7 days at a temperature of -150 °C. Immediately after thawing, the number of survived cells was counted. The cell proliferation also examined after 48 h culture. Next, MSCs were frozen by two different freezers; CAS freezer and a conventional programmed freezer without magnetic field. Then, osteogenic and adipogenic differentiations of cryopreserved cells were examined. As a result, survival and proliferation rates of MSCs were significantly higher in CAS freezer than in the non-magnetic freezer. Alizarin positive reaction, large amount of calcium quantification, and greater alkaline phosphatase activity were shown in both the non-cryopreserved and CAS groups after osteogenic differentiation. Moreover, Oil Red O staining positive reaction and high amount of PPARγ and FABP4 mRNAs were shown in both the non-cryopreserved and CAS groups after adipogenic differentiation. From these findings, it is shown that a CAS freezer can maintain high survival and proliferation rates of MSCs and maintain both adipogenic and osteogenic differentiation abilities. It is thus concluded that CAS freezer is available for cryopreservation of MSCs, which can be applied to various tissue regeneration. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Liesegang patterns: Complex formation of precipitate in an electric ...

    Indian Academy of Sciences (India)

    Formation of 1D Liesegang patterns was studied numerically in precipitation and reversible complex formation of precipitate scenarios in an electric field. The Ostwald's supersaturation model reported by Büki, Kárpáti-Smidróczki and Zrínyi (BKZ model) was extended further. In the presence of an electric field the position of ...

  5. Field Operations Program Chevrolet S-10 (Lead-Acid) Accelerated Reliability Testing - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    J. Francfort (INEEL); J. Argueta; M. Wehrey (Southern California Edison); D. Karner; L. Tyree (Electric Transportation Applications)

    1999-07-01

    This report summarizes the Accelerated Reliability testing of five lead-acid battery-equipped Chevrolet S-10 electric vehicles by the US Department of Energy's Field Operations Program and the Program's testing partners, Electric Transportation Applications (ETA) and Southern California Edison (SCE). ETA and SCE operated the S-10s with the goal of placing 25,000 miles on each vehicle within 1 year, providing an accelerated life-cycle analysis. The testing was performed according to established and published test procedures. The S-10s' average ranges were highest during summer months; changes in ambient temperature from night to day and from season-to-season impacted range by as much as 10 miles. Drivers also noted that excessive use of power during acceleration also had a dramatic effect on vehicle range. The spirited performance of the S-10s created a great temptation to inexperienced electric vehicle drivers to ''have a good time'' and to fully utilize the S-10's acceleration capability. The price of injudicious use of power is greatly reduced range and a long-term reduction in battery life. The range using full-power accelerations followed by rapid deceleration in city driving has been 20 miles or less.

  6. Is extreme precipitation changing?

    Science.gov (United States)

    Papalexiou, Simon Michael

    2015-04-01

    For most of the scientists climate change is a fact. Climate change implies changes not only on the behavior of the temperature but also on other climatic variables like the precipitation. The question raised in this study is whether or not the annual daily maximum precipitation has changed. In order to evaluate if this question can be answered, several thousands of precipitation records are analyzed from all over the globe. Initially the annual daily maxima time series are carefully formed and sequentially all possible trends are estimated in a moving window framework and for several interannual periods, e.g., from 10 years to 100 years. The aim is to estimate the difference between the percentage of increasing and decreasing trends in the annual daily maximum precipitation and assess if this difference indicates any specific pattern.

  7. Storage Gage Precipitation Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — A storage gage is a precipitation gage that requires reading and maintenance only monthly or seasonal intervals. This library includes reports from such gages,...

  8. `Unthinkable' Selves: Identity boundary work in a summer field ecology enrichment program for diverse youth

    Science.gov (United States)

    Carlone, Heidi B.; Huffling, Lacey D.; Tomasek, Terry; Hegedus, Tess A.; Matthews, Catherine E.; Allen, Melony H.; Ash, Mary C.

    2015-07-01

    The historical under-representation of diverse youth in environmental science education is inextricably connected to access and identity-related issues. Many diverse youth with limited previous experience to the outdoors as a source for learning and/or leisure may consider environmental science as 'unthinkable'. This is an ethnographic study of 16 diverse high school youths' participation, none of who initially fashioned themselves as 'outdoorsy' or 'animal people', in a four-week summer enrichment program focused on herpetology (study of reptiles and amphibians). To function as 'good' participants, youth acted in ways that placed them well outside their comfort zones, which we labeled as identity boundary work. Results highlight the following cultural tools, norms, and practices that enabled youths' identity boundary work: (1) boundary objects (tools regularly used in the program that facilitated youths' engagement with animals and nature and helped them work through fear or discomfort); (2) time and space (responsive, to enable adaptation to new environments, organisms, and scientific field techniques); (3) social support and collective agency; and (4) scientific and anecdotal knowledge and skills. Findings suggest challenges to commonly held beliefs about equitable pedagogy, which assumes that scientific practices must be thinkable and/or relevant before youth engage meaningfully. Further, findings illustrate the ways that fear, in small doses and handled with empathy, may become a resource for youths' connections to animals, nature, and science. Finally, we propose that youths' situated identity boundary work in the program may have the potential to spark more sustained identity work, given additional experiences and support.

  9. Theoretical investigation on the performance of DNA electrophoresis under programmed step electric field strength: Two-step condition.

    Science.gov (United States)

    Ni, Yi; Liu, Chenchen; Chen, Qinmiao; Zhu, Xifang; Dou, Xiaoming

    2015-10-01

    Programmed step electric field strength is a simple-to-use technique that has already been reported to be effective to enhance the efficiency or speed of DNA electrophoresis. However, a global understanding and the details of this technique are still vague. In this paper, we investigated the influence of programmed step electric field strength by theoretical calculation and concentrated on a basic format named as two-step electric field strength. Both subtypes of two-step electric field strength conditions were considered. The important parameters, such as peak spacing, peak width, resolution, and migration time, were calculated in theory to understand the performance of DNA electrophoresis under programmed step electric field strength. The influence of two-step electric field strength on DNA electrophoresis was clearly revealed on a diagram of resolution versus migration time. Both resolution and speed of DNA electrophoresis under two-step electric field strength conditions are simply expressed by the shape of curves in the diagram. The possible shapes of curve were explored by calculation and shown in this paper. The subtype II of two-step electric field strength brings drastic variation on the resolution. Its limitations of enhancement and deterioration of resolution were predicted in theory. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Employing multi-objective Genetic Programming to the downscaling of near-surface atmospheric fields

    Science.gov (United States)

    Zerenner, Tanja; Venema, Victor; Friederichs, Petra; Simmer, Clemens

    2015-04-01

    The coupling of models for the different components of the Soil-Vegetation-Atmosphere-System is required to investigate component interactions and feedback processes. However, the component models for atmosphere, land-surface and subsurface are usually operated at different resolutions in space and time owing to the dominant processes. The computationally expensive atmospheric models are typically employed at a coarser resolution than land-surface and subsurface models. Thus up- and downscaling procedures are required at the interface between the atmospheric model and the land-surface/subsurface models. We apply multi-objective Genetic Programming (GP) to a training data set of high-resolution atmospheric model runs to learn downscaling rules, i. e., equations or short programs that reconstruct the fine-scale fields of the near-surface atmospheric state variables from the coarse atmospheric model output. Like artificial neural networks, GP can flexibly incorporate multivariate and nonlinear relations, but offers the advantage that the solutions are human readable and thus can be checked for physical consistency. Further, the Strength Pareto Approach for multi-objective fitness assignment allows to consider multiple characteristics of the fine-scale fields during the learning procedure. We have applied the described machine learning methodology to a training data set of 400 m resolution COSMO model runs to learn downscaling rules which recover realistic fine-scale structures from the coarsened fields at 2.8 km resolution. Hence we are currently downscaling by a factor of 7. The COSMO model is the weather forecast model developed and maintained by the German Weather Service and is contained in the Terrestrial Systems Modeling Platform (TerrSysMP), which couples the atmospheric COSMO model to land-surface model CLM and subsurface hydrological model ParFlow. Finally we aim at implementing the learned downscaling rules in the TerrSysMP to achieve scale

  11. Innovating for skills enhancement in agricultural sciences in Africa: The centrality of field attachment programs

    Directory of Open Access Journals (Sweden)

    Anthony Egeru

    2016-09-01

    Full Text Available Africa remains an intensely agrarian continent, with two-thirds of its people directly or indirectly deriving their livelihood from agriculture. Higher agricultural education has thus emphasised production of graduates with the requisite skills to drive agricultural development. Despite these efforts, too few graduates in sub-Saharan Africa (SSA have the employable skills necessary to transition to the labour market. A similar situation is observable among agricultural science graduates, who are vital to serving rural smallholder farmers. Most Colleges of Agriculture in Africa offer field attachment internships in agriculture and related fields but they are largely designed to cater for undergraduate students and are not part of the training programs at graduate level. To ameliorate this gap, the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM, a network of 55 member universities in SSA, designed and rolled out an innovative field attachment program award (FAPA, launched in 2010, to serve graduate students. The FAPA is competitively based and designed to encourage students to follow through with the dissemination of their research and to enable them to link more closely with the communities and agencies working in the geographical area where the research was undertaken. During the period 2010–2015, five grant cycles were successfully implemented and 114 graduate students from 17 countries in SSA awarded. This article discusses the lessons learned during this period by examining two key areas: (1 the application process and implementation of the awards; and (2 the reported outcomes and challenges for grantees. Establishing the award has generated key technical and implementation lessons that the network and individual universities have been able to use to improve and institutionalise processes. Grantees have reported gaining a range of cross-cutting skills in personal mastery, initiative leadership and innovativeness

  12. New DMSP Database of Precipitating Auroral Electrons and Ions.

    Science.gov (United States)

    Redmon, Robert J; Denig, William F; Kilcommons, Liam M; Knipp, Delores J

    2017-08-01

    Since the mid 1970's, the Defense Meteorological Satellite Program (DMSP) spacecraft have operated instruments for monitoring the space environment from low earth orbit. As the program evolved, so to have the measurement capabilities such that modern DMSP spacecraft include a comprehensive suite of instruments providing estimates of precipitating electron and ion fluxes, cold/bulk plasma composition and moments, the geomagnetic field, and optical emissions in the far and extreme ultraviolet. We describe the creation of a new public database of precipitating electrons and ions from the Special Sensor J (SSJ) instrument, complete with original counts, calibrated differential fluxes adjusted for penetrating radiation, estimates of the total kinetic energy flux and characteristic energy, uncertainty estimates, and accurate ephemerides. These are provided in a common and self-describing format that covers 30+ years of DMSP spacecraft from F06 (launched in 1982) through F18 (launched in 2009). This new database is accessible at the National Centers for Environmental Information (NCEI) and the Coordinated Data Analysis Web (CDAWeb). We describe how the new database is being applied to high latitude studies of: the co-location of kinetic and electromagnetic energy inputs, ionospheric conductivity variability, field aligned currents and auroral boundary identification. We anticipate that this new database will support a broad range of space science endeavors from single observatory studies to coordinated system science investigations.

  13. New DMSP database of precipitating auroral electrons and ions

    Science.gov (United States)

    Redmon, Robert J.; Denig, William F.; Kilcommons, Liam M.; Knipp, Delores J.

    2017-08-01

    Since the mid-1970s, the Defense Meteorological Satellite Program (DMSP) spacecraft have operated instruments for monitoring the space environment from low Earth orbit. As the program evolved, so have the measurement capabilities such that modern DMSP spacecraft include a comprehensive suite of instruments providing estimates of precipitating electron and ion fluxes, cold/bulk plasma composition and moments, the geomagnetic field, and optical emissions in the far and extreme ultraviolet. We describe the creation of a new public database of precipitating electrons and ions from the Special Sensor J (SSJ) instrument, complete with original counts, calibrated differential fluxes adjusted for penetrating radiation, estimates of the total kinetic energy flux and characteristic energy, uncertainty estimates, and accurate ephemerides. These are provided in a common and self-describing format that covers 30+ years of DMSP spacecraft from F06 (launched in 1982) to F18 (launched in 2009). This new database is accessible at the National Centers for Environmental Information and the Coordinated Data Analysis Web. We describe how the new database is being applied to high-latitude studies of the colocation of kinetic and electromagnetic energy inputs, ionospheric conductivity variability, field-aligned currents, and auroral boundary identification. We anticipate that this new database will support a broad range of space science endeavors from single observatory studies to coordinated system science investigations.

  14. Perceived Impacts of a Public Health Training Center Field Placement Program among Trainees: Findings from a Small Group Externship Experience.

    Science.gov (United States)

    Johansson, Patrik; Grimm, Brandon; Abdel-Monem, Tarik; Hoffman, Stacey J; DeKraai, Mark; McMillan, Analisa

    2014-01-01

    There is heightened interest in identifying the impact of the federally funded Public Health Training Center (PHTC) program. Although evaluation studies have been conducted of public health training in general, evaluations of PHTC programs are rare. Field placement components are congressionally mandated requirements of PHTCs. Field placements are typically intensive, supervised externships for students to gain public health experience with local health departments or non-profit organizations. We have found no published evaluations of PHTC field placement components. This may be because of their small size and unique nature. We designed and evaluated a 200-h field placement program at an established PHTC. The evaluation included pre/post surveys measuring public health core competencies, and post-experience interviews. We found significant increases in three competency domains among trainees: policy development and program planning, communication skills, and community dimensions of practice. These outcomes contribute to evidence based on the efficacy of PHTC field placement programs, and underscore their role in public health training.

  15. Precipitation patterns during channel flow

    Science.gov (United States)

    Jamtveit, B.; Hawkins, C.; Benning, L. G.; Meier, D.; Hammer, O.; Angheluta, L.

    2013-12-01

    Mineral precipitation during channelized fluid flow is widespread in a wide variety of geological systems. It is also a common and costly phenomenon in many industrial processes that involve fluid flow in pipelines. It is often referred to as scale formation and encountered in a large number of industries, including paper production, chemical manufacturing, cement operations, food processing, as well as non-renewable (i.e. oil and gas) and renewable (i.e. geothermal) energy production. We have studied the incipient stages of growth of amorphous silica on steel plates emplaced into the central areas of the ca. 1 meter in diameter sized pipelines used at the hydrothermal power plant at Hellisheidi, Iceland (with a capacity of ca 300 MW electricity and 100 MW hot water). Silica precipitation takes place over a period of ca. 2 months at approximately 120°C and a flow rate around 1 m/s. The growth produces asymmetric ca. 1mm high dendritic structures ';leaning' towards the incoming fluid flow. A novel phase-field model combined with the lattice Boltzmann method is introduced to study how the growth morphologies vary under different hydrodynamic conditions, including non-laminar systems with turbulent mixing. The model accurately predicts the observed morphologies and is directly relevant for understanding the more general problem of precipitation influenced by turbulent mixing during flow in channels with rough walls and even for porous flow. Reference: Hawkins, C., Angheluta, L., Hammer, Ø., and Jamtveit, B., Precipitation dendrites in channel flow. Europhysics Letters, 102, 54001

  16. Awakening the Languages. Challenges of Enduring Language Programs: Field Reports from 15 Programs from Arizona, New Mexico and Oklahoma.

    Science.gov (United States)

    Linn, Mary S.; Naranjo, Tessie; Nicholas, Sheilah; Slaughter, Inee; Yamamoto, Akira; Zepeda, Ofelia

    The Indigenous Language Institute (ILI) collaborates with indigenous language communities to combat language decline. ILI facilitates community-based language programs, increases public awareness of language endangerment, and disseminates information on language preservation and successful language revitalization programs. In response to numerous…

  17. Evolution in Cloud Population Statistics of the MJO. From AMIE Field Observations to Global-Cloud Permitting Models final report Version 1

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Min [Univ. of Wyoming, Laramie, WY (United States)

    2016-01-08

    Methods of convective/stratiform precipitation classification and surface rain rate estimation based on the Atmospheric Radiation Measurement (ARM) program cloud radar measurements were developed and evaluated. Simultaneous and collocated observations of the Ka-band ARM zenith radar (KAZR), two scanning precipitation radars (NCAR S-PolKa and Texas A&M University SMART-R), and surface precipitation during the DYNAMO/AMIE field campaign were used. The motivation of this study is to apply the unique long-term ARM cloud radar observations without accompanying precipitation radars to the study of cloud lifecycle and precipitation features under different weather and climate regimes.

  18. Field testing results for the strategic petroleum reserve pipeline corrosion control program

    Energy Technology Data Exchange (ETDEWEB)

    Buchheit, R.G.; Maestas, L.M.; Hinkebein, T.E.

    1998-02-01

    Results of two studies conducted as part of the Strategic Petroleum Reserve (SPR) Pipeline Corrosion Control Program are reported. These studies focused on evaluation of rotary-applied concrete materials for internal pipeline protection against the erosive and corrosive effects of flowing brine. The study also included evaluation of liners applied by hand on pipe pieces that cannot be lined by rotary methods. Such pipe pieces include tees, elbows and flanged pipe sections. Results are reported from a corrosion survey of 17 different liner formulations tested at the-Big-Rill SPR Site. Testing consisted of electrochemical corrosion rate measurements made on lined pipe sections exposed, in a test manifold, to flowing SPR generated fluids. Testing also involved cumulative immersion exposure where samples were exposed to static site-generated brine for increasing periods of time. Samples were returned to the laboratory for various diagnostic analyses. Results of this study showed that standard calcium silicate concrete (API RP10E) and a rotary calcium aluminate concrete formulation were excellent performers. Hand-lined pipe pieces did not provide as much corrosion protection. The focus of the second part of the study was on further evaluation of the calcium silicate, calcium aluminate and hand-applied liners in actual SPR equipment and service. It was a further objective to assess the practicality of electrochemical impedance spectroscopy (EIS) for field corrosion monitoring of concrete lined pipe compared to the more well-known linear polarization technique. This study showed that concrete linings reduced the corrosion rate for bare steel from 10 to 15 mils per year to 1 mil per year or less. Again, the hand-applied liners did not provide as much corrosion protection as the rotary-applied liners. The EIS technique was found to be robust for field corrosion measurements. Mechanistic and kinetic corrosion rate data were reliably obtained.

  19. Evaluation of extreme precipitation derived from long-term global satellite Quantitative Precipitation Estimates (QPEs)

    Science.gov (United States)

    Prat, Olivier; Nelson, Brian

    2017-04-01

    This study evaluates the ability of different satellite-based precipitation products to capture daily precipitation extremes over the entire globe. The satellite products considered are datasets belonging or in transition to the Reference Environmental Data Records (REDRs) program. Those products include PERSIANN-CDR, GPCP, CMORPH, and AMSU-A,B, Hydrologic bundle. PERSIANN-CDR is a 30-year record of daily-adjusted global precipitation. GPCP is an approximately 30-year record of monthly and pentad adjusted global precipitation and 17-year record of daily-adjusted global precipitation. CMORPH is a 17-year record of daily and sub-daily adjusted global precipitation. AMSU-A,B, Hydro-bundle is an 11-year record of a bundle of perceptible water, cloud water, and ice water among others. Other satellite QPE products such those from the PMM/GPM suite of products (TMPA, TMPA-RT, IMERG) are also included in the analysis. The evaluation of the satellite products will be performed against in-situ from the Global Precipitation Climatology Centre (GPCC) gridded full data daily product (conditional analysis, false alarm rate, probability of detection, threat score). The analysis will focus on seasonal patterns and trends and precipitation extremes in relation with cyclonic activity around the globe.

  20. Automated Critical PeakPricing Field Tests: 2006 Pilot ProgramDescription and Results

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary Ann; Watson, David; Motegi, Naoya; Kiliccote, Sila

    2007-06-19

    During 2006 Lawrence Berkeley National Laboratory (LBNL) and the Demand Response Research Center (DRRC) performed a technology evaluation for the Pacific Gas and Electric Company (PG&E) Emerging Technologies Programs. This report summarizes the design, deployment, and results from the 2006 Automated Critical Peak Pricing Program (Auto-CPP). The program was designed to evaluate the feasibility of deploying automation systems that allow customers to participate in critical peak pricing (CPP) with a fully-automated response. The 2006 program was in operation during the entire six-month CPP period from May through October. The methodology for this field study included site recruitment, control strategy development, automation system deployment, and evaluation of sites' participation in actual CPP events through the summer of 2006. LBNL recruited sites in PG&E's territory in northern California through contacts from PG&E account managers, conferences, and industry meetings. Each site contact signed a memorandum of understanding with LBNL that outlined the activities needed to participate in the Auto-CPP program. Each facility worked with LBNL to select and implement control strategies for demand response and developed automation system designs based on existing Internet connectivity and building control systems. Once the automation systems were installed, LBNL conducted communications tests to ensure that the Demand Response Automation Server (DRAS) correctly provided and logged the continuous communications of the CPP signals with the energy management and control system (EMCS) for each site. LBNL also observed and evaluated Demand Response (DR) shed strategies to ensure proper commissioning of controls. The communication system allowed sites to receive day-ahead as well as day-of signals for pre-cooling, a DR strategy used at a few sites. Measurement of demand response was conducted using two different baseline models for estimating peak load savings. One

  1. Unified description of structure and reactions: implementing the nuclear field theory program

    Science.gov (United States)

    Broglia, R. A.; Bortignon, P. F.; Barranco, F.; Vigezzi, E.; Idini, A.; Potel, G.

    2016-06-01

    The modern theory of the atomic nucleus results from the merging of the liquid drop model of Niels Bohr and Fritz Kalckar, and of the shell model of Marie Goeppert Meyer and Hans Jensen. The first model contributed the concepts of collective excitations. The second, those of independent-particle motion. The unification of these apparently contradictory views in terms of the particle-vibration and particle-rotation couplings carried out by Aage Bohr and Ben Mottelson has allowed for an ever more complete, accurate and detailed description of nuclear structure. Nuclear field theory (NFT), developed by the Copenhagen-Buenos Aires collaboration, provided a powerful quantal embodiment of this unification. Reactions are not only at the basis of quantum mechanics (statistical interpretation, Max Born), but also the specific tools to probe the atomic nucleus. It is then natural that NFT is being extended to deal with processes which involve the continuum in an intrinsic fashion, so as to be able to treat them on an equal footing with those associated with bound states (structure). As a result, spectroscopic studies of transfer to continuum states could eventually make use of the NFT rules, properly extended to take care of recoil effects. In the present contribution we review the implementation of the NFT program of structure and reactions, setting special emphasis on open problems and outstanding predictions.

  2. Overview of C-2W Field-Reversed Configuration Experimental Program

    Science.gov (United States)

    Gota, H.; Binderbauer, M. W.; Tajima, T.; Putvinski, S.; Tuszewski, M.; Dettrick, S.; Korepanov, S.; Romero, J.; Smirnov, A.; Song, Y.; Thompson, M. C.; van Drie, A.; Yang, X.; Ivanov, A. A.; TAE Team

    2017-10-01

    Tri Alpha Energy's research has been devoted to producing a high temperature, stable, long-lived field-reversed configuration (FRC) plasma state by neutral-beam injection (NBI) and edge biasing/control. C-2U experiments have demonstrated drastic improvements in particle and energy confinement properties of FRC's, and the plasma performance obtained via 10 MW NBI has achieved plasma sustainment of up to 5 ms and plasma (diamagnetism) lifetimes of 10 + ms. The emerging confinement scaling, whereby electron energy confinement time is proportional to a positive power of the electron temperature, is very attractive for higher energy plasma confinement; accordingly, verification of the observed Te scaling law will be a key future research objective. The new experimental device, C-2W (now also called ``Norman''), has the following key subsystem upgrades from C-2U: (i) higher injected power, optimum energies, and extended pulse duration of the NBI system; (ii) installation of inner divertors with upgraded edge-biasing systems; (iii) fast external equilibrium/mirror-coil current ramp-up capability; and (iv) installation of trim/saddle coils for active feedback control of the FRC plasma. This paper will review highlights of the C-2W program.

  3. Programs for developing the pipeline of early-career geriatric mental health researchers: outcomes and implications for other fields.

    Science.gov (United States)

    Bartels, Stephen J; Lebowitz, Barry D; Reynolds, Charles F; Bruce, Martha L; Halpain, Maureen; Faison, Warachal E; Kirwin, Paul D

    2010-01-01

    This report summarizes the findings and recommendations of an expert consensus workgroup that addressed the endangered pipeline of geriatric mental health (GMH) researchers. The workgroup was convened at the Summit on Challenges in Recruitment, Retention, and Career Development in Geriatric Mental Health Research in late 2007. Major identified challenges included attracting and developing early-career investigators into the field of GMH research; a shortfall of geriatric clinical providers and researchers; a disproportionate lack of minority researchers; inadequate mentoring and career development resources; and the loss of promising researchers during the vulnerable period of transition from research training to independent research funding. The field of GMH research has been at the forefront of developing successful programs that address these issues while spanning the spectrum of research career development. These programs serve as a model for other fields and disciplines. Core elements of these multicomponent programs include summer internships to foster early interest in GMH research (Summer Training on Aging Research Topics-Mental Health Program), research sponsorships aimed at recruitment into the field of geriatric psychiatry (Stepping Stones), research training institutes for early career development (Summer Research Institute in Geriatric Psychiatry), mentored intensive programs on developing and obtaining a first research grant (Advanced Research Institute in Geriatric Psychiatry), targeted development of minority researchers (Institute for Research Minority Training on Mental Health and Aging), and a Web-based clearinghouse of mentoring seminars and resources (MedEdMentoring.org). This report discusses implications of and principles for disseminating these programs, including examples of replications in fields besides GMH research.

  4. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael D. Durham

    2004-10-01

    PG&E NEG Salem Harbor Station Unit 1 was successfully tested for applicability of activated carbon injection as a mercury control technology. Test results from this site have enabled a thorough evaluation of mercury control at Salem Harbor Unit 1, including performance, estimated cost, and operation data. This unit has very high native mercury removal, thus it was important to understand the impacts of process variables on native mercury capture. The team responsible for executing this program included plant and PG&E headquarters personnel, EPRI and several of its member companies, DOE, ADA, Norit Americas, Inc., Hamon Research-Cottrell, Apogee Scientific, TRC Environmental Corporation, Reaction Engineering, as well as other laboratories. The technical support of all of these entities came together to make this program achieve its goals. Overall the objectives of this field test program were to determine the mercury control and balance-of-plant impacts resulting from activated carbon injection into a full-scale ESP on Salem Harbor Unit 1, a low sulfur bituminous-coal-fired 86 MW unit. It was also important to understand the impacts of process variables on native mercury removal (>85%). One half of the gas stream was used for these tests, or 43 MWe. Activated carbon, DARCO FGD supplied by NORIT Americas, was injected upstream of the cold side ESP, just downstream of the air preheater. This allowed for approximately 1.5 seconds residence time in the duct before entering the ESP. Conditions tested in this field evaluation included the impacts of the Selective Non-Catalytic Reduction (SNCR) system on mercury capture, of unburned carbon in the fly ash, of adjusting ESP inlet flue gas temperatures, and of boiler load on mercury control. The field evaluation conducted at Salem Harbor looked at several sorbent injection concentrations at several flue gas temperatures. It was noted that at the mid temperature range of 322-327 F, the LOI (unburned carbon) lost some of its

  5. Mathematical modeling and simulation of nanopore blocking by precipitation

    KAUST Repository

    Wolfram, M-T

    2010-10-29

    High surface charges of polymer pore walls and applied electric fields can lead to the formation and subsequent dissolution of precipitates in nanopores. These precipitates block the pore, leading to current fluctuations. We present an extended Poisson-Nernst-Planck system which includes chemical reactions of precipitation and dissolution. We discuss the mathematical modeling and present 2D numerical simulations. © 2010 IOP Publishing Ltd.

  6. Precipitation Reconstruction (PREC)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The PREC data set is an analysis of monthly precipitation constructed on a 2.5(o)lat/lon grid over the global for the period from 1948 to the present. The land...

  7. Modeling Dissolution and Precipitation Dynamics During Dedolomitization

    Science.gov (United States)

    Edery, Y.; Scher, H.; Berkowitz, B.

    2010-12-01

    We simulate the process of dedolomitization and the precipitation of calcium carbonate using particle tracking. The study is stimulated by the results of a laboratory experiment of reactive transport of injected CaCl2/HCl in a constant flow field in a column of sucrosic dolomite particles. The injected fluid basically supplied Ca2+ and H+ and the dedolomitization is a protonation reaction yielding carbonic acid, which in a deprotonation reaction yields CO32-, and reacting with the abundant Ca2+ forms the precipitate CaCO3. The novelty of the simulation is to treat the dynamics of the rate limiting reactants with particle tracking. At each time step the local concentration of H+ determines the probability (assuming local carbonate equilibria) of precipitation and dissolution. The precipitation changes the porosity which in turn changes the local flow field. The particle tracking is governed by spatial and temporal distributions within a continuous time random walk framework. This includes the option of either advective-dispersive (Fickian) transport or the effects of disorder of heterogeneous media --- non-Fickian behavior. The dynamics of dedolomitization are examined for different flow conditions and for different spectra of velocity tails of the reactants. The fluctuations in the local velocity distributions, due to porosity changes, create conditions for positive feedbacks leading to preferential pathways and large-scale nonlinearity and precipitation banding. This feature has been observed in the laboratory experiments and is now accounted for by the simulation results at similar time frames, velocities and pH levels.

  8. Studies on formation and structures of ultrafine Cu precipitates in Fe-Cu model alloys for reactor pressure vessel steels using positron quantum dot confinement in the precipitates by their positron affinity. JAERI's nuclear research promotion program, H11-034 (Contract research)

    CERN Document Server

    Hasegawa, M; Suzuki, M; Tang, Z; Yubuta, K

    2003-01-01

    Positron annihilation experiments on Fe-Cu model dilute alloys of nuclear reactor pressure vessel (RPV) steels have been performed after neutron irradiation in JMTR. Nanovoids whose inner surfaces were covered by Cu atoms were clearly observed. The nanovoids transformed to ultrafine Cu precipitates by dissociating their vacancies after annealing at around 400degC. The nanovoids and the ultrafine Cu precipitates are strongly suggested to be responsible for irradiation-induced embrittlement of RPV steels. Effects of Ni, Mn and P addition on the nanovoid and Cu precipitate formations were also studied. The nanovoid formation was enhanced by Ni and P, but suppressed by Mn. The Cu precipitates after annealing around 400degC were almost free from these doping elements and hence were pure Cu in the chemical composition. Furthermore the Fermi surface of the 'embedded' Cu precipitates with a body centered cubic crystal structure was obtained from two dimensional angular correlation of annihilation radiation (2D-ACAR) ...

  9. Algebraic Thinking in Solving Linier Program at High School Level: Female Student’s Field Independent Cognitive Style

    Science.gov (United States)

    Hardiani, N.; Budayasa, I. K.; Juniati, D.

    2018-01-01

    The aim of this study was to describe algebraic thinking of high school female student’s field independent cognitive style in solving linier program problem by revealing deeply the female students’ responses. Subjects in this study were 7 female students having field independent cognitive style in class 11. The type of this research was descriptive qualitative. The method of data collection used was observation, documentation, and interview. Data analysis technique was by reduction, presentation, and conclusion. The results of this study showed that the female students with field independent cognitive style in solving the linier program problem had the ability to represent algebraic ideas from the narrative question that had been read by manipulating symbols and variables presented in tabular form, creating and building mathematical models in two variables linear inequality system which represented algebraic ideas, and interpreting the solutions as variables obtained from the point of intersection in the solution area to obtain maximum benefit.

  10. Moving from Traditional Teacher Education to a Field-Based Urban Teacher Education Program: One Program's Story of Reform

    Science.gov (United States)

    Waddell, Jennifer; Vartuli, Sue

    2015-01-01

    In recent years, teacher education has been charged with reforming programs to better align curriculum, clinical practice, and accountability. The sense of urgency for reform has been heightened by competition from alternative routes to teaching that jump straight to practice, often criticized for foregoing essential knowledge and theory. This…

  11. FIELD TEST PROGRAM FOR EVALUATION OF SORBENT INJECTION FOR MERCURY CONTROL

    Energy Technology Data Exchange (ETDEWEB)

    Sharon Sjostrom

    2004-02-12

    The power industry in the U.S. is faced with meeting new regulations to reduce the emissions of mercury compounds from coal-fired plants. These regulations are directed at the existing fleet of nearly 1,100 boilers. These plants are relatively old with an average age of over 40 years. Although most of these units are capable of operating for many additional years, there is a desire to minimize large capital expenditures because of the reduced (and unknown) remaining life of the plant to amortize the project. Injecting a sorbent such as powdered activated carbon into the flue gas represents one of the simplest and most mature approaches to controlling mercury emissions from coal-fired boilers. The overall objective of this test program described in this quarterly report is to evaluate the capabilities of activated carbon injection at four plants with configurations that together represent 78% of the existing coal-fired generation plants. This technology was successfully evaluated in NETL's Phase I tests at scales up to 150 MW, on plants burning subbituminous and bituminous coals and with ESPs and fabric filters. The tests also identified issues that still need to be addressed, such as evaluating performance on other configurations, optimizing sorbent usage (costs), and gathering longer term operating data to address concerns about the impact of activated carbon on plant equipment and operations. The four sites identified for testing are Sunflower Electric's Holcomb Station, AmerenUE's Meramec Station, AEP's Conesville Station, and Ontario Power Generation's Nanticoke Station. This is the first quarterly report for this project. This report includes an overview of the plans for the project. Field testing is scheduled to begin next quarter. In general, quarterly reports will be used to provide project overviews, project status, and technology transfer information. Topical reports will be prepared to present detailed technical information.

  12. An anthropological approach to teaching health sciences students cultural competency in a field school program.

    Science.gov (United States)

    Hutchins, Frank T; Brown, Lori DiPrete; Poulsen, Keith P

    2014-02-01

    International immersion experiences do not, in themselves, provide students with the opportunity to develop cultural competence. However, using an anthropological lens to educate students allows them to learn how to negotiate cultural differences by removing their own cultural filters and seeing events through the eyes of those who are culturally different. Faculty at the University of Wisconsin-Madison's Global Health Institute believed that an embedded experience, in which students engaged with local communities, would encourage them to adopt this Cultural Competency 2.0 position. With this goal in mind, they started the Field School for the Study of Language, Culture, and Community Health in Ecuador in 2003 to teach cultural competency to medical, veterinary, pharmacy, and nursing students. The program was rooted in medical anthropology and embraced the One Health initiative, which is a collaborative effort of multiple disciplines working locally, nationally, and globally to obtain optimal health for people, animals, and the environment. In this article, the authors identify effective practices and challenges for using a biocultural approach to educating students. In a semester-long preparatory class, students study the Spanish language, region-specific topics, and community engagement principles. While in Ecuador for five weeks, students apply their knowledge during community visits that involve homestays and service learning projects, for which they partner with local communities to meet their health needs. This combination of language and anthropological course work and community-based service learning has led to positive outcomes for the local communities as well as professional development for students and faculty.

  13. Cryopreservation of human embryonic stem cells by a programmed freezer with an oscillating magnetic field.

    Science.gov (United States)

    Lin, Pei-Yi; Yang, Yao-Chen; Hung, Shih-Han; Lee, Sheng-Yang; Lee, Maw-Sheng; Chu, I-Ming; Hwang, Shiaw-Min

    2013-06-01

    Human embryonic stem cells (hESCs), due to their self-renewal capacity and pluripotency, are an important source of cells for regenerative medicine. The immediate obstacles that need to be addressed are the poor cell survival rate of hESCs and their cell quality after cryopreservation. In this study, we used the Cell Alive System (CAS) which combines a programmed freezer with an oscillating magnetic field to reduce cryo-injury during the freezing process. The hESC clumps suspended in freezing medium were divided into three groups: (i) cells frozen by a conventional freezing container, Mr. Frosty and kept in a -80 °C freezer (MF); (ii) cells frozen to -32 °C by CAS, and then transferred to a -80 °C freezer (CAS); (iii) cells frozen to -32 °C by CAS, and then transferred to a pre-cooled Mr. Frosty and kept in a -80 °C freezer (CAS-MF) for overnight. All cryovials were placed in liquid nitrogen for one week, and hESCs were then thawed and cultured on feeder for 7 days. The results of alkaline phosphatase (AP) staining showed that the attachment efficiency of the cells cryopreserved by CAS and CAS-MF was significantly higher (29.0% and 44.0%) than in the MF method (7.0%). Furthermore, we confirmed the cells cryopreserved using CAS-MF could be subcultured while expressing pluripotent markers, differentiate into three germ layers, and maintain a normal karyotype. These results demonstrate that the use of CAS-MF offers an efficient method of hESC banking. Copyright © 2013 Elsevier Inc. All rights reserved.

  14. Development and field testing of a consumer shared decision-making training program for adults with low literacy.

    Science.gov (United States)

    Muscat, Danielle M; Morony, Suzanne; Shepherd, Heather L; Smith, Sian K; Dhillon, Haryana M; Trevena, Lyndal; Hayen, Andrew; Luxford, Karen; Nutbeam, Don; McCaffery, Kirsten

    2015-10-01

    Given the scarcity of shared decision-making (SDM) interventions for adults with low literacy, we created a SDM training program tailored to this population to be delivered in adult education settings. Formative evaluation during program development included a review of the problem and previous efforts to address it, qualitative interviews with the target population, program planning and field testing. A comprehensive SDM training program was developed incorporating core SDM elements. The program aimed to improve students' understanding of SDM and to provide them with the necessary skills (understanding probabilistic risks and benefits, personal values and preferences) and self-efficacy to use an existing set of questions (the AskShareKnow questions) as a means to engage in SDM during healthcare interactions. There is an ethical imperative to develop SDM interventions for adults with lower literacy. Generic training programs delivered direct-to-consumers in adult education settings offer promise in a national and international environment where too few initiatives exist. Formative evaluation of the program offers practical insights into developing consumer-focused SDM training. The content of the program can be used as a guide for future efforts to engage consumers in SDM. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING, AND COST DATA FOR MERCURY CONTROL SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Michael D. Durham

    2003-05-01

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES has developed a portable system that will be tested at four different utility power plants. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as activated carbon, which removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and both are equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder River Basin (PRB) coal and

  16. Climatological features of precipitation characteristics and large-scale atmospheric fields on the heavy rainfall days in the eastern part of Japan during the mature stage of the Baiu season

    Science.gov (United States)

    Matsumoto, Kengo; Kato, Kuranoshin; Otani, Kazuo

    2014-05-01

    In East Asia a remarkable rainy season called the "Baiu (in Japan)/Meiyu (in China)" appears in early summer affected by the quasi-stationary subtropical frontal zone, the Baiu frontal zone. Especially around the western Japan to the Changjiang River Basin, the frequent heavy rainfall events on the front by the organized deep convective clouds result in the huge total rainfall there. Furthermore, the rainfall features in the eastern Japan are rather different from those in the western part, i.e., the contribution of the "heavy rainfall days" (events with more than 50 mm/day) to the total climatological rainfall amount in the eastern Japan is rather smaller than in the western part. However, the total rainfall even in the eastern Japan in early summer is considerably large than that in Europe such as Germany and Austria. Thus in order to understand the regional climate change in summer in East Asia associated with the large-scale factors such as global warming, it would be also necessary to accumulate the fundamental knowledge on the difference of rainfall characteristics on the "heavy rainfall days" in the Baiu season between the western and the eastern parts of the Japan Islands for the "present climate." Since many studies for the western Japan have been made so far, the present study will examine rainfall characteristics and large-scale atmospheric fields on the "heavy rainfall days" in the mature stage of the Baiu season (16 June ~ 15 July) at Tokyo in the eastern part of the Japan Island, based on the daily and the hourly precipitation data from 1971 to 2010. Appearance frequency of the "heavy rainfall days" at Tokyo attained only about 1/3 of that at Nagasaki in the western Japan. Furthermore, it is noted that about half of the "heavy rainfall days" at Tokyo were related to the typhoon. In detail, about half of the typhoon cases were associated with the direct approach of a typhoon (referred to as Pattern A, hereafter), the other half corresponded to the

  17. Overview of the 2003 and 2004 Field Program Phases of the Thunderstorm Electrification and Lightning Experiment (TELEX)

    Science.gov (United States)

    Rust, W. D.; Macgorman, D. R.; Schuur, T. J.; Bruning, E. C.; Weiss, S. A.; Straka, J.; Rison, W.; Hamlin, T.; Krehbiel, P. R.; Biggerstaff, M.; Apostololakopoulos, I.

    2004-12-01

    The scientific purpose of TELEX is to test and revise hypotheses concerning the inter-relationships among the wind field, microphysical characteristics, electrical structure, and lightning of isolated nonsevere and severe storms and mesoscale convective systems (MCSs). We conducted the field program of TELEX in central Oklahoma, 11 May-6 June 2003 and 9 May-20 June 2004. At the beginning of the 2003 field program, several new and upgraded observing systems were operating in central Oklahoma: the polarimetric part of the KOUN 11-cm wavelength Doppler radar, the Oklahoma three-dimensional Lightning Mapping Array (OK-LMA), and a mobile laboratory for storm intercept and mobile ballooning with up to four balloon soundings being possible simultaneously. Furthermore, the balloon-borne electric field meter was substantially upgraded the second year (both mechanically and electronically) to provide higher resolution data, including more accurate determination of instrument orientation to increase the resolution of three-dimensional electric field vectors in context of the three-dimensional structures of storm parameters and lightning. Presented in this paper are examples from both years in which instrumented balloons carrying a radiosonde and electric field meter obtained soundings. Other sensors were sometimes added to the instrument train by visiting researchers. In 2003, fourteen flights were made during seven missions. Owing to a scarcity of isolated deep convection in central Oklahoma during the 2003 program, the flights were mostly in nighttime multicellular storms and MCSs. In 2004, thirty-six flights were made during 13 ballooning missions. Soundings were made through nonsevere and severe storms and mesoscale convective systems. Several flights recorded data on both ascent and descent through the storm. Electric fields ranging above 150 kV/m were measured.

  18. Development of Window-based program for analysis and visualization of two-dimensional stress field in digital photoelasticity

    Directory of Open Access Journals (Sweden)

    Pichet Pinit

    2009-07-01

    Full Text Available This paper describes the development of a Window-based framework for analyzing and visualizing two-dimensional stress field in digital photoelasticity. The program is implemented as stand-alone software. The program contains mainly two parts: computational part and visual part supplemented with several image-processing functions. The computation method used in the program for retrieval of photoelastic parameters (isoclinic and isochromatic parameters is the phase stepping method. The visualization links between the results and the user by a gray scale or color map of such parameters, which is very convenient to the user for physical interpretation. With the Windows-based framework, additional modules eithercomputation or visualization can be simply added to the program.

  19. Border to Beltway: A Formative Field Exchange Program between Two Community Colleges for Non-Traditional Students

    Science.gov (United States)

    Villalobos, J. I.; Bentley, C.

    2014-12-01

    Community College students account for over 40% of all undergraduates in the US as well as the majority of minority students attending undergraduate courses. With issues in the geosciences such as; being the least diverse of all major STEM fields, an increasing number of retiring geoscientists, and a projected geoscience job growth not matching the number of geoscience graduates, the geoscience community needs to look at community colleges as a solution to these issues. A key factor for students entering and excelling in the geoscience is the opportunity for formative undergraduate field experiences. Formative field experiences go beyond one-day field excursions by incorporating field projects, interactive learning, and community building between participants in regions students are unfamiliar with. Unfortunately, these types of formative experiences often require logistics and resources that are not available or known to community college faculty. In order to build a framework for implementing formative field experiences by community colleges a two-week "field exchange" between two community colleges with different geological, social, and cultural settings was conducted. Supported with a supplemental grant from NSF, the "Border to Beltway" program provided 11 students from El Paso Community College and another 13 from Northern Virginia Community College with two one-week regional geology field trips: First, to West Texas in March 2014, and second, to the mid-Atlantic region in May 2014. Students were selected based on academic standing, non-traditional (minority, female, over 35, veteran) status, and interest in geology. Qualitative data collected from participants regarding the implementation of the field exchange include; student perception of geology before and after exchange, challenges students faced in the field or traveling for the first time, quantity and quality of projects given, and working with others from different backgrounds. Data regarding planning

  20. Homogeneous Precipitation of Nickel Hydroxide Powders

    Energy Technology Data Exchange (ETDEWEB)

    Mavis, Bora [Iowa State Univ., Ames, IA (United States)

    2003-01-01

    Precipitation and characterization of nickel hydroxide powders were investigated. A comprehensive precipitation model incorporating the metal ion hydrolysis, complexation and precipitation reactions was developed for the production of the powders with urea precipitation method. Model predictions on Ni2+ precipitation rate were confirmed with precipitation experiments carried out at 90 C. Experimental data and model predictions were in remarkable agreement. Uncertainty in the solubility product data of nickel hydroxides was found to be the large contributor to the error. There were demonstrable compositional variations across the particle cross-sections and the growth mechanism was determined to be the aggregation of primary crystallites. This implied that there is a change in the intercalate chemistry of the primary crystallites with digestion time. Predicted changes in the concentrations of simple and complex ions in the solution support the proposed mechanism. The comprehensive set of hydrolysis reactions used in the model described above allows the investigation of other systems provided that accurate reaction constants are available. the fact that transition metal ions like Ni2+ form strong complexes with ammonia presents a challenge in the full recovery of the Ni2+. On the other hand, presence of Al3+ facilitates the complete precipitation of Ni2+ in about 3 hours of digestion. A challenge in their predictive modeling studies had been the fact that simultaneous incorporation of more than one metal ion necessitates a different approach than just using the equilibrium constants of hydrolysis, complexation and precipitation reactions. Another limitation of using equilibrium constants is that the nucleation stage of digestion, which is controlled mainly by kinetics, is not fully justified. A new program released by IBM Almaden Research Center (Chemical Kinetics Simulator™, Version 1.01) lets the user change

  1. CRITICAL ANALYSIS OF THE EXTREME PROGRAMMING (XP) PROJECT MANAGEMENT METHODOLOGY IN THE INFORMATION TECHNOLOGY FIELD

    OpenAIRE

    Ionel NĂFTĂNĂILĂ; Ivona ORZEA

    2009-01-01

    Extreme Programming represents a modern Project Management methodology, being a part of AGILE methodologies. The present paper has the purpose of making a critical analysis of the Extreme Programming (XP) from the point of view of advantages and disadvantages that it implies, both from a theoretical and practical approach. From the theoretical point of view the paper will present the main contributions in the Extreme Programming literature, analyzing in the same time the main characteristics ...

  2. Sustainability of Social-Emotional Learning and related Programs: Lessons from a Field Study

    Directory of Open Access Journals (Sweden)

    Maurice Elias

    2010-04-01

    Full Text Available Social-emotional learning, character education, and related programs are being implemented in schools with increasing frequency and research supports their short-term effectiveness. However, there has been no empirical work to date that identifies the factors important for the long-term sustainability of programs established as excellent models of implementation. Using a series of case studies of evidence-based social-emotional learning programs implemented successfully for at least five years, this study articulates principles that characterize programs that were found to be well-sustained over time. These principles have implications for practice and serve as starting points for future research.

  3. Sediment and radionuclide transport in rivers. Phase I: field sampling program during mean flow Cattaraugus and Buttermilk Creeks, New York

    Energy Technology Data Exchange (ETDEWEB)

    Ecker, R.M.; Onishi, Y.

    1979-08-01

    A field sampling program was conducted on Cattaraugus and Buttermilk Creeks, New York during November and December 1977 to investigate the transport of radionuclides in surface waters as part of a continuing program to provide data for application and verification of Pacific Northwest Laboratory's (PNL) sediment and radionuclide transport model, SERATRA. Suspended sediment, bed sediment, and water samples were collected during mean flow conditions over a 45 mile reach of stream channel. Radiological analysis of these samples included primarily gamma ray emitters; however, some plutonium, strontium, curium, and tritium analyses were also included. The principal gamma emitter found during the sampling program was /sup 137/Cs where, in some cases, levels associated with the sand and clay size fractions of bed sediment exceeded 100 pCi/g. Elevated levels of /sup 137/Cs and /sup 90/Sr were found downstream of the Nuclear Fuel Services Center, an inactive plutonium reprocessing plant and low level nuclear waste disposal site. Based on radionuclide levels in upstream control stations, /sup 137/Cs was the only radionuclide whose levels in the creeks downstream of the site could confidently be attributed to the site during this sampling program. This field sampling effort is the first of a three phase program to collect data during low, medium and high flow conditions.

  4. Hourly Precipitation Data (HPD) Publication

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Hourly Precipitation Data (HPD) Publication is archived and available from the National Climatic Data Center (NCDC). This publication contains hourly precipitation...

  5. Voices from the Field: "Systems Trump Programs" A Case for Agency Support in Afterschool

    Science.gov (United States)

    Hodgkins, Alexandria

    2017-01-01

    When Alexandria Hodgkins began her inquiry for the National Institute on Out-of-School Time's Afterschool Matters Practitioner Research Fellowship, she wanted to investigate afterschool programs that had been rated "excellent" by funders. Wanting to understand what excellent programs look like and how they get that way, she writes that…

  6. The effectiveness of extended day programs : Evidence from a randomized field experiment in the Netherlands

    NARCIS (Netherlands)

    Meyer, Erik; Van Klaveren, Chris

    2013-01-01

    Policies that aim at improving student achievement frequently increase instructional time, for example by means of an extended day program. There is, however, hardly any evidence that these programs are effective, and the few studies that allow causal inference indicate that we should expect neutral

  7. The Community College and Career Training Grant Program: Lessons Learned from the Field and Recommendations

    Science.gov (United States)

    Uhalde, Ray; Kazis, Richard

    2010-01-01

    The new Community College and Career Training Grant Program to be launched this fall presents an important opportunity to help more American workers find better long-term employment more efficiently, through the promotion of innovative training and education programs that incorporate the best of what works for dislocated and unemployed adult…

  8. Studies on formation and structures of ultrafine Cu precipitates in Fe-Cu model alloys for reactor pressure vessel steels using positron quantum dot confinement in the precipitates by their positron affinity. JAERI's nuclear research promotion program, H11-034 (Contract research)

    Energy Technology Data Exchange (ETDEWEB)

    Hasegawa, Masayuki; Nagai, Yasuyoshi; Tang, Zheng; Yubuta, Kunio [Tohoku Univ., Sendai (Japan). Inst. for Materials Research; Suzuki, Masahide [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2003-03-01

    Positron annihilation experiments on Fe-Cu model dilute alloys of nuclear reactor pressure vessel (RPV) steels have been performed after neutron irradiation in JMTR. Nanovoids whose inner surfaces were covered by Cu atoms were clearly observed. The nanovoids transformed to ultrafine Cu precipitates by dissociating their vacancies after annealing at around 400degC. The nanovoids and the ultrafine Cu precipitates are strongly suggested to be responsible for irradiation-induced embrittlement of RPV steels. Effects of Ni, Mn and P addition on the nanovoid and Cu precipitate formations were also studied. The nanovoid formation was enhanced by Ni and P, but suppressed by Mn. The Cu precipitates after annealing around 400degC were almost free from these doping elements and hence were pure Cu in the chemical composition. Furthermore the Fermi surface of the 'embedded' Cu precipitates with a body centered cubic crystal structure was obtained from two dimensional angular correlation of annihilation radiation (2D-ACAR) in a Fe-Cu single crystal and was agreed well with that from a band structure calculation. Theoretical calculation of positron confinement in Fe-Cu model alloys showed that a positron quantum dot state induced by positron affinity is attained for the embedded precipitates larger than 1 nm. A new position sensitive detector with a function of one dimensional angular correlation of annihilation radiation (1D-ACAR) has been developed that enables high resolution experiments over wide ranges of momentum distribution. (author)

  9. Skill assessment of precipitation nowcasting in Mediterranean Heavy Precipitation Events

    Science.gov (United States)

    Bech, Joan; Berenguer, Marc

    2013-04-01

    Very short-term precipitation forecasting (i.e nowcasting) systems may provide valuable support in the weather surveillance process as they allow to issue automated early warnings for heavy precipitation events (HPE) as reviewed recently by Pierce et al. (2012). The need for warnings is essential in densely populated regions of small catchments, such as those typically found in Mediterranean coastal areas, prone to flash-floods. Several HPEs that occurred in NE Spain are analyzed using a nowcasting system based on the extrapolation of rainfall fields observed with weather radar following a Lagrangian approach developed and tested successfully in previous studies (Berenguer et al. 2005, 2011). Radar-based nowcasts, with lead times up to 3 h, are verified here against quality-controlled weather radar quantitative precipitation estimates and also against a dense network of raingauges. The basic questions studied are the dependence of forecast quality with lead time and rainfall amounts in several high-impact HPEs such as the 7 September 2005 Llobregat Delta river tornado outbreak (Bech et al. 2007) or the 2 November 2008 supercell tornadic thunderstorms (Bech et al. 2011) - both cases had intense rainfall rates (30' amounts exceeding 38.2 and 12.3 mm respectively) and daily values above 100 mm. Verification scores indicated that forecasts of 30' precipitation amounts provided useful guidance for lead times up to 60' for moderate intensities (up to 1 mm in 30') and up to 2.5h for lower rates (above 0.1 mm). On the other hand correlations of radar estimates and forecasts exceeded Eulerian persistence of precipitation estimates for lead times of 1.5 h for moderate intensities (up to 0.8 mm/h). We complete the analysis with a discussion on the reliability of threshold to lead time dependence based on the event-to-event variability found. This work has been done in the framework of the ProFEWS project (CGL2010-15892). References Bech J, N Pineda, T Rigo, M Aran, J Amaro, M

  10. EMF Rapid Program Engineering Projects, Project 1, Development of Recommendations for Guidelines for Field Source Measurement

    Energy Technology Data Exchange (ETDEWEB)

    Electric Research and Management, Inc.

    1997-03-11

    The goal of this project is to develop a protocol for measuring the electric and magnetic fields around sources. Data from these measurements may help direct future biological effects research by better defining the complexity of magnetic and electric fields to which humanity is exposed, as well asprovide the basis for rigorous field exposure analysis and risk assessment once the relationship between field exposure and biological response. is better understood. The data base also should have sufficient spatial and temporal characteristics to guide electric and magnetic field management. The goal of Task A is to construct a set of characteristics that would be ideal to have for guiding and interpreting biological studies and for focusing any future effort at field management. This ideal set will then be quantified and reduced according to the availability (or possible development of) instrumentation to measure the desired characteristics. Factors that also will be used to define pragmatic data sets will be the cost of collecting the data, the cost of developing an adequate data base, and the needed precision in measuring specific characteristics. A field, electric or magnetic, will always be ,some function of time and space. The first step in this section of the protocol development will be to determine what span of time and what portion of space are required to quantify the electric and magnetic fields around sources such as appliances and electrical apparatus. Constraints on time will be set by examining measurement limitations and biological data requirements.

  11. Precipitation Indices Low Countries

    Science.gov (United States)

    van Engelen, A. F. V.; Ynsen, F.; Buisman, J.; van der Schrier, G.

    2009-09-01

    Since 1995, KNMI published a series of books(1), presenting an annual reconstruction of weather and climate in the Low Countries, covering the period AD 763-present, or roughly, the last millennium. The reconstructions are based on the interpretation of documentary sources predominantly and comparison with other proxies and instrumental observations. The series also comprises a number of classifications. Amongst them annual classifications for winter and summer temperature and for winter and summer dryness-wetness. The classification of temperature have been reworked into peer reviewed (2) series (AD 1000-present) of seasonal temperatures and temperature indices, the so called LCT (Low Countries Temperature) series, now incorporated in the Millennium databases. Recently we started a study to convert the dryness-wetness classifications into a series of precipitation; the so called LCP (Low Countries Precipitation) series. A brief outline is given here of the applied methodology and preliminary results. The WMO definition for meteorological drought has been followed being that a period is called wet respectively dry when the amount of precipitation is considerable more respectively less than usual (normal). To gain a more quantitative insight for four locations, geographically spread over the Low Countries area (De Bilt, Vlissingen, Maastricht and Uccle), we analysed the statistics of daily precipitation series, covering the period 1900-present. This brought us to the following definition, valid for the Low Countries: A period is considered as (very) dry respectively (very) wet if over a continuous period of at least 60 days (~two months) cq 90 days (~three months) on at least two out of the four locations 50% less resp. 50% more than the normal amount for the location (based on the 1961-1990 normal period) has been measured. This results into the following classification into five drought classes hat could be applied to non instrumental observations: Very wet period

  12. Designing and Using Virtual Field Environments to Enhance and Extend Field Experience in Professional Development Programs in Geology for K-12 Teachers

    Science.gov (United States)

    Granshaw, Frank Douglas

    2011-12-01

    Virtual reality (VR) is increasingly used to acquaint geoscience novices with some of the observation, data gathering, and problem solving done in actual field situations by geoscientists. VR environments in a variety of forms are used to prepare students for doing geologic fieldwork, as well as to provide proxies for such experience when venturing into the field is not possible. However, despite increased use of VR for these purposes, there is little research on how students learn using these environments, how using them impacts student field experience, or what constitutes effective design in light of emerging theories of geocognition. To address these questions, I investigated the design and use of a virtual reality environment in a professional development program for middle school Earth science teachers called Teachers on the Leading Edge (TOTLE). This environment, called a virtual field environment, or VFE, was based largely on the field sites visited by the participants during summer workshops. It was designed as a tool to prepare the participants for workshop field activities and as a vehicle for taking elements of that experience back to their students. I assessed how effectively the VFE accomplished these goals using a quasi-experimental, mixed method study that involved a series of teaching experiments, interviews, participant surveys, and focus groups. The principle conclusions reached in this study are as follows: 1. In a field trip orientation experiment involving 35 middle school teachers, 90.6% of the participants stated a preference for VFE enhanced orientation over an alternative orientation that used photographs and static maps to complete a practice field activity. When asked about how the VFE prepared them for their field experience, the participants ranked it as most helpful for visualize the location and geography of the field sites. They ranked it lower for helping them visualize structural and geomorphic patterns, and ranked it as least

  13. Cranial bone regeneration after cranioplasty using cryopreserved autogenous bone by a programmed freezer with a magnetic field in rats.

    Science.gov (United States)

    Kaku, Masato; Koseki, Hiroyuki; Kojima, Shunich; Sumi, Hiromi; Shikata, Hanaka; Kojima, Shotoku; Motokawa, Masahide; Fujita, Tadashi; Tanimoto, Kotaro; Tanne, Kazuo

    2014-01-01

    The purpose of this study was to develop a bone tissue bank using a programmed freezer with a magnetic field. Parietal bones were removed from rats and used for organ culture examination (non-cryopreserved, cryopreserved with a magnetic field (CAS) and cryopreserved without a magnetic field group). Next, other parietal bones were used for histological examination. The cryopreserved bones by a CAS freezer and dried bones were transplanted respectively. Control bones were replanted without cryopreservation. Animals were sacrificed at 4, 8, 12 and 24 weeks after surgery. After organ culture, the isolated osteoblasts from parietal bones which were cryopreserved by a CAS freezer can survive and proliferate as much as non-cryopreserved group. Histological examinations showed new bone formation in control and CAS group. These results suggest that bone tissue cryopreservation by CAS freezer can be successfully used for bone grafting which may be a novel option for regeneration medicine.

  14. DISSOLUTION OF LANTHANUM FLUORIDE PRECIPITATES

    Science.gov (United States)

    Fries, B.A.

    1959-11-10

    A plutonium separatory ore concentration procedure involving the use of a fluoride type of carrier is presented. An improvement is given in the derivation step in the process for plutonium recovery by carrier precipitation of plutonium values from solution with a lanthanum fluoride carrier precipitate and subsequent derivation from the resulting plutonium bearing carrier precipitate of an aqueous acidic plutonium-containing solution. The carrier precipitate is contacted with a concentrated aqueous solution of potassium carbonate to effect dissolution therein of at least a part of the precipitate, including the plutonium values. Any remaining precipitate is separated from the resulting solution and dissolves in an aqueous solution containing at least 20% by weight of potassium carbonate. The reacting solutions are combined, and an alkali metal hydroxide added to a concentration of at least 2N to precipitate lanthanum hydroxide concomitantly carrying plutonium values.

  15. Clinical significance of precipitous labor.

    Science.gov (United States)

    Suzuki, Shunji

    2015-03-01

    Precipitous labor is defined as expulsion of the fetus within less than 3 hours of commencement of regular contractions. We retrospectively examined our cases of precipitous labor to identify the clinical significance and perinatal outcomes following precipitous labor in singleton vertex deliveries. A retrospective population-based study was conducted comparing women with singleton precipitous labor and those with labor of normal duration. We examined the clinical characteristics and outcomes by comparing patients with precipitous labor and those with labor of normal duration in 0 and two-parous singleton pregnant women. Using a multivariate analysis, precipitous labor in nulliparous women was independently associated with teenagers (adjusted OR: 1.71, 95% CI: 0.99 - 2.95, P = 0.049), preterm delivery (adjusted OR: 1.77, 95% CI: 1.16 - 2.70, P precipitous labor was associated with hypertensive disorders in singleton vertex deliveries, it was not associated with maternal or neonatal outcomes.

  16. Development of field performance evaluation tools and program for pavement marking materials : technical report

    Science.gov (United States)

    2011-03-01

    Historically the prequalification or selection of pavement marking materials (PMMs) is mainly based on : product specifications and lab testing, which do not correlate well with the field performance of the products. : On the other hand, there is no ...

  17. Bear Lake Unit of the Tallahatchie NWR - Field Numbers for the Forestry Program

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — Map depicts the field and stand numbers of the entire refuge in 1998. Management treatments in other sources are based on these same numbers.

  18. Catalyzed precipitation in Al-Cu-Si

    Science.gov (United States)

    Mitlin, D.; Morris, J. W.; Radmilovic, V.

    2000-11-01

    The work reported here concerns the effect of Si on the precipitation of θ' phase (metastable Al2Cu) during the isothermal aging of Al-2Cu-1 Si (wt pct). The binary alloys Al-2Cu and Al-1 Si were studied for comparison. Only two precipitate phases were detected: essentially pure Si in Al-1 Si and Al-2Cu-1 Si, and θ' (metastable Al2Cu) in Al-2Cu and Al-2Cu-1Si. On aging the ternary alloy at 225 °C, Si precipitates first and catalyzes the θ' phase. The precipitates in the ternary alloy are smaller, are more densely distributed, have lower aspect ratios, and coarsen more slowly than those in the binary Al-2Cu aged at the same temperature. While the shapes of individual θ' precipitates in binary Al-2Cu are strongly affected by the kinetic problem of nucleating growth ledges, which produces a significant scatter in the aspect ratio for samples of given thickness, the overall evolution of particle shape with size follows the predictions of the Khachaturyan-Hairapetyan (KH) thermoelastic theory, which reduces to κ= L/d ∞ √ L at large sizes. The KH theory provides an estimate for the interfacial tension of the broad Al- θ' interface of 85 to 96 mJ/m2, which is near the values for other low-energy interfaces in Al, such as the twin boundary energy (100 mJ/m2) and the antiphase boundary energy in δ' Al3Li (70 mJ/m2). Si and θ' precipitates in Al-2Cu-1 Si have a strong elastic interaction because of their compensating strain fields. This elastic interaction promotes the nucleation of θ' precipitates on Si, decreases the expected aspect ratio of θ', and inhibits coarsening. Finally, Si precipitation in ternary Al-2Cu-1 Si differs from that in binary Al-1 Si in that the Si precipitates are coarser, more equiaxed, and more extensively twinned. These changes appear to be effects of Cu, which increases the solubility of Si in Al and adsorbs on the Si-Al interface, promoting twinning by a “step-poisoning” effect at the interface.

  19. National health programs in the field of endocrinology and metabolism - Miles to go

    Directory of Open Access Journals (Sweden)

    Vanishree Shriraam

    2014-01-01

    Full Text Available The endocrine and metabolic diseases of childhood obesity, diabetes mellitus, hypertension, iodine deficiency disorders, vitamin D deficiency, and osteoporosis are major public health problems. Different programs including National Program for Prevention and Control of Cancer, Diabetes, Cardiovascular Diseases, and Stroke address these problems although some are yet to be addressed. National surveys have shown high prevalence of these disorders and their risk factors. Most of the programs aim at awareness raising, lifestyle modification, (primary prevention and screening (secondary prevention for the disease conditions as these are proven to be cost-effective compared to late diagnosis and treatment of various complications. Urgent concerted full scale implementation of these programs with good coordination under the umbrella of National Rural Health Mission is the need of the moment. The referral system needs strengthening as are the secondary and tertiary levels of health care. Due attention is to be given for implementation of these programs in the urban areas, as the prevalence of these conditions is almost equal or even higher among urban poor people where primary and secondary prevention measures are scarcely available and treatment costs are sky-high.

  20. Immersion in a Hudson Valley Tidal Marsh and Climate Research Community - Lamont-Doherty's Secondary School Field Research Program

    Science.gov (United States)

    Peteet, D. M.; Newton, R.; Vincent, S.; Sambrotto, R.; Bostick, B. C.; Schlosser, P.; Corbett, J. E.

    2015-12-01

    A primary advantage of place-based research is the multidisciplinary and interdisciplinary research that can be applied to a single locale, with a depth of continued study through time. Through the last decade, Lamont-Doherty's Secondary School Field Research Program (SSFRP) has promoted scientific inquiry, mostly among groups under-represented in STEM fields, in Piermont Marsh, a federally protected marsh in the Hudson estuary. At the same time, Lamont Doherty Earth Observatory (LDEO) scientists have become more involved, through mentoring by researchers, postdocs and graduate students, often paired with high school teachers. The sustained engagement of high school students in a natural environment, experiencing the Hudson River and its tidal cycles, protection of coastline, water quality improvement, native and invasive plant communities, is fundamental to their understanding of the importance of wetlands with their many ecosystem services. In addition, the Program has come to see "place" as inclusive of the Observatory itself. The students' work at Lamont expands their understanding of educational opportunities and career possibilities. Immersing students in a research atmosphere brings a level of serious inquiry and study to their lives and provides them with concrete contributions that they make to team efforts. Students select existing projects ranging from water quality to Phragmites removal, read papers weekly, take field measurements, produce lab results, and present their research at the end of six weeks. Ongoing results build from year to year in studies of fish populations, nutrients, and carbon sequestration, and the students have presented at professional scientific meetings. Through the Program students gain a sense of ownership over both their natural and the academic environments. Challenges include sustained funding of the program; segmenting the research for reproducible, robust results; fitting the projects to PIs' research goals, time

  1. in situ Calcite Precipitation for Contaminant Immobilization

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiko Fujita; Robert W. Smith

    2009-08-01

    a well (which can lead to clogging). A final particularly attractive characteristic of this approach is its long-term sustainability; the remediation scheme is geared toward environments that are already saturated with respect to calcite, and in such systems the bulk of any newly precipitated calcite will remain stable once engineered manipulations cease. This means that the co-precipitated contaminants will be effectively sequestered over the long term. We are currently conducting integrated field, laboratory, and computational research to evaluate a) the relationships between urea hydrolysis rate, calcite precipitation rate, and trace metal partitioning under environmentally relevant conditions; and b) the coupling between flow/flux manipulations and calcite precipitate distribution and metal uptake. We are also assessing the application of geophysical and molecular biological tools to monitor the relevant chemical and physical processes. The primary emphasis is on field-scale processes, with the laboratory and modeling activities designed specifically to support the field studies. Field experiments are being conducted in perched water (vadose zone) at the Vadose Zone Research Park (VZRP) at the Idaho National Laboratory; the VZRP provides an uncontaminated setting that is an analog of the 90Sr-contaminated vadose zone at the Idaho Nuclear Technology and Engineering Center. A summary of results to date will be presented.

  2. Political Programs and Common Fields and Rights in Lorraine during the French Revolution

    Directory of Open Access Journals (Sweden)

    Manuel Ríos

    2015-06-01

    Full Text Available British historiography has focused in the study of common right and fields with the purpose of understanding the role it played in the transition from feudalism to capitalism. Nevertheless, its French counterpart has tended to relegate this kind of studies, mainly those concerning common right. In fact, in the last twenty years it has been argued the necessity of studying common right and common fields separately, compartmentalizing historical analysis. The present paper concentrates in a case study of the Lorraine region, and pretends to analyze the role played by the struggles concerning the common right and fields during the French Revolution in the transition from feudalism to capitalism. We suggest that in Lorraine the conflict regarding the common right stimulated, through the transformation of the material base of production, a wider conflict related to rural practices which redefined the appropriation of agrarian production, benefiting the sectors that produced with waged laborers

  3. Field Studies in Science Teacher Preparation Programs: Examples of Research-Oriented Earth and Environmental Science Field Projects for Pre-service and In-service Teachers

    Science.gov (United States)

    O'Neal, M. L.

    2005-12-01

    Science teaching reforms of the past 10 to 20 years have focused on a pedagogical shift from verification-style laboratory exercises, toward hands-on and inquiry-based constructivist teaching methods. Such methods, however, require teachers to be proficient in more than just basic content and teaching strategies. To be effective teachers, these professionals must also be skilled in the design and implementation of research-style investigations. At Loyola College in Maryland, topics in the earth and environmental sciences are used as the basis for field research projects that teach our students science content, along with how to design age-appropriate investigative activities and how to implement them in a stimulating, inquiry-based learning environment. Presented here are examples of three projects, demonstrating how these themes are woven throughout our pre- and in-service teacher preparation programs, at both undergraduate and graduate levels. 1. Watershed Studies - In our undergraduate, pre-service, elementary education teacher preparation program, students design and implement a water quality study in a local watershed. In the classroom, students use topographic maps and aerial photographs to delineate the watersheds' boundaries, to identify current land use patterns, and to select appropriate locations on the trunk stream for testing. Water testing at these sites is conducted during field trips, with data analysis and interpretation performed on-site. On-site work allows students to make connections between stream water quality and adjacent land use practices. Students then relate the content and research results to science teaching standards, in order to develop a unit-plan for use in their future classrooms. 2. Land Use Assessment - In our graduate, in-service, elementary and middle school science program, a local stream valley is used as the basis for an analysis of potential land use changes. Students first construct a topographic base map of the area, and

  4. Horizontal Stratification in Access to Danish University Programs by Institution and Field of Study

    DEFF Research Database (Denmark)

    Munk, Martin D.; Thomsen, Jens Peter

    2012-01-01

    In this paper we use register data to investigate social stratification within fields of study and university institutions in Denmark. We argue firstly, that it is important to utilize a relatively detailed classification of parents’ occupation, in order to single out how students are endowed...... to be important: the degree of social stratification in different fields of study − separating applied from more classical disciplines − and the degree of social stratification prevalent at the university institution − whether it has a liberal arts, classical university profile or one that favors more applied...

  5. ISLSCP II Global Precipitation Climatology Centre (GPCC) Monthly Precipitation

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The Global Precipitation Climatology Centre (GPCC), which is operated by the Deutscher Wetterdienst (National Meteorological Service of Germany), is a...

  6. ISLSCP II Global Precipitation Climatology Centre (GPCC) Monthly Precipitation

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Precipitation Climatology Centre (GPCC), which is operated by the Deutscher Wetterdienst (National Meteorological Service of Germany), is a component of...

  7. Influenza preparedness and response: Involvement of African Field Epidemiology and Laboratory Training Programs, 2009

    Directory of Open Access Journals (Sweden)

    Nykiconia Preacely

    2011-09-01

    Full Text Available st pandemic preparedness and response exercise, five (83% of them were influenza specific. CONCLUSION: FELTPs played an important role in H1N1 surveillance and response in sub-Saharan Africa. Continued technical assistance and support to these programs is vital to foster their capacity to monitor and control public health threats.

  8. A Brief History of the NPS Field Experimentation Program: Spanning STAN, TNT, and JIFX

    Science.gov (United States)

    2014-08-01

    funded by the Assistant Secretary of the Army for Acquisition, Logistics & Technology ASA(ALT), and executed by the UMC. ART/TSOA stil l...and flew the Dakota UAV regularly. Additionally, the NPS Frog and UCLA’s Mule RPV Flight programs utilized McMillan around the same time frame . In

  9. Physical Program Leadership: From Kinesiology in the Classroom to Fitness Training in the Field

    Science.gov (United States)

    Germain, Jesse L.

    2010-01-01

    The complex and diverse mission of leading and administering the Physical Program and Kinesiology major at the United States Military Academy at West Point requires a broad and flexible application of leadership theory coupled with strict adherence to established and codified Army Values and Core Leader Competencies. This paper provides a closer…

  10. A Randomized Field Trial of the Fast ForWord Language Computer-Based Training Program

    Science.gov (United States)

    Borman, Geoffrey D.; Benson, James G.; Overman, Laura

    2009-01-01

    This article describes an independent assessment of the Fast ForWord Language computer-based training program developed by Scientific Learning Corporation. Previous laboratory research involving children with language-based learning impairments showed strong effects on their abilities to recognize brief and fast sequences of nonspeech and speech…

  11. The Power of Plain Talk: Exploring One Program' Influence on the Adolescent Reproductive Health Field

    Science.gov (United States)

    Summerville, Geri; Canova, Karen

    2006-01-01

    Launched by the Annie E. Casey Foundation in the early 1990s, Plain Talk is a community-based initiative that seeks to reduce the incidence of teen pregnancy and STDs by improving adult/teen communication about sex. A key component of the program is parental involvement--which was once seen by many in the adolescent reproductive health (ARH) field…

  12. Short-Term Field Study Programs: A Holistic and Experiential Approach to Learning

    Science.gov (United States)

    Long, Mary M.; Sandler, Dennis M.; Topol, Martin T.

    2017-01-01

    For business schools, AACSB and Middle States' call for more experiential learning is one reason to provide study abroad programs. Universities must attend to the demand for continuous improvement and employ metrics to benchmark and evaluate their relative standing among peer institutions. One such benchmark is the National Survey of Student…

  13. The TATTLETOOTH Dental Program (Covering the Field Test Phase, Second Year). Evaluation Report.

    Science.gov (United States)

    Fruchter, Dorothy A.; Higginson, George M.

    The Tattletooth program is a new dental health curriculum in which the students learn in the classroom to care for their teeth through brushing, flossing, and proper diet; and they receive needed support and encouragement to form good dental habits from their parents, dentists, and from community groups. Classroom materials for the Tattletooth…

  14. Results from the Rothney Astrophysical Observatory Variable Star Search Program: Background, Procedure, and Results from RAO Field 1

    Science.gov (United States)

    Williams, Michael D.; Milone, E. F.

    2013-12-01

    We describe a variable star search program and present the fully reduced results of a search in a 19 square degree (4.4 × 4.4) field centered on J2000 RA = 22:03:24, DEC= +18:54:32. The search was carried out with the Baker-Nunn Patrol Camera located at the Rothney Astrophysical Observatory in the foothills of the Canadian Rockies. A total of 26,271 stars were detected in the field, over a range of about 11-15 (instrumental) magnitudes. Our image processing made use of the IRAF version of the DAOPHOT aperture photometry routine and we used the ANOVA method to search for periodic variations in the light curves. We formally detected periodic variability in 35 stars, that we tentatively classify according to light curve characteristics: 6 EA (Algol), 5 EB (?? Lyrae), 19 EW (W UMa), and 5 RR (RR Lyrae) stars. Eleven of the detected variable stars have been reported previously in the literature. The eclipsing binary light curves have been analyzed with a package of light curve modeling programs and 25 have yielded converged solutions. Ten of these are of systems that are detached, 3 semi-detached, 10 overcontact, and 2 are of systems that appear to be in marginal contact. We discuss these results as well as the advantages and disadvantages of the instrument and of the program.

  15. Summary of the US Army Corps of Engineers/US Environmental Protection Agency Field Verification Program

    Science.gov (United States)

    1988-10-01

    Major areas of environmental concern with upland disposal include effluent quality, surface runoff quality, leachate quality, and lethal and...surface runoff quality, leachate quality, and other effects including toxicity and bioaccumulation on colonizing plants and animals. Background on...eduZis and Polychaete Worm Nephtys inaisa After Laboratory and Field Exposures," Technical Report D-87-8, Environmental Research Laboratory, US

  16. Facilitating Collaboration across Science, Technology, Engineering & Mathematics (STEM) Fields in Program Development

    Science.gov (United States)

    Ejiwale, James A.

    2014-01-01

    Collaboration plays a major role in interdisciplinary activities among Science, Technology, Engineering & Mathematics (STEM) disciplines or fields. It also affects the relationships among cluster members on the management team. Although effective collaboration does not guarantee success among STEM disciplines, its absence usually assures…

  17. The Broad Effectiveness of Seventy-Four Field Instances of Abstinence-Based Programming

    Science.gov (United States)

    Birch, Paul James; White, Joseph M.; Fellows, Kaylene

    2017-01-01

    Evaluations of a large federally funded sexual risk avoidance education (SRAE) efforts in the USA have not been widely reported in the wake of funding cuts. The purpose of this study is to report results from a broad set of programmes to demonstrate the breadth of field effectiveness of these programmes. Twenty-seven separate community-based SRAE…

  18. Improved real gas routines for Sandia's NASA Ames flow field program

    Energy Technology Data Exchange (ETDEWEB)

    Eaton, R.R.; Larson, D.E.

    1976-02-01

    The real gas subroutines in Sandia's version of the NASA Ames flow field code have been extensively revised. Using these modifications the required computer run time for a difficult high Mach number case has been reduced from 1330 seconds to 151 seconds. (auth)

  19. Installation Restoration Program. Phase I. Records Search, Hancock Field, New York.

    Science.gov (United States)

    1982-07-01

    encountered locally. The till forms a relatively flat-lying veneer over the area bedrock, the Vernon Formation. At Hancock Field, glacial till thickness ranges...Medical X-Ray 254 Yes Yes Sanitary Sewer Dental Lab 250 Yes Yes Sanitary Sewer D-1 APPENDIX D MASTER LIST OF INDUSTRIAL SHOPS (Continued) Present

  20. Elementary Preservice Teacher Field Supervision: A Survey of Teacher Education Programs

    Science.gov (United States)

    Jacobs, Jennifer; Hogarty, Kristine; Burns, Rebecca West

    2017-01-01

    There is a heightened focus within teacher education to centralize clinical experiences and develop strong partnerships between schools and universities. University field supervisors fulfill a critical role within clinical experiences because they are uniquely situated in spaces where they can help preservice teachers and school-based partners…

  1. Operation of Wastewater Treatment Plants: A Field Study Training Program. Volume I, Instructor's Guide. Second Edition.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    The objective of this instructor's guide is to help provide students with knowledge and skills for employment in the field of wastewater treatment. Included in each chapter outline are: (1) objectives, (2) instructional approach, (3) answers to the objective test in the student's text, and (4) an explanation of these answers. The material…

  2. Operation of Wastewater Treatment Plants: A Field Study Training Program. Volume III, Instructor's Guide. Second Edition.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    The objective of this instructor's guide is to help provide students with knowledge and skills for employment in the field of wastewater treatment. Included in each chapter outline are: (1) objectives, (2) instructional approach, (3) answers to the objective test in the student's text, and (4) an explanation of these answers. The material…

  3. Operation of Wastewater Treatment Plants: A Field Study Training Program. Volume II, Instructor's Guide. Second Edition.

    Science.gov (United States)

    California State Univ., Sacramento. Dept. of Civil Engineering.

    The objective of this instructor's guide is to help provide students with knowledge and skills for employment in the field of wastewater treatment. Included in each chapter outline are: (1) objectives, (2) instructional approach, (3) answers to the objective test in the student's text, and (4) an explanation of these answers. The material…

  4. A Capstone Course in Ecuador: The Andes/Galapagos Volcanology Field Camp Program

    Science.gov (United States)

    Kelley, Daniel F.; Uzunlar, Nuri; Lisenbee, Alvis; Beate, Bernardo; Turner, Hope E.

    2017-01-01

    We developed and implemented the Galapagos Volcanology Field Camp, a 3 week, 3 credit hour course for upper-level university students with a major course of study in geology. The course is offered by the South Dakota School of Mines and Technology, is open to any student, and is usually populated by students from many universities across the U.S.…

  5. Environmental Restoration Program project management plan for the DOE Oak Ridge Field Office Major System Acquisition OR-1. Revision 1, Environmental Restoration Program

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    In the early 1940s, the Manhattan Project was conducted in a regulatory and operational environment less sophisticated than today. Less was known of the measures needed to protect human health and safety and the environment from the dangers posed by radioactive and hazardous wastes, and experience in dealing with these hazardous materials has grown slowly. Certain hazards were recognized and dealt with from the beginning. However, the techniques used, though standard practices at the time, are now known to have been inadequate. Consequently, the DOE has committed to an aggressive program for cleaning up the environment and has initiated an Environmental Restoration Program involving all its field offices. The objective of this program is to ensure that inactive and surplus DOE facilities and sites meet current standards to protect human health and the environment. The objective of these activities is to ensure that risks posed to human health and safety and the environment by inactive sites and surplus facilities contaminated with radioactive, hazardous, and/or mixed wastes are either eliminated or reduced to prescribed safe levels. This Project Management Plan for Major System Acquisition OR-1 Project documents, communicates, and contributes to the evolution of, the management organizations, systems, and tools necessary to carry out effectively the long-range complex cleanup of the DOE sites on the Oak Ridge Reservation, and at the Paducah, Kentucky, and Piketon, Ohio, uranium enrichment plants managed by the Department of Energy Oak Ridge Field Office; the cleanup of off-site contamination resulting from past releases; and the Decontamination and Decommissioning of surplus DOE facilities at these installations.

  6. Increasing student engagement in science through field-based research: University of Idaho's WoW STEMcore Program

    Science.gov (United States)

    Squires, A. L.; Boylan, R. D.; Rittenburg, R.; Boll, J.; Allan, P.

    2013-12-01

    A recent statewide survey assessing STEM perceptions in Idaho showed that high school student interest in science and preparation for college are declining. To address this decline we are piloting an interdisciplinary, community and field-based water science education approach for 10th - 12th grade science courses during the 2013-14 school year called WoW STEMcore. The program is led by graduate students in the University of Idaho (UI) Waters of the West (WoW) program. Our methods are based on proven best practices from eight years of NSF GK-12 experience at UI and over a decade of GK-12 experience at more than 300 programs in the U.S. WoW STEMcore works to strengthen partnerships between WoW graduate students, high school teachers, and regional organizations that work on natural resource management or place-based science education with the intent of sustaining and merging efforts to increase scientific literacy among high school students and to better prepare them for higher education. In addition, graduate students gain outreach, education and communication experience and teachers are exposed to new and relevant research content and methods. WoW STEMcore is fostering these partnerships through water themed projects at three northern Idaho high schools. The pilot program will culminate in Spring 2014 with a regional Water Summit in which all participating students and partners will converge at a two-day youth scientific conference and competition where they can showcase their research and the skills they gained over the course of the year. We hypothesize that through a graduate student-led, field-based program that gets students out of the classroom and thinking about water resource issues in their communities, we will 1) fuel high school students' interest in science through hands on and inquiry-based pedagogy and 2) improve preparation for higher education by providing graduate student mentors to discuss the pathway from high school to college to a career. In

  7. Linear-phase approximation in the triangular facet near-field physical optics computer program

    Science.gov (United States)

    Imbriale, W. A.; Hodges, R. E.

    1990-01-01

    Analyses of reflector antenna surfaces use a computer program based on a discrete approximation of the radiation integral. The calculation replaces the actual surface with a triangular facet representation; the physical optics current is assumed to be constant over each facet. Described here is a method of calculation using linear-phase approximation of the surface currents of parabolas, ellipses, and shaped subreflectors and compares results with a previous program that used a constant-phase approximation of the triangular facets. The results show that the linear-phase approximation is a significant improvement over the constant-phase approximation, and enables computation of 100 to 1,000 lambda reflectors within a reasonable time on a Cray computer.

  8. Bullion to B-fields: The Silver Program of the Manhattan Project

    Science.gov (United States)

    Reed, Cameron

    2010-04-01

    Between October 1942 and September 1944, over 14,000 tons of silver bullion bars withdrawn form the U.S. Treasury were melted and cast into magnet coils and busbar pieces for the ``calutron'' electromagnetic isotope-separators constructed at Oak Ridge. Based on Manhattan Engineer District documents, this paper will review the history of this ``Silver Program,'' including discussions of the contractors, production methods, and quantities of materials involved.

  9. Dissolution and precipitation dynamics during dedolomitization

    Science.gov (United States)

    Edery, Yaniv; Scher, Harvey; Berkowitz, Brian

    2011-08-01

    We simulate the processes of dedolomitization and calcium carbonate precipitation using particle tracking. The study is stimulated by the results of a laboratory experiment that examined reactive transport of injected CaCl2/HCl, into a column of sucrosic dolomite particles, with a constant flow field. The injected fluid supplies Ca2+ and H+. Dedolomitization is a protonation reaction yielding carbonic acid; a subsequent deprotonation reaction yields ?, and reaction with the abundant Ca2+ forms the precipitate CaCO3. The dedolomitization and precipitation processes involve multistep, multispecies chemical reactions, with both irreversible and reversible stages. The particle tracking is governed by spatial and temporal distributions within a continuous time random walk framework. This accounts for the effects of disorder of heterogeneous media (leading to non-Fickian transport) and includes the option of treating purely advective-dispersive (Fickian) transport. The dynamics of dedolomitization are examined for different flow conditions and reaction rates. The fluctuations in the local velocity distributions, due to porosity changes, create conditions for positive feedbacks leading to development of preferential pathways, large-scale nonlinearity, and precipitation banding. These features have been observed in the laboratory experiments and are now accounted for by the simulation results at similar time frames, velocities, and pH levels.

  10. Electrical operation of electrostatic precipitators

    CERN Document Server

    Parker, Ken

    2003-01-01

    The electrostatic precipitator remains on of the most cost effective means of controlling the emission of particulates from most industrial processes. This book will be of interest to both users and suppliers of electrostatic precipitators as well as advanced students on environmental based courses. The author identifies the physical and engineering basis for the development of electrical equipment for electrostatic precipitators and thoroughly explores the technological factors which optimize the efficiency of the precipitator and hence minimize emissions, as well as future developments in th

  11. Precipitation Measurement Missions Data Access

    Data.gov (United States)

    National Aeronautics and Space Administration — Tropical Rainfall Measuring Mission (TRMM) data products are currently available from 1998 to the present. Global Precipitation Measurement (GPM) mission data...

  12. Measuring precipitation with a geolysimeter

    Science.gov (United States)

    Smith, Craig D.; van der Kamp, Garth; Arnold, Lauren; Schmidt, Randy

    2017-10-01

    Using the relationship between measured groundwater pressures in deep observation wells and total surface loading, a geological weighing lysimeter (geolysimeter) has the capability of measuring precipitation event totals independently of conventional precipitation gauge observations. Correlations between groundwater pressure change and event precipitation were observed at a co-located site near Duck Lake, SK, over a multi-year and multi-season period. Correlation coefficients (r2) varied from 0.99 for rainfall to 0.94 for snowfall. The geolysimeter was shown to underestimate rainfall by 7 % while overestimating snowfall by 9 % as compared to the unadjusted gauge precipitation. It is speculated that the underestimation of rainfall is due to unmeasured run-off and evapotranspiration within the response area of the geolysimeter during larger rainfall events, while the overestimation of snow is at least partially due to the systematic undercatch common to most precipitation gauges due to wind. Using recently developed transfer functions from the World Meteorological Organization's (WMO) Solid Precipitation Intercomparison Experiment (SPICE), bias adjustments were applied to the Alter-shielded, Geonor T-200B precipitation gauge measurements of snowfall to mitigate wind-induced errors. The bias between the gauge and geolysimeter measurements was reduced to 3 %. This suggests that the geolysimeter is capable of accurately measuring solid precipitation and can be used as an independent and representative reference of true precipitation.

  13. Measuring precipitation with a geolysimeter

    Directory of Open Access Journals (Sweden)

    C. D. Smith

    2017-10-01

    Full Text Available Using the relationship between measured groundwater pressures in deep observation wells and total surface loading, a geological weighing lysimeter (geolysimeter has the capability of measuring precipitation event totals independently of conventional precipitation gauge observations. Correlations between groundwater pressure change and event precipitation were observed at a co-located site near Duck Lake, SK, over a multi-year and multi-season period. Correlation coefficients (r2 varied from 0.99 for rainfall to 0.94 for snowfall. The geolysimeter was shown to underestimate rainfall by 7 % while overestimating snowfall by 9 % as compared to the unadjusted gauge precipitation. It is speculated that the underestimation of rainfall is due to unmeasured run-off and evapotranspiration within the response area of the geolysimeter during larger rainfall events, while the overestimation of snow is at least partially due to the systematic undercatch common to most precipitation gauges due to wind. Using recently developed transfer functions from the World Meteorological Organization's (WMO Solid Precipitation Intercomparison Experiment (SPICE, bias adjustments were applied to the Alter-shielded, Geonor T-200B precipitation gauge measurements of snowfall to mitigate wind-induced errors. The bias between the gauge and geolysimeter measurements was reduced to 3 %. This suggests that the geolysimeter is capable of accurately measuring solid precipitation and can be used as an independent and representative reference of true precipitation.

  14. LICHEM: A QM/MM program for simulations with multipolar and polarizable force fields.

    Science.gov (United States)

    Kratz, Eric G; Walker, Alice R; Lagardère, Louis; Lipparini, Filippo; Piquemal, Jean-Philip; Andrés Cisneros, G

    2016-04-30

    We introduce an initial implementation of the LICHEM software package. LICHEM can interface with Gaussian, PSI4, NWChem, TINKER, and TINKER-HP to enable QM/MM calculations using multipolar/polarizable force fields. LICHEM extracts forces and energies from unmodified QM and MM software packages to perform geometry optimizations, single-point energy calculations, or Monte Carlo simulations. When the QM and MM regions are connected by covalent bonds, the pseudo-bond approach is employed to smoothly transition between the QM region and the polarizable force field. A series of water clusters and small peptides have been employed to test our initial implementation. The results obtained from these test systems show the capabilities of the new software and highlight the importance of including explicit polarization. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  15. Field support, data analysis and associated research for the acoustic grenade sounding program

    Science.gov (United States)

    Barnes, T. G.; Bullard, E. R.

    1976-01-01

    Temperature and horizontal winds in the 30 to 90 km altitude range of the upper atmosphere, were determined by acoustic grenade soundings conducted at Wallops Island, Virginia and Kourou, French Guiana. Field support provided at these locations included deployment of the large area microphone system, supervision, maintenance and operation of sound ranging stations; and coordination of activities. Data analysis efforts included the analysis of field data to determine upper atmospheric meteorological parameters. Profiles for upper atmospheric temperature, wind and density are provided in plots and tables for each of the acoustic grenade soundings conducted during the contract period. Research efforts were directed toward a systematic comparison of temperature data from acoustic grenade with other meteorological sensor probes in the upper atmosphere.

  16. A study of precipitation variability in the Duero Basin (Iberian Peninsula)

    OpenAIRE

    Caramelo, Liliana; Orgaz, Maria de los Dolores J Manso

    2007-01-01

    Spatial and temporal average behaviour of winter precipitation in the Duero basin (DB) were analysed for 1958–1993. Monthly observed data (observed data) from 34 weather stations and a subset of daily precipitation data from the NCEP/NCAR reanalysis project (reanalysis data) were used. The spatial variability of winter precipitation was examined using principal component analysis (PCA) for both types of data. The winter precipitation fields are well represented by the first three ...

  17. Policy-contribution assessment and field-building analysis of the Robert Wood Johnson Foundation's Active Living Research Program.

    Science.gov (United States)

    Ottoson, Judith M; Green, Lawrence W; Beery, William L; Senter, Sandra K; Cahill, Carol L; Pearson, David C; Greenwald, Howard P; Hamre, Robin; Leviton, Laura

    2009-02-01

    The Robert Wood Johnson Foundation requested this utilization-focused evaluation of its Active Living Research (ALR) program. This evaluation reports on the trajectory of influence of past and future ALR outcomes on field-building and policy contributions as well as on possible users of completed and disseminated ALR products. In 2006 and 2007, key-informant interviews were conducted with 136 representatives of first-line potential users of ALR research products, including state physical activity and nutrition program coordinators, policymakers, scientists, and funders. Literature reviews, bibliometric analyses, and document reviews served to describe the context for ALR's work and the ways it could enhance its utility for field building and policymaking. The contributions of ALR to the emerging transdisciplinary field included leadership in the development of measurement tools, epidemiologic studies, implementation research, the translation of research to practice, and the communication of learned lessons to diverse audiences. ALR's contributions to policy discussions were found across a spectrum of policy-development phases that included describing the problem, raising awareness of alternative strategies for increasing physical activity, convening nontraditional partners, and evaluating policy implementation. Policy-relevant research can make contributions to policymakers' thinking but almost never causes a change by itself. Five years after the original authorization of ALR, there is ample evidence of its recognition as a resource by key players, its field-building influence, and its contributions to policy discussions. All these bear promise for a broader contribution to obesity prevention. Recommendations for increasing ALR's impact on policy and practice are offered.

  18. Field-testing ecological and economic benefits of coffee certification programs.

    Science.gov (United States)

    Philpott, Stacy M; Bichier, Peter; Rice, Robert; Greenberg, Russell

    2007-08-01

    Coffee agroecosystems are critical to the success of conservation efforts in Latin America because of their ecological and economic importance. Coffee certification programs may offer one way to protect biodiversity and maintain farmer livelihoods. Established coffee certification programs fall into three distinct, but not mutually exclusive categories: organic, fair trade, and shade. The results of previous studies demonstrate that shade certification can benefit biodiversity, but it remains unclear whether a farmer's participation in any certification program can provide both ecological and economic benefits. To assess the value of coffee certification for conservation efforts in the region, we examined economic and ecological aspects of coffee production for eight coffee cooperatives in Chiapas, Mexico, that were certified organic, certified organic and fair trade, or uncertified. We compared vegetation and ant and bird diversity in coffee farms and forests, and interviewed farmers to determine coffee yield, gross revenue from coffee production, and area in coffee production. Although there are no shade-certified farms in the study region, we used vegetation data to determine whether cooperatives would qualify for shade certification. We found no differences in vegetation characteristics, ant or bird species richness, or fraction of forest fauna in farms based on certification. Farmers with organic and organic and fair-trade certification had more land under cultivation and in some cases higher revenue than uncertified farmers. Coffee production area did not vary among farm types. No cooperative passed shade-coffee certification standards because the plantations lacked vertical stratification, yet vegetation variables for shade certification significantly correlated with ant and bird diversity. Although farmers in the Chiapas highlands with organic and/or fair-trade certification may reap some economic benefits from their certification status, their farms may

  19. Opportune Landing Site Program: Opportune Landing Site Southeastern Indiana Field Data Collection and Assessment

    Science.gov (United States)

    2008-11-01

    the Air Force Research Laboratory (AFRL), and Syngen- ics Corporation. Dr. Charles C. Ryerson was Program Manager at ERDC/CRREL, and James McDowell...ERDC. Dr. James R. Houston was Director. ERDC/CRREL TR-08-22 x Unit Conversion Factors Multiply By To Obtain millimeters 3.93701 x 10–2...was not flat, but had a beveled edge. Loose, diffi- cult-to-remove soil would collect at the bottom of the hole, possibly inter- fering with the

  20. Evaluation of precipitates used in strainer head loss testing. Part I. Chemically generated precipitates

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Chi Bum, E-mail: bahn@anl.go [Argonne National Laboratory, Argonne, IL 60439 (United States); Kasza, Ken E.; Shack, William J.; Natesan, Ken [Argonne National Laboratory, Argonne, IL 60439 (United States); Klein, Paul [The United States Nuclear Regulatory Commission, Rockville, MD 20852 (United States)

    2009-12-15

    The purpose of the current program was to evaluate the properties of chemical precipitates proposed by industry that have been used in sump strainer head loss testing. Specific precipitates that were evaluated included aluminum oxyhydroxide (AlOOH) and sodium aluminum silicate (SAS) prepared according to the procedures in WCAP-16530-NP, along with precipitates formed from injecting chemicals into the test loop according to the procedure used by one sump strainer test vendor for U.S. pressurized water reactors. The settling rates of the surrogate precipitates are strongly dependent on their particle size and are reasonably consistent with those expected from Stokes' Law or colloid aggregation models. Head loss tests showed that AlOOH and SAS surrogates are quite effective in increasing the head loss across a perforated pump inlet strainer that has an accumulated fibrous debris bed. The characteristics of aluminum hydroxide precipitate using sodium aluminate were dependent on whether it was formed in high-purity or ordinary tap water and whether excess silicate was present or not.

  1. Evaluation of precipitates used in strainer head loss testing : Part I. chemically generated precipitates.

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, C. B.; Kasza, K. E.; Shack, W. J.; Natesan, K.; Klein, P.; Nuclear Engineering Division

    2009-12-01

    The purpose of the current program was to evaluate the properties of chemical precipitates proposed by industry that have been used in sump strainer head loss testing. Specific precipitates that were evaluated included aluminum oxyhydroxide (AlOOH) and sodium aluminum silicate (SAS) prepared according to the procedures in WCAP-16530-NP, along with precipitates formed from injecting chemicals into the test loop according to the procedure used by one sump strainer test vendor for U.S. pressurized water reactors. The settling rates of the surrogate precipitates are strongly dependent on their particle size and are reasonably consistent with those expected from Stokes Law or colloid aggregation models. Head loss tests showed that AlOOH and SAS surrogates are quite effective in increasing the head loss across a perforated pump inlet strainer that has an accumulated fibrous debris bed. The characteristics of aluminum hydroxide precipitate using sodium aluminate were dependent on whether it was formed in high-purity or ordinary tap water and whether excess silicate was present or not.

  2. The Rocket Electric Field Sounding (REFS) Program: Prototype Design and Successful First Launch

    Science.gov (United States)

    1992-01-15

    feedback loop of the first operational amplifier ( opamp ) charges up to a voltage that is proportional to the charge induced on the stator by the electric...field incident upon it. The 33 MOhm resistor in the feedback loop is there to provide bias current for the opamp . The resistor and capacitor pair must...0 to 15 PSI. It produces a change in bridge resistance that is proportional to pressure. 15 U00 x0 a r - 1S h 4. I S K I. S S : IN U if S 4 - I

  3. Installation Restoration Program for Richards-Gebaur AFB. Phase 2. Field Evaluation

    Science.gov (United States)

    1983-12-01

    SCWINTY CL6ASSIVICATION or TwIs P04c ;Wism Doel Eaeat.4 UnclIqif ied SuCuRiTY CLASSIFICATION OF THIS PAGIE(Wh?1 D4 EZmd) The Phase Il--Field Evaluation...IO In en - 040 3j C’ tn- 3. 0n fn 0 .-. I./ V k v V M. N, too 0n z-o 7-28 [RICH-GEB/AFB.2 ]HTB/3. 1 12/30/83 Table 3. EPA List cf 129 Priority

  4. ELF Communications System Ecological Monitoring Program: Electromagnetic Field Measurements and Engineering Support-1991

    Science.gov (United States)

    1992-12-01

    matching problem , and assisted the study investigator with field setup and installation. In 1988, IITRI fabricated and installed improved exposure...from three electrode sets (4T4-7, 14,20) were confounded by the data logger input 3 protection devices. The problem began when the EW antenna came back...1ý 15 .J BURIED GROUND 12.5. X R (APPROX. LOCATION) PROA ,-5 1 I I VO 24H.ROUND i 2- 140 ~ ~49L 15ESIN INM22R -T13 THOG 24.5 20 IR D60- I AI N I I I

  5. The Version 2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979-Present)

    Science.gov (United States)

    Adler, Robert F.; Huffman, George J.; Chang, Alfred; Ferraro, Ralph; Xie, Ping-Ping; Janowiak, John; Rudolf, Bruno; Schneider, Udo; Curtis, Scott; Bolvin, David

    2003-01-01

    The Global Precipitation Climatology Project (GPCP) Version 2 Monthly Precipitation Analysis is described. This globally complete, monthly analysis of surface precipitation at 2.5 degrees x 2.5 degrees latitude-longitude resolution is available from January 1979 to the present. It is a merged analysis that incorporates precipitation estimates from low-orbit-satellite microwave data, geosynchronous-orbit-satellite infrared data, and rain gauge observations. The merging approach utilizes the higher accuracy of the low-orbit microwave observations to calibrate, or adjust, the more frequent geosynchronous infrared observations. The data set is extended back into the premicrowave era (before 1987) by using infrared-only observations calibrated to the microwave-based analysis of the later years. The combined satellite-based product is adjusted by the raingauge analysis. This monthly analysis is the foundation for the GPCP suite of products including those at finer temporal resolution, satellite estimate, and error estimates for each field. The 23-year GPCP climatology is characterized, along with time and space variations of precipitation.

  6. Acid precipitation and forest soils

    Science.gov (United States)

    C. O. Tamm

    1976-01-01

    Many soil processes and properties may be affected by a change in chemical climate such as that caused by acidification of precipitation. The effect of additions of acid precipitation depends at first on the extent to which this acid is really absorbed by the soil and on the changes in substances with actual or potential acidity leaving the soil. There is for instance...

  7. Precipitation in the Solar System

    Science.gov (United States)

    McIntosh, Gordon

    2007-01-01

    As an astronomy instructor, I am always looking for commonly observed Earthly experiences to help my students and me understand and appreciate similar occurrences elsewhere in the solar system. Recently I wrote a short TPT article on frost. This paper is on the related phenomena of precipitation. Precipitation, so common on most of the Earth's…

  8. Retrieving moisture profiles from precipitable water measurements using a variational data assimilation approach

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Y.R.; Zou, X.; Kuo, Y.H. [National Center for Atmospheric Research, Boulder, CO (United States)

    1996-04-01

    Atmospheric moisture distribution is directly related to the formation of clouds and precipitation and affects the atmospheric radiation and climate. Currently, several remote sensing systems can measure precipitable water (PW) with fairly high accuracy. As part of the development of an Integrated Data Assimilation and Sounding System in support of the Atmospheric Radiation Measurement Program, retrieving the 3-D water vapor fields from PW measurements is an important problem. A new four dimensional variational (4DVAR) data assimilation system based on the Penn State/National Center for Atmospheric Research (NCAR) mesoscale model (MM5) has been developed by Zou et al. (1995) with the adjoint technique. In this study, we used this 4DVAR system to retrieve the moisture profiles. Because we do not have a set of real observed PW measurements now, the special soundings collected during the Severe Environmental Storm and Mesoscale Experiment (SESAME) in 1979 were used to simulate a set of PW measurements, which were then assimilated into the 4DVAR system. The accuracy of the derived water vapor fields was assessed by direct comparison with the detailed specific humidity soundings. The impact of PW assimilation on precipitation forecast was examined by conducting a series of model forecast experiments started from the different initial conditions with or without data assimilation.

  9. Flue gas conditioning for improved particle collection in electrostatic precipitators

    Energy Technology Data Exchange (ETDEWEB)

    Durham, M.D.

    1993-04-16

    Several tasks have been completed in a program to evaluate additives to improve fine particle collection in electrostatic precipitators. Screening tests and laboratory evaluations of additives are summarized in this report. Over 20 additives were evaluated; four were found to improve flyash precipitation rates. The Insitec particle analyzer was also evaluated; test results show that the analyzer will provide accurate sizing and counting information for particles in the size range of [le] 10 [mu]m dia.

  10. Methane Hydrate Field Program. Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Collett, Tim [U.S. Geological Survey, Boulder, CO (United States); Bahk, Jang-Jun [Korea Inst. of Geoscience and Mineral Resources, Daejeon (Korea); Frye, Matt [U.S. Bureau of Ocean Energy Management, Sterling, VA (United States); Goldberg, Dave [Lamont-Doherty Earth Observatory, Palisades, NY (United States); Husebo, Jarle [Statoil ASA, Stavenger (Norway); Koh, Carolyn [Colorado School of Mines, Golden, CO (United States); Malone, Mitch [Texas A & M Univ., College Station, TX (United States); Shipp, Craig [Shell International Exploration and Production Inc., Anchorage, AK (United States); Torres, Marta [Oregon State Univ., Corvallis, OR (United States); Myers, Greg [Consortium For Ocean Leadership Inc., Washington, DC (United States); Divins, David [Consortium For Ocean Leadership Inc., Washington, DC (United States); Morell, Margo [Consortium For Ocean Leadership Inc., Washington, DC (United States)

    2013-12-31

    This topical report represents a pathway toward better understanding of the impact of marine methane hydrates on safety and seafloor stability and future collection of data that can be used by scientists, engineers, managers and planners to study climate change and to assess the feasibility of marine methane hydrate as a potential future energy resource. Our understanding of the occurrence, distribution and characteristics of marine methane hydrates is incomplete; therefore, research must continue to expand if methane hydrates are to be used as a future energy source. Exploring basins with methane hydrates has been occurring for over 30 years, but these efforts have been episodic in nature. To further our understanding, these efforts must be more regular and employ new techniques to capture more data. This plan identifies incomplete areas of methane hydrate research and offers solutions by systematically reviewing known methane hydrate “Science Challenges” and linking them with “Technical Challenges” and potential field program locations.

  11. Seasonal Variability of Precipitation Extremes in New York City

    Science.gov (United States)

    Polanco, W.

    2016-12-01

    Precipitation extremes can have very important impacts, and it is not known as to how precipitation extremes might change with global warming. New York City is located in the mid-latitude region where there are specific storms that can cause precipitation extremes, predominantly, hurricanes, extratropical cyclones, and quasi-linear convective systems. These storms preferentially occur during different seasons. Therefore, to understand how these different storms relate to precipitation extremes, this study examines NYC precipitation extremes per season. First, NOAA weather station data from January 1979 to December 2014 from the three NYC airports (JFK, LaGuardia and Newark) will be analyzed to derive the climatology, the counts of non-rain events, and the counts of extreme precipitation events. Next, a multi-station average will be used to compare the precipitation events that occur in Spring, Summer, and Fall. The precipitation strength will be compared as well as the temperature anomalies for each season. Then, using reanalysis, composites of the sea level pressure and temperature fields will be calculated for the top events from each season.

  12. A global satellite assisted precipitation climatology

    Science.gov (United States)

    Funk, Christopher C.; Verdin, Andrew P.; Michaelsen, Joel C.; Pedreros, Diego; Husak, Gregory J.; Peterson, P.

    2015-01-01

    Accurate representations of mean climate conditions, especially in areas of complex terrain, are an important part of environmental monitoring systems. As high-resolution satellite monitoring information accumulates with the passage of time, it can be increasingly useful in efforts to better characterize the earth's mean climatology. Current state-of-the-science products rely on complex and sometimes unreliable relationships between elevation and station-based precipitation records, which can result in poor performance in food and water insecure regions with sparse observation networks. These vulnerable areas (like Ethiopia, Afghanistan, or Haiti) are often the critical regions for humanitarian drought monitoring. Here, we show that long period of record geo-synchronous and polar-orbiting satellite observations provide a unique new resource for producing high resolution (0.05°) global precipitation climatologies that perform reasonably well in data sparse regions. Traditionally, global climatologies have been produced by combining station observations and physiographic predictors like latitude, longitude, elevation, and slope. While such approaches can work well, especially in areas with reasonably dense observation networks, the fundamental relationship between physiographic variables and the target climate variables can often be indirect and spatially complex. Infrared and microwave satellite observations, on the other hand, directly monitor the earth's energy emissions. These emissions often correspond physically with the location and intensity of precipitation. We show that these relationships provide a good basis for building global climatologies. We also introduce a new geospatial modeling approach based on moving window regressions and inverse distance weighting interpolation. This approach combines satellite fields, gridded physiographic indicators, and in situ climate normals. The resulting global 0.05° monthly precipitation climatology, the Climate

  13. Modeling solid-state precipitation

    CERN Document Server

    Nebylov, AlexanderKozeschnik, Ernst

    2012-01-01

    Over recent decades, modeling and simulation of solid-state precipitation has attracted increased attention in academia and industry due to their important contributions in designing properties of advanced structural materials and in increasing productivity and decreasing costs for expensive alloying. In particular, precipitation of second phases is an important means for controlling the mechanical-technological properties of structural materials. However, profound physical modeling of precipitation is not a trivial task. This book introduces you to the classical methods of precipitation modeling and to recently-developed advanced, computationally-efficient techniques. If you're a research professional, academic, or student, you'll learn: nucleation theory, precipitate growth, calculation of interfacial energies. advanced techniques for technologically relevant multicomponent systems and complex thermo-mechanical treatments. numerical approaches using evolution equations and discrete particle size distribu...

  14. Costs to Automate Demand Response - Taxonomy and Results from Field Studies and Programs

    Energy Technology Data Exchange (ETDEWEB)

    Piette, Mary A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schetrit, Oren [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kiliccote, Sila [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Cheung, Iris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Li, Becky Z [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-31

    During the past decade, the technology to automate demand response (DR) in buildings and industrial facilities has advanced significantly. Automation allows rapid, repeatable, reliable operation. This study focuses on costs for DR automation in commercial buildings with some discussion on residential buildings and industrial facilities. DR automation technology relies on numerous components, including communication systems, hardware and software gateways, standards-based messaging protocols, controls and integration platforms, and measurement and telemetry systems. This report compares cost data from several DR automation programs and pilot projects, evaluates trends in the cost per unit of DR and kilowatts (kW) available from automated systems, and applies a standard naming convention and classification or taxonomy for system elements. Median costs for the 56 installed automated DR systems studied here are about $200/kW. The deviation around this median is large with costs in some cases being an order of magnitude great or less than the median. This wide range is a result of variations in system age, size of load reduction, sophistication, and type of equipment included in cost analysis. The costs to automate fast DR systems for ancillary services are not fully analyzed in this report because additional research is needed to determine the total cost to install, operate, and maintain these systems. However, recent research suggests that they could be developed at costs similar to those of existing hot-summer DR automation systems. This report considers installation and configuration costs and does include the costs of owning and operating DR automation systems. Future analysis of the latter costs should include the costs to the building or facility manager costs as well as utility or third party program manager cost.

  15. A convex programming framework for optimal and bounded suboptimal well field management

    DEFF Research Database (Denmark)

    Dorini, Gianluca Fabio; Thordarson, Fannar Ørn; Bauer-Gottwein, Peter

    2012-01-01

    are often convex, hence global optimality can be attained by a wealth of algorithms. Among these, the Interior Point methods are extensively employed for practical applications, as they are capable of efficiently solving large-scale problems. Despite this, management models explicitly embedding both systems...... without simplifications are rare, and they usually involve heuristic techniques. The main limitation with heuristics is that neither optimality nor suboptimality bounds can be guarantee. This paper extends the proof of convexity to mixed management models, enabling the use of Interior Point techniques...... to compute globally optimal management solutions. If convexity is not achieved, it is shown how suboptimal solutions can be computed, and how to bind their deviation from the optimality. Experimental results obtained by testing the methodology in a well field located nearby Copenhagen (DK), show...

  16. Estimation of precipitation over the OLYMPEX domain during winter 2015-2016 using radar, gauge precipitation and ASO snow estimates

    Science.gov (United States)

    Cao, Q.; Lettenmaier, D. P.; Painter, T. H.; Lundquist, J. D.; Petersen, W. A.

    2016-12-01

    A primary goal of Global Precipitation Mission (GPM) is to measure precipitation globally especially in areas lacking ground observations. In order to better assess precipitation products based on GPM and other satellites in cold seasons and where orographic factors exert strong controls on precipitation, the Olympic Mountain Experiment (OLYMPEX) was conducted on the Olympic Peninsula of Washington State during winter 2015-2016. OLYMPEX aims to provide validation data for satellite precipitation products such as NASA's IMERG. We constructed estimates of daily and finer scale precipitation at 1/32 degree spatial resolution over the OLYMPEX domain, which for our purposes was defined as the Olympic Peninsula plus the Chehalis River basin. The observation-based estimates we produced are based on NOAA WSR-88D (primarily the site at Langley Hill, on the Washington Coast), and gauge estimates as incorporated in NOAA's National Severe Storms Laboratory (NSSL) gauge-corrected radar QPE product, augmented with additional 135 gauges that were operational during at least 50% of the period Nov 1 2015 - Mar 31 2016. Few stations are located in the interior of the Olympic Peninsula at elevations higher than about 500m, and in this part of the domain we utilized snow depth maps from two flights of NASA/JPL's Airborne Snow Observatory (ASO) on Feb 8 and Mar 29 2016. We converted the depth maps to Snow Water Equivalent (SWE) maps using snow density fields integrated from a combination of simulations from the Variable Infiltration Capacity (VIC) hydrology model adjusted by in-situ point measurements conducted close to the ASO flight dates. We used the VIC model to invert the ASO-derived SWE estimates for precipitation through adjustment of the temperature lapse rate and precipitation on a grid cell by grid cell basis. We compare IMERG precipitation over our entire domain with our precipitation estimates, and find that IMERG tends to underestimate winter precipitation and especially

  17. Fractionating power and outlet stream polydispersity in asymmetrical flow field-flow fractionation. Part II: programmed operation.

    Science.gov (United States)

    Williams, P Stephen

    2017-01-01

    Asymmetrical flow field-flow fractionation (As-FlFFF) is a widely used technique for analyzing polydisperse nanoparticle and macromolecular samples. The programmed decay of cross flow rate is often employed. The interdependence of the cross flow rate through the membrane and the fluid flow along the channel length complicates the prediction of elution time and fractionating power. The theory for their calculation is presented. It is also confirmed for examples of exponential decay of cross flow rate with constant channel outlet flow rate that the residual sample polydispersity at the channel outlet is quite well approximated by the reciprocal of four times the fractionating power. Residual polydispersity is of importance when online MALS or DLS detection are used to extract quantitative information on particle size or molecular weight. The theory presented here provides a firm basis for the optimization of programmed flow conditions in As-FlFFF. Graphical abstract Channel outlet polydispersity remains significant following fractionation by As-FlFFF under conditions of programmed decay of cross flow rate.

  18. Field Test Program for Long-Term Operation of a COHPAC System for Removing Mercury from Coal-Fired Flue Gas

    Energy Technology Data Exchange (ETDEWEB)

    C. Jean Bustard; Charles Lindsey; Paul Brignac

    2006-05-01

    This document provides a summary of the full-scale demonstration efforts involved in the project ''Field Test Program for Long-Term Operation of a COHPAC{reg_sign} System for Removing Mercury from Coal-Fired Flue Gas''. The project took place at Alabama Power's Plant Gaston Unit 3 and involved the injection of sorbent between an existing particulate collector (hot-side electrostatic precipitators) and a COHPAC{reg_sign} fabric filter (baghouse) downstream. Although the COHPAC{reg_sign} baghouse was designed originally for polishing the flue gas, when activated carbon injection was added, the test was actually evaluating the EPRI TOXECON{reg_sign} configuration. The results from the baseline tests with no carbon injection showed that the cleaning frequency in the COHPAC{reg_sign} unit was much higher than expected, and was above the target maximum cleaning frequency of 1.5 pulses/bag/hour (p/b/h), which was used during the Phase I test in 2001. There were times when the baghouse was cleaning continuously at 4.4 p/b/h. In the 2001 tests, there was virtually no mercury removal at baseline conditions. In this second round of tests, mercury removal varied between 0 and 90%, and was dependent on inlet mass loading. There was a much higher amount of ash exiting the electrostatic precipitators (ESP), creating an inlet loading greater than the design conditions for the COHPAC{reg_sign} baghouse. Tests were performed to try to determine the cause of the high ash loading. The LOI of the ash in the 2001 baseline tests was 11%, while the second baseline tests showed an LOI of 17.4%. The LOI is an indication of the carbon content in the ash, which can affect the native mercury uptake, and can also adversely affect the performance of ESPs, allowing more ash particles to escape the unit. To overcome this, an injection scheme was implemented that balanced the need to decrease carbon injection during times when inlet loading to the baghouse was high and

  19. Advances in Protein Precipitation

    NARCIS (Netherlands)

    Golubovic, M.

    2009-01-01

    Proteins are biological macromolecules, which are among the key components of all living organisms. Proteins are nowadays present in all fields of biotech industry, such as food and feed, synthetic and pharmaceutical industry. They are isolated from their natural sources or produced in different

  20. The Development and Preliminary Field Testing of a Multisensory Language Development Program for Kindergarten, First Grade and Fourth Grade. [with] A Supplementary Volume.

    Science.gov (United States)

    Francis, Azalia Smith

    The development and preliminary field testing of an oral language program designed to utilize a multisensory method based on the theories of Piaget, Hebb, and Montessori are reported in this study. This program was linguistically structured to attack the 10 debilitating speech features found by authorities to be common to the culturally…

  1. Precipitation products from the hydrology SAF

    Directory of Open Access Journals (Sweden)

    A. Mugnai

    2013-08-01

    Full Text Available The EUMETSAT Satellite Application Facility on Support to Operational Hydrology and Water Management (H-SAF was established by the EUMETSAT Council on 3 July 2005, starting activity on 1 September 2005. The Italian Meteorological Service serves as Leading Entity on behalf of twelve European member countries. H-SAF products include precipitation, soil moisture and snow parameters. Some products are based only on satellite observations, while other products are based on the assimilation of satellite measurements/products into numerical models. In addition to product development and generation, H-SAF includes a product validation program and a hydrological validation program that are coordinated, respectively, by the Italian Department of Civil Protection and by the Polish Institute of Meteorology and Water Management. The National Center of Aeronautical Meteorology and Climatology (CNMCA of the Italian Air Force is responsible for operational product generation and dissemination. In this paper we describe the H-SAF precipitation algorithms and products, which have been developed by the Italian Institute of Atmospheric Sciences and Climate (in collaboration with the international community and by CNMCA during the Development Phase (DP, 2005–2010 and the first Continuous Development and Operations Phase (CDOP-1, 2010–2012. The precipitation products are based on passive microwave measurements obtained from radiometers onboard different sun-synchronous low-Earth-orbiting satellites (especially, the SSM/I and SSMIS radiometers onboard DMSP satellites and the AMSU-A + AMSU-B/MHS radiometer suites onboard EPS-MetOp and NOAA-POES satellites, as well as on combined infrared/passive microwave measurements in which the passive microwave precipitation estimates are used in conjunction with SEVIRI images from the geostationary MSG satellite. Moreover, the H-SAF product generation and dissemination chain and independent product validation activities are

  2. Precipitator conversion to top rapping: a solution for power emissions in the power industry - focus on Eastern European region

    Energy Technology Data Exchange (ETDEWEB)

    Phelan, B. [GE Energy, Kansas City, CO (United States)

    2005-07-01

    Top Rap Electrostatic Precipitator technology with its unique design features allows rebuilding and upgrading old precipitators by reusing the existing casing and making the most of a limited footprint. The result is a high tech precipitator capable of meeting very low emission levels. This technology positions itself as a cost effective and innovative option for the precipitator of the future, with short inlet and outlet fields, different field length, enhanced performance, and much lower emission levels. 12 figs.

  3. Actinic imaging of native and programmed defects on a full-field mask

    Energy Technology Data Exchange (ETDEWEB)

    Mochi, I.; Goldberg, K. A.; Fontaine, B. La; Tchikoulaeva, A.; Holfeld, C.

    2010-03-12

    We describe the imaging and characterization of native defects on a full field extreme ultraviolet (EUV) mask, using several reticle and wafer inspection modes. Mask defect images recorded with the SEMA TECH Berkeley Actinic Inspection Tool (AIT), an EUV-wavelength (13.4 nm) actinic microscope, are compared with mask and printed-wafer images collected with scanning electron microscopy (SEM) and deep ultraviolet (DUV) inspection tools. We observed that defects that appear to be opaque in the SEM can be highly transparent to EUV light, and inversely, defects that are mostly transparent to the SEM can be highly opaque to EUV. The nature and composition of these defects, whether they appear on the top surface, within the multilayer coating, or on the substrate as buried bumps or pits, influences both their significance when printed, and their detectability with the available techniques. Actinic inspection quantitatively predicts the characteristics of printed defect images in ways that may not be possible with non-EUV techniques. As a quantitative example, we investigate the main structural characteristics of a buried pit defect based on EUV through-focus imaging.

  4. Light Water Reactor Sustainability Program: Computer-Based Procedures for Field Activities: Results from Three Evaluations at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bly, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The Computer-Based Procedure (CBP) research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. One area that could yield tremendous savings in increased efficiency and safety is in improving procedure use. Nearly all activities in the nuclear power industry are guided by procedures, which today are printed and executed on paper. This paper-based procedure process has proven to ensure safety; however, there are improvements to be gained. Due to its inherent dynamic nature, a CBP provides the opportunity to incorporate context driven job aids, such as drawings, photos, and just-in-time training. Compared to the static state of paper-based procedures (PBPs), the presentation of information in CBPs can be much more flexible and tailored to the task, actual plant condition, and operation mode. The dynamic presentation of the procedure will guide the user down the path of relevant steps, thus minimizing time spent by the field worker to evaluate plant conditions and decisions related to the applicability of each step. This dynamic presentation of the procedure also minimizes the risk of conducting steps out of order and/or incorrectly assessed applicability of steps.

  5. FY 1991 environmental research programs for the DOE Field Office, Nevada: Work plan and quarterly reports, fourth quarter report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1991-10-01

    This research includes a wide range of research and support activities associated with the Weapons Testing Program conducted at the Nevada Test Site (NTS). Ongoing and new environmental research programs to be conducted by DRI over the period of this contract include archaeological studies, site mitigation plans, compliance activities, and historical research; offsite community radiation monitoring support; environmental compliance activities related to state and federal regulations; hydrologic assessment of containment of underground nuclear detonations; hydrology/radionuclide investigations designed to better understand and predict the possible subsurface movement of radionuclides at the NTS; and support of various statistical and data management and design, laboratory, field, and administrative activities. In addition to these, archaeological site characterization, flood hazards for rail transportation, and paleofaunal investigations will be carried out in support of the Yucca Mountain Project. Other areas of the overall program which required DRI support are classified security activities, radiation safety and training, quality assurance and control, computer protection and historical data management, review and classification of DRI documents, and preparation of any special reports, e.g., quarterly reports, not included in the requirements of the individual projects. A new set of programs funded by the Office of Technology Development will be in place by the third quarter of FY 1991. These projects will address environmental restoration and waste management concerns, among other related topics. In accordance with specific contract requirements for each activity, DRI will produce summary, status and final reports and, in some cases, journal articles which will present the results of specific research efforts. This document contains the work plan, including project descriptions, tasks, deliverables and quarterly progress reports on each project for FY 1991.

  6. Field Epidemiology and Laboratory Training Programs in sub-Saharan Africa from 2004 to 2010: need, the process, and prospects

    Science.gov (United States)

    Nsubuga, Peter; Johnson, Kenneth; Tetteh, Christopher; Oundo, Joseph; Weathers, Andrew; Vaughan, James; Elbon, Suzanne; Tshimanga, Mufuta; Ndugulile, Faustine; Ohuabunwo, Chima; Evering-Watley, Michele; Mosha, Fausta; Oleribe, Obinna; Nguku, Patrick; Davis, Lora; Preacely, Nykiconia; Luce, Richard; Antara, Simon; Imara, Hiari; Ndjakani, Yassa; Doyle, Timothy; Espinosa, Yescenia; Kazambu, Ditu; Delissaint, Dieula; Ngulefac, John; Njenga, Kariuki

    2011-01-01

    As of 2010 sub-Saharan Africa had approximately 865 million inhabitants living with numerous public health challenges. Several public health initiatives [e.g., the United States (US) President's Emergency Plan for AIDS Relief and the US President's Malaria Initiative] have been very successful at reducing mortality from priority diseases. A competently trained public health workforce that can operate multi-disease surveillance and response systems is necessary to build upon and sustain these successes and to address other public health problems. Sub-Saharan Africa appears to have weathered the recent global economic downturn remarkably well and its increasing middle class may soon demand stronger public health systems to protect communities. The Epidemic Intelligence Service (EIS) program of the US Centers for Disease Control and Prevention (CDC) has been the backbone of public health surveillance and response in the US during its 60 years of existence. EIS has been adapted internationally to create the Field Epidemiology Training Program (FETP) in several countries. In the 1990s CDC and the Rockefeller Foundation collaborated with the Uganda and Zimbabwe ministries of health and local universities to create 2-year Public Health Schools Without Walls (PHSWOWs) which were based on the FETP model. In 2004 the FETP model was further adapted to create the Field Epidemiology and Laboratory Training Program (FELTP) in Kenya to conduct joint competency-based training for field epidemiologists and public health laboratory scientists providing a master's degree to participants upon completion. The FELTP model has been implemented in several additional countries in sub-Saharan Africa. By the end of 2010 these 10 FELTPs and two PHSWOWs covered 613 million of the 865 million people in sub-Saharan Africa and had enrolled 743 public health professionals. We describe the process that we used to develop 10 FELTPs covering 15 countries in sub-Saharan Africa from 2004 to 2010 as a

  7. Field Epidemiology and Laboratory Training Programs in sub-Saharan Africa from 2004 to 2010: need, the process, and prospects.

    Science.gov (United States)

    Nsubuga, Peter; Johnson, Kenneth; Tetteh, Christopher; Oundo, Joseph; Weathers, Andrew; Vaughan, James; Elbon, Suzanne; Tshimanga, Mufuta; Ndugulile, Faustine; Ohuabunwo, Chima; Evering-Watley, Michele; Mosha, Fausta; Oleribe, Obinna; Nguku, Patrick; Davis, Lora; Preacely, Nykiconia; Luce, Richard; Antara, Simon; Imara, Hiari; Ndjakani, Yassa; Doyle, Timothy; Espinosa, Yescenia; Kazambu, Ditu; Delissaint, Dieula; Ngulefac, John; Njenga, Kariuki

    2011-01-01

    As of 2010 sub-Saharan Africa had approximately 865 million inhabitants living with numerous public health challenges. Several public health initiatives [e.g., the United States (US) President's Emergency Plan for AIDS Relief and the US President's Malaria Initiative] have been very successful at reducing mortality from priority diseases. A competently trained public health workforce that can operate multi-disease surveillance and response systems is necessary to build upon and sustain these successes and to address other public health problems. Sub-Saharan Africa appears to have weathered the recent global economic downturn remarkably well and its increasing middle class may soon demand stronger public health systems to protect communities. The Epidemic Intelligence Service (EIS) program of the US Centers for Disease Control and Prevention (CDC) has been the backbone of public health surveillance and response in the US during its 60 years of existence. EIS has been adapted internationally to create the Field Epidemiology Training Program (FETP) in several countries. In the 1990s CDC and the Rockefeller Foundation collaborated with the Uganda and Zimbabwe ministries of health and local universities to create 2-year Public Health Schools Without Walls (PHSWOWs) which were based on the FETP model. In 2004 the FETP model was further adapted to create the Field Epidemiology and Laboratory Training Program (FELTP) in Kenya to conduct joint competency-based training for field epidemiologists and public health laboratory scientists providing a master's degree to participants upon completion. The FELTP model has been implemented in several additional countries in sub-Saharan Africa. By the end of 2010 these 10 FELTPs and two PHSWOWs covered 613 million of the 865 million people in sub-Saharan Africa and had enrolled 743 public health professionals. We describe the process that we used to develop 10 FELTPs covering 15 countries in sub-Saharan Africa from 2004 to 2010 as a

  8. Electrodril System Field Test Program, interim phase. Final report, January--April 1977

    Energy Technology Data Exchange (ETDEWEB)

    1978-02-01

    The Interim Phase between Phase 1 Testing and the Phase 2 Major Drilling System Test included more detailed analyses, some redesign, and additional field testing required to rectify three problems that surfaced during Phase 1 Testing: motor lower seal failures, excessive wear of bit shaft seal, and cable/connector failures. The Phase 1 Motor Lower Seal Failures were found to have been caused by failure to rigidly fix the Face Seal Stator and by having the Face Seal inversely designed into the motor system. Downhole testing with the seal inversely installed but with the stator rigidly fixed demonstrated that the seal performed satisfactorily. In all subsequent use of the motor, the seal should be configured as recommended by the manufacturer. Interim Phase Downhole Testing demonstrated that a properly refurbished bit shaft is capable of functioning satisfactorily in a drilling environment. Seal wear experienced during test indicates that these seals should be replaced periodically. The Interim Phase was used to provide extensive analysis into Phase 1 Cable/Connector Failures, evaluation of potential cable conductor insulation material, evaluation of stronger, more rigid material for fabricating the male connector body, and evaluation of ''Bondability'' of materials used in connector fabrication and cable insulation. These analyses and evaluations were used as inputs in the design, fabrication, and procurement cycle to yield a new replaceable Electrodril connector pair and armored cable with water blocked MS type connectors capable of accepting the replaceable Electrodril connectors. Repeated downhole matings were made during test. The cable and the replaceable male connector performed flawlessly. The internal conductor rings in the replaceable female connector gradually became oversize as the test progressed. Subsequent female connector rings will be fabricated using a harder, springier material to assure successful downhole mating even after

  9. Investigation of precipitate refinement in Mg alloys by an analytical composite failure model

    Energy Technology Data Exchange (ETDEWEB)

    Tabei, Ali; Li, Dongsheng; Lavender, Curt A.; Garmestani, Hamid

    2015-10-01

    An analytical model is developed to simulate precipitate refinement in second phase strengthened magnesium alloys. The model is developed based on determination of the stress fields inside elliptical precipitates embedded in a rate dependent inelastic matrix. The stress fields are utilized to determine the failure mode that governs the refinement behavior. Using an AZ31 Mg alloy as an example, the effects the applied load, aspect ratio and orientation of the particle is studied on the macroscopic failure of a single α-Mg17Al12 precipitate. Additionally, a temperature dependent version of the corresponding constitutive law is used to incorporate the effects of temperature. In plane strain compression, an extensional failure mode always fragments the precipitates. The critical strain rate at which the precipitates start to fail strongly depends on the orientation of the precipitate with respect to loading direction. The results show that the higher the aspect ratio is, the easier the precipitate fractures. Precipitate shape is another factor influencing the failure response. In contrast to elliptical precipitates with high aspect ratio, spherical precipitates are strongly resistant to sectioning. In pure shear loading, in addition to the extensional mode of precipitate failure, a shearing mode may get activated depending on orientation and aspect ratio of the precipitate. The effect of temperature in relation to strain rate was also verified for plane strain compression and pure shear loading cases.

  10. [Data bank for analysis of the normal visual field using the 30/1 central program of the automated Humphrey perimeter].

    Science.gov (United States)

    Béchetoille, A; Dykman, P; Muratet, J Y

    1986-01-01

    Quantification is one of the most interesting improvements given by the automated perimetry. Such approach has, for instance, permitted the development by J. Flammer of quantification indices for JO program of Octopus. However, for working this concept needs quantitative data on normal visual field. Using an Humphrey automated perimeter and central threshold 30/1 program, we have gathered with the "quantification" program ley Thot Informatique, normal data on 178 visual field from 117 normal outpatients attending Ophthalmology Department of the Angers Hospital (58 females-59 males). Then, those data have been ranked by age, to obtain reference visual fields and corresponding standard-deviation fields. There is a decrease in visual sensitivity in the superior part of the 30 degrees field when compared to inferior. There is a decrease in visual sensitivity with ageing-about 1 dB by decade-more in the peripheral part of the 30 degrees field than in the central part. Standard deviation visual field is of considerable interest to valid pathologic visual field detects. There is an increase standard deviation for the peripheral part of the 30 degrees field. Finally, standard deviation is increased in elderly people as compared to younger.

  11. Microchip capillary gel electrophoresis using programmed field strength gradients for the ultra-fast analysis of genetically modified organisms in soybeans.

    Science.gov (United States)

    Kim, Yun-Jeong; Chae, Joon-Seok; Chang, Jun Keun; Kang, Seong Ho

    2005-08-12

    We have developed a novel method for the ultra-fast analysis of genetically modified organisms (GMOs) in soybeans by microchip capillary gel electrophoresis (MCGE) using programmed field strength gradients (PFSG) in a conventional glass double-T microchip. Under the programmed electric field strength and 0.3% poly(ethylene oxide) sieving matrix, the GMO in soybeans was analyzed within only 11 s of the microchip. The MCGE-PFSG method was a program that changes the electric field strength during GMO analysis, and was also applied to the ultra-fast analysis of PCR products. Compared to MCGE using a conventional and constantly applied electric field, the MCGE-PFSG analysis generated faster results without the loss of resolving power and reproducibility for specific DNA fragments (100- and 250-bp DNA) of GM-soybeans. The MCGE-PFSG technique may prove to be a new tool in the GMO analysis due to its speed, simplicity, and high efficiency.

  12. A TRAINING PROGRAM FOR NURSING STAFF ON HEALTH HAZARDS OF CHEMICAL INSECTICIDES EXPOSURE IN A PRACTICAL FIELD.

    Science.gov (United States)

    El-Bahnasawy, Mamdouh M; Mohammad, Amina El-Hosini; Ragab, Ibrahim Fahmy; Morsy, Tosson A

    2015-08-01

    An insecticide is an agent used against insects, ticks, mites and other animals affecting human welfare. Exposure to Insecticides is one of the most important occupational risks among staff worker in Military camp, veterinary medicine, industry and household as well as schools and hospitals. This study Aimed to improve nursing staff knowledge regarding adverse health effects of chemical insecticides exposure in a military field. The study was conducted in one of the Main Military Hospital. was used a quasi-experimental research design to conduct this study. all nursing staff who work in a Military Hospital (n=55) who accept to participate in the research study. A significant improvement in the Nurses' Total knowledge score was found in post-test as compared to that in pre-test. All nurses obtained a satisfactory level of knowledge after the 1st & 2nd post-tests; all of them evaluate the program in relation to trainees' exnectations as "excellent".

  13. SolGeo. A new computer program for solute geothermometers and its application to Mexican geothermal fields

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Surendra P.; Pandarinath, Kailasa; Santoyo, Edgar [Departamento de Sistemas Energeticos, Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Priv. Xochicalco s/no., Col Centro, A.P. 34, Temixco, Mor. 62580 (Mexico)

    2008-12-15

    The freely available computer program Solute Geothermometers (SolGeo) was written and tested using geochemical data and reported geothermometric temperatures from several geothermal wells from around the world. Subsurface temperatures for the Mexican geothermal fields of Cerro Prieto, Las Tres Virgenes, Los Azufres, and Los Humeros were estimated based on different solute geothermometers and found to be generally in close agreement with measured well temperatures when considering errors in the calculations and measurements. For Los Humeros wells it was concluded that a better agreement of chemical geothermometric temperatures is observed with static formation than with bottom-hole temperatures (BHTs). It was also found that the widely used Na-K geothermometric equations generally give more consistent and more reliable temperature estimates than the other geothermometers, which should therefore be applied with caution. (author)

  14. [Effects of precipitation intensity on soil organic carbon fractions and their distribution under subtropical forests of South China].

    Science.gov (United States)

    Chen, Xiao-mei; Liu, Ju-xiu; Deng, Qi; Chu, Guo-wei; Zhou, Guo-yi; Zhang, De-qiang

    2010-05-01

    From December 2006 to June 2008, a field experiment was conducted to study the effects of natural precipitation, doubled precipitation, and no precipitation on the soil organic carbon fractions and their distribution under a successional series of monsoon evergreen broad-leaf forest, pine and broad-leaf mixed forest, and pine forest in Dinghushan Mountain of Southern China. Different precipitation treatments had no significant effects on the total organic carbon (TOC) concentration in the same soil layer under the same forest type (P > 0.05). In treatment no precipitation, particulate organic carbon (POC) and light fraction organic carbon (LFOC) were mainly accumulated in surface soil layer (0-10 cm); but in treatments natural precipitation and doubled precipitation, the two fractions were infiltrated to deeper soil layers. Under pine forest, soil readily oxidizable organic carbon (ROC) was significantly higher in treatment no precipitation than in treatments natural precipitation and doubled precipitation (P labile components POC, ROC, and LFOC.

  15. Effects of cryopreservation with a newly-developed magnetic field programmed freezer on periodontal ligament cells and pulp tissues.

    Science.gov (United States)

    Abedini, S; Kaku, M; Kawata, T; Koseki, H; Kojima, S; Sumi, H; Motokawa, M; Fujita, T; Ohtani, J; Ohwada, N; Tanne, K

    2011-06-01

    The purpose of this study was to evaluate the effects of long-term cryopreservation on the isolated human periodontal ligament cells (PDL) and pulp tissues. In the first part of study, 10 freshly extracted teeth were selected and divided into two groups. In the cryopreserved group, the teeth were frozen for 5 years using a programmed freezer combined with a magnetic field, known as Cells Alive System "CAS". As for the control group, freshly extracted teeth were used. In each group, extracted PDL tissues were cultured and gene expression and protein concentration of collagen type I, alkaline-phosphatase (ALP) and vascular endothelial growth factor (VEGF) was compared between the two groups. In the second part, pulp tissues were obtained from 10 mature and immature third molars which were freshly extracted or cryopreserved for three months. Expression of VEGF and nerve growth factor (NGF) mRNAs and the protein concentration in the supernatant were investigated. Results indicated that long-term cryopreservation with the use of CAS freezer cannot affect the growth rate and characteristics of PDL cells. There was no significant difference in VEGF expression and VEGF and NGF protein concentration of pulp cells derived from cryopreserved teeth with immature apex and control group with mature root formation. Finally, proper PDL regeneration and appropriate apexogenesis after transplanting magnetically cryopreserved immature tooth was clinically confirmed. These findings demonstrate that teeth banking with the use of magnetic field programmed freezer can be available for future autotransplantation as a treatment modality for replacing missing teeth. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. The North Carolina Field Test: Field performance of the preliminary version of an advanced weatherization audit for the Department of Energy`s Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, T.R.

    1994-06-01

    The field performance of weatherizations based on a newly-developed advanced technique for selecting residential energy conservation measures was tested alongside current Retro-Tech-based weatherizations in North Carolina. The new technique is computer-based and determines measures based on the needs of an individual house. In addition, it recommends only those measures that it determines will have a benefit-to-cost ratio greater than 1 for the house being evaluated. The new technique also considers the interaction of measures in computing the benefit-to-cost ratio of each measure. The two weatherization approaches were compared based on implementation ease, measures installed, labor and cost requirements, and both heating and cooling energy savings achieved. One-hundred and twenty houses with the following characteristics participated: the occupants were low-income, eligible for North Carolina`s current weatherization program, and responsible for their own fuel and electric bills. Houses were detached single-family dwellings, not mobile homes; were heated by kerosene, fuel oil, natural gas, or propane; and had one or two operating window air conditioners. Houses were divided equally into one control group and two weatherization groups. Weekly space heating and cooling energy use, and hourly indoor and outdoor temperatures were monitored between November 1989 and September 1990 (pre-period) and between December 1990 and August 1991 (post-period). House consumption models were used to normalize for annual weather differences and a 68{degrees}F indoor temperature. Control group savings were used to adjust the savings determined for the weatherization groups. The two weatherization approaches involved installing attic and floor insulations in near equivalent quantities, and installing storm windows and wall insulation in drastically different quantities. Substantial differences also were found in average air leakage reductions for the two weatherization groups.

  17. Hourly and Daily Precipitation Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Precipitation reports submitted on many form types, including tabular and autographic charts. Reports are almost exclusively from the US Cooperative Observer Network.

  18. Electrostatic precipitators for industrial applications

    CERN Document Server

    Francis, Steve L; Bradburn, Keith M

    2014-01-01

    This Guidebook provides basic knowledge of the physics and power supplies of electrostatic precipitators. It also deals with practical aspects of ESP design and gives examples of typical applications of ESPs.

  19. Atrial Ectopics Precipitating Atrial Fibrillation

    Directory of Open Access Journals (Sweden)

    Johnson Francis

    2015-04-01

    Full Text Available Holter monitor tracing showing blocked atrial ectopics and atrial ectopic precipitating atrial fibrillation is being demonstrated. Initially it was coarse atrial fibrillation, which rapidly degenerated into fine atrial fibrillation.

  20. Environmental Radioactivity, Temperature, and Precipitation.

    Science.gov (United States)

    Riland, Carson A.

    1996-01-01

    Reports that environmental radioactivity levels vary with temperature and precipitation and these effects are due to radon. Discusses the measurement of this environmental radioactivity and the theory behind it. (JRH)

  1. Identifying Anomality in Precipitation Processes

    Science.gov (United States)

    Jiang, P.; Zhang, Y.

    2014-12-01

    Safety, risk and economic analyses of engineering constructions such as storm sewer, street and urban drainage, and channel design are sensitive to precipitation storm properties. Whether the precipitation storm properties exhibit normal or anomalous characteristics remains obscure. In this study, we will decompose a precipitation time series as sequences of average storm intensity, storm duration and interstorm period to examine whether these sequences could be treated as a realization of a continuous time random walk with both "waiting times" (interstorm period) and "jump sizes" (average storm intensity and storm duration). Starting from this viewpoint, we will analyze the statistics of storm duration, interstorm period, and average storm intensity in four regions in southwestern United States. We will examine whether the probability distribution is temporal and spatial dependent. Finally, we will use fractional engine to capture the randomness in precipitation storms.

  2. A description of a staff development program: Preparing the elementary school classroom teacher to lead environmental field trips and to use an integrated subject approach to environmental education

    Science.gov (United States)

    Egana, John Joseph

    This study of the Field Trip Specialist Program (FTS) described how a professional development plan fostered change in the traditional roles of third and fourth grade teachers. Teachers that volunteered were prepared to become interpretive guides for their class on environmental field trips, integrate their basic subject areas lessons into an environmental science context, and develop their self-perception as professional educators. This qualitative study made use of quantitative data and drew on information collected over four years from surveys, interviews, classroom observations, field trip and workshop observations, focus groups, journals and assessments performed in Florida. The FTS Program attracted teachers who thought it was important for all students to understand environmental issues, and these teachers believed in integrated instruction. These beliefs were inconsistent with many aspects of school culture. FTS invited the participation of these teachers and encouraged them to take control of the program by serving as instructors and program developers. Teachers described themselves as prepared to deliver the FTS Program with a high level of motivation and relevance. They also credited the program as beneficial in preparation for the Florida Comprehensive Assessment Tests (FCAT). Teachers reported that their responsibility as field trip leaders was the primary factor motivating them to provide conscientious presentation of pre- and post-field trip lessons and thorough integration of environmental topics in basic subject area instruction. Despite the impact of the field trip leadership factor, I could not find another program in the State of Florida that required teachers to lead their own field trips. Other influential factors specific to this program were: Voluntary participation, on-site field instruction, peer instructors and program developers, high quality and task specific materials, and pre- and post-assessments for students. Factors were identified

  3. The Relationships Between the Trends of Mean and Extreme Precipitation

    Science.gov (United States)

    Zhou, Yaping; Lau, William K.-M.

    2017-01-01

    This study provides a better understanding of the relationships between the trends of mean and extreme precipitation in two observed precipitation data sets: the Climate Prediction Center Unified daily precipitation data set and the Global Precipitation Climatology Program (GPCP) pentad data set. The study employs three kinds of definitions of extreme precipitation: (1) percentile, (2) standard deviation and (3) generalize extreme value (GEV) distribution analysis for extreme events based on local statistics. Relationship between trends in the mean and extreme precipitation is identified with a novel metric, i.e. area aggregated matching ratio (AAMR) computed on regional and global scales. Generally, more (less) extreme events are likely to occur in regions with a positive (negative) mean trend. The match between the mean and extreme trends deteriorates for increasingly heavy precipitation events. The AAMR is higher in regions with negative mean trends than in regions with positive mean trends, suggesting a higher likelihood of severe dry events, compared with heavy rain events in a warming climate. AAMR is found to be higher in tropics and oceans than in the extratropics and land regions, reflecting a higher degree of randomness and more important dynamical rather than thermodynamical contributions of extreme events in the latter regions.

  4. A subgrid parameterization scheme for precipitation

    Directory of Open Access Journals (Sweden)

    S. Turner

    2012-04-01

    Full Text Available With increasing computing power, the horizontal resolution of numerical weather prediction (NWP models is improving and today reaches 1 to 5 km. Nevertheless, clouds and precipitation formation are still subgrid scale processes for most cloud types, such as cumulus and stratocumulus. Subgrid scale parameterizations for water vapor condensation have been in use for many years and are based on a prescribed probability density function (PDF of relative humidity spatial variability within the model grid box, thus providing a diagnosis of the cloud fraction. A similar scheme is developed and tested here. It is based on a prescribed PDF of cloud water variability and a threshold value of liquid water content for droplet collection to derive a rain fraction within the model grid. Precipitation of rainwater raises additional concerns relative to the overlap of cloud and rain fractions, however. The scheme is developed following an analysis of data collected during field campaigns in stratocumulus (DYCOMS-II and fair weather cumulus (RICO and tested in a 1-D framework against large eddy simulations of these observed cases. The new parameterization is then implemented in a 3-D NWP model with a horizontal resolution of 2.5 km to simulate real cases of precipitating cloud systems over France.

  5. A comparison of the flood precipitation episode in August 2002 with historic extreme precipitation events on the Czech territory

    Science.gov (United States)

    Řezáčová, Daniela; Kašpar, Marek; Müller, Miloslav; Sokol, Zbyněk; Kakos, Vilibald; Hanslian, David; Pešice, Petr

    2005-09-01

    The hydro-meteorological characteristics of the flood from August 2002, which affected a great part of the Czech territory, particularly the Vltava and Labe river basin, were compared with corresponding conditions during similar flood events in the summer seasons of 1997, 1890, 1897 and 1903. The comparison shows analogies in synoptic conditions and causal precipitation heights. The heaviest precipitation fell in the area of a considerable horizontal pressure gradient on the rearward side of the cyclone which advanced very slowly to the north-east across Central Europe and created conditions for the transport of moist air as well as for an organized long-term updraft enhanced in orographically exposed regions. The varying features of the individual events were based on the spatial-temporal distribution of causal precipitation and also on the very different saturation of the catchments. It was chiefly the extraordinary time concentration of precipitation together with the highest catchment saturation that made the flood in 2002 the most extreme. The extremeness of meteorological fields during two episodes in July 1997 was compared with two episodes in August 2002 with the aid of the reanalysis data from ECMWF. The first episode in 1997 and the second episode in 2002 were the most similar and more extreme in terms of the large-scale fields of basic meteorological quantities. The similar features of these episodes are specifically an intensive influx of moisture into Central Europe and intensive upward motions in the precipitation area. The extremeness of upper- and low-level potential vorticity fields was evaluated to diagnose the behavior of the cyclone and frontal precipitation bands accompanying it. The suitable spatial configuration of positive upper- and low-level potential vorticity anomalies induced an additional amplification of upward motions in the precipitation area that apparently contributed to triggering the heavy precipitation over Central Europe. On

  6. Stord Orographic Precipitation Experiment (STOPEX: an overview of phase I

    Directory of Open Access Journals (Sweden)

    A. Sandvik

    2007-04-01

    Full Text Available STOPEX (Stord Orographic Precipitation Experiment is a research project of the Geophysical Institute, University of Bergen, Norway, dedicated to the investigation of orographic effects on fine scale precipitation patterns by a combination of numerical modelling and tailored measurement campaigns. Between 24 September and 16 November 2005 the first field campaign STOPEX I has been performed at and around the island of Stord at the west coast of Norway, about 50 km south of Bergen. 12 rain gauges and 3 autonomous weather stations have been installed to measure the variability of precipitation and the corresponding meteorological conditions. This paper gives an overview of the projects motivation, a description of the campaign and a presentation of the precipitation measurements performed. In addition, the extreme precipitation event around 14 November with precipitation amounts up to 240 mm in less than 24 h, is described and briefly discussed. In this context preliminary results of corresponding MM5 simulations are presented, that indicate the problems as well as potential improvement strategies with respect to modelling of fine scale orographic precipitation.

  7. A GPGPU based program to solve the TDSE in intense laser fields through the finite difference approach

    CERN Document Server

    Broin, Cathal Ó

    2013-01-01

    We present a General-purpose computing on graphics processing units (GPGPU) based computational program and framework for the electronic dynamics of atomic systems under intense laser fields. We present our results using the case of hydrogen, however the code is trivially extensible to tackle problems within the single-active electron (SAE) approximation. Building on our previous work, we introduce the first available GPGPU based implementation of the Taylor, Runge-Kutta and Lanczos based methods created with strong field ab-initio simulations specifically in mind; CLTDSE. The code makes use of finite difference methods and the OpenCL framework for GPU acceleration. The specific example system used is the classic test system; Hydrogen. After introducing the standard theory, and specific quantities which are calculated, the code, including installation and usage, is discussed in-depth. This is followed by some examples and a short benchmark between an 8 hardware thread (i.e logical core) Intel Xeon CPU and an ...

  8. GeoFORCE Alaska: Four-Year Field Program Brings Rural Alaskan High School Students into the STEM Pipeline

    Science.gov (United States)

    Fowell, S. J.; Rittgers, A.; Stephens, L.; Hutchinson, S.; Peters, H.; Snow, E.; Wartes, D.

    2016-12-01

    GeoFORCE Alaska is a four-year, field-based, summer geoscience program designed to raise graduation rates in rural Alaskan high schools, encourage participants to pursue college degrees, and increase the diversity of Alaska's technical workforce. Residents of predominantly Alaska Native villages holding degrees in science, technology, engineering, or math (STEM) bring valuable perspectives to decisions regarding management of cultural and natural resources. However, between 2010 and 2015 the average dropout rate for students in grades 7-12 was 8.5% per year in the North Slope School District and 7% per year in the Northwest Arctic School District. 2015 graduation rates were 70% and 75%, respectively. Statewide statistics highlight the challenge for Alaska Native students. During the 2014-2015 school year alone 37.6% of Alaska Native students dropped out of Alaskan public schools. At the college level, Alaska Native students are underrepresented in University of Alaska Fairbanks (UAF) science departments. Launched in 2012 by UAF in partnership with the longstanding University of Texas at Austin program, GeoFORCE applies the cohort model, leading the same group of high school students on geological field academies during four consecutive summers. Through a combination of active learning, teamwork, and hands-on projects at spectacular geological locations, students gain academic skills and confidence that facilitate high school and college success. To date, GeoFORCE Alaska has recruited two cohorts. 78% of these students identify as Alaska Native, reflecting community demographics. The inaugural cohort of 18 students from the North Slope Borough completed the Fourth-Year Academy in summer 2015. 94% of these students graduated from high school, at least 72% plan to attend college, and 33% will major in geoscience. A second cohort of 34 rising 9th and 10th graders entered the program in 2016. At the request of corporate sponsors, this cohort was recruited from both the

  9. Electric and Magnetic Fields (EMF) RAPID Program Engineering Project 8: FINAL REPORT, Evaluation of Field Reduction Technologies, Volume 1 (Report) and Volume 2 (Appendices)

    Energy Technology Data Exchange (ETDEWEB)

    Commonwealth Associates, Inc.; IIT Research Institute

    1997-08-01

    This draft report consists of two volumes. Volume 1, the main body, contains an introducto~ sectionj an overview of magnetic fields sectio~ and field reduction technology evaluation section. Magnetic field reduction methods are evalpated for transmission lines, distribution Iines,sulxtations, building wiring applkmd machinery, and transportation systems. The evaluation considers effectiveness, co% and other ftiors. Volume 2 contains five appendices, Append~ A presents magnetic field shielding information. Appendices B and C present design assumptions and magnetic field plots for transmission and distribution lines, respectively. Appendices D and E present cost estimate details for transmission and distribution limes, respectively.

  10. Modes of winter precipitation variability in the North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Zorita, E. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Hydrophysik; Saenz, J.; Fernandez, J.; Zubillaga, J. [Bilbao Univ. (Spain)

    2001-07-01

    The modes of variability of winter precipitation in the North Atlantic sector are identified by Empirical Orthogonal Functions Analysis in the NCEP/NCAR global reanalysis data sets. These modes are also present in a gridded precipitation data set over the Western Europe. The large-scale fields of atmospheric seasonal mean circulation, baroclinic activity, evaporation and humidity transport that are connected to the rainfall modes have been also analyzed in order to investigate the physical mechanisms that are causally linked to the rainfall modes. The results indicate that the leading rainfall mode is associated to the North Atlantic oscillation and represents a meridional redistribution of precipitation in the North Atlantic through displacements of the storm tracks. The second mode is related to evaporation anomalies in the Eastern Atlantic that precipitate almost entirely in the Western Atlantic. The third mode seems to be associated to meridional transport of water vapor from the Tropical Atlantic. (orig.)

  11. The Global Precipitation Measurement Mission

    Science.gov (United States)

    Jackson, Gail

    2014-05-01

    The Global Precipitation Measurement (GPM) mission's Core satellite, scheduled for launch at the end of February 2014, is well designed estimate precipitation from 0.2 to 110 mm/hr and to detect falling snow. Knowing where and how much rain and snow falls globally is vital to understanding how weather and climate impact both our environment and Earth's water and energy cycles, including effects on agriculture, fresh water availability, and responses to natural disasters. The design of the GPM Core Observatory is an advancement of the Tropical Rainfall Measuring Mission (TRMM)'s highly successful rain-sensing package [3]. The cornerstone of the GPM mission is the deployment of a Core Observatory in a unique 65o non-Sun-synchronous orbit to serve as a physics observatory and a calibration reference to improve precipitation measurements by a constellation of 8 or more dedicated and operational, U.S. and international passive microwave sensors. The Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will provide measurements of 3-D precipitation structures and microphysical properties, which are key to achieving a better understanding of precipitation processes and improving retrieval algorithms for passive microwave radiometers. The combined use of DPR and GMI measurements will place greater constraints on possible solutions to radiometer retrievals to improve the accuracy and consistency of precipitation retrievals from all constellation radiometers. Furthermore, since light rain and falling snow account for a significant fraction of precipitation occurrence in middle and high latitudes, the GPM instruments extend the capabilities of the TRMM sensors to detect falling snow, measure light rain, and provide, for the first time, quantitative estimates of microphysical properties of precipitation particles. The GPM Core Observatory was developed and tested at NASA

  12. The Influence of Prior Knowledge, University Coursework, and Field Experience on Primary Preservice Teachers' Use of Reading Comprehension Strategies in a Year-Long, Field-Based Teacher Education Program

    Science.gov (United States)

    Sampson, Mary Beth; Linek, Wayne M.; Raine, I. Laverne; Szabo, Susan

    2013-01-01

    This descriptive study employed mixed methods to explore preservice teachers' initial knowledge and subsequent use of explicitly taught reading comprehension strategies in primary grade classrooms during a year-long, field-based teacher preparation program. Self-Knowledge Rating Surveys, Strategy Multiple-Choice Tests, strategy logs, lesson plans,…

  13. Improved hydrological modeling for remote regions using a combination of observed and simulated precipitation data

    DEFF Research Database (Denmark)

    van der Linden, Sandra; Christensen, Jens Hesselbjerg

    2003-01-01

    -resolution regional climate model (HIRHAM4) with a mean-field bias correction using observed precipitation. A hydrological model (USAFLOW) was applied to simulate runoff using observed precipitation and a combination of observed and simulated precipitation as input. The method was illustrated for the remote Usa basin......Precipitation, as simulated by climate models, can be used as input in hydrological models, despite possible biases both in the total annual amount simulated as well as the seasonal variation. Here we elaborated on a new technique, which adjusted precipitation data generated by a high......, situated in the European part of Arctic Russia, close to the Ural Mountains. It was shown that runoff simulations agree better with observations when the combined precipitation data set was used than when only observed precipitation was used. This appeared to be because the HIRHAM4 model data compensated...

  14. Electromagnetic Modeling of the Propagation Characteristics of Satellite Communications Through Composite Precipitation Layers, Part1: Mathematical Formulation

    Directory of Open Access Journals (Sweden)

    H.M. Al-Rizzo

    2000-12-01

    Full Text Available A systematic and general formulation of a Propagation Simulation Program (PSP is developed for the coherent field of microwave and millimeter wave carrier signals traversing intermediate layered precipitation media, taking into account the random behavior of particle size, orientation, shape and concentration distributions.  Based on a rigorous solution of the volumetric multiple-scattering integral equations, the formalism offers the capability of treating the potential transmission impairments on satellite-earth links and radar remote sensing generated by composite atmospheric layers of precipitation in conjunction with the finite polarization isolation of dual-polarized transmitting and receiving antennas. A multi-layered formulation is employed which encompasses an ensemble of discrete particles comprising an arbitrary mixture of ice crystals, melting snow and raindrops that may exist simultaneously along satellite-earth communication paths.

  15. Complexing-precipitating geochemical barriers

    Science.gov (United States)

    Savenko, A. V.

    2017-02-01

    New types of geochemical barriers on which chemical elements are immobilized as a result of combined complex formation and precipitation of barely soluble mineral phases are examined. A significant concentration of major components (Fe, Al) forming more stable complexes than an immobilized component X in the material is a necessary condition for this type of geochemical barriers. Filtration of the solution through a geochemical barrier is accompanied by substitution of X in the complex with a major component. As a result, the activity of X in the free state increases, and one barely soluble mineral phase or another of the component X precipitates when the state of saturation is achieved.

  16. Assimilation of radar quantitative precipitation estimations in the Canadian Precipitation Analysis (CaPA)

    Science.gov (United States)

    Fortin, Vincent; Roy, Guy; Donaldson, Norman; Mahidjiba, Ahmed

    2015-12-01

    The Canadian Precipitation Analysis (CaPA) is a data analysis system used operationally at the Canadian Meteorological Center (CMC) since April 2011 to produce gridded 6-h and 24-h precipitation accumulations in near real-time on a regular grid covering all of North America. The current resolution of the product is 10-km. Due to the low density of the observational network in most of Canada, the system relies on a background field provided by the Regional Deterministic Prediction System (RDPS) of Environment Canada, which is a short-term weather forecasting system for North America. For this reason, the North American configuration of CaPA is known as the Regional Deterministic Precipitation Analysis (RDPA). Early in the development of the CaPA system, weather radar reflectivity was identified as a very promising additional data source for the precipitation analysis, but necessary quality control procedures and bias-correction algorithms were lacking for the radar data. After three years of development and testing, a new version of CaPA-RDPA system was implemented in November 2014 at CMC. This version is able to assimilate radar quantitative precipitation estimates (QPEs) from all 31 operational Canadian weather radars. The radar QPE is used as an observation source and not as a background field, and is subject to a strict quality control procedure, like any other observation source. The November 2014 upgrade to CaPA-RDPA was implemented at the same time as an upgrade to the RDPS system, which brought minor changes to the skill and bias of CaPA-RDPA. This paper uses the frequency bias indicator (FBI), the equitable threat score (ETS) and the departure from the partial mean (DPM) in order to assess the improvements to CaPA-RDPA brought by the assimilation of radar QPE. Verification focuses on the 6-h accumulations, and is done against a network of 65 synoptic stations (approximately two stations per radar) that were withheld from the station data assimilated by Ca

  17. Improving the prediction of ammonium nitrogen removal through struvite precipitation.

    Science.gov (United States)

    Zhou, Shaoqi; Wu, Yanyu

    2012-02-01

    Both an optimization statistical model and a chemical thermodynamic equilibrium computer model were proposed to develop, improve, and optimize struvite precipitation process. The NH(4)-N in synthetically prepared wastewater was removed using struvite precipitation technology. A quadratic statistical modeling, response surface methodology (RSM), was applied to investigate the improvement availability for high-level removal of ammonium-nitrogen by struvite precipitation. Then, a chemical equilibrium model, Visual MINTEQ, was used to calculate the equilibrium speciation and saturation index in aqueous solution and solid phases. In addition, the availability of Mg(2+), NH(4)(+), and PO(4)(3-) ions as a function of pH was modeled. The predicted and experimental data indicated that the two models might describe the experiments well. The results showed that pH was an important parameter in ammonium-nitrogen removals at low initial NH(4)-N concentration. P/N molar ratio was a limiting factor on struvite precipitation at high initial NH(4)-N concentration. Within the ranges of the investigated factors, Visual MINTEQ program can be proposed to predetermine the concentration of ammonium precipitated by struvite, and RSM can be used to predict total NH(4)-N removal by both struvite precipitation and ammonia volatilization from our investigated system operated at high pH and opened to the atmosphere.

  18. Improvement of APHRODITE precipitation data over South Korea

    Science.gov (United States)

    Lee, Gil; Cha, Dong-Hyun; Park, Chang-yong

    2017-04-01

    The APHRODITE (Asian Precipitation - Highly-Resolved Observational Data Integration Towards Evaluation of water resources) data has been widely used for the evaluation of the numerical model due to its higher spatial and temporal resolutions. However, some studies have indicated that it significantly underestimates the extreme precipitation values for several regions compared with station-based observation. In this study, therefore, the 25 year (1981-2005) APHRODITE precipitation data over South Korea was revised using Automated Synoptic Observing System (ASOS) data from Korea Meteorological Administration (KMA). After the spatial resolution and temporal interval of the ASOS data were changed to be same as those in the APHRODITE data, the GEV (Generalized Extreme Value) distribution for each data was calculated. After then, the GEV distribution of the APHRODITE data was corrected using the quantile mapping method. The corrected APHRODITE data was similar to the annual mean precipitation of the ASOS data. In particular, the annual mean precipitation over South Korea reasonably increased by 10% and the extreme value of precipitation have significantly improved. Acknowledgement The research was supported by the Korea Meteorological Administration Research and Development program under grant KMIPA 2015-2083 and the National Research Foundation of Korea Grant funded by the Ministry of Science, ICT and Future Planning of Korea (NRF-2016M3C4A7952637) for its support and assistant in completion of the study.

  19. Field lysimeter investigations: Low-level waste data base development program for fiscal year 1996. Annual report; Volume 9

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, J.W. Jr.; Rogers, R.D.; Larsen, I.L. [Lockheed Martin Idaho Technologies Co., Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab.; Jastrow, J.D. [Argonne National Lab., IL (United States); Sanford, W.E. [Oak Ridge National Lab., TN (United States); Sullivan, T.M.; Fuhrmann, M. [Brookhaven National Lab., Upton, NY (United States)

    1997-08-01

    A data base development program, funded by the US Nuclear Regulatory Commission, is (a) studying the degradation effects in organic ion-exchange resins caused by radiation, (b) examining the adequacy of test procedures recommended in the Branch Technical Position on Waste Form to meet the requirements of 10 CFR 61 using solidified ion-exchange resins, (c) obtaining performance information on solidified ion-exchange resins in a disposal environment, and (d) determining the condition of liners used to dispose the ion-exchange resins. During the field testing experiments, both portland type 1--2 cement and Dow vinyl ester-styrene waste form samples were tested in lysimeter arrays located at Argonne National Laboratory-East (ANL-E) in Illinois and at Oak Ridge National Laboratory (ORNL). The study was designed to provide continuous data on nuclide release and movement, as well as environmental conditions, over an extended period. Those experiments have been shut down and are to be exhumed. This report discusses the plans for removal, sampling, and analysis of waste form and soil cores from the lysimeters. Results of partition coefficient determinations are presented, as well as application of a source term computer code using those coefficients to predict the lysimeter results. A study of radionuclide-containing colloids associated with the leachate waters removed from these lysimeters is described. An update of upward migration of radionuclides in the sand-filled lysimeter at ORNL is included.

  20. A case of tooth autotransplantation after long-term cryopreservation using a programmed freezer with a magnetic field.

    Science.gov (United States)

    Kaku, Masato; Shimasue, Hiroshi; Ohtani, Junji; Kojima, Shunichi; Sumi, Hiromi; Shikata, Hanaka; Kojima, Shotoku; Motokawa, Masahide; Abonti, Tahsin Raquib; Kawata, Toshitsugu; Tanne, Kazuo; Tanimoto, Kotaro

    2015-05-01

    This case report describes the treatment of a skeletal Class III malocclusion with autotransplantation of a cryopreserved tooth. To gain an esthetic facial profile and good occlusion, extraction of bimaxillary premolars and surgical therapy were chosen. The patient had chronic apical periodontitis on the lower left first molar. Although she did not feel any pain in that region, the tooth was considered to have a poor prognosis. Therefore, we cryopreserved the extracted premolars to prepare for autotransplantation in the lower first molar area because the tooth would probably need to be removed in the future. The teeth were frozen by a programmed freezer with a magnetic field (CAS freezer) that was developed for tissue cryopreservation and were cryopreserved in -150°C deep freezer. After 1.5 years of presurgical orthodontic treatment, bilateral sagittal split ramus osteotomy was performed for mandible setback. Improvement of the facial profile and the occlusion were achieved in the retention phase. Six years after the initial visit, the patient had pain on the lower left first molar, and discharge of pus was observed, so we extracted the lower left first molar and autotransplanted the cryopreserved premolar. Three years later, healthy periodontium was observed at the autotransplanted tooth. This case report suggests that long-term cryopreservation of teeth by a CAS freezer is useful for later autotransplantation, and this can be a viable technique to replace missing teeth.

  1. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schlager

    2002-04-19

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG&E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns Powder

  2. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    C. Jean Bustard

    2001-07-06

    With the Nation's coal-burning utilities facing the possibility of tighter controls on mercury pollutants, the U.S. Department of Energy is funding projects that could offer power plant operators better ways to reduce these emissions at much lower costs. Mercury is known to have toxic effects on the nervous system of humans and wildlife. Although it exists only in trace amounts in coal, mercury is released when coal burns and can accumulate on land and in water. In water, bacteria transform the metal into methylmercury, the most hazardous form of the metal. Methylmercury can collect in fish and marine mammals in concentrations hundreds of thousands times higher than the levels in surrounding waters. One of the goals of DOE is to develop technologies by 2005 that will be capable of cutting mercury emissions 50 to 70 percent at well under one-half of today's costs. ADA Environmental Solutions (ADA-ES) is managing a project to test mercury control technologies at full scale at four different power plants from 2000--2003. The ADA-ES project is focused on those power plants that are not equipped with wet flue gas desulfurization systems. ADA-ES will develop a portable system that will be moved to four different utility power plants for field testing. Each of the plants is equipped with either electrostatic precipitators or fabric filters to remove solid particles from the plant's flue gas. ADA-ES's technology will inject a dry sorbent, such as fly ash or activated carbon, that removes the mercury and makes it more susceptible to capture by the particulate control devices. A fine water mist may be sprayed into the flue gas to cool its temperature to the range where the dry sorbent is most effective. PG and E National Energy Group is providing two test sites that fire bituminous coals and are both equipped with electrostatic precipitators and carbon/ash separation systems. Wisconsin Electric Power Company is providing a third test site that burns

  3. A video precipitation sensor for imaging and velocimetry of hydrometeors

    Science.gov (United States)

    Liu, X. C.; Gao, T. C.; Liu, L.

    2014-07-01

    A new method to determine the shape and fall velocity of hydrometeors by using a single CCD camera is proposed in this paper, and a prototype of a video precipitation sensor (VPS) is developed. The instrument consists of an optical unit (collimated light source with multi-mode fibre cluster), an imaging unit (planar array CCD sensor), an acquisition and control unit, and a data processing unit. The cylindrical space between the optical unit and imaging unit is sampling volume (300 mm × 40 mm × 30 mm). As the precipitation particles fall through the sampling volume, the CCD camera exposes twice in a single frame, which allows the double exposure of particles images to be obtained. The size and shape can be obtained by the images of particles; the fall velocity can be calculated by particle displacement in the double-exposure image and interval time; the drop size distribution and velocity distribution, precipitation intensity, and accumulated precipitation amount can be calculated by time integration. The innovation of VPS is that the shape, size, and velocity of precipitation particles can be measured by only one planar array CCD sensor, which can address the disadvantages of a linear scan CCD disdrometer and an impact disdrometer. Field measurements of rainfall demonstrate the VPS's capability to measure micro-physical properties of single particles and integral parameters of precipitation.

  4. Application of MET for the validation of satellite precipitation estimates

    Science.gov (United States)

    Kucera, P.; Brown, B.; Bullock, R.; Ahijevych, D.

    2009-04-01

    The goal of this study is to demonstrate the usefulness of the NCAR Model Evaluation Tools (MET) applied to the validation of high-resolution satellite rainfall estimates. MET provides grid-to-point, grid-to-grid, and advanced spatial validation techniques in one unified, modular toolkit that can be applied to a variety of spatial fields (e.g., satellite precipitation estimates). Most validation studies rely on the use of standard validation measures (mean error, bias, mean absolute error, and root mean squared error, etc.) to quantify the quality of the precipitation estimates. Often these measures indicate poorer performance because, among other things, they are unable to account for small-scale variability or discriminate types of errors such as displacement in time and/or space (location, intensity, and orientation errors, etc.) in the precipitation estimates. This issue has motivated recent research and development of many new techniques such as, but not limited to, scale decomposition, fuzzy neighborhood, and object orientated methods for evaluating spatial precipitation estimates. This study will compute statistics for high resolution satellite estimates of precipitation using standard validation measures for the comparison with object orientated measures using the MET built-in Method for Object-based Diagnostic Evaluation (MODE) algorithm using the radar-rainfall estimates as the reference. Rainfall estimates generated by the TRMM Multi-satellite precipitation analysis (TMPA) and CPC Morphing technique (CMORPH) will be used demonstrate the new validation techniques.

  5. The North Carolina Field Test: Field Performance of the Preliminary Version of an Advanced Weatherization Audit for the Department of Energy's Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, T.R.

    1994-01-01

    The field performance of weatherizations based on a newly-developed advanced technique for selecting residential energy conservation measures was tested alongside current Retro-Tech-based weatherizations in North Carolina. The new technique is computer-based and determines measures based on the needs of an individual house. In addition, it recommends only those measures that it determines will have a benefit-to-cost ratio greater than 1 for the house being evaluated. The new technique also considers the interaction of measures in computing the benefit-to-cost ratio of each measure. The two weatherization approaches were compared based on implementation ease, measures installed, labor and cost requirements, and both heating and cooling energy savings achieved. One-hundred and twenty houses with the following characteristics participated: the occupants were low-income, eligible for North Carolina's current weatherization program, and responsible for their own fuel and electric bills. Houses were detached single-family dwellings, not mobile homes; were heated by kerosene, fuel oil, natural gas, or propane; and had one or two operating window air conditioners. Houses were divided equally into one control group and two weatherization groups. Weekly space heating and cooling energy use, and hourly indoor and outdoor temperatures were monitored between November 1989 and September 1990 (pre-period) and between December 1990 and August 1991 (post-period). House consumption models were used to normalize for annual weather differences and a 68 F indoor temperature. Control group savings were used to adjust the savings determined for the weatherization groups. The two weatherization approaches involved installing attic and floor insulations in near equivalent quantities, and installing storm windows and wall insulation in drastically different quantities. Substantial differences also were found in average air leakage reductions for the two weatherization groups. Average

  6. Enhancing the Effectiveness of Carbon Dioxide Flooding by Managing Asphaltene Precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Deo, M.D.

    2001-01-12

    The objective of this project was to identify conditions at which carbon dioxide induced precipitation occurred in crude oils. Establishing compositions of the relevant liquid and solid phases was planned. Other goals of the project were to determine if precipitation occurred in cores and to implement thermodynamic and compositional models to examine the phenomenon. Exploring kinetics of precipitation was also one of the project goals. Crude oil from the Rangely Field (eastern Colorado) was used as a prototype.

  7. Acid Precipitation: Causes and Consequences.

    Science.gov (United States)

    Babich, Harvey; And Others

    1980-01-01

    This article is the first of three articles in a series on the acid rain problem in recent years. Discussed are the causes of acid precipitation and its consequences for the abiotic and biotic components of the terrestrial and aquatic ecosystems, and for man-made materials. (Author/SA)

  8. Waste and Simulant Precipitation Issues

    Energy Technology Data Exchange (ETDEWEB)

    Steele, W.V.

    2000-11-29

    As Savannah River Site (SRS) personnel have studied methods of preparing high-level waste for vitrification in the Defense Waste Processing Facility (DWPF), questions have arisen with regard to the formation of insoluble waste precipitates at inopportune times. One option for decontamination of the SRS waste streams employs the use of an engineered form of crystalline silicotitanate (CST). Testing of the process during FY 1999 identified problems associated with the formation of precipitates during cesium sorption tests using CST. These precipitates may, under some circumstances, obstruct the pores of the CST particles and, hence, interfere with the sorption process. In addition, earlier results from the DWPF recycle stream compatibility testing have shown that leaching occurs from the CST when it is stored at 80 C in a high-pH environment. Evidence was established that some level of components of the CST, such as silica, was leached from the CST. This report describes the results of equilibrium modeling and precipitation studies associated with the overall stability of the waste streams, CST component leaching, and the presence of minor components in the waste streams.

  9. Pushing precipitation to the extremes in distributed experiments: Recommendations for simulating wet and dry years

    Science.gov (United States)

    Knapp, Alan K.; Avolio, Meghan L.; Beier, Claus; Carroll, Charles J.W.; Collins, Scott L.; Dukes, Jeffrey S.; Fraser, Lauchlan H.; Griffin-Nolan, Robert J.; Hoover, David L.; Jentsch, Anke; Loik, Michael E.; Phillips, Richard P.; Post, Alison K.; Sala, Osvaldo E.; Slette, Ingrid J.; Yahdjian, Laura; Smith, Melinda D.

    2017-01-01

    Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of ‘Drought-Net’, a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites – a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based

  10. Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years.

    Science.gov (United States)

    Knapp, Alan K; Avolio, Meghan L; Beier, Claus; Carroll, Charles J W; Collins, Scott L; Dukes, Jeffrey S; Fraser, Lauchlan H; Griffin-Nolan, Robert J; Hoover, David L; Jentsch, Anke; Loik, Michael E; Phillips, Richard P; Post, Alison K; Sala, Osvaldo E; Slette, Ingrid J; Yahdjian, Laura; Smith, Melinda D

    2017-05-01

    Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of 'Drought-Net', a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites - a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based on

  11. Heterogeneous precipitation of niobium carbide in the ferrite by Monte Carlo simulations; Cinetique de precipitation heterogene du carbure de niobium dans la ferrite

    Energy Technology Data Exchange (ETDEWEB)

    Hin, C

    2005-12-15

    The precipitation of niobium carbides in industrial steels is commonly used to control the recrystallization process or the amount of interstitial atoms in solid solution. It is then important to understand the precipitation kinetics and especially the competition between homogeneous and heterogeneous precipitation, since both of them have been observed experimentally, depending on they alloy composition, microstructure and thermal treatments. We propose Monte Carlo simulations of NbC precipitation in {open_square}-iron, based on a simple atomic description of the main parameters which control the kinetic pathway: - Realistic diffusion properties, with a rapid diffusion of C atoms by interstitial jumps and a slower diffusion of Fe and Nb atoms by vacancy jumps; - A model of grain boundaries which reproduces the segregation properties of Nb and C; - A model of dislocation which interacts with solute atoms through local segregation energies and long range elastic field; - A point defect source which drives the vacancy concentration towards its equilibrium value. Depending on the precipitation conditions, Monte Carlo simulations predict different kinetic behaviors, including a transient precipitation of metastable carbides, an early segregation stage of C, wetting phenomena at grain boundaries and on dislocations and a competition between homogeneous and heterogeneous NbC precipitation. Concerning the last point, we highlight that long range elastic field due to dislocation favors clearly the heterogeneous precipitation on dislocations. To understand this effect, we have developed a heterogeneous nucleation model including the calculation of the local concentration of solute atoms around the dislocation, the change of the solubility limit relative to the solubility limit in bulk and the energy of precipitates in an elastic field. We have concluded that elastic field favors the heterogeneous precipitation through the fall in nucleation barrier. (author)

  12. Statistical forecasting for precipitation over West Africa based on spatio-temporal precipitation properties and tropical wave activity

    Science.gov (United States)

    Vogel, Peter; Klar, Manuel; Schlüter, Andreas; Knippertz, Peter; Fink, Andreas H.; Gneiting, Tilmann

    2017-04-01

    Precipitation forecasts for one up to several days are of high socioeconomic importance for agriculturally dominated societies in West Africa, regarding both the occurrence as well as the amount of precipitation. However, disappointingly forecasts based on numerical weather prediction models and even statistically postprocessed forecasts still do not outperform simple reference forecasts such as climatology or persistence. More elaborate statistical forecasts can hopefully lead to an improvement in the quality of precipitation forecasts above climatological or persistent ones. In this contribution, we concentrate on the potential of statistical forecasts to predict the occurrence of precipitation, while the prediction of the amount will be addressed in the future. Using increasingly sophisticated statistical models, we start with forecasts solely relying on the spatio-temporal information contained in precipitation observations. With the necessity of a full spatial coverage of precipitation observations in order to understand its spatio-temporal properties, we rely on Tropical Rainfall Measuring Mission (TRMM) observations and use accumulation periods of 1 to 5 days for the monsoon seasons from May to mid-October of the years 2007 to 2014. Especially for the full monsoon from the end of June to the end of September, the precipitation fields exhibit clear spatio-temporal information that is meteorologically interpretable and statistically meaningful. Using Markov models, we do in fact find an increased forecast quality for this period. While such forecasts already outperform persistent and climatological forecasts for the full monsoon, the forecast quality increases further and also covers the whole monsoon period from May to mid-October, when we add additional predictors. We find the activity of tropical waves such as Kelvin or African Easterly waves or the Madden-Julian Oscillation to be informative predictors and test for additional predictors closely linked to

  13. Teacher Training and Professional Development Needs in the Literacy Field: Implications of the New Spanish Programs for Elementary Education in Costa Rica

    Directory of Open Access Journals (Sweden)

    Ana María Hernández-Segura

    2015-05-01

    Full Text Available This article considers the training and professional development of teachers in the literacy field, in order to analyze the implications of implementing the new Spanish program for Elementary Education in Costa Rica. For this purpose, the results obtained from questionnaires completed by current elementary teachers are shared, in order to get firsthand knowledge of their professional training and experience, as well as their training and pedagogical needs in the literacy field. Among the main findings of the research, it is considered as critical that the teachers’ own training and professional development regarding the initial processes of reading and writing allow them to fully comprehend the theoretical background of the Elementary Level Spanish Program; otherwise, there is a risk of misinterpretations and incorrect practices that might jeopardize the Program´s approach.

  14. Inward electrostatic precipitation of interplanetary particles

    Science.gov (United States)

    Rulison, Aaron J.; Flagan, Richard C.; Ahrens, Thomas J.

    1993-01-01

    An inward precipitator collects particles initially dispersed in a gas throughout either a cylindrical or spherical chamber onto a small central planchet. The instrument is effective for particle diameters greater than about 1 micron. One use is the collection of interplanetary dust particles (IDPs) which are stopped in a noble gas (xenon) by drag and ablation after perforating the wall of a thin-walled spacecraft-mounted chamber. First, the particles are positively charged for several seconds by the corona production of positive xenon ions from inward facing needles placed on the chamber wall. Then an electric field causes the particles to migrate toward the center of the instrument and onto the planchet. The collection time (on the order of hours for a 1 m radius spherical chamber) is greatly reduced by the use of optimally located screens which reapportion the electric field. Some of the electric field lines terminate on the wires of the screens so a fraction of the total number of particles in the chamber is lost. The operation of the instrument is demonstrated by experiments which show the migration of carbon soot particles with radius of approximately 1 micron in a 5 cm diameter cylindrical chamber with a single field enhancing screen toward a 3.2 mm central collection rod.

  15. THE SIZE EVOLUTION OF PASSIVE GALAXIES: OBSERVATIONS FROM THE WIDE-FIELD CAMERA 3 EARLY RELEASE SCIENCE PROGRAM

    Energy Technology Data Exchange (ETDEWEB)

    Ryan, R. E. Jr. [Physics Department, University of California, Davis, CA 95616 (United States); McCarthy, P. J. [Observatories of the Carnegie Institute of Washington, Pasadena, CA 91101 (United States); Cohen, S. H.; Rutkowski, M. J.; Mechtley, M. R.; Windhorst, R. A. [School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287 (United States); Yan, H. [Center for Cosmology and Astroparticle Physics, Ohio State University, Columbus, OH 43210 (United States); Hathi, N. P. [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Koekemoer, A. M.; Bond, H. E.; Bushouse, H. [Space Telescope Science Institute, Baltimore, MD 21218 (United States); O' Connell, R. W. [Department of Astronomy, University of Virginia, Charlottesville, VA 22904 (United States); Balick, B. [Department of Astronomy, University of Washington, Seattle, WA 98195 (United States); Calzetti, D. [Department of Astronomy, University of Massachusetts, Amherst, MA 01003 (United States); Crockett, R. M. [Department of Physics, University of Oxford, Oxford OX1 3PU (United Kingdom); Disney, M. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Dopita, M. A. [Research School of Astronomy and Astrophysics, The Australian National University, Weston Creek, ACT 2611 (Australia); Frogel, J. A. [Galaxies Unlimited, Lutherville, MD 21093 (United States); Hall, D. N. B. [Institute for Astronomy, University of Hawaii, Honolulu, HI 96822 (United States); Holtzman, J. A., E-mail: rryan@physics.ucdavis.edu [Department of Astronomy, New Mexico State University, Las Cruces, NM 88003 (United States); and others

    2012-04-10

    We present the size evolution of passively evolving galaxies at z {approx} 2 identified in Wide-Field Camera 3 imaging from the Early Release Science program. Our sample was constructed using an analog to the passive BzK galaxy selection criterion, which isolates galaxies with little or no ongoing star formation at z {approx}> 1.5. We identify 30 galaxies in {approx}40 arcmin{sup 2} to H < 25 mag. By fitting the 10-band Hubble Space Telescope photometry from 0.22 {mu}m {approx}< {lambda}{sub obs} {approx}< 1.6 {mu}m with stellar population synthesis models, we simultaneously determine photometric redshift, stellar mass, and a bevy of other population parameters. Based on the six galaxies with published spectroscopic redshifts, we estimate a typical redshift uncertainty of {approx}0.033(1 + z). We determine effective radii from Sersic profile fits to the H-band image using an empirical point-spread function. By supplementing our data with published samples, we propose a mass-dependent size evolution model for passively evolving galaxies, where the most massive galaxies (M{sub *} {approx} 10{sup 11} M{sub Sun }) undergo the strongest evolution from z {approx} 2 to the present. Parameterizing the size evolution as (1 + z){sup -{alpha}}, we find a tentative scaling of {alpha} Almost-Equal-To (- 0.6 {+-} 0.7) + (0.9 {+-} 0.4)log (M{sub *}/10{sup 9} M{sub Sun }), where the relatively large uncertainties reflect the poor sampling in stellar mass due to the low numbers of high-redshift systems. We discuss the implications of this result for the redshift evolution of the M{sub *}-R{sub e} relation for red galaxies.

  16. Measuring Relativistic effects in the field of the Earth with Laser Ranged Satellites and the LARASE research program

    Science.gov (United States)

    Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Pardini, Carmen; Peron, Roberto; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo

    2017-04-01

    The main goal of the LARASE (LAser RAnged Satellites Experiment) research program is to obtain refined tests of Einstein's theory of General Relativity (GR) by means of very precise measurements of the round-trip time among a number of ground stations of the International Laser Ranging Service (ILRS) network and a set of geodetic satellites. These measurements are guaranteed by means of the powerful and precise Satellite Laser Ranging (SLR) technique. In particular, a big effort of LARASE is dedicated to improve the dynamical models of the LAGEOS, LAGEOS II and LARES satellites, with the objective to obtain a more precise and accurate determination of their orbit. These activities contribute to reach a final error budget that should be robust and reliable in the evaluation of the main systematic errors sources that come to play a major role in masking the relativistic precession on the orbit of these laser-ranged satellites. These error sources may be of gravitational and non-gravitational origin. It is important to stress that a more accurate and precise orbit determination, based on more reliable dynamical models, represents a fundamental prerequisite in order to reach a sub-mm precision in the root-mean-square of the SLR range residuals and, consequently, to gather benefits in the fields of geophysics and space geodesy, such as stations coordinates knowledge, geocenter determination and the realization of the Earth's reference frame. The results reached over the last year will be presented in terms of the improvements achieved in the dynamical model, in the orbit determination and, finally, in the measurement of the relativistic precessions that act on the orbit of the satellites considered.

  17. Lamont-Doherty's Secondary School Field Research Program: Institutionalizing outreach to secondary school students at a soft-money research institute

    Science.gov (United States)

    Sambrotto, R.

    2015-12-01

    The Secondary School Field Research Program is a field and laboratory internship for high school students at the Lamont-Doherty Earth Observatory. Over the past 11 years it has grown into a significant program, engaging approximately 50 high school and college students each summer, most of them from ethnic and economic groups that are under-represented in the STEM fields. The internships are based on research-driven science questions on estuarine physics, chemistry, ecology and the paleo-environment. Field studies are linked to associated laboratory analyses whose results are reported by the students as a final project. For the past two years, we have focused on the transition to an institutional program, with sustainable funding and organizational structures. At a grant-driven institution whose mission is largely restricted to basic research, institutionalization has not been an easy task. To leverage scarce resources we have implemented a layered structure that relies on near-peer mentoring. So a typical research team might include a mix of new and more experienced high school students, a college student, a high school science teacher and a Lamont researcher as a mentor. Graduates of the program are employed to assist with administration. Knowledge and best practices diffuse through the organization in an organic, if not entirely structured, fashion. We have found that a key to long-term funding has been survival: as we have sustained a successful program and developed a model adapted to Lamont's unique environment, we have attracted longer term core financing on which grant-driven extensions can be built. The result is a highly flexible program that is student-centered in the context of a broader research culture connecting our participants with the advantages of working at a premier soft-money research institution.

  18. Vertical overlap of probability density functions of cloud and precipitation hydrometeors: CLOUD AND PRECIPITATION PDF OVERLAP

    Energy Technology Data Exchange (ETDEWEB)

    Ovchinnikov, Mikhail [Pacific Northwest National Laboratory, Richland Washington USA; Lim, Kyo-Sun Sunny [Pacific Northwest National Laboratory, Richland Washington USA; Korea Atomic Energy Research Institute, Daejeon Republic of Korea; Larson, Vincent E. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee Wisconsin USA; Wong, May [Pacific Northwest National Laboratory, Richland Washington USA; National Center for Atmospheric Research, Boulder Colorado USA; Thayer-Calder, Katherine [National Center for Atmospheric Research, Boulder Colorado USA; Ghan, Steven J. [Pacific Northwest National Laboratory, Richland Washington USA

    2016-11-05

    Coarse-resolution climate models increasingly rely on probability density functions (PDFs) to represent subgrid-scale variability of prognostic variables. While PDFs characterize the horizontal variability, a separate treatment is needed to account for the vertical structure of clouds and precipitation. When sub-columns are drawn from these PDFs for microphysics or radiation parameterizations, appropriate vertical correlations must be enforced via PDF overlap specifications. This study evaluates the representation of PDF overlap in the Subgrid Importance Latin Hypercube Sampler (SILHS) employed in the assumed PDF turbulence and cloud scheme called the Cloud Layers Unified By Binormals (CLUBB). PDF overlap in CLUBB-SILHS simulations of continental and tropical oceanic deep convection is compared with overlap of PDF of various microphysics variables in cloud-resolving model (CRM) simulations of the same cases that explicitly predict the 3D structure of cloud and precipitation fields. CRM results show that PDF overlap varies significantly between different hydrometeor types, as well as between PDFs of mass and number mixing ratios for each species, - a distinction that the current SILHS implementation does not make. In CRM simulations that explicitly resolve cloud and precipitation structures, faster falling species, such as rain and graupel, exhibit significantly higher coherence in their vertical distributions than slow falling cloud liquid and ice. These results suggest that to improve the overlap treatment in the sub-column generator, the PDF correlations need to depend on hydrometeor properties, such as fall speeds, in addition to the currently implemented dependency on the turbulent convective length scale.

  19. Stochastic precipitation generator with hidden state covariates

    Science.gov (United States)

    Kim, Yongku; Lee, GyuWon

    2017-08-01

    Time series of daily weather such as precipitation, minimum temperature and maximum temperature are commonly required for various fields. Stochastic weather generators constitute one of the techniques to produce synthetic daily weather. The recently introduced approach for stochastic weather generators is based on generalized linear modeling (GLM) with covariates to account for seasonality and teleconnections (e.g., with the El Niño). In general, stochastic weather generators tend to underestimate the observed interannual variance of seasonally aggregated variables. To reduce this overdispersion, we incorporated time series of seasonal dry/wet indicators in the GLM weather generator as covariates. These seasonal time series were local (or global) decodings obtained by a hidden Markov model of seasonal total precipitation and implemented in the weather generator. The proposed method is applied to time series of daily weather from Seoul, Korea and Pergamino, Argentina. This method provides a straightforward translation of the uncertainty of the seasonal forecast to the corresponding conditional daily weather statistics.

  20. Large-scale climatic control on European precipitation

    Science.gov (United States)

    Lavers, David; Prudhomme, Christel; Hannah, David

    2010-05-01

    Precipitation variability has a significant impact on society. Sectors such as agriculture and water resources management are reliant on predictable and reliable precipitation supply with extreme variability having potentially adverse socio-economic impacts. Therefore, understanding the climate drivers of precipitation is of human relevance. This research examines the strength, location and seasonality of links between precipitation and large-scale Mean Sea Level Pressure (MSLP) fields across Europe. In particular, we aim to evaluate whether European precipitation is correlated with the same atmospheric circulation patterns or if there is a strong spatial and/or seasonal variation in the strength and location of centres of correlations. The work exploits time series of gridded ERA-40 MSLP on a 2.5˚×2.5˚ grid (0˚N-90˚N and 90˚W-90˚E) and gridded European precipitation from the Ensemble project on a 0.5°×0.5° grid (36.25˚N-74.25˚N and 10.25˚W-24.75˚E). Monthly Spearman rank correlation analysis was performed between MSLP and precipitation. During winter, a significant MSLP-precipitation correlation dipole pattern exists across Europe. Strong negative (positive) correlation located near the Icelandic Low and positive (negative) correlation near the Azores High pressure centres are found in northern (southern) Europe. These correlation dipoles resemble the structure of the North Atlantic Oscillation (NAO). The reversal in the correlation dipole patterns occurs at the latitude of central France, with regions to the north (British Isles, northern France, Scandinavia) having a positive relationship with the NAO, and regions to the south (Italy, Portugal, southern France, Spain) exhibiting a negative relationship with the NAO. In the lee of mountain ranges of eastern Britain and central Sweden, correlation with North Atlantic MSLP is reduced, reflecting a reduced influence of westerly flow on precipitation generation as the mountains act as a barrier to moist

  1. Multiphase CFD modelling of water evaporation and salt precipitation in micro-pores

    NARCIS (Netherlands)

    Twerda, A.; O’Mahoney, T.S.D.; Velthuis, J.F.M.

    2014-01-01

    The precipitation of salt in porous reservoir rocks is an impairment to gas production, particularly in mature fields. Mitigation is typically achieved with regular water washes which dissolve the deposited salt and transport it in the water phase. However, since the process of salt precipitation is

  2. CONCENTRATION OF Pu USING AN IODATE PRECIPITATE

    Science.gov (United States)

    Fries, B.A.

    1960-02-23

    A method is given for separating plutonium from lanthanum in a lanthanum fluoride carrier precipitation process for the recovery of plutonium values from an aqueous solution. The carrier precipitation process includes the steps of forming a lanthanum fluoride precipi- . tate, thereby carrying plutonium out of solution, metathesizing the fluoride precipitate to a hydroxide precipitate, and then dissolving the hydroxide precipitate in nitric acid. In accordance with the invention, the nitric acid solution, which contains plutonium and lanthanum, is made 0.05 to 0.15 molar in potassium iodate. thereby precipitating plutonium as plutonous iodate and the plutonous iodate is separated from the lanthanum- containing supernatant solution.

  3. Standardized precipitation index zones for Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Giddings, L.; Soto, M. [Instituto de Ecologia, A.C., Xalapa, Veracruz (Mexico); Rutherford, B.M.; Maarouf, A. [Faculty of Environmental Studies, York University, Toronto, Ontario (Canada)

    2005-01-01

    Precipitation zone systems exists for Mexico based on seasonality, quantity of precipitation, climates and geographical divisions, but none are convenient for the study of the relation of precipitation with phenomena such as El nino. An empirical set of seven exclusively Mexican and six shared zones was derived from three series of Standardized Precipitation Index (SPI) images, from 1940 through 1989: a whole year series (SPI-12) of 582 monthly images, a six month series (SPI-6) of 50 images for winter months (November through April), and a six month series (SPI-6) of 50 images for summer months (May through October). By examination of principal component and unsupervised classification images, it was found that all three series had similar zones. A set of basic training fields chosen from the principal component images was used to classify all three series. The resulting thirteen zones, presented in this article, were found to be approximately similar, varying principally at zones edges. A set of simple zones defined by just a few vertices can be used for practical operations. In general the SPI zones are homogeneous, with almost no mixture of zones and few outliers of one zone in the area of others. They are compared with a previously published map of climatic regions. Potential applications for SPI zones are discussed. [Spanish] Existen varios sistemas de zonificacion de Mexico basados en la estacionalidad, cantidad de precipitacion, climas y divisiones geograficas, pero ninguno es conveniente para el estudio de la relacion de la precipitacion con fenomenos tales como El Nino. En este trabajo se presenta un conjunto de siete zonas empiricas exclusivamente mexicanas y seis compartidas, derivadas de tres series de imagenes de SPI (Indice Estandarizado de la Precipitacion), desde 1940 a 1989: una serie de 582 imagenes mensuales (SPI-12), una series de 50 imagenes (SPI-6) de meses de invierno (noviembre a abril), y otra de 50 imagenes (SPI-6) de meses de verano

  4. A stochastic space-time model for intermittent precipitation occurrences

    KAUST Repository

    Sun, Ying

    2016-01-28

    Modeling a precipitation field is challenging due to its intermittent and highly scale-dependent nature. Motivated by the features of high-frequency precipitation data from a network of rain gauges, we propose a threshold space-time t random field (tRF) model for 15-minute precipitation occurrences. This model is constructed through a space-time Gaussian random field (GRF) with random scaling varying along time or space and time. It can be viewed as a generalization of the purely spatial tRF, and has a hierarchical representation that allows for Bayesian interpretation. Developing appropriate tools for evaluating precipitation models is a crucial part of the model-building process, and we focus on evaluating whether models can produce the observed conditional dry and rain probabilities given that some set of neighboring sites all have rain or all have no rain. These conditional probabilities show that the proposed space-time model has noticeable improvements in some characteristics of joint rainfall occurrences for the data we have considered.

  5. Global Precipitation Measurement (GPM) Mission: Overview and Status

    Science.gov (United States)

    Hou, Arthur Y.

    2012-01-01

    The Global Precipitation Measurement (GPM) Mission is an international satellite mission specifically designed to unify and advance precipitation measurements from a constellation of research and operational microwave sensors. NASA and JAXA will deploy a Core Observatory in 2014 to serve as a reference satellite to unify precipitation measurements from the constellation of sensors. The GPM Core Observatory will carry a Ku/Ka-band Dual-frequency Precipitation Radar (DPR) and a conical-scanning multi-channel (10-183 GHz) GPM Microwave Radiometer (GMI). The DPR will be the first dual-frequency radar in space to provide not only measurements of 3-D precipitation structures but also quantitative information on microphysical properties of precipitating particles. The DPR and GMI measurements will together provide a database that relates vertical hydrometeor profiles to multi-frequency microwave radiances over a variety of environmental conditions across the globe. This combined database will be used as a common transfer standard for improving the accuracy and consistency of precipitation retrievals from all constellation radiometers. For global coverage, GPM relies on existing satellite programs and new mission opportunities from a consortium of partners through bilateral agreements with either NASA or JAXA. Each constellation member may have its unique scientific or operational objectives but contributes microwave observations to GPM for the generation and dissemination of unified global precipitation data products. In addition to the DPR and GMI on the Core Observatory, the baseline GPM constellation consists of the following sensors: (1) Special Sensor Microwave Imager/Sounder (SSMIS) instruments on the U.S. Defense Meteorological Satellite Program (DMSP) satellites, (2) the Advanced Microwave Scanning Radiometer-2 (AMSR-2) on the GCOM-W1 satellite of JAXA, (3) the Multi-Frequency Microwave Scanning Radiometer (MADRAS) and the multi-channel microwave humidity sounder

  6. Protein purification by affinity precipitation.

    Science.gov (United States)

    Hilbrig, Frank; Freitag, Ruth

    2003-06-25

    Developing the most efficient strategy for the purification of a (recombinant) protein especially at large scale remains a challenge. A typical problem of the downstream process of mammalian cell products is, for instance, the early capture of the highly diluted product from the complex process stream. Affinity precipitation has been suggested in this context. The technique is known for over 20 years, but has recently received more attention due to the development of new materials for its implementation, but also because it seems ideally suited to specific product capture at large scale. The present review gives a comprehensive overview over this technique. Besides an introduction to the basic principle and a brief summary of the historical development, the main focus is on the current state-of-art of the technique, the available materials, important recent applications, as well as process design strategies and operating procedures. Special consideration is given to affinity precipitation for product recovery at large scale.

  7. Predictibility in Nowcasting of Precipitation

    Science.gov (United States)

    Zawadzki, I.; Sourcel, M.; Berenguer, M.

    2009-05-01

    Present short term precipitation forecasting is based on two methods: Lagrangian persistence (nowcasting) and numerical weather prediction (NWP). An improvement over these methods is obtained by the combination of the two. The obvious shortcoming of nowcasting is its severe limitation in capturing new development or dissipation of precipitation. NWP has the ability to predict both but very imprecisely. An attempt to correct model errors by post-processing leads to some improvement in the skill of NWP, but the improvement, although significative, is not very impressive. The goal of our effort is to take a step back and to describe, in a quantitative manner, a) the nature of the uncertainties affecting Lagrangian persistence and NWP forecasts, as well as to determineb) the physical causes of the uncertainties. We quantify the uncertainties in short term forecasting due to limitation of nowcasting algorithms and NWP to capture correctly some of the physical phenomena that determine the predictability of precipitation. The first factor considered is the diurnal cycle that appears as the one physically determined factors that limit the precision of short term prediction. We study the cycle in radar mosaics over US and compare this to nowcasts and model outputs. The seasonal and geographical dependence of the diurnal cycle is quantitatively evaluated.

  8. Biological aerosol effects on clouds and precipitation

    Science.gov (United States)

    Hallar, A. Gannet; Huffman, J. Alex; Fridlind, Ann

    2012-12-01

    Bioaerosol Effects on Clouds Workshop;Steamboat Springs, Colorado, 5-6August 2012 Bioaerosols such as bacteria have been proposed as significant contributors to cloud ice nucleation, but too little is known about the properties and impacts of bioaerosol and other ice nuclei to make reliable conclusions about their wide-scale impact on clouds and precipitation. During late summer an international group of 40 participants met at a Steamboat Springs ski resort to share perspectives on bioaerosol sources, activity, and influence on clouds. Participants who were invited collectively spanned a broad range of expertise, including atmospheric chemistry, microbiology, micrometeorology, and cloud physics, as well as a broad range of research approaches, including laboratory measurement, field measurement, and modeling. Tours of Storm Peak Laboratory (http://www.stormpeak.dri.edu) were offered before and after the workshop.

  9. Validation of Predicted Precipitate Compositions in Al-Si-Ge

    Energy Technology Data Exchange (ETDEWEB)

    Dracup, B; Turchi, P A; Radmilovic, V; Dahmen, U; Morris, Jr., J W

    2004-04-21

    Aged alloys of Al-0.5Si-0.5Ge (at.%) contain diamond cubic (A4) precipitates in a dispersion that is much finer than is found in alloys with Si or Ge alone. To help understand this aging behavior, the present work was undertaken to determine alloy composition as a function of aging temperature. The composition was estimated theoretically using a CALPHAD approach, and measured experimentally with energy dispersive spectroscopy (EDS) in a high-resolution electron microscope. Theory and experiment are in reasonable agreement. As the aging temperature rises, the precipitates become enriched in Si, changing from 50 at. % in the low-temperature limit to about 80 at.% Si as temperature approaches 433 C, the high-temperature limit of the precipitate field.

  10. Isothermal Aging Precipitate of TB17 Titanium Alloy

    Directory of Open Access Journals (Sweden)

    WANG Zhe

    2016-10-01

    Full Text Available Transmission Electron Microscope (TEM, X-Ray Diffraction(XRD and Optical Microscope(OMwere employed to investigate the aging precipitation behavior of a new type of ultra-high strength TB17 titanium alloy. The results show that during heat solution treated in the β phase field followed by aging the secondary α phase is nucleated, precipitated and grew on the β phase matrix,and the precipitated phase is lamellar structure which has burgers relation with the matrix. The secondary α phase content is increased rapidly and finally reach a steady-state as aging time increased and the final product of aging consists of α phase and β phase. there is a good linearity relationship between the content of secondary α phase and the hardness of age hardening. The TB17 titanium alloy isothermal phase transformation kinetics can be described by JMAK equation.

  11. European climate change experiments on precipitation change

    DEFF Research Database (Denmark)

    Beier, Claus

    Presentation of European activities and networks related to experiments and databases within precipitation change......Presentation of European activities and networks related to experiments and databases within precipitation change...

  12. River Forecasting Center Quantitative Precipitation Estimate Archive

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — Radar indicated-rain gage verified and corrected hourly precipitation estimate on a corrected ~4km HRAP grid. This archive contains hourly estimates of precipitation...

  13. U.S. 15 Minute Precipitation Data

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — U.S. 15 Minute Precipitation Data is digital data set DSI-3260, archived at the National Climatic Data Center (NCDC). This is precipitation data. The primary source...

  14. Amazon River Basin Precipitation, 1972-1992

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: The precipitation data is 0.2 degree gridded monthly precipitation data based upon monthly rain data from Peru and Bolivia and daily rain data from Brazil....

  15. Amazon River Basin Precipitation, 1972-1992

    Data.gov (United States)

    National Aeronautics and Space Administration — The precipitation data is 0.2 degree gridded monthly precipitation data based upon monthly rain data from Peru and Bolivia and daily rain data from Brazil. The...

  16. ENSO Indices Based on Patterns of Satellite-Derived Precipitation.

    Science.gov (United States)

    Curtis, Scott; Adler, Robert

    2000-08-01

    In this study, gridded observed precipitation datasets are used to construct rainfall-based ENSO indices. The monthly El Niño and La Niña indices (EI and LI) measure the steepest zonal gradient of precipitation anomalies between the equatorial Pacific and the Maritime Continent. This is accomplished by spatially averaging precipitation anomalies using a spatial boxcar filter, finding the maximum and minimum averages within a Pacific and Maritime Continent domain for each month, and taking differences. The EI and LI can be examined separately or combined to produce one El Niño-Southern Oscillation (ENSO) precipitation index (ESPI). ESPI is well correlated with traditional sea surface temperature (e.g., Niño-3.4) and pressure indices [e.g., Southern Oscillation index (SOI)], leading Niño-3.4 by a month. ESPI has a tendency to produce stronger La Niñas than does Niño-3.4 and SOI. One advantage satellite-derived precipitation indices have over more conventional indices is describing the strength and position of the Walker circulation. Examples are given of tracking the impact of recent ENSO events on the tropical precipitation fields. The 1982/83 and 1997/98 events were unique in that, during the transition from the warm to the cold phase, precipitation patterns associated with El Niño and La Niña were simultaneously strong. According to EI and ESPI, the 1997/98 El Niño was the strongest event over the past 20 years.

  17. Spatial interpolation schemes of daily precipitation for hydrologic modeling

    Science.gov (United States)

    Hwang, Y.; Clark, M.R.; Rajagopalan, B.; Leavesley, G.

    2012-01-01

    Distributed hydrologic models typically require spatial estimates of precipitation interpolated from sparsely located observational points to the specific grid points. We compare and contrast the performance of regression-based statistical methods for the spatial estimation of precipitation in two hydrologically different basins and confirmed that widely used regression-based estimation schemes fail to describe the realistic spatial variability of daily precipitation field. The methods assessed are: (1) inverse distance weighted average; (2) multiple linear regression (MLR); (3) climatological MLR; and (4) locally weighted polynomial regression (LWP). In order to improve the performance of the interpolations, the authors propose a two-step regression technique for effective daily precipitation estimation. In this simple two-step estimation process, precipitation occurrence is first generated via a logistic regression model before estimate the amount of precipitation separately on wet days. This process generated the precipitation occurrence, amount, and spatial correlation effectively. A distributed hydrologic model (PRMS) was used for the impact analysis in daily time step simulation. Multiple simulations suggested noticeable differences between the input alternatives generated by three different interpolation schemes. Differences are shown in overall simulation error against the observations, degree of explained variability, and seasonal volumes. Simulated streamflows also showed different characteristics in mean, maximum, minimum, and peak flows. Given the same parameter optimization technique, LWP input showed least streamflow error in Alapaha basin and CMLR input showed least error (still very close to LWP) in Animas basin. All of the two-step interpolation inputs resulted in lower streamflow error compared to the directly interpolated inputs. ?? 2011 Springer-Verlag.

  18. Rock fracture grouting with microbially induced carbonate precipitation

    Science.gov (United States)

    Minto, James M.; MacLachlan, Erica; El Mountassir, Gráinne; Lunn, Rebecca J.

    2016-11-01

    Microbially induced carbonate precipitation has been proposed for soil stabilization, soil strengthening, and permeability reduction as an alternative to traditional cement and chemical grouts. In this paper, we evaluate the grouting of fine aperture rock fractures with calcium carbonate, precipitated through urea hydrolysis, by the bacteria Sporosarcina pasteurii. Calcium carbonate was precipitated within a small-scale and a near field-scale (3.1 m2) artificial fracture consisting of a rough rock lower surfaces and clear polycarbonate upper surfaces. The spatial distribution of the calcium carbonate precipitation was imaged using time-lapse photography and the influence on flow pathways revealed from tracer transport imaging. In the large-scale experiment, hydraulic aperture was reduced from 276 to 22 μm, corresponding to a transmissivity reduction of 1.71 × 10-5 to 8.75 × 10-9 m2/s, over a period of 12 days under constantly flowing conditions. With a modified injection strategy a similar three orders of magnitude reduction in transmissivity was achieved over a period of 3 days. Calcium carbonate precipitated over the entire artificial fracture with strong adhesion to both upper and lower surfaces and precipitation was controlled to prevent clogging of the injection well by manipulating the injection fluid velocity. These experiments demonstrate that microbially induced carbonate precipitation can successfully be used to grout a fracture under constantly flowing conditions and may be a viable alternative to cement based grouts when a high level of hydraulic sealing is required and chemical grouts when a more durable grout is required.

  19. Importance of resolution and model configuration when downscaling extreme precipitation

    Directory of Open Access Journals (Sweden)

    Adrian J. Champion

    2014-07-01

    Full Text Available Dynamical downscaling is frequently used to investigate the dynamical variables of extra-tropical cyclones, for example, precipitation, using very high-resolution models nested within coarser resolution models to understand the processes that lead to intense precipitation. It is also used in climate change studies, using long timeseries to investigate trends in precipitation, or to look at the small-scale dynamical processes for specific case studies. This study investigates some of the problems associated with dynamical downscaling and looks at the optimum configuration to obtain the distribution and intensity of a precipitation field to match observations. This study uses the Met Office Unified Model run in limited area mode with grid spacings of 12, 4 and 1.5 km, driven by boundary conditions provided by the ECMWF Operational Analysis to produce high-resolution simulations for the Summer of 2007 UK flooding events. The numerical weather prediction model is initiated at varying times before the peak precipitation is observed to test the importance of the initialisation and boundary conditions, and how long the simulation can be run for. The results are compared to raingauge data as verification and show that the model intensities are most similar to observations when the model is initialised 12 hours before the peak precipitation is observed. It was also shown that using non-gridded datasets makes verification more difficult, with the density of observations also affecting the intensities observed. It is concluded that the simulations are able to produce realistic precipitation intensities when driven by the coarser resolution data.

  20. The Importance of MS PHD'S and SEEDS Mentoring and Professional Development Programs in the Retenion of Underrepresented Minorities in STEM Fields

    Science.gov (United States)

    Strickland, J.; Johnson, A.; Williamson Whitney, V.; Ricciardi, L.

    2012-12-01

    According to a recent study by the National Academy of Sciences, underrepresented minority (URM) participation in STEM disciplines represents approximately one third of the URM population in the U.S. Thus, the proportion of URM in STEM disciplines would need to triple in order to reflect the demographic makeup in the U.S. Individual programs targeting the recruitment and retention of URM students in STEM have demonstrated that principles of mentoring, community building, networking, and professional skill development are crucial in encouraging URM students to remain in STEM disciplines thereby reducing this disparity in representation. However, to paraphrase an old African proverb, "it takes a village to nurture and develop a URM student entering into the STEM community." Through programs such as the Institute for Broadening Participation's Minorities Striving and Pursuing Higher Degrees of Success (MS PHD'S) Professional Development Program in Earth system science and the Ecological Society of America's Strategies for Ecology Education, Diversity and Sustainability (SEEDS), URM students are successfully identifying and benefitting from meaningful opportunities to develop the professional skills and strategies needed to achieve their academic and career goals. Both programs share a philosophy of professional development, reciprocal mentoring, field trips, internships, employment, research partnerships, collaborations, fellowships, scholarships, grants, and professional meeting travel awards to support URM student retention in STEM. Both programs share a mission to bring more diversity and inclusivity into STEM fields. Both programs share a history of success at facilitating the preparation and advancement of URM students. This success has been documented with the multitude of URM students that have matriculated through the programs and are now actively engaged in the pursuit of advanced degrees in STEM or entering the STEM workforce. Anonymous surveys from

  1. Geostatistical Study of Precipitation on the Island of Crete

    Science.gov (United States)

    Agou, Vasiliki D.; Varouchakis, Emmanouil A.; Hristopulos, Dionissios T.

    2015-04-01

    precipitation which are fitted locally to a three-parameter probability distribution, based on which a normalized index is derived. We use the Spartan variogram function to model space-time correlations, because it is more flexible than classical models [3]. The performance of the variogram model is tested by means of leave-one-out cross validation. The variogram model is then used in connection with ordinary kriging to generate precipitation maps for the entire island. In the future, we will explore the joint spatiotemporal evolution of precipitation patterns on Crete. References [1] P. Goovaerts. Geostatistical approaches for incorporating elevation into the spatial interpolation of precipitation. Journal of Hydrology, 228(1):113-129, 2000. [2] N. B. Guttman. Accepting the standardized precipitation index: a calculation algorithm. American Water Resource Association, 35(2):311-322, 1999. [3] D. T Hristopulos. Spartan Gibbs random field models for geostatistical applications. SIAM Journal on Scientific Computing, 24(6):2125-2162, 2003. [4] A.G. Koutroulis, A.-E.K. Vrohidou, and I.K. Tsanis. Spatiotemporal characteristics of meteorological drought for the island of Crete. Journal of Hydrometeorology, 12(2):206-226, 2011. [5] T. B. McKee, N. J. Doesken, and J. Kleist. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, page 179-184, Anaheim, California, 1993.

  2. Positive impact of child feeding training program for primary care health professionals: a cluster randomized field trial

    Directory of Open Access Journals (Sweden)

    Márcia Regina Vitolo

    2014-12-01

    Full Text Available OBJECTIVE: To assess the impact of a child feeding training program for primary care health professionals about breastfeeding and complementary feeding practices. METHODS: Cluster-randomized field trial conducted in the city of Porto Alegre, (RS, Brazil. Twenty primary health care centers (HCC were randomized into intervention (n = 9 and control (n = 11 groups. The health professionals (n = 200 at the intervention group centers received training about healthy feeding practices. Pregnant women were enrolled at the study. Up to six months of child's age, home visits were made to obtain variables related to breastfeeding and introduction of foods. RESULTS: 619 children were evaluated: 318 from the intervention group and 301 from the control group. Exclusive breastfeeding prevalence in the first (72.3 versus 59.4%; RR = 1.21; 95%CI 1.08 - 1.38, second (62.6 versus 48.2%; RR = 1.29; 95%CI 1.10 - 1.53, and third months of life (44.0% versus 34.6%; RR = 1.27; 95%CI 1.04 - 1.56 was higher in the intervention group compared to the control group. The prevalence of children who consumed meat four or five times per week was higher in the intervention group than in the control group (36.8 versus 22.6%; RR = 1.62; 95%CI 1.32 - 2.03. The prevalence of children who had consumed soft drinks (34.9 versus 52.5%; RR = 0.66; 95%CI 0.54 - 0.80, chocolate (24.5 versus 36.7% RR = 0.66 95%CI 0.53 - 0.83, petit suisse (68.9 versus 79.7; 95%CI 0.75 - 0.98 and coffee (10.4 versus 20.1%; RR = 0.51; 95%CI 0.31 - 0.85 in their six first months of life was lower in the intervention group. CONCLUSION: The training of health professionals had a positive impact on infant feeding practices, contributing to the promotion of child health.

  3. Positive impact of child feeding training program for primary care health professionals: a cluster randomized field trial.

    Science.gov (United States)

    Vitolo, Márcia Regina; Louzada, Maria Laura da Costa; Rauber, Fernanda

    2014-12-01

    To assess the impact of a child feeding training program for primary care health professionals about breastfeeding and complementary feeding practices. Cluster-randomized field trial conducted in the city of Porto Alegre, (RS), Brazil. Twenty primary health care centers (HCC) were randomized into intervention (n = 9) and control (n = 11) groups. The health professionals (n = 200) at the intervention group centers received training about healthy feeding practices. Pregnant women were enrolled at the study. Up to six months of child's age, home visits were made to obtain variables related to breastfeeding and introduction of foods. 619 children were evaluated: 318 from the intervention group and 301 from the control group. Exclusive breastfeeding prevalence in the first (72.3 versus 59.4%; RR = 1.21; 95%CI 1.08 - 1.38), second (62.6 versus 48.2%; RR = 1.29; 95%CI 1.10 - 1.53), and third months of life (44.0% versus 34.6%; RR = 1.27; 95%CI 1.04 - 1.56) was higher in the intervention group compared to the control group. The prevalence of children who consumed meat four or five times per week was higher in the intervention group than in the control group (36.8 versus 22.6%; RR = 1.62; 95%CI 1.32 - 2.03). The prevalence of children who had consumed soft drinks (34.9 versus 52.5%; RR = 0.66; 95%CI 0.54 - 0.80), chocolate (24.5 versus 36.7% RR = 0.66 95%CI 0.53 - 0.83), petit suisse (68.9 versus 79.7; 95%CI 0.75 - 0.98) and coffee (10.4 versus 20.1%; RR = 0.51; 95%CI 0.31 - 0.85) in their six first months of life was lower in the intervention group. The training of health professionals had a positive impact on infant feeding practices, contributing to the promotion of child health.

  4. Under which climate and soil conditions the plant productivity-precipitation relationship is linear or nonlinear?

    Science.gov (United States)

    Ye, Jian-Sheng; Pei, Jiu-Ying; Fang, Chao

    2018-03-01

    Understanding under which climate and soil conditions the plant productivity-precipitation relationship is linear or nonlinear is useful for accurately predicting the response of ecosystem function to global environmental change. Using long-term (2000-2016) net primary productivity (NPP)-precipitation datasets derived from satellite observations, we identify >5600pixels in the North Hemisphere landmass that fit either linear or nonlinear temporal NPP-precipitation relationships. Differences in climate (precipitation, radiation, ratio of actual to potential evapotranspiration, temperature) and soil factors (nitrogen, phosphorous, organic carbon, field capacity) between the linear and nonlinear types are evaluated. Our analysis shows that both linear and nonlinear types exhibit similar interannual precipitation variabilities and occurrences of extreme precipitation. Permutational multivariate analysis of variance suggests that linear and nonlinear types differ significantly regarding to radiation, ratio of actual to potential evapotranspiration, and soil factors. The nonlinear type possesses lower radiation and/or less soil nutrients than the linear type, thereby suggesting that nonlinear type features higher degree of limitation from resources other than precipitation. This study suggests several factors limiting the responses of plant productivity to changes in precipitation, thus causing nonlinear NPP-precipitation pattern. Precipitation manipulation and modeling experiments should combine with changes in other climate and soil factors to better predict the response of plant productivity under future climate. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Nonlinear responses of soil respiration to precipitation changes in a semiarid temperate steppe.

    Science.gov (United States)

    Miao, Yuan; Han, Hongyan; Du, Yue; Zhang, Qian; Jiang, Lin; Hui, Dafeng; Wan, Shiqiang

    2017-03-31

    Extreme precipitation events are predicted to occur more frequently and will have significant influences on terrestrial ecosystem carbon (C) cycling in the future. However, response patterns of soil respiration to precipitation changes remain uncertain in terrestrial ecosystems. A field experiment with seven precipitation treatments (i.e. from -60% to +60% of ambient precipitation to form a drought to wet precipitation gradient) was conducted over three growing seasons (2010-2012) in a semiarid temperate steppe of Northern China. Results showed a nonlinear response pattern of soil respiration along the experimental precipitation gradient, with soil respiration suppressed by decreased precipitation and enhanced by increased precipitation. Over the three growing seasons, soil respiration was reduced more under the three drought treatments (by 45.8, 32.8, and 15.9% under the -60, -40, and -20% treatments, respectively) than stimulated under the three wet treatments (by 8.9, 14.3, and 18.5% under the +20, +40, and +60% treatments, respectively). Our results indicate that soil respiration was more sensitive to decreased than increased precipitation treatments. The nonlinear and asymmetric responses of soil respiration to precipitation changes should be built into ecosystem models to project ecosystem C cycling associated with climate change.

  6. Homogeneity revisited: analysis of updated precipitation series in Turkey

    Science.gov (United States)

    Bickici Arikan, Bugrayhan; Kahya, Ercan

    2018-01-01

    Homogeneous time series of meteorological variables are necessary for hydrologic and climate studies. Dependability of historical precipitation data is subjected to keen evaluation prior to every study in water resources, hydrology, and climate change fields. This study aims to characterize the homogeneity of long-term Turkish precipitation data in order to ensure that they can be reliably used. The homogeneity of monthly precipitation data set was tested using the standard normal homogeneity test, Buishand test, Von Neumann ratio test, and Pettitt test at the 5% significance level across Turkey. Our precipitation records including the most updated observations, extracted from 160 meteorological stations, for the periods 1974-2014 were analyzed by all the four homogeneity tests. According to the results of all tests, five out of 160 stations have an inhomogeneity. With regard to our strict confirmation rule, 44 out of 160 stations are said to be inhomogeneous since they failed from at least one of the four tests. The breaks captured by the Buishand and Pettitt tests usually tend to appear in the middle of the precipitation series, whereas the ability of standard normal homogeneity test is in favor of identifying inhomogeneities mostly at the beginning or at the end of the records. Our results showed that 42 out of 44 inhomogeneous stations passed all the four tests after applying a correction procedure based on the double mass curve analysis. Available metadata was used to interpret the detected inhomogeneity.

  7. Global Precipitation Measurement (GPM) Mission Applications: Activities, Challenges, and Vision

    Science.gov (United States)

    Kirschbaum, Dalia; Hou, Arthur

    2012-01-01

    Global Precipitation Measurement (GPM) is an international satellite mission to provide nextgeneration observations of rain and snow worldwide every three hours. NASA and the Japan Aerospace Exploration Agency (JAXA) will launch a "Core" satellite carrying advanced instruments that will set a new standard for precipitation measurements from space. The data they provide will be used to unify precipitation measurements made by an international network of partner satellites to quantify when, where, and how much it rains or snows around the world. The GPM mission will help advance our understanding of Earth's water and energy cycles, improve the forecasting of extreme events that cause natural disasters, and extend current capabilities of using satellite precipitation information to directly benefit society. Building upon the successful legacy of the Tropical Rainfall Measuring Mission (TRMM), GPM's next-generation global precipitation data will lead to scientific advances and societal benefits within a range of hydrologic fields including natural hazards, ecology, public health and water resources. This talk will highlight some examples from TRMM's IS-year history within these applications areas as well as discuss some existing challenges and present a look forward for GPM's contribution to applications in hydrology.

  8. Influence of Climate Oscillations on Extreme Precipitation in Texas

    Science.gov (United States)

    Bhatia, N.; Singh, V. P.; Srivastav, R. K.

    2016-12-01

    Much research in the field of hydroclimatology is focusing on the impact of climate variability on hydrologic extremes. Recent studies show that the unique geographical location and the enormous areal extent, coupled with extensive variations in climate oscillations, have intensified the regional hydrologic cycle of Texas. The state-wide extreme precipitation events can actually be attributed to sea-surface pressure and temperature anomalies, such as Bermuda High and Jet Streams, which are further triggered by such climate oscillations. This study aims to quantify the impact of five major Atlantic and Pacific Ocean related climate oscillations: (i) Atlantic Multidecadal Oscillation (AMO), (ii) North Atlantic Oscillation (NAO), (iii) Pacific Decadal Oscillation (PDO), (iv) Pacific North American Pattern (PNA), and (v) Southern Oscillation Index (SOI), on extreme precipitation in Texas. Their respective effects will be determined for both climate divisions delineated by the National Climatic Data Centre (NCDC) and climate regions defined by the Köppen Climate Classification System. This study will adopt a weighted correlation approach to attain the robust correlation coefficients while addressing the regionally variable data outliers for extreme precipitation. Further, the variation of robust correlation coefficients across Texas is found to be related to the station elevation, historical average temperature, and total precipitation in the months of extremes. The research will shed light on the relationship between precipitation extremes and climate variability, thus aiding regional water boards in planning, designing, and managing the respective systems as per the future climate change.

  9. Global Precipitation Measurement (GPM) Mission: NASA Precipitation Processing System (PPS)

    Science.gov (United States)

    Stocker, Erich Franz

    2008-01-01

    NASA is contributing the precipitation measurement data system PPS to support the GPM mission. PPS will distribute all GPM data products including NASA s GMI data products freely and quickly. PPS is implementing no system mechanisms for restricting access to GPM data. PPS is implementing no system mechanisms for charging for GPM data products. PPS will provide a number of geographical and parameter subsetting features available to its users. The first implementation of PPS (called PPS--) will assume processing of TRMM data effective 1 June 2008. TRMM realtime data will be available via PPS- to all users requesting access

  10. Climate change projections for precipitation in Portugal

    Science.gov (United States)

    Andrade, C.; Santos, J. A.

    2013-10-01

    The strong irregularity of precipitation in Portugal, which may e.g. trigger severe/extreme droughts and floods, results in a high vulnerability of the country to precipitation inter-annual variability and to its extremes. Furthermore, dryer future climates are projected for Portugal, though there has also been some growing evidence for a strengthening of precipitation extremes. Due to the central role played byprecipitation on many socio-economic sectors and environmental systems, regional climate change assessments for precipitation in Portugal are necessary. This study is focused on analyzing climate change projections for seasonal (3-month) precipitation totals and their corresponding extremes over mainland Portugal. Taking into account the strong seasonality of the precipitation regimes in Portugal, winter (DJF) and summer (JJA) are considered separately. Precipitation datasets generated by a 16-member ensemble of regional climate model experiments from the ENSEMBLES project are used. Percentile-based indices of precipitation are computed and analyzed for a recent past period (1961-2000) and for a near future period (2041-2070). Results for the R5p, R50p and R95p indices highlight significant projected changes in precipitation, with a clear distinction between northwestern Portugal and the rest of the country in both seasons. Overall, precipitation is projected to decrease in both seasons, particularly over northwestern Portugal in winter, despite some significant regional differences. Although precipitation is projected to decrease in most cases, extremely high seasonal precipitations (above the 95th percentile)areexpected to increase in winter.

  11. Acid Precipitation and the Forest Ecosystem

    Science.gov (United States)

    Dochinger, Leon S.; Seliga, Thomas A.

    1975-01-01

    The First International Symposium on Acid Precipitation and the Forest Ecosystem dealt with the potential magnitude of the global effects of acid precipitation on aquatic ecosystems, forest soils, and forest vegetation. The problem is discussed in the light of atmospheric chemistry, transport, and precipitation. (Author/BT)

  12. The weak acid nature of precipitation

    Science.gov (United States)

    John O. Frohliger; Robert L. Kane

    1976-01-01

    Recent measurements of the pH of precipitation leave no doubt that rainfall is acidic. Evidence will be presented that precipitation is a weak acid system. The results of this research indicate the need to establish standard sampling procedures to provide uniform sampling of precipitation

  13. GPM GROUND VALIDATION ADVANCED MICROWAVE PRECIPITATION RADIOMETER (AMPR) IPHEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Microwave Precipitation Radiometer (AMPR) IPHEx dataset was acquired by the AMPR instrument during the IPHEx field campaign in...

  14. GPM GROUND VALIDATION ADVANCED MICROWAVE PRECIPITATION RADIOMETER (AMPR) IPHEX V2

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Advanced Microwave Precipitation Radiometer (AMPR) IPHEx dataset was acquired by the AMPR instrument during the IPHEx field campaign in...

  15. Metacognitive Engagement during Field-Trip Experiences: A Case Study of Students in an Amusement Park Physics Program

    Science.gov (United States)

    Nielsen, Wendy S.; Nashon, Samson; Anderson, David

    2009-01-01

    This article reports on a study that investigated students' metacognitive engagement in both out-of-school and classroom settings, as they participated in an amusement park physics program. Students from two schools that participated in the program worked in groups to collectively solve novel physics problems that engaged their individual…

  16. Effects of various field coccidiosis control programs on host innate and adaptive immunity in commercial broiler chickens

    Science.gov (United States)

    Coccidiosis control programs such as vaccines or in-feed anticoccidials are commonly practiced in poultry industry to improve growth performance and health of commercial broiler chickens. In this study, we assessed the effects of various coccidiosis control programs (e.g., in ovo vaccination, synth...

  17. Can After-School Programs Help Level the Academic Playing Field for Disadvantaged Youth? Equity Matters. Research Review No. 4

    Science.gov (United States)

    Gardner, Margo; Roth, Jodie L.; Brooks-Gunn, Jeanne

    2009-01-01

    As schools struggle to meet federal achievement standards, after-school programs are increasingly viewed as a potential source of academic support for youth at risk of school failure. The hope among youth advocates and policymakers is that after-school programs can partially compensate for the inequities that plague the nation's schools and play a…

  18. Understanding Farmers’ Perceptions and Adaptations to Precipitation and Temperature Variability: Evidence from Northern Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Sadegh Allahyari

    2016-12-01

    Full Text Available Precipitation and temperature variability present significant agricultural risks worldwide. Northern Iran’s agriculture mainly depends on paddy fields, which are directly affected by precipitation and temperature variability. The main aim of this study is to explore farmers’ attitudes towards precipitation and temperature variability and their adaptation strategies in paddy fields in a typical agricultural province in northern Iran. Primary survey data were collected from a sample of 382 paddy farmers of Rasht County in Guilan Province. Data have been analyzed using both summary statistics and bivariate analysis (Pearson, Spearman, and Eta correlation coefficients. Empirical findings reveal that most paddy farmers had experienced precipitation and temperature variability and were taking measures to reduce its negative impacts on their crops. Results also indicate that farm size and household income influence farmers’ perception to precipitation and temperature variability, while availability of water resources also influence farmers’ adaptation decisions.

  19. Field evaluation of reduced insecticide spray programs for managing plum curculio, Conotrachelus nenuphar (Coleoptera: Curculionidae), in Alabama peaches.

    Science.gov (United States)

    Akotsen-Mensah, Clement; Boozer, Robert T; Fadamiro, Henry Y

    2011-06-01

    Plum curculio (PC), Conotrachelus nenuphar (Herbst.), is an important pest of peaches in the southeastern United States. Commercially acceptable control of this insect is typically achieved by weekly or biweekly application of broad-spectrum conventional insecticides, resulting in 6-12 sprays per season. Experiments were conducted in a peach orchard in Alabama during 2007-2009 to compare the conventional calendar-based insecticide spray program involving weekly applications of phosmet with three different reduced spray programs using three targeted (well-timed) insecticide sprays (TIS) of phosmet, permethrin or thiamethoxam applied in an alternated fashion. All three TIS programs significantly reduced PC damage at harvest compared with the untreated control in two of the three years (2008 and 2009). Fruit damage due to stink bugs, which are emerging pests of peaches in the region, was also significantly reduced in the TIS programs in both years. In a separate trial in which one of the TIS programs (three targeted sprays of phosmet) was evaluated in a larger peach block in 2009, percentage fruit damage due to PC increased from < 1% in June to ~4% in late July. All the TIS programs evaluated provided effective control of PC and represent potential alternatives to the conventional weekly spray program in peaches with concomitant reduction in insecticide usage and associated costs. However, an additional spray may be necessary for effective control of PC and stink bugs in late-season peach varieties. Copyright © 2011 Society of Chemical Industry.

  20. Limnological aspects of acid precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Hendrey, G.R. (ed.)

    1978-01-01

    Lakes and streams in parts of Norway, Sweden, Canada, and the United States are being severely impacted by acidic precipitation. Scientists meeting at Sagamore, New York, agreed that this is the most serious limnological problem today. The factor responsible for determining the sensitivity of surface waters to acidification is alkalinity derived by weathering of soils and bedrock in the watershed. Acidification, defined as a reduction in alkalinity, can be quantified if preacidification alkalinity data exist, but often they do not. Data on pH and Ca from surface waters in areas not affected by acid precipitation were compared to similar data from areas which receive precipitation with a weighted average hydrogen ion concentration of pH < 4.6. A semiquantitative estimation of surface water acidification can be made for lakes and streams, where earlier chemistry data are lacking, based on this analysis of pH and Ca data. Biological responses to acidification range from a reduction in numbers of species of algae and zooplankton to complete elimination of all fish life. Major biological processes such as primary production and decomposition may be altered leading to an accumulation of plant material and organic debris within lakes and streams. Increased concentrations of aluminum from the ..mu..g/l to mg/l range have been found at levels shown to be toxic to fish. These elevated levels apparently result from the exchange of H/sup +/ and Al in the watershed. There also appears to be a relationship between lake acidification and the accumulation of mercury in fish. Problems of aluminum analysis received detailed attention, and watershed mass balances, comparative watershed studies, whole lake manipulations, synoptic surveys, and the liming of acidified waters were discussed. A priority-rated list of recommendations for research was presented.

  1. Changing precipitation extremes in Europe

    Science.gov (United States)

    van den Besselaar, E. J. M.; Klein Tank, A. M. G.; van der Schrier, G.

    2010-09-01

    A growing number of studies indicate trends in precipitation extremes over Europe during recent decades. These results are generally based on descriptive indices of extremes which occur on average once (or several times) each year (or season). An example is the maximum one-day precipitation amount per year. Extreme value theory complements the descriptive indices, in order to evaluate the intensity and frequency of more rare events. Trends in more rare extremes are difficult to detect, because per definition only few events exist in the observational series. Although single extreme events cannot be simply and directly attributed to anthropogenic climate change, as there is always a finite chance that the event in question might have occurred naturally, the odds may have shifted to make some of them more likely than in an unchanging climate (IPCC, 2007). In this study we focus on climate extremes defined as rare events within the statistical reference distribution of rainfall that is monitored daily at a particular place. We examine the daily precipitation series from the European Climate Assessment and Dataset (ECA&D) project. Comparisons will be made between the trends in modest extremes detected using the descriptive indices and the trends in more rare extremes determined by fitting an extreme value distribution to the data in consecutive 20-yr periods of the record. The trends in multi-year return levels are determined for groups of stations in several subregions of Europe. Because the typical record length is about 50 yr, we will assess the trends in events that occur on average up to once in 50 yr.

  2. Environmental Assessment for Selection and Operation of the Proposed Field Research Centers for the Natural and Accelerated Bioremediation Research (NABIR) Program

    Energy Technology Data Exchange (ETDEWEB)

    N/A

    2000-04-18

    The US Department of Energy (DOE) Office of Biological and Environmental Research (OBER), within the Office of Science (SC), proposes to add a Field Research Center (FRC) component to the existing Natural and Accelerated Bioremediation Research (NABIR) Program. The NABIR Program is a ten-year fundamental research program designed to increase the understanding of fundamental biogeochemical processes that would allow the use of bioremediation approaches for cleaning up DOE's contaminated legacy waste sites. An FRC would be integrated with the existing and future laboratory and field research and would provide a means of examining the fundamental biogeochemical processes that influence bioremediation under controlled small-scale field conditions. The NABIR Program would continue to perform fundamental research that might lead to promising bioremediation technologies that could be demonstrated by other means in the future. For over 50 years, DOE and its predecessor agencies have been responsible for the research, design, and production of nuclear weapons, as well as other energy-related research and development efforts. DOE's weapons production and research activities generated hazardous, mixed, and radioactive waste products. Past disposal practices have led to the contamination of soils, sediments, and groundwater with complex and exotic mixtures of compounds. This contamination and its associated costs and risks represents a major concern to DOE and the public. The high costs, long duration, and technical challenges associated with remediating the subsurface contamination at DOE sites present a significant need for fundamental research in the biological, chemical, and physical sciences that will contribute to new and cost-effective solutions. One possible low-cost approach for remediating the subsurface contamination of DOE sites is through the use of a technology known as bioremediation. Bioremediation has been defined as the use of microorganisms to

  3. Recent Developments on Discontinuous Precipitation

    Directory of Open Access Journals (Sweden)

    Zięba P.

    2017-06-01

    Full Text Available The discontinuous precipitation (DP belongs to a group of diffusive solid state phase transformations during which the formation of a new phase is heterogeneous and limited to a migrating reaction front (RF. The use of analytical electron microscopy provided reliable information that there is no differences in the diffusion rate at the stationary grain boundary and moving RF of DP reaction. On the other hand, the use of “in situ” transmission electron microscopy observations indicated the importance of stop-go motion or oscillatory movement of the RF.

  4. Precipitating antibodies in mycoplasma infection.

    Science.gov (United States)

    Menonna, J; Chmel, H; Menegus, M; Dowling, P; Cook, S

    1977-01-01

    The effectiveness of counterimmunoelectrophoresis (CIEP) for detecting human precipitating antibodies to mcyoplasma antigen was compared with the conventional complement fixation (CF) method in a double-blind experiment. Fifty-one sera from patients suspected of having acute mycoplasma infection were tested by both techniques. Dense precipitin lines to mycoplasma antigen developed in 28 sera with CIEP. Twenty-six of 28 had elevated CF titers to this antigen. No precipitin bands were observed in sera with low antibody titers to mycoplasma. These findings indicate that the CIEP test is a specific method for reliably detecting elevated serum CF antibody levels in patients with acute or recent mycoplasma infection. PMID:328527

  5. GPM Ground Validation Pluvio Precipitation Gauges OLYMPEX V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation Pluvio Precipitation Gauges OLYMPEX dataset contains one-minute precipitation rate and precipitation accumulation measurements, as well as...

  6. Guidelines for Setting Up an Extended Field Trip to Florida and the Florida Keys: An Interactive Experiential Training Field Biology Program Consisting of Pretrip Instruction, Search Image Training, Field Exercises, and Observations of Tropical Habitats and Coral Reefs.

    Science.gov (United States)

    Baker, Claude D.; And Others

    The importance of experiential aspects of biological study is addressed using multi-dimensional classroom and field classroom approaches to student learning. This document includes a guide to setting up this style of field experience. Several teaching innovations are employed to introduce undergraduate students to the literature, techniques, and…

  7. FIELD TEST PROGRAM TO DEVELOP COMPREHENSIVE DESIGN, OPERATING AND COST DATA FOR MERCURY CONTROL SYSTEMS ON NON-SCRUBBED COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Richard Schlager; Tom Millar

    2002-10-18

    has an electrostatic precipitator for particulate control. Alabama Power Company will host a fourth test at its Plant Gaston, which is equipped with a hot-side electrostatic precipitator and a downstream fabric filter. During the eighth reporting quarter, progress was made on the project in the following areas: (1) PG&E NEG Salem Harbor Station--Sorbent injection equipment was installed at the site during the quarter; Test plans were prepared for the field-testing phase of the project; and Baseline testing was completed during the quarter. (2) Technology Transfer--A number of technical presentations and briefings were made during the quarter. Notable among them was a paper published in the JAWMA. Also, two papers were presented at the Air Quality III Conference and one at the Pittsburgh Coal Conference.

  8. On the Mass Balance of Asphaltene Precipitation

    DEFF Research Database (Denmark)

    Andersen, Simon Ivar; Lira-Galeana, C.; Stenby, Erling Halfdan

    2001-01-01

    In the evaluation of experimental data as well as in calculation of phase equilibria the necessity of the application of mass balances is obvious. In the case of asphaltenes the colloidal nature of these compounds may highly affect the mass balance. In the present paper several experiments...... are performed in order to check the consistency of mass balances within asphaltene precipitation. Asphaltenes are precipitated in two step processes either by changing temperature or by changes in precipitant with increasing precipitation power. This has been performed for three different oils. The data...... indicates that in temperature experiments as well as in solvent series experiments the precipitation of heavy asphaltenes affects the following precipitation of lighter asphaltenes. In both cases the mass balance using standard separation techniques cannot be closed, as less material is precipitated...

  9. National Weatherization Assistance Program Impact Evaluation: Impact of Exhaust-Only Ventilation on Radon and Indoor Humidity - A Field Investigation

    Energy Technology Data Exchange (ETDEWEB)

    Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States)

    2014-09-01

    The study described here sought to assess the impact of exhaust-only ventilation on indoor radon and humidity in single-family homes that had been treated by the Weatherization Assistance Program (WAP).

  10. Bombay Hook National Wildlife Refuge Marsh and Water Management Program Evaluation Field Tour: 14-16 July 1987

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The evaluation was part of a region-wide review of marsh and water management programs on national wildlife refuges throughout the northeastern United States. Good...

  11. System level approaches for mainstreaming tobacco control into existing health programs in India: Perspectives from the field

    Directory of Open Access Journals (Sweden)

    Rajmohan Panda

    2015-01-01

    Full Text Available Introduction: India is the second largest consumer of tobacco in the world, and varieties of both smoked and smokeless tobacco products are widely available. The national program for tobacco control is run like a vertical stand-alone program. There is a lack of understanding of existing opportunities and barriers within the health programs that influence the integration of tobacco control messages into them. The present formative research identifies such opportunities and barriers. Methods: We conducted a multi-step, mixed methodological study of primary care personnel and policy-makers in two Indian states of Andhra Pradesh and Gujarat. The primary purpose of our study was to investigate health worker and policy-maker perceptions on the integration of tobacco control intervention. We systematically collected data in three steps: In Step I, we conducted in-depth interviews (IDIs and focus group discussions with primary care health personnel, Step II consists of a quantitative survey among health care providers (n = 1457 to test knowledge, attitudes and practices in tobacco control and Step III we conducted 75 IDIs with program heads and policy-makers to evaluate the relative congruence of their views on integration of the tobacco control program. Results: Majority of the health care providers recognized tobacco use as a major health problem. There was a general consensus for the need of training for effective dissemination of information from health care providers to patients. Almost 92% of the respondents opined that integration of tobacco control with other health programs will be highly effective to downscale the tobacco epidemic. Conclusions: Our findings suggest the need for integration of tobacco control program into existing health programs. Integration of tobacco control strategies into the health care system within primary and secondary care will be more effective and counseling for tobacco cessation should be available for population

  12. OLYMPEX Counterflow Spectrometer and Impactor Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Poellot, Michael [Univ. of North Dakota, Grand Forks, ND (United States)

    2016-07-01

    The U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility’s ARM Aerial Facility (AAF) Counterflow Spectrometer and Impactor (CSI) probe was flown on the University of North Dakota Cessna Citation research aircraft during the Olympic Mountain Experiment (OLYMPEX). The field campaign took place from November 12 through December 19, 2015, over the Olympic Mountains and coastal waters of Washington State as part of a National Aeronautics and Space Administration (NASA) Global Precipitation Measurement (GPM) validation campaign. The CSI was added to the Citation instrument suite to support the NASA Aerosol-Cloud Ecosystem (ACE) satellite program and flights of the NASA Lockheed Earth Resources (ER-2) aircraft. ACE funded extra ER-2 flights to focus on clouds that are weakly precipitating, which are also of interest to the DOE Atmospheric System Research (ASR) program.

  13. Towards a new daily in-situ precipitation data set supporting parameterization of wet-deposition of CTBT relevant radionuclides

    Science.gov (United States)

    Becker, A.; Ceranna, L.; Ross, O.; Schneider, U.; Meyer-Christoffer, A.; Ziese, M.; Lehner, K.; Rudolf, B.

    2012-04-01

    As contribution to the World Climate Research Program (WCRP) and in support of the Global Climate Observing System (GCOS) of the World Meteorological Organization (WMO), the Deutscher Wetterdienst (DWD) operates the Global Precipitation Climatology Centre (GPCC). The GPCC re-analysis and near-real time monitoring products are recognized world-wide as the most reliable global data set on rain-gauge based (in-situ) precipitation measurements. The GPCC Monitoring Product (Schneider et al, 2011; Becker et al. 2012, Ziese et al, EGU2012-5442) is available two months after the fact based on the data gathered while listening to the GTS to fetch the SYNOP and CLIMAT messages. This product serves also the reference data to calibrate satellite based precipitation measurements yielding the Global Precipitation Climatology Project (GPCP) data set (Huffmann et al., 2009). The quickest GPCC product is the First Guess version of the GPCC Monitoring Product being available already 3-5 days after the month regarded. Both, the GPCC and the GPCP products bear the capability to serve as data base for the computational light-weight post processing of the wet deposition impact on the radionuclide (RN) monitoring capability of the CTBT network (Wotawa et al., 2009) on the regional and global scale, respectively. This is of major importance any time, a reliable quantitative assessment of the source-receptor sensitivity is needed, e.g. for the analysis of isotopic ratios. Actually the wet deposition recognition is a prerequisite if ratios of particulate and noble gas measurements come into play. This is so far a quite unexplored field of investigation, but would alleviate the clearance of several apparently CTBT relevant detections, encountered in the past, as bogus and provide an assessment for the so far overestimation of the RN detection capability of the CTBT network. Besides the climatological kind of wet deposition assessment for threshold monitoring purposes, there are also singular

  14. Methane Hydrate Field Program: Development of a Scientific Plan for a Methane Hydrate-Focused Marine Drilling, Logging and Coring Program

    Energy Technology Data Exchange (ETDEWEB)

    Myers, Greg [Consortium for Ocean Leadership, Washington, DC (United States)

    2014-02-01

    This final report document summarizes the activities undertaken and the output from three primary deliverables generated during this project. This fifteen month effort comprised numerous key steps including the creation of an international methane hydrate science team, determining and reporting the current state of marine methane hydrate research, convening an international workshop to collect the ideas needed to write a comprehensive Marine Methane Hydrate Field Research Plan and the development and publication of that plan. The following documents represent the primary deliverables of this project and are discussed in summary level detail in this final report: Historical Methane Hydrate Project Review Report; Methane Hydrate Workshop Report; Topical Report: Marine Methane Hydrate Field Research Plan; and Final Scientific/Technical Report.

  15. Wildfire Dynamics and Occasional Precipitation during Active Fire Season in Tropical Lowland of Nepal

    Directory of Open Access Journals (Sweden)

    Krishna Bahadur Bhujel

    2017-10-01

    Full Text Available Occasional precipitation plays a vital role in reducing the effect of wildfire. This precipitation is especially important for countries like Nepal, where wildfires are a common seasonal event. Approximately 0.1 million hectare of forest area is affected annually due to wildfires in active fire season. The study on the relation of these forms of occasional precipitation with wildfire incidence is still lacking. This research was objectively carried out to examine the correlation of occasional precipitation with wildfire incidence and burnt area. The Moderate Resolution Imaging Spector-Radiometer (MODIS satellite images and precipitation records for 15 years gathered from Department of Hydrology and Metrology were used as input data for this study. The images were analyzed by using ArcGIS function while the precipitation records were analyzed by using Statistical Package for the Social Science (SPSS program. The linear regression model was applied to find correlation of occasional precipitation with wildfire incidence and burnt area. Analysis revealed decreasing trend of precipitation in study area. We found significant correlation (p<0.05 of precipitation with wildfire incidence and burnt area. Findings will be useful for policy makers, implementers and researchers to manage wildfire in sustainable basis.

  16. Physical Trauma and Infection as Precipitating Factors in Patients with Fibromyalgia.

    Science.gov (United States)

    Jiao, Juan; Vincent, Ann; Cha, Stephen S; Luedtke, Connie A; Kim, Chul H; Oh, Terry H

    2015-12-01

    The objective of this study was to evaluate both precipitating factors in patients with fibromyalgia and any differences in clinical presentation, symptom severity, and quality-of-life between those with and without precipitating physical trauma or infection. In a retrospective cross-sectional study, the authors compared patient characteristics and fibromyalgia symptom severity and quality-of-life with the Fibromyalgia Impact Questionnaire and the Short Form-36 Health Survey in patients seen in a fibromyalgia treatment program. Of 939 patients, 27% reported precipitating factors (trauma, n = 203; infection, n = 53), with the rest having idiopathic fibromyalgia (n = 683). Patients with precipitating trauma were more likely to have worse Fibromyalgia Impact Questionnaire physical function than patients with idiopathic onset (P = 0.03). Compared with patients with idiopathic onset and precipitating trauma, patients with precipitating infection were more likely to have worse Short Form-36 Health Survey physical component summary (P = 0.01 and P = 0.003) but better role emotional (P = 0.04 and P = 0.005), mental health index (P = 0.02 and P = 0.007), and mental component summary (P = 0.03 and P = 0.004), respectively. One-fourth of this study's patients with fibromyalgia had precipitating physical trauma or infection. Patients with precipitating infection had different sociodemographic characteristics, clinical presentation, and quality-of-life from the idiopathic and trauma groups. Further studies are needed to look into the relationships between precipitating events and fibromyalgia.

  17. Precipitation Education: Connecting Students and Teachers with the Science of NASA's GPM Mission

    Science.gov (United States)

    Weaver, K. L. K.

    2015-12-01

    The Global Precipitation Measurement (GPM) Mission education and communication team is involved in variety of efforts to share the science of GPM via hands-on activities for formal and informal audiences and engaging students in authentic citizen science data collection, as well as connecting students and teachers with scientists and other subject matter experts. This presentation will discuss the various forms of those efforts in relation to best practices as well as lessons learned and evaluation data. Examples include: GPM partnered with the Global Observations to Benefit the Environment (GLOBE) Program to conduct a student precipitation field campaign in early 2015. Students from around the world collected precipitation data and entered it into the GLOBE database, then were invited to develop scientific questions to be answered using ground observations and satellite data available from NASA. Webinars and blogs by scientists and educators throughout the campaign extended students' and teachers' knowledge of ground validation, data analysis, and applications of precipitation data. To prepare teachers to implement the new Next Generation Science Standards, the NASA Goddard Earth science education and outreach group, led by GPM Education Specialists, held the inaugural Summer Watershed Institute in July 2015 for 30 Maryland teachers of 3rd-5th grades. Participants in the week-long in-person workshop met with scientists and engineers at Goddard, learned about NASA Earth science missions, and were trained in seven protocols of the GLOBE program. Teachers worked collaboratively to make connections to their own curricula and plan for how to implement GLOBE with their students. Adding the arts to STEM, GPM is producing a comic book story featuring the winners of an anime character contest held by the mission during 2013. Readers learn content related to the science and technology of the mission as well as applications of the data. The choice of anime/manga as the style

  18. Clouds, Aerosol, and Precipitation in the Marine Boundary Layer (CAP-MBL) Final Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Wood, R. [Univ. of Washington, Seattle, WA (United States)

    2016-01-01

    The extensive coverage of low clouds over the subtropical eastern oceans greatly impacts the current climate. In addition, the response of low clouds to changes in atmospheric greenhouse gases and aerosols is a major source of uncertainty, which thwarts accurate prediction of future climate change. Low clouds are poorly simulated in climate models, partly due to inadequate long-term simultaneous observations of their macrophysical and microphysical structure, radiative effects, and associated aerosol distribution in regions where their impact is greatest. The thickness and extent of subtropical low clouds is dependent on tight couplings between surface fluxes of heat and moisture, radiative cooling, boundary layer turbulence, and precipitation (much of which evaporates before reaching the ocean surface and is closely connected to the abundance of cloud condensation nuclei). These couplings have been documented as a result of past field programs and model studies. However, extensive research is still required to achieve a quantitative understanding sufficient for developing parameterizations, which adequately predict aerosol indirect effects and low cloud response to climate perturbations. This is especially true of the interactions between clouds, aerosol, and precipitation. These processes take place in an ever-changing synoptic environment that can confound interpretation of short time period observations.

  19. EFFECT OF MAGNESIUM AS SUBSTITUTE MATERIAL IN ENZYME MEDIATED CALCITE PRECIPITATION (EMCP FOR SOIL IMPROVEMENT TECHNIQUE

    Directory of Open Access Journals (Sweden)

    Heriansyah ePutra

    2016-05-01

    Full Text Available The optimization of enzyme-mediated calcite precipitation (EMCP was evaluated as a soil improvement technique. In our previous works, purified urease was utilized to bio-catalyze the hydrolysis of urea, which causes the supplied Ca2+ to precipitate with CO32- as calcium carbonate. In the present work, magnesium chloride was newly added to the injecting solutions to delay the reaction rate and to enhance the amount of carbonate precipitation. Soil specimens were prepared in PVC cylinders and treated with concentration-controlled solutions composed of urea, urease, calcium, and magnesium chloride. The mechanical properties of the treated soil specimens were examined through unconfined compressive strength (UCS tests. A precipitation ratio of the carbonate up to 90% of the maximum theoretical precipitation was achieved by adding a small amount of magnesium chloride. Adding magnesium chloride as a delaying agent was indeed found to reduce the reaction rate of the precipitation, which may increase the volume of the treated soil if used in real fields because of the slower precipitation rate and the resulting higher injectivity. A mineralogical analysis revealed that magnesium chloride decreases the crystal size of the precipitated materials and that another carbonate of aragonite is newly formed. Mechanical test results indicated that carbonate precipitates within the soils and brings about a significant improvement in strength. A maximum UCS of 0.6 MPa was obtained from the treated samples.

  20. Identification of large-scale meteorological patterns associated with extreme precipitation in the US northeast

    Science.gov (United States)

    Agel, Laurie; Barlow, Mathew; Feldstein, Steven B.; Gutowski, William J.

    2017-05-01

    Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.

  1. Automatized system of precipitation monitoring and recording with use of radiolocation for urban areas

    Science.gov (United States)

    Voronov, Nikolai; Dikinis, Alexandr; Ivanov, Maxim

    2016-04-01

    One of the most important lines of work in the field of increasing the efficiency of functioning of urban water disposal systems is automation of precipitation recording with application of new technological tools for measuring precipitations fallout and forecast. The developed Automatized Information System for Atmospheric Precipitation Recording (AIS «Osadki») includes a network of automatic precipitation stations on the basis of use of the precipitation gauge OTT Pluvio2; a Doppler meteorological radar; software for collection of information about precipitations and control of work of the precipitation stations network; a specialized database that provides direct access to meteorological information and statistical estimation of precipitation distribution for urban conditions. The main advantage of the System is the use of a Doppler meteorological radar which, in combination with the measurement data of the station in the automated mode with a 5-minute interval allows to estimate both the distribution of precipitations on the urban territory their intensity. As the result, it allows to drastically increase the speed of processing of hydrometeorological information and the efficiency of using it for the needs of urban services. This article was prepared within the framework of the Federal Targeted Programme for Research and Development in Priority Areas of Development of the Russian Scientific and Technological Complex for 2014-2020 (agreement № 14.574.21.0088).

  2. Changes in precipitation extremes projected by a 20-km mesh global atmospheric model

    Directory of Open Access Journals (Sweden)

    Akio Kitoh

    2016-03-01

    Full Text Available High-resolution modeling is necessary to project weather and climate extremes and their future changes under global warming. A global high-resolution atmospheric general circulation model with grid size about 20 km is able to reproduce climate fields as well as regional-scale phenomena such as monsoonal rainfall, tropical and extratropical cyclones, and heavy precipitation. This 20-km mesh model is applied to project future changes in weather and climate extremes at the end of the 21st century with four different spatial patterns in sea surface temperature (SST changes: one with the mean SST changes by the 28 models of the Coupled Model Intercomparison Project Phase 5 (CMIP5 under the Representative Concentration Pathways (RCP-8.5 scenario, and the other three obtained from a cluster analysis, in which tropical SST anomalies derived from the 28 CMIP5 models were grouped. Here we focus on future changes in regional precipitation and its extremes. Various precipitation indices averaged over the Twenty-two regional land domains are calculated. Heavy precipitation indices (maximum 5-day precipitation total and maximum 1-day precipitation total increase in all regional domains, even where mean precipitation decrease (Southern Africa, South Europe/Mediterranean, Central America. South Asia is the domain of the largest extreme precipitation increase. In some domains, different SST patterns result in large precipitation changes, possibly related to changes in large-scale circulations in the tropical Pacific.

  3. Sulfate removal from waste chemicals by precipitation.

    Science.gov (United States)

    Benatti, Cláudia Telles; Tavares, Célia Regina Granhen; Lenzi, Ervim

    2009-01-01

    Chemical oxidation using Fenton's reagent has proven to be a viable alternative to the oxidative destruction of organic pollutants in mixed waste chemicals, but the sulfate concentration in the treated liquor was still above the acceptable limits for effluent discharge. In this paper, the feasibility of sulfate removal from complex laboratory wastewaters using barium and calcium precipitation was investigated. The process was applied to different wastewater cases (two composite samples generated in different periods) in order to study the effect of the wastewater composition on the sulfate precipitation. The experiments were performed with raw and oxidized wastewater samples, and carried out according to the following steps: (1) evaluate the pH effect upon sulfate precipitation on raw wastewaters at pH range of 2-8; (2) conduct sulfate precipitation experiments on raw and oxidized wastewaters; and (3) characterize the precipitate yielded. At a concentration of 80 g L(-1), barium precipitation achieved a sulfate removal up to 61.4% while calcium precipitation provided over 99% sulfate removal in raw and oxidized wastewaters and for both samples. Calcium precipitation was chosen to be performed after Fenton's oxidation; hence this process configuration favors the production of higher quality precipitates. The results showed that, when dried at 105 degrees C, the precipitate is composed of hemidrate and anhydrous calcium sulfate ( approximately 99.8%) and trace metals ( approximately 0.2%: Fe, Cr, Mn, Co, Ag, Mg, K, Na), what makes it suitable for reuse in innumerous processes.

  4. Generating spatial precipitation ensembles: impact of temporal correlation structure

    Directory of Open Access Journals (Sweden)

    O. Rakovec

    2012-09-01

    Full Text Available Sound spatially distributed rainfall fields including a proper spatial and temporal error structure are of key interest for hydrologists to force hydrological models and to identify uncertainties in the simulated and forecasted catchment response. The current paper presents a temporally coherent error identification method based on time-dependent multivariate spatial conditional simulations, which are conditioned on preceding simulations. A sensitivity analysis and real-world experiment are carried out within the hilly region of the Belgian Ardennes. Precipitation fields are simulated for pixels of 10 km × 10 km resolution. Uncertainty analyses in the simulated fields focus on (1 the number of previous simulation hours on which the new simulation is conditioned, (2 the advection speed of the rainfall event, (3 the size of the catchment considered, and (4 the rain gauge density within the catchment. The results for a sensitivity analysis show for typical advection speeds >20 km h−1, no uncertainty is added in terms of across ensemble spread when conditioned on more than one or two previous hourly simulations. However, for the real-world experiment, additional uncertainty can still be added when conditioning on a larger number of previous simulations. This is because for actual precipitation fields, the dynamics exhibit a larger spatial and temporal variability. Moreover, by thinning the observation network with 50%, the added uncertainty increases only slightly and the cross-validation shows that the simulations at the unobserved locations are unbiased. Finally, the first-order autocorrelation coefficients show clear temporal coherence in the time series of the areal precipitation using the time-dependent multivariate conditional simulations, which was not the case using the time-independent univariate conditional simulations. The presented work can be easily implemented within a hydrological calibration and data assimilation

  5. Numerical simulation of an intense precipitation event over ...

    Indian Academy of Sciences (India)

    suring Mission (TRMM) multi-satellite daily pre- cipitation analysis (TMPA 3B42 V7, Huffman et al. 2007) at 0.25◦× 0.25◦ spatial resolution is used for comparing with the model precipitation fields. The model equations in ARW are solved with time-split integration using a second-order Runge–. Kutta scheme on the Arakawa ...

  6. A Coupled GCM-Cloud Resolving Modeling System to Study Precipitation Processes

    Science.gov (United States)

    Tao, Wei-Kuo; Chern, Jiundar; Atlas, Robert; Peters-Lidard, Christa; Hou, Arthur; Lin, Xin

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud resolving models (CRMs) agree with observations better than traditional single column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA Satellite and field campaign cloud related data sets can provide initial conditions as well as validation for both the MMF and CRMs. Also we have implemented a Land Information System (LIS that includes the CLM and NOAH land surface models into the MMF. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM) This modeling system has been applied and tested its performance for two different climate scenarios, El Nino (1998) and La Nina (1999). The coupled new modeling system produced more realistic propagation and intensity of tropical rainfall systems and intraseasonal oscillations, and diurnal variation of precipitation that are very difficult to forecast using even the state-of-the-art GCMs. In this talk I will present: (1) a brief review on GCE model and its applications on precipitation processes (both Microphysical and land processes) and (2) The Goddard MMF and the Major difference between two existing MMFs (CSU MMF and Goddard MMF) and preliminary results (the comparison with traditional GCMs).

  7. How will precipitation change in extratropical cyclones as the planet warms?

    Science.gov (United States)

    Yettella, V. K. R.; Kay, J. E.

    2015-12-01

    The majority of midlatitude precipitation occurs in extratropical cyclones. The purpose of this study is to understand how and why precipitation changes in these cyclones due to global warming. Daily precipitation fields from the Community Earth System Model (CESM) Large Ensemble Project are used for this purpose. Extratropical cyclone centers during three periods (1986 - 2005, 2016 - 2035 and 2081 - 2100 representing the present day, the near future and the far future respectively) are identified using a filtering algorithm based on pressure gradients typical of extratropical cyclone centers. For each cyclone center, the surrounding precipitation field is interpolated from the CESM grid onto a radial cap centered on the cyclone center. Average precipitation fields are calculated for the three periods to obtain "cyclone composites". In agreement with the warm conveyor belt model, the cyclone composites for the three periods have a comma-shaped precipitation band with maximum precipitation close to the cyclone center. The near future and the far future composites are compared with the present day composite to identify locations of significant change (at 95% confidence). Statistically significant precipitation increases are found both for the near future and the far future, especially near the cyclone center. To identify the processes contributing to these changes, we decompose precipitation change into two parts - one part that is due to changes in dynamics (mean cyclone wind speed) and another part that is due to changes in thermodynamics (mean cyclone water vapor path). We find that precipitation increases occur primarily due to changes in thermodynamics. We will also present ongoing work to investigate changes in cyclone location and density in a warming climate and also investigate land-ocean and hemispheric differences in cyclone charactersitics.

  8. Feasibility study of red blood cell debulking by magnetic field-flow fractionation with step-programmed flow.

    Science.gov (United States)

    Moore, Lee R; Williams, P Stephen; Nehl, Franziska; Abe, Koji; Chalmers, Jeffrey J; Zborowski, Maciej

    2014-02-01

    Emerging applications of rare cell separation and analysis, such as separation of mature red blood cells from hematopoietic cell cultures, require efficient methods of red blood cell (RBC) debulking. We have tested the feasibility of magnetic RBC separation as an alternative to centrifugal separation using an approach based on the mechanism of magnetic field-flow fractionation (MgFFF). A specially designed permanent magnet assembly generated a quadrupole field having a maximum field of 1.68 T at the magnet pole tips, zero field at the aperture axis, and a nearly constant radial field gradient of 1.75 T/mm (with a negligible angular component) inside a cylindrical aperture of 1.9 mm (diameter) and 76 mm (length). The cell samples included high-spin hemoglobin RBCs obtained by chemical conversion of hemoglobin to methemoglobin (met RBC) or by exposure to anoxic conditions (deoxy RBC), low-spin hemoglobin obtained by exposure of RBC suspension to ambient air (oxy RBC), and mixtures of deoxy RBC and cells from a KG-1a white blood cell (WBC) line. The observation that met RBCs did not elute from the channel at the lower flow rate of 0.05 mL/min applied for 15 min but quickly eluted at the subsequent higher flow rate of 2.0 mL/min was in agreement with FFF theory. The well-defined experimental conditions (precise field and flow characteristics) and a well-established FFF theory verified by studies with model cell systems provided us with a strong basis for making predictions about potential practical applications of the magnetic RBC separation.

  9. Electrostatic precipitator for air cleaning

    Energy Technology Data Exchange (ETDEWEB)

    Albertsson, P.; Eriksson, R.; Vlastos, A.

    1981-03-31

    An electrostatic precipitator is disclosed for air cleaning wherein the air passes through in two steps: first passing through a charging portion and next through a separation portion. The charging portion includes wires positioned parallel to and between parallel metal sheets, the wires having an electric potential other than that of the metal sheets. The separation portion includes plural parallel metal sheets, each of which has an electric potential other than that of adjacent metal sheets. The charging portion includes two or more wires between each pair of metal sheets, and the metal sheets of the charging portion extend through and constitute some of the metal sheets of the separation portion, between which are disposed addition metal sheets of an odd number.

  10. Calcium precipitate induced aerobic granulation.

    Science.gov (United States)

    Wan, Chunli; Lee, Duu-Jong; Yang, Xue; Wang, Yayi; Wang, Xingzu; Liu, Xiang

    2015-01-01

    Aerobic granulation is a novel biotechnology for wastewater treatment. This study refined existing aerobic granulation mechanisms as a sequencing process including formation of calcium precipitate under alkaline pH to form inorganic cores, followed by bacterial attachment and growth on these cores to form the exopolysaccharide matrix. Mature granules comprised an inner core and a matrix layer and a rim layer with enriched microbial strains. The inorganic core was a mix of different crystals of calcium and phosphates. Functional strains including Sphingomonas sp., Paracoccus sp. Sinorhizobium americanum strain and Flavobacterium sp. attached onto the cores. These functional strains promote c-di-GMP production and the expression by Psl and Alg genes for exopolysaccharide production to enhance formation of mature granules. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Development and application of new methods to retrieve vertical structure of precipitation above the ARM CART sites from MMCR measurements

    Energy Technology Data Exchange (ETDEWEB)

    Matrosov, Sergey

    2010-12-15

    The main objective of this project was to develop, validate and apply remote sensing methods to retrieve vertical profiles of precipitation over the DOE ARM CART sites using currently available remote sensors. While the ARM Program invested very heavily into developments of remote sensing methods and instruments for water vapor and non-precipitating cloud parameter retrievals, precipitation retrievals and studies lagged behind. Precipitation, however, is a crucial part of the water cycle, and without detailed information on rainfall and snowfall, significant improvements in the atmospheric models of different scales (i.e., one of the ARM Program's main goals) is difficult to achieve. Characterization of the vertical atmospheric column above the CART sites is also incomplete without detailed precipitation information, so developments of remote sensing methods for retrievals of parameters in precipitating cloud condition was essential. Providing modelers with retrieval results was also one of the key objectives of this research project.

  12. MATLAB-based program for optimization of quantum cascade laser active region parameters and calculation of output characteristics in magnetic field

    Science.gov (United States)

    Smiljanić, J.; Žeželj, M.; Milanović, V.; Radovanović, J.; Stanković, I.

    2014-03-01

    A strong magnetic field applied along the growth direction of a quantum cascade laser (QCL) active region gives rise to a spectrum of discrete energy states, the Landau levels. By combining quantum engineering of a QCL with a static magnetic field, we can selectively inhibit/enhance non-radiative electron relaxation process between the relevant Landau levels of a triple quantum well and realize a tunable surface emitting device. An efficient numerical algorithm implementation is presented of optimization of GaAs/AlGaAs QCL region parameters and calculation of output properties in the magnetic field. Both theoretical analysis and MATLAB implementation are given for LO-phonon and interface roughness scattering mechanisms on the operation of QCL. At elevated temperatures, electrons in the relevant laser states absorb/emit more LO-phonons which results in reduction of the optical gain. The decrease in the optical gain is moderated by the occurrence of interface roughness scattering, which remains unchanged with increasing temperature. Using the calculated scattering rates as input data, rate equations can be solved and population inversion and the optical gain obtained. Incorporation of the interface roughness scattering mechanism into the model did not create new resonant peaks of the optical gain. However, it resulted in shifting the existing peaks positions and overall reduction of the optical gain. Catalogue identifier: AERL_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERL_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 37763 No. of bytes in distributed program, including test data, etc.: 2757956 Distribution format: tar.gz Programming language: MATLAB. Computer: Any capable of running MATLAB version R2010a or higher. Operating system: Any platform

  13. The Data Sprint Approach: Exploring the field of Digital Humanities through Amazon’s Application Programming Interface

    NARCIS (Netherlands)

    Berry, D.M.; Borra, E.; Helmond, A.; Plantin, J.-C.; Rettberg, J.W.

    2015-01-01

    This paper documents the results of an intensive "data sprint" method for undertaking data and algorithmic work using application programming interfaces (APIs), which took place during the Digital Method Initiative 2013 Winter School at the University of Amsterdam. During this data sprint, we

  14. The Development and Implementation of a Staff Development Program for Uncertified Teachers in the Field of Early Childhood Education.

    Science.gov (United States)

    Hill, Bettye Jane

    This practicum report describes the development and implementation of an inservice program for four teachers who, in order to meet Federal integration guidelines, were given kindergarten assignments for which they were not certified. Comparison of test scores of disadvantaged kindergarten children taught by trained and untrained teachers revealed…

  15. Conceptualizing a Mentoring Program for American Indian/Alaska Native Students in the STEM Fields: A Review of the Literature

    Science.gov (United States)

    Windchief, Sweeney; Brown, Blakely

    2017-01-01

    In order to address the disparity of American Indian/Alaska Native (AI/AN) doctorates in science, technology, engineering, and math (STEM), culturally congruent mentorship program development is needed. Because traditional Western academic paradigms are typically constrained to a non-Indigenous perspective, the authors question how American Indian…

  16. A Competency-Based and Field-Centered Teacher Education Program in French: Teacher Competencies and Evidence of Achievement.

    Science.gov (United States)

    Papalia, Anthony

    The foreign language teacher training program described here is competency-based and therefore assumes the use of stated assessment criteria. Foreign language teacher competencies are listed in three categories: (1) content area, (2) learning-teaching process, and (3) teacher-school-community and profession. The team leader responsible for…

  17. HIV prevention in action on the football field: the WhizzKids United program in South Africa.

    Science.gov (United States)

    Balfour, Louise; Farrar, Thomas; McGilvray, Marcus; Wilson, Douglas; Tasca, Giorgio A; Spaans, Johanna N; Mathews, Catherine; Maziya, Lungile; Khanyile, Siphosihle; Dalgleish, Tracy L; Cameron, William D

    2013-07-01

    The Africaid Trust is a grassroots South African non-profit organization that engages youth in HIV prevention by harnessing the popularity of football (i.e. soccer). WhizzKids United, the organization's primary program, operates a 12-week program in elementary schools in Pietermaritzburg, South Africa, which aims to impart knowledge and life skills critical to HIV prevention. The goal of this research was to compare elementary school youth who received the program to youth who only received traditional classroom-based HIV education on health behaviors and HIV-related knowledge and stigma. A secondary objective was to evaluate HIV knowledge, sexual behaviors, attitudes towards HIV and health care seeking behaviors among South African youth in grades 9-12. Elementary students who participated in the program reported greater HIV knowledge and lower HIV stigma (p < .001) than those who had not. The majority of youth in grades 9-12 report having sexual relations (55.6%), despite low levels of HIV testing (29.9%) in this high HIV prevalence region of South Africa. The results highlight the importance of supporting community-based HIV educational initiatives that engage high-risk youth in HIV prevention and the need for youth-friendly health services.

  18. Development of a Breast Cancer Treatment Program in Port-au-Prince, Haiti: Experiences From the Field

    Science.gov (United States)

    Libby, Rachel; Patberg, Elizabeth; Gabriel, Dieudina; Al-Quran, Samer; Kasher, Matthew; Heldermon, Coy; Daily, Karen; Auguste, Joseph R.; Suprien, Valery C.; Hurley, Judith

    2016-01-01

    Purpose The nonprofit Project Medishare launched a breast cancer treatment program in Port-au-Prince in July 2013 to address the demand for breast cancer care in Haiti. We outline the development of the program, highlight specific challenges, and discuss key considerations for others working in global oncology. Methods We reflected on our experiences in the key areas of developing partnerships, building laboratory capacity, conducting medical training, using treatment algorithms, and ensuring access to safe, low-cost chemotherapy drugs. We also critically reviewed our costs and quality measures. Results The program has treated a total of 139 patients with breast cancer with strong adherence to treatment regimens in 85% of patients. In 273 chemotherapy administrations, no serious exposure or adverse safety events were reported by staff. The mortality rate for 94 patients for whom we have complete data was 24% with a median survival time of 53 months. Our outcome data were likely influenced by stage at presentation, with more than half of patients presenting more than 12 months after first noticing a tumor. Future efforts will therefore focus on continuing to improve the level of care, while working with local partners to spread awareness, increase screening, and get more women into care earlier in the course of their disease. Conclusion Our experiences may inform others working to implement protocol-based cancer treatment programs in resource-poor settings and can provide valuable lessons learned for future global oncology efforts. PMID:28717677

  19. Induced and catalysed mineral precipitation in the deep biosphere

    Science.gov (United States)

    Meister, Patrick

    2017-04-01

    Authigenic and early diagenetic minerals provide archives of past (bio)geochemical processes. In particular, isotopic signatures preserved in the diagenetic phases have been shown to document drastic changes of subsurface microbial activity (the deep biosphere) over geological time periods (Contreras et al., 2013; Meister, 2015). Geochemical and isotopic signatures in authigenic minerals may also document surface conditions and past climate. Nevertheless, such use of authigenic mineral phases as (bio)geochemical archives is often hampered by the insufficient understanding of mineral precipitation mechanisms. Accordingly the time, place and rate of mineral precipitation are often not well constrained. Also, element partitioning and isotopic fractionation may be modified as a result of the precipitation mechanism. Early diagenetic dolomite and quartz from drilled sequences in the Pacific were compared with adjacent porewater compositions and isotope signatures to gain fundamental insight into the factors controlling mineral precipitation. The formation of dolomite in carbonate-free organic carbon-rich ocean margin sediments (e.g. Peru Margin; Ocean Drilling Program, ODP, Site 1229; Meister et al., 2007) relies on the alkalinity-increase driven by anaerobic oxidation of methane and, perhaps, by alteration of clay minerals. In contrast, quartz is often significantly oversaturated in marine porewaters as the dissolved silica concentration is buffered by more soluble opal-A. For example, quartz does not form throughout a 400 metre thick sedimentary sequence in the Eastern Equatorial Pacific (ODP Site 1226; Meister et al., 2014) because it is kinetically inhibited. This behaviour can be explained by Ostwald's step rule, which suggests that the metastable phase forms faster. However, hard-lithified quartz readily forms where silica concentration drops sharply below opal-saturation. This violation of Ostwald's step rule must be driven by an auxiliary process, such as the

  20. Electrodril system field test program. Phase II: Task C-1-deep drilling system demonstration. Final report for Phase II: Task C-1

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, P D

    1981-04-01

    The Electrodril Deep Drilling System field test demonstrations were aborted in July 1979, due to connector problems. Subsequent post test analyses concluded that the field replacable connectors were the probable cause of the problems encountered. The designs for both the male and female connectors, together with their manufacturing processes, were subsequently modified, as was the acceptance test procedures. A total of nine male and nine female connectors were manufactured and delivered during the 2nd Quarter 1980. Exhaustive testing was then conducted on each connector as a precursor to formal qualification testing conducted during the month of October 1980, at the Brown Oil Tool test facility located in Houston, Texas. With this report, requirements under Phase II, Task C-1 are satisfied. The report documents the results of the connector qualification test program which was successfully completed October 28, 1980. In general, it was concluded that connector qualification had been achieved and plans are now in progress to resume the field test demonstration program so that Electrodril System performance predictions and economic viability can be evaluated.

  1. Feasibility and acceptability of the DSM-5 Field Trial procedures in the Johns Hopkins Community Psychiatry Programs.

    Science.gov (United States)

    Clarke, Diana E; Wilcox, Holly C; Miller, Leslie; Cullen, Bernadette; Gerring, Joan; Greiner, Lisa H; Newcomer, Alison; McKitty, Mellisha V; Regier, Darrel A; Narrow, William E

    2014-06-01

    The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) contains criteria for psychiatric diagnoses that reflect advances in the science and conceptualization of mental disorders and address the needs of clinicians. DSM-5 also recommends research on dimensional measures of cross-cutting symptoms and diagnostic severity, which are expected to better capture patients' experiences with mental disorders. Prior to its May 2013 release, the American Psychiatric Association (APA) conducted field trials to examine the feasibility, clinical utility, reliability, and where possible, the validity of proposed DSM-5 diagnostic criteria and dimensional measures. The methods and measures proposed for the DSM-5 field trials were pilot tested in adult and child/adolescent clinical samples, with the goal to identify and correct design and procedural problems with the proposed methods before resources were expended for the larger DSM-5 Field Trials. Results allowed for the refinement of the protocols, procedures, and measures, which facilitated recruitment, implementation, and completion of the DSM-5 Field Trials. These results highlight the benefits of pilot studies in planning large multisite studies. Copyright © 2013, American Psychiatric Association. All rights reserved.

  2. Field Test of a DCVD Using an Ixon Camera with a Lumogen-Coated EMCCD Detector. Prepared for the Canadian Safeguards Support Program and the Swedish Support Program

    Energy Technology Data Exchange (ETDEWEB)

    Chen, J.D.; Gerwing, A.F. [Channel Systems Inc., Pinawa MA (Canada); Maxwell, R. [Canadian Nuclear Safety Commission, Ottawa, ON (Canada); Larsson, M.; Axell, K.; Hildingsson, L. [Swedish Nuclear Power Inspectorate, Stockholm (Sweden); Lindberg, B. [LENS-TECH AB, Skellefteaa (Sweden); Vinnaa, F. [Teleca Design and Development, Stockholm (Sweden)

    2003-12-01

    The Canadian and Swedish Safeguards Support Programs have developed a new digital Cerenkov viewing device (DCVD) to verify spent fuel. The new system, based upon an electron-multiplied charge-coupled device that is lumogen coated, can operate at 14 frames per second using the fast 5 MHz analogue to digital converter. The new DCVD was successful in measuring the long-cooled Aagesta fuel with a burnup of 1,200 MWd/t U and a cooling time of 31 years, which is well below the target of 10,000 MWd/t U and 40- years- cooled. Scanning of fuel assemblies was successfully demonstrated. With the aid of a laser pointer system, random verification within a reasonable time frame was also demonstrated.

  3. Estimation of the characteristic energy of electron precipitation

    Directory of Open Access Journals (Sweden)

    C. F. del Pozo

    2002-09-01

    Full Text Available Data from simultaneous observations (on 13 February 1996, 9 November 1998, and 12 February 1999 with the IRIS, DASI and EISCAT systems are employed in the study of the energy distribution of the electron precipitation during substorm activity. The estimation of the characteristic energy of the electron precipitation over the common field of view of IRIS and DASI is discussed. In particular, we look closely at the physical basis of the correspondence between the characteristic energy, the flux-averaged energy, as defined below, and the logarithm of the ratio of the green-light intensity to the square of absorption. This study expands and corrects results presented in the paper by Kosch et al. (2001. It is noticed, moreover, that acceleration associated with diffusion processes in the magnetosphere long before precipitation may be controlling the shape of the energy spectrum. We propose and test a "mixed" distribution for the energy-flux spectrum, exponential at the lower energies and Maxwellian or modified power-law at the higher energies, with a threshold energy separating these two regimes. The energy-flux spectrum at Tromsø, in the 1–320 keV range, is derived from EISCAT electron density profiles in the 70–140 km altitude range and is applied in the "calibration" of the optical intensity and absorption distributions, in order to extrapolate the flux and characteristic energy maps.Key words. Ionosphere (auroral ionosphere; particle precipitation; particle acceleration

  4. Global Precipitation Measurement (GPM) Mission Development Status

    Science.gov (United States)

    Azarbarzin, Ardeshir Art

    2011-01-01

    Mission Objective: (1) Improve scientific understanding of the global water cycle and fresh water availability (2) Improve the accuracy of precipitation forecasts (3) Provide frequent and complete sampling of the Earth s precipitation Mission Description (Class B, Category I): (1) Constellation of spacecraft provide global precipitation measurement coverage (2) NASA/JAXA Core spacecraft: Provides a microwave radiometer (GMI) and dual-frequency precipitation radar (DPR) to cross-calibrate entire constellation (3) 65 deg inclination, 400 km altitude (4) Launch July 2013 on HII-A (5) 3 year mission (5 year propellant) (6) Partner constellation spacecraft.

  5. The promises and limitations of gender-transformative health programming with men: critical reflections from the field.

    Science.gov (United States)

    Dworkin, Shari L; Fleming, Paul J; Colvin, Christopher J

    2015-01-01

    Since the 1994 International Conference on Population and Development, researchers and practitioners have engaged in a series of efforts to shift health programming with men from being gender-neutral to being more gender-sensitive and gender-transformative. Efforts in this latter category have been increasingly utilised, particularly in the last decade, and attempt to transform gender relations to be more equitable in the name of improved health outcomes for both women and men. We begin by assessing the conceptual progression of social science contributions to gender-transformative health programming with men. Next, we briefly assess the empirical evidence from gender-transformative health interventions with men. Finally, we examine some of the challenges and limitations of gender-transformative health programmes and make recommendations for future work in this thriving interdisciplinary area of study.

  6. Asymmetric responses of primary productivity to precipitation extremes: A synthesis of grassland precipitation manipulation experiments.

    Science.gov (United States)

    Wilcox, Kevin R; Shi, Zheng; Gherardi, Laureano A; Lemoine, Nathan P; Koerner, Sally E; Hoover, David L; Bork, Edward; Byrne, Kerry M; Cahill, James; Collins, Scott L; Evans, Sarah; Gilgen, Anna K; Holub, Petr; Jiang, Lifen; Knapp, Alan K; LeCain, Daniel; Liang, Junyi; Garcia-Palacios, Pablo; Peñuelas, Josep; Pockman, William T; Smith, Melinda D; Sun, Shanghua; White, Shannon R; Yahdjian, Laura; Zhu, Kai; Luo, Yiqi

    2017-10-01

    Climatic changes are altering Earth's hydrological cycle, resulting in altered precipitation amounts, increased interannual variability of precipitation, and more frequent extreme precipitation events. These trends will likely continue into the future, having substantial impacts on net primary productivity (NPP) and associated ecosystem services such as food production and carbon sequestration. Frequently, experimental manipulations of precipitation have linked altered precipitation regimes to changes in NPP. Yet, findings have been diverse and substantial uncertainty still surrounds generalities describing patterns of ecosystem sensitivity to altered precipitation. Additionally, we do not know whether previously observed correlations between NPP and precipitation remain accurate when precipitation changes become extreme. We synthesized results from 83 case studies of experimental precipitation manipulations in grasslands worldwide. We used meta-analytical techniques to search for generalities and asymmetries of aboveground NPP (ANPP) and belowground NPP (BNPP) responses to both the direction and magnitude of precipitation change. Sensitivity (i.e., productivity response standardized by the amount of precipitation change) of BNPP was similar under precipitation additions and reductions, but ANPP was more sensitive to precipitation additions than reductions; this was especially evident in drier ecosystems. Additionally, overall relationships between the magnitude of productivity responses and the magnitude of precipitation change were saturating in form. The saturating form of this relationship was likely driven by ANPP responses to very extreme precipitation increases, although there were limited studies imposing extreme precipitation change, and there was considerable variation among experiments. This highlights the importance of incorporating gradients of manipulations, ranging from extreme drought to extreme precipitation increases into future climate change

  7. User’s Guide for the Incremental Construction, Soil-Structure Interaction Program SOILSTRUCT with Far-Field Boundary Elements

    Science.gov (United States)

    1994-03-01

    Unlimited , TIC t’%i ELECTE •m• Y2 5,1, ඦ 5" 23 116 Prepared for Headquarters, U.S. Army Corps of Engineers The contents of this report an not to be...evaluation of soil-structure interaction of earth retaining structures. The initial version of the program was developed by Profesors G. W. Clough and J

  8. Assessment of the Latest GPM-Era High-Resolution Satellite Precipitation Products by Comparison with Observation Gauge Data over the Chinese Mainland

    OpenAIRE

    Shaowei Ning; Jie Wang; Juliang Jin; Hiroshi Ishidaira

    2016-01-01

    The Global Precipitation Mission (GPM) Core Observatory that was launched on 27 February 2014 ushered in a new era for estimating precipitation from satellites. Based on their high spatial–temporal resolution and near global coverage, satellite-based precipitation products have been applied in many research fields. The goal of this study was to quantitatively compare two of the latest GPM-era satellite precipitation products (GPM IMERG and GSMap-Gauge Ver. 6) with a network of 840 precipitati...

  9. POTHMF: A program for computing potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field

    Science.gov (United States)

    Chuluunbaatar, O.; Gusev, A. A.; Gerdt, V. P.; Rostovtsev, V. A.; Vinitsky, S. I.; Abrashkevich, A. G.; Kaschiev, M. S.; Serov, V. V.

    2008-02-01

    A FORTRAN 77 program is presented which calculates with the relative machine precision potential curves and matrix elements of the coupled adiabatic radial equations for a hydrogen-like atom in a homogeneous magnetic field. The potential curves are eigenvalues corresponding to the angular oblate spheroidal functions that compose adiabatic basis which depends on the radial variable as a parameter. The matrix elements of radial coupling are integrals in angular variables of the following two types: product of angular functions and the first derivative of angular functions in parameter, and product of the first derivatives of angular functions in parameter, respectively. The program calculates also the angular part of the dipole transition matrix elements (in the length form) expressed as integrals in angular variables involving product of a dipole operator and angular functions. Moreover, the program calculates asymptotic regular and irregular matrix solutions of the coupled adiabatic radial equations at the end of interval in radial variable needed for solving a multi-channel scattering problem by the generalized R-matrix method. Potential curves and radial matrix elements computed by the POTHMF program can be used for solving the bound state and multi-channel scattering problems. As a test desk, the program is applied to the calculation of the energy values, a short-range reaction matrix and corresponding wave functions with the help of the KANTBP program. Benchmark calculations for the known photoionization cross-sections are presented. Program summaryProgram title:POTHMF Catalogue identifier:AEAA_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAA_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:8123 No. of bytes in distributed program, including test data

  10. Soil erosion modelling of single precipitation events using TLS and UAV in combination with Be-7 tracer, Andalusia (Spain)

    Science.gov (United States)

    Baumgart, Philipp; Eltner, Anette; Faust, Dominik

    2013-04-01

    Soil erosion due to superficial run-off is determined by complex processes. Within this context, high resolution modelling of recent and sub-recent relief changes based on erosive single precipitation events constitutes a great challenge. For non-invasive field measurements, photogrammetric methods such as unmanned airborne vehicle (UAV) and terrestrial laser scanner (TLS) are especially suitable. So far, these methods were used for highly resolved erosion modelling mainly within laboratory environments. UAV are economic and flexible to generate aerial images and programmed flight pattern can be repeated almost arbitrarily. TLS has the advantage of high accuracy potential and automation level for digital terrain model generation. Both methods complement each other. To achieve a high accuracy of erosion rates for single precipitation events within the interill sector, the cosmogenic nuclide tracer Beryllium-7 (Be-7) is especially eligible due to the short radioactive half-life. High sorption at topmost soil particles and immobility at given pH-values enable fine-scaled erosion modelling (two millimetre increments). For the presented project, the soil surface is measured before and shortly after strong precipitation events in the research area, located in the fragile marl landscape of Andalusia. Simultaneous investigations on a research section located in the Saxonian Loess Province (Eastern Germany) are performed. Hence, differing factors on soil erosion (e.g. precipitation intensity, slope characteristics, soil cover and soil type) are accounted for. For multi-temporal comparison of measured soil surface a stable local reference system, consisting of signalised points for photogrammetric data acquisition, is defined. Furthermore, undisturbed reference plots for Be-7 sampling are designed. First results and challenges are presented.

  11. Automatic Weather Station (AWS Program operated by the University of Wisconsin-Madison during the 2012-2013 field season: Challenges and Successes

    Directory of Open Access Journals (Sweden)

    Matthew A. Lazzara

    2015-03-01

    Full Text Available This report reviews 2012-2013 field season activities of the University of Wisconsin-Madison's Antarctic Automatic Weather Station (AWS program, summarizes the science that these sites are supporting, and outlines the factors that impact the number of AWS sites serviced in any given field season. The 2012-2013 austral summer season was unusual in the AWS network history. Challenges encountered include, but are not limited to, warmer than normal conditions in the Ross Island area impacting airfield operations, changes to logistical procedures, and competition for shared resources. A flexible work plan provides the best means for taking on these challenges while maximizing AWS servicing efforts under restricted conditions and meeting the need for routine servicing that maintaining an autonomous observing network demands.

  12. Magnetospheric particle precipitation at Titan

    Science.gov (United States)

    Royer, Emilie; Esposito, Larry; Crary, Frank; Wahlund, Jan-Erik

    2017-04-01

    Although solar XUV radiation is known to be the main source of ionization in Titan's upper atmosphere around 1100 km of altitude, magnetospheric particle precipitation can also account for about 10% of the ionization process. Magnetospheric particle precipitation is expected to be the most intense on the nightside of the satelllite and when Titan's orbital position around Saturn is the closest to Noon Saturn Local Time (SLT). In addition, on several occasion throughout the Cassini mission, Titan has been observed while in the magnetosheath. We are reporting here Ultraviolet (UV) observations of Titan airglow enhancements correlated to these magnetospheric changing conditions occurring while the spacecraft, and thus Titan, are known to have crossed Saturn's magnetopause and have been exposed to the magnetosheath environnment. Using Cassini-Ultraviolet Imaging Spectrograph (UVIS) observations of Titan around 12PM SLT as our primary set of data, we present evidence of Titan's upper atmosphere response to a fluctuating magnetospheric environment. Pattern recognition software based on 2D UVIS detector images has been used to retrieve observations of interest, looking for airglow enhancement of a factor of 2. A 2D UVIS detector image, created for each UVIS observation of Titan, displays the spatial dimension of the UVIS slit on the x-axis and the time on the y-axis. In addition, data from the T32 flyby and from April 17, 2005 from in-situ Cassini instruments are used. Correlations with data from simultaneous observations of in-situ Cassini instruments (CAPS, RPWS and MIMI) has been possible on few occasions and events such as electron burst and reconnections can be associated with unusual behaviors of the Titan airglow. CAPS in-situ measurements acquired during the T32 flyby are consistent with an electron burst observed at the spacecraft as the cause of the UV emission. Moreover, on April 17, 2005 the UVIS observation displays feature similar to what could be a

  13. Microchip gel electrophoresis with programmed field strength gradients for ultra-fast detection of canine T-cell lymphoma in dogs.

    Science.gov (United States)

    Suresh, Kumar K; Lee, Mi-Jin; Park, Jinho; Kang, Seong Ho

    2008-03-15

    This paper describes the applicability of microchip gel electrophoresis using a programmed field strength gradients (MGE-PFSG) method coupled with a polymerase chain reaction (PCR) for the ultra-fast diagnosis of canine T-cell lymphoma. The variable region in the T-cell receptor gamma (TCRgamma) gene from a T-cell lymphoma was used in PCR amplification. The contributions of the various parameters, including the effects of the molecular weight, concentration of the sieving matrix and field strength in MGE, were examined. 0.5% poly (ethyleneoxide) (PEO, M(r) 8000000) was used as the sieving matrix for the ultra-rapid separation of the amplified-PCR products (90 and 130-bp DNA fragments) from the PFSG at an effective length of 20mm in a glass microchip. The PCR products (90 and 130-bp DNA) of the T-cell lymphoma were analyzed within 41.7+/-0.1s, 15.5+/-0.2s and only 7.0+/-0.1s using a low-constant field strength, high-constant field strength and the PFSG, respectively. When 11 clinical samples were analyzed using the MGE-PFSG method, there was a 100% correlation with those obtained using conventional slab gel electrophoresis. The ultra-fast detection and rapid separation capabilities of MGE-PFSG make it an efficient tool for diagnosing T-cell lymphoma in clinical samples with high sensitivity.

  14. Circulation factors affecting precipitation over Bulgaria

    Science.gov (United States)

    Nojarov, Peter

    2017-01-01

    The objective of this paper is to determine the influence of circulation factors on precipitation in Bulgaria. The study succeeds investigation on the influence of circulation factors on air temperatures in Bulgaria, as the focus here is directed toward precipitation amounts. Circulation factors are represented through two circulation indices, showing west-east or south-north transport of air masses over Bulgaria and four teleconnection indices (patterns)—North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian. Omega values at 700-hPa level show vertical motions in the atmosphere. Annual precipitation trends are mixed and not statistically significant. A significant decrease of precipitation in Bulgaria is observed in November due to the strengthening of the eastward transport of air masses (strengthening of EA teleconnection pattern) and anticyclonal weather (increase of descending motions in the atmosphere). There is also a precipitation decrease in May and June due to the growing influence of the Azores High. An increase of precipitation happens in September. All this leads to a redistribution of annual precipitation course, but annual precipitation amounts remain the same. However, this redistribution has a negative impact on agriculture and winter ski tourism. Zonal circulation has a larger influence on precipitation in Bulgaria compared to meridional. Eastward transport throughout the year leads to lower than the normal precipitation, and vice versa. With regard to the four teleconnection patterns, winter precipitation in Bulgaria is determined mainly by EA/WR teleconnection pattern, spring and autumn by EA teleconnection pattern, and summer by SCAND teleconnection pattern.

  15. Adapting a successful inquiry-based immersion program to create an Authentic, Hands- on, Field based Curriculum in Environmental Science at Barnard College

    Science.gov (United States)

    Kenna, T. C.; Pfirman, S.; Mailloux, B. J.; Martin, S.; Kelsey, R.; Bower, P.

    2008-12-01

    Adapting a successful inquiry-based immersion program to create an Authentic, Hands-on, Field based Curriculum in Environmental Science at Barnard College T. C. Kenna, S. Pfirman, B. J. Mailloux, M. Stute, R. Kelsey, and P. Bower By adapting a successful inquiry-based immersion program (SEA semester) to the typical college format of classes, we are improving the technical and quantitative skills of undergraduate women and minorities in environmental science and improving their critical thinking and problem-solving by exposing our students to open-ended real-world environmental issues. Our approach uses the Hudson River Estuary as a natural laboratory. In a series of hands-on inquiry-based activities, students use advanced equipment to collect data and samples. Each class session introduces new analytical and data analysis techniques. All classes have the connecting theme of the river. Working with real data is open-ended. Our major findings as indicated by surveys as well as journaling throughout the semester are that the field- based experience significantly contributed to student learning and engagement. Journaling responses indicated that nearly all students discussed the importance and excitement of an authentic research experience. Some students were frustrated with data irregularities, uncertainty in methods and data, and the general challenge of a curriculum with inherent ambiguity. The majority were satisfied with the aims of the course to provide an integrative experience. All students demonstrated transfer of learned skills. This project has had a significant impact on our undergraduate female students: several students have pursued senior thesis projects stemming from grant activities, stating that the field activities were the highlight of their semester. Some students love the experience and want more. Others decide that they want to pursue a different career. All learn how science is conducted and have a better foundation to understand concepts such

  16. Meteorological effects of thermal energy releases (METER) program. Progress report, October 1980-September 1982

    Energy Technology Data Exchange (ETDEWEB)

    Patrinos, A.A.N.; Hoffman, H.W. (comps.)

    1983-03-01

    This report examines the inadvertent weather modification effects of large cooling towers and cooling ponds. Emphasis was placed on field studies, and the focus of the program was on a precipitation modification study around the Bowen Electric Generating Plant in northwestern Georgia. The field effort includes the study of wetfall chemistry in the plant's vicinity. The analysis of three years of precipitation data have failed to show a significant effect of the plant on rainfall volume; the investigation of rainfall pattern variability has been inconclusive. The studies of wetfall chemistry have provided valuable information on the mechanisms of plume washout from large point sources and on the general characteristics of precipitation chemistry in the southeastern US.

  17. Modeling the effects of ion dose and crystallographic symmetry on the morphological evolution of embedded precipitates under thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Li, Kun-Dar, E-mail: kundar@mail.nutn.edu.tw

    2014-10-01

    Highlights: •We model the faceted precipitates formation by post-implantation annealing. •The anisotropic interfacial energy and diffusion kinetics play crucial roles. •The evolutions of faceted precipitates, including Ostwald ripening, are revealed. •The mechanism of the nucleation and growth is based on the atomic diffusion. •The effects of ion dose and crystallographic symmetry are also investigated. -- Abstract: Thermal annealing is one of the most common techniques to synthesize embedded precipitates by ion implantation process. In this study, an anisotropic phase field model is presented to investigate the effects of ion dose and crystallographic symmetry on the morphological formation and evolution of embedded precipitates during post-implantation thermal annealing process. This theoretical model provides an efficient numerical approach to understand the phenomenon of faceted precipitates formation by ion implantation. As a theoretical analysis, the interfacial energy and diffusion kinetics play prominent roles in the mechanism of atomic diffusion for the precipitates formation. With a low ion dose, faceted precipitates are developed by virtue of the anisotropic interfacial energy. As an increase of ion dose, connected precipitates with crystallographic characters on the edge are appeared. For a high ion dose, labyrinth-like nanostructures of precipitates are produced and the characteristic morphology of crystallographic symmetry becomes faint. These simulation results for the morphological evolutions of embedded precipitates by ion implantation are corresponded with many experimental observations in the literatures. The quantitative analyses of the simulations are also well described the consequence of precipitates formation under different conditions.

  18. Membrane-based wet electrostatic precipitation.

    Science.gov (United States)

    Bayless, David J; Shi, Liming; Kremer, Gregory; Stuart, Ben J; Reynolds, James; Caine, John

    2005-06-01

    Emissions of fine particulate matter, PM2.5, in both primary and secondary form, are difficult to capture in typical dry electrostatic precipitators (ESPs). Wet (or water-based) ESPs are well suited for collection of acid aerosols and fine particulates because of greater corona power and virtually no re-entrainment. However, field disruptions because of spraying (misting) of water, formation of dry spots (channeling), and collector surface corrosion limit the applicability of current wet ESPs in the control of secondary PM2.5. Researchers at Ohio University have patented novel membrane collection surfaces to address these problems. Water-based cleaning in membrane collectors made of corrosion-resistant fibers is facilitated by capillary action between the fibers, maintaining an even distribution of water. This paper presents collection efficiency results of lab-scale and pilot-scale testing at FirstEnergy's Bruce Mansfield Plant for the membrane-based wet ESP. The data indicate that a membrane wet ESP was more effective at collecting fine particulates, acid aerosols, and oxidized mercury than the metal-plate wet ESP, even with approximately 15% less collecting area.

  19. Climatology of Vb-cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe

    Science.gov (United States)

    Messmer, M.; Gómez-Navarro, J. J.; Raible, C. C.

    2015-05-01

    Cyclones, which develop over the western Mediterranean and move northeastward are a major source of extreme weather and known to be responsible for heavy precipitation over Central Europe and the Alps. As the relevant processes triggering these so-called Vb-events and their impact on extreme precipitation are not yet fully understood, this study focusses on gaining insight into the dynamics of past events. For this, a cyclone detection and tracking tool is applied to the ERA-Interim reanalysis (1979-2013) to identify prominent Vb-situations. Precipitation in the ERA-Interim and the E-OBS datasets is used to evaluate case-to-case precipitation amounts and to assess consistency between the two datasets. Both datasets exhibit high variability in precipitation amounts among different Vb-events. While only 23 % of all Vb-events are associated with extreme precipitation, around 15 % of all extreme precipitation days (99 percentile) over the Alpine region are induced by Vb-events, although Vb-cyclones are rare events (2.3 per year). To obtain a better understanding of the variability within Vb-events, the analysis of the 10 heaviest and lowest precipitation Vb-events reveals noticeable differences in the state of the atmosphere. These differences are most pronounced in the geopotential height and potential vorticity field, indicating a much stronger cyclone for heavy precipitation events. The related differences in wind direction are responsible for the moisture transport around the Alps and the orographical lifting along the Alps. These effects are the main reasons for a disastrous outcome of Vb-events, and consequently are absent in the Vb-events associated with low precipitation. Hence, our results point out that heavy precipitation related to Vb-events is mainly related to large-scale dynamics rather than to thermodynamic processes.

  20. Climatology of Vb cyclones, physical mechanisms and their impact on extreme precipitation over Central Europe

    Science.gov (United States)

    Messmer, M.; Gómez-Navarro, J. J.; Raible, C. C.

    2015-09-01

    Cyclones, which develop over the western Mediterranean and move northeastward are a major source of extreme weather and known to be responsible for heavy precipitation over the northern side of the Alpine range and Central Europe. As the relevant processes triggering these so-called Vb events and their impact on extreme precipitation are not yet fully understood, this study focuses on gaining insight into the dynamics of past events. For this, a cyclone detection and tracking tool is applied to the ERA-Interim reanalysis (1979-2013) to identify prominent Vb situations. Precipitation in the ERA-Interim and the E-OBS data sets is used to evaluate case-to-case precipitation amounts and to assess consistency between the two data sets. Both data sets exhibit high variability in precipitation amounts among different Vb events. While only 23 % of all Vb events are associated with extreme precipitation, around 15 % of all extreme precipitation days (99 percentile) over the northern Alpine region and Central Europe are induced by Vb events, although Vb cyclones are rare events (2.3 per year). To obtain a better understanding of the variability within Vb events, the analysis of the 10 heaviest and lowest precipitation Vb events reveals noticeable differences in the state of the atmosphere. These differences are most pronounced in the geopotential height and potential vorticity field, indicating a much stronger cyclone for heavy precipitation events. The related differences in wind direction are responsible for the moisture transport around the Alps and the orographical lifting along the northern slopes of the Alps. These effects are the main reasons for a disastrous outcome of Vb events, and consequently are absent in the Vb events associated with low precipitation. Hence, our results point out that heavy precipitation related to Vb events is mainly related to large-scale dynamics rather than to thermodynamic processes.

  1. Examination of Satellite and Model Reanalysis Precipitation with Climate Oscillations

    Science.gov (United States)

    Donato, T. F.; Houser, P. R.

    2016-12-01

    The purpose of this study is to examine the efficacy of satellite and model reanalysis precipitation with climate oscillations. Specifically, we examine and compare the relationship between the Global Precipitation Climate Project (GPCP) with Modern-Era Retrospective Analysis for Research and Application, Version 2 (MERRA-2) in regards to four climate indices: The North Atlantic Oscillation, Southern Oscillation Index, the Southern Annular Mode and Solar Activity. This analysis covers a 35-year observation period from 1980 through 2015. We ask two questions: How is global and regional precipitation changing over the observation period, and how are global and regional variations in precipitation related to global climate variation? We explore and compare global and regional precipitation trends between the two data sets. To do this, we constructed a total of 56 Regions of Interest (ROI). Nineteen of the ROIs were focused on geographic regions including continents, ocean basins, and marginal seas. Twelve ROIs examine hemispheric processes. The remaining 26 regions are derived from spatial-temporal classification analysis of GPCP data over a ten-year period (2001-2010). These regions include the primary wet and dry monsoon regions, regions influenced by western boundary currents, and orography. We investigate and interpret the monthly, seasonal and yearly global and regional response to the selected climate indices. Initial results indicate that no correlation exist between the GPCP data and Merra-2 data. Preliminary qualitative assessment between GCPC and solar activity suggest a possible relationship in intra-annual variability. This work is performed under the State of the Global Water and Energy Cycle (SWEC) project, a NASA-sponsored program in support of NASA's Energy and Water cycle Study (NEWS).

  2. Aluminosilicate Precipitation Impact on Uranium

    Energy Technology Data Exchange (ETDEWEB)

    WILMARTH, WILLIAM

    2006-03-10

    Experiments have been conducted to examine the fate of uranium during the formation of sodium aluminosilicate (NAS) when wastes containing high aluminate concentrations are mixed with wastes of high silicate concentration. Testing was conducted at varying degrees of uranium saturation. Testing examined typical tank conditions, e.g., stagnant, slightly elevated temperature (50 C). The results showed that under sub-saturated conditions uranium is not removed from solution to any large extent in both simulant testing and actual tank waste testing. This aspect was not thoroughly understood prior to this work and was necessary to avoid criticality issues when actual tank wastes were aggregated. There are data supporting a small removal due to sorption of uranium on sites in the NAS. Above the solubility limit the data are clear that a reduction in uranium concentration occurs concomitant with the formation of aluminosilicate. This uranium precipitation is fairly rapid and ceases when uranium reaches its solubility limit. At the solubility limit, it appears that uranium is not affected, but further testing might be warranted.

  3. Earth gravity field modeling and relativistic measurements with laser-ranged satellites and the LARASE research program

    Science.gov (United States)

    Pucacco, Giuseppe; Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Pardini, Carmen; Peron, Roberto; Stanga, Ruggero; Visco, Massimo

    2017-04-01

    The importance of General Relativity (GR) for space geodesy — and for geodesy in general — is well known since several decades and it has been confirmed by a number of very significant results. For instance, GR plays a fundamental role for the following very notable techniques: Satellite-and-Lunar Laser Ranging (SLR/LLR), Very Long Baseline Interferometry (VLBI), Doppler Orbitography and Radio-positioning Integrated by Satellite (DORIS), and Global Navigation Satellite Systems (GNSS). Each of these techniques is intimately and closely related with both GR and geodesy, i.e. they are linked in a loop where benefits in one field provide positive improvements in the other ones. A common ingredient for a suitable and reliable use of each of these techniques is represented by the knowledge of the Earth's gravitational field, both in its static and temporal dependence. Spaceborne gravimetry, with the inclusion of accelerometers and gradiometers on board dedicated satellites, together with microwave links between satellites and GPS measurements, have allowed a huge improvement in the determination of the Earth's geopotential during the last 15 years. In the near future, further improvements are expected in this knowledge thanks to the inclusion of laser inter-satellite link and the possibility to compare frequency and atomic standards by a direct use of atomic clocks, both on the Earth's surface and in space. Such results will be also important for the possibility to further improve the GR tests and measurements in the field of the Earth with laser-ranged satellites in order to compare the predictions of Einstein's theory with those of other (proposed) relativistic theories for the interpretation of the gravitational interaction. Within the present paper we describe the state of the art of such measurements with geodetic satellites, as the two LAGEOS and LARES, and we discuss the effective impact of the systematic errors of gravitational origin on the measurement of

  4. Changes in the Martian atmosphere induced by auroral electron precipitation

    Science.gov (United States)

    Shematovich, V. I.; Bisikalo, D. V.; Gérard, J.-C.; Hubert, B.

    2017-09-01

    Typical auroral events in the Martian atmosphere, such as discrete and diffuse auroral emissions detected by UV spectrometers onboard ESA Mars Express and NASA MAVEN, are investigated. Auroral electron kinetic energy distribution functions and energy spectra of the upward and downward electron fluxes are obtained by electron transport calculations using the kinetic Monte Carlo model. These characteristics of auroral electron fluxes make it possible to calculate both the precipitation-induced changes in the atmosphere and the observed manifestations of auroral events on Mars. In particular, intensities of discrete and diffuse auroral emissions in the UV and visible wavelength ranges (Soret et al., 2016; Bisikalo et al., 2017; Gérard et al., 2017). For these conditions of auroral events, the analysis is carried out, and the contribution of the fluxes of precipitating electrons to the heating and ionization of the Martian atmosphere is estimated. Numerical calculations show that in the case of discrete auroral events the effect of the residual crustal magnetic field leads to a significant increase in the upward fluxes of electrons, which causes a decrease in the rates of heating and ionization of the atmospheric gas in comparison with the calculations without taking into account the residual magnetic field. It is shown that all the above-mentioned impact factors of auroral electron precipitation processes should be taken into account both in the photochemical models of the Martian atmosphere and in the interpretation of observations of the chemical composition and its variations using the ACS instrument onboard ExoMars.

  5. Growth of precipitation over the territory of Ukraine in the beginning of 21 century

    Science.gov (United States)

    Olexander, Shchehlov; Vazira, Martazinova

    2015-04-01

    The climate change results in growing number of hazardous weather events. In this study we carried comparative analysis of current changes of precipitation on the territory of the Ukraine in order to identify vulnerabilities in the economy and the threat to the population from the global climate change. The classification of synoptic processes related with heavy rainfall was based on the method of "etalon field" (Martazinova, 2005). Daily precipitation fields on a regular grid for the territory of Atlantic-European sector (30W - 70E, 40 - 70N) for the periods 1961-1990, 1991 2010, 1991-2000 and 2001-2010 were used to estimate changes in precipitation on the territory of Ukraine. The comparison of the curves of the monthly precipitation 1991-2010, 1961-1990 averaged over the territory of Ukraine shows that the sum of precipitations of all seasons coincides. However, the precipitation curves for 1961-1990, 1991-2000 and 2001-2010 are a significantly differ. The averaged over the territory precipitation for 1991-2000 in all seasons is significantly below norm (1961-1990), especially in the summer season. The precipitation 2001-2010 in all seasons is significantly above norm. The greatest increase of precipitation occurs in the western and south-western regions of Ukraine. The increase of extreme rainfalls (over 15 mm/day) is observed in the last decade for all regions of Ukraine. The increase was revealed also in the frequency of daily precipitation (less 15mm/day). Rise of monthly precipitation in last decade is observed in some month equally for daily extreme precipitation and for precipitation less of 15 mm/day. Noticeable changes in the atmospheric circulation due to climate change led to heavy rainfall over territory of the Ukraine in 2001-2010 in comparison with 1991-2000. The obtained by method of "etalon field" most probable class of synoptic situations of extreme rainfall in last decades in all months is very different from processes of extreme rainfall of

  6. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    Administrator

    Abstract. Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, η, has been calculated and predicted that if.

  7. Meteorological features associated with unprecedented precipitation ...

    Indian Academy of Sciences (India)

    Unprecedented precipitation along with heavy falls occurred over many parts of India from 28th February to 2nd March 2015. Many of the stations of northwest and central India received an all time high 24 hr cumulative precipitation of March during this period. Even the national capital, New Delhi, broke all the previous ...

  8. Calcium carbonate precipitation by different bacterial strains ...

    African Journals Online (AJOL)

    Bacteria are capable of performing metabolic activities which thereby promote precipitation of calcium carbonate in the form of calcite. In this study, it is shown that microbial mineral precipitation was a result of metabolic activities of some specific microorganisms. Concrete microorganisms were used to improve the overall ...

  9. Discontinuous precipitation in copper base alloys

    Indian Academy of Sciences (India)

    Discontinuous precipitation (DP) is associated with grain boundary migration in the wake of which alternate plates of the precipitate and the depleted matrix form. Some copper base alloys show DP while others do not. In this paper the misfit strain parameter, , has been calculated and predicted that if 100 > ± 0.1, DP is ...

  10. Study of asphaltene precipitation by Calorimetry

    DEFF Research Database (Denmark)

    Verdier, Sylvain Charles Roland; Plantier, Frédéric; Bessières, David

    2007-01-01

    of experiments showed that weak forces determine precipitation. Indeed, isothermal titration calorimetry could not detect any clear signal although this technique can detect low-energy transitions such as liquid-liquid equilibrium and rnicellization. The second series of tests proved that precipitation caused...

  11. Precipitation variability assessment of northeast China: Songhua ...

    Indian Academy of Sciences (India)

    Variability in precipitation is critical for the management of water resources. In this study, the research entropy base concept was applied to investigate spatial and temporal variability of the precipitation during 1964–2013 in the Songhua River basin of Heilongjiang Province in China. Sample entropy was applied on ...

  12. Isotope fingerprinting of precipitation associated with western ...

    Indian Academy of Sciences (India)

    Precipitation at Jammu seems to have undergone intense evaporation while that from Uttarakhand suggest normal Rayleigh fractionation/distillation of the air mass as it moves from the source region to the precipitation site and/or orographic lifting. The d-excess of rainfall in Kashmir has a distinctly higher median value of ...

  13. Measurement of acid precipitation in Norway

    Science.gov (United States)

    Arne Semb

    1976-01-01

    Since January 1972, chemical analysis of daily precipitation samples from about 20 background stations in Norway has been carried out on a routine basis. Air monitoring is carried out at six stations. The chemical analysis programme is: sulphate, pH and acidity in precipitation, sulphates and sulphur dioxide in air. In addition, more detailed chemical analysis of...

  14. Meteorological features associated with unprecedented precipitation ...

    Indian Academy of Sciences (India)

    Naresh Kumar

    2017-06-29

    Jun 29, 2017 ... unprecedented precipitation event over India. It occurred due to the presence of an ... westerlies and easterlies caused unprecedented precipitation over India during the 1st week of March 2015. Keywords. Meteorological ... ies related to WDs that caused extreme weather over the Himalayan region and ...

  15. Installation Restoration Program. Phase II. Confirmation/Quantification. Stage 1 for Hancock Field, New York and HQTAC, Langley AFB, Virginia.

    Science.gov (United States)

    1984-10-01

    Repa J. Meade Project Manager C. Kufs Senior Advisors U| A. Wickline"’’ ~~Field Supervisor" • N. DeSalvo A. Lapins -- Soil Scientist Geologist"q Project... DeSALVO EDUCATION I West Virginia University: M.S. Agronomy (1981) West Virginia University: B.S.A. Plant and Soil Science (1977) EXPERIENCE Mr... DeSalvo is a soil scientist with JRB’s Geotechnical Assessment Group. Recently he supervised the installation of groundwater monitoring wells to detect

  16. European summer climate modulated by NAO-related precipitation

    Science.gov (United States)

    Wang, G.; Dolman, A. J.; Alessandri, A.

    2010-07-01

    Recent summer heat waves in Europe were preceded by precipitation deficits in winter. Numerical studies suggest that these phenomena are dynamically linked by land-atmosphere interactions. However, there is still no clear evidence that connects summer climate variability to winter precipitation and the relevant circulation pattern so far. Using a technique specially designed for detecting directional influences between climatic fields, we investigate the statistical responses of summer mean as well as maximum temperature variability (June-August, Tmean and Tmax) to preceding winter precipitation (January-March, PJFM) for the period 1901-2005. There appear distinctive Tmean and Tmax responses to PJFM over the Mediterranean, where it is most sensitive to land-atmosphere interactions. An analysis of soil moisture proxy (self-calibrating Palmer drought severity index, scPDSI) shows that the PJFM seems to influence summer temperature via soil moisture, and therefore the Tmean and Tmax responses we present here are very likely to be physical hints of water cycle interactions with temperature. We estimate that roughly 10~20% of the interannual variability of Tmax and Tmean over the Mediterranean is forced by PJFM; for the scPDSI, these values amount to 20~25%. Further analysis shows that these responses are highly correlated to the North Atlantic Oscillation (NAO) regime over the Mediterranean. Therefore we suggest that NAO modulates European summer temperature via controlling precipitation that initializes the moisture states of water cycle interactions with temperature. This clear picture of relations between European summer climate and NAO-related precipitation suggests potential for improved seasonal prediction of summer climate in particular extreme events.

  17. Relativistic electron precipitation as seen by NOAA POES

    Science.gov (United States)

    Yahnin, A. G.; Yahnina, T. A.; Semenova, N. V.; Gvozdevsky, B. B.; Pashin, A. B.

    2016-09-01

    We performed a survey of relativistic electron precipitation (REP) events revealed by the Medium Energy Proton and Electron Detector instrument on board NOAA Polar-orbiting Operational Environmental Satellites during a 38 day interval. We have divided the observed REP events into three groups with respect to the simultaneous observations of energetic (>30 keV) electron and proton precipitation. The first group consists of REP enhancements forming the isotropy zone at the poleward edge of trapped relativistic electron fluxes. These REP events are observed on the nightside, and they are, apparently, produced by isotropization process related to nonadiabatic motion of particles in the stretched magnetic field. The second group are the REP events related to simultaneous enhancements of energetic >30-300 keV electrons. These events have a wider magnetic local time range of occurrence with a maximum in the premidnight sector. They can be related to the interaction of electrons with waves whose possible nature is briefly discussed on the basis of comparison with the cold plasma density in the conjugated region of the equatorial plane. The third group consists of the REP events correlated with the burst-like precipitation of >30-keV protons within an anisotropy zone, where the trapped flux dominates. These events are found in the dusk sector in association with enhanced cold plasma density in the conjugate equatorial magnetosphere. As is known, proton bursts within the anisotropy zone indicate the location of the electromagnetic ion cyclotron (EMIC) wave source. Such REP events can be due to scattering of the relativistic electrons by EMIC waves. However, we noted that some of these REP events are associated with precipitation of energetic electrons with low-energy cutoff below 100 keV. We suggest that in such cases the electrons within a wide energy range are precipitated by other waves (probably, by plasmaspheric hiss).

  18. Integrating a Suicide Prevention Program into the Primary Health Care Network: A Field Trial Study in Iran

    Directory of Open Access Journals (Sweden)

    Seyed Kazem Malakouti

    2015-01-01

    Full Text Available Objective. To describe and evaluate the feasibility of integrating a suicide prevention program with Primary Health Care services and evaluate if such system can improve screening and identification of depressive disorder, reduce number of suicide attempters, and lower rate of suicide completion. Methodology. This was a quasi-experimental trial in which one community was exposed to the intervention versus the control community with no such exposure. The study sites were two counties in Western Iran. The intervention protocol called for primary care and suicide prevention collaboration at different levels of care. The outcome variables were the number of suicides committed, the number of documented suicide attempts, and the number of identified depressed cases. Results. We identified a higher prevalence of depressive disorders in the intervention site versus the control site (χ2=14.8, P<0.001. We also found a reduction in the rate of suicide completion in the intervention region compared to the control, but a higher prevalence of suicide attempts in both the intervention and the control sites. Conclusion. Integrating a suicide prevention program with the Primary Health Care network enhanced depression and suicide surveillance capacity and subsequently reduced the number of suicides, especially in rural areas.

  19. Building Capacity for Data-Driven Decision Making in African HIV Testing Programs: Field Perspectives on Data Use Workshops.

    Science.gov (United States)

    Courtenay-Quirk, Cari; Spindler, Hilary; Leidich, Aimee; Bachanas, Pam

    2016-12-01

    Strategic, high quality HIV testing services (HTS) delivery is an essential step towards reaching the end of AIDS by 2030. We conducted HTS Data Use workshops in five African countries to increase data use for strategic program decision-making. Feedback was collected on the extent to which workshop skills and tools were applied in practice and to identify future capacity-building needs. We later conducted six semistructured phone interviews with workshop planning teams and sent a web-based survey to 92 past participants. The HTS Data Use workshops provided accessible tools that were readily learned by most respondents. While most respondents reported increased confidence in interpreting data and frequency of using such tools over time, planning team representatives indicated ongoing needs for more automated tools that can function across data systems. To achieve ambitious global HIV/AIDS targets, national decision makers may continue to seek tools and skill-building opportunities to monitor programs and identify opportunities to refine strategies.

  20. Integrating a suicide prevention program into the primary health care network: a field trial study in Iran.

    Science.gov (United States)

    Malakouti, Seyed Kazem; Nojomi, Marzieh; Poshtmashadi, Marjan; Hakim Shooshtari, Mitra; Mansouri Moghadam, Fariba; Rahimi-Movaghar, Afarin; Afghah, Susan; Bolhari, Jafar; Bazargan-Hejazi, Shahrzad

    2015-01-01

    To describe and evaluate the feasibility of integrating a suicide prevention program with Primary Health Care services and evaluate if such system can improve screening and identification of depressive disorder, reduce number of suicide attempters, and lower rate of suicide completion. This was a quasi-experimental trial in which one community was exposed to the intervention versus the control community with no such exposure. The study sites were two counties in Western Iran. Th